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On the optimal design of biased contests
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This paper explores the optimal design of biased contests. A designer imposes
an identity-dependent treatment on contestants that varies the balance of the
playing field. A generalized lottery contest typically yields no closed-form equi-
librium solutions, which nullifies the usual implicit programming approach to
optimal contest design and limits analysis to restricted settings. We propose an
alternative approach that allows us to circumvent this difficulty and characterize
the optimum in a general setting under a wide array of objective functions with-
out solving for the equilibrium explicitly. Our technique applies to a broad array
of contest design problems, and the analysis it enables generates novel insights
into incentive provisions in contests and their optimal design. For instance, we
demonstrate that the conventional wisdom of leveling the playing field, which is
obtained in limited settings in previous studies, does not generally hold.
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1. Introduction

Contests are widely administered in practice to mobilize productive effort. For instance,
workers strive to be promoted to higher rungs on hierarchical ladders inside a firm (see,
for instance, Rosen 1986). Governments, firms, and even wealthy individuals sponsor
innovation contests to promote research efforts (see Che and Gale 2003). In a contest,
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contenders expend costly effort to vie for limited prizes and are rewarded based on their
relative performance instead of absolute output metrics.

The ubiquity of contest-like competitive activities has triggered broad interest in
their strategic substance and the optimal design of competitive schemes that spur in-
centive provision.1 This paper explores a classic question: How should a designer bias
the competition to boost the performance of a contest? Contestants’ behaviors sen-
sitively depend on their relative competitiveness, which can often be determined en-
dogenously by the choice of contest rules. A designer can impose identity-dependent
preferential treatments on contestants—tailored to their individual characteristics—to
vary contestants’ relative standing. Consider, for instance, government policies that fa-
vor small- and medium-sized enterprises (SMEs) in public procurement to support lo-
cal entrepreneurship (Che and Gale 2003, Epstein et al. 2011) and colleges that allocate
bonus points to minority applicants (Fu 2006, Franke 2012).

The literature broadly embraces the notion that a more level playing field fuels com-
petition.2,3 The conventional wisdom, however, is obtained in restricted settings—e.g.,
two players, stylized contest technologies, and limited objective functions—due to tech-
nical challenges. This paper develops a novel optimization approach that allows us to
circumvent the analytical difficulty and identify the key properties of the optimum in
a general context. The analysis yields novel implications that illuminate the nature of
incentive provision in contests and refute the conventional wisdom.

Nature of the generalized optimization problem

The conventional wisdom of leveling the playing field is underpinned primarily by the
rationale that favoring the underdog boosts his incentive, which further deters the fa-
vorite from slacking off. This logic, however, rests on contestants’ nonmonotone best
responses in bilateral strategic relation (Lazear and Rosen 1981, Dixit 1987). Involving
more than two players fundamentally alters the nature of the strategic interaction in a
contest and its optimal design.

First, setting optimal identity-dependent preferential treatments in a two-player set-
ting is a unidimensional problem, because favoring one equivalently handicaps the
other. With more than two contestants, the strategic interactions are no longer recipro-
cal or direct. Contestants are reflexively entangled, which expands the channels through
which a treatment could manipulate their behavior.

Imagine a contest with three players indexed by 1, 2, and 3. Suppose that a favorable
bias is imposed on player 3. This directly boosts his own incentive, which compels the
other two to respond. The favor given to player 3 also affects the strategic interaction
between players 1 and 2: Player 1’s response to the more competitive player 3 forces

1See Fu and Wu (2019b) for a recent survey of theoretical studies of contests.
2See the recent survey of Chowdhury et al. (2020) on biased contests.
3Two notable exceptions are provided by Fu et al. (2012) and Drugov and Ryvkin (2017). The former

show that a performance-maximizing administrator may allocate more productive resources to an ex ante
stronger firm. The latter show that it can be optimal to bias an otherwise symmetric contest. Both studies
focus on two-player settings.
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player 2 to adjust his behavior, and vice versa. This compounds the incentive effect of
the bias on player 3; its overall effect must sum up contestants’ responses over all of the
links.

Second, a two-player setting narrows the scope of the optimal biased contest design
problem. With more than two contestants, setting biases not only manipulates the bal-
ance of the playing field, but also selects preferred contestants: Handicapping a player
can force him to exit, which is possible only if at least three contenders are present.

The conventional wisdom, which is obtained from restricted settings, deserves to
be examined more generally. However, the analysis entails substantial complications.
Optimal contest design results in a mathematical program with equilibrium constraints
(MPEC) and typically requires an implicit programming approach. One has to solve for
the equilibrium bidding strategies for any given parameterized contest rule, insert the
solution into the objective function, and search for the optimal rule (e.g., Franke et al.
2013). The approach loses its bite in an asymmetric n-player contest, as in general it
yields no closed-form equilibrium solution.

We propose an alternative optimization approach that allows us to characterize the
optimum without solving explicitly for the equilibrium. Next, we provide a snapshot of
the approach and its underlying logic.

Optimization approach

We adopt the framework of generalized lottery contests to model a noisy winner-takes-
all contest in which a higher effort does not ensure a win. Suppose that the contest
involves n ≥ 2 players who differ in their prize valuations. For a given effort profile x ≡
(x1� � � � � xn), one wins with a probability

pi(x)= fi(xi)
n∑
j=1

fj(xj)

�

where fi(·) maps one’s effort outlays onto his effective output and is conventionally
called the impact function of contestant i ∈ {1� � � � � n}. We focus on the two most pop-
ularly adopted instruments for identity-dependent preferential treatments in the litera-
ture. The impact function takes the form

fi(xi;αi�βi)= αi · h(xi)+βi�
where αi is a multiplicative bias and βi is an additive head start. The designer imposes a
contest rule (α�β)≡ ((α1� � � � �αn)� (β1� � � � �βn)), with αi�βi ≥ 0, which depicts how each
contestant is favored or handicapped vis-à-vis his opponents.

Despite the lack of a closed-form solution, a unique equilibrium exists under mild
regularity conditions. The equilibrium condition alludes to a correspondence, which
provides a system of equations; each equation expresses an individual’s equilibrium ef-
fort as a function of his own equilibrium winning odds and prize valuation. The cor-
respondence thus literally disaggregates the strategic interaction between contestants
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into a series of individual decision problems. The contest rule (α�β) does not appear in
the equation and is encapsulated in each contestant’s equilibrium winning probability.
The design objective can be rewritten accordingly as a function of equilibrium winning
probability distribution. Instead of optimizing over the choice of contest rule, we let
the designer directly assign winning probabilities among contestants to maximize the
reformulated objective function, which reduces the optimization problem to a simple
programming that allocates probability mass among contestants based on their prize
valuations. Finally, we demonstrate that any winning probability distribution can be
induced by a contest rule in equilibrium, which closes the loop.

Implications and applications

In this paper, we set up a general objective function that addresses a wide spectrum
of concerns in contest design. Our analysis yields rich implications that reveal general
properties of optimal biased contests.

First, we show that allowing for head starts β—in addition to the freedom to set bi-
ases α—cannot further improve the performance of the contest. It is thus without loss
of generality to focus solely on the optimal choice of biases α.

Second, we establish a general exclusion principle. The literature has debated
whether certain players should be excluded from the competition (e.g., Baye et al. 1993,
Fang 2002). In contrast to previous studies that allow for outright exclusion, we consider
implicit exclusion by setting biases. Under mild conditions, we show that the optimal
exclusion is monotone in the sense that exclusion always starts from the the weakest
player.

Third, we apply our approach to the classical effort-maximizing problem. To maxi-
mize total effort, the optimum must involve at least three active contestants whenever
possible. A two-player contest is thus suboptimal and a knife-edge case. Further, the
optimum precludes a “superstar,” in that an individual contestant’s winning odds must
fall below 1/2. We then proceed to the maximization of the expected winner’s effort and
show that the optimum keeps only the two top-ranked contestants active.

Fourth, our approach allows us to reexamine the conventional wisdom of leveling
the playing field. The literature has centered on two fundamental questions: (i) Should
contestants’ winning odds be equalized (i.e., leveling the playing field in terms of ex post
equilibrium outcomes)? (ii) Should the contest rule favor weaker contestants vis-à-vis
their stronger opponents (i.e., leveling the playing field in terms of ex ante contest rules)?
Our analysis overturns the conventional wisdom. We show that equalized winning odds
are an artifact of bilateral competitions. With three or more contestants, the strongest
player may turn out to be the least likely winner; contestants’ equilibrium winning prob-
abilities can even be nonmonotone with respect to the rankings of their prize valua-
tions.4 Further, we demonstrate that the contest rule may even upset the balance of the
contest by favoring stronger contestants when more than two contestants are involved;

4In a standard lottery contest with h(xi)= xi , Franke et al. (2013) show in a numerical example that the
optimal biased contest rule favors ex ante weaker contestants but does not fully level the playing field, in
the sense that an ex ante stronger contestant wins with a larger probability.
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the optimal biases can be nonmonotone, in the sense that a middle-ranked contestant
is the most privileged.

The rest of the paper proceeds as follows. Section 2 describes the contest model and
the optimization problem. Section 3 develops our optimization approach and charac-
terizes the optimal contests. Section 4 reexamines the conventional wisdom of leveling
the playing field, and Section 5 concludes. Appendix A lays out the microfoundations of
the underlying contest model. Appendix B collects proofs that are not provided in the
main text.

2. Setup and preliminaries

In this section, we present the fundamentals of the underlying contest game.

2.1 Generalized lottery contests

There are n ≥ 2 risk-neutral contestants competing for a prize. The prize bears a value
vi > 0 for each contestant i ∈ N ≡ {1� � � � � n}, with v1 ≥ · · · ≥ vn > 0, which is common
knowledge. A contestant’s prize valuation measures his strength, as a higher valuation
motivates effort. Contestants simultaneously submit their effort entries xi ≥ 0 to vie for
the prize, which incur a cost of c(xi).

We consider a generalized lottery contest with a ratio-form contest success function:
For a given effort profile x≡ (x1�� � � � � xn), a contestant i wins with a probability

pi(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

fi(xi)
n∑
j=1

fj(xj)

if
n∑
j=1

fj(xj) > 0�

1
n

if
n∑
j=1

fj(xj)= 0�

(1)

where the function fi(·), labeled the impact function in the contest literature, converts
one’s effort into his effective output and satisfies fi(xi) ≥ 0 for all xi ≥ 0. A contestant
i ∈ N is excluded from the contest if fi(xi)= 0 for all xi ≥ 0. In the extreme case in which
only one contestant has an increasing impact function, while the others’ impact func-
tions are a zero constant, we assume that he wins automatically.5

 Appendix A presents
two rationales for the model’s microeconomic underpinning: (i) a noisy-ranking ap-
proach adapted from the discrete-choice model (Clark and Riis 1996, Jia 2008) and (ii) a
research tournament analogy (Loury 1979, Dasgupta and Stiglitz 1980, Fullerton and
McAfee 1999, Baye and Hoppe 2003).

Given x≡ (x1� � � � � xn) and (1), contestant i’s expected payoff can be written as

πi(x) := pi(x) · vi − c(xi)�
5This assumption is imposed to guarantee the existence of a pure-strategy Nash equilibrium.
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Our paper encapsulates contestants’ heterogeneity into the difference in their prize
valuations. The model depicts a context in which the prize is nonmonetary and contes-
tants value it differently. It should be noted that our analysis accommodates an alter-
native setup that allows for heterogeneity in effort costs. To see this, suppose that the
prize carries a common monetary value, which we normalize to unity, while contestants
differ in their abilities. Following Moldovanu and Sela (2001, 2006) and Moldovanu et al.
(2007), a contestant i’s effort cost takes the form ci(xi)= c(xi)/di, with d1 ≥ · · · ≥ dn > 0.
The parameter di measures one’s ability: A more competent contestant is endowed with
a larger di and bears a lower effort cost. Each contestant chooses effort xi to maximize
the expected payoff pi(x)− c(xi)/di, which is equivalent to maximizing pi(x) ·di− c(xi).
The game is isomorphic to that in our baseline setting, and the parameter di plays the
same role as vi. The analysis in the baseline setting naturally extends.6

2.2 Regularity condition and equilibrium property

The set of impact functions {fi(·)}ni=1, together with contestants’ valuations v ≡
(v1� � � � � vn) and the effort cost function c(·), defines a simultaneous-move contest game.
We impose the following regularity condition.

Definition 1 (Regular Concave Contests). A contest (v� {fi(·)}ni=1� c(·)) is called a regu-
lar concave contest if (i) the impact function for contestant i ∈ N is either a nonnegative
constant or a twice-differentiable function, with fi(xi)≥ 0, f ′

i (xi) > 0, and f ′′
i (xi)≤ 0 for

all xi ≥ 0, and (ii) the effort cost function satisfies c(0)= 0, c′(xi) > 0, and c′′(xi) ≥ 0 for
all xi > 0.

The above definition simply requires the usual concave impact functions and a con-
vex effort cost function, which ensure a concave payoff function in effort and are widely
adopted in the literature. Szidarovszky and Okuguchi (1997) and Cornes and Hartley
(2005) prove the existence and uniqueness of the equilibrium in the above contest game
with fi(0) = 0 for all i ∈ N . Their results cannot be applied directly to contests that al-
low for head starts, i.e., fi(0) > 0 for some i ∈ N . The following theorem relaxes the
zero-head-start assumption.

Theorem 1 (Existence and Uniqueness of Equilibrium). There exists a unique pure-
strategy Nash equilibrium in a regular concave contest game (v� {fi(·)}ni=1� c(·)).

Our study focuses on the above-defined concave contests for two reasons. First,
when impact functions are convex, a pure-strategy equilibrium does not often exist. Al-
though mixed-strategy equilibria exist, they generally are not unique and their proper-
ties remain elusive in the literature (e.g., Ewerhart 2015, 2017). Second, the condition
alludes to the usual production technology with nonincreasing marginal output.

6In the Supplemental Material, available in a supplementary file on the journal website, http://
econtheory.org/supp/3672/supplement.pdf, we analyze an extended setting in which the heterogeneity in
effort cost functions is modeled more generally.

http://econtheory.org/supp/3672/supplement.pdf
http://econtheory.org/supp/3672/supplement.pdf
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2.3 Design instruments and contest objectives

Theorem 1 allows us to set up the contest design problem in a two-stage structure. First,
the designer sets the contest rule and announces it publicly; second, contestants ex-
ert effort simultaneously to vie for the prize. We first discuss the instruments available
to the designer and then elaborate on the properties and implications of the objective
function.

2.3.1 Design instruments We follow the tradition in the literature and mainly focus on
two types of instruments to model identity-dependent preferential treatment: (i) mul-
tiplicative biases, i.e., weights on contestants’ effective output, and (ii) additive head
starts. To put this formally, the impact function takes the form

fi(xi;αi�βi)= αi · h(xi)+βi� (2)

The function h(·) is exogenously given as the fundamental contest technology;7 the
identity-dependent treatment imposed on each contestant i ∈ N is given by a tuple
(αi�βi), with αi�βi ≥ 0.8 The contest technology h(·) is assumed to have the following
properties.

Assumption 1 (Concave Contest Technology). The function h(·) is twice differentiable,
with h(0)= 0, h′(x) > 0, and h′′(x)≤ 0 for all x > 0.9

Both the multiplicative bias, αi, and the additive head start, βi, are popularly
adopted in the literature to model preferential treatments. Fu (2006), Franke (2012),
Franke et al. (2013, 2014), and Epstein et al. (2011) focus on the former, while Clark and
Riis (2000), Konrad (2002), Siegel (2009, 2014), Kirkegaard (2012), and Li and Yu (2012)
consider the latter. Franke et al. (2018) allow for both. Both instruments vary a contes-
tant’s (deterministic) output, but through starkly different channels: αi scales a contes-
tant’s output up or down for any given effort, while βi directly adds to it regardless of
his effort. The contrast inspires interesting comparisons, which generate useful impli-
cations for contest design.

2.3.2 A general objective function The designer chooses (α�β) to maximize an objec-
tive function �(·), which is a function of the effort profile x ≡ (x1� � � � � xn), the pro-
file of winning probabilities p ≡ (p1� � � � �pn), and the profile of prize valuations v ≡
(v1� � � � � vn). We impose the following regularity condition on �(x�p�v).

Assumption 2 (Objective Function). Fixing p ≡ (p1� � � � �pn) and v ≡ (v1� � � � � vn),
�(x�p�v) is weakly increasing in xi for all i ∈ N .

7In the Supplemental Material, we analyze an extended setting in which contestants are endowed with
heterogeneous contest technologies hi(·).

8 Drugov and Ryvkin (2017) study a two-player contest with head start in which contestant 1 wins with a
probability p1 = (x1 +β)/(x1 +x2), and contestant 2 wins with a probability 1−p1. This two-player contest
is equivalent to a lottery contest in which contestants 1 and 2 are endowed with identity-dependent head
starts of β and −β, respectively.

9With αi�βi ≥ 0, Assumption 1 ensures that the game satisfies the requirements of Definition 1 and that
Theorem 1 applies, by which a unique pure-strategy equilibrium exists.
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The assumption simply requires that contestants’ efforts accrue to the benefit of the
contest designer. For a given winning probability distribution p, an increase in a contes-
tant’s effort does not reduce the designer’s payoff.

The objective function �(x�p�v) encompasses a wide array of scenarios. First con-
sider

�(x�p�v) :=
n∑
i=1

xi +ψ
n∑
i=1

pivi − γ
n∑
i=1

⎛⎜⎜⎜⎜⎜⎝pi −
n∑
j=1

pj

n

⎞⎟⎟⎟⎟⎟⎠

2

� (3)

with ψ≥ 0 and γ ≥ 0. The function obviously satisfies Assumption 2.
When the weights ψ and γ both reduce to zero, the above expression boils down to

�(x�p�v) = ∑n
i=1 xi, the popularly studied objective of total effort maximization. The

objective function (3) allows the designer to have a direct preference for contestants’
winning probability distribution. The term

∑n
i=1(pi − (

∑n
j=1pj)/n)

2 is the variance of
the winning probabilities. With γ > 0, the designer prefers a less predictable outcome.
For instance, in sports competitions, spectators often not only appreciate contenders’
efforts, but also demand more suspense about the eventual winner (see Chan et al. 2009,
Ely et al. 2015).10 The contest objective also accommodates the pursuit of selection ef-
ficiency (see Meyer 1991, Hvide and Kristiansen 2003, Ryvkin and Ortmann 2008, Fang
and Noe 2018): The additional component

∑n
i=1pivi strictly increases when a contes-

tant of a higher valuation is able to win more often, which also provides an example of
how contestants’ prize valuations could directly affect the designer’s payoff.11

In many competitive events, however, only the winner’s effort is relevant to the or-
ganizer’s interest. Suppose that the contest designer cares only about the expected win-
ner’s effort. The objective function can be written as

�(x�p�v)=
n∑
i=1

pixi� (4)

which clearly satisfies Assumption 2. This objective function has gained increasing at-
tention in the literature (e.g., Moldovanu and Sela 2006, Serena 2017, Barbieri and Ser-
ena 2019). A chief executive officer (CEO) succession race motivates candidates to de-
velop their managerial skills when carrying out assigned tasks. Large public firms (e.g.,
General Electric and Hewlett-Packard) often have difficulty retaining losing candidates,

10Such a preference is also assumed by Fort and Quirk (1995), Szymanski (2003), and Runkel (2006) in
two-player settings.

11The contest designer may care about both effort supply and contestants’ welfare (e.g., Epstein et al.
2011). Recall that a contestant i has an expected payoff πi = pivi − xi with linear effort cost functions.
This preference can formally be expressed as �(x�p�v) :=φ∑n

i=1πi + (1 −φ)∑n
i=1 xi =φ

∑n
i=1pivi + (1 −

2φ)
∑n
i=1 xi . Assumption 2 is satisfied if and only if φ≤ 1

2 , in which case this objective function boils down
to a case of the objective function (3). Higher efforts, however, would cause net disutility to the designer if
her preference over contestants’ welfare is excessively strong (i.e., φ> 1

2 ), which defies Assumption 2.
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which would lead them to focus only on the acquisition of human capital from the win-
ner (Fu and Wu 2019c).12

3. Optimal contest design: Analysis

Given the existence and uniqueness of a pure-strategy equilibrium in the contest game
for arbitrary (α�β), the optimal contest design problem yields a typical mathematical
program with equilibrium constraints (MPEC): Contestants’ equilibrium effort profile,
x, is endogenously determined in the equilibrium as a function of (α�β), and the de-
signer chooses (α�β) for the optimization problem

max
{x�α�β}

�(x�p�v)

subject to xi = arg max
xi≥0

πi(x;α�β)

pi(x;α�β)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

fi(xi;αi�βi)
n∑
j=1

fj(xj;αj�βj)
if

n∑
j=1

fj(xj;αj�βj) > 0�

1
n

if
n∑
j=1

fj(xj;αj�βj)= 0�

The conventional approach requires an equilibrium solution of effort profile x for
an arbitrary (α�β), which is, in general, unavailable. We take a detour to bypass the
difficulty, and the approach can be described as follows:

(i) We resort to the first-order conditions for the unique equilibrium of a contest
game under an arbitrary contest rule (α�β)and show that the optimum can al-
ways be achieved by a contest rule with zero head start. This allows us to focus
on only the optimal choice of α.

(ii) We establish a correspondence between contestants’ equilibrium effort profile x

and equilibrium winning probability distribution p.

(iii) Based on the correspondence noted above, we rewrite the objective as a function
of the winning probability distribution. Instead of searching directly for the op-
timal contest rule, we let the designer assign equilibrium winning probabilities

12It is useful to point out that the expected winner’s effort may differ subtly from the expected winner’s
performance. As previously noted, a generalized lottery contest can be underpinned by either a noisy tour-
nament adapted from a discrete-choice model or a research tournament. Contestants’ output or perfor-
mance is a random variable that increases with their efforts. Fu and Wu (2019c) consider a succession race
in which a firm selects a CEO based on observed output, but candidates’ efforts add to their human cap-
ital, which leads to objective (4) when the firm cares only about the successor’s skill. However, when the
designer benefits from the winner’s noisy output or performance (e.g., a procurement tournament or an
architectural design competition), the objective function will be formulated alternatively, depending on
the underlying noisy production process. In a noisy tournament, it is given by

∑n
i=1pifi(xi); in a research

tournament à la Fullerton and McAfee (1999), it is
∑n
i=1 fi(xi).
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to contestants. We then solve for the probability distribution that maximizes the
objective function.

(iv) Finally, we identify the contest rule that induces the desirable winning probability
distribution in equilibrium.

In the unique equilibrium of a contest game, the first-order condition ∂πi(x)/∂xi = 0
must be satisfied for an active contestant i ∈ N . With the impact functions specified in
expression (2), the condition can be rewritten as∑

j �=i

[
αjh(xj)+βj

]
{

n∑
j=1

[
αjh(xj)+βj

]}2 · h′(xi)= 1
αivi

· c′(xi) for xi > 0�

Similarly, the inequality∑
j �=i

[
αjh(xj)+βj

]
{

n∑
j=1

[
αjh(xj)+βj

]}2 · h′(xi)≤ 1
αivi

· c′(xi) for xi = 0

holds if contestant i remains inactive in equilibrium. The above equilibrium conditions,
together with the winning probability pi(x) specified in (1) imply immediately that

pi(1 −pi)vi = c′(xi) · αih(xi)+βi
αih

′(xi)
for xi > 013 (5)

and

pi(1 −pi)vi ≤ c′(xi) · αih(xi)+βi
αih

′(xi)
for xi = 0�

3.1 Suboptimality of additive head start

We now demonstrate that multiplicative biases outperform additive head starts. Specif-
ically, we show that fixing an arbitrary contest rule with positive head starts, we can
always construct an alternative contest rule with zero head start that induces the same
equilibrium winning probability distribution but strictly higher effort.

A sketch proof is provided below. Denote by (α∗�β∗) ≡ ((α∗
1� � � � �α

∗
n)� (β

∗
1� � � � �β

∗
n))

the optimal contest rule that maximizes�(x�p�v); the corresponding equilibrium effort
profile and winning probabilities are denoted by x∗ ≡ (x∗

1� � � � � x
∗
n) and p∗ ≡ (p∗

1� � � � �p
∗
n),

13We need αi > 0 for the right-hand side to be well defined, which clearly holds. In fact, if αi = 0, it is
straightforward to see that xi = 0 is a strictly dominant strategy for player i due to the fact that costly effort
has zero impact on player i’s winning probability.
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respectively. Suppose that β∗
t > 0 for some t ∈ N in the optimum. We focus on an arbi-

trary active contestant t, i.e., x∗
t > 0, as the logic naturally extends to inactive contestants

with x∗
t = 0. Recall the equilibrium condition

p∗
t

(
1 −p∗

t

)
vt = c′

(
x∗
t

) · α
∗
t h

(
x∗
t

)+β∗
t

α∗
t h

′(x∗
t

) �

Denote by x† the unique solution to14

c′
(
x∗
t

) · α
∗
t h

(
x∗
t

) +β∗
t

α∗
t h

′(x∗
t

) = c′(x†) · h
(
x†)

h′(x†) � (6)

Simple analysis would verify that x† > x∗
t , given β∗

t > 0. Consider an alternative contest
rule with α̃≡ (̃α1� � � � � α̃n) and β̃≡ (β̃1� � � � � β̃n) such that

(̃αi� β̃i) :=

⎧⎪⎨⎪⎩
(
α∗
t h

(
x∗
t

)+β∗
t

h
(
x†) �0

)
for i= t�(

α∗
i �β

∗
i

)
for i �= t�

In words, all contestants are awarded the same identity-dependent treatment as before
except for contestant t. The new contest rule removes the head start for contestant t.
Simple algebra verifies that the equilibrium effort profile under the new contest rule
(α̃� β̃), which we denote by x̃∗ ≡ (x̃∗

1� � � � � x̃
∗
n), is given by

x̃∗
i =

{
x† for i= t�
x∗
i for i �= t�

The new contest rule outperforms under Assumption 2. It induces the same winning
probability distribution, because α̃t · h(x†) + β̃t = α∗

t · h(x∗
t ) + β∗

t by our construction,
while the effort of contestant t strictly increases because x† > x∗

t by (6).15 This argument
leads to the following theorem.

Theorem 2 (Suboptimality of Head start). Suppose that Assumptions 1 and 2 are satis-
fied. The optimum can always be achieved by choosing multiplicative biases α only and
setting head starts β to zero.

It is thus without loss of generality to abstract away head start and focus on
multiplicative biases when searching for the optimal biased contests, i.e., assuming

14The existence and uniqueness of the solution x† follows from the facts that c′(x) · h(x)/h′(x) is strictly
increasing in x, limx↘0 c

′(x) · h(x)/h′(x)= 0, and limx↗∞ c′(x) · h(x)/h′(x)= ∞.
15A closer inspection of (6) indicates that x† > x∗

t may not hold if the head start βt is allowed to be neg-
ative, in which case the comparison depends on the properties of c′(·), h(·), and h′(·). Drugov and Ryvkin
(2017) allow for negative head start (see footnote 8) and show that a deviation from zero head start can
locally improve the performance of the contest, depending on the sign of c′′′(·). They focus on the local
property of the objective function with respect to the design instrument. It is noteworthy that negative
head start could nullify the contest success function (1) and cause irregularity to the contest game when
examining the global property of the objective function. We therefore focus on a setting of β≥ 0.
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fi(xi;αi�βi) = αi · h(xi), with βi = 0 for all i ∈ N .16 Franke et al. (2018, Proposi-
tion 3.6) obtain similar results. Specifically, they show in a standard lottery contest, i.e.,
h(xi)= xi, that a positive head start is suboptimal when the designer aims to maximize
total effort. Our analysis generalizes Franke et al. (2018) in two dimensions: First, we
allow for a flexible contest technology and, second, the optimization problem addresses
a broad objective.

3.2 Reformulated design problem

Theorem 2 allows us to derive the fundamental equilibrium correspondence that under-
pins our optimization approach: With βi = 0,

pi(1 −pi)vi = c′(xi) · h(xi)
h′(xi)

∀i ∈ N (7)

must hold in an equilibrium. A system of n set-valued functional equations depicts the
relation between winning probability distribution p and contestants’ effort profile x in
equilibrium, with the right-hand side strictly increasing with xi. In what follows, we
call the system of equations the equilibrium correspondence of the contest game. The
correspondence reminds us of the first-order condition (5) for an active player. However,
it also holds for an inactive contestant, as xi = 0 is associated withpi = 0. Further, define
the inverse of log(c′(x) ·h(x)/h′(x)) as g(·). Assumption 1 and the convexity of the effort
cost function imply that g(·) is well defined. In particular, g(·) is a strictly increasing
function, with g(−∞)= 0 and g(∞)= ∞. The correspondence (7) can be rewritten as

xi = g
(
log

(
pi(1 −pi)

)+ log(vi)
) ∀i ∈ N � (8)

Two remarks are in order. First, each equation in the system of equations (8) literally
delineates a direct and unique relation between xi and (pi� vi) for an individual contes-
tant i ∈ N . The equilibrium winning probability pi can be viewed as a sufficient statistic
of the equilibrium in the contest: pi is not exogenously given, but endogenously deter-
mined jointly by contestants’ equilibrium effort profile x ≡ (x1� � � � � xn) and the treat-
ment α ≡ (α1� � � � �αn). Second, the correspondence (8) unveils the nature of incentive
provision in contests. A contestant’s effort decision ultimately takes into account two
basic factors: (i) value (vi), i.e., how much he can be rewarded when he wins; and (ii)
prospect (pi), i.e., the expectation about how likely he is to win.

The correspondence (8) opens a new avenue for contest design. The objective func-
tion �(x�p�v) can be rewritten as �(x(p�v)�p�v); instead of setting α directly, we treat
winning probability distribution p as the design variable and let the designer maximize
�(x(p�v)�p�v), subject to (8) and the feasibility constraints

n∑
i=1

pi = 1 and pi ≥ 0 for all i ∈ N � (9)

16Head starts, however, can be preferred to multiplicative biases by a total-effort-maximizing contest
designer in all-pay auctions. See Li and Yu (2012) and Franke et al. (2018) for more details.
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A maximizer automatically exists for any smooth and continuous objective �(x(p�v)�
p�v) given that the choice set, defined by (9), is an (n − 1)-dimensional simplex. The
following theorem is established as the last piece of the puzzle.

Theorem 3 (Implementing Winning Probabilities by Setting Biases). Fix any equilib-
rium winning probability distribution p≡ (p1� � � � �pn) ∈ �n−1.

(i) If pj = 1 for some j ∈ N , then p ≡ (p1� � � � �pn) can be induced by the set of biases
α(p)≡ (α1(p)� � � � �αn(p)):

αi(p)=
{

1 if i= j�
0 if i �= j�

(ii) If there exist at least two active contestants, then p ≡ (p1� � � � �pn) can be induced
by the set of biases α(p)≡ (α1(p)� � � � �αn(p)):

αi(p)=
⎧⎨⎩

pi

h
(
g
(
log

(
pi(1 −pi)

) + log(vi)
)) if pi > 0�

0 if pi = 0�
(10)

Theorem 3 formally states that the contest designer can properly construct the set
of weights α to induce any equilibrium winning probability distribution.17 The result
closes the loop for the reformulated optimization problem: Upon obtaining the maxi-
mizer to �(x(p�v)�p�v), the optimal biases α∗ ≡ (α∗

1� � � � �α
∗
n) can readily be identified

by invoking Theorem 3.
Consider, for example, the widely studied Tullock contest with h(xi)= (xi)

r and as-
sume a linear effort cost function c(xi)= xi. An equation in the correspondence (8) boils
down to xi = rpi(1−pi)vi. The above-mentioned objective function (3) can be rewritten
as

�
(
x(p�v)�p�v

) :=
n∑
i=1

[
rpi(1 −pi)vi

]+ψ
n∑
i=1

pivi − γ
n∑
i=1

⎛⎜⎜⎜⎜⎜⎝pi −
n∑
j=1

pj

n

⎞⎟⎟⎟⎟⎟⎠

2

�

which gives rise to a quadratic programming. Standard technique would obtain a handy
closed-form solution to the optimal biases α.18 In contrast, we primarily focus on the
general implications of the contest design problem instead of solving for closed-form
solutions in specific settings.

The reformulation enormously simplifies the design problem. By the equilibrium
correspondence (8), each contestant chooses his effort as if he responds merely to

17It should be noted that the biases α that induce each given p are not unique. For instance, the same
equilibrium outcome can be induced by multiplying all αi by some positive factor.

18The application of our optimization approach and the solutions to optimal biases in Tullock contest
settings are available from the authors upon request.
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(pi� vi), his own winning odds and prize valuation: The strategic linkages between con-
testants seemingly dissolve when the winning probability distribution is treated as a de-
sign variable. This approach insulates the designer from the distraction of the complex
strategic interaction of the contest game; instead, the reformulated optimization prob-
lem boils down to a simple programming that allocates probability mass among contes-
tants purely based on the profile of their prize valuations.

3.3 A general exclusion principle

Recall that the contest designer, when setting α, can effectively exclude a contestant by
imposing zero weight on his entry, which discourages him from exerting positive effort.
We now explore the hidden dimension of the design problem: Which contestants should
be included in the optimal contest?

Define τ : N → N as a permutation of the set of players N ≡ {1� � � � � n}. In particular,
player i is replaced by player τ(i) in the rearrangement. With slight abuse of notation, let
us define τ(x) := (xτ(1)� � � � � xτ(n)), τ(p) := (pτ(1)� � � � �pτ(n)), and τ(v) := (vτ(1)� � � � � vτ(n)).
Similarly, let τij(x) denote the permutation obtained by swapping contestants i and j. To
obtain more mileage, we impose the following condition on �(x�p�v).

Assumption 3. The contest designer’s objective �(x�p�v) satisfies the following proper-
ties:

(i) For all permutations τ of N , �(x�p�v)=�(τ(x)� τ(p)� τ(v)).
(ii) If (pi�xi)= (0�0) for some contestant i ∈ N , then �(x�p�v)≤�(x�p� τij(v)) for all

j ∈ N such that vj < vi.

(iii) Fixing p ≡ (p1� � � � �pn) and v ≡ (v1� � � � � vn), �(x�p�v) is strictly increasing in xi if
pi > 0.

Part (i) of the above assumption implies that the designer’s preference is anonymous:
She does not have ex ante preference over certain players. Part (ii) of the assumption
indicates that the prize value for a contestant is more likely to accrue to the designer’s
benefit when he is active. The requirement is automatically satisfied in the simplest case
in which the objective function is independent of contestants’ prize valuations, e.g., in
which the designer maximizes total effort or the expected winner’s effort. Part (iii) states
that the designer would strictly benefit if an active player exerts more effort.

Part (iii) of Assumption 3 implies Assumption 2.19
 Theorem 2 thus remains in place,

and head starts are suboptimal for contest design under Assumption 3. Assumption 3
is by no means restrictive, as all of the examples discussed in Section 2.3.2 satisfy the
requirements. We obtain the following theorem.

Theorem 4 (Exclusion Principle). Suppose that Assumptions 1 and 3 are satisfied. If
p∗
i = 0 for some i ∈ N in the optimum, then p∗

j = 0 for all j ∈ N , with vj < vi.

19To be more rigorous, we need to impose the condition that�(x�p�v) is weakly increasing in xi atpi = 0
for all i ∈ N .
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By Theorem 4, exclusion in the optimum must be monotone: Whenever the designer
intends to exclude contestants, she targets the ex ante weakest contestant. This result
stands in contrast to those obtained in previous studies. In an all-pay auction, Baye
et al. (1993) show that a total-effort-maximizing contest designer may strategically ex-
clude the strongest contestant. In contrast, Fang (2002) demonstrates that the designer
does not have a strict incentive to exclude players from a lottery contest, i.e., h(xi)= xi.
Both studies assume total effort maximization and outright exclusion, while we allow
for a general objective function and an indirect exclusion approach, i.e., we allow the
designer to bias the contest to discourage certain contestants’ participation.

The monotone exclusion principle may compel one to conjecture that an ex ante
stronger contestant, i.e., one with a larger vi, would win with a (weakly) higher probabil-
ity in the optimum. However, this may not hold in general. We elaborate in Section 4.

3.4 Optimal contests: Maximizing total effort and the expected winner’s effort

We now apply our approach to two typical scenarios for contest design. First, we set
ψ and γ in the objective function (3) to zero, and consider the situation in which the
contest designer aims to maximize aggregate effort, i.e., �(x�p�v) = ∑n

i=1 xi. Second,
we consider the objective function (4), the maximization of the expected winner’s effort,
i.e., �(x�p�v)= ∑n

i=1pixi.

Maximizing total effort With slight abuse of notation, we denote by p∗ ≡ (p∗
1� � � � �p

∗
n)

and α∗ ≡ (α∗
1� � � � �α

∗
n), respectively, the total-effort-maximizing winning probabilities

and the corresponding optimal biases. Consider a two-player contest with v1 ≥ v2. It
is well known in the literature that in a Tullock contest setting (i.e., h(xi) = (xi)

r ), the
optimum fully balances the playing field, with p∗

1 = p∗
2 = 1

2 for all r ∈ (0�1]. This can be
achieved by setting α∗

2 to (v1/v2)
r with (v1/v2)

r ≥ 1 and normalizing α∗
1 to 1. By the equi-

librium correspondence, the analysis can readily accommodate flexible contest tech-
nology h(·) and multiple players. Recall that in the equilibrium,

xi = g
(
log

(
pi(1 −pi)

)+ log(vi)
) ∀i ∈ N �

which indicates that xi strictly increases with pi(1 − pi). Note that pi(1 − pi) is non-
monotone in pi: It first increases and then drops, being maximized uniquely at pi = 1

2 .
To put this intuitively, one gives up when he faces a slim chance of winning, while he
also slacks off when he expects an easy win, which underpins the nonmonotone best-
response function in a standard contest game (Dixit 1987). This observation implies
immediately that the total-effort-maximizing contest perfectly levels the playing field,
i.e., p∗

1 = p∗
2 = 1/2, in a two-player contest, regardless of h(·). This generalizes the con-

ventional wisdom obtained in previous studies. Moreover, the following proposition can
be obtained.

Proposition 1 (Total-effort-maximizing Contests). Suppose that n ≥ 2, Assumption 1
is satisfied, and the designer aims to maximize total effort. Then the following statements
hold:
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(i) The optimal contest allows for at least three active players if possible.

(ii) The optimal contest does not allow any contestant to win with a probability more
than 1/2, i.e., p∗

i ≤ 1/2 ∀i ∈ N , with equality if and only if n= 2.

The first part of Proposition 1 generalizes Franke et al. (2013, Theorem 4.6) and
shows that a head-to-head competition is suboptimal whenever a third contestant is
available, regardless of the distribution of prize valuations. Suppose otherwise that in
a multiplayer contest only two players are kept active. Optimization requires that they
have equal chance to win, as noted above. Recall that xi strictly increases withpi(1−pi),
and pi(1 −pi) is maximized when pi = 1

2 , with d[pi(1 −pi)]/dpi|pi=1/2 = 0. With a sim-
ple additive objective function�(x�p�v)= ∑n

i=1 xi, the designer can be strictly better off
by adjusting contest rule α to award a third player a very small probability of winning:
In the new equilibrium, the third player contributes positive effort; the other two would
barely reduce their effort, because the marginal effect on pi(1 −pi) is negligible.

The second part of Proposition 1 provides a key property of the optimum regarding
the winning probability distribution. The optimum precludes a “superstar,” in the sense
that an individual contestant’s winning odds must be strictly less than the sum of the
others’ odds, i.e., p∗

i < 1/2 ∀i ∈ N , whenever the contest involves three or more contes-
tants. It is never optimal to let contestant i win with a probability pi strictly more than
1/2. Suppose to the contrary. The designer, instead, can induce the same effort from
contestant i by assigning 1 − pi and elicit more effort from the others by allocating to
them the saved probability mass 2pi − 1.

It is unclear, in the case of n ≥ 3, whether the optimal contest completely levels the
playing field (i.e., p∗

i = 1/n) and whether an ex ante stronger contestant would necessar-
ily be handicapped more, i.e., a larger vi is associated with a smaller αi in the optimum.
We apply our approach to these classical questions in Section 4 and show that the con-
ventional wisdom does not universally hold.

Maximizing the expected winner’s effort Next we consider the maximization of the ex-
pected winner’s effort. Unlike maximizing aggregate effort

∑n
i=1 xi, the objective func-

tion
∑n
i=1pixi is nonadditive in the contestant’s effort, because the winning probability

pi is a function of effort profile x and is factored in multiplicatively. Our approach is
immune to the nuance. Denote by p∗∗ ≡ (p∗∗

1 � � � � �p
∗∗
n ) the winning probabilities in the

optimal contest. We obtain the following proposition.

Proposition 2 (Optimal Contest that Maximizes the Expected Winner’s Effort). Sup-
pose that Assumption 1 is satisfied and the designer aims to maximize the expected win-
ner’s effort. Then only the two ex ante strongest contestants would remain active in the
optimal contest. Moreover, the ex ante stronger player always wins with a strictly higher
probability than the underdog, independent of the shape of g(·). That is, if v1 > v2, then
p∗∗

1 >p∗∗
2 > 0.20

By Proposition 2, the optimal contest must sufficiently preserve individual incen-
tives by including only the two most competitive contestants. The playing field is never

20It is straightforward to show that p∗∗
1 = p∗∗

2 = 1/2 if v1 = v2.
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fully balanced, as the winning probability assignment is “assortative,” i.e., the top dog
wins more often. This stands in contrast to the optimum established in Proposition 1
under total effort maximization for the case of n= 2.

The result can again be interpreted in light of the correspondence (8). Intuitively,
maximizing the weighted sum

∑n
i=1pixi requires that the probability mass be concen-

trated on the minimal number of the most productive contestants, i.e., the two strongest
contestants. Further, suppose otherwise that the two active contestants win with equal
chance. The designer can be strictly better off by shifting a small amount of probability
mass from p2 to p1. Recall that xi = g(log(pi(1 −pi))+ log(vi)). Its impact on pi(1 −pi)
fades away on the margin, while a larger probability is attached to a higher effort: x1 > x2

because v1 > v2.

4. Leveling the playing field: Reexamined

We now apply our approach to explore a classical question in the contest literature: How
should the balance of the playing field be optimally set to maximize total effort when
contestants are heterogeneous? The question can be examined in terms of either ex
post outcomes or ex ante contest rules. The former concerns how contestants’ winning
odds are ranked in the optimum with respect to their innate strength, while the latter
explores whether weaker contestants are favored vis-à-vis their stronger opponents. In
Section 3.4, we generalize the conventional wisdom in a two-player setting and obtain
that the optimum handicaps the stronger and equalizes winning odds regardless of the
contest technology h(·). In an n-player lottery contest, Franke et al. (2013) show in a
numerical example that the optimal contest is biased in favor of weaker players, i.e.,
α∗
i < α

∗
j for vi > vj and x∗

i � x
∗
j > 0, although the playing field is not fully balanced, i.e.,

p∗
i > p

∗
j for vi > vj and x∗

i � x
∗
j > 0. Our approach allows us to examine this systematically.

4.1 Ranking of winning probabilities in the optimum

Recall the function g(·), which is defined as the inverse of log(c′(x) ·h(x)/h′(x)). We first
obtain the following proposition.

Proposition 3 (Winning Probabilities in Total-effort-maximizing Contests). Suppose
that Assumption 1 is satisfied and the designer aims to maximize total effort. Consider
a contest with n ≥ 3 players. For two arbitrary active contestants i� j ∈ N with vi > vj ,
p∗
i > p

∗
j if g(·) is a strictly convex function.

Proposition 3 predicts that for active contestants, a larger prize valuation ensures
strictly higher equilibrium winning odds in the optimum when the function g(·) is con-
vex. A convex g(·) is common. For instance, a Tullock contest with h(xi) = (xi)

r and a
linear effort cost leads to g(z)= r exp(z), which is evidently strictly convex.

The logic of Proposition 3 is straightforward in light of the fundamental correspon-
dence:

xi = g
(
log

(
pi(1 −pi)

)+ log(vi)
) ∀i ∈ N �
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Obviously, xi is supermodular in (pi� vi) when g(·) is strictly convex in its arguments:
∂2xi/∂pi∂vi must be strictly positive because by Proposition 1, p∗

i < 1/2 in the optimum.
The function g(·) depicts how a contestant’s effort choice takes into account prize value
and the prospect for his win: One steps up his effort when he expects a more rewarding
prize (i.e., increasing vi) or when he is more confident (i.e., increasing pi) for pi < 1/2.
The supermodularity implies that a brighter prospect for a win incentivizes a contestant
more when he also benefits more from the prize. Total effort can be maximized only
when the assignment of p with respect to v is assortative, i.e., assigning larger equilib-
rium winning probability to a contestant of larger prize valuation.

Analogously, the assignment is set to be reversed when the function turns concave.
It should be noted that g(·) cannot be globally concave. Recall that the function is the in-
verse of log(c′(x) ·h(x)/h′(x)). For a contest technology h(·) that satisfies Assumption 1
and a cost function c(x) with finite c′(0), log(c′(x) · h(x)/h′(x)) approaches negative
infinity in the neighborhood of zero, which precludes globally concave g(·). An exhaus-
tive comparative static of probability ranking is infeasible, because the property of g(·)
remains elusive in general.

We construct a parameterized setting to illustrate the impact of g(·) on the probabil-
ity series in the optimum. Assume a linear effort cost function c(x)= x and parameterize
the contest technology h(·) by a variable σ ∈ (0�1] as

hσ(x) := exp
(∫ x

1

1

ζ−1
σ (t)

dt

)
�

where ζ−1
σ (t) is the inverse function of ζσ(·) given by

ζσ(z) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2
z if 0< z < σ�

σ − σ2

2z
if σ ≤ z ≤ 2�

σ2

8
z+

(
σ − 1

2
σ2

)
if z > 2�

The expression of g(·), which we again index by σ , can be written as21

gσ(z)= ζσ
(
ez

) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2
ez if z < logσ�

σ − σ2

2
e−z if logσ ≤ z ≤ log 2�

σ2

8
ez +

(
σ − 1

2
σ2

)
if z > log 2�

21Alternatively, the same gσ(·) can be obtained by assuming the Tullock contest technology h(x) = xr ,

with r ∈ (0�1], and an effort cost function c(x) = r
∫ x

0
[
eg

−1
σ (ω)/ω

]
dω. Our subsequent analysis would nat-

urally extend to this alternative setting and obtains comparative statics with respect to the property of
the cost function. It is straightforward to verify that the constructed effort cost function satisfies c(0) = 0,
c′(x) > 0, and c′′(x)≥ 0 for all x > 0.
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Figure 1. The functions gσ(z) and (p∗
1� � � � �p

∗
10) under different levels of σ .

The function gσ(z) is strictly convex in z for z < logσ and z > log 2, and is strictly concave
in z for logσ ≤ z ≤ log 2.

Suppose that n= 10 and (v1� v2� � � � � v10)= (2�9�2�8� � � � �2�0). With a linear effort cost
function c(x)= x and the constructed contest technology hσ(·), contestant i’s first-order
condition can now be rewritten as

pi(1 −pi)vi = hσ(xi)

h′
σ(xi)

= ζ−1
σ (xi) ⇒ xi = ζσ

(
pi(1 −pi)vi

)
�

Note that pi(1 −pi)vi < 3/4< 1 in the example because vi < 3 for all i ∈ N ≡ {1� � � � �10}.
This indicates that the region [0�∞) in the support of gσ(·) is irrelevant. The variable σ
therefore measures the concavity/convexity of the gσ(·) function in the relevant support
(−∞�0), as Figure 1(a) depicts: gσ(·) is globally concave in the relevant support asσ ↘ 0;
it is globally convex in the relevant support as σ ↗ 1.

The profile of the optimal equilibrium winning probabilities (p∗
1� � � � �p

∗
10) for differ-

ent values of σ are reported in Table 1. In the case of σ = 0�5, p∗
i > p

∗
j whenever vi > vj ,

as predicted by Proposition 3. In contrast, with σ = 0�1, gσ(·) is concave in the rele-
vant support and the ranking is entirely reversed, which implies that the optimal con-
test severely handicaps stronger contestants, such that they are less likely to win. The
logic that underpins Proposition 3 can be flipped to interpret this observation. With a
concave g(·), an increase in vi reduces the marginal impact of pi on xi. A contestant can
less effectively be motivated by an improvement in the prospect of a win when he has a
higher valuation for the prize. This suggests that a lower winning probability should be
assigned to a contestant with a higher prize valuation. The ranking is nonmonotone in
the intermediate case of σ = 0�3. As Figure 1(b) illustrates, p∗

i first strictly increases with
i and then decreases, with player 4 being the most probable winner.
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σ p∗
1 p∗

2 p∗
3 p∗

4 p∗
5 p∗

6 p∗
7 p∗

8 p∗
9 p∗

10

0�1 0�0915 0�0931 0�0948 0�0966 0�0985 0�1005 0�1026 0�1049 0�1073 0�1099
0�3 0�1271 0�1293 0�1316 0�1340 0�1239 0�1082 0�0912 0�0726 0�0522 0�0299
0�5 0�1668 0�1549 0�1421 0�1283 0�1134 0�0973 0�0798 0�0607 0�0398 0�0168

Table 1. Optimal equilibrium winning probabilities (p∗
1� � � � �p

∗
10) under different levels of σ .

4.2 Ranking of multiplicative biases in the optimum

In this part, we examine the optimal contest rule, i.e., the multiplicative biases α∗, that

maximizes total effort. Assume a Tullock contest with n≥ 3, h(xi)= (xi)r , r ∈ (0�1], and

a linear effort cost function c(xi)= xi. The setting streamlines our analysis for two rea-

sons. First, as stated above, the fundamental equilibrium correspondence under a Tul-

lock contest setting can be simplified as

xi = rpi(1 −pi)vi ∀i ∈ N �

which allows for a closed-form solution of the optimal bias rule α∗, as the optimization

problem yields a simple quadratic programming. Second, the total effort of the con-

test can be rewritten as
∑n
i=1 xi = r

∑n
i=1pi(1 − pi)vi, which implies immediately that

the optimal probability distribution p∗ or the winning probability ranking in the opti-

mum is independent of the parameter r. This allows us to focus on the property of op-

timal contest rule and enables lucid comparative statics with respect to r. The following

proposition fully characterizes the optimum.

Proposition 4 (Total-effort-maximizing Tullock Contests). Assume without loss of gen-

erality that contestants are ordered such that v1 ≥ v2 ≥ · · · ≥ vn > 0, h(xi) = (xi)
r , with

r ∈ (0�1], and c(xi)= xi. Suppose that the contest designer aims to maximize total effort.

Then the equilibrium winning probabilities p∗ ≡ (p∗
1� � � � �p

∗
n) are given by

p∗
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
2

(
1 − 1

vi
× κ− 2

κ∑
j=1

1
vj

)
if i ∈ {1� � � � �κ}�

0 if i ∈ N \ {1� � � � �κ}�

(11)

where κ is given by

κ := max

{
m= 2� � � � � n

∣∣∣m− 2
m∑
j=1

1
vj

< vm

}
�
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Moreover, the corresponding weights, denoted by α∗ ≡ (α∗
1� � � � �α

∗
n), that induce p∗ ≡

(p∗
1� � � � �p

∗
n) are given by

α∗
i =

⎧⎪⎪⎨⎪⎪⎩
(
p∗
i

)1−r[(
1 −p∗

i

)
vi
]r if p∗

i > 0�

0 if p∗
i = 0�

Proposition 4 allows us to rank α∗ ≡ (α∗
1� � � � �α

∗
n) with respect to the parameter r.

Proposition 5 (Comparative Statics of the Optimal Biases with Respect to r). Assume
without loss of generality that contestants are ordered such that v1 ≥ v2 ≥ · · · ≥ vn > 0,
h(xi) = (xi)

r , with r ∈ (0�1], and c(xi) = xi. Suppose that the contest designer aims to
maximize total effort. Then the following situations hold:

(i) Suppose that contestants i and j remain active in the total-effort-maximizing con-
test (i.e., i� j ≤ κ). If vi > vj , then there exists a cutoff rij ∈ (0�1) such that α∗

i ≷ α∗
j if

r ≶ rij .

(ii) Define an upper bound rmax := max{i<j≤κ}{rij} and a lower bound rmin :=
min{i<j≤κ}{rij}. Bias α∗

m is decreasing in m ∈ {1� � � � �κ} when r ≤ rmin and is increas-
ing when r ≥ rmax. For r ∈ (rmin� rmax), the optimal biases α∗ are nonmonotone.

Proposition 5 indicates that the usual leveling-the-playing-field principle does not
hold in general. It first states that for a given pair of active contestants, the optimal
bias rule can favor either, depending on the size of r. More generally, Proposition 5(ii)
identifies two cutoffs. When the contest sufficiently rewards more effort, i.e., r ≥ rmax,
a larger weight is assigned to a weaker active player, i.e., one with a lower prize valua-
tion, in which case the conventional wisdom remains. In contrast, when r falls below
a lower bound rmin, the prediction is entirely reversed and the designer further upsets
the balance of the contest in the optimum by favoring stronger contestants, i.e., α∗

m is
decreasing in m.22�23 When r falls in the intermediate range (rmin� rmax), the ranking of
α∗
i is no longer monotone.

22Ample evidence can be found in practice for using reverse handicapping in favor of ex ante stronger
contenders. Consider, for instance, the widespread industry policy that gives unfair advantage to large
organizations to promote “national champions” for domestic dominance and international preeminence;
e.g., the dirigiste policy in France from 1945 to 1947 and Korea’s industrialization programs. Alternatively,
the financial fair-play regulation (FFP) in European football (soccer) has been broadly criticized for the an-
ticompetition role it played in perpetuating the dominance of “big clubs”: The rule requires that European
football clubs balance their books and not spend more than the income they generate, which solidifies an
incumbent “big” club’s advantage in attracting talent, given the superior revenue it receives based on its
past track record. Möller (2012) formally studies the trade-off between competitive balance and incentives
in a dynamic contest in which one’s early success improves his competence in the future. He shows that
an optimally designed contest may maximize the heterogeneity between players in terms of productivity
along the dynamics.

23Soccer is broadly viewed as the least predictable major sporting discipline. Ben-Naim et al. (2007)
and Anderson and Sally (2013) provide extensive empirical evidence that soccer matches produced “up-
sets,” i.e., pregame underdogs overcoming favorites, more frequently than other sports, which alludes to
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r α′
1 α′

2 α′
3 α′

4 α′
5 α′

6 α′
7 α′

8 α′
9 α′

10

1�0 0�0903 0�0922 0�0942 0�0963 0�0984 0�1007 0�1031 0�1056 0�1082 0�1110
0�9 0�0979 0�0990 0�1001 0�1010 0�1018 0�1023 0�1025 0�1019 0�0998 0�0937
0�4 0�1364 0�1316 0�1260 0�1196 0�1121 0�1032 0�0925 0�0792 0�0621 0�0374

Table 2. Optimal bias rule (α′
1� � � � �α

′
10) under different levels of r.

We construct a numerical example to illustrate the comparative statics. Again, sup-
pose that n = 10 and (v1� v2� � � � � v10) = (2�9�2�8� � � � �2�0). To ease comparison with re-
spect to r, we normalize the sum of optimal weights established by Proposition 4 to 1
and define α′

i ≡ α∗
i /(

∑n
j=1 α

∗
j ) for all i ∈ N ≡ {1� � � � �10}.24 The optimal bias rule for a

given r can then be identified (see Table 2).
We illustrate the three cases in Figure 2. Monotone rankings of (α′

1� � � � �α
′
10) arise

in the case of both a large r (r = 1) and a small r (r = 0�4): The former exemplifies the
conventional wisdom of leveling the playing field, while the latter entirely contradicts
that. In the case of intermediate r (r = 0�9), contestant 7, with a prize valuation 2�3, is
favored the most by the designer [see Figure 2(b)]: The optimal contest levels the playing
field for contestants 1–7, but discounts the output of the weakest three. The second
panel of Figure 2 depicts the case of nonmonotone ranking. The curve that traces α′

m

with respect to contestants’ prize valuation vm is inverted U-shaped.
The optimal bias rule subtly depends on the parameter r. The comparative statics

can again be interpreted in light of the fundamental correspondence and our optimiza-
tion approach. As stated above, p∗, the winning probability distribution in the optimum,
remains constant regardless of r. Imagine that r decreases. A higher effort—contributed
by a stronger contestant—can be less effectively converted into higher winning odds,
which narrows the spread in p∗ and, in turn, depletes contestants’ effort incentives.
To counteract this effect and restore the required distribution p∗, a stronger contestant
must be handicapped less severely because a larger αi imposed on a stronger contes-
tant enlarges the spread in the distribution of winning probabilities for any given effort
profile.

More intuitively, recall the usual rationale for leveling the playing field: Preferential
treatment motivates the underdog, which in turn prevents the favorite from slacking off.
This logic can be cast into doubt when r decreases. A smaller r diminishes all contes-
tants’ incentives. On the one hand, a weaker contestant would respond less sensitively
in his effort choice to the extra favor. On the other hand, a smaller r erodes a strong

a relatively more significant role played by luck in soccer matches vis-à-vis skill or effort. Our result can
thus arguably shed light on the European FFP regulation that advantages big clubs (see footnote 22). This
stands in contrast to various measures in the National Basketball Association, e.g., the draft lottery and
salary cap, that maintain a level playing field. Anderson and Sally, among others, show that the results
of basketball matches are the most predictable based on teams’ quality (see https://knowledge.wharton.
upenn.edu/article/sports-by-the-numbers-predicting-winners-and-losers/).

24The variable α′
i can be interpreted as contestant i’s winning probabilities if all contestants exert the

same amount of effort.

https://knowledge.wharton.upenn.edu/article/sports-by-the-numbers-predicting-winners-and-losers/
https://knowledge.wharton.upenn.edu/article/sports-by-the-numbers-predicting-winners-and-losers/
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Figure 2. Optimal total-effort-maximizing bias rule under different levels of r.

contestant’s advantage because his higher effort is less effective for securing larger win-
ning odds, which prevents him from slacking off regardless of the contest rule. When
handicapping strong contestants, both the positive incentive effect for underdogs and
the disciplinary effect on the favorite diminish. The optimum could favor favorites more
to preserve their momentum.

5. Concluding remarks

In this paper, we develop a novel optimization approach to study the design of biased
contests. A designer imposes identity-dependent preferential treatments on heteroge-
neous contestants. Based on a fundamental correspondence derived from the equilib-
rium condition, we characterize the general properties of the optimal contest rule in
a substantially generalized setting without solving for the equilibrium explicitly. The
analysis enabled by the approach generates useful theoretical implications that contrast
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starkly with those obtained in the restricted settings considered in previous studies. In
particular, we demonstrate that the conventional wisdom of leveling the playing field
may not hold in general. The contest rule could favor stronger contestants vis-à-vis their
weaker opponents.

Our approach substantially eases the analysis of optimal contest design and can be
applied to a broad array of scenarios. Fu and Wu (2019a) extend this approach to the
setting of an all-pay auction and reexamine the classical issue of comparing all-pay auc-
tions and lottery contests under general design objectives. The approach can also be
applied in dynamic settings. For instance, Fu and Wu (2019c) consider a two-stage con-
test in which the designer assigns individualized weights to contestants’ second-stage
effort entries based on their first-stage ranking.

Appendix A: Microfoundation

We interpret the microeconomic substance of the generalized lottery contest model
from two perspectives.

Noisy ranking

Clark and Riis (1996) and Jia (2008) show that a generalized lottery contest is under-
pinned by a unique noisy ranking system. Imagine that contestants are evaluated
through a set of noisy signals of their performance, �i. Following the discrete-choice
framework of McFadden (1974a, 1974b),25 the noisy signal �i is assumed to be described
by

log�i = log fi(xi)+ εi ∀i ∈ N �

where the deterministic and strictly increasing production function fi(·): R+ → R+
measures the output of contestant i’s effort xi,26 and the additive noise term εi reflects
the randomness in the production process or the imperfection of the measurement and
evaluation process. Idiosyncratic noises ε := {εi� i ∈ N } are independently and iden-
tically distributed, being drawn from a type I extreme-value (maximum) distribution,
with a cumulative distribution function

G(εi)= e−e−εi � εi ∈ (−∞�+∞) ∀i ∈ N �

A contestant i prevails if he outperforms all others: This noisy-ranking tournament
boils down to a generalized lottery contest, because

Pr
(
�i >max

j �=i
�j

)
= fi(xi)

n∑
j=1

fj(xj)

�

25The framework of McFadden’s discrete-choice model is further introduced and studied in various re-
spects by works collected in Manski and McFadden (1981).

26Define logfi(xi)= −∞ if fi(xi)= 0.
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Isomorphism to research and development contests

Baye and Hoppe (2003) demonstrate the isomorphism between a generalized lottery
contest, the research tournament model proposed by Fullerton and McAfee (1999), and
the patent race model suggested by Loury (1979) and Dasgupta and Stiglitz (1980). This
provides a more intuitive microeconomic underpinning for the model.

To illustrate the equivalence, we focus on the research tournament model of Fuller-
ton and McAfee (1999). A sponsor who is interested in an innovative technology invites
n≥ 2 research and development (R&D) firms to carry out the project. Firms develop the
technology and submit their products to the designer. The entry of the highest quality
wins and its developer is awarded a prize, such as a procurement contract. Each firm i’s
valuation of the prize is given by vi > 0.

Each firm i decides on its own input xi ≥ 0 in developing the technology. The qual-
ity qi of firm i’s product is randomly drawn from a distribution with cumulative distri-
bution function [�(qi)]fi(xi). The function �(·) is a continuous cumulative distribution
function on a support [q�q], with q > q. By Fullerton and McAfee (1999) and Baye and
Hoppe (2003), the term fi(xi), which increases with xi, can intuitively be interpreted
as the number of research ideas generated in developing the product and it indicates
the firm’s research capacity: Each research idea allows the firm to produce a prototype,
with its quality being drawn from the distribution function �(·). A firm simply presents
its best prototype to the sponsor as its entry, and the quality of its entry thus follows
the distribution function [�(qi)]fi(xi): The more ideas a firm generates, the more likely
a higher qi can be realized and the more likely the firm can leapfrog its competitors. As
pointed out by Baye and Hoppe (2003) and Fu and Lu (2012), a firm iwins the prize with
a probability

Pr
(
qi >max

j �=i
qj

)
= fi(xi)

n∑
j=1

fj(xj)

�

A similar equivalence can be established between a generalized lottery contest
model and the “first past the post” patent race model of Loury (1979) and Dasgupta
and Stiglitz (1980), in which a firm secures a rent if it makes a scientific discovery earlier
than its competitors. Fu and Lu (2012) further reveal the underlying statistical linkage
between these R&D contests and the generalized lottery contest model (1).

Appendix B: Proofs

Proof of Theorem 1. Note that xi = 0 is a strictly dominant strategy for contestant i if
fi(·) is a constant. Therefore, it suffices to prove the theorem for the case in which fi(·)
satisfies f ′

i (xi) > 0, f ′′
i (xi)≤ 0, and fi(0)≥ 0 for all i ∈ N .

For notational convenience, define yi := fi(xi), δi := fi(0), f̃i(xi) := fi(xi) − δi, and
λi(yi) := c(f̃−1

i (yi − δi))/vi. It follows immediately that c(xi) = λi(yi) · vi. Moreover, we
have that λ′

i > 0 and λ′′
i ≥ 0. The expected payoff of contestant i ∈ N choosing yi ≥ δi is
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equal to [
yi
n∑
j=1

yj

− λi(yi)
]

· vi�

It remains to show that there exists a unique equilibrium y∗ ≡ (y∗
1 � � � � � y

∗
n) that satisfies

y∗
i ≥ δi for all i ∈ N . Let s := ∑n

j=1 yj and δ := ∑n
j=1 δj . It is clear that s ≥ δ. The first-order

condition of the above expected utility with respect to yi yields

s− yi
s2

− λ′
i(yi)≤ 0� with equality if yi > δi�

Fixing s, let us define yi(s) as

yi(s) :=
{
δi if s2λ′

i(δi)− s+ δi ≥ 0�

the unique solution to s− yi = s2λ′
i(yi) otherwise�

(12)

It is straightforward to verify that yi(s) is well defined and continuous in s ∈ [δi�∞].
Moreover, we must have that yi(s) ∈ (δi� s) if s2λ′

i(δi)− s+ δi < 0.
Suppose that there exists an interval of s such that yi(s) > δi. It follows immediately

from the implicit function theorem that

y ′
i(s)= 1 − 2sλ′

i(yi)

1 + s2λ′′
i (yi)

= 2yi(s)− s[
1 + s2λ′′

i (yi)
]
s
� (13)

where the second equality follows from s − yi = s2λ′
i(yi). Therefore, yi(s) is strictly de-

creasing in this interval if 2yi < s and strictly increasing otherwise. By (12), the latter
case occurs if and only if

s− 1
2
s > s2λ′

i

(
s

2

)
⇔ 2sλ′

i

(
s

2

)
< 1�

Note that 2sλ′
i(
s
2) is strictly increasing in s, which implies that there exists at most one

solution to 2sλ′
i(
s
2)= 1. Denote the solution by ŝi whenever it exists.

Next, we denote the two different real number solutions of s2λ′
i(δi) − s + δi = 0 by

s†i and s††
i , respectively, with s†i < s

††
i , whenever they exist. The above analysis, together

with the fact that the expression s2λ′
i(δi)− s+δi in (12) is quadratic in s, implies that the

function yi(s)must fall into one of four cases.
Case I. There exist no different real number solutions of s2λ′

i(δi)− s + δi = 0 for s ∈
[δ�∞]. Then we must have that s2λ′

i(δi)− s + δi ≥ 0 for all s ≥ δ, which in turn implies

that yi(s)= δi for all s ≥ δ by (12). To slightly abuse the notation, we let s††
i := δ for this

case.
Case II. s†i ≤ δ≤ s††

i and yi(δ)≤ 1
2δ. Then yi(s) is strictly decreasing in s for s ∈ [δ� s††

i ]
and yi(s)= δi for s ∈ [s††

i �∞].
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Figure 3. The function yi(s).

Case III. s†i ≤ δ ≤ s††
i and yi(δ) > 1

2δ. It can be verified that δ < ŝi < s
††
i . Therefore,

yi(s) is strictly increasing in s for s ∈ [δ� ŝi], is strictly decreasing in s for s ∈ [ŝi� s††
i ], and

yi(s)= δi for s ∈ [s††
i �∞].

Case IV. δ < s†i < s
††
i . It can be verified that s†i < ŝi < s

††
i . Moreover, yi(s) is strictly

increasing in s for s ∈ [s†i � ŝi], is strictly decreasing in s for s ∈ [ŝi� s††
i ], and yi(s) = δi for

s ∈ [δ� s†i ] ∪ [s††
i �∞].

The four cases are depicted in Figure 3 graphically. For Case I and Case II, we de-
fine si := δ; for Case III and Case IV, we define si := ŝi ≥ δ. It is straightforward to verify
that yi(s) > 1

2 s holds if s < si for all four cases. Without loss of generality, we order the
contestants such that

s1 ≥ s2 ≥ · · · ≥ sn ≥ δ�
Define Y(s) := ∑n

i=1 yi(s) − s. It remains to show that Y(s) = 0 has a unique positive
solution. First, note that no solution exists for s < s2, because

Y(s) :=
n∑
i=1

yi(s)− s ≥ y1(s)+ y2(s)− s > 1
2
s+ 1

2
s− s = 0 for s < s2�
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Next, we claim that Y(s) is strictly decreasing in s for s ≥ s2. Clearly, Y(s) is strictly
decreasing in s for s ≥ s1. Moreover, for s ∈ [s2� s1], Y(s) can be rewritten as

Y(s)=
n∑
i=2

yi(s)︸ ︷︷ ︸
first term

+ [
y1(s)− s]︸ ︷︷ ︸

second term

�

Because s ≥ s2 ≥ · · · ≥ sn, the first term is weakly decreasing in s. Taking the derivative of
the second term with respect to s yields

y ′
1(s)− 1 = 2y1(s)− s[

1 + s2λ′′
1
(
y1(s)

)]
s

− 1 ≤ 2y1(s)− s
s

− 1 = 2
s

[
y1(s)− s]< 0�

where the first equality follows from (13), the first inequality follows from λ′′
i ≥ 0 and

y1(s)≥ s
2 , and the second inequality follows from yi(s) < s [see (12)]. Therefore, the sec-

ond term is strictly decreasing in s, which in turn implies that Y(s) is strictly decreasing
for s ∈ [s2�∞].

It is straightforward to see that for all four cases, we have that yi(s) = δi for s ≥ s††
i .

Let s†† := s2 +∑n
i=1 s

††
i +∑n

i=1 δi. It is clear that s†† ≥ s2. Moreover, we have that

Y
(
s††) =

n∑
i=1

yi
(
s††) − s†† =

n∑
i=1

δi −
(
s2 +

n∑
i=1

s††
i +

n∑
i=1

δi

)
= −s2 −

n∑
i=1

s††
i ≤ 0�

Therefore, there exists a unique positive solution to Y(s) = 0 for s ∈ [s2� s††]. This com-
pletes the proof.

Proof of Theorem 2. The analysis for the case x∗
t > 0 is provided in the main text, so

it suffices to prove the theorem for the case x∗
t = 0. Because β∗

t > 0, we must have p∗
t > 0.

If p∗
t = 1, then we must have x∗ = 0. Clearly, the equilibrium outcome (i.e., x∗ and p∗)

can be replicated by the contest rule with zero head starts:

(αi�βi) :=
{
(1�0) for i= t�
(0�0) for i �= t�

Therefore, it remains to focus on the case in which p∗
t ∈ (0�1). Denote by x†† the unique

solution to

p∗
t

(
1 −p∗

t

)
vt = c′

(
x††) · h

(
x††)

h′(x††) �
Note that the left-hand side of the above equation is strictly positive. Therefore, x†† >

0 = x∗
t . Consider the contest rule with weights α̂ ≡ (̂α1� � � � � α̂n) and head starts β̂ ≡

(β̂1� � � � � β̂n) such that

(̂αi� β̂i) :=

⎧⎪⎨⎪⎩
(
α∗
t h

(
x∗
t

)+β∗
t

h
(
x††) �0

)
for i= t�(

α∗
i �β

∗
i

)
for i �= t�
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Denote the equilibrium effort profile and winning probabilities under the alternative
contest rule (α̂� β̂) by x̂∗ ≡ (x̂∗

1� � � � � x̂
∗
n) and p̂∗ ≡ (p̂∗

1� � � � � p̂
∗
n), respectively. It can be ver-

ified that

x̂∗
i =

{
x†† for i= t�
x∗
i for i �= t�

Moreover, we have that p̂∗
i = p∗

i for all i ∈ N because α̂t · h(x††) + β̂t = α∗
t · h(x∗

t ) + β∗
t

by construction. Therefore, the contest designer’s payoff under (α̂� β̂) is weakly higher
than that under (α∗�β∗) by Assumption 2. This completes the proof.

Proof of Theorem 3. Part (i) of the theorem is trivial and it remains to show part (ii).
It is clear that xi = 0 is a strictly dominant strategy if αi = 0. For (pi�pj) > (0�0), we must
have (xi�xj) > (0�0). Therefore, the first-order conditions

xi = g
(
log

(
pi(1 −pi)

) + log(vi)
)
�

xj = g
(
log

(
pj(1 −pj)

)+ log(vj)
)

must be satisfied by (8). Note that (1) implies that

pi
pj

=

αi · h(xi)
n∑
k=1

αk · h(xk)

αj · h(xj)
n∑
k=1

αk · h(xk)

= αi · h(xi)
αj · h(xj) �

Combining the above conditions, we can obtain that

αi
αj

= pi/h(xi)

pj/h(xj)
=

pi

h
(
g
(
log

(
pi(1 −pi)

) + log(vi)
))

pj

h
(
g
(
log

(
pj(1 −pj)

) + log(vj)
)) �

The last equation clearly holds for the set of weights specified in (10). This completes
the proof.

Proof of Theorem 4. With slight abuse of notation, let us define x(pk�vk) :=
g(log(pk(1 − pk)) + log(vk)). Then the equilibrium effort xk in (8) can be written as
x(pk�vk) for all k ∈ N . Define x(p�v) := (x(p1� v1)� � � � � x(pn� vn)). It follows immedi-
ately that τ(x(p�v))= x(τ(p)� τ(v)). Moreover, (8) implies that x(0� v)= 0 for all v > 0.

Suppose, to the contrary, that there exists some contestant j ∈ N with vj < vi such
that p∗

i = 0<p∗
j . Then we can obtain

�
(
x
(
p∗�v

)
�p∗�v

) ≤�(x(p∗�v
)
�p∗� τij(v)

)
=�(τij(x(p∗�v

))
� τij

(
p∗)�v)
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=�(x(τij(p∗)� τij(v))� τij(p∗)�v)
<�

(
x
(
τij

(
p∗)�v)� τij(p∗)�v)�

The first inequality follows from x(p∗
i � vi) = 0 and part (ii) of Assumption 3; the first

equality follows from part (i) of Assumption 3 and the fact that τij(τij(v)) = v; the sec-
ond equality follows from τij(x(p

∗�v)) = x(τij(p
∗)� τij(v)); the last strict inequality fol-

lows from x(p∗
i � vi)= x(p∗

i � vj)= 0, x(p∗
j � vj) < x(p

∗
j � vi), the postulated p∗

j > 0, and part
(iii) of Assumption 3. Therefore, the contest designer’s payoff under the optimal vector
of winning probabilities p∗ is strictly lower than that under τij(p∗), which is a contradic-
tion. This completes the proof.

Proof of Proposition 1. It is obvious that p∗
1 = p∗

2 = 1
2 from (8) when n = 2, and it

remains to prove the result for the case n ≥ 3. We first prove part (i) of the proposition.
Suppose, to the contrary, that only two players remain active in the optimal contest. It
is clear that p∗

1 = p∗
2 = 1

2 in the optimum. Consider the following profile of equilibrium
winning probabilities p = ( 1

2 �
1
2 − ε� ε�0� � � � �0). It can be verified that the total effort

under p is equal to

�(x�p�v) = g

(
log

(
1
4

)
+ log(v1)

)
+ g

(
log

(
1
4

− ε2
)

+ log(v2)

)
+ g((log

(
ε(1 − ε))+ log(v3)

)
�

Simple algebra shows that ∂�/∂ε > 0 when ε is sufficiently small. Therefore, at least
three players will remain active in the optimum.

Next, we prove part (ii). Suppose, to the contrary, that p∗
i ≥ 1

2 for some i ∈ N . If p∗
i >

1
2 , then the contest designer can assign probability 1 −p∗

i to contestant i and probability
p∗
j + (2p∗

i − 1) to an arbitrary contestant j �= i. Because at least three players remain
active in the optimum, we must have p∗

i +p∗
j < 1. This in turn implies that |p∗

j + (2p∗
i −

1)− 1
2 |< |p∗

j − 1
2 | and, thus, contestant j’s effort strictly increases. Furthermore, it follows

from (8) that contestant i’s effort remains the same. Therefore, the total effort strictly
increases after the adjustment. If p∗

i = 1
2 , then there exists an active player j ∈ N such

that pj ∈ (0� 1
2), because at least three players remain active in the optimum. In such a

scenario, the designer can increase the total effort by reducing p∗
i by a sufficiently small

amount and increasing p∗
j by the same amount. This completes the proof.

Proof of Proposition 2. It is useful first to prove the following intermediate result.

Lemma 1. Consider a contest with three players who are indexed by i, j, and k. Suppose
that the contest designer aims to maximize the expected winner’s effort. Then setting pi =
pj = pk = 1

3 is suboptimal.

Proof. Without loss of generality, we assume that vi ≥ vj ≥ vk. The difference between
the expected winner’s effort under (pi�pj�pk) = ( 1

2 �
1
2 �0) and that under (pi�pj�pk) =



Theoretical Economics 15 (2020) On the optimal design of biased contests 1465

( 1
3 �

1
3 �

1
3) can be derived as[

1
2
g

(
log

(
1
4

)
+ log(vi)

)
+ 1

2
g

(
log

(
1
4

)
+ log(vj)

)]
−

[
1
3
g

(
log

(
2
9

)
+ log(vi)

)
+ 1

3
g

(
log

(
2
9

)
+ log(vj)

)
+ 1

3
g

(
log

(
2
9

)
+ log(vk)

)]
>

1
6

[
g

(
log

(
2
9

)
+ log(vi)

)
− g

(
log

(
2
9

)
+ log(vj)

)]
≥ 0�

where the strict inequality follows from 1
4 >

2
9 , vj ≥ vk, and the monotonicity of g(·).

Therefore, setting pi = pj = pk = 1
3 is suboptimal. This completes the proof.

Now we can prove the proposition. Suppose, to the contrary, that three or more
players remain active in the optimal contest. Then there exist i� j�k ∈ N such that
p∗∗
i ≥ p∗∗

j > 0 and p∗∗
i ≥ p∗∗

k > 0. Lemma 1 implies that min{2p∗∗
j + p∗∗

k �p
∗∗
j + 2p∗∗

k }< 1.
Without loss of generality, we assume that vj ≥ vk.

Suppose that the contest designer assigns probabilityp∗∗
jk := p∗∗

j +p∗∗
k to player j and

probability 0 to player k, and does not change the equilibrium winning probability of all
other players. Then the difference between the expected winner’s effort under the new
profile of winning probabilities and that under p∗∗ ≡ (p∗∗

1 � � � � �p
∗∗
n ) can be derived as(

p∗∗
j +p∗∗

k

)
g
(
log

(
p∗∗
jk

(
1 −p∗∗

jk

))+ log(vj)
)

− [
p∗∗
j g

(
log

(
p∗∗
j

(
1 −p∗∗

j

))+ log(vj)
)+p∗∗

k g
(
log

(
p∗∗
k

(
1 −p∗∗

k

))+ log(vk)
)]

= p∗∗
j

[
g
(
log

(
p∗∗
jk

(
1 −p∗∗

jk

))+ log(vj)
) − g(log

(
p∗∗
j

(
1 −p∗∗

j

))+ log(vj)
)]

+p∗∗
k

[
g
(
log

(
p∗∗
jk

(
1 −p∗∗

jk

))+ log(vj)
)− g(log

(
p∗∗
k

(
1 −p∗∗

k

))+ log(vk)
)]
> 0�

where the inequality follows from min{2p∗∗
j +p∗∗

k �p
∗∗
j +2p∗∗

k }< 1, vj ≥ vk, and the mono-
tonicity of g(·)—a contradiction. Therefore, only two contestants would remain active
in the optimal contest. Moreover, they must be the two ex ante strongest players by
Theorem 4.

It remains to show that the ex ante stronger player always wins with a strictly higher
probability than the underdog. Suppose, to the contrary, that v1 > v2 and 0<p∗∗

1 ≤ p∗∗
2 ,

with p∗∗
1 +p∗∗

2 = 1. We consider the following two cases.
Case I: p∗∗

1 < p∗∗
2 . Then the designer can increase the expected winner’s effort by

assigning probability p∗∗
1 to player 2 and p∗∗

2 to player 1. This would lead to a change in
the expected winner’s effort that amounts to[

p∗∗
1 g

(
log

(
p∗∗

1 p
∗∗
2
)+ log(v2)

) +p∗∗
2 g

(
log

(
p∗∗

1 p
∗∗
2
) + log(v1)

)]
− [
p∗∗

1 g
(
log

(
p∗∗

1 p
∗∗
2
)+ log(v1)

) +p∗∗
2 g

(
log

(
p∗∗

1 p
∗∗
2
)+ log(v2)

)]
= (
p∗∗

2 −p∗∗
1
)[
g
(
log

(
p∗∗

1 p
∗∗
2
)+ log(v1)

) − g(log
(
p∗∗

1 p
∗∗
2
)+ log(v2)

)]
> 0�

which is a contradiction.
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Case II: p∗∗
1 = p∗∗

2 = 1
2 . Let the designer assign winning probability 1

2 + ε to player 1
and 1

2 − ε to player 2. The adjustment leads to a change in the expected winner’s effort
that amounts to

�(ε) :=
[(

1
2

+ ε
)
g

(
log

(
1
4

− ε2
)

+ log(v1)

)
+

(
1
2

− ε
)
g

(
log

(
1
4

− ε2
)

+ log(v2)

)]
− 1

2

[
g

(
log

(
1
4

)
+ log(v1)

)
+ g

(
log

(
1
4

)
+ log(v2)

)]
�

It is straightforward to verify that �(0) = 0 and �′(0) = g(log( v1
4 )) − g(log(v2

4 )) > 0.
Therefore, �(ε) > 0 for sufficiently small ε > 0, which is again a contradiction. This
completes the proof.

Proof of Proposition 3. Recall that Proposition 1 states that p∗
i �p

∗
j <

1
2 ∀i� j ∈ N .

Suppose, to the contrary, that vi > vj and p∗
i ≤ p∗

j . We consider the following two cases:
Case I: p∗

i < p
∗
j . Let the contest designer assign probability p∗

j to player i and p∗
i to

player j, and not change the equilibrium winning probability of all other players. Define
�k1k2 := log(p∗

k1
(1 − p∗

k1
)) + log(vk2) for k1�k2 ∈ {i� j}. It can be verified that �ii��jj ∈

(�ij��ji) and �ii +�jj =�ij +�ji. Furthermore, the difference between the total effort
under the alternative profile of winning probabilities and that under p∗ ≡ (p∗

1� � � � �p
∗
n) is

equal to [
g(�ij)+ g(�ji)

] − [
g(�ii)+ g(�jj)

]
> 0�

where the strict inequality follows from�ii��jj ∈ (�ij��ji),�ii+�jj =�ij +�ji, and the
strict convexity of g(·)—a contradiction.

Case II: p∗
i = p∗

j . Let the contest designer assign probability p∗
i + ε to player i and

p∗
j − ε to player j, and not change the equilibrium winning probability of all other play-

ers. It can be verified that such adjustment generates strictly more total effort to the
designer for a sufficiently small ε > 0. This completes the proof.

The proof of Proposition 4 follows from Theorems 3 and 4, and the fact that the total
effort r

∑n
i=1pi(1 −pi)vi is quadratic in pi for all i ∈ N . It is omitted for brevity.

Proof of Proposition 5. Part (ii) of the proposition follows directly from part (i), so
it suffices to prove part (i). With slight abuse of notation, we add r into αi and αj to
emphasize the fact that the optimal weights α∗ ≡ (α∗

1� � � � �α
∗
n) depend on the bidding

efficiency r. Note that p∗ ≡ (p∗
1� � � � �p

∗
n) and κ are independent of r by Proposition 4.

Moreover, we have that

T (r) := log
(
α∗
i (r)

α∗
j (r)

)
= (1 − r) log

(
p∗
i

p∗
j

)
− r log

(
1 −p∗

i

1 −p∗
j

)
− r log

(
vi
vj

)
�

Clearly, T (r) is linear in r and T (r)≷ 0 is equivalent to α∗
i (r)≷ α∗

j (r). Note that

lim
r↘0

T (r)= log
(
p∗
i

p∗
j

)
> 0
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and

T (1)= − log
(

1 −p∗
i

1 −p∗
j

× vi
vj

)
= − log

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vi + κ− 2
κ∑
s=1

1
vs

vj + κ− 2
κ∑
s=1

1
vs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
< 0�

where the second equality follows from (11). Therefore, there exists a unique cutoff rij ∈
(0�1) such that α∗

i (r)≷ α∗
j (r) if r ≶ rij . This completes the proof.
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