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A maximum likelihood approach to combining forecasts

Gilat Levy
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We model an individual who wants to learn about a state of the world. The individ-
ual has a prior belief and has data that consist of multiple forecasts about the state
of the world. Our key assumption is that the decision maker identifies explana-
tions that could have generated this data and among these focuses on those that
maximize the likelihood of observing the data. The decision maker then bases her
final prediction about the state on one of these maximum likelihood explanations.
We show that in all the maximum likelihood explanations, moderate forecasts are
just statistical derivatives of extreme ones. Therefore, the decision maker will base
her final prediction only on the information conveyed in the relatively extreme
forecasts. We show that this approach to combining forecasts leads to a unique
prediction, and a simple and dynamically consistent way to aggregate opinions.
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1. Introduction

In many economic and political situations we find ourselves confronted with multiple
opinions or forecasts about variables that are important for decision making. In finan-
cial markets, we are often exposed to multiple forecasts about particular stocks or invest-
ment possibilities, when we buy a new laptop, we might read multiple reviews either in
news outlets or on social media platforms, and prior to election day, we are exposed to
multiple polls or to opinions espoused by friends and colleagues. These different pieces
of information might be important for our decision making about investments, what we
buy, or who we vote for.

To aggregate forecasts, individuals need to take a view about how the forecasts are
generated and how they are related to one another. Naturally, multiple forecasts may
be correlated. This can arise when we aggregate advice from friends in a connected
network, when election polling firms rely on the same data (as is often the case), or
when forecasters in financial markets use similar data sources. Indeed, in the last two
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decades, online communication has introduced a more complicated web of information
sources with potentially higher degrees of correlation across such forecasts. This com-
plicates the problem of combining forecasts and puts into question traditional models
that simply assume that individuals have a prior distribution about all relevant infor-
mation structures generating these forecasts. One possible alternative assumption ex-
plored in the literature is that individuals use a simple heuristic, e.g., assume that fore-
casts are (conditionally) independent and aggregate them accordingly.1

In this paper, we take a novel approach to this problem: We assume that individu-
als aggregate forecasts by looking for the most likely explanation for what they observe.
That is, we consider a maximum likelihood theory of combining forecasts.2 We model
an individual who wants to learn about a state of the world (finite set of states). The
individual has a prior belief and observes multiple forecasts about the state. These fore-
casts arrive sequentially, one in each period. We assume that the individual believes
that each forecast was generated by a Bayesian forecaster but has no prior beliefs about
the joint information structure generating the set of forecasts. Our key assumption is
that she identifies joint information structures that generated the data with the highest
likelihood and bases her final prediction on such explanations.

In our main result, we characterize the set of maximum likelihood (ML) explana-
tions and ML predictions that the individual adopts. We show that the ML prediction is
unique and depends only on a small set of forecasts, not more than the number of states.
In particular, the individual who uses a maximum likelihood explanation to combine
forecasts ignores forecasts that are relatively moderate and focuses attention only on a
set of extreme forecasts.

The intuition for this result follows from two simple observations. First, to increase
the likelihood of her explanation, the individual “looks” for correlation between the
sources of information that she thinks generated the data. Correlated data sources are
more likely to have generated a specific set of forecasts rather than independent sources.
This implies that when interpreting the data through the lens of her explanation, she
focuses attention on a small number of forecasts while ignoring others.

The second observation is that explaining extreme forecasts that are more distant
from the prior involves a lower maximum likelihood. To give an extreme example, con-
sider the highest likelihood of observing a forecast that puts a probability close to 1 that
the state is high. To explain this forecast, we need to assume that the signals that gen-
erated it were very informative; thus, the likelihood of observing this forecast is close to
the prior probability that the state is indeed high. Alternatively, to explain a forecast that
is close to the prior, one can assume an uninformative signal; an uninformative signal
can generate a posterior that is close to the prior with a probability close to 1. Therefore,

1See, for example, De Marzo et al. (2003), Glaeser and Sunstein (2009), Levy and Razin (2015, 2018), and
Golub and Jackson (2012). Ellis and Piccione (2017) and Levy and Razin (forthcoming) consider decision
makers who misperceive correlation. Spiegler (2016) analyzes a model in which individuals misspecify the
true causal Bayesian network. Arieli et al. (2019) use scoring rules and regret to evaluate forecast aggrega-
tion schemes.

2Such a procedure is in line with legal reasoning where plausible argumentation and balance of proba-
bilities are suggested as normative approaches to the aggregation of information.
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explaining the extreme views puts an upper bound on the likelihood of any explana-
tion of the entire data. As we show, the individual can achieve this bound. She explains
extreme views and treats moderate forecasts as noisy derivatives of extreme forecasts.

The above result has several behavioral implications for the dynamic evolution of
the ML prediction. First, ML predictions can exhibit stagnation. When more moderate
forecasts are added to her data set, the decision maker does not change her prediction.
Second, the prior plays an important role; specifically, the notion of extreme views is
measured with respect to the prior. As we show, in the long term, limit predictions can
depend on the prior even when individuals are exposed to rich and large amounts of
information.

In our model, the decision maker’s misspecified view or narrative of the world is con-
stantly changing with new observations. But does she have to change her “world view”
drastically each time she observes a new forecast? We formulate a notion of time con-
sistency across explanations under which older explanations are never discarded but
continue to play a part in the new narrative the decision maker adopts. We show that
the decision maker can always construct her ML explanations to be time-consistent. In-
tuitively, new forecasts are added to the previous explanation either by being correlated
to previous extreme forecasts or the other way around. Thus, the decision maker’s world
view evolves to accommodate new forecasts without altering how previous ones are ex-
plained. Our formulation of time-consistency provides a novel normative criterion for
such evolving misspecified models of the world.

A growing literature in economics studies how individuals combine forecasts in a
non-Bayesian manner, with many papers focusing on correlation neglect. In contrast, in
our analysis, decision makers entertain all possible correlation structures: The focus on
maximizing the likelihood implies that decision makers actively “look” for correlation.3

While the correlation neglect assumption implies that individuals’ beliefs become more
extreme, in our model, a different form of “extremism” arises, as individuals base their
prediction only on relatively extreme forecasts. Our result complements other explana-
tions for this form of extremism; for example, several papers show how extreme views
are more likely to get into the consideration set of decision makers (either as those who
espouse them have greater incentive to do so, as in Osborne et al. 2000 and Levy and
Razin 2013, or as they are simpler to communicate, as in Levy and Razin 2012).

In statistics and economics the ML approach was first formalized by Fisher (1912)
for the purpose of parameter estimation,4 and by Robbins (1951), Good (1965), and
Berger and Berliner (1986) for the purpose of forming posterior beliefs in the presence
of ambiguity. Gilboa and Schmeidler (2003), Ortoleva (2012), and Suleymanov (2018)
identify axioms that can rationalize maximum likelihood procedures while Gilboa and
Schmeidler (2010) highlight the trade-off that can arise between maximizing likelihood
and simplicity. In Epstein and Schneider (2007), who model learning with ambiguity, a
decision maker weeds out explanations that yield a likelihood less than a fraction times

3In this sense our approach is related to small-sample biases such as the “hot hand” fallacy (see Rabin
and Vayanos 2010), where individuals tend to over-infer correlations in the data rather than neglect them.

4Our analysis differs from the econometrics approach. In particular, our decision maker entertains a
new information structure whenever new information arrives.
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the maximum likelihood that can be achieved. Both Ortoleva (2012) and Epstein and
Schneider (2007) use ML as a refinement criterion in extreme (zero or small) probabil-
ity events, whereas we use ML as the main reasoning for decisions. Finally, Salant and
Cherry (2020) suggest an equilibrium notion in which players best respond to a sample
of their opponents’ actions, where they make a statistical inference given this sample.
One example they consider is for players to use ML to estimate the most likely parame-
ter that generated the sample.

2. The model

A decision maker is forming a prediction about a state of the world ω ∈ �, where � is
a finite set. She has a full support prior, p ∈ �(�). At every period t ∈ {1�2� � � �}, the
decision maker observes a forecast: A forecast qt ∈ �(�) is a (full support) probability
distribution over �. Let qt ∈ (�(�))t denote the vector of forecasts up to period t. At any
period t, the decision maker’s observed history is qt .

At every t, the decision maker combines these forecasts and the prior into a predic-
tion, μ ∈ �(�), about the state. We assume that the decision maker thinks that at each
period t, a single forecaster, with the same prior p, receives an informative signal and
rationally derives qt using Bayes’ rule.5 To form a prediction, the decision maker consid-
ers explanations, which are Bayesian models that are consistent with the observations
qt and the prior.

We now formally define what an explanation is. First, we define a joint information
structure by a tuple I = (S�p� f (s�ω)), such that S = ×t

j=1Sj is a finite set of signals,
and for s ∈ S, f (s�ω) is a joint probability distribution over signals and states ω ∈ �.
Given f (s�ω), when they are well defined, we have f (s|ω), f (ω|s) and f (s) for all ω ∈�.
Moreover, f (s�ω) also implies the marginal distributions over the realizations of signal
sj , fj(sj|ω).

An explanation of the data implies that any forecast qj in qt was generated by a
Bayesian forecaster who was exposed to a signal in Sj and knows the marginal distri-
bution on signals in Sj , fj(sj|ω).

Definition 1. An explanation of qt is e= (Ie� se), where Ie is a joint information struc-
ture and se = (sej )

t
j=1 ∈ Se is a realization of signals such that for all j ∈ {1�2� � � � � t},

qj(ω) = e
Pr

(
ω|sej

) = p(ω)f ej
(
sej |ω

)
∑
v∈�

p(v)f ej
(
sej |v

) �

In other words, the decision maker perceives some information structure I and a
particular realization of signals s, such that all the forecasts qj can be rationalized by
Bayes’ rule, assuming that each forecast qj was based only on the signals generated by

5We can extend the analysis to the case of noncommon priors. The restrictions that forecasters use Bayes’
rule and that the priors are known imply that there is no overfitting. If priors are both not known and not
common, then the maximum likelihood of observing a vector of forecasts is 1.
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fj(sj|ω). Note that this formulation is general in the sense that it allows for the possibility
that sj contains information observed by other forecasters j′ �= j.

Let E(qt ) be the set of explanations as defined above. We assume that the decision
maker uses the ML criterion to select which explanation in E(qt ) to adopt to set her
prediction. The likelihood of observing qt given an explanation e ∈ E(qt ) is

L
(
qt |e) =

∑
v∈�

p(v)f e
(
se|v)�

Below we show that arg maxe∈E(qt ) L(qt |e) exists and, thus, we can define the ML pre-
diction as follows.

Assumption 1 (ML prediction). At any period t, the decision maker’s prediction satis-
fies

μML(
ω|qt

) = p(ω)f ê
(
sê|ω)

∑
v∈�

p(v)f ê
(
sê|v) for some explanation ê ∈ arg max

e∈E(qt )

L
(
qt |e)�

Before proceeding to characterize ML explanations and predictions, we introduce a
useful lemma that simplifies the analysis by reducing the set of explanations to those
that have information structures with binary signals for each forecast.

Lemma 1. Let e = (Ie� se) be an explanation of qt . Then there exists an explanation e′ =
(Ie

′
� se

′
) of qt with Se

′ = {s∗� s−∗}t , and L(qt |e)= L(qt |e′).

Intuitively, the decision maker looks for an ex post rationalization, which implies
that she has in mind a vector of signals attained by all forecasters. As a result, for any
information structure that rationalizes the forecasts, we can construct an equivalent in-
formation structure that induces that vector of observed signals with the same probabil-
ity and bunches all other (unobserved) signals together. This new information structure
produces the observed forecasts with the same likelihood and, moreover, attains this
with just two signals per forecaster.

3. The ML prediction

In this section, we characterize the ML prediction. We start with some helpful notation.
Consider a history qt . For any forecast j = 1� � � � � t, let

αj(ω)= qj(ω)

p(ω)

and let

ᾱj = max
v∈�

αj(v) and ωj ∈ arg max
v∈�

αj(v)�



54 Levy and Razin Theoretical Economics 16 (2021)

Thus, for each forecast j, ωj can be described as the state that becomes most surprising
given the prior and ᾱj is the magnitude of this largest surprise. Next, note that

αj

(
ωj

)
ᾱj

= 1� whereas
αj(ω)

ᾱj
≤ 1 for any ω �=ωj�

For example, if |�| = 3 and the prior is uniform, then for a forecast {0�7�0�2�0�1}, the
vector αj(ω)/αj(v) is {1� 0�2

0�7 �
0�1
0�7 }. As can be seen in the proof, αj(ω)/αj(v) is inherently

related to the constraint that each forecaster uses Bayes’ rule and specifically implies
the probability that a forecast can be attained at state ω. Moreover, the most surprising
state presents the upper bound of attaining a forecast, which is why the ratio αj(ω)/ᾱj

is important.
With this notation, we can characterize the ML prediction of the decision maker.

Proposition 1. Given qt , the ML prediction of the decision maker is unique and equal
to, for any ω ∈ �,

μML(
ω|qt

) =
p(ω) min

j=1�����t

{
αj(ω)

ᾱj

}
∑
v∈�

p(v) min
j=1�����t

{
αj(v)

ᾱj

} �

Proof. Note that for any explanation e, for any ω ∈�,

f e
(
se|ω) ≤ min

j=1�����t
f ej

(
sej |ω

)
� (1)

Whereas an explanation is an information structure that rationalizes qt , we must
have, for any ω�ω′ ∈�,

qj(ω)

qj
(
ω′) = p(ω)

p
(
ω′) f ej

(
sej |ω

)
f ej

(
sej |ω′) � (2)

Choose some state υ. Equation (2) implies that by setting f ej (s
e
j |υ) at some level, we

pin down all values f ej (s
e
j |ω) for any ω ∈�.

Using (1) and (2), we can write the upper bound for the likelihood of any explanation
as

∑
ω∈�

p(ω)f e
(
se|ω) ≤

∑
ω∈�

p(ω)min
j

{
f ej

(
sej |ω

)}

= p(υ)

[∑
ω∈�

min
j

{
qj(ω)

qj(υ)
f ej

(
sej |υ

)}]
�

To find the explanation that maximizes the likelihood of observing qt (the left-hand
side above) we maximize the right-hand side and show that we can achieve a likelihood
equal to the maximal upper bound.
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First, to maximize the right-hand side, note that the problem is increasing in f ej (s
e
j |υ)

for any j ≤ t. By (2), for any ω ∈�,

f ej
(
sej |ω

) = qj(ω)

qj(υ)

p(υ)

p(ω)
f ej

(
sej |υ

) ≤ 1 ⇒ f ej
(
sej |υ

) ≤ p(ω)

qj(ω)

qj(υ)

p(υ)

for any ω ∈ �. Recall, however, that ωj maximizes qj(ω)/p(ω) and, hence, imposes the
binding constraint on the upper bound on f ej (s

e
j |υ). Therefore, we set f ej (s

e
j |υ) at the

upper bound:

f ej
(
sej |υ

) = p
(
ωj

)
p(υ)

qj(υ)

qj
(
ωj

) = αj(υ)

ᾱj
�

We can then use this and (2) to derive, for any other ω,

f ej
(
sej |ω

) = αj(ω)

ᾱj
�

Second, we construct our ML explanation, e∗, to attain the upper bound. For any j,
let the set of signals be Sj = {s∗� s−∗}. Then set, for any ω,

f e
∗

j

(
s∗|ω) = αj(ω)

ᾱj
� f e

∗
j

(
s−∗|ω) = 1 − f e

∗
j

(
s∗|ω)

�

By way of convention, order the signals so that s∗j is “lower” than s−∗
j , and now set

the cumulative marginal as Fe∗
j (s∗|ω)= f e

∗
j (s∗|ω) and Fe∗

j (s−∗|ω)= 1. As we have set the
marginals, we can now set the joint distribution over signals. Note that given that we in-
tegrated the Bayes rule constraint for each forecast, which imposes how the probability
that a forecast is attained is related across the states, we can focus only on the condi-
tional joint distributions (that is, conditional on each state ω). In particular, the joint
unconditional distribution over signals is determined first by the realization of the state
of the world and then by the distribution over signals conditional on this state.

Fix some ω ∈ �. To attain the upper bound on the joint distribution over the ob-
served signals, designated to be the vector s∗, set

Fe∗(
s∗|ω) = f e

∗(
s∗|ω) = min

j

{
f e

∗
j

(
s∗|ω)} = min

j

{
αj(ω)

ᾱj

}
�

which implies that Fe∗
(s∗|ω) = minj F

e∗
j (s∗|ω). To complete the explanation, continue

by setting, for all s,

Fe∗
(s|ω) = min

j
Fe∗
j (sj|ω)�

The above equality is a proper distribution function, as given a set of marginals (here,
Fe∗
j (sj|ω) for all j ≤ t), there is always a joint distribution function that attains the upper

Frechet bound, which is the one defined above.6

6See Joe (1997).
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We have constructed an explanation that consists of a set of conditional joint distri-
bution functions and that achieves the upper bound. Note, moreover, that any expla-
nation that achieves the upper bound must satisfy f e

∗
(s∗|ω) = minj{αj(ω)/ᾱj} for some

observed vector of signals s∗. As a result, the ML prediction is unique and satisfies

μML(
ω|qt

) = p(ω)f e
∗(

s∗|ω)
∑
v∈�

p(v)f e
∗(

s∗|v) =
p(ω) min

j=1�����t

{
αj(ω)

ᾱj

}
∑
v∈�

p(v) min
j=1�����t

{
αj(v)

ᾱj

} �

which is the expression in the proposition.

From the above discussion it is clear that only a small set of forecasts would matter:
those that minimize αj(ω)/ᾱj for some ω. Thus, at most |�| forecasts would be relevant
for the final prediction, whereas other forecasts can be ignored. Moreover, the order in
which these forecasts arrive before or at time t does not alter the prediction at time t.
Note also the importance of the prior: The prior determines αj(ω)/ᾱj , and, hence, af-
fects which forecasts can be ignored and how those that are not ignored are combined
into a prediction (we return to the role of the prior when we consider the limit predic-
tions in Section 4.2).

In Section 3.1 below, we illustrate how the above result translates to a simple predic-
tion rule in the binary state space, and we also construct an example of an ML expla-
nation for t = 2. The ML explanation involves large degrees of correlation, and specifi-
cally it is moderate forecasts that are correlated to extreme ones and can, therefore, be
ignored in the ML prediction. We show this feature more generally in Section 3.2.

3.1 Binary states: ML prediction and explanation

We now illustrate Proposition 1 (as well as its proof) in the binary state space, � = {0�1}.
Assume without loss of generality a prior of p(1) = p > 1

2 . To simplify, with some abuse
of notation, let qj denote the probability that the state is 1 according to the forecast in
period j. Note that in the binary space, ωj = 1 if q > p and ωj = 0 if q < p.

Consider, for the sake of exposition, t = 2 and first assume that q1 > q2 > p. Thus,
both forecasts “support” state 1 compared with the prior (so that ω1 =ω2 = 1).

Suppose, in line with Lemma 1, that each forecaster can receive two signal realiza-
tions, s∗ and s−∗, which, given Bayesian updating, must then satisfy, for some βj ∈ (0�1],

f e
(
s1 = s∗|ω= 1

) = β1� f e
(
s1 = s∗|ω= 0

) = β1
p(1 − q1)

q1(1 −p)
= β1

α1(0)
ᾱ1

f e
(
s2 = s∗|ω= 1

) = β2� f e
(
s2 = s∗|ω= 0

) = β2
p(1 − q2)

q2(1 −p)
= β2

α2(0)
ᾱ2

�

Maximizing β1 and β2 increases the marginal probability of attaining the s∗ signals
for both forecasters, as qj > p, and so we can set βj = 1. We continue then by setting the
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joint probability over (s∗� s∗):

f e
(
s1 = s∗� s2 = s∗|ω= 1

) = 1 = f e
(
s1 = s∗|ω= 1

)
f e

(
s1 = s∗� s2 = s∗|ω= 0

) = min
j

αj(0)
ᾱj

= p(1 − q1)

q1(1 −p)
= f e

(
s1 = s∗|ω= 0

)
�

Forecast 2 will be completely ignored as conditional on s1 = s∗, the joint information
structure constructed above necessitates s2 = s∗ as well, and so the “observed” signal of
the second forecaster is fully correlated with that of the first forecaster in each state. This
readily implies the full ML joint information structure, depicted in Table 1, where each
cell in each matrix denotes f e(s1� s2|ω).

As a result, the ML prediction satisfies

μ= p

p+ (1 −p)
p(1 − q1)

q1(1 −p)

= q1�

implying that the more moderate forecast, q2, is completely ignored.
Assume instead that q2 < p < q1. To increase the likelihood of attaining q2—a fore-

cast indicating that the state is more likely to be 0 compared with the prior—we need
that in state 1 the second forecaster does not always observe s∗. Specifically, we would
now have

f e
(
s1 = s∗|ω= 1

) = 1� f e
(
s1 = s∗|ω= 0

) = p(1 − q1)

q1(1 −p)

f e
(
s2 = s∗|ω= 1

) = (1 −p)q2

p(1 − q2)
� f e

(
s2 = s∗|ω= 0

) = 1�

This implies the following joint ML information structure (Table 2), in which the “ob-
served” signal of forecaster 1 is a sufficient statistic for the “observed” signal of forecaster
2 only in state 0, and the other way around in state 1.

As a result, the ML prediction now satisfies

μ=
p
(1 −p)q2

p(1 − q2)

p
(1 −p)q2

p(1 − q2)
+ (1 −p)

p(1 − q1)

q1(1 −p)

= q2q1

q2q1 + p

1 −p
(1 − q1)(1 − q2)

�

Corollary 1, derived from Proposition 1, shows how the above conclusion extends to
any t.

Corollary 1. Suppose that � = {0�1}. Let qmax
t = maxj≤t qj and let qmin

t = minj≤t qj . For
any qt , the ML prediction is

μML(
1|qt

) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qmax
t if qmin

t ≥ p

qmin
t if qmax

t ≤ p

qmin
t qmax

t

qmin
t qmax

t + p

(1 −p)

(
1 − qmin

t

)(
1 − qmax

t

) otherwise.
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ω= 1 s2 = s∗ s2 = s−∗

s1 = s∗ 1 0

s1 = s−∗ 0 0

ω= 0 s2 = s∗ s2 = s−∗

s1 = s∗ p(1−q1)
q1(1−p) 0

s1 = s−∗ p(1−q2)
q2(1−p) − p(1−q1)

q1(1−p) 1 − p(1−q2)
q2(1−p)

Table 1. Joint ML information structure when q1 > q2 >p

ω= 1 s2 = s∗ s2 = s−∗

s1 = s∗ (1−p)q2
p(1−q2)

1 − (1−p)q2
p(1−q2)

s1 = s−∗ 0 0

ω= 0 s2 = s∗ s2 = s−∗

s1 = s∗ p(1−q1)
q1(1−p) 0

s1 = s−∗ 1 − p(1−q1)
q1(1−p) 0

Table 2. Joint ML information structure when q1 >p> q2

The implication of Proposition 1 to the binary state space is that at most two fore-
casts, the most extreme ones (on each side of the prior), do matter for the ML prediction.
All other, more moderate, forecasts are ignored.

3.2 Ignoring moderate forecasts

In this section we characterize the set of forecasts that are ignored in the ML prediction.
Formally, we say that forecast qt+1 is ignored if μML(ω|qt+1)= μML(ω|qt ).

Remember that for any forecast qj , αj(ω) is the ratio of the probability of this state
under the forecast divided by the prior probability. We have also introduced the nota-
tion of ᾱj = maxv∈� αj(v) and ωj ∈ arg maxv∈� αj(v). Thus, for each forecast qj , ωj can
be described as the state that becomes most surprising given the prior, and ᾱj is the
magnitude of this largest surprise.

Going back to the proof of Proposition 1, note that Bayesian updating bounds the
probability that a forecast can be sent at each state ω. A forecast qj , which is almost
degenerate on state ωj (hence, extreme) can be sent in any other state ω with only a
very small probability, as we would have αj(ω)/ᾱj ; otherwise it could not indicate to a
rational forecaster that the state is most likely to be ωj . Thus, this forecast bounds the
joint probability of obtaining all forecasts in all states ω �= ωj and, therefore, matters for
the ML prediction. Alternatively, a moderate forecast that agrees with the prior, qj(ω) =
p(ω), can be sent in each state ω with probability αj(ω)/ᾱj = 1. It then never imposes
a bound on the joint probability distribution and does not affect the ML prediction. We
now characterize the set of moderate forecasts, such as above, that are ignored in the
final aggregation of forecasts. Let

I
(
qt

) =
{
qt+1 ∈ �(�)

∣∣∣∣ ∀v ∈��
αt+1(v)
ᾱt+1

≥ minj≤t
αj(v)
ᾱj

and ∃ω ∈ � such that αt+1(ω)
ᾱt+1

= minj≤t
αj(ω)
ᾱj

}
�

The set I(qt ) defines the boundary of the set of all forecasts that the decision maker
is able to ignore at period t + 1. This boundary set contains forecasts that minimize
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αj(ω)/ᾱj for some state ω, for j ≤ t and, hence, contains forecasts that have not been
ignored up to and including period t. To gain intuition, let us consider the set I(qt ) in
the case of binary states. Suppose that minj≤t qj < p< maxj≤t qj . Assume without loss of
generality that maxj≤t qj > 1 − minj≤t qj so that ᾱj = maxj≤t qj . In this case, we have that

min
j≤t

αj(1)
ᾱj

=
min
j≤t

qj

max
j≤t

qj
and min

j≤t

αj(0)
ᾱj

=
1 − max

j≤t
qj

max
j≤t

qj
�

Therefore, if qt+1 = maxj≤t qj , then

αt+1(1)
ᾱt+1

= 1 >

min
j≤t

qj

max
j≤t

qj
and

αt+1(0)
ᾱt+1

=
1 − max

j≤t
qj

max
j≤t

qj
= min

j≤t

αj(0)
ᾱj

�

Similarly, when qt+1 = minj≤t qj , we have that

αt+1(1)
ᾱt+1

=
min
j≤t

qj

max
j≤t

qj
= min

j≤t

αj(1)
ᾱj

and
αt+1(0)
ᾱt+1

=
1 − min

j≤t
qj

max
j≤t

qj
>

1 − max
j≤t

qj

max
j≤t

qj
= min

j≤t

αj(0)
ᾱj

�

For any qt+1 ∈ (minj≤t qj�maxj≤t qj), both inequalities are strict, and for any qt+1 /∈
[minj≤t qj�maxj≤t qj], one of the inequalities holds in the opposite way. As a result, in
this case, we have I(qt ) = {minj≤t qj�maxj≤t qj}.

Using the definition of the set I(qt ), we show the following result for the general state
space.

Lemma 2. For any q ∈ I(qt ) and β ∈ [0�1], the forecast qt+1 = βp+ (1 −β)q is ignored.

If we define moderation by the distance to the prior, Lemma 2 implies that all
forecasts that are more moderate (weakly) than those in I(qt ) are ignored. In the
case of binary states, when minj≤t qj < p < maxj≤t qj , we saw above that I(qt ) =
{minj≤t qj�maxj≤t qj}. Thus, all more moderate forecasts on [minj≤t qj�p] and on
[p�maxj≤t qj] are ignored. To see another example, consider a tertiary state space,
� = {0�1�2}. With equal prior, the forecast {0�7�0�2�0�1} allows us to ignore all forecasts
for which the vector αj(ω)/αj(ω) is at least, element by element, {1� 0�2

0�7 �
0�1
0�7 }. The set of

such ignored forecasts is depicted in Figure 1. As can be seen, it is all those forecasts
that have the same mode, at ω = 0, and lie on the line that connects each point on the
closure to the prior.

Figure 2 shows the set of forecasts that are ignored when {0�7�0�2�0�1} is observed
and the set of forecasts that are ignored when {0�2�0�1�0�7} is observed. These are the
two light shaded areas in the figure. The set of forecasts that are ignored when both
{0�7�0�2�0�1} and {0�2�0�1�0�7} are observed includes more forecasts than just the union
of the above two sets. The additional forecasts that are ignored when both {0�7�0�2�0�1}
and {0�2�0�1�0�7} are observed is given by the darker shaded area in the figure. Thus,
the total set of forecasts that are ignored when both {0�7�0�2�0�1} and {0�2�0�1�0�7} are
observed includes the union of the three shaded areas depicted in the figure.
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Figure 1. Ignored forecasts when (0�7�0�2;0�1) is observed.

Figure 2. Ignored forecasts with (0�7�0�2�0�1) and (0�7�0�1�0�2).

3.3 Time consistency of ML explanations

The ML decision maker potentially has a wrong model in mind, and with every new
observation she adopts a different world view or narrative to interpret the accumulated
data she has observed. However, if the procedure calls for a completely new model each
period, we might question the sensibility of this method of aggregating data. Moreover,
such a procedure implies higher computation costs, as each period a new model needs
to be calculated.

Below we formalize a notion of consistency between explanations and show that
the ML explanation can evolve in a time-consistent manner. Let e be an explanation
of qt and let e′ be an explanation of qt+1. We say that e′ is time consistent with e if
Se

′ = Se × St+1 for some finite set St+1 and for any s ∈ Se, ω ∈�,

f e(s|ω) =
∑

(s�st+1)∈Se′
f e

′
(s� st+1|ω)�

In words, f e(s|ω), the probability of observing s in explanation e, is equal to the expected
probability of observing signal realizations s in the first t periods under explanation e′.
This implies that the explanation e for the first t observations is the projection of e′ to
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these t observation. As a result, if there is time consistency between e and e′, we can say
that when moving from period t to period t + 1, the decision maker keeps, in a statistical
sense, her explanation for the first t observations.

We can then show the following statement.

Proposition 2. For any explanation of e of qt , for any observation qt+1, there exists an
ML explanation e′ of (qt � qt+1) that is time consistent with e.

Intuitively, for any state ω, there are two cases. (i) The new forecast is ignored, which
means that the probability of observing it is higher than observing a previous one, and
so we can fully correlate it with the previous vector of forecasts and peg the remaining
probability of observing the new forecast onto the other, unobserved, realizations of
the first t forecasts. (ii) Alternatively, old forecasts are ignored, so we fully correlate old
forecasts to the new one and the remaining probability of observing the old forecasts is
pegged onto other (unobserved) realizations of the t+1 forecast. As a result, the decision
maker does not need to come up with a completely new ML explanation each time and
can be consistent in how she explains her data over time.

To get more intuition, recall the joint information structure described in the case of
binary states, when q1 > q2 >p, which, for the observed signals, satisfied

f e
(
s1 = s∗� s2 = s∗|ω= 1

) = 1� f e
(
s1 = s∗� s2 = s∗|ω= 0

) = p(1 − q1)

q1(1 −p)
�

Assume that we now observe some q3 where specifically we have q3 < p, for which
the ML information structure demands a marginal probability of

f e
(
s3 = s∗|ω= 1

) = (1 −p)q3

p(1 − q3)
� f e

(
s3 = s−∗|ω= 0

) = 1�

Consider the following joint ML structure, where we combine the above marginal of
the first two signals, s1 and s2, with that of s3. First, we describe f e(s1� s2� s3 = s∗|1) and
f e(s1� s2� s3 = s−∗|1) (see Table 3).

We now depict f e(s1� s2� s3 = s∗|0) and f e(s1� s2� s3 = s−∗|0) (see Table 4).
The marginal distribution over s1, s2 derived from the above structure is exactly as

it is for the two signals generating q1 > q2 > p, as described in Section 3.1. Moreover,
following from Proposition 1, the above structure is an ML information structure.

The forecast q3 cannot be ignored and the signal generating it, s3 = s∗, has the
minimum probability of being attained in state 1 compared with the probability of at-
taining s1 = s2 = s∗. As a result, these signals are fully correlated to s3 = s∗ in state 1
and the remaining probability of attaining s1 = s2 = s∗ in this state is pegged onto the
(non)observation of s3 = s−∗. In state 0, the joint probability of attaining s1 = s2 = s∗ is
lower than that of s3 = s∗, which is 1. As a result, s3 = s∗ arises whenever s1 = s2 = s∗
arises, but also arises for other configurations of these signals. The proof in the Ap-
pendix uses similar arguments to construct a time-consistent joint distribution between
the marginal of the first t signals and the additional signal arising in the t + 1th period.
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ω= 1, s3 = s∗ s2 = s∗ s2 = s−∗

s1 = s∗ (1−p)q3
p(1−q3)

0
s1 = s−∗ 0 0

ω= 1, s3 = s−∗ s2 = s∗ s2 = s−∗

s1 = s∗ 1 − (1−p)q3
p(1−q3)

0
s1 = s−∗ 0 0

Table 3. Joint ML information structure when q1 > q2 >p> q3 and w = 1

ω= 0, s3 = s∗ s2 = s∗ s2 = s−∗

s1 = s∗ p(1−q1)
q1(1−p)

p(1−q2)
q2(1−p) − p(1−q1)

q1(1−p)

s1 = s−∗ 0 1 − p(1−q2)
q2(1−p)

ω= 0, s3 = s−∗ s2 = s∗ s2 = s−∗

s1 = s∗ 0 0

s1 = s−∗ 0 0

Table 4. Joint ML information structure when q1 > q2 >p> q3 and w = 0

4. Extensions

We consider two extensions. In the first one, we analyze a model in which the decision
maker does not observe forecasts, but only the history of her past ML predictions. The
second extension looks at limit predictions and highlights the importance of the prior
belief in the ML process. To simplify the exposition, we henceforth focus on a binary
state space � = {0�1}. Thus, a forecast qj simply denotes the probability that the state
is 1.

4.1 Source amnesia

We have so far assumed that the decision maker remembers the history of forecasts she
has seen. We now consider an extension to a decision maker who does not remem-
ber forecasts but does remember her past predictions. This form of memory is termed
source amnesia in the psychological literature.7

Specifically, in our previous model, at time t, the decision maker observes qt =
(q1� q2� � � � � qt). We now assume that at time t, a decision maker observes qt , and
μt−1 = (μ1�μ2� � � � �μt−1), where μj is the ML prediction at period j.

Assume that the prior is uniform and suppose without loss of generality that q1 >
1
2 .

Let us consider period 3, where the decision maker observes q3, μ2, and μ1 = q1. She
knows that for whichever q2 she imagines, it has to be that μ2 = μML(·|q2). By Corol-
lary 1, if μ2 ≥ q1, then μ2 = q2. If μ2 = q1, then q1 > q2 >

1
2 and it is not important for her

to know the exact value of q2. If μ2 < q1, then

q2 = μ2(1 − q1)

q1 +μ2(1 − 2q1)
�

Thus, in period 3 she either knows q2 or knows that it should be ignored. It follows then
that at period t, for each j < t, she either knows qj or knows that it could be ignored. We
therefore have the following proposition.

7See, for example, Schacter et al. (1984).
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Proposition 3. A decision maker who has source amnesia has the same ML prediction
as a decision maker who remembers the history of forecasts.

Remark 1 (Social learning). Social learning is typically modelled as an environment in
which an individual at period t observes the sequence of the actions or predictions of
her predecessors, as well as her own forecast. Thus, as above, adopting social learning
(with observed beliefs) to our setup, she observes μt−1 = {μ1�μ2� � � � �μt−1} as well as qt .
If we assume that every decision maker believes that every one before her also uses the
ML procedure and that this is common knowledge, then the problem becomes identical
to the single agent problem. Given this, all the results above hold. Specifically, when all
previous predictions are observed, then the sequence of predictions is identical to the
one that arises if all forecasts were shared instead.

4.2 The persistence of the prior

In this section we explore the convergence properties of the ML predictions. The key
observation that we highlight is the importance of the prior in the limit ML predictions.
Specifically, we show that even when exposed to a large data set, the individual’s limit
belief might still depend on her initial prior.

To focus our discussion, assume a true information generating process by which sig-
nals are drawn in an independent and identically distributed (iid) manner each period.
In particular, assume that the information structure induces a distribution F over fore-
casts in (0�1), with a = inf(SupportF) and b = sup(SupportF). Assume that the prior
p satisfies p ∈ (a�b) and 0 ≤ a < b ≤ 1, so that the posteriors are informative. When
the individual observes forecasts drawn from this process, where would her predictions
converge?

Proposition 4. (i) Suppose that a > 0 and b < 1. The prediction of the ML decision
maker satisfies, for any ε > 0,

lim
t→∞ Pr

[
μML(

1|qt
) ∈

(
1

1 + p

1 −p

(1 − a)

b

(1 − b)

a

− ε�
1

1 + p

1 −p

(1 − a)

b

(1 − b)

a

+ ε

)]

= 1�

(ii) Suppose that a= 0 and b = 1. There exist distributions F for which, for any ε�δ > 0,

lim
t→∞ Pr

[
μML(

1|qt
) ∈ (p− ε�p+ ε)

]
> δ�

The ML decision maker updates based on just the extreme forecasts she has ob-
served along the sequence, on each side of the prior. To see (i), note that in the limit, by
the law of large numbers, these extreme forecasts converge to be a and b. Therefore, by
Proposition 1, the ML prediction converges to the expression in the proposition. As

0 <
(1 − a)

b

(1 − b)

a
<∞�

the limit prediction still depends on the prior.
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What happens when [a�b] = [0�1], that is, when we have a rich signal structure that
can induce posteriors of unlimited accuracy? For case (ii), we need to look at the limit
statistical properties of q̃max

t and q̃min
t , as they determine whether the two posteriors con-

verge. Specifically, consider a distribution over posteriors conditional on the state ω= 1.
Given that the state is 1, the probability of observing a posterior close to 0 must be close
to 0. This is because such a posterior is based on Bayesian updating and so for a fore-
caster to believe that the state is likely to be 0, it must be that this posterior is sent in
state 1 only with a small probability. This implies that the distribution over posteriors
given ω= 1 must have a “thin tail” around 0. But this distribution can also have a similar
thin tail around posteriors that are close to 1. Extreme value theory tells us that we can
construct distributions of q̃max

t and q̃min
t to accord, in the limit, with the Gumbel distri-

bution.8 This allows us to construct information structures for which there is a strictly
positive probability that the limit of the ratio

1 − q̃max
t

q̃min
t

is bounded and equal to 1, resulting in the ML belief converging to the prior p.

Remark 2 (Divergence). Consider now two ML decision makers with different priors,
where each assumes that the forecasts she observes are generated according to an in-
formation structure incorporating her own prior. The above result implies that there is
a strictly positive probability of divergence between the two ML predictions they gener-
ate, even after being exposed to the same rich and large set of observations. This differs
from the convergence properties of Bayesian decision makers with heterogeneous pri-
ors. For example, in a recent paper Acemoglu et al. (2016) show that decision makers
with heterogeneous priors, who agree about the information process generating their
signals, converge to have the same beliefs.9

5. Conclusion

There is some recent empirical and experimental evidence showing that decision mak-
ers tend to neglect correlation in some environments (e.g., Ortoleva and Snowberg 2015,
Enke and Zimmerman 2019, Kallir and Sonsino 2009, and Eyster and Weizsacker 2011),
while in other contexts they overestimate correlation: Consistent with the maximum
likelihood approach, we assumed in this paper, De Filippis et al. (2017) and Hossain and
Okui (2020) derive results in which subjects sometimes overestimate the level of cor-
relation.10 It would be interesting to understand empirically when it is more likely for

8For example, see Fisher and Tippett (1928).
9See Section 3.1 in their paper, where they use this result as a benchmark to show, in the main part of the

paper, that small disagreement about the information generating process can imply large disagreements
about where the process converges.

10Specifically, De Filippis et al. (2017) consider a class of updating rules that generalize the ML updating
rule, and their experimental evidence supports the rule with a biased critical value (rather than an unbiased
critical value).
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decision makers to become aware of or, alternatively, excessively consider, correlation
in their observed forecasts. One possibility is that observing many repeated forecasts
increases the suspicion of the decision maker that these are correlated. One interest-
ing example for such reasoning is the Talmudic Sanhedrin court law that requires that
if judges are unanimous in conviction, the defendant should be set free, while if only
a majority convict, this majority verdict pertains. Glatt (2013) offers a maximum likeli-
hood rationalization of this rule: unanimity among many judges most likely is a result
of strong correlation between the judges and, therefore, demands caution. Gunn et al.
(2016) also discuss this interpretation in other legal scenarios.

Appendix

Proof of Lemma 1. Assume that e = (Ie� se) is an explanation of qt . We construct a
new explanation of qt with Sj = {s∗� s−∗} for any j, which maintains the same likelihood
of observing qt as e does.

Specifically, construct the new explanation e′ = (Ie
′
� se

′
) as follows. Let se

′ =
(s∗� s∗� � � � � s∗). Let, ∀ω ∈�,

(∗) f e
′

j

(
s∗|ω) = f ej

(
sej |ω

)
for all j ≤ t; f e′(

s∗� s∗� � � � � s∗|ω) = f e
(
se|ω)

and ∀s �= s∗, s ∈ {s∗� s−∗}t ,

f e
′
(s|ω)=

∑
s′∈Se s.t.

if sj=s∗ then s′j=sej
otherwise s′j �=sej

f e
(
s′|ω)

�

Note that by (∗), e′ is an explanation of qt , as the marginal distributions of the observed
signals are maintained. Moreover, by (∗), it is an explanation that maintains the same
likelihood of observing qt as e induces.

Proof of Lemma 2. We start by showing that a forecast qh = βp + (1 − β)ql can be ig-
nored if ql ∈ I(qt ) for any β ∈ (0�1]. To see this, note first that ωh =ωl: this arises as

arg max
ω

qh(ω)

p(ω)
= arg max

ω

βp(ω)+ (1 −β)ql(ω)

p(ω)

= arg max
ω

(
β+ (1 −β)

ql(ω)

p(ω)

)
= arg max

ω

ql(ω)

p(ω)
�

Then note that for any ω,

αh(ω)

ᾱh
=

qh(ω)

p(ω)

qh
(
ωl

)
p

(
ωl

)
=

βp(ω)+ (1 −β)ql(ω)

p(ω)

βp
(
ωl

) + (1 −β)ql
(
ωl

)
p

(
ωl

)
=

β+ (1 −β)
ql(ω)

p(ω)

β+ (1 −β)
ql

(
ωl

)
p

(
ωl

)
≥

ql(ω)

p(ω)

ql
(
ωl

)
p

(
ωl

)
= αl(ω)

ᾱl
�
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Now note that all forecasts in qt+1 ∈ I(qt ) can be ignored by Proposition 1. As a result
of this and the above results, all forecasts qt+1 = βp + (1 − β)q for some q ∈ I(qt ) and
β ∈ [0�1] can be ignored.

Proof of Proposition 2. Suppose that e∗
t = (Ie∗

t � se
∗
t ) is an ML explanation of qt . Re-

call that by Proposition 1, any ML explanation requires that

f e
(
se|ω) = min

j∈{1�2����t}
αj(ω)

ᾱj
�

We now construct a new ML explanation, e∗
t+1 for qt+1, which is consistent with e∗

t .

To construct e∗
t+1 = (Ie∗

t+1� se
∗
t+1), we set (i) Se

∗
t+1 = ×t+1

j=1S
e∗
t+1

j , with ×t
j=1S

e∗
t+1

j = Se
∗
t , S

e∗
t+1

t+1 =
{se

∗
t+1

t+1 � s
e−∗
t+1

t+1 }, and se
∗
t+1 = (s

e∗
t+1

1 � � � � s
e∗
t+1

t � s
e∗
t+1

t+1 ) such that (s
e∗
t+1

1 � � � � � s
e∗
t+1

t ) = se
∗
t . (ii) We set

f
e∗
t+1

j

(
s
e∗
t+1

j |ω) = αj(ω)

ᾱj
for all j ≤ t + 1�

(iii) The marginal of f e
∗
t+1(�|ω) on Se

∗
t to equal f e

∗
t (�|ω).

We now set two cumulative marginals: on the first t signals and on the t + 1th signal.

Order signals in S
e∗
t+1

j as a normalization so that s
e∗
t+1

j is the smallest in S
e∗
t+1

j . This and
(i)–(iii) imply that we have

F
e∗
t+1

t+1

(
s
e∗
t+1

t+1 |ω) = f
e∗
t+1

t+1

(
s
e∗
t+1

t+1 |ω)
� F

e∗
t+1

t+1

(
s
e−∗
t+1

t+1 |ω) = 1

Fe∗
t+1

(
se

∗
t |ω) = f e

∗
t+1

(
se

∗
t |ω) = f e

∗
t
(
se

∗
t |ω)

�

where the remainder of Fe∗
t+1(st |ω) on st ∈ Se

∗
t , st �= se

∗
t , can be completed using (iii).

We conclude the construction by setting the joint distribution on Se
∗
t+1 , and combin-

ing the marginals Fe∗
t+1(st |ω) and F

e∗
t+1

t+1 (st+1|ω). We first consider se
∗
t+1 . For each state ω,

and se
∗
t+1 , we set

(∗∗) Fe∗
t+1

(
se

∗
t+1 |ω) = f e

∗
t+1

(
se

∗
t+1 |ω)

= min
{
f
e∗
t+1

t+1

(
s
e∗
t+1

t+1 |ω)
� f e

∗
t+1

(
se

∗
t |ω)}

= min
{
F
e∗
t+1

t+1

(
s
e∗
t+1

t+1 |ω)
�Fe∗

t+1
(
se

∗
t |ω)}

�

Next, as we did in Proposition 1, for all other s = {st � st+1} �= se
∗
t+1 , we set

Fe∗
t+1(s|ω)= min

{
F
e∗
t+1

t+1 (st+1|ω)�Fe∗
t
(
st |ω)}

�

This is a proper cumulative distribution function (cdf), as there is always a joint in-
formation structure that achieves the upper Frechet bound.
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We have therefore constructed an explanation e∗
t+1 that (a) explains the data by (ii),

(b) maximizes the likelihood of the data, as by (∗∗), (ii), and (iii),

f e
∗
t+1

(
se

∗
t+1 |ω) = min

j∈{1�2����t+1}
αj(ω)

ᾱj
�

and (c) is time-consistent by construction, following (iii).

The proof of Proposition 3 is provided in the text.

Proof of Proposition 4. (i) This is a corollary of Proposition 1 and the law of large
numbers. (ii) In what follows, we denote a forecast about the state by q ∈ [0�1], inter-
preted as the probability of state 1, where p is the prior probability that the state is 1.
We construct a true signal generating process by choosing the cumulative distributions
over posteriors it generates, F(q|1) in state 1 and F(q|0) in state 0, with corresponding
continuous densities f (q|1) and f (q|0).

Let us focus on state ω = 0 and, hence, on F(q|0). We consider a distribution that
has symmetric tails so that F(q|0) = 1 − F(1 − q|0) for all q > q̂ for some q̂ > 0�5. To
approximate the limit distribution of the extreme posteriors, we note that these are the
extreme values of F(q|0). We can, therefore, use the extreme value limit results in Fisher
and Tippett (1928) and Leadbetter et al. (1983). In particular, we construct F(q|0) to
satisfy

∃γ(q) > 0 such that lim
q→1

1 − F
(
q+ xγ(q)|0)

1 − F(q|0) = e−x for any x ∈R�

By Leadbetter et al. (1983), for distributions that satisfy the above condition, there
exist sequences {an}, {bn} such that an = γ(F−1(1−1/n)) → 0 and bn = F−1(1−1/n)→ 1
so that we can use the Gumbel distribution to approximate the distribution of the max-
imal posterior of F(q|0), maxVn:

maxVn − bn

an
∼ exp

{
−exp

(
−maxVn − bn

an

)}
�

So if we choose two cutoffs 0 <αn < βn < 1 such that

βn − bn

an
→ β�

αn − bn

an
→ α

and β > α, we have that the probability maxVn ∈ [αn�βn] converges to exp{−exp(β)} −
exp{−exp(α)} > 0. Similarly, by symmetry, for the minimum value minVn, we have that
the probability minVn ∈ [1 −βn�1 − αn] converges to exp{−exp(β)} − exp{−exp(α)}.

Note that as

1 − F
(
q+ xγ(q)|0)

1 − F(q|0) →q→1 e
−x

for any x ∈R, this implies that for large enough q, q+ xγ(q) ≤ 1, and so we have

γ(q) <
1 − q

x
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for any x ∈ R. As a result, we have that

1 −βn

1 − αn
� 1 − bn −βan

1 − bn − αan
=

1 − bn

an
−β

1 − bn

an
− α

→ 1�

as for large enough q,

1 − bn

an
=

1 − F−1
(

1 − 1
n

)

γ

(
F−1

(
1 − 1

n

)) > x

1 − F−1
(

1 − 1
n

)

1 − F−1
(

1 − 1
n

) = x

for any x ∈ R.
Therefore, with probability (exp{−exp(β)} − exp{−exp(α)})2, we have that

1 ← 1 −βn

1 − αn
<

1 − maxVn
minVn

<
1 − αn

1 −βn
→ 1�

Moreover, note that

1 − minVn
maxVn

→ 1�

Therefore, there is a strictly positive probability that the prior will matter for the limit
prediction; in other words, with probability (exp{−exp(β)} − exp{−exp(α)})2,

μ = 1

1 + 1 −p

p

1 − maxVn
minVn

1 − minVn
maxVn

→n→∞ p�

Finally, we need to check that the above result can indeed be constructed as a dis-
tribution over posteriors. A distribution over posteriors arising from Bayesian updating
implies a joint restriction on f (q|1) and f (q|0) so that for any q,11

q = pf(q|ω= 1)
pf (q|ω= 1)+ (1 −p)f(q|ω= 0)

⇒ f (q|1)= f (q|0)(1 −p)

p

q

1 − q
�

When considering the tails of f (q|1) and f (q|0), for example, the above means that
when q → 0, assuming that f (q|0) <∞, then f (q|1)→ 0 at a certain rate. Similarly,

f (q|0)= f (q|1) p

1 −p

1 − q

q

so that, assuming that f (q|1) < ∞ as q → 1, then f (q|0) → 0 at a certain rate. How-
ever, given that our approximation implies that f (q|0) drops to zero around the tails
very quickly, specifically, as f (q|0) →q→1 0 faster than q/(1 − q) →q→1 ∞, then we can
indeed construct f (q|1) as a probability distribution so that they can jointly satisfy the
above Bayesian restriction.

11These conditions in turn imply Bayesian plausability, i.e., that
∫ 1

0 q
(
pf(q|1)+ (1 −p)f (q|0))dq = p.
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