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Testable forecasts

Luciano Pomatto
Division of the Humanities and Social Sciences, Caltech

Predictions about the future are commonly evaluated through statistical tests. As
shown by recent literature, many known tests are subject to adverse selection
problems and cannot discriminate between forecasters who are competent and
forecasters who are uninformed but predict strategically.

We consider a framework where forecasters’ predictions must be consistent
with a paradigm, a set of candidate probability laws for the stochastic process of
interest. This paper presents necessary and sufficient conditions on the paradigm
under which it is possible to discriminate between informed and uninformed
forecasters. We show that optimal tests take the form of likelihood-ratio tests com-
paring forecasters’ predictions against the predictions of a hypothetical Bayesian
outside observer. In addition, the paper illustrates a new connection between
the problem of testing strategic forecasters and the classical Neyman–Pearson
paradigm of hypothesis testing.

Keywords. Strategic forecasting, hypothesis testing.

JEL classification. C120, D810.

1. Introduction

Forecasts are often formulated in terms of probability distributions over future events
(e.g., a recession will happen with 5% probability). Probabilistic forecasts appear across
a wide variety of economic and scientific activities, including the analysis of weather
and climate Gneiting and Raftery (2005), aggregate output and inflation (Diebold et al.
1997), epidemics (Alkema et al. 2007), seismic hazard (Jordan et al. 2011), financial risk
Timmermann (2000), demographic variables (Raftery et al. 2012), and elections Tetlock
(2005), among others.1

One practical difficulty with probabilistic forecasts is that they cannot be falsified
by casual observation, but only through proper statistical tests. From an economic per-
spective, a key issue is that statistical tests aimed at evaluating forecasters can be subject
to adverse selection. Consider, as an example, a forecaster who is asked to predict how a
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stochastic process of interest will evolve over time, and is evaluated by a test comparing
her prediction against the realized sequence of outcomes. Suppose the forecaster can be
either a true expert, who knows the actual distribution P generating the data and is will-
ing to report it truthfully, or a strategic forecaster, who is uninformed about the stochas-
tic process, but is interested in passing the test so as to establish a false reputation of
competence. Recent literature shows that many tests of interest cannot discriminate
between the two.

In their seminal paper, Foster and Vohra (1998) examine the well known calibration
test.2 They construct a randomized forecasting algorithm that allows passing the test
regardless of how data unfold, and without any knowledge about the distribution of the
data-generating process. By employing such an algorithm, an uninformed but strate-
gic forecaster can completely avoid being discredited by the data, thus defeating the
purpose of the test.

This surprising phenomenon is not restricted to calibration. Subsequent work em-
phasizes one critical feature of the calibration test: the fact that it is free of Type I errors.
For any possible true law P generating the data, where P is an arbitrary probability mea-
sure defined over sequences of outcomes, an expert who predicts according to P will
pass the calibration test with high probability Dawid (1982). This remarkable property
ensures that the test is unlikely to reject competent forecasters. But, as shown by San-
droni (2003) and Olszewski and Sandroni (2009), once incentives are taken into account,
the same property leads to a general impossibility result for testing probabilistic predic-
tions: any test that operates in finite time and is free of Type I errors can be passed by a
strategic but uninformed forecaster. This impossibility result has been further extended
by Olszewski and Sandroni (2008) and Shmaya (2008), among many others.

Tests such as calibration, that are free of Type I errors, do not impose any restriction
on the unknown law P generating the process. Such a degree of agnosticism is all but
common in economics and statistics. Indeed, most empirical studies posit that data are
generated according to a specific model, often fully specified up to a restricted set of
parameters. This paper takes a similar approach and examines the problem of testing
forecasters in the presence of a theory about the data-generating process.

This paper considers a framework where it is known that the law generating the data
belongs to a given set�, which represents a theory, or paradigm, about the phenomenon
under consideration. Accordingly, forecasters are required to submit forecasts belong-
ing to �, while predictions incompatible with the paradigm are rejected.

For the purpose of this paper, paradigms admit multiple interpretations. A paradigm
can be seen as a summary of preexisting knowledge about the problem. It can also rep-
resent the set of restrictions imposed on the data-generating process by a scientific the-
ory. It can, alternatively, be interpreted as a normative standard to which forecasters’
predictions must conform so as to qualify as useful. Classic examples of paradigms in-
clude the classes of independent and identically distributed (i.i.d.) Markov or stationary

2Consider a stochastic process that every day can generate two outcomes, say “rain” and “no rain.” A
forecaster passes the calibration test if, roughly, for every p ∈ [0�1], the empirical frequency of rainy days
computed over the days where the forecaster predicted rain with probability p is close to p.
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distributions. In this paper, so as to make the analysis applicable to a broad class of envi-
ronments, no a priori restrictions are imposed over paradigms (beyond measurability).

A paradigm � is testable if it admits a test with the following three features. First, it is
unlikely that the test rejects a true expert who knows the correct law in�. Second, for any
possible strategy that a forecaster might employ to misrepresent her knowledge, there
is a law belonging to � under which the forecaster fails the test with high probability.
Hence, strategic forecasters are not guaranteed to avoid rejection. Third, the test returns
a decision (acceptance or rejection) in finite time.

A crucial question, then, is which paradigms are testable and, if they are, by using
what tests. The existing literature presents instances of testable classes of distributions
(see, among others, Olszewski and Sandroni 2009 and Al-Najjar et al. 2010). However,
reasonably general conditions under which a paradigm is testable are not known.

The first step of the analysis is a general characterization of testable paradigms. The
result is formulated by taking the perspective of a hypothetical Bayesian outside ob-
server. Given a paradigm �, consider, for the sake of illustration, an analyst, consumer,
or statistician who is uncertain about the odds of the data-generating process, and who
is sophisticated enough to express a prior probabilityμ over the set of possible laws. The
prior assigns probability 1 to the paradigm. It is shown that � is testable if and only if
there exists at least one prior μ such that the observer, by predicting according to the
prior, is led to forecasts that are incompatible with any law in the paradigm. Formally,
testability is equivalent to the existence of a prior μ over the paradigm such that the law∫
� P dμ(P) obtained by averaging with respect to the prior is sufficiently distant, in the

appropriate metric (the total-variation distance), from every law P in the paradigm.
Based on this characterization we show that given any testable paradigm, it is with-

out loss of generality to restrict attention to standard likelihood-ratio tests. For every
testable paradigm � there exists a finite likelihood-ratio test that is unlikely to reject a
true expert and cannot be manipulated. Such tests are constructed as follows. First,
the test creates a fictitious Bayesian forecaster. This forecaster is obtained by placing a
sufficiently “uninformative” prior μ over the paradigm. Actual forecasters are then eval-
uated by comparing their predictions to the forecasts generated by the test. A forecaster
passes the test if and only if the realized sequence of outcomes was, ex ante, deemed
more likely by the agent than by the fictitious Bayesian forecaster.

The results suggest a simple, and perhaps intuitive, criterion for identifying compe-
tent forecasters: a predictor is recognized as knowledgeable if her forecast results are
more accurate, in likelihood-ratio terms, than the predictions of a Bayesian endowed
with an uninformative prior.

The third main result of the paper shows that likelihood-ratio tests are, in a proper
sense, optimal. The result is based on a novel ordering over tests. A test T is evalu-
ated by the worst case probability of passing the test that an uninformed forecaster can
guarantee herself, where the worst case is computed over all possible laws for the data-
generating process. A test T1 is less manipulable than T2 if such worst case probability is
lower under T1 than under T2. So, less manipulable tests are more effective at screening
between informed and uninformed experts. Theorem 3 shows that for any paradigm,
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and controlling for sample size and for the level of Type I error, there exists a likelihood-
ratio test that is less manipulable than any other test. As explained in the main text,
the result is related to the celebrated Neyman–Pearson lemma, and highlights a novel
connection between the problem of testing strategic forecasters and the theory of hy-
pothesis testing.

In sum, the analysis of this paper provides a foundation for likelihood-ratio tests as
a general methodology for testing probabilistic predictions under adverse selection.

Section 4 studies several examples of paradigms: Markov processes, mixing pro-
cesses, paradigms defined by moment inequalities, and maximal paradigms. For each
example, we provide conditions such that the paradigm under consideration is testable.
Section 5 discusses extensions and provides further comments on the related literature.

1.1 Related literature

Foster and Vohra (2013) and Olszewski (2015) survey the literature on testing strategic
forecasters.3 In this section, we comment on those papers that are closer to the present
work.

Likelihood-ratio tests appear in Al-Najjar and Weinstein (2008) as a method for com-
paring the predictions of two forecasters under the assumption that at least one of them
is informed. Examples of testable paradigms appear in Olszewski and Sandroni (2009),
who also extend the result of Sandroni (2003) to finite tests where the paradigm is con-
vex and compact. Al-Najjar et al. (2010) study the set of laws that have a learnable and
predictable representation, a class of distributions introduced by Jackson et al. (1999).
They show that the paradigm is testable.

Babaioff et al. (2011) consider a principal–agent model where the principal offers a
monetary contract with the intent of discriminating between informed and uninformed
experts. They show, quite surprisingly, that screening is possible if and only if the true
law is restricted to a non-convex set of distributions. This paper follows the literature on
testing strategic experts where transfers are absent and the forecaster’s expected payoff
is the probability of passing the test chosen by the tester. As a consequence, the two
papers arrive at different conclusions. In particular, there exist non-convex paradigms
that are not testable and convex paradigms that are testable.4

Likelihood-ratio tests play an important role in Stewart (2011). Stewart proposes a
framework where the tester is a Bayesian endowed with a prior over laws and the fore-
caster is evaluated according to a likelihood-ratio test against the predictions induced by
the prior. In the current paper, the tester is not assumed to be Bayesian. Instead, the ex-
istence of an appropriate prior that allows construction of a nonmanipulable likelihood-
ratio test is shown to be a property that is intrinsic to all testable paradigms. The relation
between this paper and Stewart (2011) is discussed more in detail in Appendix A.6.

3Contributions to the literature that are not included in the surveys include Sandroni and Shmaya (2014),
Al-Najjar et al. (2014), Feinberg and Lambert (2015), and Kavaler and Smorodinsky (2019).

4The paradigm studied in Al-Najjar et al. (2010) is convex, but testable. Consider a binary process that
in each period can take two values, x or y . The paradigm of all distributions such that the probability of
observing x in the first period is restricted to be in [0�0�25)∪ (0�75�1] is not convex and not testable.
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2. Basic definitions

In each period an outcome from a finiteX is realized, where |X| ≥ 2. A path is an infinite
set of outcomes and � =X∞ denotes the set of all paths. Time is indexed by n ∈ N and
for each pathω= (ω1�ω2� � � �), the corresponding finite history of length n is denoted by
ωn. That is,ωn is the set of paths that coincide withω in the first n periods. We denote by
Fn the algebra generated by all histories of length n and denote by B the σ-algebra gen-
erated by

⋃
nFn. The set of paths� is endowed with the product topology, which makes

B the corresponding Borel σ-algebra. We denote by �(�) the space of Borel probability
measures on �. Elements of �(�) are interchangeably referred to as laws or distribu-
tions. The space �(�) is endowed with the weak* topology and the corresponding Borel
σ-algebra.5 The same applies to the space �(�(�)) of Borel probability measures over
�(�). Given a measurable subset 	⊆ �(�), �(	) is the set of Borel probability measures
on �(�) that assign probability 1 to 	.

2.1 Empirical tests

A forecaster announces a law P ∈ �(�), under the claim that P describes how the data
evolve. A tester is interested in evaluating this claim using a statistical test.

Definition 1. A test is a measurable function T :�×�(�)→ [0�1].

A test T compares the realized path ω with the reported law P . The law is accepted
if T(ω�P)= 1 and rejected if T(ω�P)= 0. Values strictly between 0 and 1 describe ran-
domized tests where the forecaster is accepted with probability T(ω�P).6 The timing is
as follows: (i) At time 0, the tester chooses a test T ; (ii) the forecaster announces a law P ;
(iii) nature generates a path ω; (iv) T reports acceptance or rejection.

A test T is finite if for every law P there exists a time nP such that T(·�P) is mea-
surable with respect to FnP . That is, a law P is accepted or rejected as a function of the
first nP observations, where nP is deterministic and known ex ante. Throughout this pa-
per, we restrict the attention to finite tests. A relevant special case is given by the class
of nonasymptotic tests, where there exists a single deadline N such that nP ≤N for ev-
ery P . While the main focus is on asymptotic tests, in Section 5.1 we show that many of
the results extend without difficulties to nonasymptotic tests.

2.2 Strategic forecasting

The forecaster can be of two possible types. A true expert (or informed forecaster)
knows the law governing the data-generating process and is willing to report it truth-
fully. A strategic (or uninformed) forecaster does not possess any relevant knowledge

5A sequence (Pn) in �(�) converges to P in the weak* topology if and only if EPn [φ] → EP [φ] for every
continuous functionφ :�→R. Given a measure P , EP denotes the expectation operator with respect to P .

6Except for Theorem 3 below, none of the results is affected by restricting attention to nonrandomized
tests.



134 Luciano Pomatto Theoretical Economics 16 (2021)

about the data-generating process. Her goal is simply to pass the test. Strategic fore-
casters can produce their predictions using mixed strategies. Formally, a strategy is a
randomization over laws ζ ∈ �(�(�)).

The next example shows how a standard likelihood-ratio test can be manipulated by
strategic forecasters.

Example 1. A manipulable likelihood-ratio test. The test is specified by a time n and
a probability measure Q ∈ �(�) with full support. The law Q serves as a benchmark
against which the forecaster is compared. Given a forecast P and a path ω, the test
returns 1 if

P
(
ωn

)
Q

(
ωn

) > 1

and returns 0 otherwise, where, as defined above, ωn is the set of paths that coincide
withω in the first n periods. Thus, the forecaster passes the test if and only if the realized
history is more likely under the forecast P than under the benchmark Q. The test can
be manipulated using the following simple strategy. For each history ωn of length n,
consider the measurePωn =Q(·|�−ωn) obtained by conditioningQ on the complement
of ωn. It satisfies

Pωn
(
ωn

) = 0 and Pωn
(
ω̃n

)
>Q

(
ω̃n

)
for all ω̃n 	=ωn�

Let ζ be the mixed strategy that randomizes uniformly over all measures of the form Pωn .
Given a history ωn, a forecaster using strategy ζ passes the test as long as the law she
happens to announce is different from Pωn . This is an event that under ζ has probability
greater than or equal to 1 − 2−n. So no matter how the data unfold, even for n relatively
small, the forecaster is guaranteed to pass the test with high probability. ♦

The test in Example 1 does not assume any structure on the data-generating pro-
cess. In this example, the freedom of announcing any law allows the uninformed pre-
dictor to manipulate the test. We will see how appropriate restrictions on the domain of
possible laws allows even simple likelihood-ratio tests to screen between informed and
uninformed forecasters.

2.3 Testable paradigms

The tester operates under a theory, or paradigm, about the data-generating process. In
this paper, a theory is identified with the restrictions it imposes over the law of the ob-
served process. Formally, a paradigm is a measurable set �⊆ �(�), with the interpreta-
tion that the data are generated according to some unknown law belonging to�. Beyond
measurability, no assumptions are imposed on �.

A paradigm can be defined in many ways. For instance, it can express statistical in-
dependence between different variables (the outcome ωn realized at time n is indepen-
dent from the outcome realized at time n+ 365) or it might reflect assumptions about
the long run behavior of the process (P is ergodic). Additional examples are discussed
in Section 4.
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Given a paradigm, a basic property we would like a test to satisfy is to not reject
informed experts.

Definition 2. Given a paradigm �, a nonrandomized test T accepts the truth with
probability at least 1 − ε if, for all P ∈�, it satisfies

P
({
ω : T(ω�P)= 1

}) ≥ 1 − ε� (1)

A test that accepts the truth is likely not to reject an expert who reports the actual law
of the data-generating process. As shown by Olszewski and Sandroni (2009), any finite
test that accepts the truth with respect to the unrestricted paradigm � = �(�) can be
manipulated: Given a finite test T that satisfies property (1) for all P ∈ �(�), there exists
a strategy ζ such that

ζ
({
P : T(ω�P)= 1

}) ≥ 1 − ε for all pathsω ∈��

Thus, the strategy allows the forecaster to completely avoid rejection. The result moti-
vates the next definition.

Definition 3. Given a paradigm �, a nonrandomized test T is ε-nonmanipulable if,
for every strategy ζ, there is a law Pζ ∈� such that

(Pζ ⊗ ζ)({(ω�P) : T(ω�P)= 1
}) ≤ ε�

The notation Pζ ⊗ ζ stands for the independent product of Pζ and ζ. A test T is
ε-nonmanipulable if, for any strategy ζ, there is a law Pζ in the paradigm such that the
forecaster is rejected with probability greater than 1−ε. Thus, no strategy can guarantee
a strategic forecaster more than an ε probability of passing the test.

As discussed by Olszewski and Sandroni (2009), nonmanipulable tests can screen
out uninformed forecasters. To elaborate, assume that a forecaster who opts not to par-
ticipate in the test receives a payoff of 0, while a forecaster who announces a law P ob-
tains a payoff that depends on the outcome of the test. If P is accepted, then she is
recognized as knowledgeable and gets a payoff w > 0. If the law is rejected, then she
is discredited and incurs a loss l < 0. Assume, in addition, that an uninformed fore-
caster chooses in accordance with the maxmin criterion of Wald (1950) and Gilboa and
Schmeidler (1989), where each strategy ζ is evaluated according to the minimum ex-
pected payoff with respect to a set of laws. If such a set equals the paradigm, then for
each strategy ζ, the expected payoff is7

inf
P∈�

EP⊗ζ
[
wT + l(1 − T)]� (2)

If ε is sufficiently small, then the value (2) is negative and so the optimal choice for a
strategic forecaster is not to take the test. Therefore, given a test that accepts the truth

7In what follows, EP⊗ζ denotes the expectation with respect to Pζ ⊗ ζ.
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with probability at least 1−ε and is ε-nonmanipulable, a true expert finds it profitable to
participate in the test, while for an uninformed expert, it is optimal not to participate.8

Definitions 2 and 3 extend immediately to possibly randomized tests. Given a
paradigm �, a test T accepts the truth with probability at least 1 − ε if for every P ∈ �, it
satisfies EP [T(·�P)] ≥ 1 − ε. The test is ε-nonmanipulable if for every strategy ζ, there
is a law Pζ ∈ � such that EPζ⊗ζ[T ] ≤ ε. The next definition summarizes the properties
introduced so far.

Definition 4. Given ε > 0, a paradigm� is ε-testable if there is a finite test T such that

(i) T accepts the truth with probability at least 1 − ε
(ii) T is ε-nonmanipulable.

A paradigm � is testable if it is ε-testable for every ε > 0.

3. Main results

It will be useful, in what follows, to take the perspective of a Bayesian outside observer
(e.g., an analyst, a voter, or a statistician) who is interested in the problem at hand and
uncertain about the odds governing the data-generating process. The uncertainty per-
ceived by the observer is expressed by a prior probabilityμ ∈ �(	), where 	⊆ �(�) is the
set of laws the observer believes to be possible. We focus on the case where 	 coincides
with (or is close to) the paradigm �, so that the observer and the tester have compatible
views. If asked to make forecasts about the future, the observer would predict according
to the probability measure defined as

Qμ(E)=
∫
	
P(E)dμ(P) for all E ∈ B� (3)

The definition (3) follows the standard approach in Bayesian statistical decision theory
of defining, from the prior μ, a probability measure over the sample space � by averag-
ing with respect to the prior.9

3.1 Characterization

The next result characterizes testable paradigms. Given laws P and Q, let ‖P − Q‖ =
supE∈B |P(E)−Q(E)| denote the (normalized) total-variation distance between the two
measures. Given a paradigm�, its closure with respect to the weak* topology is denoted
by �.

Theorem 1. A paradigm � is testable if and only if for every ε > 0, there exists a prior
μ ∈ �(�) such that ‖Qμ − P‖ ≥ 1 − ε for all P ∈�.

8Section 5.2 considers a different specification where uninformed forecasters are less conservative and,
in (2), the worst case scenario is taken with respect to a neighborhood of laws in the paradigm.

9In the literature, Qμ is often referred to as a predictive probability. Cerreia-Vioglio et al. (2013) provide,
under appropriate conditions on 	, an axiomatic foundation for the representation (3).
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Consider an outside observer whose prior assigns probability 1 to (the closure of) �.
The result compares the observer’s forecasts with the paradigm. Two polar cases are
of interest. If Qμ ∈ �, then the observer’s prediction cannot be distinguished, ex ante,
from the prediction of an expert who announced Qμ knowing it was the true law of the
process. Theorem 1 is concerned with the opposite case, where the prediction Qμ is far
from any possible law P in the paradigm. It shows that a paradigm is testable if and only
if there is some observer whose uncertainty about the data-generating process leads
her to predictions that are incompatible (in the sense of being far with respect to the
total-variation distance) with respect to any law in the paradigm.

Given a prior μ with the above properties, it is possible to define an explicit non-
manipulable test. In the next section, we provide a direct construction of such a test, to-
gether with an intuition for the result. The intuition for why testability of a paradigm im-
plies the existence of a prior that satisfies the conditions of Theorem 1 can be sketched
as follows. For a strategic forecaster, randomization is valuable because it allows one
to increase the probability of passing the test in the worst case, across all possible dis-
tributions that belong to the paradigm. Naturally, different strategies will correspond
to different worst case distributions. For a given strategy ζ, it is irrelevant whether the
worst case is computed within the paradigm or across the set of all distributions of the
form Qμ for some prior μ. This follows from the fact that the forecaster’s “payoff func-
tion” is given by the expectation of T ; hence, it is linear in the randomization ζ and in
the law P . However, as we show in the proof of Theorem 1, considering the set of laws
Qμ that can be achieved by some prior μ is important. In the proof we show that given
a test, there exists a worst case distribution Qμ that is common to all strategies. Intu-
itively, this worst case distribution must not be within the paradigm, since otherwise a
forecaster could simply announce it and pass the test. The result shows that, in a specific
sense, it must be sufficiently far away from the paradigm.

Testability of a paradigm is a property that can be formulated as a lack of compact-
ness and convexity. To illustrate this idea, we associate to each paradigm � an index
I(�) of its compactness and convexity. The definition is based on notions introduced
in the context of general equilibrium theory by Folkmann, Shapley, and Starr (see Starr
1969). Given a subset �⊆ �(�), let

I(�)= sup
Q∈co(�)

inf
P∈�

‖Q− P‖�

where co(�) is the weak* closed convex hull of �. I satisfies 0 ≤ I(�) ≤ 1 by the defini-
tion of the total-variation distance. If I(�)= 0, then any lawQ in the closed convex hull
of the paradigm can be approximated with arbitrary precision by a law P in �. In this
case, as shown by Olszewski and Sandroni (2009), any finite test that accepts the truth
is manipulable.10 In the opposite case, when I(�)= 1, one can find a law in the closed

10The intuition behind the result can be sketched as follows. Finiteness of the test, together with
compactness and convexity of �, allows one to invoke Fan’s minmax theorem and establish the equality
minP∈� maxζ EP⊗ζ [T ] = maxζ minP∈� EP⊗ζ [T ]. If T accepts the truth with probability 1 − ε, then the left-
hand side is greater than 1 − ε. Hence, there exists a strategy that passes the test with probability 1 − ε for
every P ∈�. Therefore, the paradigm is not testable.
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convex hull of � that has distance arbitrarily close to 1 from every law in the paradigm.
The next result shows that this is true if and only if the paradigm is testable.

Corollary 1. A paradigm � is testable if and only if it satisfies I(�)= 1.

3.2 Nonmanipulable tests

Next we study nonmanipulable tests. By applying the characterization provided by The-
orem 1, we show that given a testable paradigm, it is without loss of generality to restrict
attention to simple likelihood-ratio tests.

Theorem 2. Let � be a testable paradigm. Given ε > 0, let μ ∈ �(�) be a prior that satis-
fies ‖Qμ − P‖> 1 − ε for all P ∈�. There exist positive integers (nP)P∈� such that the test
defined as

T(ω�P)=
{

1 if P ∈� and P
(
ωnP

)
>Qμ

(
ωnP

)
0 otherwise

(4)

accepts the truth with probability at least 1 − ε and is ε-nonmanipulable.

Given a law P , the test reaches a decision after nP observations, where nP is known
in advance. The forecaster passes the test if and only if the history realized at time nP is
strictly more likely under P than under the law Qμ. The prior μ is required to be suffi-
ciently “uninformative” so that the induced lawQμ is far from every law in the paradigm.
As implied by Theorem 1, such a prior exists whenever the paradigm is testable.

The likelihood-ratio test is one of the most well known statistical tests.11 It is, there-
fore, reassuring that all testable paradigms can be unified under the same canonical
family of tests.

The main idea behind the proof of Theorem 2 is to exploit a key relation between
likelihood-ratio tests and the total-variation distance. To illustrate, let AP be the set of
paths where the law P ∈ � passes the test (4), and consider the difference in probabil-
ity P(AP) − Qμ(A

P). It can be shown that by taking nP large enough, this difference
approximates the distance ‖P −Qμ‖ between the two measures. Hence, the event AP

must have probability higher than 1 − ε under P , so the test accepts the truth with high
probability. In addition, AP must have probability at most ε under Qμ. Because this is
true for every P , then in the hypothetical scenario where the data were generated ac-
cording to Qμ, a forecaster would be unlikely to pass the test regardless of what law is
announced and, therefore, regardless of whether she randomizes her prediction. It fol-
lows from this observation and from the fact thatQμ is a mixture of laws in the paradigm,
that against every fixed randomization ζ, there must exist some law Pζ in the paradigm
against which passing the test is unlikely. That is, the test cannot be manipulated.

11See, for instance, Lehmann and Romano (2005) for an introduction to the likelihood-ratio test.
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3.3 The optimality of likelihood tests: A Neyman–Pearson lemma

Theorem 2 shows that simple likelihood-ratio tests can screen between informed and
uninformed forecasters. However, it leaves open the possibility that such tests are inef-
ficient in the number of observations they require. A natural question is whether there
exist tests that for a fixed sample size can outperform likelihood-ratio tests in screen-
ing between experts and strategic forecasters. We now make this question precise by
introducing a new ordering over tests.

Definition 5. Let� be a paradigm. Given tests T1 and T2, the test T1 is less manipulable
than T2 if

sup
ζ∈�(�(�))

inf
P∈�

EP⊗ζ[T1] ≤ sup
ζ∈�(�(�))

inf
P∈�

EP⊗ζ[T2]� (5)

Consider a strategic forecaster who is confronted with a test T and must choose
whether to undertake the test. As discussed in Section 2, an uninformed forecaster par-
ticipates only if the value supζ∈�(�) infP∈�Eζ⊗P [T ], which is proportional to the maxmin
expected payoff from taking the test, is sufficiently large. So, the left-hand side of (5) is
proportional to the highest expected payoff a strategic forecaster can guarantee when
facing test T1.

The ranking (5) requires that any strategic forecaster who finds it optimal not to par-
ticipate in the test T2 must also find it optimal not to participate in the test T1. Hence,
any uninformed forecaster who is screened out by the test T2 is also screened out by
the test T1. In other terms, a less manipulable test has a greater deterrent effect against
strategic forecasters.

A comparison between tests is more informative when some variables, such as the
required number of observations, are kept fixed. To this end, we call a collection (nP)P∈�
of positive integers a collection of testing times if the map P �→ nP is measurable. A test
T is bounded by the testing times (nP)P∈� if T(·�P) is a function of the first nP obser-
vations. The definition allows for the possibility that different predictions may need
different sample sizes so as to be properly tested. Finally, given a class T of tests, we say
that a test T is least manipulable in T if it belongs to T and is less manipulable than any
other test in the same class. We can now state the main result of this section.

Theorem 3. Fix a paradigm �, testing times (nP)P∈�, and a probability α ∈ [0�1]. There
exist a prior μ∗ ∈ �(�), thresholds (λP)P∈� in R+, and a test T ∗ such that the following
statements hold:

(i) We have T ∗(ω�P)= 1 if P ∈� and P(ωnP ) > λPQμ∗(ωnP ).

(ii) We have T ∗(ω�P)= 0 if P /∈� or P(ωnP ) < λPQμ∗(ωnP ).

(iii) Test T ∗ is least manipulable in the class of tests that are bounded by (nP) and ac-
cept the truth with probability at least α.

Theorem 3 is a general result that illustrates the optimality of likelihood-ratio tests.
Given the number of data points nP that the tester is willing to collect for each forecast
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P and given a lower bound α on the probability of accepting a true expert, there exists a
likelihood-ratio test that is less manipulable than any other test that satisfies the same
constraints.

The result does not demand any assumptions on the paradigm, which is not required
to be testable. Another difference with the test introduced in Theorem 2 is the use of law-
specific thresholds λP that allow one to adjust the probability of accepting a true expert
as a function of the desired level α of Type I errors.12

The result is based on a novel connection between the problem of testing strategic
forecasters and the statistical hypothesis testing literature. To illustrate this idea, con-
sider the standard problem of testing a null hypothesis P0 against an alternative hypoth-
esis P1, where P0 and P1 are two given probability measures over paths. To be clear, in
such a context a (possibly randomized) hypothesis test is a functionφ :�→ [0�1], where
φ(ω) is the probability of accepting P0 given the path ω.

The test T ∗ is formally equivalent to a hypothesis test where the law P produced by
the expert plays the role of the null hypothesis, while the outside observer’s prediction
Qμ∗ plays the role of the alternative. The crucial difference with the standard hypothesis
testing framework is that the two “hypotheses” P and Qμ∗ are not given exogenously: P
is produced by a possibly strategic forecaster, while Qμ∗ is chosen by the tester.

The celebrated Neyman and Pearson lemma shows that given two hypotheses P0
and P1, and given an upper bound on the probability of Type I error, there exists a
likelihood-ratio test between P0 and P1 that minimizes the probability of Type II errors.
The proof of Theorem 3 applies this fundamental result to the problem of strategic fore-
casters. The proof proceeds in two steps. First, the beliefμ∗ is obtained as the solution of
a nonlinear minimization problem over the space of priors. The test T ∗ is then defined
by applying the Neyman–Pearson lemma to each pair of laws P andQμ∗ . The key step is
to show that because of the particular choice of μ∗, a test that minimizes the probability
of Type II errors with respect toQμ∗ is also a test that is least manipulable.

4. Examples and properties related to testability

In this section, we analyze examples of paradigms. For each example, we provide con-
ditions under which the paradigm under consideration is testable.

4.1 Markov processes

We first consider Markov processes. The law of a Markov process is described by a
transition probability π :X → �(X) and an initial probability ρ ∈ �(X). We denote by
� = �(X)X the set of all transition probabilities. Every pair (ρ�π) induces a Markov
distribution Pρ�π ∈ �(�). We denote such a law by Pπ whenever ρ is uniform.

Consider a Bayesian outside observer who is uncertain about the transition prob-
ability of the process and believes the true law to be Pπ for some π. Let m be a Borel

12The proof of Theorem 3 provides a complete description of the test T ∗, and illustrates how the thresh-
olds and the prior μ∗ are computed. In the knife-edge case where P(ωnP ) = λPQμ(ω

nP ), the test is ran-
domized. The use of randomized tests greatly simplifies the analysis and allows the tester to achieve a
probability of accepting a true expert that is exactly equal to α.
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probability measure over� that for every c ∈ [0�1] and x� y ∈X satisfiesm({π : π(x)(y)=
c}) = 0. In particular, m is nonatomic.13 By taking π to be distributed according to m,
we obtain, implicitly, a prior μ defined over the set of Markov distributions such that the
resulting lawQμ satisfies

Qμ(E)=
∫
�
Pπ(E)dm(π) for all E ∈ B�

The next result follows by applying standard asymptotic results for Markov processes.

Proposition 1. The prior μ satisfies ‖Qμ − Pρ�π‖ = 1 for all Markov Pρ�π . Hence, the
paradigm of Markov distributions is testable.

It follows from Theorem 2 that the paradigm of Markov distributions is testable by
means of a likelihood-ratio test defined with respect to the lawQμ. Under this test, fore-
casters’ predictions are compared against the predictions of a Bayesian who is endowed
with a nonatomic prior over the true transition probabilities.

4.2 Asymptotic independence

There is considerable interest, in the analysis of economic time series, in dependence
conditions that go beyond independence. A common assumption is mixing, which ex-
presses the idea that two events are approximately independent provided they occur
sufficiently far apart in time. Mixing is a generalization of the i.i.d. assumption that has
found applications in econometrics and in the forecasting literature.14

For every k ∈ N, denote by F∞
k the σ-algebra generated by the coordinate random

variables (Zk�Zk+1� � � �), where, for every m ≥ 1, Zm(ω) = ωm is the outcome in period
m. So F∞

k is the collection of all events that do not depend on the first k− 1 realizations
of the process. A law P is mixing if for every history ωn, it satisfies P(ωn) > 0 and

sup
A∈F∞

k

∣∣P(
A|ωn) − P(A)∣∣ → 0 as k→ ∞� (6)

Under a mixing measure P , the information ωn known at time n has a negligible
effect on the probability P(A) of an eventA, ifA depends on realizations of the process
that occur only in the far enough future.

The fact that a paradigm consists of laws that are mixing does not, without further
assumptions, imply that the same paradigm is testable. For instance, if the laws in �
disagree only about the odds of the first realization ω1 of the process, testability is not
achieved. The next result provides an elementary richness condition that, when added
to the mixing assumption, ensures that the paradigm is testable.

13For instance, ifX = {x� y}, then we can definem by setting π(x)(y) and π(y)(x) to be independent and
uniformly distributed over (0�1).

14See, for instance, Davidson (1994) and Nze and Doukhan (2004), and the reference therein, for the
role of mixing and its generalizations in the analysis of time series, and see Giacomini and White (2006,
Theorem 1) for an example of applications of mixing in the forecasting literature. In this section, we study
mixing in the context of strategic forecasting.



142 Luciano Pomatto Theoretical Economics 16 (2021)

For the next result, recall that the measures P1� � � � �Pn are orthogonal if they satisfy
‖Pi − Pj‖ = 1 for all i 	= j. We say that P1� � � � �Pn are strongly orthogonal if for every pair
Pi and Pj , and every k ∈N, it holds that supE∈F∞

k
|Pi(E)− Pj(E)| = 1.

That is, for any k, any two distinct measures Pi and Pj fully disagree about the prob-
ability of some event that does not depend on the first k− 1 realizations. Thus, two laws
are strongly orthogonal if they disagree about the probability of events that are arbitrar-
ily far in the future.

Proposition 2. Let � be a paradigm such that each P ∈� is mixing and for every n ∈N,
there are laws P1� � � � �Pn in � that are strongly orthogonal. Then � is testable.

In the proof, given n, we consider a prior μn that is uniform over n orthogonal laws
P1� � � � �Pn in �, and we show that the induced distribution Qμn has total-variation dis-
tance of at least 1/n from every law in �. Hence, by Theorem 2, a nonmanipulable test
can be obtained by a likelihood-ratio test with respect toQμn for n suitably large.15

The result implies, in particular, that the paradigm of all mixing processes is testable.
This is because i.i.d. laws are mixing and the collection of all i.i.d. distributions satisfies
the richness condition. Indeed, by the strong law of large numbers, any two distinct i.i.d.
laws assign probability 1 to different limiting frequencies. They are, therefore, strongly
orthogonal.

However, the main contribution of Proposition 2 is showing that any set of mixing
distributions that satisfies the above richness condition is testable. This is an important
difference, since, in applications, mixing is usually coupled with additional conditions
that further restrict the paradigm under consideration (e.g., assumptions on the rate of
convergence in (6) or parametric assumptions on the functional form of the process;
see, for instance, Davidson 1994), and a subset of a testable paradigm is not necessarily
testable.16

The same observation also explains the relation with Al-Najjar et al. (2010), who
study the paradigm of asymptotically reverse mixing. This paradigm contains determin-
istic, i.i.d. and Markov laws. In fact, it is even larger than the class of mixing distribu-
tions. Because a subset of a testable paradigm is not necessarily testable, the results in
Al-Najjar et al. (2010) do not directly imply (nor are implied by) Propositions 1 or 2.

4.3 Uncertainty sets

A classic topic in the economics of uncertainty is the study of decision making in the
presence of ambiguity about the correct law generating the data. We focus here on the
approach taken by Hansen and Sargent (2001). In their work, they study non-Bayesian
decision makers who are incapable or unwilling to formulate a single belief, and who

15Notice that the mixing assumption is crucial for the result. The paradigm � = �(�) trivially satisfies
the richness assumption but is not testable.

16The class of irreducible and aperiodic Markov processes consists of distributions that are mixing, and
contains the class of all i.i.d. distributions. It is, therefore, testable by Proposition 2. Because it is a strict
subset of the paradigm of Markov distributions, the result does not follow directly from Proposition 1.
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instead consider a set of possible probabilistic models obtained by perturbing a baseline
measure P . In this section, we ask whether such decision makers can, in principle, learn
the correct odds of the process by testing the predictions of an expert. We will see that
the answer is negative: a paradigm defined according to the methodology of Hansen
and Sargent (2001) is, in general, not testable.

Given two laws P�Q ∈ �(�), we denote by D(P‖Q) the corresponding Kullback–
Leibler divergence. It is defined as D(P‖Q) = ∫

� log(dP/dQ)dP if P is absolutely con-
tinuous with respect to Q and as D(P‖Q) = +∞ otherwise. The Kullback–Leibler di-
vergence is a well known index that measures how difficult it is to distinguish the two
distributions.

Hansen and Sargent (2001) study decision makers who consider a set of candidate
laws for the process—a set of distributions that are close in Kullback–Leibler divergence
to a reference measure P . The measure P can be seen as a first guess for the correct
distribution of the process. In the next proposition, we study paradigms � that satisfy a
similar property.

Proposition 3. Let P ∈ �(�) and α> 0. Any paradigm � that satisfies P ∈� and

�⊆ {
P̃ ∈ �(�) :D(P̃‖P)≤ α}

is not testable.

Underlying the result is the following intuition. A key property of the Kullback–
Leibler divergence is its convexity. This implies, in particular, that any measure Qμ ob-
tained by placing a prior over the paradigm also satisfies D(Qμ‖P)≤ α. In turn, this up-
per bound makes the total variation distance ‖Qμ − P‖ bounded away from 1. Because
P is a law in the paradigm, it follows from Theorem 1 that � cannot be testable.

In the previous examples, a property essential for testability was the existence of a
sufficiently rich set of laws in the paradigm that are far from each other in total varia-
tion. This property does not hold for a set � that satisfies the condition of Proposition 3,
resulting in a paradigm that is not testable.

4.4 Maximal paradigms

We have taken as a datum that the paradigm � is correctly specified. A paradigm that is
incorrectly specified exposes the tester to the risk of rejecting, out of hand, forecasters
who are informed but whose predictions lie outside �. Adopting a larger paradigm mit-
igates such a risk. Olszewski (2015) posed the question of which testable paradigms are
maximal, in the sense of not being included in any other testable paradigm. The next
result provides an answer to this open question.

Proposition 4. Let ε ∈ (0�1) and fix a law P ∈ �(�). The paradigm

�εP = {
P̃ ∈ �(�) : ‖P − P̃‖> 1 − ε}

is ε-testable and is not included in any testable paradigm.
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The paradigm is constructed by simply fixing a distribution P and considering all
laws which are sufficiently far from it. The resulting set�εP is not included in any testable
paradigm.17

As shown in the proof of Proposition 4, P equals the law Qμ induced by some prior
μ that assigns probability 1 to the closure of �εP . Therefore, by Theorem 2 and the defi-
nition of �εP , the law P can be used to construct a nonmanipulable likelihood-ratio test
where it plays the role of a benchmark against which forecasters’ predictions are com-
pared.

5. Discussion and extensions

5.1 Nonasymptotic and prequential tests

We now consider the case of nonasymptotic tests where at most n observations are
available to the tester. A paradigm is ε-testable in n periods if it admits a test T such
that T(·�P) is Fn-measurable for every P , accepts the truth with probability at least
1 − ε, and is ε-nonmanipulable. The next result shows how Theorems 1 and 2 can
be adapted to nonasymptotic tests. Given n, we define the semimetric ρn(Q�P) =
maxE∈Fn |Q(E)− P(E)|.

Proposition 5. Let � be a paradigm. If � is ε-testable in n periods, then there exists a
prior μ ∈ �(�) such that ρn(Qμ�P) > 1 − 2ε for every P ∈ �. Conversely, if there exists a
prior μ ∈ �(�) with the property that ρn(Qμ�P) > 1 − ε for every P ∈�, then the test

T(ω�P)=
{

1 if P ∈� and P
(
ωn

)
>Qμ

(
ωn

)
0 otherwise

accepts the truth with probability at least 1 − ε and is ε-nonmanipulable.

Hence, similarly to Theorem 1, testability in n periods is equivalent to a high dis-
tance between the law Qμ induced by some prior μ and any law in the the paradigm.
Conversely, if such a prior exists, then restricting attention to likelihood-ratio tests is
without loss of generality.

An important distinction in the literature on empirical tests is between prequential
and non-prequential tests. Consider, for simplicity, the case where in every period, only
two outcomes, 0 or 1, can occur. Recall that for every pathω, we denote byZk(ω) ∈ {0�1}
the corresponding outcome in periodk. A test T is prequential if for every pathω and ev-
ery announced law P , the result T(ω�P) is a function of the one-step ahead predictions
generated by P along the realized sequence ω. This is the sequence of probabilities

P(Z1 = 1)�P
(
Z2 = 1|ω1)�P(

Z3 = 1|ω2)� � � � (7)

17As shown in the proof, �εP is not included in any δ-testable paradigm, for all δ > 0 sufficiently small.
However, we do not know if the class of paradigms that are testable, rather than ε-testable, and have the
property of not being strictly included in any testable paradigm, admits a simple characterization. For ex-
ample, given a nondegenerate law P , it can be shown that�= {P̃ ∈ �(�) : ‖P− P̃‖ = 1} is testable. However,
� is strictly included in the testable paradigm �′ = {P̃ ∈ �(�) : ‖P(·|E)− P̃‖ = 1}, where E is any event such
that P(E) ∈ (0�1), since �′ contains the measure P(·|Ec) but � does not.
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obtained by conditioning, in every period t, on the realized history ωt . For instance, (7)
might correspond to the sequence of rain probabilities reported each day by a weather
forecaster.

Many tests used in practice, such as calibration, are prequential. A notable feature
of the test described in Proposition 5 is that it shares this property. Because the prior μ
and the the number of observations n depend on the paradigm but not on the predic-
tion P , the result of the test is a function only of the probability P(ωn) assigned by the
forecaster to the realized history. By the law of total probability, P(ωn) can be computed
from the first n terms in the sequence (7) (provided the history ωn has positive proba-
bility under P). Hence, the test can be implemented by asking the forecaster to simply
report one-step-ahead probabilities, rather than to announce a fully specified measure
at time 0.

The existing literature also studies prequential tests. Consider the unrestricted
paradigm � = �(�). In this case, as shown by Shmaya (2008), every prequential test
is manipulable, even if the test is not required to accept or to reject in finite time. How-
ever, there exist tests that are not prequential and not finite, but cannot be manipulated
(see Olszewski 2015). There are, in addition, specific examples of paradigms that can
be tested by means of a nonmanipulable prequential test, as shown by Sandroni and
Shmaya (2014).18

In contrast to these results, Proposition 5 shows that for nonasymptotic tests, the
requirement of a prequential test is without loss of generality. A paradigm that is ε-
testable in n periods remains so even when restricting attention to prequential tests.

5.2 Maxmin and strategic forecasters

As discussed in Section 4, a strategic but uninformed forecaster evaluates a strategy ζ as

inf
P∈C

EP⊗ζ
[
wT + l(1 − T)]�

where C ⊆ �(�) is a set of laws. So far, we have considered the case where C is equal to
the paradigm. However, an uninformed forecaster may adopt a less conservative deci-
sion making criterion.

To this end, let d be a distance that metrizes the weak* topology on �(�), and for
every law P ∈ �(�), denote by Bδ(P) the open ball of radius δ around P . We consider
the specification

C = Bδ(Po)∩� for some Po ∈�� (8)

So, under (8), an uninformed forecaster evaluates a strategy by considering the worst
case expected payoff with respect to laws that are within distance δ from a reference
measure Po. Similar definitions appear in robust statistics Huber (1981) and economics
(Bergemann and Schlag 2011, and Babaioff et al. 2011). We do not assume that Po coin-
cides with the correct law generating the data or that Po is known to the tester.

18Sandroni and Shmaya (2014) study the paradigm of exchangeable distributions. This is convex and
compact, and, hence, not testable according to the definition of this paper. Their result shows that, surpris-
ingly, such a paradigm becomes testable when one allows for nonfinite and prequential tests.
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The definition of testable paradigm can now be strengthened as follows.

Definition 6. A paradigm � is uniformly testable with precision δ if for every ε > 0,
there exists a finite test T such that the following statements hold:

(i) Test T accepts the truth with probability at least 1 − ε.

(ii) For every strategy ζ and every Po ∈�, there exists a law Pζ ∈ � ∩Bδ(Po) such that
EPζ⊗ζ[T ] ≤ ε.

Thus, the test passes a true expert with high probability. In addition, for every strat-
egy ζ, there is a law Pζ in the paradigm under which rejection is likely. Given a reference
law Po, the measure Pζ can be chosen to belong to � ∩ Bδ(Po). Hence, the test guar-
antees that the value (8) that an uninformed forecaster can expect from participating in
the test is negative whenever ε is sufficiently small. So the test can screen between the
two types of forecasters.

While a complete characterization of paradigms that fulfill the requirements of Defi-
nition 6 is beyond the scope of this paper, the next proposition provides a basic sufficient
condition for a paradigm to be uniformly testable.

Proposition 6. Let � be a paradigm. If there exists a prior μ ∈ �(�)with support � and
such that Qμ satisfies ‖Qμ − P‖ = 1 for every P in �, then � is uniformly testable with
precision δ for every δ > 0.

The most significant difference with respect to Theorem 1 is the assumption that the
prior μ has full support over the paradigm. Following the interpretation presented in
Section 2, a Bayesian outside observer endowed with such a prior μ is “cautious,” in the
sense of assigning positive probability to any open set of possible laws.

For a simple example of prior μ that satisfies this property, consider the case where
the set of outcomes is binary, i.e., X = {0�1}, and � is the paradigm of all i.i.d. distri-
butions. In this case, the set � is closed, and a prior μ can be described by a probability
measurem over [0�1]. Ifm is uniform over the interval [0�1], thenμ satisfies ‖Qμ−P‖ = 1
for every P ∈�, by the strong law of large numbers. Moreover, μ has support equal to �
and, hence, satisfies the conditions of Proposition 6. These claims are formally proved
in Appendix A.6.

Appendix A: Appendix

A.1 Preliminaries

The space of paths � is endowed with the product topology. Hence, a function that is
Fn-measurable for some n is also continuous. This implies that for every finite test T and
any law P ∈ �(�), the function Q �→ EQ[T(·�P)], Q ∈ �(�), is continuous. We denote by
Hn the set of histories ωn of length n.

Recall that the space �(�(�)) is endowed with the weak* topology. As proved in
Phelps (2001, Proposition 1.1), the function μ �→Qμ assigning to each prior μ ∈ �(�(�))
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its barycenter Qμ is continuous. In particular, given a continuous function ψ : �→ R,
the map μ �→ ∫

�ψ(ω)dQμ(ω), μ ∈ �(�(�)), is continuous. In addition, Qμ satisfies∫
�ψ(ω)dQμ(ω) = ∫

�(�)(
∫
�ψ(ω)dQ(ω))dμ(Q) for every bounded measurable func-

tion ψ. Given a measurable subset 	 of �(�), denote by �(	) the set of probability
measures μ ∈ �(�(�)) that assign probability 1 to 	. The space �(	) is compact (see
Aliprantis and Border 2006, Chapter 16).

Lemma 1. Let T be a finite test. For every strategy ζ, the function P �→ EP⊗ζ[T ], P ∈ �(�),
is continuous.

Proof. Let (ωk) be a sequence in� converging to a pathω. Given a law P , the function
T(·�P) is continuous, so T(ωk�P)→ T(ω�P) as k→ ∞. Given a strategy ζ, Lebesgue’s
convergence theorem implies Eζ[T(ωk� ·)] → Eζ[T(ω� ·)] as k → ∞. Hence, for every
strategy ζ, the map ω �→ Eζ[T(ω� ·)], ω ∈ �, is continuous. Fubini’s theorem implies
EP⊗ζ[T ] = ∫

�Eζ[T(ω� ·)]dP(ω). Therefore, for each P ,
∫
�Eζ[T(ω� ·)]dP(ω) is the ex-

pectation with respect to P of a continuous function. It follows from the definition of
weak* topology that the map P �→ EP⊗ζ[T ], P ∈ �(�), is continuous.

A.2 Proving Theorems 1 and 2

Proof of Theorems 1 and 2. The first half of the proof shows the necessity part of
Theorem 1. The second half establishes Theorem 2 and the sufficiency part of Theo-
rem 1.

Assume � is testable. Fix ε > 0 and let T be a test that satisfies the conditions of
Definition 4. Given a measure P ∈ �(�) and a strategy ζ, let V (P�ζ) = EP⊗ζ[T ]. The
map V is affine in each argument and for each strategy ζ, the map V (·� ζ) is continuous
by Lemma 1. Since T is ε-nonmanipulable, then

sup
ζ∈�(�(�))

inf
P∈�

V (P�ζ)≤ ε� (9)

Let �o(�)⊆ �(�) be the subset of priors on � with finite support. We have

sup
ζ∈�(�(�))

inf
P∈�

V (P�ζ)= sup
ζ∈�(�(�))

inf
μ∈�o(�)

V (Qμ�ζ)= sup
ζ∈�(�(�))

min
μ∈�(�)

V (Qμ�ζ)� (10)

The first equality follows immediately from the definition of Qμ and the affinity of
V (·� ζ). The second equality follows from the continuity of the map μ �→ V (Qμ�ζ),
μ ∈ �(�(�)), together with the fact that �o(�) is dense in �(�) (as implied by Aliprantis
and Border 2006, Theorem 15.10) and that �(�) is compact.

The space �(�) is compact and convex, and for every ζ, the map μ �→ V (Qμ�ζ),
μ ∈ �(�(�)), is continuous (by Lemma 1) and affine. In addition, �(�(�)) is convex and
for every μ, the map V (Qμ� ·) is affine. We can, therefore, apply Fan’s minmax theorem
Fan (1953) to obtain the equality

sup
ζ∈�(�(�))

min
μ∈�(�)

V (Qμ�ζ)= min
μ∈�(�)

sup
ζ∈�(�(�))

V (Qμ�ζ)� (11)
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For every μ, the function V satisfies V (Qμ�ζ)= ∫
�(�)EQμ[T(·�P)]dζ(P) by Fubini’s the-

orem, so supζ∈�(�(�)) V (Qμ�ζ)= supP∈�(�) V (Qμ�δP). Hence, the right-hand side of (11)
can be written as

min
μ∈�(�)

sup
ζ∈�(�(�))

V (Qμ�ζ)= min
μ∈�(�)

sup
P∈�(�)

V (Qμ�δP)= min
μ∈�(�)

sup
P∈�(�)

EQμ

[
T(·�P)]� (12)

Taken together, (9), (10), (11), and (12) prove the existence of a prior μ ∈ �(�) such that

sup
ζ∈�(�(�))

inf
P∈�

V (P�ζ)= sup
P∈�(�)

EQμ

[
T(·�P)] ≤ ε�

Because the test accepts the truth with probability at least 1 − ε, it follows that

EP

[
T(·�P)] −EQμ

[
T(·�P)] ≥ 1 − 2ε for all P ∈�� (13)

It follows from standard arguments that the (normalized) total variation distance ‖Qμ −
P‖ satisfies

‖Qμ − P‖ = sup
φ

∣∣∣∣
∫
�
φdQμ −

∫
�
φdP

∣∣∣∣�
where the supremum is taken over all measurable functions φ :�→ [0�1].19

By letting φ = T(·�P), it follows from (13) that ‖Qμ − P‖ ≥ 1 − 2ε for every P ∈ �.
Since ε is arbitrary, the first part of the proof is concluded.

Now consider a prior μ ∈ �(�) such that ‖Qμ−P‖> 1−ε for all P ∈�. Fix a measure
P ∈�. For any n,

max
E∈Fn

Qμ(E)− P(E)= max
E∈Fn

∣∣Qμ(E)− P(E)∣∣�
since P(E)−Qμ(E)=Qμ(Ec)− P(Ec). As shown in Halmos (1950, 13D),

max
E∈Fn

∣∣Qμ(E)− P(E)∣∣ ↑ ‖Qμ − P‖

as n→ ∞.20 Therefore, we can conclude that for each P ∈� the number

nP = min
{
n : max

E∈Fn
Qμ(E)− P(E) > 1 − ε

}
19To see this, let R = 0�5Qμ + 0�5P and define E as the event where dQμ/dR ≥ dP/dR, where dQμ/dR

and dP/dR denote the corresponding Radon–Nikodym derivatives. Given a measurable φ :�→ [0�1], we
have ∫

�
φdQμ −

∫
�
φdP =

∫
�
φ ·

(
dQμ

dR
− dP

dR

)
dR≤

∫
E

(
dQμ

dR
− dP

dR

)
dR≤ ‖Qμ − P‖

and ∫
�
φdP −

∫
�
φdQμ =

∫
�
φ ·

(
dP

dR
− dQμ

dR

)
dR≤

∫
Ec

(
dP

dR
− dQμ

dR

)
dR≤ ‖Qμ − P‖�

It follows that supφ | ∫� φdQμ − ∫
� φdP| ≤ ‖Qμ − P‖. The converse inequality is obvious.

20We provide here a sketch of the proof. Let F = ⋃
nFn. It can be verified that for every Q ∈ �(�),

the collection of events E for which there exists a sequence (Fm) in F such that limn Q(E�Fn) = 0 is a σ-
algebra containing F . Hence, it equals B. Fix B ∈ B and let (Em) be a sequence in F such that limm(P +
Qμ)(B�Em)= 0. Hence, limm |P(B)− P(Em)| ≤ limm P(B�Em)= 0. Similarly, limm |Qμ(B)−Qμ(Em)| = 0.
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is well defined. Consider now the test

T(ω�P)=
{

1 if P ∈� and P
(
ωnP

)
>Qμ

(
ωnP

)
0 otherwise.

We now prove that T is measurable. First we show that for every k ∈ N, the set {P ∈ � :
nP = k} is measurable. For every n and every E ∈ Fn, the function P �→ P(E), P ∈ �(�),
is continuous. Because Fn is finite, it follows that ϕn : P �→ maxE∈Fn Qμ(E) − P(E),
P ∈ �(�), is measurable. Since � is measurable, the restriction of ϕn on � is also mea-
surable. The set {P ∈ � : nP = k} can be written as {P ∈ � : ϕk(P) > 1 − ε} if k = 1 or as
the intersection ⋂

1≤n<k

{
P ∈� : ϕn(P)≤ 1 − ε} ∩ {

P ∈� : ϕk(P) > 1 − ε}

if k > 1. Hence, {P ∈ � : nP = k} is measurable. For each path ω, the function T(ω� ·) is
measurable: For each n, the set {P ∈ �(�) : T(ω�P)= 1} is given by the union over k > 1
of all sets of the form

{
P ∈ �(�) : P(

ωk
) −Qμ

(
ωk

)
> 0

} ∩ {P ∈� : nP = k}�

It follows that T(ω� ·) is measurable. For each ω ∈� and P ∈ �(�), the function T(·�P)
is continuous and T(ω� ·) is measurable. That is, T is a Carathéodory function. It follows
then from Lemma 4.51 in Aliprantis and Border (2006) that T is measurable.

We now show that P({ω : T(ω�P) = 1}) > 1 − ε and Qμ({ω : T(ω�P) = 1}) < ε for
each P ∈�. The proof follows Lehmann and Romano (2005, Chapter 16). Let P ∈ � and
denote byAP the set {ω : P(ωnP ) >Qμ(ωnP )}. Recall that HnP is the set of all histories of
length nP . For every E ∈ FnP , we have

P(E)−Qμ(E) =
∑

ωnP ∈HnP
:ωnP⊆E

P
(
ωnP

) −Qμ
(
ωnP

)

≤
∑

ωnP ∈HnP
:ωnP⊆E∩AP

P
(
ωnP

) −Qμ
(
ωnP

)

≤
∑

ωnP ∈HnP
:ωnP⊆AP

P
(
ωnP

) −Qμ
(
ωnP

)
�

Therefore, P(AP) − Qμ(A
P) = maxE∈FnP P(E) − Qμ(E) > 1 − ε. So P(AP) > 1 − ε (in

particular, the test T accepts the truth with probability at least 1 − ε) and Qμ(AP) < ε.

Because, for everym,∣∣P(B)−Qμ(B)
∣∣ ≤ ∣∣P(B)− P(Em)

∣∣ + ∣∣P(Em)−Qμ(Em)
∣∣ + ∣∣Qμ(B)−Qμ(Em)

∣∣�
then letting m→ ∞, it follows that |P(B)−Qμ(B)| ≤ supF∈F |P(F)−Qμ(F)|. Because B is arbitrary, then
‖P−Qμ‖ ≤ supF |P(F)−Qμ(F)| ≤ ‖P−Qμ‖. Since supF∈Fn |P(F)−Qμ(F)| ↑ supF |P(F)−Qμ(F)| as n→ ∞,
the result is established.
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We can now show that T is ε-nonmanipulable. For every strategy ζ, we have

V (Qμ�ζ)=
∫
�(�)

Qμ
(
AP

)
dζ(P) < ε� (14)

Using again the fact that μ �→ V (Qμ�ζ), μ ∈ �(�(�)), is continuous and �o(�) is dense
in �(�), we can find a prior μζ ∈ �o(�) such that

V (Qμζ � ζ)=
∑
P∈�

μζ(P)V (P�ζ) < ε�

Hence, there must exist some law Pζ ∈ � in the support of μζ such that V (Pζ� ζ) < ε.
Because ε is arbitrary, we conclude that � is testable.

Proof of Corollary 1. As shown in Phelps (2001, Proposition 1.2), a law P belongs to
the weak*-closed convex hull of � if and only if there exists a prior μ ∈ �(�) such that
P =Qμ. The result now follows immediately from Theorem 1 and the definition of I.

A.3 Proving Theorem 3

The next result is a version of the Neyman–Pearson lemma. The standard proof parallels
the proof of Theorem 3.2.1 in Lehmann and Romano (2005) and is, therefore, omitted.

Theorem 4 (Neyman–Pearson Lemma). Let P0�P1 ∈ �(�). Given n ∈ N and α ∈ [0�1],
let � be the set of Fn-measurable functions φ :�→ [0�1] that satisfy EP0[φ] ≥ α. Let

λ= sup
{
k ∈R : P0

({
ω : P0

(
ωn

) ≥ kP1
(
ωn

)}) ≥ α}
and, letting 0 · ∞ = 0, define

δ = P0
({
ω : P0

(
ωn

)
> λP1

(
ωn

)})
γ = P0

({
ω : P0

(
ωn

) = λP1
(
ωn

)})
�

The function

φ∗(ω)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if P0
(
ωn

)
> λP1

(
ωn

)
α− δ
γ

if P0
(
ωn

) = λP1
(
ωn

)
and γ > 0

0 otherwise

is a solution to minφ∈�EP1[φ].

Proof of Theorem 3. Fix a paradigm�, testing times (nP), and a probability α ∈ [0�1].
Denote by T the class of finite tests that are bounded by (nP) and accept the truth with
probability at least α.

For every P ∈ �, let �P be the set of FnP -measurable functions φ : � → [0�1] that
satisfy EP [φ] ≥ α. Define the function f : �(�)→R as

f (μ)= sup
P∈�

min
φ∈�P

EQμ[φ]�
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The function f is lower semicontinuous: Fix P ∈ �. The set �P can be identified with a
subset of [0�1]m, where m is the cardinality of the set of histories of length nP . It is then
immediate to verify that �P is compact. It follows from the theorem of the maximum
that the map Q �→ minφ∈�P EQ[φ], Q ∈ �(�), is continuous. Thus, the continuity of the
map μ �→Qμ, μ ∈ �(�(�)), implies that the map μ �→ minφ∈�P EQμ[φ], μ ∈ �(�(�)), is a
composition of continuous functions. Thus, f is a supremum of continuous functions.
Hence, f is lower semicontinuous and so attains a minimum on �(�). Let μ∗ be a prior
that minimizes f .

Denote by φ∗
P the test obtained by applying the Neyman–Pearson lemma when set-

ting P0 = P , P1 =Qμ∗ , and n= nP in the statement of Theorem 4. Denote also by λP , δP ,
and γP the corresponding quantities. Let T ∗ be the test defined as

T ∗(ω�P)=
{
φ∗
P(ω) if P ∈�

0 if P /∈��
We now show that T ∗ is a well defined test belonging to T . By definition, the test is finite
and accepts the truth with probability at least α. It remains to show it is measurable. By
Lemma 4.51 in Aliprantis and Border (2006), it is enough to prove that T(ω� ·) is measur-
able for every ω. We first show that the map P �→ λP , P ∈ �, mapping each measure to
the corresponding threshold λP ∈ [0�∞] in the likelihood-ratio test, is measurable. For
every k ∈R, let

	k = {
P ∈� : P({

ω : P(
ωnP

) ≥ kQμ∗
(
ωnP

)}) ≥ α}
�

Notice that 	k can be written as⋃
m∈N

({P ∈� : nP =m} ∩ {
P ∈� : P({

ω : P(
ωm

) ≥ kQμ∗
(
ωm

)}) ≥ α})
�

Each set {P ∈ � : nP = m} is measurable. For each ωm, the function P �→ P(ωm), P ∈
�(�), is continuous. So, for each history ωm, the set

ϒωm = {
P ∈� : P(

ωm
) ≥ kQμ∗

(
ωm

)}
is measurable. Let 1ϒωm be the indicator function of ϒωm and notice that

P
({
ω : P(

ωm
) ≥ kQμ∗

(
ωm

)}) =
∑

ωm∈Hm

P
(
ωm

)
1ϒωm (P)�

where the latter is a measurable function of P . It then follows that each set of the form{
P ∈� : P({

ω : P(
ωm

) ≥ kQμ∗
(
ωm

)}) ≥ α}
is measurable. Thus, 	k is measurable. This in turn yields that for each k, the function
P �→ k1	k(P) is measurable. Notice that λP = supk∈Q k1	k(P) for every P . Thus, we can
conclude that the function P �→ λP (mapping �(�) to R ∪ {∞}) is measurable. Now fix
a path ω. An argument analogous to that used to prove the measurability of the set
	k shows that {P ∈ � : P(ωnP ) > λPQμ∗(ωnP )} and {P ∈ � : P(ωnP ) = λPQμ∗(ωnP )} are
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measurable, and that δP and γP are measurable functions of P . It is then routine to
verify that T(ω� ·) is measurable. We can, therefore, conclude that T is a well defined
test belonging to T .

We now show that T ∗ is a least manipulable test in the class T . Let T ∈ T . As in the
proof of Theorems 1 and 2, given any test T ∈ T , we can apply Fan’s minmax theorem to
conclude

sup
ζ∈�(�(�))

inf
P∈�

EP⊗ζ[T ] = min
μ∈�(�)

sup
P∈�(�)

EQμ

[
T(·�P)]�

It is without loss of generality to assume that T(ω�P) = 0 for every ω and P /∈ �, so the
expression can be simplified to

sup
ζ∈�(�)

inf
P∈�

EP⊗ζ[T ] = min
μ∈�(�)

sup
P∈�

EQμ

[
T(·�P)]� (15)

The test T is finite and accepts the truth with probability at least α, so it satisfies T(·�P) ∈
�P for every P ∈�. Thus,

min
μ∈�(�)

sup
P∈�

EQμ

[
T(·�P)] ≥ min

μ∈�(�)
sup
P∈�

min
φ∈�P

EQμ [φ]

= min
μ∈�(�)

f (μ)

= sup
P∈�

min
φ∈�P

EQμ∗ [φ]�

The essential idea is that the test T ∗ has been defined to satisfy, for every P ∈�,

EQμ∗
[
T ∗(·�P)] = min

φ∈�P
EQμ∗ [φ]�

This means that

min
μ∈�(�)

sup
P∈�

EQμ

[
T(·�P)] ≥ sup

P∈�
min
φ∈�P

EQμ∗ [φ]

= sup
P∈�

EQμ∗
[
T ∗(·�P)]

≥ min
μ∈�(�)

sup
P∈�

EQμ

[
T ∗(·�P)]�

By applying (15) to both T and T ∗, we now obtain

sup
ζ∈�(�)

inf
P∈�

EP⊗ζ[T ] ≥ sup
ζ∈�(�)

inf
P∈�

EP⊗ζ
[
T ∗]�

Hence, T ∗ is less manipulable than T .

A.4 Proving Propositions 1–4

Proof of Proposition 1. Fix two outcomes x� y ∈ X . Let Nn(ω) be the number of
periods where outcome x occurs along the path ω up to time n, and let N∞(ω) =
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supn Nn(ω). In addition, defineNn[x→ y](ω) to be the number of periods, up to time n,
where the outcome x is followed in the next period by y.

For every transition π, let Eπ be the set of paths ω such thatN∞(ω)= ∞ and

lim
n→∞

Nn[x→ y](ω)
Nn(ω)

= π(x)(y)�

It is a standard result that every Markov Pρ�π satisfies Pρ�π({N∞ < ∞} ∪ Eπ) = 1. We
include here a proof for completeness. Let A = {N∞ < ∞} ∪ Eπ and notice that
Pρ�π(A) = ∑

z∈X Pρ�π({ω1 = z})Pz�π(A), where Pz�π denotes the Markov law with tran-
sition π and initial probability putting mass 1 on z. Write X = S ∪ R1 ∪ · · · ∪Rn, where
S is the set of transient states and (Ri) are disjoint maximal irreducible sets of states
(see Theorem 6.2.13 in Dembo 2015). If x is transient, then Pρ�π({N∞ <∞})= 1; hence,
Pρ�π(A) = 1 as desired. Assume x is not transient and x ∈ R1 without loss of gener-
ality. If z ∈ Ri and i > 1, then Pz�π({N∞ = 0}) = 1. So Pz�π(A) = 1. If z ∈ R1, then it
is well known that Pz�π , being irreducible, satisfies Pz�π(Eπ) = 1.21 Thus, Pz�π(A) = 1.
Hence, Pz�π(A) = 1 for every recurrent state. Now let z ∈ S and consider the stopping
time τ(ω)= inf{n :ωn /∈ S}. Because z is transient andX is finite, then Pz�π({τ <∞})= 1.
Because Pw�π(A)= 1 for everyw /∈ S, it follows from the strong Markov property (Propo-
sition 6.1.16 in Dembo 2015) that Pz�π(A)= 1.

The measure m assigns probability 1 to the set �+ ⊆ � of transition probabilities
π that satisfy π(y)(z) ∈ (0�1) for all y� z ∈ X . Let π ∈ �+. Then Pπ is irreducible and
satisfies Pπ(N∞ = ∞)= 1. Hence, Pπ(Eπ)= 1. Therefore, given a Markov law Pρ�σ with
transition σ ∈�,

Pρ�σ
({N∞ <∞} ∪Eσ

) −Qμ
({N∞ <∞} ∪Eσ

)
= 1 −

∫
�+
Pπ(Eσ)dm(π)= 1�

where the last equality follows from the fact that π(x)(y) 	= σ(x)(y) implies Eσ ∩Eπ = ∅

(hence, Pπ(Eσ)= 0) and {π ∈� : π(x)(y)= σ(x)(y)} has probability 0 under m. There-
fore, ‖Qμ − Pρ�π‖ = 1.

Proof of Proposition 2. Let P1� � � � �Pn in � be strongly orthogonal. Denote by F∞ =⋂∞
k=1 F∞

k the tail σ-algebra. We first show that for any i 	= j, we can find an eventAij that
belongs to F∞ and satisfies Pi(Aij) = 1 and Pj(Aij) = 0. As shown by Goldstein (1979,
Proposition 4.1), it holds that

lim
k→∞

sup
E∈F∞

k

∣∣Pi(E)− Pj(E)
∣∣ = sup

E∈F∞

∣∣Pi(E)− Pj(E)
∣∣�

Hence, supE∈F∞ |Pi(E) − Pj(E)| = 1. Now let Ri and Rj be the restriction on F∞ of Pi
and Pj , respectively. Let R = 0�5Ri + 0�5Rj and define Aij ∈ F∞ as the event where the

21See, for example, http://www.statslab.cam.ac.uk/~james/Markov/s110.pdf.

http://www.statslab.cam.ac.uk/~james/Markov/s110.pdf
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two Radon–Nikodym derivatives satisfy dRi/dR≥ dRj/dR. For every E ∈ F∞, the event
Aij satisfies

Pi(E)− Pj(E)=
∫
E

(
dRi
dR

− dRj

dR

)
dR≤Ri(Aij)−Rj(Aij)= Pi(Aij)− Pj(Aij)�

Hence Pi(Aij) = 1 and Pj(Aij) = 0. Let Ei = ⋂
j 	=i Ai�j . Then each Ei is tail-measurable

and satisfies Pi(Ei) = 1 and Pj(Ei) = 0 for every j 	= i. If i 	= j, then Ai�j and Aj�i are
disjoint; hence, Ei and Ej are disjoint as well. By enlarging En to be equal to the com-
plement of

⋃n−1
i=1 Ei, we can assume that E1� � � � �En form a partition of �. Each of its

elements is tail-measurable.
Let μ be a uniform prior over P1� � � � �Pn. Then Qμ(Ei) = 1/n for every i = 1� � � � � n.

Fix P ∈ �. Because P is mixing, it satisfies P(F) ∈ {0�1} for every event F that is tail-
measurable (see Theorem 13.18 in Davidson 1994). Because E1� � � � �En is a partition
of � that consists of tail-measurable events, then P ∈ � satisfies P(EiP ) = 1 for some
iP ∈ {1� � � � � n}. Hence,

‖Qμ − P‖ ≥ P(EiP )−Qμ(EiP )= P(EiP )−μ(PiP )= 1 − 1/n�

Since P and n are arbitrary, it follows from Theorem 1 that � is testable.

Proof of Proposition 3. The map P̃ �→D(P̃‖P), P̃ ∈ �(�), is convex and lower semi-
continuous (see, for instance, Lemma 1.4.3 in Dupuis and Ellis 1997). Convexity implies
that for every μ ∈ �(�) with finite support, i.e., every μ such thatQμ ∈ co(�),

D(Qμ‖P)≤
∑
P̃∈�

μ(P̃)D(P̃‖P)≤ α�

Lower semicontinuity implies that the set {P̃ ∈ �(�) : D(P̃‖P) ≤ α} is closed. Hence,
D(Qμ‖P) ≤ α for every Qμ ∈ co(�), i.e., for every μ ∈ �(�), as shown in the proof
of Corollary 1. The normalized total-variation distance between Qμ and P and the
Kullback–Leibler divergenceD(Qμ‖P) is related by the inequality

‖Qμ − P‖2 ≤ 1 − e−D(Qμ‖P)

(see equation (4) in Sason and Verdú 2016). Thus, every μ ∈ �(�) satisfies ‖Qμ − P‖ ≤√
1 − e−α < 1. Since P ∈�, it follows from Theorem 1 that � is not testable.

Proof of Proposition 4. As shown by Theorem 2, to prove that �εP is ε-testable, it is
enough to find a prior μ ∈ �(�εP) such that P =Qμ. Consider the set N = {ω : P({ω})=
0}. Eachω ∈N satisfies δω ∈�εP . Notice that P can have at most countably many atoms,
so N is dense. The function ω �→ δω, ω ∈�, is continuous, and so {δω :ω ∈N} is dense
in {δω : ω ∈ �}. We can, therefore, conclude that {δω : ω ∈ �} ⊆ �εP . Consider now the
prior defined as μ(	) = P({ω : δω ∈ 	}) for every measurable set 	 ⊆ �(�). Standard
arguments shows that μ is well defined and satisfies Qμ = P . Because μ({δω :ω ∈�})=
1, then μ ∈ �(�εP). Therefore, �εP is ε-testable.
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Suppose, as a means to contradiction, that �εP ⊆ �, where � is a paradigm that is
ε′-testable and ε′ < ε/2. As shown in the proof of Theorem 1, there exists a prior ν ∈ �(�)
such that ‖Qν −Q‖ ≥ 1 − 2ε′ for everyQ ∈�. Equivalently,{

Q ∈ �(�) : ‖Q−Qν‖< 1 − 2ε′
} ⊆�c�

By assumption, �c ⊆ (�εP)c = {Q ∈ �(�) : ‖Q− P‖ ≤ 1 − ε}, so{
Q ∈ �(�) : ‖Q−Qν‖< 1 − 2ε′

} ⊆ {
Q ∈ �(�) : ‖Q− P‖ ≤ 1 − ε}� (16)

To show that this leads to a contradiction, let R ∈ �(�) be a measure such that ‖R −
Qν‖ = ‖R−P‖ = 1. For instance, letR= δω for some pathω that is not an atom of either
Qν or P . Fix t ∈ (2ε′� ε) and consider the measure tQν + (1 − t)R. We have∥∥tQν + (1 − t)R−Qν

∥∥ = (1 − t)‖R−Qν‖ = (1 − t) < 1 − 2ε′�

Hence, it follows from (16) that ‖tQν + (1 − t)R−P‖ ≤ 1 − ε. Now let E be an event such
that R(E)= 1 andQν(E)= P(E)= 0. Then

1 − ε≥ ∥∥tQν + (1 − t)R− P∥∥ ≥ tQν(E)+ (1 − t)R(E)− P(E)= 1 − t�
By construction, 1− t > 1−ε. So we obtain a contradiction. Therefore,�εP is not included
in any testable paradigm.

A.5 Other proofs

Proof of Proposition 5. Let � be ε-testable in n periods. Then, by substituting the
total-variation distance with the semidistance ρn and following the same arguments
used in the proof of Theorem 1, it follows that there exists a prior μ ∈ �(�) such that
ρn(Qμ�P) > 1 − 2ε for all P ∈�.

Only one change is necessary: the same argument applied in the proof of Theorem 1
shows that ρn(P�Q) = maxφ | ∫�φdP − ∫

�φdQ|, where the maximum is taken over all
functions φ :�→ [0�1] that are Fn-measurable.

Conversely, let μ ∈ �(�) be a prior such that ‖Qμ − P‖n > 1 − ε for all P ∈ �. This
part of the proof follows, verbatim, the proof of Theorem 2 (notice that by assumption,
nP ≤ n for every P ∈�).

The next result is used in the proof of Proposition 6. In what follows, Bδ(P) denotes
the open ball of radius δ around P with respect to the same metric d fixed in the main
text. Recall that the support of a measure μ ∈ �(�(�)) is the unique closed set 	⊆ �(�)
with the property that μ(	c) = 0 and for every open set V ⊆ �(�), if V ∩ 	 	= ∅, then
μ(V ∩ 	) > 0 (see Aliprantis and Border 2006, 12.3).

Lemma 2. Let μ ∈ �(�(�)) be a prior and let 	 ⊆ �(�) be its support. For every δ > 0,
there exists a constant λ > 0 such that

μ
(
Bδ(P)

) ≥ λ for all P ∈ 	�
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Proof of Lemma 2. Suppose not. Then there must exist δ > 0 and a sequence (Pn) in 	
such that μ(Bδ(Pn))→ 0 as n→ ∞. The space �(�) is compact and 	⊆ �(�) is closed.
Hence, it is compact. So we can assume (taking a subsequence if necessary) that Pn
converges to a law P ∈ 	. Fix a law Q. Assume Q ∈ Bδ/2(P). Then d(Pn�Q) < δ for all n
large enough. Thus,Q ∈ Bδ(Pn) for all n large enough. Thus,

1Bδ/2(P)(Q)≤ lim inf
n→∞ 1Bδ(Pn)(Q) for everyQ ∈ 	�

where 1Bδ/2(P) denotes the indicator function of Bδ(P). By applying Fatou’s lemma, we
can then conclude that

μ
(
Bδ/2(P)

) ≤
∫
�(�)

lim inf
n→∞ 1Bδ(Pn) dμ≤ lim inf

n
μ

(
Bδ(Pn)

) = 0�

Hence, μ(Bδ/2(P)) = 0. Since P ∈ 	, then μ must assign positive probability to every
neighborhood of P , so we reach a contradiction and the proof is finished.

Proof of Proposition 6. By Lemma 2, there exists a λ > 0 such that μ(Bδ(P))≥ λ for
every P ∈�. Fix a sequence (εn) such that εn ↓ 0. Because ‖Qμ − P‖ = 1 for every P ∈�,
then, as shown in the proof of Theorem 2, we can find for every n a finite test Tn with the
properties that Tn accepts the truth with probability at least 1 − εn and for every strategy
ζ, by (14),

EQμ⊗ζ[Tn] =
∫
�
EP⊗ζ[Tn]dμ(P)≤ εn�

By applying Markov’s inequality, for every k> 0 and ζ, we have

μ
({
P ∈� : EP⊗ζ[Tn] ≤ kεn

}) ≥ 1 − EQμ⊗ζ[Tn]
kεn

≥ 1 − 1
k
�

Fix ε > 0 and choose k large enough such that 1 − 1/k + λ > 1. In addition, given k,
chooseN large enough such that kεn ≤ ε for all n >N . Now fix a particular n >N . Given
Po ∈� and a strategy ζ, we have

μ
({
P ∈�∩Bδ(Po) : EP⊗ζ[Tn] ≤ ε})

≥ μ({
P ∈� : EP⊗ζ[Tn] ≤ kεn

} ∩Bδ(Po)
)

= μ({
P ∈� : EP⊗ζ[Tn] ≤ kεn

})
+μ(

Bδ(Po)
) −μ({

P ∈� : EP⊗ζ[Tn] ≤ kεn
} ∪Bδ(Po)

)
≥ 1 − 1

k
+ λ− 1> 0�

This implies that we can select a measure Pζ ∈ � ∩ Bδ(Po) such that EPζ⊗ζ[Tn] ≤ ε. By
continuity of the map P �→EP⊗ζ[Tn], we can then select a measure P ′

ζ ∈�∩Bδ(P0) such
that EP ′

ζ⊗ζ[Tn] ≤ 2ε. Because Po is arbitrary, it then follows that the test Tn satisfies the

conditions of Definition 6 for 2ε. Because ε is arbitrary, it follows that � is uniformly
testable with precision δ.
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A.6 The paradigm of i.i.d. Distributions is uniformly testable

LetX = {0�1} and for every θ ∈ [0�1], let Pθ be the i.i.d. distribution where the probabil-
ity of outcome 1 is equal to θ in every period. Consider the paradigm�= {Pθ : θ ∈ [0�1]}.
It is immediate to verify that the function θ �→ Pθ is continuous.

Let m be the uniform distribution on [0�1] and define the prior μ ∈ �(�) as μ(	) =
m({θ : Pθ ∈ 	}) for every measurable 	⊆ �(�). Then μ has support equal to �. This fol-
lows from the fact that for every open set V ⊆ �(�), the set {θ : Pθ ∈ V } is open. There-
fore, it has positive probability underm.

It remains to show that ‖Qμ − Pθ‖ = 1 for each θ ∈ [0�1]. Let Eθ ⊆ � be the event
where the limiting frequency of outcome 1 equals θ. By the strong law of large numbers,
we have Pθ(Eθ)= 1 and Pθ

′
(Eθ)= 0 for each θ′ 	= θ. Hence,Qμ(Eθ)= ∫ 1

0 P
θ′
(Eθ)dθ

′ = 0.

A.7 Relation with Stewart (2011)

Stewart (2011) studies strategic forecasting in an environment where the tester is a
Bayesian endowed with a prior μ over �(�). Stewart (2011) considers a (nonfinite)
likelihood-ratio test that compares the forecaster’s predictions to the tester’s predictions
induced byQμ. The paper studies priors μ for which the quantity

ε=
∫
P

{
ω :

T∑
t=1

(
Qμ

(
ωt |ωt−1) − P(

ωt |ωt−1))2
converges

}
dμ(P)

is sufficiently small. Intuitively, this implies that over time a true expert is able to provide
more precise predictions than the tester. For every strategy ζ, a strategic but ignorant
forecaster fails the test in Stewart (2011) with probability 1 under Qμ ⊗ ζ, while a true
expert almost surely passes the test, for a class of measures P that has probability 1 − ε
under μ.

To see more clearly the connection between the two papers, consider the case
where ε is zero, and define the paradigm � consisting of all distributions P for which∑T
t=1(Qμ(ω

t |ωt−1)− P(ωt |ωt−1))2 diverges P-almost surely. The assumption that ε= 0
implies that μ(�) = 1. The same argument used by Stewart (2011) in the proof of
his main result shows that every such P ∈ � has the property that the likelihood-ratio
P(ωt)\Qμ(ωt) diverges P-almost surely. In turn, by an application of the Lebesgue de-
composition theorem,22 this implies that each P in � is orthogonal to the predictive
distribution Qμ. That is, the two have total variation distance 1. So, while there are
many modeling differences between the two papers, given a prior μ that satisfies the
condition ε = 0 in Stewart (2011), there is a paradigm that satisfies the conditions of
Theorem 1 with respect to μ.

At a conceptual level, Stewart (2011) and the present paper provide complemen-
tary perspectives on the use of the log-likelihood ratio as a way to screen forecasters.
In this paper, we take as a primitive a paradigm, while the prior μ and the correspond-
ing Bayesian forecaster are endogenously derived from the test. Stewart (2011) takes as a
primitive the prior, and the tester is willing to discard measures that have low probability
under her subjective belief.

22See Theorem 2, p. 525, in Shiryaev (1996).
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