
Theoretical Economics 16 (2021), 275–315 1555-7561/20210275
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We provide a production-based asset pricing model with dispersed information
and small deviations from full rational expectations. In the model, aggregate out-
put and equity prices depend on the higher-order beliefs about aggregate demand
and individual stochastic discount factors. We prove that equity price volatility
becomes arbitrarily large as the volatility of idiosyncratic shocks diverges to infin-
ity due to the interaction of signal extraction with idiosyncratic trading decisions,
while aggregate output volatility falls. We propose a two-step spectral factoriza-
tion method that permits closed-form solutions in the frequency domain appli-
cable to a wide range of models with more hidden states than signals. Our model
can quantitatively match output and equity volatilities observed in U.S. data.

Keywords. Dispersed information, frequency domain analysis, higher-order be-
liefs, asset pricing, business cycles, incomplete markets.
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1. Introduction

One prominent and persistent puzzle in finance is the observation by Shiller (1981) that
aggregate stock prices are too volatile relative to the expected present value of divi-
dends. Another and perhaps more important aspect of this equity volatility puzzle is
that macroeconomic quantities—aggregate output, consumption, and dividends—are
too smooth relative to equity prices and their fluctuations are largely disconnected. In
actual economies all these quantities are endogenous and respond to the same shocks
that drive equity price movements. The goal of our paper is to understand whether a
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production-based asset pricing model is able to deliver both smooth aggregate quanti-
ties and volatile equity prices without introducing complex (nonstationary) exogenous
shocks or nonstandard preferences.1 We provide a positive answer to this question by
developing a model of a dispersed-information island economy along the lines of An-
geletos and La’O (2010), extended to include a centralized stock market.

Our model consists of a continuum of islands, each populated by a continuum of
identical households and firms. Island-specific total factor productivity (TFP) consists
of an aggregate and an idiosyncratic component. However, agents on each island cannot
separately observe each component, only their sum. Near-rational households (Hassan
and Mertens 2017) consume an aggregate of island-specific goods and trade shares in
an aggregate equity market.

Our main result is that as the idiosyncratic TFP volatility approaches infinity, an en-
dogenous unit root arises in the log-linearized solutions for investors’ shareholdings and
the aggregate equity price, causing the equity price to become infinitely volatile. This
arises despite the fact that the aggregate equity price responds only to aggregate TFP
shocks, not idiosyncratic ones. The key is that the response coefficient endogenously
varies with the idiosyncratic TFP volatility: higher idiosyncratic volatility increases the
sensitivity of equity prices to aggregate shocks due to a feedback loop between the id-
iosyncratic shareholdings and the aggregate equity price volatility. This theoretical re-
sult has an appealing quantitative implication: we can choose a relatively low volatility
of aggregate shocks to match the low volatility of aggregate consumption and choose
a relatively high volatility of idiosyncratic shocks to match the high volatility of equity
prices as in the data.

Alternatively, we find that higher-order expectations under dispersed information
always reduce the volatility of business cycle fluctuations in the real economy, pro-
vided production decisions display strategic complementarity. We establish this result
by showing that the volatility of aggregate output under full information gives an upper
bound for that under dispersed information. The key assumption for this result is that
agents in the economy are informationally small: the idiosyncratic shock component of
the private signal washes out in the aggregate. As a result, higher-order beliefs about ag-
gregate TFP are necessarily less volatile than aggregate TFP itself, as agents do not need
to predict the expectations of any individual agent about the real economy, but only the
market average.

Maintaining dynamic and persistent information frictions is crucial for our results
regarding the volatility of financial variables. Persistent differences in information gen-
erally lead to the technical problem of “forecasting the forecasts of others” (Townsend
1983): the state space for the model solution contains an infinite number of higher-order
expectations. Solving the model in the time domain then becomes infeasible, so we use
frequency-domain methods to circumvent this problem; under some special assump-
tions, we can even provide an analytical characterization of the equilibrium. For general
cases, we develop a numerical method to solve the model.

In the log-linearized equilibrium, the equity price is equal to the sum of the dis-
counted average forecast of the individual stochastic discount factors (SDFs) and the

1See Campbell (1999) and Cochrane (2011) for surveys on these alternative approaches.
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discounted average forecast of future dividends. Due to dispersed information, the av-
erage forecast of the individual SDFs is not equal to the forecast of the average SDFs.
As a result, variation in the distribution of individual consumption matters for equity
prices. Since individual shareholdings and labor supply affect individual consumption
and SDFs, their responses to idiosyncratic shocks affect equity volatility. As a result the
effect on the equity price is different from the effect on aggregate output, which depends
on the average forecast of aggregate demand instead of individual behavior.

As noted above, agents on each island observe only their island-specific TFP and the
equity price, but cannot disentangle idiosyncratic and aggregate TFP movements. To
understand why this environment leads to highly volatile equity prices, suppose that the
volatility of the idiosyncratic component of TFP is arbitrarily large and agents observe
only the island-specific TFP (that is, for now they ignore the price when forming expec-
tations). If aggregate productivity increases unexpectedly, each agent misinterprets this
change in TFP as an unexpected increase in idiosyncratic productivity. As a result, any
particular agent increases his shareholdings permanently to smooth consumption as in
the full information case (Hall 1978), while simultaneously believing some other agents
decrease asset demand by the same amount; that is, the belief is that the price will not
change. Because all agents make this same mistaken inference, aggregate asset demand
rises and market clearing requires the equilibrium price to rise permanently as the id-
iosyncratic TFP volatility tends to infinity. Correlated estimation errors under dispersed
information cause permanent shifts in shareholdings to be transmitted into permanent
shifts in equity prices, even if the aggregate TFP shock is independently and identically
distributed (IID). In other words, the equity price inherits a unit root from the individual
shareholdings.

However, if agents observe the price change, they can infer that the TPF shock must
have been at least partly aggregate and, hence, the unit root in the equity price can be
eliminated. To see why, consider the effect of a rising price on asset demand. As the
price rises, agents move along their demand curve as shares become more expensive
(a standard wealth effect). Moreover, when the aggregate TFP is IID or mean-reverting,
agents understand this fact and expect future prices to fall relative to the current price,
inducing a decline in asset demand since they will be cheaper to purchase tomorrow.
The result is that the price does not inherit the unit root from individual shareholdings,
the true state is revealed, and equity price volatility is low.

To prevent prices from fully revealing the aggregate TFP, we follow Hassan and
Mertens (2017) and assume that investors are near rational and make correlated fore-
cast errors.2 Now consider the agent’s learning process in response to the rising price;
agents will assign some weight to aggregate productivity rising and some to the corre-
lated error rising. Each agent believes the error does not apply to him, only to everyone
else; as a result, the agents individually believe that the price tomorrow will be higher,
increasing current demand. The result is that the price does not mean-revert and again
inherits the unit root from idiosyncratic shareholdings.

2Unlike the model of Hassan and Mertens (2017) with physical capital, where the equity price is mainly
driven by the near-rational errors through amplification, in our model the aggregate TFP shock plays a
dominant role in driving the equity price. See Section 2 for a detailed discussion.
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Note that the previous result is not simply a result of adding more unknown states
than signals; while both lead to forecasting errors, only the near-rational shock leads to
the right kind of error. For example, suppose that we introduce an asset supply/noise
trader shock, as is common in the noisy rational expectations literature. In that case, the
rising price will be attributed partly to a rise in the aggregate TFP and partly to a fall in as-
set supply. But both shocks imply that future prices will fall relative to current prices and
agents reduce (shift inward) asset demand, eliminating the unit root. Although agents
still cannot distinguish between the two shocks, they understand that these two shocks
alter their desired trading decisions in the same way.

We establish our main results by assuming that the common forecast error follows
a special process so that the equilibrium can be characterized by analytic rational func-
tions in the frequency domain (autoregressive moving average (ARMA) (p�q) processes
in the time domain). If we relax this assumption, the equilibrium cannot be character-
ized by rational functions, so we resort to numerical methods using rational functions
as approximations.3 Our numerical solutions show that equity price volatility increases
quickly with idiosyncratic TFP volatility even for a very small common forecast error.
Using calibrated parameter values for aggregate and idiosyncratic TFP volatilities, we
show that our model can match both the output and equity price volatilities in the data.

Our model mechanisms are different from much of the existing literature on asset
pricing under dispersed information in three important ways.4 First, in our environ-
ment with a continuum of informationally small agents, higher-order beliefs dampen
aggregate output volatility, but generate large fluctuations in the financial market (as
opposed to models with informationally large agents). Second, most of the literature
studies endowment economies in which consumption and dividends are exogenously
given; obviously these papers cannot address the issue of why macroeconomic quanti-
ties are extremely smooth relative to equity prices. Finally, many papers in this literature
assume constant exogenous SDFs, whereas our SDFs are endogenous, heterogeneous,
and time-varying; as noted already, this feature is key for our result.

We also make an important methodological contribution by extending the existing
literature on models with dispersed information to non-square economies (those with
more hidden states than signals). We apply a two-step spectral factorization method
from Rozanov (1967) to solve economic problems with non-square signal systems,
which is of independent interest. The restriction that the numbers of signals and shocks
are the same is quite limited: given a restriction to square systems, the equilibrium is
fully revealing unless there is noninvertibility from signals to shocks as in Rondina and
Walker (2020).

Our approach provides an alternative to the state-space approach applied by Huo
and Takayama (2018). Their approach is numerically convenient since it can be solved
using fast Riccati equation methods and the Kalman filter. The main drawback of that
approach is that analytical solutions for the Riccati equations rarely exist. As such,
obtaining sharp analytical results like those we have becomes infeasible. In contrast,

3See related results in Makarov and Rytchkov (2012) and Huo and Takayama (2018).
4Closely related papers include Kasa et al. (2014), Rondina and Walker (2020), Angeletos and La’O (2010,

2013), and Benhabib et al. (2015). See Sections 4 and 5 for a more detailed discussion.
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our approach delivers closed-form solutions in a wider range of models, which may
be helpful for illuminating economic intuition and mechanisms. The downside is that
for complicated models, our approach is substantially more burdensome, so we sug-
gest researchers apply our methods in simple models and use the approach of Huo and
Takayama (2018) for more complicated ones.

2. Basic intuition

We use a simple two-period model of an endowment economy to illustrate the basic in-
tuition behind our analysis. There is a continuum of agents indexed by i ∈ I = [0�1] who
trade a single stock with a unit supply in period 1. The stock pays random dividends D
in period 2. Each agent i is endowed with one unit of the stock and random labor in-
come Li in period 1. He derives utility from consumption Ci1 and Ci2 in the two periods
according to the function

Ei
[
C

1−γ
i1

1 − γ +βC
1−γ
i2

1 − γ
]
�

where Ei denotes the subjective expectation operator given agent i’s information, β ∈
(0�1) is the subjective discount factor, and γ is the coefficient of relative risk aversion.
His budget constraints are given by

Ci1 +QSi =Q+Li� Ci2 =DSi�
whereQ and Si denote the stock price and shareholdings, respectively.

Dividends and labor income satisfy

logD= log D̄+ xdεa� logLi = log L̄+ xlεi�
where D̄, xd , L̄, and xl are exogenous constants, and εa and εi are independent normal
random variables with means zero and variances σ2

a and σ2
i . The labor income shock is

purely idiosyncratic such that
∫
I εi di= 0.

At the beginning of period 1, each agent i receives an exogenous signal xi = εa + εi,
but does not observe εa and εi separately. Agents do not communicate their signals to
each other. Based on his private signal xi and the equity price Q, each agent i trades on
the stock market. At the end of period 1, labor income realizes and the agent chooses
consumption Ci1. At the beginning of period 2, the random labor income and dividends
are realized and agent i chooses consumption Ci2 out of dividend income. In equilib-
rium,

∫
I Si di = 1. It is straightforward to show that the deterministic equilibrium with

εa = εi = 0 is given by S̄i = 1, C̄i1 = L̄, C̄i2 = D̄, and Q̄= β(L̄/D̄)γD̄.
In the stochastic case, agent i’ utility maximization leads to the Euler equation

Q= Ei[MiD]�
where Mi = β(Ci1/Ci2)

γ denotes the stochastic discount factor (SDF). Following Has-
san and Mertens (2017), each agent makes a small error when forming his expectation.
Specifically, let

Ei(·)= Ei(·)Ui�
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where Ei denotes the rational expectation operator conditional on agent i’s information
{xi�Q} andUi is a small exogenous error that shifts his conditional expectations. Assume
that

logUi = u+ vi�
where u and vi are independent normal random variables with means zero and vari-
ances σ2

u and σ2
v . Here u represents aggregate errors and vi represents idiosyncratic er-

rors satisfying
∫
I vi di= 0. When Ui = 1 for all i, agents have full rational expectations.

Introducing near-rational forecast errors in the model injects additional noise into
the equity price, which prevents prices from being fully revealing. In the literature, there
are many candidate shocks available to serve this purpose, e.g., a noise trader shock to
the asset supply. Small deviations from the optimal forecasts play an important role in
the dynamic setting where interactions between the stock price and trading behavior
becomes the key to understanding stock price fluctuations.

Now we log-linearize the stochastic equilibrium around the deterministic equilib-
rium and use a lowercase variable to denote its log deviation from its deterministic equi-
librium value. We then obtain the log-linearized Euler equation

q= Ei[d] +Ei[mi] + u+ vi� mi = γ(ci1 − ci2)�

Next we substitute the log-linearized budget constraints into the SDF and use the Euler
equation to derive the log-linearized trading strategy

si =
Ei

[
(1 − γ)d] − q+ u+ vi

γ(1 + Q̄/L̄) + Ei[li]
1 + Q̄/L̄ � (1)

This expression is akin to Merton’s (1969) result: the trading strategy consists of a mean–
variance efficient component and a hedging component against idiosyncratic labor in-
come.

Aggregating (1) over i ∈ [0�1] and using the log-linearized market-clearing condition∫
I si di= 0, we obtain

q= (1 − γ)Ē[d] + γĒ[li] + u� (2)

where Ē[·] ≡ ∫
Ei[·]di denotes the average expectation operator.

To solve the model, we conjecture that the equity price takes the form

q= qaεa + quu� (3)

where qa and qu are nonzero constants to be determined. Then the information set
can be normalized to {q̂� xi}, where q̂ = εa + (qu/qa)u ≡ εa + û. The presence of com-
mon forecast errors prevents equity prices from fully revealing the aggregate dividend
information.

By the Gaussian projection theorem,

Ei[d] = xd(τqq̂+ τxxi) =⇒ Ē[d] = τqxd(εa + û)+ τxxdεa� (4)
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where the noise-to-signal ratios are defined as

τq = σ2
aσ

2
i

g2(σ2
aσ

2
u + σ2

uσ
2
i

) + σ2
aσ

2
i

∈ (0�1)� τx = g2σ2
aσ

2
u

g2(σ2
aσ

2
u + σ2

uσ
2
i

) + σ2
aσ

2
i

∈ (0�1)�

and g≡ qu/qa is determined in the equilibrium.
A direct comparison of the two expectations in (4) implies that if agents are informa-

tionally small, the variance of the market average forecast of aggregate fundamentals is
smaller than that of the individual forecast in that Var(Ē[d]) <Var(Ei[d]). It is also easy
to check that Var(Ei[d]) < Var(d). We show that this dampening result applies to our
general dynamic model when aggregate fundamentals are endogenous (see Lemma 2).
An immediate implication is that dispersed information does not generate large equity
price volatility if γ = 0 (agents are risk neutral). In this case, it follows from (2) that eq-
uity volatility is bounded by the dividend volatility given the small variations in forecast
errors u. Thus we need risk aversion γ > 0 and, hence, volatile SDFs.

Consider the second term on the right side of (2), which comes from the average
forecast of individual SDFs. If agents can communicate with each other so that infor-
mation is homogenous, this term vanishes: Ē[li] = Ei[

∫
I li di] = 0. Under dispersed in-

formation without communication, we have

Ei[li] = xl
[−τqq̂+ (1 − τx)xi

] =⇒ Ē[li] = −τqxl(εa + û)+ (1 − τx)xlεa� (5)

A high equity price q̂ may be due to a high dividend shock εa. Agent i may believe the
labor income shock εi to be low given a fixed signal xi = εa+εi, which explains the nega-
tive coefficient of q̂ in (5). Thus, learning from prices dampens the effect of idiosyncratic
shocks.

Plugging (4) and (5) into (2) yields

q= [
(1 − γ)xdτa + γxlτi

]
εa + [

(1 − γ)gτqxd − γgτqxl + 1
]
u� (6)

where τa = τq + τx ∈ (0�1) and τi = 1 − (τq + τx). Matching coefficients in (3) yields a
cubic equation for g:[

(1 − γ)xdσ2
aσ

2
u + γxl

(
σ2
aσ

2
u + σ2

uσ
2
i

)]
g3 − (

σ2
aσ

2
u + σ2

uσ
2
i

)
g2 + γxlσ2

aσ
2
i g− σ2

aσ
2
i = 0�

Substituting (6) into (1) yields the equilibrium trading strategy

si = (1 − γ)xdτx + γxl(1 − τx)
γ(1 + Q̄/L̄) εi + 1

γ(1 + Q̄/L̄)vi�

which responds only to idiosyncratic labor income shocks and idiosyncratic forecast
errors. The presence of idiosyncratic forecast errors prevents shareholdings from fully
revealing the idiosyncratic labor income realization.

Equation (6) shows that small common errors in forecasting leads to nonfundamen-
tal deviations in the equilibrium stock price, as emphasized by Hassan and Mertens
(2017). They also show that small common errors in household expectations weaken
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Figure 1. The impact of idiosyncratic volatilityσi on τa and τi. Parameter values are xl = xd = 1,
γ = 0�4, σa = 0�1, and σu = 0�01.

the stock market’s capacity to aggregate dispersed information. We argue that their re-
sults rely on the average forecast of the aggregate shock, whose effect corresponds to the
response coefficient τa in (6). In contrast, our model features uninsured idiosyncratic la-
bor income shocks and, hence, the equilibrium equity price also depends on the average
forecast of these shocks. This effect corresponds to the response coefficient τi in (6).

To relate this result to Hassan and Mertens (2017), we consider the impact of σi on
τa and τi, illustrated in Figure 1. The figure shows that τa decreases with σi as in Hassan
and Mertens (2017). However, τi increases with σi. Intuitively, if agents are unable to
distinguish between aggregate and idiosyncratic shocks and make errors in forecasting,
the equilibrium price is not fully revealing and agents have to solve a signal extraction
problem. If σi is higher, the agents put a larger weight on the idiosyncratic labor income
shock and a smaller weight on the aggregate dividend shock. However, the additional
volatility due to the large idiosyncratic shock has only a limited effect since τi ∈ (0�1).
Even if idiosyncratic shocks are arbitrarily volatile, aggregation cancels them out and τi
approaches the upper bound of 1. Unless we assume a very high value of xl, the quanti-
tative effect on equity prices is small.

In the next section we extend this simple example to an infinite-horizon setup. We
endogenize labor income and dividends by introducing the production side of the econ-
omy so that xd and xl are endogenous. In the infinite-horizon model, individual SDFs
depend on future individual consumption, which in turn depends on future trading
strategies and labor income. Thus, equity prices depend on the higher-order beliefs
about the average forecasts of future individual shareholdings and labor income. In-
terpreted through the lens of the two-period model, this dynamic interaction makes
shareholdings and equity prices highly persistent, and generates a positive connection
between σi and xl that causes equity volatility to increase without bound as σi → ∞.

3. Model

We consider a variation of the classical dispersed-information business cycle model of
Angeletos and La’O (2010). The economy consists of a continuum of islands with a
Lebesgue measure over I = [0�1]. Information is dispersed across islands. There is a
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representative household and a representative firm on each island. Each firm is mo-
nopolistically competitive and produces a specialized good using labor input only, while
households have Dixit–Stiglitz preferences over varieties. Labor is immobile across is-
lands, but consumption goods of all varieties are freely mobile. The equity market is
operated through a mutual fund that owns the firms and issues equity shares to house-
holds. The stock price therefore reflects the average valuation of firms in the economy.
We normalize the aggregate stock supply to 1.

3.1 Households

A representative household on each island i ∈ I derives utility from the composite con-
sumption good {Cit} and labor supply {Nit} according to the utility function of Green-
wood et al. (1988),

Ei

[ ∞∑
t=0

βt log
(
Cit − N

1+φ
it

1 +φ
)]
�

where Ei denotes household i’s subjective expectation operator, β ∈ (0�1), φ> 0,

Cit =
[∫
I
Cit(j)

ς−1
ς dj

] ς
ς−1
�

and Cit(j) denotes the consumption of good j demanded by the household on island i.
Here ς > 1 denotes the inter-island elasticity of substitution that determines the degree
of strategic complementarity.

The household faces the intertemporal budget constraint∫
I
Cit(j)Pt(j)dj +QtShit+1 = Shit(Qt +Dt)+WitNit� (7)

where Pt(j), Qt , Shit , Dt , and Wit represent the price of good j, the stock price, share
holdings, aggregate dividends, and wage rate in island i, respectively.

To simplify the forecasting problem, we assume that each household i consists of
two family members, an investor and a shopper. They have different information sets
and do not communicate with each other. In each period t, the investor’s information set
consists of the current and past TFP shocks Ait , wages Wit , and stock prices Qt . Given
this information set, the investor chooses labor supply and shareholdings.5 The first-
order conditions are given by

Wit =Nφ
it (8)

Eit
[
Mit+1(Qt+1 +Dt+1)

] =Qt� (9)

5We can introduce bonds (or other assets) into the model and/or allow agents to observe additional sig-
nals (such as bond prices and trading volume). In these cases, we need to insert more unobserved shocks to
prevent information revelation, but the main results of our paper survives, just with an attendant increase
in algebraic and computational burden.
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where the SDFMit+1 is given by

Mit+1 = β
(
Cit −N1+φ

it /(1 +φ))
Cit+1 −N1+φ

it+1 /(1 +φ)
�

Our chosen utility function implies that the labor supply in (8) is independent ofCit and,
hence, simplifies our analysis, but it is not crucial for our main results (see Appendix A).

As in the two-period example, we assume that investors are near rational and each
investor i’s subjective expectations satisfy Eit[·] = Eit[·]Uit , where Eit denotes the ratio-
nal expectation operator conditional on the investor’s information at time t and Uit is a
small exogenous error that shifts the subjective conditional expectations. Let Uit satisfy

logUit = ut + vit�

where the aggregate component ut satisfies

ut = u(L)εut

and the idiosyncratic component satisfies∫
I
vit di= 0�

Here u(L) is a square-summable, one-sided lag polynomial, and εut and vit are inde-
pendent Gaussian white noises with variances σ2

u and σ2
v .

The shopper collects dividendsDt and purchases consumption good Cit(j) after ob-
serving the product prices Pt(j) for all j and the aggregate price level Pt . The shopper
does not face a forecasting problem. The first-order condition is

Cit(j)=
[
Pt(j)

Pt

]−ς
Cit� (10)

where the aggregate price index Pt ≡ [∫I Pt(j)1−ς di] 1
1−ς satisfies

∫
I Cit(j)Pt(j)dj = PtCit .

We normalize the price index Pt to 1 so that the budget constraint (7) becomes

Cit +QtShit+1 = Shit(Qt +Dt)+WitNit � (11)

Aggregating (10) over i ∈ I yields the total demand for good j ∈ [0�1],

Yjt =
∫
I
Cit(j)di=

[
Pt(j)

]−ς
Yt� (12)

where Yt denotes aggregate consumption

Yt =
∫
I
Cit di≡ Ct� (13)
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3.2 Firms

The representative firm on island i ∈ [0�1] operates a production technology given by

Yit =AitNiαt � α ∈ (0�1)� (14)

whereAit satisfies

Ait =At exp(εit)�

Here At represents the aggregate component that affects all firms in all islands and εit
represents the idiosyncratic component that is independent ofAt and affects the firm in
island i only. Investors on island i observeAit at time t, but cannot distinguish between
the aggregate and idiosyncratic components. Let

logAt = a(L)εat�

where εat and εit are independent Gaussian white noises with variances σ2
a and σ2

i , re-
spectively. They are also independent of near-rational shocks ut and vit . Here a(L) de-
notes a one-sided, square-summable lag polynomial. Moreover, assume that the law of
large number (LLN) holds for εit so that∫

I
εit di= 0� (15)

In each period t the firm’s information set consists of the current and past TFP shocks
Ait , wages Wit , and stock prices Qt . Given this information set, the firm chooses labor
demand to solve the static profit maximization problem

πit = max
Nit

Eit

[
Pt(i)

]
Yit −WitNit

subject to the demand schedule in (12) for j = i. Since the production and labor demand
choice is made before observing the output price Pt(i), the firm needs to form static con-
ditional expectations about the price Pt(i). Since Yit andNit are observable choice vari-
ables, the firm essentially forms conditional expectations about the aggregate demand
Yt . Simple algebra yields the labor demand condition

α

(
1 − 1

ς

)
Y
(1− 1

ς )

it Eit

[
Y

1
ς
t

]
Nit

=Wit� (16)

For simplicity we assume that firms are fully rational and do not make forecasting errors.
Introducing forecasting errors affects profits πit , and, hence, dividends and stock prices.
The firms’ forecasting errors therefore play a similar role to the households’ forecasting
errors in (9).

It follows from (14) and (16) that observing the local wage Wit is equivalent to ob-
serving the local productivity shock Ait . Thus, we can write the information set in the
conditional expectation operators Eit and Eit as {Xi�t−k}∞k=0, where the signal vector is
Xit = [Ait�Qt]ᵀ.
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3.3 Equilibrium characterization in the time domain

There is one aggregate mutual fund that issues equity shares and collects dividends from
individual islands. The aggregate dividend satisfies Dt = ∫

I πit di and aggregate output
satisfies Yt = ∫

I Yit di. The mutual fund distributes the dividend to households. The
market-clearing condition for the stock is given by∫

I
Shit+1 di= 1 ∀t� (17)

A competitive equilibrium with dispersed information is characterized by a system
of nine equations ((8), (9), (10)–(14), (16), and (17)) for nine variables Wit , Nit , Shit , Cit ,
Cit(j), Yit , Pt(j),Qt , and Yt , whereDt satisfies∫

I
WitNit di+Dt = Yt� (18)

This equation follows from aggregating (11) using (13) and (17).
Since the equilibrium system is nonlinear and does not admit an explicit solution,

we derive a log-linearized approximate system (see Appendix A). We use lowercase vari-
ables to denote log deviations from the nonstochastic steady state. We impose the fol-
lowing assumption on the parameters so that there exists a unique deterministic steady-
state equilibrium.

Assumption 1. The parameter values satisfy α�β ∈ (0�1), φ> 0, ς > 1.

We first use (8), (14), and (16) to eliminateWit andNit to derive

yit = 1
ξ
ait + θEit[yt] (19)

and

yit = ait + αnit� (20)

where we define

ξ≡ 1 +φ− α(1 − 1/ς)
1 +φ > 0� θ≡ α

α+ (1 − α+φ)ς ∈ (0�1)�

The parameter θ describes the degree of strategic complementarity (see Angeletos and
La’O 2013 and Huo and Takayama 2018). Aggregating (19) over I = [0�1], we have

yt = 1
ξ

∫
I
ait di+ θEit[yt]� (21)

where the average conditional expectation operator is defined as Et[·] ≡ ∫
I Eit[·]di.

Log-linearizing (9) and (11) yields

qt = Eit[mit+1] +Eit

[
βqt+1 + (1 −β)dt+1

] + ut + vit� (22)
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where

Eit[mit+1] = α2s
h
it − α1s

h
it+1 +Eit

[
α3s

h
it+2 +�bit+1

]
(23)

and

bit = α4dt + α5nit� �bit+1 ≡ bit − bit+1� (24)

Notice that shit and shit+1 are in agent i’s information set at time t. Unlike the two-period
model, agent i’s Euler equation depends on his future consumption, so his expected SDF
depends on his forecast of his future shareholdings, labor income, and dividends. Using
(8) and (18) we obtain

α6dt + α7nt = yt� (25)

where nt = ∫
I nit di. Expressions for the coefficients α1�α2� � � � �α7 can be found in Ap-

pendix A. Define the parameter λs ≡ α2/α1. In Appendix A, we show the following
lemma, which is important for our unit root results and also holds for general utility
functions.

Lemma 1. Under Assumption 1, α1�α2� � � � �α7 > 0, λs ∈ (1/2�1), and α1 = α2 + α3.

Aggregating (22) and using (17) and (23), we show that equity prices satisfy

qt = Et
[
α3s

h
it+2 +�bit+1

] +Et
[
βqt+1 + (1 −β)dt+1

] + ut� (26)

The first term on the right-hand side of the second equality is the average forecast of
the individual SDFs, which depend on future aggregate dividends, individual sharehold-
ings, and individual labor income. Iterating (26) forward, we find that the equity price is
determined by an infinite number of forward-looking higher-order expectations about
aggregate dividends and individual shareholdings and labor income.

In summary, we characterize the log-linearized equilibrium by a system of six equa-
tions ((19)–(22), (25), and (26)) for six variables yit , nit , yt , shit , dt , and qt . We are looking
for causal covariance stationary equilibrium processes.

3.4 Full information benchmark

Before solving for the equilibrium under dispersed information, we present the equilib-
rium under full information. In this case all agents have the same information about
all shocks. They have rational expectations except when forecasting future stock mar-
ket conditions, because they make small forecast errors due to the near-rational shock.
Hence (21) and (26) become

yt = 1
ξ
at + θEt[yt]

qt = Et[�bt+1] +Et
[
βqt+1 + (1 −β)dt+1

] + ut�
(27)

where bt = α4dt + α5nt and Et denotes the rational expectation operator given all avail-
able information.
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It follows that

cFI
t = yFI

t = 1
(1 − θ)ξat� (28)

where a variable with a superscript FI denotes its full information value. We then use
(20) and (25) to derive

nFI
t = 1 − (1 − θ)ξ

α(1 − θ)ξ at� dFI
t = α− α7

[
1 − (1 − θ)ξ]

αα6(1 − θ)ξ at�

Applying the method of undetermined coefficients and the Hansen and Sargent (1980)
prediction formula to (27) yields

qFI
t = cFI

t + u(L)L−βu(β)
L−β εut�

Thus, given a small forecast error ut , the model under full information cannot simulta-
neously generate smooth consumption (output) and highly volatile equity prices. For
example, qFI

t = cFI
t + ut when ut = εut .

Next we investigate individual trading behavior, which lies at the heart of our model
mechanism. A subtle but important observation in the full information case is that the
processes of individual consumption and shareholdings contain a unit root due to con-
sumption smoothing (Hall 1978). Applying the method of undetermined coefficients to
(22) under full information and using Lemma 1 yield

sh�FI
it+1 = sh�FI

it +χsεit + 1
α2
vit� χs ≡ α5(1/ξ− 1)

αα2
�

This in turn implies that individual consumption possesses contain a random walk com-
ponent using the log-linearized budget constraint

cFI
it = cFI

it−1 + yFI
t − yFI

t−1 +χcεit +
(
D

C
χs −χc

)
εit−1 − Q

α2C
vit + Q+D

α2C
vit−1�

where χc ≡ (W N/C)(1 +φ)[(1/ξ− 1)/α] −χs(Q/C), andW ,N ,Q,D, and C are steady-
state values given in Appendix A.

This result is similar to that in Graham and Wright (2010), where the LLN condition
(15) and the full information assumption ensure that permanent shifts in idiosyncratic
consumption and shareholdings cancel out in the aggregate. In particular,∫

I
Et

[
shit+2

]
di= Et

∫
I

[
shit+2

]
di= 0�

Under dispersed information, however, this interchange of integration operators is in-
valid because agents have different information sets, and the interconnection between
shareholding choices and the equity price leads to our key results for the financial mar-
ket.
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4. Business cycle volatility

In this section, we show that output volatility under dispersed information is lower than
that under full information without explicitly solving the model.

To analyze the log-linearized equilibrium system under dispersed information, we
need to deal with the problem of forecasting the forecast of others as revealed by (21)
and (26). To see this point, iterating (21) yields

yt = 1
ξ

∞∑
k=0

θkE
(k)
t

[∫
I
ait di

]
+ lim
k→∞

θkE
(k)
t [yt]� E

(k)
t [·] =

∫
I
Eit

∫
I
Eit · · ·

∫
I︸ ︷︷ ︸

k

Eit[·]di · · ·di︸ ︷︷ ︸
k

�

where E
(k)
t denotes the k-order average expectation is the repeated integral. Under dis-

persed information, aggregate output depends on an infinite number of higher-order
expectations. Solving these higher-order expectations in the time domain is challeng-
ing. Therefore, we adopt the frequency domain approach discussed in Appendices S1
and S2 in the Supplemental Material, available in a supplementary file on the journal
website, http://econtheory.org/supp/3872/supplement.pdf.

Conjecture that the solution for output in island i takes the form

yit =Ma
y (L)εat +Mi

y(L)εit +Mu
y (L)εut� (29)

where the corresponding z-transformsMa
y (z),M

u
y (z), andMi

y(z) are some analytic func-

tions in H2(D).6 Then aggregate output satisfies

yt =
∫
I
yit di=Ma

y (L)εat +Mu
y (L)εut �

We first present a lemma characterizing the property of the variance of higher-order
expectations, which is central for determining business cycle volatility when informa-
tion is dispersed.

Lemma 2. Under Assumption 1, we have

Var
(
Et[yt]

)
<Var

(
Eit[yt]

) ≤ Var(yt)�

Lemma 2 shows that the variance of the average expectations about aggregate out-
put is smaller than the variance of individual expectations about aggregate output when
the individual agents’ effect on the aggregate equilibrium is infinitesimal so that the LLN
can be applied. This feature is in sharp contrast to models that assume finitely many
uninformed agents, such as Kasa et al. (2014) and Albuquerque and Miao (2014).

Using the preceding lemma, we show in Appendix B that the business cycle volatility
is dampened under dispersed information relative to a full information environment.

6Here H2(D) denotes the Hardy space for the open unit disk D of the complex space and ‖ · ‖H2 denotes
its norm. See Supplemental Material Appendix S1.

http://econtheory.org/supp/3872/supplement.pdf
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Theorem 1. Under Assumption 1, the variance of output under dispersed information is
bounded above by the variance under full information

Var
(
yFI
t

)
>Var(yt)�

The previous literature demonstrates a related result, including Morris and Shin
(2002) and Angeletos and La’O (2013). Here we simply provide an easy way to prove
this result without having to explicitly deal with an infinite number of correlated higher-
order expectations. This theorem is applicable to general information structures, ex-
ogenous or endogenous, univariate or multivariate. Adding confidence or noise shocks
would also not change the results.

Here the presence of higher-order beliefs and the forecasting the forecasts of others
problem dampen business cycle fluctuations. In the real economy, the effect of dis-
persed information and higher-order expectations works through two channels. The
first channel is associated with slow learning of the unobserved states. Slow learning
creates inertia in endogenous variables and, more importantly, in the higher-order av-
erage expectations of model variables, which leads to low volatility. The second channel
is associated with forecasting the forecasts of others. Agents have a speculative motive
if other agents overreact to news. This channel is strong for informationally influential
participants in models with finitely many agents (Kasa et al. 2014 and Albuquerque and
Miao 2014). It is also at work in the heterogeneous prior setup (Harrison and Kreps 1978
and Scheinkman and Xiong 2003). When each agent is informationally negligible as in
our model, the second channel completely vanishes since there is no need to forecast
any particular agent’s forecast due to the law of large numbers. What matters is the fore-
cast of the average. Thus, the first channel dominates and leads to the volatility bounds
we deliver above.

We also note the limitation of Theorem 1. The underlying dampening result depends
on the presence of a beauty contest type of production decisions with strategic comple-
mentarity. In this sense, the real block of our model is closely related to Angeletos and
La’O (2010), in which production decisions are made prior to the realization of aggregate
demand, which is the key behind the dampening result.7

5. Equity price volatility

We now turn to the financial side of the model. The main result of this section is that
equity volatility converges to infinity as the variance of the idiosyncratic TFP shock con-
verges to infinity. In contrast to the previous section, we need to derive an explicit model
solution to establish this result. We also prove the existence and uniqueness of equilib-
rium by extensively using the frequency domain methods described in Appendices S2
and S1.

7Alternatively, Angeletos and La’O (2013), Benhabib et al. 2015, and Chahrour and Gaballo (forthcom-
ing) show that macroeconomic fluctuations under dispersed information can be amplified via a form of
nonfundamental volatility or learning from price. The theoretical volatility bound can also be overturned
in cases in which higher-order uncertainty about microshocks is correlated, as in Angeletos and La’O (2013)
and Huo and Takayama (2018)
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5.1 Equilibrium solution

We rewrite (26) as

qt =
∫
I
χit di+ ut� (30)

where we define

χit ≡ Eit

[
α3s

h
it+2 +�bit+1

] +Eit

[
βqt+1 + (1 −β)dt+1

]
� (31)

The information set consists of the history of signalsXit = [ait� qt]ᵀ. Conjecture that

χit = π1(L)ait +π2(L)qt� (32)

where the analytic functions π1(z) and π2(z) are endogenously determined in H2(D).
It follows from (30) that

qt = π1(L)a(L)

1 −π2(L)
εat + u(L)

1 −π2(L)
εut � (33)

The lag polynomial π1(L) characterizes how the dispersed information about TFP
shocks affects equity prices, while 1/[1 − π2(L)] characterizes the effect of endogenous
learning from equity prices.

To verify the conjecture in (32), we use (33) and the Wiener–Hopf prediction formula
to compute the conditional expectations in (32).8 To apply this formula, we write the
signal representation as

Xit =H(L)ηit ≡
⎡
⎣ a(L) 1 0
π1(L)a(L)

1 −π2(L)
0

u(L)

1 −π2(L)

⎤
⎦

⎡
⎢⎣εatεit
εut

⎤
⎥⎦ � (34)

which is a non-square system containing endogenous functions. To derive transparent
analytical solutions, we impose the following assumption.

Assumption 2. Let u(z)= π1(z) and a(z)= 1.

The assumption of IID TFP shocks is for simplicity and can be easily relaxed. The as-
sumption of u(z)= π1(z) follows from Taub (1989) and Rondina and Walker (2020), and
substantially simplifies the computation of the spectral factorization and the Wold rep-
resentation. We can express the equilibrium conditions as a system of linear functional
equations for π1(z) and π2(z), allowing us to establish the equilibrium existence and
uniqueness, and to analyze the key model mechanism transparently in the frequency
domain. In the next section, we relax Assumption 2 and derive numerical results.

In our analytical solution and numerical procedures, one of the key steps is to find
the Wold fundamental representation or the spectral factorization for the model’s signal
structure. We make an important methodological contribution by providing a two-step

8In Appendix S2 we provide the details of this formula.
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triangular spectral factorization method based on Rozanov (1967). This method deliv-
ers a closed-form spectral factorization up to the solution of complex polynomial equa-
tions. Using Rouché’s theorem and the fundamental theorem of algebra, we are able to
characterize the location and magnitude of the polynomial roots. These roots in turn
determine the equilibrium existence and uniqueness as well as its dynamic properties.9

In Appendices S2 and S3, we supply the mathematical details of this approach, includ-
ing a working example in which we derive the factorization step-by-step as a guide for
interested readers.

Conjecture that the equilibrium individual shareholdings satisfy

shit+1 =Mi
s(L)εit +Mv

s (L)vit� (35)

whereMi
s(z)�M

v
s (z) ∈ H2(D). In equilibrium, individual shareholdings can only respond

to idiosyncratic TFP shocks and idiosyncratic forecast errors, because the aggregate
number of shares is fixed. The following result delivers the link between equity prices
and individual shareholdings.

Lemma 3. Under Assumptions 1 and 2, we have

Mi
s(z)= π1(z)

α1 − α2z
� (36)

This lemma shows that the exposure of an investor’s shareholdings to the idiosyn-
cratic TFP shock is closely related to the equity price exposure to the aggregate TFP
shock due to investor’s dispersed information about the two components of the shocks.
Thus, if investors make large adjustments of their shareholding positions, the response
of equity prices to aggregate TFP shocks will also be large. However, this relation van-
ishes under full information as analyzed in Section 3.4, because cross-sectional aggre-
gation neutralizes the effect of individual trading decisions on equity prices.

Theorem 2. Under Assumptions 1 and 2, there is a unique equilibrium under dispersed
information in which π1(z) and π2(z) are rational analytical functions if the function
π1(z)

1−π2(z)
∈ H2(D) has no roots in the open unit disk.

In Appendix C, we provide an explicit solution to the equilibrium. The equilib-
rium is characterized by rational analytic functions π1(z) and π2(z) in the closed unit
disk, which corresponds to ARMA(p�q) representations in the time domain. Despite
the presence of the infinite number of higher-order expectations formed by agents, the
ARMA(p�q) representation allows us to compute the equity price volatility in closed
form via the integral method and Parseval’s theorem. More importantly, the explicit
expression also highlights some crucial analytical properties of the equity price fluc-
tuations under dispersed information. We are particularly interested in the properties
of equity prices as σi → ∞.

9In a technical appendix available upon request, we use these tools to characterize an exogenous infor-
mation model with a quartic polynomial system.
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5.2 Equity volatility

We decompose the equity price in (33) as qt = qft + qnt , where

q
f
t ≡ π1(L)

1 −π2(L)
εat and qnt = u(L)

1 −π2(L)
εut

represent the components driven by the fundamental TFP shock and the common fore-
cast error, respectively. In Appendix C we prove the following result.

Theorem 3. Under Assumptions 1 and 2, we have

lim
σi→∞π1(1)= ∞; lim

σi→∞ Var
(
q
f
t

) = σ2
a lim
σi→∞

∥∥∥∥ π1(z)

1 −π2(z)

∥∥∥∥2

H2
= ∞�

Although idiosyncratic TFP shocks have no effect on the equity price, the equity
price becomes arbitrarily volatile as the volatility of the idiosyncratic shock approaches
infinity for any finite σa > 0 and σu > 0. Therefore, our model has the potential to gener-
ate a highly volatile equity price, because the idiosyncratic TFP volatility is much larger
than the aggregate TFP volatility in the data.

To understand the economic mechanism that generates the high equity price volatil-
ity, we rewrite (26) as qt =

∫
I Eit[βqt+1 +(1−β)dt+1]di+

∫
I Eitmit+1 di+ut , where we can

show that ∫
I
Eit[mit+1]di=

∫
I
Eit

[
α3s

h
it+2 +�bit+1

]
di� (37)

Iterating forward gives

qt =
∞∑
k=0

βkEt · · ·Et+k[mit+k+1]

+ (1 −β)
∞∑
k=0

βkEt · · ·Et+k[dt+k+1] +
∞∑
k=0

βkEt · · ·Et+k[ut+k+1]�

Thus, the equity price consists of a present-value component under a constant SDF
(an infinite sum of higher-order expectations about future aggregate dividends), a com-
ponent equal to the infinite sum of higher-order expectations about individual SDFs,
and a nonfundamental component due to common forecast errors.

Using the intuition developed in Sections 2 and 4, we know that the present-value
component cannot generate a large volatility, as the higher-order expectations about
future aggregate dividends are smoother than aggregate dividends. In other words,
higher-order expectations about aggregate variables and the failure of the law of iter-
ated expectations do not lead to excess volatility per se. We thus focus on the second
component, which depends on the average forecast of future individual shareholdings
and labor income by (37). Unlike the case of full information studied in Section 3.4, the
average forecast of individual shareholdings is not equal to the forecast of the average
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shareholdings: ∫
I
Eit

[
shit+2

]
di 
= Eit

∫
I

[
shit+2

]
di= 0�

Correlated movements in the average expectation of individual shareholdings now af-
fect aggregate equity prices.

Individual equity trading decisions respond only to idiosyncratic TFP shocks, and
not aggregate TFP shocks, because assets are in fixed supply. Investors interpret a
change in the TFP signal as an idiosyncratic shock to their budget sets. As idiosyncratic
TFP volatility σi tends to infinity, individual shareholding volatility also tends to infinity
because the shareholding process contains a unit root as in the full information case.
This unit root is transmitted to the equity price in response to the aggregate TFP shock
by Lemma 3. Formally,Mi

s(1)→ ∞ if and only if π1(1)→ ∞.
To gain intuition about where this unit root comes from, consider the following

thought experiment. Suppose that the economy receives a positive innovation to at ;
since σi is arbitrarily large, an agent observing the increase in ait will mistakenly at-
tribute it to εit . This changes agent i’s permanent income unexpectedly, leading him to
raise his shareholdings permanently due to his consumption smoothing motive as in the
full information case. At the same time, the agent believes there exist other agents whose
idiosyncratic demand for shares has fallen by the exact same amount (leaving aggregate
demand unchanged) if he does not observe the price change. Because all agents make
this same mistaken inference, aggregate demand rises and market clearing requires the
equilibrium price to rise permanently as σi → ∞.10

However, agents also observe the price change and can use that signal to infer that
there must have been an aggregate shock. By (32) and (33), the learning effect is re-
flected by the denominator 1 − π2(L). If 1 − π2(1) → ∞ as σi → ∞, the unit root for
π1(z)would cancel out. The intuition for this adjustment is that the price here plays two
roles: it clears markets and it provides information. For now, suppose the near-rational
error is not present in the model. Then the equity price information fully reveals the
aggregate TFP shock. As qt rises, agents move along their demand curve as usual, but
the demand curve also shifts inward as qt rises, because agents know that the TFP shock
is mean-reverting, so future equity prices will be lower than the current price, reducing
their current demand. As a result, the unit root from individual shareholdings does not
get transmitted into the equity price.

With near-rational errors, this process gets short-circuited. In this case, agents op-
timally assign weights to a rise in at and a rise in ut ; since agents believe that ut ap-
plies only to other agents, each individual will overestimate the future value of stocks
(through some combination of overestimating qt+1, dt+1, and future consumption),
which prevents their demand curve from falling as qt rises. The learning effect from
equity prices is always weaker than the information conveyed by the TFP signal so that
the unit root associated with the TFP shock survives. Therefore, when the aggregate TFP

10We prove this result under exogenous information formally in a technical appendix available upon
request.
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shock hits the economy, investors’ expectations about future trading decisions adjust in
a simultaneous and persistent manner, leading to high equity price volatility.

Formally, using the Wiener–Hopf prediction formula, we have

Eit

[
shit+2

] = τ1

α3L

[
(1 − λs)π1(L)

1 − λsL − (1 − λs)π1(0)
]
ait

− τ2

α3L

[
(1 − λs)π1(L)

1 − λsL − (1 − λs)π1(0)
]

1 −π2(L)

π1(L)
qt�

where τ1 and τ2 are the signal-to-noise ratios (see (41) and (42) in Appendix C)

τ1 = σ2
i

σ2
i + (

σ−2
a + σ−2

u

)−1 � τ2 = τ1
σ2
a

σ2
a + σ2

u

�

Due to the common forecast error σu > 0, we have τ2 < τ1. If σi → ∞, we have τ1 → 1,
but τ2 → σ2

a/(σ
2
a + σ2

u) ∈ (0�1). Thus, the expression on the second line of the equation
above associated with learning from prices does not fully offset the expression on the
first line.

Note that the previous result is not simply a result of adding more unknown shocks
than signals; while both lead to forecasting confusion, only the near-rational shock leads
to the right kind of confusion. A common practice in the noisy rational expectation lit-
erature is to introduce an asset supply/noise trader shock. In that case, the rising price
is attributed partly to a rise in aggregate TFP and partly to a fall in asset supply. But both
shocks imply that future prices will fall relative to current prices, causing agents to re-
duce (shift inward) their asset demand, which eliminates the confusion effect and also
the unit root. The key intuition is that agents understand how changes in the aggregate
asset supply shock affect their individual shareholding decisions. In this sense, the eq-
uity price contains enough information for agents to eliminate correlated movements
in the average expectation of individual shareholdings. Note that the equilibrium is still
not fully revealing, as agents will be unsure about the source of the price change; how-
ever, they are certain that the shock is an aggregate one and fully understand how this
aggregate change affects their trading decisions.

To summarize, our model captures three distinct forces that act on real and finan-
cial volatility. First, since higher-order expectations about the aggregate shock are less
volatile than the shock itself as in Morris and Shin (2002) and Bergemann and Morris
(2013), real business cycles are dampened. The second mechanism is the confusion be-
tween the aggregate and idiosyncratic shock, which dates back to Lucas (1972). The third
mechanism is the higher-order expectation of idiosyncratic shocks, which produces ex-
tra volatility that would not be possible under homogeneous information. Indeed, our
main contribution is to show how the interactions of these last two forces, propagated
in the feedback loop between equity price and individual trading, lead to high volatility.
A related result can be found in Bergemann et al. (2015), who show that beauty con-
test models can lead to unbounded aggregate volatility. The fundamental difference
between our theoretical mechanism and their approach is that they choose the signal
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structure (i.e., weights in the signal) to maximize volatility, whereas we allow agents to
optimally filter the shocks with given signal structure.11

6. Discussions

6.1 Numerical results

One side effect of the assumption of u(z)= π1(z) is that the volatility of the nonfunda-
mental component of the equity price also approaches infinity as σi → ∞. To isolate
this effect, we relax Assumption 2 by assuming that ut and at follow independent AR(1)
processes.

Assumption 3. We have u(z)= 1/(1−ρuz) and a(z)= 1/(1−ρaz), where ρa�ρu ∈ [0�1).

Now the equilibrium system cannot be reduced to a system of linear functional
equations for π1(z) and π2(z), and, hence, π1(z) and π2(z) cannot be represented by
analytic rational functions. It is well known that any nonrational analytic functions can
be approximated by rational functions with arbitrary accuracy (Rudin 1986). Using this
fact, we compute the model numerically by using rational functions to approximate
π1(z) and π2(z). In the numerical computation, our spectral factorization method also
displays its advantages. It allows us to derive an almost-analytical spectral factor matrix
and solve for the nonlinear equilibrium fixed point problem in a clear, algebraic form.
In this way, we minimize the “black box” in numerical computation so that we are able
to see whether the algorithm is correct and whether the model mechanism works.12 In
Appendix S1, we provide the equilibrium system and the numerical algorithm we use to
solve the model.

To derive quantitative implications, we calibrate the model parameters by assum-
ing one model period corresponds to a quarter. We set the subjective discount factor
β= 0�99, the elasticity of output with respect to labor α= 0�67, the persistence of the ag-
gregate TFP shock ρa = 0�8, and the volatility of the aggregate TFP shock σa = 0�7%. We
also set the inter-island elasticity of substitution ς = 9 to generate a steady-state markup
of 12�5% and setφ= 2 to generate a Frisch elasticity of labor supply equal to 0�5, consis-
tent with Galí (2015), Angeletos and La’O (2013), and King and Rebelo (2000). As baseline
values, we set the idiosyncratic volatility σi = 5% and the persistence and volatility of the
common forecast error ρu = 0�05 and σu = 0�04%. It is a well known empirical fact that
idiosyncratic productivity shocks are far more volatile than the aggregate shocks, and
our choice of σi falls well within the range reported by early literature.13 The implied

11More specifically, they allow the signal weights to be chosen as functions of idiosyncratic volatility
and the maximal volatility is attained when the weight of idiosyncratic shock goes to zero, whereas the
idiosyncratic volatility in our model shows up only in the signal-to-noise ratio, as we assume exogenously
fixed equal weights in the TFP signal.

12Compared with the case in Section 5, we are also able to illustrate why the equilibrium cannot be
represented using finite-state representation in terms of rational ARMA(p�q) processes. We leave these
details to Appendix S1.

13See Comin and Philippon (2005) and Franco and Philippon (2007).
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Figure 2. The effect of idiosyncratic TFP volatility σi on equity and output volatility.

ratio of the unconditional volatility of the common forecast error and the unconditional
total volatility of the aggregate and idiosyncratic TFP shocks is 0�65%. This small forecast
error is consistent with the estimate in Hassan and Mertens (2017). In the Supplemental
Material Appendix, we show that aggregate output and equity volatilities are indepen-
dent of the idiosyncratic forecast error volatility. We thus do not need to assign a value
for σv for our numerical solutions.

Our baseline calibration implies a quarterly output volatility of 1�5% and a quar-
terly equity volatility of 10�5%; the empirical counterparts are 1�61% and 12�04%, re-
spectively.14

 Figure 2 presents the effect of idiosyncratic TFP volatility on equity price
volatility. If σi = 0, the model with dispersed information reduces to the model with
full information. As σi increases from 0 to 10%, equity volatility rises quickly, but out-
put volatility declines slowly. The component (qnt ) of equity volatility contributed by the
common forecast error increases with σi and accounts for a very small fraction of total
equity volatility (less than 1%). Thus, a very small near-rational error can produce high
equity price volatility for reasonable values of σi.

Since our model results are driven by information dispersion and confusion, we also
evaluate the degree of information frictions in the model. Following Coibion and Gorod-
nichenko (2012), we measure information frictions using the ratio of the elasticity of
the average forecasts of aggregate output with respect to the aggregate TFP shock to the

elasticity of actual output with respect to the aggregate TFP shock, δ= ∂Et [yt ]
∂εat

/ ∂yt∂εat
.15 This

14Aggregate output data (real gross domestic productivity) is taken from the Federal Reserve Economic
Data data base, and we convert the aggregate data into per capita terms using the civilian non-institutional
population from the Bureau of Labor Statistics website. Total hours are defined as total nonfarm business
hours divided by the population. The monthly equity price series for the Standard and Poors 500 Composite
Price Index is logged, Hodrick–Precott-filtered, and averaged over quarterly frequencies (obtained from the
Center for Research in Security Prices). All data cover the period 1968Q4–2013Q4.

15We greatly appreciate one of the referees for suggesting this exercise.
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Figure 3. Degree of information confusion and equity volatility.

ratio serves as a proxy for the amount of confusion agents face. Figure 3 plots δ against
idiosyncratic volatility σi (left panel) and its relation to the equity price volatility (right
panel). An increase in σi raises information frictions so that δ falls and equity price
volatility rises as discussed before.

An important observation from this exercise is that the required amount of informa-
tion confusion needed to generate a high equity price volatility is quite small (δ being
around 0�885). Confusion is limited in equilibrium because the equity price partially
reveals information and the near-rational shock is small. Compared with the data, we
need only a small amount of confusion to obtain our main results. In a comparative
statics exercise that is available upon request, we find that the patterns discovered in
Figure 3 remain the same as we change the degree of strategic complementarity θ (since
θ is not a model primitive, but rather a reduced-form parameter, we can achieve this
variation in multiple ways).

6.2 Macro-financial disconnection

So far we have demonstrated the sharp differences between the financial market and
the real economy in terms of the volatility changes induced by dispersed information.
In this section we address another important aspect of the empirical data: the weak cor-
relation between the two. In our baseline model, volatilities in both sides of the econ-
omy are driven primarily by the same aggregate TFP shock, a feature that ensures the
model’s analytical tractability, but also leads to the counterfactual prediction that the
equity price and output are perfectly correlated. This issue, however, can be resolved by
considering a simple modification to the basic model with limited stock market partici-
pation.

Suppose that the continuum of islands I = [0�1] is partitioned into two groups I =
Ip ∪ In. Let Ip = [0�κ) denote the interval of islands that participate in the stock market
trading, while In = [κ�1] denotes the interval of nonparticipants with κ ∈ (0�1) being
the stock market participation rate. The household problem on participating islands
Ip is identical to the baseline model, while on nonparticipating islands only local labor
income is used to finance consumption. Instead of receiving an aggregate TFP shock,
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participating and nonparticipating islands are now subject to different group-specific
(log-linearized) TFP shocks that are common within groups: axt = ρaaxt−1 + εxat , x= p�n,
where εpat and εnat are IID Gaussian innovations with mean zero and variance σ2

a . Assume
that εpat and εnat are independent for all t.

We modify the model’s information structure as follows. The information set for in-
vestors and firms on island i ∈ Ip is characterized by Ipit = {Xp

i�t−k}∞k=0 with the signal

vectorXp
it = [apit� qt]ᵀ, which is identical to the baseline model except that the aggregate

TFP shock is replaced by the group-specific TFP shock. We maintain the assumption
of information separation between investor and shopper within each household. Alter-
nately, workers and firms on island j ∈ In are able to observe their group-specific TFP
shock ant and all idiosyncratic TFP shocks on nonparticipating islands perfectly. Islands
in In cannot observe stock prices or dividends, and only shoppers on those islands ob-
serve goods prices {pt(i)}i∈I . Information is segregated between the two groups.

In Appendix S1.3, we show that the equity price in this case is only affected by the
participants’ TFP shocks εpat and the near-rational errors. In addition, the dynamic inter-
actions between shareholding choices and the aggregate equity price will generate the
same unit root property in the equity price as in the basic model. Alternatively, aggregate
output is given by

yt = κ
[
M
p
y (L)ε

p
at +Mu

y (L)εut
] + (1 − κ) 1

ξ
[
1 − θ(1 − κ)](1 − ρaL)

εnat� (38)

where Mp
y (L) and Mu

y (L) are the decision rules of the participating islands, which are
determined by an equilibrium condition that is almost equivalent to the one in the ba-
sic model except for the appearance of κ (and appropriate changes in the steady-state
coefficients). We leave all the mathematical details to Appendix S1.3.

We provide intuition using (38). Suppose that κ is small and σi is large. Then the
modified model is able to generate large equity volatility due to the information con-
fusion mechanism, and the equity price is driven almost entirely by participants’ com-
mon TFP shocks εpat . Meanwhile, aggregate output remains smooth and is driven pre-
dominantly by nonparticipants’ common TFP shocks εnat , since κ is small. Given that
cov(εpat� ε

n
at) = 0, the modified model is able to generate a large equity price volatility,

while the equity price and output are weakly correlated.

7. Conclusion

We have developed a model of a production economy with dispersed information that
features smooth aggregate consumption (output) dynamics and highly volatile equity
prices. The key elements of our model are not assumptions on nonstandard preferences,
bubbles, or sentiments, but the introduction of dispersed information, near-rational ex-
pectations, incomplete markets, and the endogeneity of SDFs that are time-varying and
heterogeneous across population. The key for our model result is due to the different
impact of the higher-order beliefs about the average forecasts of aggregate demand and
the individual SDFs, together with the dynamic interaction between shareholdings and



300 Miao, Wu, and Young Theoretical Economics 16 (2021)

equity prices. From a technical point of view, we have proposed a two-step spectral fac-
torization method in the frequency domain, which can be applied to many other con-
texts that involve solving signal extraction problems with non-square systems.

Appendix A: Proofs of results in Section 3

We consider a general utility function

Ei

[ ∞∑
t=0

βtU(Cit�Nit)

]
�

where U is twice continuously differentiable and satisfies the usual concavity, mono-
tonicity, and Inada conditions for consumption Cit and labor Nit . Then the optimality
conditions from utility maximization give

Wit = −Un(Cit�Nit)
Uc(Cit�Nit)

Qt = Eit
[
Mit+1(Qt+1 +Dt+1

]
� Mit+1 = βUc(Cit+1�Nit+1)

Uc(Cit�Nit)
�

The (symmetric) deterministic steady state is characterized by the nonlinear system

Yi = Ci = C = Y =Nα

Wi =W =
(

1 − 1
ς

)
αNα−1

D=
(

1 −
(

1 − 1
ς

)
α

)
Nα

Q= β

1 −βD� Shi = 1

−Un
(
Nα�N

)
Uc

(
Nα�N

) = α
(

1 − 1
ς

)
Nα−1�

(39)

Suppose that (39) has a unique solution N > 0. We then obtain a unique deterministic
steady state.

Now we consider the log-linear approximation around the deterministic steady
state. We use a lowercase variable to denote its log deviation from the deterministic
steady state. We derive

uc(cit � nit)= −u1cit + u2nit� un(cit � nit)= u3cit + u4nit�

where u1, u2, u3, and u4 are functions of steady-state values, as well as the preference
parameters

u1 = −CUcc
Uc

> 0� u2 = UcnN

Uc

u3 = CUnc

Un
� u4 = UnnN

Un
�
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The Euler equation can be log-linearized as

qt = Eit

[
βqt+1 + (1 −β)dt+1

] +Eit[mit+1] + ut + vit�

where the stochastic discount factor has the general form

mit+1 = u1(cit − cit+1)− u2(nit − nit+1)�

The wage rate satisfies

wit = (u3 + u1)cit + (u4 − u2)nit � (40)

Substituting this equation into the log-linearized budget constraint yields

Ccit +Qshit+1 = (Q+D)shit +Ddt +WN(nit +wit)
= (Q+D)shit +Ddt +WN(1 + u4 − u2)nit +WN(u3 + u1)cit �

which in turn implies

cit = − Q

C −WN(u3 + u1)
shit+1 +

(
Q+D

C −WN(u3 + u1)

)
shit

+ D

C −WN(u3 + u1)
dt + WN(1 + u4 − u2)

C −WN(u3 + u1)
nit �

Substituting this expression for cit into the log-linearized SDF and Euler equation yields

u1(2Q+D)
C −WN(u3 + u1)

shit+1 = u1(Q+D)
C −WN(u3 + u1)

shit +Eit

[
u1Q

C −WN(u3 + u1)
shit+2 +�bit+1

]
+Eit

[
βqt+1 + (1 −β)dt+1

] − qt�

where �bit+1 ≡ bit − bit+1 and

bit ≡ u1D

C −WN(u3 + u1)
dt +

(
u1
WN(1 + u4 − u2)

C −WN(u3 + u1)
− u2

)
nit �

Define

α1 = u1(2Q+D)
C −WN(u3 + u1)

� α2 = u1(Q+D)
C −WN(u3 + u1)

� α3 = u1Q

C −WN(u3 + u1)
�

α4 = u1D

C −WN(u3 + u1)
� α5 =

(
u1
WN(1 + u4 − u2)

C −WN(u3 + u1)
− u2

)
�

We then obtain (22) and can verify that

α1 = α2 + α3; λs ≡ α2

α1
= Q+D

2Q+D ∈ (1/2�1)�

Thus we have proven Lemma 1.
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Log-linearizing (16) and (14), and using (40) to eliminate wit and nit , we derive[
1
α
(u4 − u2 + 1)−

(
1 − 1

ς

)]
yit + (u3 + u1)cit =

[
1
α
(u4 − u2 + 1)

]
ait + 1

ς
Eit[yt]�

Aggregating this equation yields (19), where

ξ=
1
α
(u4 − u2 + 1)−

(
1 − 1

ς

)
+ (u3 + u1)

1
α
(u4 − u2 + 1)

and

θ= 1

ς

(
1
α
(u4 − u2 + 1)−

(
1 − 1

ς

)
+ (u3 + u1)

) �
To ensure a stationary solution, we need to impose assumptions on technology and util-
ity such that θ ∈ (0�1).

For the utility function of Greenwood et al. (1988) used in our paper, we can simplify
the computation significantly. In particular, we can derive the deterministic steady state
in an explicit form,

Ni =N =
(
α

(
1 − 1

ς

)) 1
φ−α+1

� Yi = Ci = C = Y =
(
α

(
1 − 1

ς

)) α
φ−α+1

D =
(

1 −
(

1 − 1
ς

)
α

)(
α

(
1 − 1

ς

)) α
φ−α+1

� Wi =W =
(

1 − 1
ς

)
αNα−1�

and Q = β
1−βD, Shi = 1. Given Assumption 1, all equilibrium variables are positive and

C − N1+φ
1+φ > 0. Log-linearizing (8) yields wit =φnit . We can also compute that

bit = D

C − N1+φ

1 +φ
dt +

[
WN(1 +φ)−Nφ+1]

C − N1+φ

1 +φ
nit

and

α1 = 2Q+D
C − N1+φ

1 +φ
> 0� α2 = Q+D

C − N1+φ

1 +φ
> 0

α3 = Q

C − N1+φ

1 +φ
> 0� α4 = D

C − N1+φ

1 +φ
> 0

α5 = (1 +φ)W N −Nφ+1

C − N1+φ

1 +φ
= φNφ+1

C − N1+φ

1 +φ
> 0�
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Log-linearizing (14) yields

yit = ait + αnit =⇒ nit = 1
α
(yit − ait)�

Aggregating leads to nt = 1
α(yt − at). Log-linearizing (18) yields yt = α6dt + α7nt , where

α6 = D

Y
> 0� α7 = (1 +φ)W N

Y
> 0�

Using the above definitions of α1�α2� � � � �α7, we can easily establish Lemma 1.

Appendix B: Proofs of results in Section 4

Proof of Lemma 2. By the Wiener–Hopf prediction formula,

Eit[yt] = aay(L)ait + aqy (L)qt = aay(L)(at + εit)+ aqy (L)qt�

where aay(z) and aqy (z) can be computed using (S3.3). By the LLN (15),

Et[yt] = aay(L)
(
at +

∫
I
εit di

)
+ aqy (L)qt = aay(L)a(L)εat + aqy (L)qt�

In the stationary equilibrium, the equity price can be represented as

qt =Ma
q(L)εat +Mu

q (L)εut�

whereMa
q(z) andMu

q (z) are some analytic functions inH2(D). By the Parseval theorem,

Var
(
Et[yt]

) = ∥∥aay(z)a(z)+ aqy (z)Ma
q(z)

∥∥2
H2σ

2
a + ∥∥aqy (z)Mu

q (z)
∥∥2

H2σ
2
u

<
∥∥aay(z)a(z)+ aqy (z)Ma

q(z)
∥∥2

H2σ
2
a + ∥∥aqy (z)Mu

q (z)
∥∥2

H2σ
2
u + ∥∥aay(z)∥∥2

H2σ
2
i

= Var
(
Eit[yt]

)
�

We can write Eit[yt] + et = yt , where et is uncorrelated with Eit[yt]. Thus,

Var(yt)≥ Var
(
Eit[yt]

)
�

Combining the two inequalities above gives us the desired result.

Proof of Theorem 1. By (21),

Var(yt)= Var
(
at

ξ
+ θEt[yt]

)
�

Using the triangular inequality and Lemma 2, we have

√
Var(yt)≤ √

Var(at/ξ)+ θ
√

Var
(
Et[yt]

)
<

∥∥a(z)∥∥H2σa

ξ
+ θ√Var(yt)�
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Thus,

√
Var(yt) <

∥∥a(z)∥∥H2σa

(1 − θ)ξ �

Using (28), we obtain the desired result.

Appendix C: Proofs of results in Section 5

Proof of Lemma 3. By (22) and (31), we obtain

α1s
h
it+1 = α2s

h
it − qt +χit + ut + vit �

Plugging (32), (33), and (35) into the equation above, we obtain

α1M
i
s(L)εit + α1M

v
s (L)vit

= α2LM
i
s(L)εit + α2LM

v
s (L)vit +π1(L)(εat + εit)

+ [
π2(L)− 1

]( π1(L)

1 −π2(L)
εat + u(L)

1 −π2(L)
εut

)
+ u(L)εut + vit �

Matching coefficients on the two sides of the equation yields

α1M
i
s(z)= α2zM

i
s(z)+π1(z)� α1M

v
s (z)= α2zM

v
s (z)+ 1�

We then establish this lemma and obtainMv
s (z)= 1

α1−α2z
.

Proof of Theorem 2. Consider the equilibrium conjecture in (33). Given the assump-
tion that u(z)= π1(z), it follows that

qt = π1(L)

1 −π2(L)
εat + π1(L)

1 −π2(L)
εut �

For qt and ut to be causal stationary processes, we need π1(z)
1−π2(z)

and π1(z) to be in the

Hardy space H2(D). We verify this condition later.
Step 1. We start by deriving the Wold representation for the signal process {Xit} given

in (34). We compute the covariance generating function

Sx(z)=H(z)�ηH
(
z−1)ᵀ =

⎡
⎢⎢⎢⎢⎣

σ2
a + σ2

i

π1
(
z−1)

1 −π2
(
z−1)σ2

a

π1(z)

1 −π2(z)
σ2
a

π1(z)π1
(
z−1)(

1 −π2(z)
)(

1 −π2
(
z−1))(

σ2
a + σ2

u

)
⎤
⎥⎥⎥⎥⎦ �

where

�η =
⎡
⎢⎣σ

2
a 0 0

0 σ2
i 0

0 0 σ2
u

⎤
⎥⎦
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is the covariance matrix for the innovation vector ηit = [εat� εit � εut]′. We wish to de-
rive the spectral factorization Sx(z)= �(z)�(z−1)ᵀ. Applying the triangular factorization
method described in Appendix S3,16 we obtain

�(z)=

⎡
⎢⎢⎢⎣
σe

σ2
a

σp

0
π1(z)

1 −π2(z)
σp

⎤
⎥⎥⎥⎦ � �−1(z)=

⎡
⎢⎢⎢⎣

1
σe

− σ2
a

σ2
pσe

1 −π2(z)

π1(z)

0
1 −π2(z)

π1(z)σp

⎤
⎥⎥⎥⎦ �

where we define

σ2
e ≡ σ2

i + σ2
aσ

2
u

σ2
a + σ2

u

� σ2
p ≡ σ2

a + σ2
u�

Note that

det�(z)= σpσe π1(z)

1 −π2(z)
�

By Theorem 4.6.11 in Lindquist and Picci (2015), �(z) is a Wold spectral factor if and only
if π1(z)

1−π2(z)
has no roots in the open unit disk. We make this assumption and then obtain

the Wold representation Xit = �(L)eit , where eit is a two-dimensional Wold fundamen-
tal innovation vector with zero mean and identity covariance matrix.

Step 2. We next solve for the equilibrium quantities. We conjecture that yit =
My(L)ηit , where My(z) = [Ma

y (z)�M
i
y(z)�M

u
y (z)], and Ma

y (z), M
i
y(z), and Mu

y (z) are all

in H2(D). Aggregation leads to aggregate output yt =My(z)Iyηit , where

Iy =
⎡
⎢⎣1 0 0

0 0 0
0 0 1

⎤
⎥⎦ �

Using the Wiener–Hopf prediction formula, we derive that

Eit[yt] = [
ψy(L)

]
+�

−1(L)Xit�

where [·]+ is the annihilation operator and the z-transform of the operator ψy is

ψy(z)= Syx(z)
(
�−1(z−1))ᵀ�

The cross-spectrum is given by

Syx(z)=My(z)Iy�ηH
ᵀ(
z−1)

= [
Ma
y (z)�0�Mu

y (z)
]⎡
⎢⎣σ

2
a 0 0

0 σ2
i 0

0 0 σ2
u

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1
π1

(
z−1)

1 −π2
(
z−1)

1 0

0
π1

(
z−1)

1 −π2
(
z−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

16Following Rondina and Walker (2020), we transform the lower triangular matrix to the upper triangular
form by right multiplication of an unitary matrix, which eases the algebra.
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=
[
Ma
y (z)σ

2
a�

π1
(
z−1)

1 −π2
(
z−1)(

Ma
y (z)σ

2
a +Mu

y (z)σ
2
u

)]
�

Routine algebra reveals that

ψy(z)= Syx(z)
(
�−1(z−1))ᵀ

=
[(
σ2
a

σe
− σ4

a

σ2
pσe

)
Ma
y (z)− σ2

aσ
2
u

σ2
pσe

Mu
y (z)�

Ma
y (z)σ

2
a +Mu

y (z)σ
2
u

σp

]
�

Since Ma
y (z)�M

u
y (z) ∈ H2(D), both components of ψy(z) are in H2(D). Thus, [ψy(z)]+ =

ψy(z). In the innovation form, we have

Eit[yt] = [
ψy(L)

]
+�

−1(L)H(L)ηit

= [
(h1 + h3)M

a
y (L)+ (h4 − h2)M

u
y (L)�h1M

a
y (L)− h2M

u
y (L)�

h3M
a
y (L)+ h4M

u
y (L)

]
ηit�

where we define

h1 ≡ σ2
a

σ2
e

− σ4
a

σ2
pσ

2
e

� h2 ≡ σ2
aσ

2
u

σ2
pσ

2
e

h3 ≡ σ2
a

σ2
p

+ σ6
a

σ4
pσ

2
e

− σ4
a

σ2
pσ

2
e

� h4 ≡ σ4
aσ

2
u

σ4
pσ

2
e

+ σ2
u

σ2
p

�

Plugging yit =My(L)ηit and the preceding conditional expectation Eit[yt] into (19)
and matching coefficients, we obtain a system of linear equations

Ma
y (z)= 1

ξ
+ θ[(h1 + h3)M

a
y (z)+ (h4 − h2)M

u
y (z)

]
Mu
y (z)= θ[h3M

a
y (z)+ h4M

u
y (z)

]
Mi
y(z)= 1

ξ
+ θ[h1M

a
y (z)− h2M

u
y (z)

]
�

which yields the solution

Ma
y (z)= 1

ξm1
� Mu

y (z)= m2

ξm1

Mi
y(z)= 1

ξ
+ θh1 − h2m2

ξm1
�

where we define

m1 ≡ 1 − (h4 − h2)h3θ

1 − θh4
− θ(h1 + h3)� m2 ≡ h3θ

1 − θh4
�

The preceding solution is independent of z, confirming our previous conjecture.
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Step 3. We proceed to the financial side of the model and compute the conditional
expectations χit in (31). Using (35) and the Wiener–Hopf prediction formula, we com-
pute the conditional expectation Eit[shit+2] = [ψs(L)]+�−1(L)Xit . where the z-transform
of the operator ψs is given by

ψs(z)= z−1Ssx(z)
(
�−1(z−1))ᵀ

and the cross-spectrum is given by

Ssx(z)= [
0�Mi

s(z)�0
]⎡
⎢⎣σ

2
a 0 0

0 σ2
i 0

0 0 σ2
u

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1
π1

(
z−1)

1 −π2
(
z−1)

1 0

0
π1

(
z−1)

1 −π2
(
z−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

= [
Mi
s(z)σ

2
i �0

]
�

Thus,

ψs(z)= 1
z

[
Ssx(z)

(
�−1(z−1))ᵀ] = 1

z

[
σ2
i

σe
Mi
s(z)�0

]
�

There is a pole at zero. Using a lemma in the Appendix A of Hansen and Sargent (1980),
we can compute that

[
ψs(z)

]
+ =ψs(z)−

lim
z→0

zψs(z)

z
= 1
z

[
σ2
i

σe

(
Mi
s(z)−Mi

s(0)
)
�0

]
�

It follows that

[
ψs(z)

]
+�

−1(z)=
[
τ1
Mi
s(z)−Mi

s(0)
z

�−τ2
1 −π2(z)

π1(z)

Mi
s(z)−Mi

s(0)
z

]
�

where we define the signal-to-noise ratios

τ1 ≡ σ2
i

σ2
e

∈ (0�1)� τ2 ≡ τ1
σ2
a

σ2
p

∈ (0�1)� (41)

By Lemmas 1 and 3, we derive

Mi
s(z)−Mi

s(0)= π1(z)

α1 − α2z
− π1(0)

α1
= 1
α3

[
(1 − λs)π1(z)

1 − λsz − (1 − λs)π1(0)
]
�

Thus,

Eit

[
shit+2

] = 1
α3L

[
(1 − λs)π1(L)

1 − λsL − (1 − λs)π1(0)
][
τ1�−τ2

1 −π2(L)

π1(L)

]
Xit� (42)

Note that τ2 < τ1 reflects the fact that equity prices do not fully aggregate information
due to near-rational forecast errors.
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Now we conjecture that dt =Md(L)ηit , nit =Mn(L)ηit , and bit =Mb(L)ηit , where

Md(z)= [
Ma
d(z)�0�Mu

d (z)
]
� Mn(z)= [

Ma
n(z)�M

i
n(z)�M

u
n (z)

]
Mb(z)= [

Ma
b(z)�M

i
b(z)�M

u
b (z)

]
�

and each component of these vectors is in H2(D). Plugging these equations and (29)
into (24), (25), and nit = 1

α(yit − ait), and matching coefficients, we can derive that

Md(z) =
[

1
α6

(
1 − α7

α

)
Ma
y (z)+ α7

αα6
�0�

1
α6

(
1 − α7

α

)
Mu
y (z)

]

Mn(z) = 1
α

[
Ma
y (z)− 1�Mi

y(z)− 1�Mu
y (z)

]
Mb(z) = α4Md(z)+ α5Mn(z)�

Note that we have used the assumption that ait = εat + εit . Since we have shown above
thatMy(z) is independent of z,Md(z),Mn(z), andMb(z) are all independent of z.

Using the Wiener–Hopf prediction formula, we compute

Eit[�bit+1] = Eit

[(
1 −L−1)bit] = Eit

[(
1 −L−1)Mb(L)ηit

] = [
ψb(L)

]
+�

−1(L)Xit�

where the z-transform of the operator ψb is given by

ψb(z)= z− 1
z

Sbx(z)
(
�−1(z−1))ᵀ

and the cross-spectrum Sbx(z) is given by

Sbx(z)=Mb(z)�ηH
(
z−1)ᵀ

=
[
Ma
b(z)σ

2
a +Mi

b(z)σ
2
i �

π1
(
z−1)

1 −π2
(
z−1)(

Ma
b(z)σ

2
a +Mu

b (z)σ
2
u

)]
�

It follows that

ψb(z)= z− 1
z

Sbx(z)
(
�−1(z−1))ᵀ

= z− 1
z

[(
σ2
a

σe
− σ4

a

σ2
pσe

)
Ma
b(z)− σ2

aσ
2
u

σ2
pσe

Mu
b (z)+ σ2

i

σe
Mi
b(z)�

Ma
b(z)σ

2
a +Mu

b (z)σ
2
u

σp

]
�

The complex function ψb(z) has a first-order pole at z = 0. Following Hansen and Sar-
gent (1980), the annihilation operation is given by

[
ψb(z)

]
+ =ψb(z)−

lim
z→0

zψb(z)

z
�
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It follows immediately that

[
ψb(z)

]
+ =ψb(z)− (−1)

z

[(
σ2
a

σe
− σ4

a

σ2
pσe

)
Ma
b(0)− σ2

aσ
2
u

σ2
pσe

Mu
b (0)+ σ2

i

σe
Mi
b(0)�

Ma
b(0)σ

2
a +Mu

b (0)σ
2
u

σp

]

=ψb(z)+ 1
z

[
h1σeM

a
b(0)− h2σeM

u
b (0)+ σ2

i

σe
Mi
b(0)�

Ma
b(0)σ

2
a +Mu

b (0)σ
2
u

σp

]
�

We can then derive that

Eit[�bit+1] = [
ψb(L)

]
+�

−1(L)Xit

= 1
z

[
G
(1)
b (L)−G(1)b (0)�

1 −π2(L)

π1(L)

(
G
(2)
b (L)−G(2)b (0)

)]
Xit� (43)

where we define the functions

G(1)b (z) ≡ (z− 1)
[
h1M

a
b(z)− h2M

u
b (z)+ τ1M

i
b(z)

]
G(2)b (z) ≡ (z− 1)

[
h3M

a
b(z)+ h4M

u
b (z)− τ2M

i
b(z)

]
�

Using the same method, we can compute the conditional expectation of future divi-

dends

Eit[dt+1] = 1
L

[
G
(1)
d (L)−G(1)d (0)�

1 −π2(L)

π1(L)

(
G
(2)
d (L)−G(2)d (0)

)]
Xit� (44)

where we define the functions

G(1)d (z)≡ h1M
a
d(z)− h2M

u
d (z)� G(2)d (z)≡ h3M

a
d(z)+ h4M

u
d (z)�

Since Mb(z), Md(z), and My(z) are constant independent of z, it follows from the

previous construction that G(1)d (z) and G(2)d (z) are constant independent of z, but

G
(1)
b (z) andG(2)b (z) are linear functions of z.

We then use the Wiener–Kolmogorov formula to compute Eit[qt+1] =
[ψq(L)]+�−1(L)Xit , where the z-transform of the operator ψq is given by

ψq(z)= 1
z
[0�1]Sx(z)

(
�−1(z−1))ᵀ = 1

z
[0�1]�(z)= 1

z

[
0�

π1(z)

1 −π2(z)
σp

]
�
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where the second equality follows from the previous definition of Sx(z). Thus,

[
ψq(z)

]
+�

−1(z)=
[

1
z

[
0�

π1(z)

1 −π2(z)
σp

]]
+
�−1(z)

= 1
z

[
0�

π1(z)

1 −π2(z)
σp

]
�−1(z)− 1

z

[
0�

π1(0)
1 −π2(0)

σp

]
�−1(z)

=
[

0�
1
z

(
1 − 1 −π2(z)

π1(z)

π1(0)
1 −π2(0)

)]

Eit[qt+1] =
[

0�
1
z

(
1 − 1 −π2(z)

π1(z)

π1(0)
1 −π2(0)

)]
Xit�

(45)

Step 4. Derive the solution for π1(z) and π2(z). Plugging the expressions for the con-
ditional expectations (42), (43), (44), and (45) derived in Step 3 into (31), we obtain an ex-
pression for χit . Matching coefficients of Xit = [ait� qt]′ with those in (32), we construct
the equilibrium conditions

zπ1(z) = 1 − λs
1 − λsz τ1π1(z)− (1 − λs)τ1π1(0)

+ (1 −β)[G(1)d (z)−G(1)d (0)
] +G(1)b (z)−G(1)b (0) (46)

and

zπ2(z)= 1 −π2(z)

π1(z)

{
− 1 − λs

1 − λsz τ2π1(z)+ (1 − λs)τ2π1(0)− βπ1(0)
1 −π2(0)

+ (1 −β)[G(2)d (z)−G(2)d (0)
] +G(2)b (z)−G(2)b (0)

}
+β� (47)

Simplifying (46) yields

π1(z)= (1 − λsz)
[
x(z)− (1 − λs)τ1π1(0)

]
P1(z)

� (48)

where we define the functions

P1(z)≡ −λsz2 + z− (1 − λs)τ1

and

x(z)≡ (1 −β)[G(1)d (z)−G(1)d (0)
] +G(1)b (z)−G(1)b (0)� (49)

By the analysis in Step 3, x(z) is a linear function of z.
Since λs ∈ (1/2�1) by Lemma 1 and τ1 ∈ (0�1), we have P1(0) = −(1 − λs)τ1 < 0,

P1(1) = (1 − λs)(1 − τ1) > 0, and limz→+∞ P1(z) = −∞. Thus, P1(z) = 0 has two real
roots, denoted by γ1 ∈ (0�1) and γ2 > 1. We can then write

π1(z)= (1 − λsz)
−λs(z− γ2)(z− γ1)

[
x(z)− (1 − λs)τ1π1(0)

]
�
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To remove the pole at γ1, we set π1(0) such that

x(γ1)− (1 − λs)τ1π1(0)= 0�

which implies that

π1(0)= x(γ1)

(1 − λs)τ1
�

We then collect terms and simplify expressions to derive

π1(z)= (1 − λsz)
[
x(z)− x(γ1)

]
−λs(z− γ1)(z− γ2)

� (50)

Since the pole |γ1| < 1 is removed and x(z) is a linear function of z, we deduce that
π1(z) ∈ H2(D).

Next consider the equilibrium condition (47). It is straightforward to show that

π1(z)

1 −π2(z)
= κ(z)−βπ1(0)/

(
1 −π2(0)

)
z−β � (51)

where we define the function

κ(z)≡ (1 −β)[G(2)d (z)−G(2)d (0)
] +G(2)b (z)−G(2)b (0)

−
[
(1 − λs)τ2

1 − λsz − z
]
π1(z)+ (1 − λs)τ2π1(0)� (52)

Since π1(z) ∈ H2(D), λs ∈ (1/2�1) by Lemma 1,G(2)d (z) is a constant, andG(2)b (z) is linear
in z, it follows that κ(z) ∈ H2(D).

As mentioned earlier, we need π1(z)
1−π2(z)

to be analytical in the unit disk. Thus,
we should remove the pole at z = β by setting the constant π2(0) such that κ(β) −
βπ1(0)/(1 −π2(0))= 0. Solving this equation yields

π2(0)= 1 − π1(0)β
κ(β)

�

We can then rewrite (51) as

π1(z)

1 −π2(z)
= κ(z)− κ(β)

z−β � (53)

Since we have removed the pole at z = β and κ(z) ∈ H2(D), it follows that π1(z)
1−π2(z)

∈
H2(D).

By our constructive proof above, we conclude that the equilibrium solution is char-
acterized by unique rational functions of z in the frequency domain. As mentioned ear-
lier, to ensure the spectral factorization to be valid, we need to impose the assumption
that the equation

π1(z)

1 −π2(z)
= κ(z)− κ(β)

z−β = 0

has no roots inside the open unit disk. The proof is then complete.
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Proof of Theorem 3. We first show that the denominator of the expression for π1(z)

in (48) has a unit root as σi → ∞. Consider the quadratic function

P1(z)≡ −λsz2 + z− (1 − λs)τ1�

Since

lim
σi→∞τ1 = lim

σi→∞
σ2
i

σ2
e

= 1�

we have

lim
σi→∞P1(z)= −λsz2 + z− (1 − λs)= −λs(z− 1)

(
z− 1 − λs

λs

)
�

Since λs ∈ (1/2�1), the root 1−λs
λs

is located inside the unit circle. We know that P1(z) has
one root inside the unit circle and the other outside the unit circle. By the continuous
dependence of roots on coefficients, the larger root γ2 of P1(z) gradually converges to
the unit root as σi → ∞.

We next show that the numerator of π1(z) in (48) or (50) does have a zero at z = 1
when σi → ∞. By (50), it suffices to show that the analytic function x(z) − x(γ1) does
not have a zero at z = 1. Using the result derived in the proof of Theorem 2, we can show
that limσi→∞ h1 = limσi→∞ h2 = 0, limσi→∞G(1)d (z) = 0, and limσi→∞G(1)b (z) = α5

α (
1
ξ −

1)(z− 1). It follows from (49) that limσi→∞ x(z)= α5(1−ξ)
αξ z. Therefore,

lim
σi→∞

[
x(1)− x(γ1)

] = α5(1 − ξ)
αξ

(
1 − lim

σi→∞γ1

)
= α5(1 − ξ)

αξ

(
1 − 1 − λs

λs

)
�

By Assumption 1, we know that ξ ≡ 1+φ−α(1−1/ς)
1+φ ∈ (0�1), as φ > 0 and ς > 1. It follows

from λs ∈ ( 1
2 �1) that

lim
σi→∞

[
x(1)− x(γ1)

] 
= 0�

Hence, π1(z) does not converge to zero at z = 1 when σi → ∞, but it has a pole at z =
limσi→∞ γ2 = 1. Since π1(z) is rational in the frequency domain, a pole at the unit circle
is sufficient to ensure that

lim
σi→∞

∥∥π1(z)
∥∥

H2 → ∞�

Now we wish to show that the analytic function π1(z)
1−π2(z)

has no zero at z = 1 as σi →
∞. We need only to consider the equation κ(z)− κ(β) = 0 by (53). We can rewrite the
expression for κ(z) in (52) as

κ(z)=A(z)−
[
(1 − λs)τ2

1 − λsz − z
]
π1(z)+ (1 − λs)τ2π1(0)�

whereA(z) is a linear function of z. Plugging (50) into this equation, we can derive

κ(z)− κ(β) =A(z)+ (1 − λs)τ2π1(0)− κ(β)

+
[
x(z)− x(γ1)

][
(1 − λs)τ2 − (1 − λsz)z

]
λs(z− γ1)(z− γ2)

�
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The linear function A(z) is bounded in the closed unit disk, sup|z|≤1 |A(z)| < ∞.
Moreover, we know that π1(z) is analytic and rational inside the open unit disk |z| < 1,
even when σi → ∞. Thus, π1(0) and κ(β) are finite for 0 < β < 1. It follows that the
expression on the first line of the right-hand side of the equation above is bounded at
z = 1 when σi → ∞.

Consider the expression on the second line of the equation above. The denominator
converges to zero at z = 1 as σi → ∞. For the numerator, we have

lim
σi→∞

[
x(z)− x(γ1)

][
(1 − λs)τ2 − (1 − λsz)z

]∣∣∣
z=1

=
[
α5(1 − ξ)
αξ

(
1 − 1 − λs

λs

)]
(1 − λs)

(
σ2
a

σ2
p

− 1
)


= 0�

where we use the previous definition of σ2
e to derive

lim
σi→∞τ2 = lim

σi→∞
σ2
aσ

2
i

σ2
eσ

2
p

= σ2
a

σ2
p

∈ (0�1)�

We conclude that κ(1)− κ(β) converges to infinity as σi → ∞.
Therefore, π1(z)

1−π2(z)
does not have a zero at z = 1 when σi → ∞, but it has a pole at

z = limσi→∞ γ2 = 1. This implies that the rational function π1(z)
1−π2(z)

will have an infinite
norm at the limit,

lim
σi→∞

∥∥∥∥ π1(z)

1 −π2(z)

∥∥∥∥
H2

→ ∞�

This completes the proof.
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