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Trust and betrayals:
Reputational payoffs and behaviors without commitment

Harry Pei
Department of Economics, Northwestern University

I study a repeated game in which a patient player wants to win the trust of some
myopic opponents, but can strictly benefit from betraying them. His benefit from
betrayal is strictly positive and is his persistent private information. I characterize
every type of patient player’s highest equilibrium payoff and construct equilib-
ria that attain this payoff. Since the patient player’s Stackelberg action is mixed
and motivating the lowest-benefit type to play mixed actions is costly, every type’s
highest equilibrium payoff is strictly lower than his Stackelberg payoff. In every
equilibrium where the patient player approximately attains his highest equilib-
rium payoff, no type of the patient player plays stationary strategies or completely
mixed strategies.

Keywords. Reputation, no commitment type, equilibrium payoff, equilibrium
behavior.

JEL classification. C73, D82, D83.

1. Introduction

I examine patient players’ returns from good reputations when it is common knowledge
that they have strict incentives to betray their opponents’ trust. My model features a
sequential-move trust game (Figure 1) played repeatedly between a patient seller (player
1) and an infinite sequence of myopic buyers (players 0), arriving one in each period and
each plays the game only once. In every period, the seller wants to win a buyer’s trust,
but has a strict incentive to exert low effort once trust is granted. Her cost of effort is
perfectly persistent and is her private information, which I call her type. Each buyer
observes all the past outcomes and prefers to trust the seller only when the probability
of high effort exceeds some cutoff.1

My contribution is to show that when all types of the seller can strictly benefit from
betraying buyers’ trust and their optimal commitment action is nontrivially mixed, the
cost of providing the lowest-cost type incentives to play mixed actions leads to a clean
characterization of every type’s highest equilibrium payoff. In addition, the lowest-cost

Harry Pei: harrydp@northwestern.edu
I thank Daron Acemoglu, Ricardo Alonso, Guillermo Caruana, Isa Chaves, Mehmet Ekmekci, Jeff Ely, Drew
Fudenberg, Olivier Gossner, Bruno Jullien, Aditya Kuvalekar, Elliot Lipnowski, Debraj Ray, Joel Sobel, Bruno
Strulovici, Saturo Takahashi, Jean Tirole, Juuso Toikka, Tristan Tomala, Alex Wolitzky, Muhamet Yildiz, and
two anonymous referees for helpful comments.

1Aside from business transactions, the trust game is also applicable to the study of capital taxation (Phe-
lan 2006), monetary policy (Barro 1986), political economy (Tirole 1996), and so on.

© 2021 The Author. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at https://econtheory.org. https://doi.org/10.3982/TE4182

https://econtheory.org/
mailto:harrydp@northwestern.edu
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://econtheory.org
https://doi.org/10.3982/TE4182


450 Harry Pei Theoretical Economics 16 (2021)

Figure 1. The stage game, where θ ∈ (0�1), b > 0, c > 0.

type’s behavior in every seller-optimal equilibrium differs from that of the Stackelberg
commitment types in the existing reputation literature who mechanically play the same
mixed action in every period.

Theorem 1 characterizes every type of patient seller’s highest equilibrium payoff,
which equals the product of her Stackelberg payoff and a term called the purchasing
probability. The latter is the ratio between the lowest-cost type’s payoff from exerting
high effort and the lowest-cost type’s (mixed) Stackelberg payoff.

To understand this characterization, notice that first, the lowest-cost type has no
good candidate to imitate in the repeated incomplete information game. As a result, her
payoff is no more than her highest equilibrium payoff in a repeated complete informa-
tion game where her cost is common knowledge. The latter equals her payoff from high
effort according to Fudenberg et al. (1990). Intuitively, she needs to exert effort with pos-
itive probability so as to receive the buyer’s trust and, therefore, exerting effort whenever
she is trusted is one of her best replies, from which her payoff is no more than that from
high effort.

For the purchasing probability term, consider a high-cost type’s payoff from imitat-
ing the lowest-cost type in a static setting. Keeping the lowest-cost type’s payoff fixed,
reducing the probability of high effort increases the high-cost type’s payoff. The buyer’s
incentive to trust yields a lower bound on the probability of high effort, which is binding
under the seller’s Stackelberg action. The purchasing probability term is the maximal
probability that the buyer plays trust when the lowest-cost type plays the Stackelberg
action and receives payoff no more than her payoff from high effort.

My result implies that the highest equilibrium payoff for every high-cost type is
strictly greater than her payoff under complete information, but is strictly lower than
her Stackelberg payoff. The intuition for the first part is similar to models with mixed-
strategy commitment types surveyed by Mailath and Samuelson (2006), wherein every
high-cost type can free-ride on the effort of the lowest-cost type, and when the lowest-
cost type mixes, the high-cost type can benefit from her private information in multiple
periods. The second part is novel and is driven by the fact that the lowest-cost type must
be incentivized to play mixed actions. Since the seller’s Stackelberg action is mixed and
buyers cannot observe the seller’s mixed actions, the cost of providing mixing incen-
tives prevents every type of seller from attaining her Stackelberg payoff. As the lowest
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cost in the support of the buyers’ prior belief goes to zero, the cost of providing incen-

tives vanishes, and every type’s highest equilibrium payoff converges to her Stackelberg

payoff.

Theorem 2 shows that if the seller is patient and has at least two types, then in every

equilibrium that approximately attains her highest equilibrium payoff, no type mixes

between high and low effort at every on-path history. This conclusion extends to a type

whose cost of high effort is zero. It implies that every type has a strict incentive at some

histories even when she is indifferent between high and low effort in the one-shot game.

For some intuition, suppose toward a contradiction that the lowest-cost type is in-

different in every period. Then exerting low effort in every period is the lowest-cost

type’s best reply, which implies that every high-cost type exerts low effort for sure in

every period. The reputation result in Fudenberg and Levine (1989) implies that when

the buyers are facing the high-cost type, they will learn her equilibrium behavior in a

bounded number of periods, after which they will stop trusting, leaving the seller with a

continuation value of zero. This contradicts the presumption that every high-cost type

approximately attains her highest equilibrium payoff.

Related literature The standard reputation models such as Fudenberg and Levine

(1989, 1992), Gossner (2011), and Mathevet et al. (2019) assume that with positive prob-

ability, the patient player is committed and mechanically plays the same action.2 They

derive results that rule out equilibria in which the patient player receives a low payoff.

By contrast, I study a model in which all types are rational. Although my model cannot

rule out low-payoff equilibria, the rational types’ incentive constraints lead to a sharp

characterization of the patient player’s highest equilibrium payoff when the Stackelberg

action is mixed.3 Another strand of work (e.g., Board and Meyer-ter-Vehn 2013, Liu and

Skrzypacz 2014) characterizes the patient player’s behavior in Markov equilibria. By con-

trast, my Theorem 2 studies the common properties of all seller-optimal equilibria.

In terms of rationalizing commitment types, Weinstein and Yildiz (2016) provide a

strategic foundation for nonstationary pure-strategy commitment types in finitely re-

peated games by constructing a strategic type whose behavior coincides with that of the

nonstationary commitment type. My results are complementary to theirs by examining

the strategic foundations for mixed-strategy commitment types in infinitely repeated

games.

2These commitment types are also present in models of credibility such as Sobel (1985) and Benabou
and Laroque (1992).

3Such a characterization is not obtained in commitment type models for sequential-move stage games.
This is because when the buyer chooses N in period t, future buyers cannot observe the seller’s action
in period t, i.e., the seller’s actions are not statistically identified. Theorem 3.1 in Fudenberg and Levine
(1992) implies that in commitment-type reputation models with mixed-strategy commitment types, the
patient seller’s payoff lower bound is zero and her payoff upper bound is her Stackelberg payoff. However,
their results do not imply that the payoff upper bound is tight and, therefore, cannot characterize what the
patient seller’s highest equilibrium payoff is.
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My paper also contributes to the rational-type repeated game literature. Aumann
and Maschler (1995) study repeated zero-sum games with one-sided private informa-
tion. Hart (1985) and Shalev (1994) characterize the set of equilibrium payoffs in re-
peated games with one-sided private information and without discounting. In dis-
counted repeated games, Hörner et al. (2011) and Pȩski (2014) characterize the set of
equilibrium payoffs when all players’ discount factors are arbitrarily close to 1. Cripps
and Thomas (2003) show that when the informed player is arbitrarily patient and the
uninformed player’s discount factor is bounded away from 1, Shalev’s characterization
remains a necessary condition for being an equilibrium payoff, but it is not sufficient in
general. Focusing on games in which the informed player is patient and the uninformed
players are impatient, I identify conditions that are both necessary and sufficient for be-
ing an equilibrium payoff.

2. Model

Time is discrete, indexed by t = 0�1�2� � � � . A long-lived seller (she, player 1) with dis-
count factor δ ∈ (0�1) plays the stage-game in Figure 1 against an infinite sequence of
myopic buyers (he, player 0), arriving one in each period and each playing the game
only once. The buyer moves first, deciding whether to trust the seller (action T ) or not
(action N). If he chooses N , then both players’ payoffs are normalized to 0. If he chooses
T , then the seller chooses between high effort (action H) and low effort (action L). If the
seller chooses L, then her payoff is 1 and the buyer’s payoff is −c. If the seller chooses
H, then her payoff is 1 − θ and the buyer’s payoff is b. In period t, let yt ∈ {N�H�L} be
the stage-game outcome and let u1(θ� yt) be the seller’s stage-game payoff.

Both b and c are strictly positive and are common knowledge among players, while
θ ∈ � ≡ (0�1) is constant over time and is the seller’s private information (or her type).
To simplify the exposition, I assume that � ≡ {θ1� θ2} with 0 < θ1 < θ2 < 1. All my results
generalize to any finite number of types. I briefly discuss this extension in Section 5, and
the details can be found in the working paper version (Pei 2020b). The buyers have a full
support prior belief π ∈ �(�).

The game’s past outcomes can be perfectly monitored. Let ht = {ys}t−1
s=0 ∈ Ht be a

public history with H ≡ ⋃+∞
t=0 Ht . Let σ0 : H → �{T�N} be the buyers’ strategy. Let σ1 ≡

(σθ)θ∈� be the seller’s strategy with the set of public histories σθ : H → �{H�L}. Type θ

chooses σθ to maximize her discounted average payoff E(σ0�σθ)[∑∞
t=0(1 − δ)δtu1(θ� yt)],

where E
(σ0�σθ)[·] is the expectation operator under the probability measure induced by

(σ0�σθ).

Benchmarks Since every type of seller has a strict incentive to choose L after the buyer
plays T , the unique stage-game equilibrium outcome is N from which the seller’s payoff
is 0. If the seller can optimally commit to an action α1 ∈ �{H�L} before the buyer moves,
then every type’s optimal commitment (i.e., Stackelberg action) is to play H with proba-
bility γ∗ ≡ c

b+c and play L with complementary probability. For every j ∈ {1�2}, type θj ’s
Stackelberg payoff is 1 − γ∗θj .
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In a repeated complete information game in which the buyers know θ, the seller’s
equilibrium payoff cannot exceed 1 − θ according to the folk theorem result in Fuden-
berg et al. (1990), which is strictly lower than her Stackelberg payoff 1 − γ∗θ. This is
because each buyer has an incentive to play T only when he expects the seller to choose
H with strictly positive probability. Therefore, playing H at every history in which the
buyer plays T is the seller’s best reply, from which her discounted average payoff is no
more than 1 − θ.

3. Results

The seller’s payoff is v ≡ (v1� v2) ∈R
2, in which vj represents type θj ’s discounted average

payoff. Let v∗ ≡ (v∗
1� v

∗
2) with

v∗
j ≡ (

1 − γ∗θj
)︸ ︷︷ ︸

type θj ’s Stackelberg payoff

1 − θ1

1 − γ∗θ1︸ ︷︷ ︸
purchasing probability

for j ∈ {1�2}� (3.1)

Theorem 1 shows that v∗
j is type θj patient seller’s highest equilibrium payoff and that

the highest equilibrium payoffs for all types can be approximately attained in the same
equilibrium.

Theorem 1. For every ε > 0, there exists δ ∈ (0�1) such that for every δ ∈ (δ�1), the fol-
lowing statements hold:

(i) There exists no Bayes Nash equilibrium (BNE) in which type θ1’s payoff is strictly
more than v∗

1 . There exists no BNE in which type θ2’s payoff is more than v∗
2 + ε.

(ii) There exists a sequential equilibrium in which the seller’s payoff is within an ε

neighborhood of (v∗
1� v

∗
2).4

My formula for the patient seller’s highest equilibrium payoff admits an intuitive
interpretation. First, v∗

1 = 1 − θ1. The intuition is that type θ1 has the lowest cost in the
support of the buyers’ prior belief and, therefore, cannot benefit from imitating other
types. For the intuition behind v∗

2 , consider type θ2’s payoff from imitating type θ1 in a
static model. Let x ∈ [0�1] be the probability that the buyer chooses T and let γ ∈ [0�1]
be the probability that the type θ1 seller chooses H. The buyer has an incentive to trust
only when γ ≥ γ∗, and type θ1’s payoff being no more than 1 − θ1 implies that

x(1 − γθ1) ≤ 1 − θ1� (3.2)

Type θ2’s payoff from imitating type θ1 is (1 − γθ2)x. Under constraint (3.2) and γ ≥ γ∗,
we have

(1 − γθ2)x≤ (1 − γθ2)
1 − θ1

1 − γθ1
≤ (

1 − γ∗θ2
) 1 − θ1

1 − γ∗θ1
= v∗

2�

4The notion of sequential equilibrium in infinitely repeated games is introduced by Pȩski (2014). I use
different solution concepts in the two statements of Theorem 1 to strengthen my result: the necessary con-
ditions for being an equilibrium payoff applies under a weak solution concept (BNE) and the constructed
equilibria that attain v∗ can survive demanding refinements (sequential equilibrium).
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in which the purchasing probability term in (3.1) is the value of x when γ = γ∗ and type
θ1’s payoff is 1 − θ1. The substantial part is to show that the payoff upper bound (v∗

1� v
∗
2)

is attainable when δ is large enough. I provide a constructive proof in Section 4.1 and
show that the seller’s payoff cannot exceed (v∗

1� v
∗
2) in Appendix B.

Theorem 1 suggests that when the Stackelberg action is mixed and all types of the
patient player have strict incentives to betray, the incentive problem of the lowest-cost
type leads to a tight characterization of all types of the patient player’s highest equilib-
rium payoff. So as to obtain payoff strictly greater than 1 − θ2, type θ2 needs to free-ride
on the effort of type θ1, which means that at some histories, she plays L for sure while
type θ1 mixes between H and L. Different from models with commitment types, the
low-cost type in my model also faces incentive problems and needs to be motivated to
play mixed actions. The buyers’ inability to observe the seller’s mixed actions introduces
a cost of providing incentives, which increases in θ1 and explains why type θ2’s highest
equilibrium payoff is bounded below her Stackelberg payoff. As θ1 → 0, the cost of pro-
viding incentives vanishes, and according to (3.1), v∗

2 converges to type θ2’s Stackelberg
payoff.

Theorem 2 examines the common properties of the patient seller’s behavior in equi-
libria that approximately attain payoff v∗. For every σ ≡ (σ0� {σθ}θ∈�) and θ ∈ �, let
H(σ0�σθ) be the set of histories that (i) occur with positive probability under (σ0�σθ) and
(ii) the buyer plays T with positive probability. I say that σθ is stationary (with respect to
σ) if it prescribes the same action at every history that belongs to H(σ0�σθ), and σθ is com-
pletely mixed if it prescribes a nontrivially mixed action at every history that belongs to
H(σ0�σθ).

Theorem 2. For every small enough ε > 0, there exists δ ∈ (0�1) such that when δ > δ, in
every BNE that attains payoff within ε of v∗, no type of seller uses stationary strategies or
has a completely mixed best reply.

The proof is provided in Appendix C. For an intuitive explanation, suppose by way
of contradiction that type θ1 mixes between high and low effort at every history. Then
exerting low effort at every history is her best reply. A single-crossing argument in re-
peated signaling games implies that type θ2 exerts low effort for sure in every period
and behaves as a commitment type who mechanically plays L. The learning argument
in Fudenberg and Levine (1989) implies that after observing low effort for a bounded
number of periods, the buyers believe that low effort occurs with probability close to 1
in all future periods, after which they will stop trusting the seller, leaving the latter with a
payoff close to 0. This contradicts the presumption that the high-cost type’s equilibrium
payoff is approximately v∗

2 .
Suppose toward a contradiction that type θ2 mixes between high and low effort at

every history. Then exerting high effort at every history is her best reply, and according
to the same single-crossing argument, type θ1 exerts high effort for sure in every period.
This implies that type θ2 separates from type θ1 as soon as she exerts low effort, after
which her continuation value is no more than 1 − θ2. This suggests that the high-cost
type’s equilibrium payoff is no more than (1 − δ)+ δ(1 − θ2), which is strictly lower than
v∗

2 when δ is close to 1.
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The above argument implies that Theorem 2 extends to the case in which θ1 = 0.
My result suggests that in every seller-optimal equilibrium, each type of the seller must
have a strict incentive at some on-path histories and her strategy must exhibit nontriv-
ial history dependence, even when she is indifferent between high and low effort in the
one-shot game. This stands in contrast to the Stackelberg commitment types in Fu-
denberg and Levine (1992) and Gossner (2011), who mechanically play the same mixed
action in every period.

4. Proof of Theorem 1: Attaining payoff v∗

For every γ ∈ [γ∗�1], let x(γ) be the largest x ∈R+ that satisfies inequality (3.2). For every
j ∈ {1�2}, let uj(γ) ≡ x(γ)(1−γθj) and let u(γ) ≡ (u1(γ)�u2(γ)). I depict u(γ) in Figure 2.
Since u(γ∗) = v∗ and u(·) is continuous at γ∗, the second statement of Theorem 1 is
implied by Proposition 1.

Proposition 1. For every η ∈ (0�1) and γ ∈ (γ∗�1), there exists δ ∈ (0�1) such that when
δ > δ and type θ1 occurs with probability more than η, there exists a sequential equilib-
rium that attains u(γ).

I summarize the challenges and ideas before presenting my constructive proof. For
type θ2 to obtain payoff close to v∗

2 , she needs to have a strict incentive to play L at
some histories where the buyer plays T , and the buyer’s incentive to play T implies that
type θ1 plays H with probability at least γ∗. At those histories, the seller’s action reveals
information about her type. When δ is close to 1, the payoff consequence of any given
period becomes negligible and leads to the following tension: On one hand, type θ2
needs to reveal her private information in an unbounded number of periods to attain
payoff close to v∗

2 ; on the other hand, she cannot benefit from her private information in
the future if she has already revealed a lot of information.

To overcome this challenge, I construct an equilibrium that keeps track of the seller’s
continuation value and her reputation, defined as the probability that the buyers’ belief
attaches to θ1, which is denoted by η(ht).

Figure 2. Player 1’s highest equilibrium payoff v∗, her equilibrium payoff set (shaded area), and
payoff u(γ) for some γ ∈ (γ∗�1).
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Play starts from an active learning phase in which the buyers play T and both types
of seller mix between H and L, with type θ1 playing H with strictly higher probability. An
exception is when η(ht) is close to 1, in which case type θ1 mixes between H and L while
type θ2 plays L for sure. As a result, the seller’s reputation improves after playing H and
deteriorates after playing L. This arrangement enables type θ2 to rebuild her reputation
every time she milks it, and reduces her reputation loss when she shirks for sure and free
rides on type θ1.

To provide incentives for type θ1 to play mixed actions, I introduce an absorbing
phase in which learning stops and the outcome in the continuation game is either H

or N . This absorbing phase is reached either when the seller’s reputation reaches 1 or
when she has played L too frequently in the past. Although the seller can flexibly choose
her actions in the active learning phase, her action choices affect the calendar time at
which play enters the absorbing phase and her continuation value after reaching the
absorbing phase.

Intuitively, if the seller plays L with higher frequency in the beginning, then the ab-
sorbing phase is reached sooner and her continuation value after reaching the absorb-
ing phase is lower. A more subtle situation arises when the high-cost type plays H too
frequently: if her current-period continuation value is strictly greater than 1 − θ2 and
she plays H with positive probability in equilibrium, then her continuation value in-
creases after she plays H. This raises the concern that type θ2’s continuation value will
be too high at some on-path histories so that it cannot be delivered in the continuation
game. To address this issue, I show that when H is played with frequency above γ, the
seller’s reputation reaches 1 in a bounded number of periods, after which her continu-
ation value is a convex combination of (0�0) and (1 − θ1�1 − θ2). The convex weights
are chosen such that (i) type θ1 is indifferent between building a perfect reputation and
milking her reputation right before it reaches 1, and (ii) type θ2 strict prefers to milk her
reputation right before it reaches 1 and is indifferent otherwise. This bounds type θ2’s
continuation value from above, which guarantees its attainability in the continuation
game.

4.1 Constructive Proof of Proposition 1

I specify players’ actions and the seller’s continuation values at on-path histories. At
every off-path history, the buyer plays N and all types of the seller play L. I keep track of
two state variables:

(i) The probability of type θ1, denoted by η(ht) ∈ [0�1], with η(h0) the prior proba-
bility of type θ1.

(ii) The seller’s continuation value v(ht) ∈ R
2 with v(h0) ≡ u(γ). Lemma A.1 shows

by induction that for every ht ∈ H, v(ht) can be written as a convex combina-
tion of vN ≡ (0�0), vH ≡ (1 − θ1�1 − θ2), and vL ≡ (1�1), i.e., v(ht) = pN(ht)vN +
pH(ht)vH + pL(ht)vL. This implies that keeping track of v(ht) is equivalent to
keeping track of the convex weights pN(ht), pH(ht), and pL(ht).
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I partition the set of on-path histories into three classes, depending on the value of
pL(ht).

• Class 1 Histories: pL(ht)≥ 1 − δ.

• Class 2 Histories: pL(ht) ∈ (0�1 − δ).

• Class 3 Histories: pL(ht)= 0.

Learning about the seller’s type happens at Class 1 and 2 histories (i.e., the active learn-
ing phase) and stops at Class 3 histories (i.e., the absorbing phase). Play starts from the
active learning phase and reaches the absorbing phase in finite time, after which play
remains in that phase forever.

Class 1 histories Play starts from a Class 1 history where pL(ht) ≥ 1 −δ. If ht belongs to
Class 1, then the following statements hold:

• The buyer plays T for sure.

• The buyer’s posterior beliefs, η(ht�H) and η(ht�L), are functions of η(ht), which
are given by

η
(
ht�H

) = η∗ + min
{
1 −η∗�

(
1 + λ

(
1 − γ∗))(η(

ht
) −η∗)} (4.1)

η
(
ht�L

) = η∗ + (
1 − λγ∗)(η(

ht
) −η∗)� (4.2)

where λ > 0 measures the speed of buyers’ learning with the requirement specified
in (A.2), and η∗ ∈ (γ∗η(h0)�η(h0)) is a lower bound on the seller’s reputation. Given
that η(h0) > η∗, one can verify by induction that η(ht) > η∗ for every history ht that
belongs to Class 1 (and also Class 2).

Equations (4.1) and (4.2) pin down both types of seller’s actions at ht . According to Bayes’
rule, the probability that type θ1 plays H at ht is

η
(
ht

) −η
(
ht�L

)
η

(
ht�H

) −η
(
ht�L

) · η
(
ht�H

)
η

(
ht

) � (4.3)

and the probability that type θ2 plays H at ht is

η
(
ht

) −η
(
ht�L

)
η

(
ht�H

) −η
(
ht�L

) · 1 −η
(
ht�H

)
1 −η

(
ht

) � (4.4)

Plugging (4.1) and (4.2) into (4.3) and (4.4), every type’s action at ht can be written as a
function of η(ht).

Let pH(ht) be the unconditional probability of H at ht . Since the buyers’ belief is a
martingale, pH(ht)η(ht�H)+ (1 −pH(ht))η(ht�L)= η(ht). Equation (4.2) and η(ht) >

η∗ imply that η(ht�L) 	= η(ht) and, therefore,

1 −pH

(
ht

)
pH

(
ht

) = η
(
ht�H

) −η
(
ht

)
η

(
ht

) −η
(
ht�L

) �
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Plugging (4.1) and (4.2) into the above equation, we have

1 −pH

(
ht

)
pH

(
ht

) = η
(
ht�H

) −η
(
ht

)
η

(
ht

) −η
(
ht�L

) ≤ 1 − γ∗

γ∗ �

This implies that pH(ht) ≥ γ∗, so the buyer has an incentive to play T at ht . The seller’s
continuation value after playing L at ht is

v
(
ht�L

) = pN
(
ht

)
δ

vN + pL
(
ht

) − (1 − δ)

δ
vL + pH

(
ht

)
δ

vH� (4.5)

If ht is such that η(ht�H) < 1, then the seller’s continuation value after playing H at ht is

v
(
ht�H

) = pN
(
ht

)
δ

vN + pL
(
ht

)
δ

vL + pH
(
ht

) − (1 − δ)

δ
vH� (4.6)

If ht is such that η(ht�H)= 1, then the seller’s continuation value after playing H at ht is

v
(
ht�H

) = v1
(
ht�H

)
1 − θ1

vH +
(

1 − v1
(
ht�H

)
1 − θ1

)
vN� with (4.7)

v1
(
ht�H

) ≡ v1
(
ht

) − (1 − δ)(1 − θ1)

δ
and v1

(
ht

)
is the first entry of v

(
ht

)
� (4.8)

If ht is such that η(ht�H) < 1, then (4.5) and (4.6) imply that both types of seller are
indifferent between H and L. If ht is such that η(ht�H) = 1, then (4.5), (4.7), and (4.8)
imply that type θ1 is indifferent while type θ2 strictly prefers L. This verifies both types
of the seller’s incentive constraints at every Class 1 history ht .

Class 2 histories For every history ht that belongs to Class 2, i.e., pL(ht) ∈ (0�1 − δ), the
followingnstatements hold:

• The buyer plays T for sure.

• Type θ1 plays H for sure. Type θ2 plays L with probability min{1� 1−γ∗
1−η(ht)

}. The prob-

ability of L at ht is (1 −η(ht))min{1� 1−γ∗
1−η(ht)

}, which is less than 1 − γ∗. This implies

the buyer’s incentive to play T at ht .

The seller’s mixing probabilities imply that η(ht�L) = 0 and η(ht�H) = min{1� η(ht)
γ∗ }.

The seller’s continuation value after playing L at ht is

v
(
ht�L

) ≡ Q
(
ht

)
δ

vH + δ−Q
(
ht

)
δ

vN� (4.9)

where

Q
(
ht

) ≡ pH
(
ht

) − 1 − δ−pL
(
ht

)
1 − θ2

�

If η(ht�H) < 1, then the seller’s continuation value after playing H at ht is given by (4.6).
If η(ht�H) = 1, then the seller’s continuation value after playing H at ht is given by (4.7).
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If η(ht�H) < 1, then (4.6) and (4.9) imply that type θ2 is indifferent at ht and type
θ1 strictly prefers to play H at ht . If η(ht�H) = 1, then (4.7) and (4.9) imply that type
θ2 strictly prefers to play L at ht and type θ1 strictly prefers to play H at ht . The seller’s
incentive constraints at ht are satisfied since type θ1 is required to play H, while type θ2

is required to mix only if η(ht�H) < 1 and is required to play L if η(ht�H)= 1.

Class 3 histories If ht is such that pL(ht) = 0, then all types of the seller play the same
action at ht and learning about the seller’s type stops. The seller’s continuation value
at every subsequent history is a convex combination of vH and vN . The construction
of equilibrium play after reaching any Class 3 history uses Lemma 3.7.2 in Mailath and
Samuelson (2006, p. 99; MS).

Lemma 3.7.2 in MS. For every ε > 0, there exists δ ∈ (0�1) such that for every δ ∈ (δ�1)
and every v ∈ R

2 that is a convex combination of v(1)� v(2)� � � � � v(k) ∈ R
2, there exists

{vs}∞s=0 with vs ∈ {v(1)� � � � � v(k)} such that (i) v = ∑∞
s=0(1 − δ)δsvs and (ii)

∑∞
s=t (1 −

δ)δs−lvs is within ε of v for every t ∈N.

In words, this lemma implies that for any v that is a convex combination of vH and
vN , and for any large enough discount factor, one can construct a deterministic se-
quence of vH and vN such that the discounted average value of this sequence equals
v, and the discounted average value starting from any calendar time is close to v.

For every Class 3 history ht , let {vs}∞t=0 be a sequence of vN and vH that has a dis-
counted average value of v(ht). The continuation play after ht is as follows:

• For every s ∈ N such that vs = vH , the buyer plays T and all types of seller play H in
period t + s.

• For every s ∈ N such that vs = vN , the buyer plays N and all types of seller play L in
period t + s.

The buyers’ incentive constraints at Class 3 histories are trivially satisfied. To ver-
ify the seller’s incentive constraints, I show in Lemma A.4 of Appendix A that pH(ht) is
bounded away from 0 for every on-path history ht . Picking ε in the above lemma to
be small enough, one can ensure that the seller’s continuation value at every on-path
history is strictly bounded away from 0. This implies that when δ is large enough, all
types of the seller have strict incentives to comply no matter whether she is asked to
play H or L. This is because her continuation value equals 0 if she does not comply and
is bounded away from 0 if she complies.

Promise-keeping constraints In the last step, I verify that the continuation play at every
on-path history delivers every type of seller her continuation value. I show that under
the above strategy profile, play reaches a Class 3 history in finite time, which is implied
by Lemmas A.2 and A.3 in Appendix A. Moreover, the seller’s continuation value at Class
3 histories can be delivered via a sequence of payoffs consisting of vH and vN .
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5. Concluding remarks

I conclude by discussing extensions and robustness of my results. Further generaliza-
tions can be found in the working paper version (Pei 2020b).

More than two types In the working paper version (Pei 2020b), I extend Theorems 1 and
2 to any finite number of types. Suppose � ≡ {θ1� � � � � θm} with 0 < θ1 < · · · < θm < 1 and
m≥ 2. Let π ∈ �(�) be the buyers’ full support prior belief. For every j ∈ {1�2� � � � �m}, let

v∗
j ≡ (

1 − γ∗θj
) 1 − θ1

1 − γ∗θ1
�

When the seller is sufficiently patient, one can show that first, for any j ∈ {1�2� � � � �m},
type θj ’s payoff cannot exceed v∗

j and, moreover, there exists an equilibrium that attains
payoff within an ε neighborhood of (v∗

1� � � � � v
∗
m). Second, in any equilibrium that ap-

proximately attains payoff (v∗
1� � � � � v

∗
m), no type of the seller uses stationary strategies or

completely mixed strategies.
The proofs are similar to those in the two-type case except for the construction of

equilibria that approximately attain (v∗
1� � � � � v

∗
m). In particular, one needs to keep track

of an additional state variable, which is the highest-cost type in the support of the buy-
ers’ posterior belief. This new state variable affects the seller’s actions at Class 2 histories
(defined in Section 4), at which all types play the same action except for the highest-cost
type in the support of the buyers’ posterior.5

Forward-looking buyer My results are robust when the seller faces a single buyer whose
discount factor is strictly positive but close to 0. Let δ1 be the seller’s discount factor and
let δ0 be the buyer’s discount factor.

First, the constructed equilibrium that approximately attains v∗ remains an equilib-
rium under any δ0 ∈ (0�1). This is because at every off-path history, the buyer plays N

and all types of the seller play L, in which case the buyer receives his minmax payoff.
Hence, the buyer’s strategy in the constructed equilibrium maximizes both his stage-
game payoff and his continuation value.

Second, I show by the end of Appendix B that the patient seller’s payoff cannot sig-
nificantly exceed v∗ when δ0 is low enough. Intuitively, this is because, first, the seller
still needs to play H with positive probability so as to induce the buyer to play T , which
implies that the lowest-cost type’s payoff cannot exceed 1 − θ1. Moreover, the buyers
can learn the seller’s behavior in a bounded number of periods, which means that the
frequency with which each type of seller plays H cannot be significantly lower than γ∗.

Rationalizing mixed commitment types Theorem 2 implies that mixed-strategy com-
mitment types (such as those that play the Stackelberg action in every period) cannot
be rationalized by a payoff type that has a cost of effort that is low or zero. In Pei (2020b),
I allow the seller to have arbitrary preferences and show that if a type plays a mixed ac-
tion at every on-path history, then she must be indifferent between all outcomes in the
one-shot game, which means that she faces no cost to supply high quality and receives
no benefit from buyers’ purchases.

5Similar to the construction in the two-type case, all types play the same action at Class 3 histories, and
all types except for type θ1 play the same action at Class 1 histories.
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Simultaneous-move stage game My results extend to simultaneous-move stage games.
For example, suppose players’ payoffs are

1\0 T N

H 1 − θ, b −d(θ), 0
L 1, −c 0, 0

�

where b� c > 0, θ ∈ � ≡ {θ1� θ2} ⊂ (0�1) is player 1’s persistent private information, and
d(θ) ≥ 0 is player 1’s loss from exerting high effort when player 0 does not trust. In the
repeated version of this game, players’ past action choices are perfectly monitored and
the public history ht ≡ {a0�s� a1�s}t−1

s=0 consists of both players’ past action choices. Other
features of the game remain the same as in the baseline model.

Recall the definition of v∗ in (3.1). A construction similar to that in Section 4 im-
plies that v∗ is approximately attainable when δ is close to 1. Under a supermodularity
condition 0 ≤ d(θ1)− d(θ2) ≤ θ1 − θ2, type θj ’s highest equilibrium payoff is v∗

j , and the
conclusion of Theorem 2 also extends, namely, no type of seller uses a stationary strategy
or a completely mixed strategy in any equilibrium that approximately attains v∗.

Appendix A: Proof of Proposition 1: Technical details

Recall the definitions of vH , vN , and vL. Let γ ∈ (γ∗�1) and let u(γ) be the equilibrium
payoff of the seller. Since γ > γ∗, there exists a rational number n̂/k̂ ∈ (γ∗�γ) with n̂� k̂ ∈
N. This also suggests the existence of an integer j ∈N such that

n̂

k̂
= n̂j

k̂j
<

n̂j

k̂j − 1
< γ�

Let n≡ n̂j and k≡ k̂j. Let δ ∈ (0�1) be large enough such that

δ+ δ2 + · · · + δn

δ+ δ2 + · · · + δk
< γ̃ <

δk−n−1(δ+ δ2 + · · · + δn
)

δ+ δ2 + · · · + δk−1
� (A.1)

I introduce two additional requirements on δ later on, namely (A.4) and (A.13). These
requirements are compatible with (A.1) since all of them are satisfied when δ is above
some cutoff. Let

γ̃ ≡ 1
2

(
n

k
+ n

k− 1

)
and γ̂ ≡ 1

2

(
n

k
+ γ∗

)
�

By construction, γ∗ < γ̂ < n
k < γ̃ < n

k−1 < γ. Let λ > 0 be small enough such that

λ <
1 − √

γ∗
γ∗ and

(
1 − λγ∗)1−γ̂(

1 + λ
(
1 − γ∗))γ̂ > 1� (A.2)

The promise-keeping constraint is established via a sequence of lemmas, with proofs
provided in Appendices A.1–A.4.

Lemma A.1. The seller’s continuation value at every history is a convex combination of
vN , vH , and vL.
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Lemma A.1 implies that one can keep track of the convex weights instead of the con-
tinuation payoff. The next lemma establishes a lower bound on the seller’s reputation if
her frequency of playing H is more than γ̃.

Lemma A.2. For every η ∈ (η∗�1), there exist T ∈N and δ ∈ (0�1), such that when η(hr)≥
η and δ > δ, if ht ≡ (y0� � � � � yt−1) � hr and all histories between hr and ht belong to Class
1, then

(1 − δ)

t−1∑
s=r

δs−r1{ys = H}︸ ︷︷ ︸
weight of outcome H from r to t

≤ (
1 − δT

)︸ ︷︷ ︸
weight of the initial T periods

+ (1 − δ)

t−1∑
s=r

δs−r1{ys = L}︸ ︷︷ ︸
weight of outcome L from r to t

· γ̃

1 − γ̃
�

I apply Lemma A.2 by setting hr = h0 and η = η(h0). If ht and all its predecessors
belong to Class 1,

(1 − δ)

t−1∑
s=0

δs1{ys =L} ≤ pL
(
h0) = (1 − θ1)(1 − γ)

1 − γθ1
�

Lemma A.2 leads to an upper bound on (1 − δ)
∑t−1

s=0 δ
s1{ys =H}, which implies that if δ

is large enough, then

pH
(
ht

) ≥ Y ≡ 1
2

(
γ − (1 − γ)

γ̃

1 − γ̃

)
︸ ︷︷ ︸

>0

1 − θ1

1 − γθ1
(A.3)

for every ht such that ht and all its predecessors belong to Class 1. Lemma A.3 establishes
an upper bound on the number of Class 2 histories along every on-path play.

Lemma A.3. There exist δ ∈ (0�1) and M ∈ N, such that when δ > δ, the number of Class
2 histories along every path of equilibrium play is at most M .

Lemma A.4 establishes a uniform lower bound on pH(ht) for every ht that belongs
to Class 1 or Class 2.

Lemma A.4. There exist δ ∈ (0�1) and Q > 0, such that when δ > δ and for every ht that
belongs to Class 1 and Class 2, pH(ht) ≥Q.

Lemma A.4 also implies a lower bound on pH(ht) if ht is the first history that belongs
to Class 3, i.e., ht is such that pL(ht) = 0 and pL(hs) > 0 for all hs ≺ ht . These lemmas
imply that, first, play reaches the absorbing phase with probability 1 on the equilibrium
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path and, second, the seller’s continuation value when play first reaches the absorbing
phase is bounded away from 0. When δ is large enough such that

(1 − δ) ≤ δ
(
Q/2 − (1 − δ)

)
� (A.4)

Lemma 3.7.2 in Mailath and Samuelson (2006) implies that the seller’s continuation
value can be delivered via a deterministic sequence consisting of vN and vH , which im-
plies the promise-keeping constraint.

A.1 Proof of Lemma A.1

By definition, v(h0) = u(γ) is a convex combination of vN , vH , and vL. I establish the
following claim.

• Suppose ht is an on-path history and v(ht) is a convex combination of vN , vH , and
vL. Then for every outcome yt ∈ {N�H�L} that occurs with positive probability at
ht , the seller’s continuation value after yt , given by v(ht� yt), is also a convex combi-
nation of vN , vH , and vL.

First, consider the case in which ht belongs to Class 3. Given that pL(ht) = 0 or,
equivalently, v(ht) is a convex combination of vN and vH , the only on-path outcomes
at ht are N and H. As a result, the seller’s continuation values v(ht�N) and v(ht�H) are
both convex combinations of vN and vH .

Second, consider the case in which ht belongs to Class 1. The possible outcomes
at ht are H and L. If ht is such that η(ht�H) 	= 1, then according to (4.5) and (4.6), the
seller’s continuation value remains a convex combination of vN , vH , and vL. If ht is
such that η(ht�H) = 1, then according to (4.5) and (4.7), the seller’s continuation value
remains a convex combination of vN , vH , and vL.

Third, consider the case in which ht belongs to Class 2. The possible outcomes at
ht are H and L. If the seller plays L, then her continuation value is (4.9), which is a
convex combination of vN and vH . If she plays H, then her continuation value is (4.6)
when η(ht�H) 	= 1 and is (4.7) when η(ht�H) = 1. In both cases, v(ht�H) is a convex
combination of vN , vL, and vH .

A.2 Proof of Lemma A.2

Let X ∈N be the smallest integer such that

(
1 + λ

(
1 − γ∗))X ≥ 1 −η∗

η
(
h0) −η∗ �

Intuitively, the seller’s reputation reaches 1 after playing H for X consecutive periods.
For every ht , let �(ht) ≡ η(ht)− η∗. For every t ∈ N, let NL�t and NH�t be the number of
periods in which outcomes L and H occur from period 0 to t − 1, respectively. Choose
T such that T ≥ 2k+X . The proof is done by induction on NL�t .

When NL�t ≤ 2(k − n), the conclusion holds since NH�t ≥ 2n + X . Moreover, �(hT )

reaches 1 −η∗ before period T , after which play reaches a Class 3 history.
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Suppose the conclusion holds for NL�t ≤ N with N ≥ 2(k − n), and suppose toward
a contradiction that there exists hT with T ≥ k + X and NL�T = N + 1, such that every
ht 
 hT belongs to Class 1, but

(1 − δ)

T−1∑
t=0

δt1{yt = H} − (
1 − δX

)
> (1 − δ)

T−1∑
t=0

δt1{yt =L} · γ̃

1 − γ̃
� (A.5)

I obtain a contradiction in three steps.

Step 1 I show that for every s < T ,

(1 − δ)

T−1∑
t=s

δt1{yt = H} ≥ (1 − δ)

T−1∑
t=s

δt1{yt =L} γ̃

1 − γ̃
� (A.6)

Suppose toward a contradiction that (A.6) fails. This together with (A.5) implies that

(1 − δ)

s−1∑
t=0

δt1{yt =H} − (
1 − δX

)
> (1 − δ)

s−1∑
t=0

δt1{yt = L} γ̃

1 − γ̃
(A.7)

and

(1 − δ)

T−1∑
t=s

δt1{yt = L}> 0� (A.8)

According to (A.8), NL�s < NL�T . Since NL�T = N + 1, we have NL�s ≤ N . Applying the
induction hypothesis and (A.7), we know that play reaches a Class 3 history before hs.
This leads to a contradiction.

Step 2 I show that for every k consecutive periods, the number of outcome H in se-
quence {yr� yr+1� � � � � yr+k−1} is at least n + 1. According to (A.6) shown in the previous
step, outcome H occurs at least n + 1 times in the last k periods, namely, in the set
{yT−k+1� � � � � yT }.

Suppose toward a contradiction that there exists k consecutive periods in which out-
come H occurs no more than n times. Then the preceding conclusion that outcome
(T�H) occurs at least n+ 1 times in the last k periods implies that there exists k consec-
utive periods {yr� � � � � yr+k−1} in which outcome H occurs exactly n times and outcome
L occurs exactly k− n times. According to (A.2), we have

(1 − δ)

r+k−1∑
t=r

δt1{yt = H}< (1 − δ)

r+k−1∑
t=r

δt1{yt =L} γ̃

1 − γ̃
� (A.9)

but then

�
(
hr+k

)
>�

(
hr+1)� (A.10)

Next, let us consider the new sequence of outcomes with length T − k,

h̃T−k ≡ {̃y0� ỹ1� � � � � ỹT−k−1} ≡ {y0� y1� � � � � yr−1� yr+k� � � � � yT−1}�
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which is obtained by removing {yr� � � � � yr+k−1} from the original sequence and front-
loading the subsequent play {yr+k� � � � � yT−1}. The number of outcome L in this new se-
quence is at most N +1− (n−k), which is no more than N . According to the conclusion
in Step 1,

(1 − δ)

T−1∑
t=r+k

δt1{yt =H} > (1 − δ)

T−1∑
t=r+k

δt1{yt = L} γ̃

1 − γ̃
�

This together with (A.9) and (A.5) implies that

(1 − δ)

T−k−1∑
t=0

δt1{̃yt =H} − (
1 − δX

)
> (1 − δ)

T−k−1∑
t=0

δt1{̃yt = L} γ̃

1 − γ̃
�

According to the induction hypothesis, play reaches a Class 3 history before period T −k

if the seller plays according to {̃y0� ỹ1� � � � � ỹT−k−1}.

(i) Suppose h̃T−k reaches a Class 3 history before period r. Then play reaches a Class
3 history before period r according to the original sequence.

(ii) Suppose h̃T−k reaches a Class 3 history in period s, with s > t. Then �(h̃s) ≤
�(hs+k) according to (A.10). This implies that play reaches a Class 3 history in
period s + k under the original sequence.

This contradicts the hypothesis that play has never reached a Class 3 history before hT .

Step 3 For every history hT ≡ {y0� y1� � � � � yT−1} ∈ {H�L}T and t ∈ {1� � � � �T − 1}, define
the operator �t : {H�L}T → {H�L}T as

�t
(
hT

) = (y0� � � � � yt−2� yt� yt−1� yt+1� � � � � yT−1);
in other words, swap the order between yt−1 and yt . Recall the belief updating formula
in Class 1 histories and let

HT�∗ ≡ {
hT

∣∣�(
ht

)
< 1 −η∗ for all ht ≺ hT

}
�

If hT ∈ HT�∗, then �t(h
T ) ∈ HT�∗ unless

• yt−1 =L, yt =H, and (1 + λ(1 − γ∗))�(ht−1)≥ 1 −η∗.

Next, I show that the above situation cannot occur except in the last k periods. Suppose
toward a contradiction that there exists t ≤ T −k such that hT ∈ HT�∗ but �t(h

T ) /∈ HT�∗.
Based on the conclusion in Step 2, outcome H occurs at least n+1 times in the sequence
{yt� � � � � yt+k−1}. Consider another sequence {yt−1� � � � � yt+k−1}, in which outcome H oc-
curs at least n+ 1 times and outcome L occurs at most k− n times. This implies that

�
(
ht+k

) ≥ �
(
ht−1)(1 + λ

(
1 − γ∗))n+1(1 − λγ∗)k−n

= �
(
ht−1) (

1 + λ
(
1 − γ∗))n(1 − λγ∗)k−n︸ ︷︷ ︸

≥1

(
1 + λ

(
1 − γ∗))
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≥ �
(
ht−1)(1 + λ

(
1 − γ∗))

≥ 1 −η∗� (A.11)

where the second inequality follows from n/k > γ̂ and the third inequality follows from
the hypothesis that �t(h

T ) /∈ HT�∗. Inequality (A.11) implies that play reaches the high
phase before period t + k ≤ T . This contradicts the hypothesis that hT ∈ HT�∗.

To summarize, for every t ≤ T − k, if hT ∈ HT�∗, then �t(h
T ) ∈ HT�∗. For every t >

T − k, if hT ∈ HT�∗, then �t(h
T ) ∈ HT�∗ unless yt−1 = L and yt = H. Therefore, one can

freely front-load outcome H from period 0 to T −k− 1 and obtain the revised sequence

{H�H� � � � �H�L� � � � �L� yT−k� � � � � yT−1}� (A.12)

which meets the following two requirements: First, the revised sequence (A.12) still be-
longs to set HT�∗; second, the sequence in (A.12) satisfies (A.5).

According to the conclusion in Step 2, the number of outcome L from period 0 to
T − k − 1 cannot exceed k − n − 1, and the number of outcome L from period T − k

to T − 1 cannot exceed k − n − 1. This is because otherwise, there exists a sequence
of length k that has at most n periods of outcome H, contradicting the conditions that
the sequence of outcomes in (A.12) must satisfy. Therefore, the number of L in this
sequence is at most 2(k − n − 1). This contradicts the induction hypothesis that the
number of L exceeds 2(k− n).

A.3 Proof of Lemma A.3

Let N ≡ � 1
1−γ � and recall the integer T in the statement of Lemma A.2. In addition to the

requirements on δ mentioned earlier, I also require δ to satisfy

δT+1(1 + δ+ · · · + δN
)
>N and 2δT+N+2 > 1� (A.13)

These are compatible given that all of them require δ to be sufficiently large. The rest of
the proof consists of two steps.

In the first step, I show that after the seller plays H at ht , it takes at most T + N

periods for play to reach a history that belongs to either Class 2 or Class 3. According to
the continuation value at (ht�H), we have

pL
(
ht�H

) = pL
(
ht

)
δ

<
1 − δ

δ
� (A.14)

The last inequality comes from ht belonging to Class 2, so that pL(ht) < 1 − δ by defini-
tion. According to Lemma A.2, for every Class 1 history hs such that hs � (ht�H) and all
histories between (ht�H) and hs belong to Class 1,

(1 − δ)

s∑
r=t+1

δr−(t+1)1{yr =H} ≤ (
1 − δT

) + (1 − δ)

s∑
r=t+1

δr−(t+1)1{yr = L} γ̃

1 − γ̃
�
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Moreover, (A.14) and the requirement that all histories between (ht�H) and hs belong to
Class 1 imply that

(1 − δ)

s∑
r=t+1

δr−(t+1)1{yr =L}< 1 − δ

δ
� (A.15)

Given that only outcomes L and H occur with positive probability at Class 1 and Class 2
histories,

1 − δs−(t+1) = (1 − δ)

s∑
r=t+1

δr−(t+1)1{yr =L} + (1 − δ)

s∑
r=t+1

δr−(t+1)1{yr =H}

≤ (
1 − δT

) + 1 − δ

δ
+ 1 − δ

δ

γ̃

1 − γ̃
≤ (

1 − δT
) + 1 − δ

δ

1
1 − γ̃

≤ (
1 − δT

) + 1 − δ

δ

1
1 − γ

�

To show that s − (t + 1) ≤ T + N , suppose toward a contradiction that s − (t + 1) ≥ T +
N + 1. Then(

1 − δT
) + 1 − δ

δ
N ≥ (

1 − δT
) + 1 − δ

δ

1
1 − γ

≥ 1 − δs−(t+1) ≥ 1 − δT+N+1�

which yields

1 − δ

δ
N ≥ δT

(
1 − δN+1)�

Dividing both sides by 1−δ
δ , we have

N ≥ δT+1(1 + δ+ · · · + δN
)
�

which contradicts the first inequality of (A.13). The above contradiction implies that
s − (t + 1)≤ T +N .

In the second step, I focus on every history hs that has the following two features:

(i) hs belongs to Class 2

(ii) hs � (ht�H) and all histories between (ht�H) and hs , excluding hs, belong to
Class 1.

I show that there exists at most one period from (ht�H) to hs such that the stage-game
outcome is (T�L). Suppose toward a contradiction that there exist two or more such
periods. Then

(1 − δ)

s∑
r=t+1

δr−(t+1)1{yr =L} ≥ 2(1 − δ)δT+N+1�

The last inequality comes from the previous conclusion that s − (t + 1) ≤ T +N . This is
because hs belongs to Class 2 and hs−1 belongs to Class 1, and, therefore, (s − 1) − (t +
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1) ≤ T +N or, equivalently, s − (t + 1) ≤ T +N + 1. According to (A.15),

2(1 − δ)δT+N+1 < (1 − δ)

s∑
r=t+1

δr−(t+1)1{yr =L} < 1 − δ

δ
�

The above inequality contradicts the second inequality of (A.13) that 2δT+N+2 > 1.
Letting ht be the first time play reaches a history that belongs to Class 2 with θ(ht) =

θ2, we have η(ht�H) ≥ η∗
γ∗ ≥ η(h0). Let hs be the next history that belongs to Class 2 with

hs � (ht�H). Since we have shown that outcome L occurs at most once between (ht�H)

and hs, we know that

η
(
hs�H

) = min
{

1�
η

(
hs

)
γ∗

}
≥ min

{
1�

η
(
ht�H

)
γ∗

(
1 − λγ∗)}�

Therefore, conditional on (hs�H) not being a Class 3 history, the buyer’s belief at (hs�H)

attaches probability at least

η
(
hs�H

) ≥ η
(
ht�H

)1 − λγ∗

γ∗ ≥ η
(
ht�H

)√ 1
γ∗

to type θ1, where the last inequality comes from λ ∈ (0� 1−√
γ∗

γ∗ ). Let

M ≡ log(1/π1)

log

√
1
γ∗

+ 1�

Since η(ht�H) ≥ π1 for the first history that belongs to Class 2, there can be at most M
Class 2 histories with θ2 being the highest-cost type along every path of play. This is
because otherwise the buyer’s posterior belief attaches probability greater than

π1

(
1√
γ∗

)M

> 1

at the M + 1th Class 2 history. This leads to a contradiction.

A.4 Proof of Lemma A.4

Let ht be a Class 2 history such that no predecessor of ht belongs to Class 2. According
to (A.3), pH(ht−1)≥ Y , which implies that pH(ht)≥ Y − (1 − δ). As a result

Q
(
ht

) = pH
(
ht

) − 1 − δ−pL
(
ht

)
1 − θ2

≥ Y − (1 − δ)

(
1 + 1

1 − θ2

)
> 0�

If play remains at a Class 1 or Class 2 history after ht , then the seller must be playing H

at ht , after which

pH
(
ht�H

) ≥ pH
(
ht

) − (1 − δ) ≥ Y − 2(1 − δ) and pL
(
ht�H

) ≤ 1 − δ

δ
�
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Since η(ht�H) ≥ η(h0), one can then apply Lemma A.2 again, which implies that at ev-
ery Class 1 history hs such that only one predecessor of hs belongs to Class 2, we have

pH
(
hs

) ≥Z ≡ Y − 2(1 − δ)− 1 − δ

δ

γ̃

1 − γ̃
− (

1 − δT
)
�

When δ is large enough, Z ≥ Y/2. One can then show that for every Class 2 history hs

such that there is only one strict predecessor history that belongs to Class 2,

Q
(
hs

) = pH
(
hs

) − 1 − δ−pL
(
hs

)
1 − θ

(
hs

) ≥Z − (1 − δ)

(
1 + 1

1 − θm

)
> 0�

Iteratively apply this process. Since

(i) the number of Class 2 histories along every path of play is at most M (Lemma A.3)

(ii) for every Class 2 history ht , pL(ht�H)= 1−δ
δ and η(ht�H) ≥ η(h0),

there exist δ ∈ (0�1) and Q > 0 such that when δ > δ, pH(ht) ≥ Q for every Class 1 or
Class 2 history ht .

Appendix B: Proof of Theorem 1: Patient player’s payoff cannot exceed v∗

My proof consists of three lemmas. Lemma B.1 relates v∗
j to the value of a constrained

optimization problem.

Lemma B.1. For every j ∈ {1�2}, the value of the constrained optimization problem

max
α∈�{N�H�L}

{
(1 − θj) α(H)︸ ︷︷ ︸

probability of outcome H

+ α(L)︸ ︷︷ ︸
probability of outcome L

}
(B.1)

is v∗
j subject to

(1 − θ1)α(H)+ α(L)≤ 1 − θ1 (B.2)

and

α(H) ≥ γ∗

1 − γ∗α(L)� (B.3)

Proof. Constraint (B.3) implies that

(1 − θ1)α(H)+ α(L)≤ (1 − θ1)α(H)+ 1 − γ∗

γ∗ α(H)=
(

1
γ∗ − θ1

)
α(H)

or, equivalently,

α(H) ≥ γ∗

1 − γ∗θ1

(
(1 − θ1)α(H)+ α(L)

)
�
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Rewrite the objective function (B.1) as

(1 − θj)α(H)+ α(L)= (1 − θ1)α(H)+ α(L)− (θj − θ1)α(H)

≤
(

1 − (θj − θ1)
γ∗

1 − γ∗θ1

)(
(1 − θ1)α(H)+ α(L)

)
= 1 − γ∗θj

1 − γ∗θ1

(
(1 − θ1)α(H)+ α(L)

)
�

Constraint (B.2) implies that

(1 − θj)α(H)+ α(L)≤ 1 − γ∗θj
1 − γ∗θ1

(
(1 − θ1)α(H)+ α(L)

) ≤ (
1 − γ∗θj

) 1 − θ1

1 − γ∗θ1
= v∗

j �

The above upper bound is attained by the following distribution over action profiles that
satisfies (B.2) and (B.3):

α(H) = (1 − θ1)γ
∗

1 − γ∗θ1
� α(L)= (1 − θ1)

(
1 − γ∗)

1 − γ∗θ1
� and α(N)= θ1

(
1 − γ∗)

1 − γ∗θ1
�

Next, I map the choice variable in the optimization problem α into the repeated in-
complete information game. For given Bayes Nash equilibrium σ ≡ (σ0� (σθ)θ∈�), type
θj ’s equilibrium payoff in the repeated game equals her expected payoff in a one-shot
game under outcome distribution αj ∈ �{N�H�L}, where

αj(y) ≡ E
(σ0�σθj

)

[ ∞∑
t=0

(1 − δ)δt1{yt = y}
]

for every y ∈ {N�H�L}�

Replacing α with αj , (B.1) is type θj ’s equilibrium payoff in the repeated game. According
to Lemma B.1, the necessity of (B.2) and (B.3) implies that type θj ’s equilibrium payoff
cannot exceed v∗

j for every j ∈ {1�2}.
Lemma B.2 and Lemma B.3 establish the necessity of (B.2) and (B.3), respectively. For

every strategy profile σ , let Hσ be the set of histories that occur with positive probability
under σ . For every ht ∈ Hσ , let �σ(ht) ⊂� be the support of buyers’ belief at ht .

Lemma B.2. For every prior belief π, including those that do not have full support, if type
θi is the lowest-cost type in the support of this prior belief, then type θi ’s equilibrium payoff
is no more than 1 − θi in every BNE.

Proof. Rank the seller’s actions according to H � L. Given strategy profile σ and his-
tory ht ∈ Hσ , let

aσ1
(
ht

) ≡ max
{ ⋃
θ∈�σ(ht)

supp
(
σθ

(
ht

))}
be the highest action played by the seller with positive probability at ht . By definition,
for every BNE σ and ht ∈ Hσ , if σ0(h

t) assigns positive probability to T , then aσ1 (h
t)= H.

Step 1 I show that when |�σ(h0)| = 1, the only type in the support of the buyer’s prior
belief, denoted by θi, receives payoff no more than 1 − θi. This also implies that for
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every equilibrium σ and for every ht ∈ Hσ , if �σ(ht) = {θi} for some θi ∈ �, then type
θi’s continuation payoff at ht cannot exceed 1−θi. This conclusion does not follow from
the result in Fudenberg et al. (1990) since the solution concept is BNE, and a type that
occurs with zero probability is not equivalent to a type that is excluded from the type
space.

This is because �σ(h0) = {θi} implies that �σ(ht) = {θi} for every ht ∈ Hσ . Therefore,
aσ1 (h

t) is played by type θi with positive probability at every ht ∈ Hσ . Given type θi’s
equilibrium strategy σθi , the strategy σ̃θi : H → �(A1), defined as

σ̃θi

(
ht

) ≡
{
aσ1

(
ht

)
if ht ∈ Hσ

σθi

(
ht

)
otherwise�

also best replies against the buyers’ equilibrium strategy σ0, from which type θi receives
her equilibrium payoff. If type θi plays according to σ̃θi and the buyers play according to
σ0, then the outcome at every history in Hσ is either H or N . Therefore, type θi’s stage-
game payoff at every history in Hσ cannot exceed 1 − θi, and her discounted average
payoff cannot exceed 1 − θi.
Step 2 I show that type θ1’s payoff is no more than 1 − θ1 when there are two types in
the support of buyers’ prior belief. I define Hσ

t for every t ∈N recursively. Let Hσ
0 ≡ {h0}.

Given the definition of Hσ
t , let

Hσ
t+1 ≡ {

ht+1 ∈ Hσ
∣∣∃ht ∈ Hσ

t s.t. ht+1 � ht and either

ht+1 = (
ht�N

)
or ht+1 = (

ht�
(
T�aσ1

(
ht

)))}
�

Intuitively, Hσ
t+1 is the set of period t+1 on-path histories such that the seller has played

her highest on-path action from period 0 to period t. Let Hσ ≡ ∪∞
t=0H

σ
t . Given type θ1’s

equilibrium strategy σθ1 , let σ̂θ1 : H → �{H�L} be defined as

σ̂θ1

(
ht

) ≡
{
aσ1

(
ht

)
if ht ∈ Hσ and aσ1

(
ht

) ∈ supp
(
σθ1

(
ht

))
σθ1

(
ht

)
otherwise�

By construction, σ̂θ1 is type θ1’s best reply against σ0. Let H(σ0�σ̂θ1 ) be the set of histories
that occur with positive probability under (σ0� σ̂θ1). Let

Hσ�θ1 ≡ {
ht ∈ Hσ ∣∣θ1 ∈�σ

(
ht

)
and aσ1

(
ht

)
/∈ supp

(
σθ1

(
ht

))}
�

Consider type θ1’s payoff if he plays σ̂θ1 and the buyers play σ0. For any given ht ∈
H(σ0�σ̂θ1 ), the following situations occur:

(i) If no hs 
 ht such that hs ∈ Hσ�θi exists, then type θ1’s stage-game payoff at ht and
at all histories preceding ht is no more than 1 − θ1.

(ii) If hs 
 ht such that hs ∈ Hσ�θ1 exists, then I show below that type θ1’s continuation
payoff at hs is no more than 1 − θ1.
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First, since hs ∈ Hσ�θ1 , after the buyer observes aσ1 (h
s) at hs, type θ1 is no longer

in the support of her posterior belief and, according to Step 1, type θ2’s continu-
ation value at hs is no more than 1 − θ2. As a result, type θ2’s continuation payoff
by deviating to σ̂θ1 starting from hs is no more than 1 − θ2. Since θ1 < θ2, and
the maximal difference between type θ1 and θ2’s stage-game payoff is θ2 − θ1,
we know that type θ1’s continuation value at hs by playing σ̂θ1 is no more than
1 − θ1.

The two parts together imply that type θ1’s discounted average payoff in period 0 is no
more than 1 − θ1.

Lemma B.3. For every ε > 0, there exists δ ∈ (0�1), such that in every BNE where δ > δ,

αj(H)

αj(L)
=

E
(σ0�σθj

)

[ ∞∑
t=0

(1 − δ)δt1{yt =H}
]

E
(σ0�σθj

)

[ ∞∑
t=0

(1 − δ)δt1{yt =L}
] ≥ γ∗ − ε

1 − γ∗ + ε
for every j ∈ {1�2}�

Proof. Under the probability measure over H induced by (σ0�σθj ), let X(σ0�σθj
) be the

occupation measure of outcome (T�H) and let Y
(σ0�σθj

) be the occupation measure of
outcome (T�L). Suppose toward a contradiction that

X
(σ0�σθj

)

Y
(σ0�σθj

)
<

γ∗

1 − γ∗ �

Then there exists γ ∈ [0�γ∗) such that the value of the left-hand side is γ
1−γ . For every

hτ ∈ H, let σθj (h
τ) ∈ �(A1) be the (mixed) action prescribed by σθj at hτ and let α1(·|hτ)

be the buyer’s expectation of the seller’s action at hτ . Letting d(·‖·) denote the Kullback–
Leibler divergence, we have

E
(σ0�σθj

)

[+∞∑
τ=0

d
(
σθj

(
hτ

) ∥∥ α1
(·|hτ

))] ≤ − logπ0(θj)� (B.4)

This implies that for every ε > 0, the expected number of periods such that d(σθj (h
τ) ‖

α1(·|hτ)) > ε is no more than

T(ε) ≡
⌈− logπ0(θj)

ε

⌉
� (B.5)

Let

ε ≡ d

(
γ + 2γ∗

3
H +

(
1 − γ + 2γ∗

3

)
L‖γ∗H + (

1 − γ∗)L)
(B.6)

and let δ be large enough such that

X
(σ0�σθj

)

Y
(σ0�σθj

) − (
1 − δT(ε)

) <
2γ + γ∗

3 − 2γ − γ∗ �
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According to (B.4) and (B.5), if type θj plays according to her equilibrium strategy, then
there exist at most T(ε) periods in which the buyers’ expectation over the seller’s action
differs from σθj by more than ε. According to (B.6), aside from T(ε) periods, the buyers

will trust the seller at ht only when σθj (h
t) assigns probability at least γ+2γ∗

3 to H. There-
fore, under the probability measure induced by (σ0�σθj ), the occupation measure with
which the buyer trusts the seller is at most(

1 − δT(ε)
) + (

X
(σ0�σθj

) +Y
(σ0�σθj

) − (
1 − δT(ε)

))2γ + γ∗

γ + 2γ∗ �

which is strictly less than X
(σ0�σθj

) +Y
(σ0�σθj

) when δ is close enough to 1. This leads to
a contradiction.

Forward-looking buyers I show that the patient seller’s payoff cannot significantly ex-
ceed v∗ when the buyer is forward-looking and has a discount factor δ0 close to 0.

The necessity of constraint (B.2) relies on the observation that at every on-path his-
tory, the buyer has no incentive to play T unless he expects H to be played with positive
probability. This remains valid when δ0 < γ∗. Suppose toward a contradiction that at
some on-path history ht , all types of seller play L for sure, but the buyer plays T with
strictly positive probability. The buyer’s discounted average payoff by playing T at ht is
at most

(1 − δ0)(−c)︸ ︷︷ ︸
buyer’s stage-game payoff if he plays T while seller plays L for sure

+ δ0b︸︷︷︸
buyer’s maximal continuation payoff after playing T

�

Since δ0 < γ∗ ≡ c
b+c , the above expression is strictly less than 0. This contradicts the

buyer’s incentive to play T at ht since he can secure payoff 0 by playing N in every sub-
sequent period.

In addition, when δ0 is close to 0, the buyer has no incentive to play T at ht unless he
expects H to be played with probability more than γ∗ −ε, with ε vanishing to 0 as δ0 → 0.
This implies an approximate version of constraint (B.3) when the seller’s discount factor
δ1 is close enough to 1:

αj(H) ≥ γ∗ − ε

1 − γ∗ + ε
αj(L)� (B.7)

with

αj(y) ≡ E
(σ0�σθj

)

[ ∞∑
t=0

(1 − δ1)δ
t
11{yt = y}

]
for every y ∈ {N�H�L}�

Replacing (B.3) with constraint (B.7), the value of the constrained optimization problem
is close to v∗

j , which converges to v∗
j as δ2 → 0. This implies the robustness of Theorem 1

to perturbations of δ0. Given that the proof of Theorem 2 does not use the buyers’ incen-
tive constraints aside from the conclusion that v∗ is a patient seller’s highest equilibrium
payoff, those results are also robust to small perturbations of δ0.
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Appendix C: Proof of Theorem 2

Suppose toward a contradiction that there exists j ∈ {1�2} such that type θj ’s best reply
is to mix at every on-path history. Then both playing L at every on-path history and
playing H at every on-path history are her best replies against σ0. If we order the states
and actions according to T � N , H � L, and θ1 � θ2, then players’ stage-game payoffs
satisfy the monotone-supermodularity condition in Liu and Pei (2020).

If j = 1, then Lemma D.2 in Pei (2020a) implies that type θ2 plays L with probability
1 at every history in H(σ0�σθ2 ). Hence, there exists T ∈ N such that under the probability
measure induced by (σ0�σθ2), there are at most T periods in which buyers believe that
H is played with probability at least γ∗. Type θ2’s payoff is no more than (1 − δT ), which
converges to 0 as δ → 1. This contradicts the presumption that her payoff is ε close to
v∗

2 .
If j = 2, then Lemma D.2 in Pei (2020a) implies that type θ1 plays H with probability

1 at every history in H(σ0�σθ1 ). After type θ2 plays L, she separates from the type θ1 and,
according to Lemma B.2, her continuation value is no more than 1 − θ2. Therefore, type
θ2’s discounted average payoff in period 0 is at most (1−δ)+δ(1−θ2). Since v∗

2 > 1−θ2,
(1 − δ)+ δ(1 − θ2) < v∗

2 when δ is close to 1.
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