
Theoretical Economics 16 (2021), 943–978 1555-7561/20210943

A dominant strategy double clock auction with
estimation-based tâtonnement
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The price mechanism is fundamental to economics but difficult to reconcile with
incentive compatibility and individual rationality. We introduce a double clock
auction for a homogeneous good market with multidimensional private informa-
tion and multiunit traders that is deficit-free, ex post individually rational, con-
strained efficient, and makes sincere bidding a dominant strategy equilibrium.
Under a weak dependence and an identifiability condition, our double clock auc-
tion is also asymptotically efficient. Asymptotic efficiency is achieved by esti-
mating demand and supply using information from the bids of traders that have
dropped out and following a tâtonnement process that adjusts the clock prices
based on the estimates.
Keywords. Deficit free, dominant strategy mechanisms, double clock auc-
tions, individual rationality, multidimensional types, privacy preservation, re-
serve prices, VCG mechanism.

JEL classification. C72, D44, D47, D82.

1. Introduction

The study of price formation and market making with variable demand and supply and
a focus on the efficient allocation of resources has a long tradition in economics. Wal-
ras (1874) proposed a procedure, called tâtonnement, in which buyers and sellers quote
their demands and supplies at a given price to an auctioneer that increases the price if
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there is excess demand and decreases it if there is excess supply, with transactions only
taking place when equilibrium is reached. One important problem with the Walrasian
tâtonnement is that agents do not have an incentive to indicate truthfully their demand
and supply schedules, as their bidding affects the final price.1 In his landmark paper,
Vickrey (1961) showed that it is possible to elicit the true demands and supplies and im-
plement the efficient allocation, using a generalization of the static auction that bears
his name. Observing that it runs a deficit, and hence must be financed by an outside
source, Vickrey was skeptical about the practical relevance of the market mechanism he
proposed, calling it “inordinately expensive” for the market maker. Vickrey did not see
an easy way to modify it so as to avoid the deficit, preserve the truth telling property, and
achieve an approximately efficient allocation, noting (Vickrey 1961, pp. 13–14):

It is tempting to try to modify this scheme in various ways that would reduce or eliminate
this cost of operation while still preserving the tendency to optimum resource allocation.
However, it seems that all modifications that do diminish the cost of the scheme either
imply the use of some external information as to the true equilibrium price or reintroduce a
direct incentive for misrepresentation of the marginal-cost and marginal-value curves. To
be sure, in some cases the impairment of optimum allocation would be small relative to the
reduction in cost, but unfortunately, the analysis of such variations is extremely difficult...

In this paper, we propose a novel double clock auction that induces price taking
behavior by all buyers and sellers at all times, and hence elicits revelation of the true
quantities demanded and supplied, without running a deficit. We do so for a general
environment in which traders have multiunit demands and supplies and multidimen-
sional private information about their marginal values and costs. We view our double
clock auction as a possible solution to the challenges identified by Vickrey. Under mild
regularity conditions, we show that our double clock auction generates an outcome con-
verging to the efficient allocation at rate 1/n as the number n of traders grows.

As emphasized by Ausubel (2004), two fundamental prescriptions for practical auc-
tion design derived from the auction literature are that the prices paid by an agent ought
to be as independent as possible from her own bids, and that the auction should be
structured in an open, dynamic fashion, so as to convey clear price information to bid-
ders and to preserve the privacy of the winners’ valuations. Under the latter property,
market participants are protected from hold up by the designer, because they do not
reveal their willingness to pay on units they trade, and the designer is protected from
the often substantial political and public risk of ex post regret—not knowing the agents’
willingness to pay makes it difficult if not impossible to claim that there was “money left
on the table.”2

1 The substantial impact on social welfare of strategic behavior in tâtonnement mechanisms was dis-
cussed by Babaioff et al. (2014). As they pointed out, tâtonnement mechanisms “are used, for example, in
the daily opening of the New York Stock Exchange and the call market for copper and gold in London.”

2The practice of mechanism design and historical experience with auctions offer plenty of examples of
such public outcry. The 1990 spectrum license auction in New Zealand is one famous example of political
risk due to ex post regret (see, e.g., McMillan 1994 or Milgrom 2004). That static, sealed bid, mechanisms
are prone to the bidders’ hold-up problem was known by stamp collectors before the middle of the 20th
century (Lucking-Reiley 2000).
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Our double clock auction (DCA) satisfies both prescriptions. It consists of a descend-
ing clock price for sellers and an ascending clock price for buyers. At every point in
the DCA, traders indicate the number of units they are active, or bid on, with activity
meaning that this is the number of units they supply (demand) if they are sellers (buy-
ers). There is a monotone activity rule that stipulates that in the course of the auction
a trader can only decrease her activity. Once an agent’s activity has dropped to zero, the
agent is said to have dropped out (or exited). Based on information obtained only from
agents who have exited, the DCA estimates supply and demand and, at any point in the
process, sets target prices that are such that estimated excess demand is zero. If a given
target price is reached without any additional exits, this target price becomes the reserve
price. If an additional exit occurs before the target is reached, supply and demand are
estimated anew, the target price is adjusted, and the DCA proceeds as before until the
earliest of two points in time—both clock prices reach the target price, or an additional
trader drops out.

Once both clock prices reach the target price, this price becomes the reserve, and the
quantities supplied and demanded by all remaining active traders are used to determine
whether buyers or sellers are on the long side of the market at the reserve. If aggregate
quantity demanded equals aggregate quantity supplied at the reserve, then all trades
are executed at this price. Otherwise, agents on the long side participate in an Ausubel
(2004) auction, starting at the reserve.

We show that sincere bidding by each agent is a dominant strategy equilibrium in
the DCA. By construction, it never runs a deficit. It is ex post individually rational and
satisfies constrained efficiency, that is, the units traded in the DCA are procured at mini-
mum cost and allocated to buyers to maximize value. Constrained efficiency eliminates
post-allocation gains from trade on each side of the market and thereby reduces scope
for resale, and related, bid shading. Moreover, like privacy preservation, it eliminates
political fall-out due to discrimination that arises when, say, a buyer who submitted a
lower bid for a unit is served while a buyer with a higher value is not served. We also
provide conditions under which the DCA is asymptotically efficient. Asymptotic effi-
ciency obtains, for example, in the order statistics model (Burdett and Woodward 2020),
according to which each buyer (seller) draws a number of values (costs) independently
from the same distribution equal to its maximum demand (capacity).

Our paper relates to the literature on dominant strategy mechanisms in the tradition
of Vickrey (1961), Clarke (1971), and Groves (1973). There are particularly close connec-
tions to papers that develop deficit-free dominant strategy mechanisms such as Hagerty
and Rogerson (1987) and McAfee (1992). We provide a detailed discussion of these in
Section 4, after we have formally introduced our double clock auction and derived its
key properties. The paper, and the double clock auction we design, draws inspiration
from the extended body of research that has emphasized advantages of clock auctions
in a one-sided environment, such as Ausubel (2004, 2006), Ausubel et al. (2006), Perry
and Reny (2005), Bergemann and Morris (2007), Levin and Skrzypacz (2016), Li (2017),
Sun and Yang (2009, 2014), and Milgrom and Segal (2020).3

 Perry and Reny (2005, p. 568),

3Ausubel (2004) (2004) proposed a clock implementation of the VCG mechanism for the case of homo-
geneous goods. For subsequent generalizations to the case of heterogeneous objects, see Ausubel (2006)
and Sun and Yang (2009, 2014).
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for example, argue that “simultaneous auction formats tend to treat information as if it
were costless to collect and costless to provide” while dynamic auctions economize on
the information collected.

The paper also relates to the recent and growing literature on mechanism design
with estimation initiated by Baliga and Vohra (2003) and Segal (2003).4 In that literature,
the designer’s objective is profit-maximization, and hence the objects to be estimated
are hazard rates and virtual types. In contrast, our market maker’s objective is social sur-
plus, without running a deficit, and so the object to be estimated is the Walrasian price.
An alternative route to estimating Walrasian prices is taken by Kojima and Yamashita
(2017) in a paper that assumes interdependent values and was developed in parallel to
the present one. Like ours, Kojima and Yamashita (2017) use an Ausubel auction on the
long side. Their mechanism randomly splits traders into different submarkets and uses
reports from all other submarkets to estimate the market clearing price in a given sub-
market; it assumes single dimensional types, thereby escaping from the impossibility
results that plague ex post implementation (see, e.g., Jehiel et al. 2006) when two-stage
mechanisms as in Mezzetti (2004) are not allowed. Because traders are randomly split
in mechanisms in the tradition of Baliga and Vohra (2003), these mechanisms are not
constrained efficient and, with single-unit traders, fail to be envy-free. Moreover, none
of the papers above has two-sided clock auctions with multiunit demands and multidi-
mensional information.

Of course, the very idea of a tâtonnement process to discover market clearing prices
dates back to Walras (1874), and so our paper is also tightly connected to the literature
on the decentralized microfoundations of competitive equilibrium, such as Satterth-
waite and Williams (1989, 2002), Rustichini et al. (1994), and Cripps and Swinkels (2006)
as well as to Reny and Perry (2006), who study the related question of the foundations of
rational expectation equilibrium.5 Our double clock auction can be viewed as provid-
ing a centralized microfoundation in which the “Walrasian” auctioneer does the heavy
lifting while endowing agents with dominant strategies. Rather than getting rid of the
Walrasian auctioneer, it fills her role with substance.

The remainder of the paper is organized as follows. Section 2 provides the setup.
In Section 3, we introduce the DCA and derive its key properties. Section 4 provides a
comparison of different mechanisms in the small and a discussion of the most closely
related literature. Section 5 introduces conditions under which the double clock auction
is asymptotically efficient, and Section 6 concludes the paper.

2. The setup

There is a set N = {1� � � � �N} of buyers, and a set M = {1� � � � �M} of sellers of a homo-
geneous good. In Section 5, to study convergence to efficiency, we will proportionally

4See also Loertscher and Marx (2020), who develop a prior-free clock auction that is asymptotically
profit-maximizing in an environment with single-unit traders and independently distributed types.

5Other papers on the convergence to competitive equilibrium in the single-unit case include Gresik and
Satterthwaite (1989) who looked at optimal trading mechanisms, Yoon (2001) who studied a double auc-
tion with participation fees, and Tatur (2005), who introduced a double auction with a fixed fee. For the
multiunit case, Yoon (2008) introduced the participatory Vickrey–Clarke–Groves mechanism.
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expand the sets of buyers and sellers to N = {1� � � � � nN} and M = {1� � � � � nM} and we
will let n go to infinity.

Denote by vb = (vb1� � � � � v
b
kB
) the valuation, or type, of buyer b ∈ N , where vbk ∈ [0�1]

is buyer b’s marginal value for the k-th unit of the good and kB is an upper bound on
each buyer’s demand. Denote by cs = (cs1� � � � � c

s
kS
) the cost, or type, of seller s ∈ M,

where csk ∈ [0�1] is seller s’s cost for producing, or giving up the use of, the kth unit
and kS is an upper bound on each seller’s capacity.6 Let v = (v1� � � � �vN) = (vb�v−b)

be the profile of valuations, c = (c1� � � � �cM) = (cs�c−s) be the profile of costs, and
θ = (v�c) = (vb�θ−b) = (cs�θ−s). We assume diminishing marginal values and increas-
ing marginal costs; that is, for all b ∈N , all k ∈ {1� � � � �kB − 1}, we have vbk ≥ vbk+1 and, for
all s ∈ M, all k ∈ {1� � � � �kS − 1}, we have csk ≤ csk+1. A buyer b receiving q goods at unit

prices pb
1� � � � �p

b
q obtains payoff

∑q
k=1(v

b
k − pb

k); a buyer receiving no units and making
no payments has zero payoff. Similarly, a seller s selling q goods at prices ps

1� � � � �p
s
q

obtains payoff
∑q

k=1(p
s
k − csk); a seller receiving no payments and selling no units has

zero payoff. The payoff functions and the upper bounds on traders’ capacities are com-
mon knowledge, but marginal values and marginal costs are private information of each
trader.7

The mechanism we propose has an open bid, clock format. As ours is a setting with
active buyers and sellers (as opposed to a one-sided auction), the mechanism is a dou-
ble clock auction; that is, it will be run with an ascending clock on the buyers’ side and
a descending clock on the sellers’ side. This implies that the mechanism is privacy pre-
serving; that is, it does not reveal the marginal values or marginal costs of the units that
are traded.8 Our mechanism is robust in the sense of Bergemann and Morris (2005), be-
cause it satisfies dominant strategy incentive compatibility, so that agents do not need
well specified beliefs about the other agents’ types in order to bid optimally.

Denote the individualized price vector of agent i by pi(θ−i) = (pi
0(θ

−i)� � � � �

pi
kI
(θ−i)), where pi

k(θ
−i) is the price buyer i must pay (seller i is paid) for the kth unit of

the good.9 Using the convention vb0 = cs0 = 0 for all b and s, let the quantities traded by
each buyer b ∈ N and seller s ∈ M at their personalized prices be

qb
(
pb

(
θ−b

)
�vb

) = arg max
0≤q≤kB

q∑
k=0

(
vbk −pb

k

(
θ−b

))
and

qs
(
ps

(
θ−s

)
�cs

) = arg max
0≤q≤kS

q∑
k=0

(
ps
k

(
θ−s

) − csk
)
�

6The assumption that values and costs are in [0�1] is just a normalization.
7Our results remain valid when traders have complete information about all marginal values and costs.

This is because in the DCA we introduce traders have the dominant strategy of bidding sincerely.
8See Engelbrecht-Wiggans and Kahn (1991), Naor et al. (1999), Ausubel (2004), and Milgrom and Segal

(2020) for discussions of the importance of this requirement.
9By the taxation and revelation principles (see Rochet 1985, and Myerson 1979), any dominant strategy

mechanism is strategically equivalent to a “direct” price mechanism that sets an individualized marginal
price vector for each agent as a function of the other agents’ types and lets each agent decide how many
units to trade at the specified prices.
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Let qB(θ) = ∑
b∈N qb(pb(θ−b)�vb) be the total quantity acquired by buyers and qS(θ) =∑

s∈M qs(ps(θ−s)�cs) be the total quantity sold by sellers.
A mechanism is feasible if for every θ, qB(θ)= qS(θ).10

Given that the outside option has zero value for every agent, a mechanism satisfies
ex post individual rationality if for all b, θ= (vb�θ−b) and for all s, θ= (cs�θ−s):

pb
0
(
θ−b

) ≤ 0; ps
0
(
θ−s

) ≥ 0�

The profit a mechanism generates at θ is

�(θ) =
∑
b∈N

qb(pb(θ−b))∑
qb=0

pb
qb

(
θ−b

) −
∑
s∈M

qs(ps(θ−s))∑
qs=0

ps
qs

(
θ−s

);
a mechanism is deficit-free if for all θ, �(θ) ≥ 0.

The performance of any allocation mechanism that targets welfare maximization
must be evaluated in term of its efficiency level. In our setting, full ex post efficiency,
which implies feasibility, requires that for all possible type profiles the buyers with the
highest marginal valuations trade with the sellers with the lowest marginal costs and
that the total quantity traded is qB(θ) = qS(θ) = qCE(θ), where qCE(θ) is a Walrasian
(competitive equilibrium) quantity associated with θ:11

max
{
q ∈ {0� � � � �K} : v(q) > c[q]

} ≤ qCE(θ) ≤ max
{
q ∈ {0� � � � �K} : v(q) ≥ c[q]

}
�

In our setting, dominant strategy incentive compatibility and ex post efficiency are satis-
fied if and only if the mechanism is a Groves mechanism (e.g., see Holmström 1979) and
ex post individual rationality and deficit minimization further restrict the mechanism
to be a VCG mechanism. The VCG mechanism is not deficit-free. Indeed, in Loertscher
and Mezzetti (2019), we have shown that in the setting of a market for a homogeneous
good the two-sided VCG auction runs a deficit on each trade and the total deficit does
not vanish as the number of traders grows large. While it is not possible to construct a
mechanism that is ex post efficient and deficit-free, efficiency is an important feature
of an allocation mechanism. Thus, we require our double clock auction to satisfy two
efficiency properties, constrained efficiency and asymptotic efficiency.

A mechanism is constrained efficient if, given the total quantity traded q(θ) =
qB(θ) = qS(θ), the trades completed are the most valuable ones—those associated
with the q(θ)-th highest marginal values and the q(θ)-th lowest marginal costs. Con-
strained efficiency is an appealing property of the price mechanism in competitive and
oligopolistic markets.

10If there was free disposal, we could weaken the feasibility condition to qB(θ) ≤ qS(θ), but this would
not help in any substantial way in the design of our DCA.

11 Given a vector x, we denote by x(i) its ith highest element and by x[i] its ith lowest element. Thus,
x(q) = x[m+1−q] if the vector contains m elements. We also adopt the notational convention that v(0) = 1 and
c[0] = 0, which implies that qCE(θ) is well-defined.
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The total welfare at θ generated by a mechanism is given by the gains of trade:

W (θ) =
∑
b∈N

qb(pb(θ−b))∑
qb=0

vb
qb

(
pb

(
θ−b

)) −
∑
s∈M

qs(ps(θ−s))∑
qs=0

csqs
(
ps

(
θ−s

))
�

Let qbCE(θ) and qsCE(θ) be the quantity traded by buyer b and seller s in a Walrasian
equilibrium. Under a fully efficient allocation, total welfare at θ is

WCE(θ) =
∑
b∈N

qbCE(θ)∑
qb=0

vb
qb
(θ)−

∑
s∈M

qsCE(θ)∑
qs=0

csqs (θ)�

Thus, the percentage welfare loss at θ is L(θ) = 1 − W (θ)
WCE(θ)

. Let Pφ∗ be the probability
measure determining the true marginal values and costs (i.e., θ) and Eφ∗ be the expecta-
tion operator with respect to Pφ∗ .12 For ρ > 0, we say that a mechanism is asymptotically
efficient at rate 1/nρ if the expected percentage welfare loss converges to zero at rate 1/nρ

as the size of the market n goes to infinity; that is, if there is a constant L > 0 such that
for all n: Eφ∗ [L(θ)] ≤ L/nρ. Our double clock auction will be constrained efficient and
asymptotically efficient at rate 1/n.

3. The dominant strategy double clock auction

There are two clock prices in our DCA, one for buyers and one for sellers. At the start,
the prices for buyers and sellers are pB

0 = 0, pS
0 = 1. The buyers’ clock price increases or

stays constant and the sellers’ clock price decreases or stays constant. Each buyer starts
the DCA with a quantity demanded equal to kB and each seller starts with a quantity
supplied equal to kS . Buyers can only take an action when their clock price increases
and sellers can only take an action when their clock price decreases; they may reduce
their quantity demanded or supplied by any nonnegative integer.

The DCA is composed of two phases. Phase 1 permits estimated demand and supply
to adjust using the revealed marginal values of the traders that drop out—that is, reduce
their demand or supply to zero—as the buyers’ clock price increases and the sellers’
clock price decreases. The estimation procedure (to be explained below) determines
which of three possible states prevails at each point during Phase 1: a buyers’ clock state
(state BC), in which only the buyers’ clock price changes; a sellers’ clock state (state SC),
in which only the sellers’ clock price changes; a double clock state (state DC), in which
both clock prices change. Phase 1 ends when the two clocks reach a common price pT

t .
Before describing the precise mechanics of the price adjustment that takes place in

Phase 1, which is done in Section 3.1, we now complete the specification of how the
allocation is determined in Phase 2.

Phase 2 of the DCA begins by setting the reserve price r. Then it computes the re-
vealed aggregate demand and supply at the reserve price r of the buyers and sellers who

12The true probability distribution is not known by the auctioneer or by the traders. There is a set �
indexing the possible probability measures Pφ, with φ ∈�. See Section 5 for details.
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have not dropped out and determines which side is the long side—the buyers’ side if de-
mand exceeds supply, the seller’s side if supply exceeds demand at r. The DCA allocates
to all traders on the short side the units they demand or supply and charges the reserve
price r for each such unit. Let q(r) be the total quantity demanded or supplied at r on
the short side. To ration units on the long side, the DCA runs an Ausubel auction for q(r)
units with a clock price starting at r.13 The Ausubel auction ends when the available q(r)

units are assigned to traders on the long side.

3.1 Description of Phase 1 of the DCA

Let NO(pB) be the set of buyers whose quantity demanded is zero when the buyers’
clock price reaches pB and MO(pS) be the set of sellers whose quantity supplied is zero
when the sellers’ clock price reaches pS . These two sets are the traders who have irre-
vocably dropped out of the DCA; these traders cannot reenter and will trade zero units.
The only active traders after the clock prices have reached pB and pS are the buyers in
the set NA(pB) = N \NO(pB) and the sellers in the set MA(pS) = M \MO(pS).

In Phase 1 of the DCA, estimation takes place in discrete rounds. A new estima-
tion round is entered when a trader drops out of the DCA and the sellers’ clock price is
higher than the buyers’ clock price; let pB

t < pS
t be the clock prices for buyers and sellers

in round t. In estimation round 0, at the start of the DCA, the auctioneer has prior esti-
mates of the aggregate demand and supply functions. In any other round t > 0, the auc-
tioneer estimates the aggregate demand and supply functions using the marginal values
of the traders that have already dropped out (i.e., the traders in NO(pB

t ) and MO(pS
t )),

as revealed from the history of their demand and supply reductions.14 Let E[DN (pB)]
be estimated demand at price pB and E[SM(pS)] be estimated supply at price pS . While
the only public information available to traders are the state and current clock prices, if
traders reduce demand and supply when their prices reach their marginal values, this
history reveals to the auctioneer all the values and costs of the traders who have become
inactive.

Minimum distance estimation will be used to prove the asymptotic efficiency of the
DCA; it will be explained in detail in Section 5.15 However, the precise estimation ap-
proach used in an estimation round is not important for the purpose of establishing the

13An Ausubel auction is a clock version of a Vickrey auction in which each trader pays or is paid the
Vickrey price on each unit it buys or sells. If it is run for sellers as sellers are on the long side, then the clock
price decreases starting from r and sellers decide if and when to reduce their supply. A seller s is paid the
current clock price each time she clinches an additional unit, which happens when the residual supply of
the other sellers has decreased below the number of demanded units q(r) minus the units already clinched
by s. If it is run for buyers, the Ausubel auction works similarly, with a clock price increasing starting from
the reserve price r.

14Although our mechanism is different, the idea of using only information from losing bidders is not
novel, as it is the basis for price formation in a single-unit English auction and its strategic equivalence with
the second-price auction. Brooks (2013) also exploits this idea.

15The index that minimizes the distance between the demand and supply functions associated to that
index and the empirical demand and supply functions obtained from the traders that have dropped out of
the DCA is chosen from a set of indexes distinguishing different random processes generating the traders’
valuations. The chosen index is then used to infer the estimated demand and supply functions.
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main result of this section, Theorem 1. Many other methods (e.g., Bayesian estimation,
maximum likelihood, OLS, and also ad hoc interpolation methods) would work equally
well.16

In Phase 1, following each trader dropout, estimation rounds determine whether
there is estimated excess demand or supply, lead to a transition of the DCA to one of
three states (either a buyers’ clock state, a sellers’ clock state, or a double clock state), and
set the target prices in such states. The aim is to balance estimated demand and supply
subject to the monotonicity constraints imposed by clock auctions. We next describe
Phase 1 algorithmically.

Estimation round t .

• If estimated demand at pB
t exceeds estimated supply at pS

t (i.e., E[DN (pB
t )] >

E[SM(pS
t )]), then Phase 1 of the DCA transitions into a buyers’ clock state (state

BC) and:
– The auctioneer sets the buyers’ target price, pTB

t+1 = min{pEB
t �pS

t }; where pEB
t

is the price at which estimated demand equals estimated supply at pS
t (i.e.,

E[DN (pEB
t )] = E[SM(pS

t )]).17 (The target price serves as an upper bound on the
adjustment of the buyers’ clock price during the BC state.)

• If estimated supply at pS
t exceeds estimated demand at pB

t (i.e., E[DN (pB
t )] <

E[SM(pS
t )]), then Phase 1 of the DCA transitions into a sellers’ clock state (state

SC) and:
– The auctioneer sets the sellers’ target price, pTS

t+1 = max{pES
t �pB

t }; where pES
t

is the price at which estimated supply equals estimated demand at pB
t (i.e.,

E[DN (pB
t )] = E[SM(pES

t )]). (The target price serves as a lower bound on the ad-
justment of the sellers’ clock price during the SC state.)

• If estimated demand at pB
t equals estimated supply at pS

t (i.e., E[DN (pB
t )] =

E[SM(pS
t )]), then Phase 1 of the DCA transitions into a double clock state (state

DC) and:
– The auctioneer sets as the target price for both buyers and sellers in state DC the

estimated market clearing price pT
t+1 at which estimated supply equals estimated

demand, E[DN (pT
t+1)] = E[SM(pT

t+1)].
From an estimation round t, the DCA transitions to one of the following three states:

State Bc: Buyers’ clock state.

• The buyers’ clock price pB increases continuously starting from pB
t .

• At any price pB, each active buyer b ∈ NA(pB) decides whether to reduce her de-
mand.

16Indeed, we will use a combination of OLS and simple interpolation to perform estimation in the order
statistics model that we discuss in Section 4.

17The target price for buyers is the buyers’ clock price at which estimated demand equals estimated
supply evaluated at the current sellers’ clock price, unless such a price is higher than the current sellers’
clock price, in which case the latter becomes the buyers’ target price.



952 Loertscher and Mezzetti Theoretical Economics 16 (2021)

– If the demand of an active buyer becomes zero at price pB ≤ pTB
t+1, then the auc-

tioneer sets pB
t+1 = pB and pS

t+1 = pS
t and the DCA goes to estimation round t + 1.

– If the clock price pB reaches the target price pTB
t+1 < pS

t with no buyer dropping
out, then the DCA transitions into state DC with target price pT

t+1, the price at
which estimated demand equals estimated supply, E[DN (pT

t+1)] = E[SM(pT
t+1)].

– If the clock price pB reaches the target price pTB
t+1 = pS

t with no buyer dropping
out, then the auctioneer sets r = pTB

t+1 as the reserve price and the DCA transition
into Phase 2.

State Sc: Sellers’ clock state.

• The sellers’ clock price pS decreases continuously starting from pS
t .

• At any price pS , each active seller s ∈ MA(pS) decides whether to reduce her supply.
– If the supply of an active seller becomes zero at price pS ≥ pTS

t+1, then the auction-

eer sets pS
t+1 = pS and pB

t+1 = pB
t and the DCA goes to estimation round t + 1.

– If the clock price pS reaches the target price pTS
t+1 > pB

t with no seller dropping
out, then the DCA transitions into state DC with target price pT

t+1, the price at
which estimated demand equals estimated supply, E[DN (pT

t+1)] = E[SM(pT
t+1)].

– If the clock price pS reaches the target price pTS
t+1 = pB

t with no seller dropping

out, then the auctioneer sets r = pTS
t+1 as the reserve price and the DCA transitions

into Phase 2.

State Dc: Double clock state.

• The buyers’ clock price pB increases continuously starting from pB
t and the sellers’

clock price pS decreases continuously starting from pS
t in such a way that equality

of estimated demand and supply is maintained at all points in time (i.e., at all pB�pS

it is E[DN (pB)] = E[SM(pS)]), so that, if no trader drops out, pB and pS reach the
target price pT

t+1 simultaneously.

• At any price pB, each active buyer decides whether to reduce her demand; at any
price pS , each active seller decides whether to reduce her supply.
– If the demand of one of the active buyers or the supply of one of the active sellers

becomes zero at prices pB < pT
t+1, pS > pT

t+1, then the auctioneer sets pB
t+1 = pB,

pS
t+1 = pS and the DCA goes to estimation round t + 1 (since estimation is trig-

gered whenever a trader drops out).

– If prices pB and pS reach the target price pT
t+1, then the auctioneer sets r = pT

t+1
as the reserve price and the DCA transitions into Phase 2.

3.2 Properties of the DCA

At all points in the DCA the only information available to the active traders are the phase,
state and current clock prices. We say that an agent engages in sincere bidding if she
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expresses her quantity demanded or supplied truthfully. That is, buyer b bids sincerely
if for any buyers’ clock price pB her demand is qb such that vb

qb
≥ pB ≥ vb

qb+1
and seller s

bids sincerely if for any sellers’ clock price pS her supply qs is such that csqs ≤ pS ≤ csqs+1.18

Theorem 1 shows that the DCA is deficit free and constrained efficient, that is, con-
ditional on the volume of trade, the trades realized are the ones yielding the highest total
welfare. Two points are worth making. First, the DCA typically makes a positive revenue,
as buyers pay at least the reserve price r for each unit they acquire and sellers are paid
at most r on each unit they sell. Second, the DCA is not fully efficient, some profitable
trades may be missed because the reserve price r is set so as to equate estimated ag-
gregate supply and demand, which may be different from the true realized supply and
demand.

Theorem 1. Sincere bidding by each agent is a dominant strategy equilibrium in the
DCA. The DCA is also feasible, deficit-free, ex post individually rational, and constrained
efficient.

Proof. By construction, the DCA is feasible as the quantity traded is determined by the
short side of the market at the reserve price, and it is deficit free since the minimum price
paid by buyers (the reserve price r) is equal to the maximum price paid to sellers (also
the reserve price r). Ex post individual rationality holds since each trader may guarantee
herself the outside option payoff by dropping out of the bidding. Constrained efficiency
holds because, under sincere bidding, for any given quantity to be traded q, the trades
that are completed are those associated with the q highest marginal values and the q

lowest marginal costs.
Because of the symmetry of buyers and sellers, to save space we will just argue that

sincere bidding is a dominant strategy for each buyer b.
Case 1. The first case arises if by bidding sincerely buyer b ends up dropping out and

not buying any unit. In such a case, the reserve price r is at least as high as her marginal
valuation for the first item. No alternative strategy could increase buyer b’s payoff, as if
she did not drop out and instead stayed longer in the DCA, so as to acquire at least one
unit, then the reserve price could only be higher and she would end up acquiring units
at a price above their marginal value.

Case 2. The second case arises when by bidding sincerely buyer b acquires at least
one unit. In such a case, the reserve price r does not depend on any of buyer b’s marginal
values and the buyer makes a nonnegative payoff on any unit she acquires. This implies
the following first conclusion: (i) no strategy that leads buyer b to drop out before price
r is reached, and thus acquire zero units, is a profitable deviation from sincere bidding.

Now recall that the DCA uses the revealed demands and supplies of the active traders
at the reserve price r to determine which side of the market is the short side—buyers if

18There are two reasons why no bid information about the other agents is revealed to a trader. First, it
makes the bidding environment straightforward; much like in the Walrasian analysis of competitive mar-
kets, all information that an agent has is the price she faces. Second, as show in Theorem 1, it makes
sincere bidding by all agents a dominant strategy equilibrium. As in Ausubel (2004), if we allowed either full
or aggregate bid information, then sincere bidding would be an ex post perfect equilibrium.
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supply exceeds demands, sellers if demands exceeds supply. Suppose first that buyers
are on the short side. Then buyer b pays the reserve price r on all the units she acquires
and by bidding sincerely she acquires all units with marginal values above r. There are
two possible kinds of deviations from sincere bidding under which buyer b continues to
acquire some units. The first type leads to b remaining on the short side of the market.
Such a deviation cannot be profitable, because either b ends up acquiring extra units
that she values less than the reserve price r or she gives up acquiring units that she values
above r. The second type of deviation requires buyer b to increase her demand to the
point that buyers end up on the long side of the market. As such, a deviation does not
change the reserve price r; it cannot be profitable, as it leads b possibly to acquire units
valued less than the reserve price r and paying at least r on all units. Thus we have shown
that: (ii) there is no profitable deviation from sincere bidding for buyer b when buyers
are on the short side of the market.

Now suppose buyers are on the long side of the market. Again, there are two possi-
ble kinds of deviations from sincere bidding under which buyer b continues to acquire
some units. The first type leads to b remaining on the long side of the market. To see that
such a deviation cannot be profitable, recall that on the long side of the market units
are allocated using an Ausubel auction. If there were a profitable deviation from sincere
bidding, it would imply that such a deviation is profitable in the Ausubel auction, but we
know that bidding sincerely is a dominant strategy in such an auction. The second type
of deviation (which may or may not be feasible) requires buyer b to reduce her demand
to the point that buyers end up on the short side of the market. It leads b to acquire a
smaller number of units at the reserve price r. Let qd be the number of units buyer b

acquires under this deviation and �d her demand reduction relative to sincere bidding;
that is, under sincere bidding she obtains qd + �d units. This then implies that under
sincere bidding buyer b clinches at least qd units at the reserve price r in the Ausubel
auction. Thus, the deviation that leads to buyers being on the short side is weakly dom-
inated by the deviation of staying on the long side and bidding the reserve price r on
all units qd + �d , but such a deviation is in turn dominated by sincere bidding, as it is
a dominant strategy in the Ausubel auction. This concludes the proof, as it shows that:
(iii) there is also no profitable deviation from sincere bidding for buyer b when buyers
are on the long side of the market.

4. Discussion and comparisons

Vickrey (1961) first noted that developing mechanisms for two-sided allocation prob-
lems that minimize inefficiencies, do not run a deficit and require no prior information
about the true equilibrium price is “extremely difficult.” For a bilateral trade setting à
la Myerson and Satterthwaite (1983) with the buyer and seller drawing their value and
cost independently from distributions with overlapping support, Hagerty and Roger-
son (1987) showed that the best the market maker can do subject to dominant strategy
incentive compatibility, ex post individual rationality and budget balance is to post an
exogenously given price and let the buyer and seller decide if they want to trade at that
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price. With only one agent on each side of the market, there is simply no way of endo-
genizing the price at which trade occurs without giving up on dominant strategies (see
also Copič and Ponsatí 2016, and Copič 2017).

McAfee (1992) proposed a double auction that embeds this insight in a setup with
multiple single-unit traders, whose values and costs are elements of the [0�1] interval,
and that endogenizes the posted price of Hagerty and Rogerson. There are two clock
prices: a decreasing sellers’ clock price pS and an increasing buyers’ clock price pB.
In any round t starting with the same number of buyers and sellers and clock prices

pB and pS , the auctioneer posts a price pT
t = pB+pS

2 .19 Both clocks are then run and if
no agent exits by the time both clocks reach pT

t (i.e., by the time pB = pS = pT
t ), then

all active agents trade at pT
t . If the numbers of buyers and sellers are not the same,

either at the outset or after a trader drops out, then only the clock price on the long side
moves until the number of active agents is the same on both sides of the market. If this
happens when the buyers’ clock price pB is lower than the sellers’ clock price pS , then a
new posted price in the middle of the interval (pB�pS) is selected and both clocks run
again. If equality in the number of buyers and sellers is reached when pB > pS , then the
remaining active traders trade at those prices; buyers pay pB sellers receive pS .

McAfee’s double auction endows traders with dominant strategies and it either im-
plements trading of the efficient quantity, which happens if trade occurs at a posted
price pT

t , or it just excludes the single least efficient trade, which happens if trade occurs
at prices pB > pS . Although McAfee does not refer to estimation, we argue below that
it is natural to interpret his double auction as using estimates of demand and supply.
McAfee’s double auction can also be viewed as entering an Ausubel auction phase when
pB = pS and the number of traders on the long side exceeds the number of traders on
the short side (with probability one only by one trader). With single-unit traders, the
single clock, Ausubel auction on the long side is simply a clock implementation of the
second-price Vickrey auction, determining the trading price at the drop-out price of the
first trader that exits, the most competitive losing bid.

Our DCA can be viewed as an extension of McAfee’s (1992) double auction to traders
with multiunit demand and supply for a specific estimation procedure.20 It is worth re-
calling that in standard auction formats multiunit buyers and sellers have an incentive
to reduce their demands and supplies so as to manipulate the prices at which they trade
(e.g., see Ausubel et al. 2014). Unlike the DCA, many apparently intuitive generaliza-
tions of McAfee’s double auction, that rely on counting the number of drop-outs or on
excluding the least efficient trades, in general either give traders incentives to misrepre-
sent their marginal values or do not guarantee asymptotic efficiency.

To facilitate comparison with alternative approaches to market clearing and estima-
tion, and to make the connection between estimation in the DCA and McAfee’s double

19Any choice of a posted price equal to λtp
B + (1 − λt)p

S , with λt ∈ [0�1] would work equally well with
regards to the incentive compatibility and individual rationality constraints.

20McAfee also proposed a simultaneous bid version of his mechanism, which has been extended in the
operation research and computer science literature (see Chu 2009, and Segal-Halev et al. 2018, for recent
contributions and references). None of these extensions has considered a setting with multidimensional
types, or has used a double clock format.
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auction most transparent, in the remainder of this section we consider a special case
of our model, the order statistics model, in which each buyer has kB independent value
draws from an unknown distribution F with density f and each seller has kS indepen-
dent cost draws from an unknown distribution G with density g. If the distributions
F and G were known, then expected market demand and supply at prices pB and pS

would be, respectively,

NkB

(
1 − F

(
pB

))
and MkSG

(
pS

)
� (1)

If kB = kS = 1, then |NO(pB)|/N – the fraction of buyers that have dropped out when
pB is reached by the buyers’ clock (that starts at 0)—is the empirical distribution of the
draws that are below pB out of N draws from F ; it is thus an estimate of F(pB). Simi-
larly, MA(pS)|/M = 1 − |MO(pS)|/M—the fraction of sellers that are active when pS is
reached by the sellers’ clock (which starts at 1)—is an estimate of G(pS), as it is the em-
pirical distribution of the draws that are below pS out of M draws from G. Thus, using (1)
estimated demand and supply at pB and pS are NkB(1 − |NO(pB)|/N) = N − |NO(pB)|
and MkS(1−|MO(pS)|/M) =M −|MO(pS)|, which are precisely the true, and McAfee’s
“estimated,” demand and supply at pB and pS .

When kB > 1, the fraction of buyers that have dropped out at pB is instead the em-
pirical distribution of the draws that are below pB out of N draws from F(1)—the distri-
butions of the highest draw out of kB for each buyer. Similarly, if kS > 1, then the fraction
of sellers that are active at pS is the empirical distribution of the draws below pS out of
M draws from G[1]—the distribution of the lowest draw out of kS for each seller. This is
because the probability that a given buyer has dropped out at price pB is F(1)(p

B) and
the probability that a given seller is active at price pS is G[1](pS). The distribution of
these order statistics are

F(1)(v) = F(v)kB and G[1](c) = 1 − (
1 −G(c)

)kS � (2)

Substituting (2) into (1) after replacing F(1)(p
B) and G[1](pS) with their empirical

distributions, it follows that estimated demand and supply at pB and pS using the frac-
tions of active traders are

E
[
DN (

pB
)] =NkB

(
1 −

(∣∣NO
(
pB

)∣∣
N

) 1
kB

)
and

E
[
SM

(
pS

)] =MkS

(
1 −

(∣∣MO
(
pS

)∣∣
M

) 1
kS

)
�

Using these estimates in the DCA while the number of bidders increases to infinity
(keeping N/M constant) leads to setting a reserve price r approximately equal to the
Walrasian price pW at which E[DN (pW )] = E[SM(pW )]; the DCA is asymptotically ef-
ficient. On the contrary, a “naive” application of McAfee’s estimates of demand and
supply would lead the DCA to set as reserve price the solution p∗ to N − |NO(p∗)| =
M − |MO(p∗)|; the DCA would be asymptotically efficient only if N = M and kB = kS .
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To complete the description of the DCA for the order statistics model, one is only
left to specify the estimated demand and supply for prices p ∈ (pB�pS), which are used
to determine the price at which the adjustments stop if no further exits occur (i.e., the
target price) and the speed of price adjustments in case both clock prices move simul-
taneously. The approach followed by McAfee can be interpreted as taking the estimated
demand and supply functions to be linear functions starting from the estimated de-
mand and supply at the current clock prices pB and pS ; that is, estimated demand
at price p ≥ pB is E[DN (pB)] − λD(p − pB) and estimated supply at price p ≤ pS is
E[SM(pS)] + λS(p − pS) for some arbitrary λD�λS > 0. In addition, McAfee implicitly
assumes λD = λS , which implies that estimated demand equals estimated supply at the

target price pT
t = pB+pS

2 . In the numerical simulations of the order statistic model in this
section, we will instead estimate the coefficients λD and λS via OLS using as data the
revealed marginal values of all buyers, respectively sellers, that have become inactive
when the prices pB and pS are reached by the DCA’s clocks.21

An alternative approach to estimation and market clearing while respecting incen-
tive compatibility and individual rationality constraints is to randomly assign traders to
different sub-markets and use reports from all other submarkets to estimate the mar-
ket clearing price in any given sub-market. For an interdependent values model with
multiunit demands and supplies and one-dimensional types, Kojima and Yamashita
(2017) develop a mechanism that estimates market clearing prices in this random split-
ting fashion. After the agents’ reports from the other sub-markets have been used to
determine a given market’s reserve price the double auction of Kojima and Yamashita,
like our DCA, uses an Ausubel auction on the long side.

We now briefly discuss the pros and cons of our DCA and the random splitting mech-
anism, and provide a few insightful numerical comparisons. We maintain this paper’s
assumption that the setting is one of private values and confine the discussion and com-
parisons to this environment.

First, observe that unlike the DCA random splitting mechanisms are not constrained
efficient. More generally, the random splitting approach has the downside that it sac-
rifices the superior sorting or matching properties that larger markets afford. This is
particularly relevant with small numbers of traders. To appreciate the relevance of sort-
ing, consider the case of single-unit traders who draw their types independently from
the uniform with N = M = 2. Under the random splitting mechanism, welfare is bound
above by 1/3 because it cannot possibly exceed two times expected welfare in a bilateral
trade problem. In contrast, the expected welfare from only executing the trade between
the buyer with the higher value and the seller with the lower cost in an integrated market
is 11/30.22

21In Section 5, we will assume more generally that the distribution functions from which buyers’ and
sellers’ values are drawn belong to a parameterized family, and estimates of demand and supply will be
obtained via a minimum distance approach.

22For N = M = 2, kB = kS = 1, and buyers and sellers drawing their types independently from the same
distribution—not necessarily uniform—Liu et al. (2021) show that McAfee’s double auction, and hence our
DCA, generates a higher expected welfare than the random sampling mechanism.
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(a) N varies (b) kB varies

Figure 1. Comparisons of DCA and random splitting mechanism with two submarkets. Panel
(a): k = 3, N ∈ {2�4�6�8�10}, uniform distributions. Panel (b): N = 2, k ∈ {1� � � � �10}, uniform
distributions.

On the other hand, random splitting mechanisms are detail free in the sense of Wil-
son (1987) (i.e., make no use of a priori information about traders’ types and beliefs) and
have the advantage of not relying on the informativeness of the behavior of agents who
become inactive, let alone on the existence of such agents. For an extreme example,
if quantities were continuous variables and traders’ payoff functions satisfied the Inada
conditions, then no agent would be inactive under the efficient allocation. This suggests
that in the order statistics model the DCA will sacrifice more surplus relative to ex post
efficiency, for a fixed number of traders, as the agents’ capacities increase.

Thus, intuitively, one would expect the random splitting approach to be outper-
formed by McAfee’s mechanism or the DCA when the number of traders is small; match-
ing is important; and capacities are small. These intuitions are corroborated by our
numerical simulations. Figure 1 displays simulation results for the DCA and random
splitting mechanisms with two submarkets. The simulations assume that kB = kS = k,
N = M , and that all values and costs are drawn from the uniform distribution, but the
results are qualitatively the same if all values and costs are drawn instead from the same
Beta-distribution with a symmetric density. Panel (a) shows that, keeping capacity fixed,
the performance of both mechanisms relative to ex post efficiency improves as N in-
creases. It also shows that with a small number of traders and relatively small capac-
ities k, the DCA outperforms the random splitting mechanisms. Panel (b) shows that,
as capacities increase while N is kept fixed, the benefits of the DCA relative to random
splitting diminish.

Both the DCA and the random splitting mechanism perform better as k increases.
For the random splitting mechanism, this is as expected because in the order statistics
model increases in k increase the data that can be used for estimation. In contrast, in
the DCA the opposite is the case—as k increases, less data is available for estimation
because the probability that each agent is active at a given price increases in k, which
means that the probability that the DCA reaches the initial target price increases in k. So
if the initial target price is equal to the Walrasian price in the large market limit, which is
the case with symmetric densities, the performance of the DCA improves as k increases
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because, in a sense, estimation becomes less important. (Indeed, our simulations—
not displayed—show that, for asymmetric densities, random splitting eventually out-
performs the DCA as k increases.)

5. Asymptotic efficiency of the DCA

To prove the asymptotic efficiency of the DCA, we now endow the auctioneer with a
model of the random process generating traders’ valuations, allowing the number of
traders to grow large. Thus, as foreshadowed in Section 2, the sets of buyers N and sellers
M now contain, respectively, nN and nM elements, and we study the limit equilibrium
outcome as n → ∞.

Given an integer n, we assume that the marginal values and costs of the agents are
drawn from one of the feasible probability measures P

n
φ. The set of indexes � deter-

mines the set of feasible measures and the index φ ∈ � specifies an element of the set.
We assume that � is a compact subset of a metric space and that Pn

φ is continuous as
a function of φ (an assumption that is trivially satisfied if � is a finite set). We make
three assumptions about the probability measures P

n
φ. First, we require the expected

per capita demand and supply functions they induce to be strictly monotone. Second,
we allow traders’ valuations to be correlated but require a form of weak dependence of
individual demands and supplies which guarantees that the law of large numbers holds.
Third, we impose an identifiability condition that guarantees that minimum distance
estimation can identify the stochastic process generating traders’ valuations. Note that
all three conditions are satisfied by the order statistic model described in the last section,
by just postulating that the possible distribution functions from which buyers’ and sell-
ers’ values are drawn belong to a parameterized family, for example, FφB(v) = vφB and
GφS

(v) = vφS with φ = (φB�φS) ∈ � = [φ�φ]2. They are also satisfied in a conditionally
independent generalization of the order statistics model, in which a state is drawn first
from a distribution from some parameterized family and then buyers’ and sellers’ val-
ues are drawn, conditional on the state, from distributions from another parameterized
family.

To state our three assumptions formally, let 1(·) be the indicator function and de-
fine the true demand and supply for the kth unit by buyer b and seller s at price p

as Db
k(p) = 1(vbk ≥ p) and Ssk(p) = 1(csk ≤ p). We denote the demand at price p for

the kth unit of the buyers who are still active at price pB by D
NA(pB)
k (p), and of those

who have dropped out by D
NO(pB)
k (p). Adding the two, we obtain the aggregate de-

mand for the kth unit DN
k (p), which allows us to define aggregate demand at price p

as DN (p) = ∑kB
k=1 D

N
k (p). Similarly, we denote the supply at price p for the kth unit

of the active sellers at price pS by S
MA(pS)
k (p) and of those who have dropped out by

S
MO(pS)
k (p); aggregate supply for the kth unit is denoted by SMk (p) and aggregate sup-

ply at price p is SM(p) = ∑kS
k=1 S

M
k (p).

Given any probability measure P
n
φ, any possible event Z describing the information

obtained from buyers and sellers that have dropped out when prices pB�pS are reached,
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and any random variable X , which is measurable with respect to such drop-outs infor-
mation, let En

φ[X|Z] be the conditional expectation of X and E
n
φ[En

φ[X|Z]] = E
n
φ[X] be

the unconditional expectation. Thus, for example, En
φ[DN (p)|Z] is expected aggregate

demand at price p conditional on Z and E
n
φ[DN (p)] is unconditional expected aggre-

gate demand at price p.
We are now ready to state our assumption that the expected per capita demand and

supply functions are strictly monotone.

Assumption 1 (Monotonicity of demand and supply). There exist w and W with 0 <

w<W such that:

(i) For all p ∈ [0�1], all ε ∈ [0�1 −p], all n, and all φ ∈ �, we have

wnε ≤ E
n
φ

[
DN (p)

] −E
n
φ

[
DN (p+ ε)

] ≤W nε�

(ii) For all p ∈ [0�1], all ε ∈ [0�p], all n, and all φ ∈ �, we have

wnε ≤ E
n
φ

[
SM(p)

] −E
n
φ

[
SM(p− ε)

] ≤W nε�

Assumption 1 holds in the order statistics since there E
n
φ[DN (p)] = nNkB[1 −

FφB(p)] and E
n
φ[SM(p)] = nMkSGφS

(p).23 More generally, a sufficient condition for
Assumption 1 to hold is that the probability measures P

n
φ are absolutely continuous

with respect to Lebesgue measure and their Radon–Nikodym derivatives (densities) are
bounded away from zero and finite.24

Our second assumption allows traders’ values to be correlated and borrows the con-
cept of weak independence from the statistical literature (e.g., see Bradley 2005, and
Dedecker et al. 2007); it requires that, for any given index φ ∈ �, the covariances among
the marginal values of two traders vanish as the distance between them, as measured by
their position in an ordered list, grows large.25 Given a probability measure P

n
φ, consider

the following covariances:

α
ij
k(p;φ) = P

n
φ

(
Di

k(p) =D
j
k(p) = 1

) − P
n
φ

(
Di

k(p)= 1
)
Pφ

(
D

j
k(p) = 1

);
β
ij
k(p;φ) = P

n
φ

(
Sik(p) = S

j
k(p) = 1

) − P
n
φ

(
Sik(p) = 1

)
Pφ

(
S
j
k(p) = 1

)
�

Note that αij
k(p;φ) and β

ij
k(p;φ) are bounded above by 1/4 and below by −1/4. If the

individual demands atp of buyers i and j are independent as in the order statistic model,
or if individual demands are deterministic, then α

ij
k(p;φ) = 0; similarly, if the individual

23The numerical simulations we discussed in Section 4 are based on and use for estimation the specificity
of the order statistics model, but the DCA satisfies asymptotic efficiency in more general settings.

24The requirement that wnε ≤ E
n
φ[DN (p)] − Eφ[DN (p + ε)] and wnε ≤ E

n
φ[SM(p)] − Eφ[SM(p − ε)]

is essentially the same as the assumption of “No Asymptotic Gaps” in Cripps and Swinkels (2006), while
the requirement that En

φ[DN (p)] − Eφ[DN (p + ε)] ≤ W nε and E
n
φ[SM(p)] − Eφ[SM(p − ε)] ≤ W nε is the

counterpart of their “No Asymptotic Atoms” assumption.
25Cripps and Swinkels (2006)) and Peters and Severinov (2006) use different assumptions that are in-

spired by the related statistical literature on mixing conditions.
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supplies of sellers i and j at p are independent conditional on φ, or if individual supplies
are deterministic, then β

ij
k(p;φ) = 0. In both cases, Assumption 2 holds.

Assumption 2 (Weak dependence of individual demands and supplies). (i) There ex-
ists �B < ∞ and a permutation b → i of the buyers’ names such that, for all
p ∈ (0�1), all k ∈ {1� � � � �kB}, all n, all i ∈ N and all φ ∈�:∑

j∈N �j>i

α
ij
k(p;φ) ≤ �B�

(ii) There exists �S < ∞ and a permutation s → i of the sellers’ names such that, for all
p ∈ (0�1), all k ∈ {1� � � � �kS}, all n, all i ∈ M and all φ ∈�:∑

j∈M�j>i

β
ij
k(p;φ) ≤ �S�

The bite of Assumption 2 comes as the number of buyers and sellers grows large; it
requires that there is a listing of buyers, and one of sellers, under which the covariance
between the demands of any buyer b and buyer b + τ, and seller s and s + τ, vanishes
as the distance τ between the position in the list of the two buyers, and the two sell-
ers, grows large. To see in an example what Assumption 2 requires, suppose that, given
φB ∈ [φ�φ], the marginal values of buyer 1 are independently drawn from the proba-
bility distribution FφB(v), while the marginal values of traders i > 1 are independently
drawn from FφB(v) with probability 0 < λ < 1 and with the remaining probability they
are either: (A) identical to the marginal values drawn by trader i − 1, or (B) identical to
the marginal values drawn by trader 1. In case (A), Assumption 2 holds for buyers, while
in case (B) it fails.26

Before formally stating the third assumption, recall that when the buyers’ clock price
in the DCA is pB and the sellers’ clock price is pS , to estimate the parameter φ the
data available to the auctioneer are the true demands and supplies of the traders that
have dropped out of the DCA, that is, of the buyers and sellers in the sets NO(pB) and
MO(pS). We assume that the auctioneer computes the parameter φ that minimizes the
integrated square distance between true and expected per capita demand and supply of
the traders that have dropped out; that is, she solves the minimum distance problem:27

min
φ∈�

(∫ pB

0

(
DNO(pB)(p)−Eφ

[
DNO(pB)(p)

]
n

)2
dp

+
∫ 1

pS

(
SMO(pS)(p)−Eφ

[
SMO(pS)(p)

]
n

)2
dp

)
� (3)

26We would obtain the same conclusion if the marginal values of buyer 1 were drawn from a known
distribution F and if we then took the realized values as the index φ; in case (A), Assumption 2 would hold,
but it would not in case (B) when each trader has the same values as buyer 1 with probability 1 − λ.

27The mean square distance is the “right” distance because to prove Theorem 2 we will use the conver-
gence in mean square to their expectations of aggregate demand and supply at the reserve price.
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For any given event Z describing the information obtained from the traders that have
dropped out when the DCA has reached prices pB and pS , let φ(Z) be the solution of the
minimum distance problem.28 Estimated demand and supply then are E

n
φ(Z)[DN (p)|Z]

and E
n
φ(Z)[SM(p)|Z].

Convergence to efficiency requires that the estimation procedure be informative
about the stochastic process generating the data (i.e., marginal values and costs). Thus,
like in any statistical or econometric model, we need an identifiability assumption on
the admissible probability measures. In our setting, this is Assumption 3 below. It guar-
antees, loosely speaking, that the data available are sufficient to determine the value of
φ. Let Pn

φ∗ be the probability measure from which values and costs are drawn. In com-
bination with the operation of the DCA, Pn

φ∗ determines the distribution of the reserve
price. Indeed, the reserve price only depends on the event Z describing the information
obtained from traders that have dropped out of the DCA; to emphasize this dependency
and the fact that the reserve price is a random variable, we will now denote by RZ the
reserve price when the event is Z .

Assumption 3 (Identifiability). Suppose the vectors of valuations of the nN buyers and
nM sellers are drawn according to the probability measure P

n
φ∗ . Let Z be the event de-

scribing the information obtained from the traders that have dropped out when the DCA
has reached the reserve price RZ . For φ ∈ � and φ �= φ∗, let P

n
φ be any other feasible

probability measure. There exists ζ > 0 such that

(
E
n
φ∗

[
DN (RZ)|Z

] −E
n
φ

[
DN (RZ)|Z

]
n

)2
+

(
E
n
φ∗

[
SM(RZ)|Z

] −E
n
φ

[
SM(RZ)|Z

]
n

)2

≤ ζ ·En
φ∗

[∫ RZ

0

(
E
n
φ∗

[
DNO(RZ )(p)

] −E
n
φ

[
DNO(RZ )(p)

]
n

)2
dp

+
∫ 1

RZ

(
E
n
φ∗

[
SMO(RZ )(p)

] −E
n
φ

[
SMO(RZ )(p)

]
n

)2
dp

]
(4)

The identifiability condition requires that the difference between true expected de-
mand and supply and expected demand and supply according to a different probability
measure at the reserve price RZ , conditional on the event Z , is bounded by some mul-
tiple of the expected demand and supply distance of the buyers and sellers that have
dropped out at RZ .

To gain some intuition about Assumption 3 in the simplest setting, consider the
order statistics model in which there is a unique, known, distribution from which the
sellers’ costs are drawn, so that the second terms on both sides of (4) vanish, while
the buyers’ values are drawn from a distribution belonging to a parameterized fam-
ily. Let |NA(RZ)| be the number of buyers still active at the reserve price RZ . Then,

28Since � is a compact subset of a metric space and P
n
φ is a continuous function of φ, the minimizer

φ(Z) of (3) exists. The size of the set � does not matter for our results, but it would affect the computability
of the estimator φ(Z). As long as the probability measures are well-behaved functions of φ, for the purpose
of computation � could be approximated by a finite grid.
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conditional on the event Z , all active buyers demand at least one unit plus an addi-
tional number of units equal to the number of the other kB − 1 independent draws
that are above RZ . In other words, expected demand conditional on Z by an ac-
tive buyer when the index is φ∗ is 1 + (kB − 1)[1 − Fφ∗(RZ)]. It then follows that
the left-hand side of (4) is ( |NA(RZ )|

n (kB − 1)[Fφ(RZ) − Fφ∗(RZ)])2, which is less than
N2(kB − 1)2[Fφ(RZ) − Fφ∗(RZ)]2. We may follow the same approach to compute the
integrand on the right-hand side of (4), after first noting that there is no conditioning
on the event Z apart from the number |NO(RZ)| of buyers who have dropped out be-
fore the reserve price is reached. Thus, the integrand on the right-hand side of (4) is
( |NO(RZ )|

n kB[Fφ(p)−Fφ∗(p)])2. It follows that Assumption 3 holds if φ �=φ∗ implies that
for all p ∈ (0�1], we have Fφ(v) �= Fφ∗(v) for a positive Lebesgue measure set of values
v ∈ (0�p].29

The first, trivial, way in which Assumption 3 would fail is if for all feasible probability
measures, all buyers had the highest possible value for the first unit, vb1 = 1 for all b, and
all sellers had the lowest possible cost for the first unit cs1 = 0 for all s. In such a case,
there would be no drop-outs at any interior reserve price and the right-hand side of (4)
would always equal zero.30 More generally, for Assumption 3 to fail the active traders
at the reserve price must be unpredictably different from the inactive traders. Thus, in
a similar vein to the example just discussed, suppose for simplicity that all sellers’ val-
ues are independently drawn from the same distribution G while buyers are first drawn
to be weak or strong ; weak buyers draw all their values independently from the same
distribution F , while strong buyers value the first unit at 1 and the marginal values for
all other units are independently drawn from a distribution Fφ, with φ ∈ �. Now there
will be traders that drop out (both sellers and weak buyers), but their values provide no
information about the values of the strong buyers.

We are now ready to prove the asymptotic efficiency of the DCA. Denote by Pn
B(q) =

{minp : DN (p′) ≤ q ≤ DN (p) for all p′ > p} the inverse realized market demand and by
Pn
S (q) = {maxp : SM(p′) ≤ q ≤ SM(p) for all p′ < p} the inverse realized market sup-

ply. Consider the demand and supply diagram in Figure 2, with r being the real-
ized reserve price. When buyers are on the short side of the market, that is, when
DN (r) < SM(r′) for some r′ < r, as in Panel (a)—the quantity traded in the DCA is
q(r) = DN (r); let Pn

S (D
N (r)) < r be the price at which supply is equal to DN (r). The

difference between efficient and realized welfare, WCE(θ) − W (θ), is bounded above
by the area of the shaded rectangle ABCD. Thus, the welfare difference is at most the
area of this rectangle; that is, [r − Pn

S (D
N (r))] · [SM(r) − DN (r)]. Similarly, when

sellers are on the short side of the market, that is, when SM(r) < DN (r′) for some
r′ > r as in Panel (b) of Figure 2—the quantity traded is q(r) = SM(r); let Pn

B((S
M(r))

be the price at which demand would be equal to SM(r). The welfare difference is
now bounded above by [Pn

B(S
M(r)) − r] · [DN (r) − SM(r)], the area of the rectangle

EFGH.

29Note that the expected number of buyers that drop out by the time any reserve price r is reached is
nNFφ∗(r)

kB

30Note, however, that if the auctioneer knows this information, she could allocate the first unit from
sellers to buyers at an arbitrary price and then run the DCA.
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(a) Buyers on short side (b) Sellers on short side

Figure 2. Illustration of bounds on welfare losses. Panel (a): Buyers are on short side at r. Panel
(b): Sellers are on short side at r. Generically, r will not be equal to any agent’s value or cost while
Pn
S (D

n(r)) and Pn
D(S

n(r)) are, by construction, equal to a cost or a value, respectively.

In the proof of Theorem 2, we show that the ratio of the area of the rectangle ABCD
(or EFGH) to total welfare, and hence the expected percentage welfare loss, converges to
zero at rate 1/n.

Theorem 2. Under Assumptions 1, 2, and 3, the expected percentage welfare loss in the
DCA converges to zero at rate 1/n as n → ∞.

To prove Theorem 2, we need to establish that the expected distance between de-
mand and supply at the reserve price r reached by the DCA is “small.” The proof strategy
is to observe that an upper bound on the expected distance between demand and supply
is given by a multiple of the highest of three expected distances, all of which are small.
The first is the expected distance between demand and expected demand at r (given
the true index φ∗). The second is the expected distance between supply and expected
supply at r (again, given the index φ∗). The proof that these two expected distances are
small appeals to the law of large numbers, Corollary 1 in the Appendix, and only requires
monotonicity and weak dependence of demand and supply, that is, Assumptions 1 and
2. The third expected distance is the expected distance between estimated demand and
estimated supply; that is, the expected magnitude of estimated excess demand. The
claim that this expected distance is small is in Lemma 2 in the Appendix. This is the only
part of the proof of Theorem 2 that requires our identifiability condition, Assumption 3.

The rate of convergence to efficiency in Theorem 2 is 1/n because the auctioneer
uses the empirical distribution of values and costs of the traders that have dropped out
to estimate demand and supply, and the empirical distribution converges to the true
distribution at rate 1/

√
n. In McAfee (1992), see his Remark 3 on p. 444, the rate of

convergence is 1/n2 as the gap between demand and supply is never more than one
unit; with single unit traders there is no need to use the values and costs of the traders
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that have dropped out to estimate demand and supply at the current prices. Thus, in
McAfee’s mechanism not only the percentage welfare loss, but also the total welfare loss
goes to zero as the number of traders increases. The literature on the k-double auc-
tion (see Rustichini et al. 1994, and Cripps and Swinkels 2006) has also obtained conver-
gence to efficiency at rate 1/n2. In that literature, no estimation procedure is needed as
the auctioneer is passive and the traders know the true distribution of values and costs
when computing their equilibrium strategies. The k-double auction literature puts the
burden of aggregating information on the traders’ knowledge of the true distribution
and their ability to compute and coordinate on an equilibrium.31 In contrast, our DCA
puts the burden of aggregating information on the auctioneer, making the traders’ strat-
egy straightforward. Finally, the random splitting mechanism in Kojima and Yamashita
(2017, see their Remark 3 on p. 1424) converges to efficiency at rate 1/n1/6. Their and
our rate of convergence, however, are not not easily comparable, as the models are dif-
ferent; they assume interdependent values and single dimensional types determining
the shape of a trader’s valuation.

6. Conclusions

Progress in research is made one step at a time; in this paper, we have proposed an
estimation-based market design for a homogeneous good market which targets effi-
ciency. In contrast to Walrasian tâtonnement, from which it draws inspiration, it main-
tains dominant strategy incentive compatibility throughout by making all agents price-
takers at all times.

Importantly, our DCA achieves this while accommodating multiunit traders, which
is of relevance in practice. Of course, it can be criticized on the ground that it does not
perform well (e.g., in the large) in environments different from those we have studied.
This is however true of any mechanism; for example, McAfee’s double auction has nice
incentive and asymptotic properties with single-unit traders, but these properties do
not hold in “naive” extensions of the double auction if one introduces multiunit traders
with multidimensional types. Similarly, our DCA may be vulnerable to shill bidding if
the designer cannot prevent agents from registering under multiple identities, because it
estimates target prices and eventually the reserve price based on the revealed values and
costs of the traders that have dropped out. By registering multiple times and dropping
out early on the shills an agent may be able to affect the price at which she trades in
her favor. Robustness to shill bidding is not a problem specific to our mechanism but
applies to the entire literature on mechanism design with estimation.

Our DCA design is quite flexible, and can be modified in several ways, depending on
the goals and constraints facing the designer, while preserving the property that sincere
bidding is a dominant strategy equilibrium.

First, the DCA generates a budget surplus, because it runs an Ausubel auction on the
long side of the market. While in many practical applications (e.g., double auctions run

31In the case of unit demand and supply, it is well known that there are a continuum of equilibria. In the
case of multiunit demands and supplies it is only known that a mixed strategy equilibrium exists, but no
such equilibrium has yet been found.
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by governments or public agencies) running a surplus is acceptable, or even desirable,
a budget surplus could be avoided by using a rationing procedure instead of an Ausubel
auction. Suppose that after selecting the reserve price the auctioneer randomly selects
a priority order of the traders on the long side of the market and fulfills their demands or
supplies according to the drawn priority, up to the quantity determined on the short side
of the market. All traders are charged or paid the reserve price for each unit they receive
or provide. This modification does not change the incentive properties of the DCA, as
no trader can affect the reserve price unless they drop out. They also cannot profitably
affect the quantity traded. Thus, Theorem 1 continues to hold and the modified DCA
balances the budget. However, this comes at the cost of giving up constrained efficiency
and slowing the convergence to efficiency as the number of traders grows. Consider the
case when buyers are on the long side of the market. The number of efficient trades
that are not completed is still given by the difference between demand and supply at the
random reserve price RZ , DN (RZ) − SM(RZ). However, as the noncompleted trades
are randomly selected among buyers with marginal values above RZ , the upper bound
on the welfare loss is now (some multiple of) DN (RZ)−SM(RZ). Thus, an upper bound

on the expected percentage efficiency loss is E
n
φ∗ [

√
(DN (RZ )−SM(RZ ))2

n ]. Since Lemma 2

in the Appendix proves that En
φ∗ [En

φ∗ [D
N (RZ )−SM(RZ )

n |Z]2] converges to zero at rate 1/n,
it follows from Jensen’s inequality that the expected percentage efficiency loss of the
DCA with rationing converges to zero at rate 1/

√
n.

Second, our DCA can be modified to allow for the incorporation of constraints on the
aggregate quantities subsets of bidders may be allocated or may procure, such as a cap
on the number of units a subgroup of buyers may acquire in total. Quantity constraints
like these may arise for a number of reasons, such as antitrust concerns or technological
constraints.

Third, in the DCA the auctioneer selects target prices in each estimation round and
the clock state is determined so as to achieve equality of estimated demand and supply;
the goal is to reach a unique reserve price at which estimated excess demand is zero.
A profit maximizing intermediary could instead set target prices and clock states so as
to target equality of estimated marginal cost and marginal benefit (derived from esti-
mated demand and supply), with the goal of reaching two different reserve prices, one
for buyers and one for sellers, at which estimated marginal revenue equals estimated
marginal cost and estimated demand equals estimated supply. Call maximum profit
the profit that would be generated if the profit maximizing intermediary knew demand
and supply, but was constrained to select two prices, a uniform price for buyers and
a uniform price for sellers.32 With an additional monotonicity assumption on marginal
cost and benefit, we conjecture that such a modified DCA would be asymptotically profit
maximizing; that is, the percentage profit loss relative to maximum profit would conver-
gences to zero as the number of traders grows. We leave a proper investigation to future
research.

32Extending Myerson’s (1981) optimal single-side auction in a Bayesian setting to the case of buyers with
multiunit demand is still an open problem; a fortiori, we do not know the Bayesian mechanism that maxi-
mizes the intermediary profit in a setting with multiunit demands and supplies and no restrictions on the
prices the intermediary may charge.
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In future research, it would also be important to expand the setup to allow for het-
erogenous commodities or incorporate versions of the assignment model.33 The latter
is simpler than what we have studied here, insofar as agents trade at most one unit, but
the challenges arise because there is no natural ordering of agents according to their
types. One could also depart from the two-sided setup we considered here by studying
an asset market model in which every agent is endowed with some units while having
demand for more units. This setup takes away the market maker’s ability to separate
traders a priori into buyers and sellers.

Appendix

Lemma 1. Suppose Assumptions 1 and 2 hold and the valuations and costs of the nN

buyers and nM sellers are drawn according to the probability measure P
n
φ. Then there

exists � < ∞ such that, for all p�pB�pS ∈ (0�1), k ∈ {1� � � � �kB} or k ∈ {1� � � � �kS}, and all
φ ∈�: 34

E
n
φ

[(
DN

k (p)−Eφ

[
DN

k (p)
]

n

)2]
≤ �

n
� (5)

E
n
φ

[(
D

NO(pB)
k (p)−Eφ

[
D

NO(pB)
k (p)

]
nO

(
pB

) )2]
≤ �

nO
(
pB

) � (6)

E
n
φ

[(
SMk (p)−Eφ

[
SMk (p)

]
n

)2]
≤ �

n
� (7)

E
n
φ

[(
S
MO(pS)
k (p)−Eφ

[
S
MO(pS)
k (p)

]
mO

(
pS

) )2]
≤ �

mO

(
pS

) � (8)

Proof. We will only prove (5), as the the proofs of (6)–(8) are analogous. We have

E
n
φ

[(
DN

k (p)−E
n
φ

[
DN

k (p)
]

n

)2]

= 1

n2E
n
φ

[(∑
i∈N

(
Di

k(p)−E
n
φ

[
Di

k(p)
]))2]

= 1

n2 ·
∑
i∈N

(
E
n
φ

[(
Di

k(p)−E
n
φ

[
Di

k(p)
])2]

+ 2
∑

j∈N �j>i

E
n
φ

[(
Di

k(p)−E
n
φ

[
Di

k(p)
])(

D
j
k(p)−E

n
φ

[
D

j
k(p)

])])

= 1

n2 ·
∑
i∈N

(
E
n
φ

[(
Di

k(p)−E
n
φ

[
Di

k(p)
])2]

33See Ausubel (2006) and Shapley and Shubik (1971), respectively.
34Expectations in (6) and (8) are taken given the identities of the inactive traders in NO(pB) and

MO(pS).
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+ 2
∑

j∈N �j>i

(
E
n
φ

[
Di

k(p)D
j
k(p)

] −E
n
φ

[
Di

k(p)
]
E
n
φ

[
D

j
k(p)

]))

= 1

n2 ·
∑
i∈N

(
E
n
φ

[(
Di

k(p)−E
n
φ

[
Di

k(p)
])2] + 2

∑
j∈N �j>i

α
ij
k(p;φ)

)

≤ 1

n2 · (n+ 2n�B)�

where the inequality follows from Assumption 2. Setting � = 1 + 2�B concludes the
proof.

Corollary 1. Suppose the valuations and costs of the nN buyers and nM sellers are
drawn according to the probability measure Pn

φ and Assumptions 1 and 2 hold, then there

exists �<∞ such that, for all p�pB�pS ∈ (0�1), and all φ ∈ �:

E
n
φ

[(
DN (p)−E

n
φ

[
DN (p)

]
n

)2]
≤ �

n
� (9)

E
n
φ

[(
DNO(pB)(p)−E

n
φ

[
DNO(pB)(p)

]
nO

(
pB

) )2]
≤ �

nO
(
pB

) � (10)

E
n
φ

[(
SM(p)−E

n
φ

[
SM(p)

]
n

)2]
≤ �

n
� (11)

E
n
φ

[(
SMO(pS)(p)−E

n
φ

[
SMO(pS)(p)

]
mO

(
pS

) )2]
≤ �

mO

(
pS

) � (12)

Proof. Define YN
k (p) =DN

k (p)−Eφ[DN
k (p)]. It is

E
n
φ

[(
DN (p)−E

n
φ

[
DN (p)

]
n

)2]

= E
n
φ

[(
kB∑
k=1

DN
k (p)−E

n
φ

[
DN

k (p)
]

n

)2]

= E
n
φ

[(
kB∑
k=1

YN
k (p)

n

)2]

=
kB∑
k=1

E
n
φ

[(
YN
k (p)

n

)2]
+ 2

kB∑
k=1

kB∑
h=k+1

E
n
φ

[(
YN
k (p)

n

)(
YN
h (p)

n

)]

≤
kB∑
k=1

E
n
φ

[(
YN
k (p)

n

)2]
+ 2

kB∑
k=1

kB∑
h=k+1

E
n
φ

[(
YN
k (p)

n

)2]1/2
·En

φ

[(
YN
h (p)

n

)2]1/2

︸ ︷︷ ︸
by Hölder’s inequality
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≤ (kB)
2 · max

k∈{1�����kB}

{
Eφ

[(
YN
k (p)

n

)2]}

= (kB)
2 · max

k∈{1�����kB}

{
Eφ

[(
DN

k (p)−E
n
φ

[
DN

k (p)
]

n

)2]}
�

Then (9) follows from Lemma 1. The proofs of (10)–(12) are analogous.

Corollary 2. Suppose the valuations and costs of the nN buyers and nM sellers are
drawn according to the probability measure Pn

φ and Assumptions 1 and 2 hold, then there

exists �< ∞ such that, for all p�pB�pS ∈ (0�1), all events Z determining the set of buyers
and sellers that have dropped out when prices are pB and pS and all φ ∈�:

E
n
φ

[(
DN (p)−E

n
φ

[
DN (p)|Z]

n

)2]
≤ �

n
� (13)

E
n
φ

[(
SM(p)−E

n
φ

[
SM(p)|Z]

n

)2]
≤ �

n
� (14)

Proof. We only prove (13), as the the proof of (14) is analogous. It is

E
n
φ

[(
DN (p)−E

n
φ

[
DN (p)|Z]

n

)2]

= E
n
φ

[
1

n2 · (DN (p)2 +E
n
φ

[
DN (p)|Z]2 − 2DN (p)En

φ

[
DN (p)|Z])]

= 1

n2 · (En
φ

[
DN (p)2] +E

n
φ

[
E
n
φ

[
DN (p)|Z]2] − 2En

φ

[
E
n
φ

[
DN (p)En

φ

[
DN (p)|Z]|Z]]

︸ ︷︷ ︸
by iterated expectations

)

= 1

n2 · (En
φ

[
DN (p)2] −E

n
φ

[
E
n
φ

[
DN (p)|Z]2])

≤ E
n
φ

[(
DN (p)

n

)2]
− E

n
φ

[
DN (p)

n

]2

︸ ︷︷ ︸
by Jensen’s inequality

= E
n
φ

[(
DN (p)−E

n
φ

[
DN (p)

]
n

)2]
≤ �

n︸︷︷︸
by Corollary 1.

Proof of Theorem 2. Take φ∗ to be the true index; that is, take P
n
φ∗ to be the prob-

ability measure determining values and costs. Define δS as δS = [r − Pn
S (D

N (r))],
where r is the realized reserve price. By Assumption 1, nwδS ≤ E

n
φ∗ [SM(r) − SM(r −

δS)] = E
n
φ∗ [SN (r) − DN (r)]; thus, when buyers are on the short side, we have that

E
n
φ∗ [|DN (r) − SM(r)|]2/nw is an upper bound of the area of the rectangle ABCD in

Figure 2(a), which in turn is an an upper bound of the expected welfare loss when
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the reserve price is r. Similarly, define δB = [Pn
B(S

mathcalM(r)) − r]. By Assumption 1,
nwδB ≤ E

n
φ∗ [DN (r) − DN (r + δB)] = E

n
φ∗ [DN − SM(r)]; thus, when sellers are on the

short side of the market, En
φ∗

1
nw [|DN (r) − SM(r)|]2 is also an upper bound of the ex-

pected welfare loss, as it is an upper bound of the area of the rectangle EFGH in Fig-
ure 2(b).

Recall that the reserve price RZ only depends on the event Z describing the infor-
mation obtained from traders that have dropped out of the DCA. The percentage wel-
fare loss is L(θ) = (WCE(θ)−W (θ))/n

WCE(θ)/n
and the per capita efficient welfare is finite, has finite

variance and its expectation converges to a finite level as n → ∞. By Assumption 1, we
may then conclude that to prove that the expected percentage efficiency loss E

n
φ∗ [L(θ)]

converges to zero at rate 1/n, it is sufficient to prove that the expectation of the numer-
ator of L(θ), which is bounded above by 1

nE
n
φ∗

1
n [En

φ∗ [|DN (RZ) − SM(RZ)||Z]]2, con-
verges to zero at rate 1/n, where the inside expectation is taken over demand and supply
conditional on Z and the outside expectation is over events Z� and hence the random

reserve price RZ . That is, we must prove that E
n
φ∗ [En

φ∗ [ |DN (RZ )−SM(RZ )|
n |Z]]2 ≤ L

n for

some constant L > 0 and all n. By Jensen’s inequality, En
φ∗ [En

φ∗ [ |DN (RZ )−SM(RZ )|
n |Z]]2 ≤

E
n
φ∗ [En

φ∗ [(D
N (RZ )−SM(RZ )

n )2|Z]], and hence it suffices to show that for some L > 0 and

all n: En
φ∗ [En

φ∗ [(D
N (RZ )−SM(RZ )

n )2|Z]] ≤ L
n .

For all r ∈ [0�1], define expected excess demand at r as XN
φ∗(r;Z) = E

n
φ∗ [DN (r) −

SM(r)|Z]. Note that for all Z and RZ ∈ [0�1]:

E
n
φ∗

[
E
n
φ∗

[(
DN (RZ)− SM(RZ)

n

)2∣∣∣∣Z
]]

= E
n
φ∗

[
E
n
φ∗

[(
DN (RZ)−Eφ∗

[
DN (RZ)|Z

]
n

− SM(RZ)−Eφ∗
[
SM(RZ)|Z

]
n

+ XN
φ∗(RZ ;Z)

n

)2∣∣∣∣Z
]]

≤ 9 max
{
E
n
φ∗

[
E
n
φ∗

[(
DN (RZ)−E

n
φ∗

[
DN (RZ)|Z

]
n

)2∣∣∣∣Z
]]

�

E
n
φ∗

[
E
n
φ∗

[(
SM(RZ)−E

n
φ∗

[
SM(RZ)|Z

]
n

)2∣∣∣∣Z
]]

�En
φ∗

[
E
n
φ∗

[(
XN

φ∗(RZ ;Z)

n

)2]∣∣∣∣Z
]}

�

To conclude the proof, we only need to show that there exists � < ∞ such that each
of the three terms in the max is smaller than �/n. For the first two terms, this follows
immediately from Corollary 1, as the inequality holds for all realizations of RZ . Lemma 2

below shows that the third term, which equals E
n
φ∗ [(

XN
φ∗ (RZ ;Z)

n )2] is also smaller than
�
n .

Lemma 2. Suppose the valuations and costs of the nN buyers and nM sellers are drawn
according to the probability measure P

n
φ∗ and Assumptions 1, 2, and 3 hold, then there

exists �<∞ such that: En
φ∗ [(

XN
φ∗ (RZ ;Z)

n )2] ≤ �
n .
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Proof. We first need to establish two preliminary lemmas.

Lemma 3. Suppose the valuations and costs of the nN buyers and nM sellers are drawn
according to the probability measure P

n
φ∗ and Assumptions 1, 2, and 3 hold. Let Z be the

event containing the information from the dropped-out traders. There exists � < ∞ such
that

E
n
φ∗

[(
XN

φ∗(RZ ;Z)−E
n
φ(Z)

[
DN (RZ)− SM(RZ)|Z

]
n

)2]
≤ �

n
�

Proof. Note that

(
XN

φ∗(RZ ;Z)
) −E

n
φ(Z)

[
DN (RZ)− SM(RZ)|Z

]
)2

= (
E
n
φ∗

[
DN (RZ)− SM(RZ)|Z

] −E
n
φ(Z)

[
DN (RZ)− SM(RZ)|Z

])2

≤ 2
(
E
n
φ∗

[
DN (RZ)|Z

] −E
n
φ(Z)

[
DN (RZ)|Z

])2 + 2
(
E
n
φ∗

[
SM(RZ)|Z

]
−E

n
φ(Z)

[
SM(RZ)|Z

])2
(15)

Taking the expectation with respect to P
n
φ∗ , by Assumption 3 there exists a ζ > 0 such

that

1
2ζ

·En
φ∗

[(
XN

φ∗(RZ ;Z)−E
n
φ(Z)

[
DN (RZ)− SM(RZ)|Z

]
n

)2]

≤ E
n
φ∗

[∫ RZ

0

(
E
n
φ∗

[
DNO(RZ )(t)

] −E
n
φ(Z)

[
DNO(RZ )(t)

]
n

)2
dt

+
∫ 1

RZ

(
E
n
φ∗

[
SMO(RZ )(t)

] −E
n
φ(Z)

[
SMO(RZ )(t)

]
n

)2
dt

]

= E
n
φ∗

[∫ RZ

0

(
E
n
φ∗

[
DNO(RZ )(t)

] −DNO(RZ )(t)+DNO(RZ )(t)−E
n
φ(Z)

[
DNO(RZ )(t)

]
n

)2
dt

+
∫ 1

RZ

(
E
n
φ∗

[
SMO(RZ )(t)

] − SMO(RZ )(t)+ SMO(RZ )(t)−E
n
φ(Z)

[
SMO(RZ )(t)

]
n

)2
dt

]

≤ 2En
φ∗

[∫ RZ

0

(
E
n
φ∗

[
DNO(RZ )(t)

] −DNO(RZ )(t)

n

)2
dt

+
∫ RZ

0

(
DNO(RZ )(t)−E

n
φ(Z)

[
DNO(RZ )(t)

]
n

)2
dt

+
∫ 1

RZ

(
E
n
φ∗

[
SMO(RZ )(t)

] − SMO(RZ )(t)

n

)2
dt

+
∫ 1

RZ

(
SMO(RZ )(t)−E

n
φ(Z)

[
SMO(RZ )(t)

]
n

)2
dt

]
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≤ 4En
φ∗

[∫ RZ

0

(
E
n
φ∗

[
DNO(RZ )(t)

] −DNO(RZ )(t)

n

)2
dt

+
∫ 1

RZ

(
E
n
φ∗

[
SMO(RZ )(t)

] − SMO(RZ )(t)

n

)2
dt

]
�

where the first inequality follows from Assumption 3, the second from simple algebra,
and the third from the definition of φ(Z) in (3) as the minimum distance estimation
index.

Applying Corollary 1 concludes the proof of Lemma 3, as for some � > 0 two terms
in the square brackets on the right-hand side are both less than �

nζ for all realization
RZ .

Lemma 4. Suppose the valuation and costs of the nN buyers and nM sellers are drawn
according to the probability measure P

n
φ∗ and Assumptions 1, 2, and 3 hold. Let Z be the

event containing the information from the dropped-out traders. There exists � < ∞ such
that

E
n
φ∗

[(
E
n
φ(Z)

[
DN (RZ)− SM(RZ)|Z

]
n

)2]
≤ �

n
�

Proof. Recall that given an event Z estimated demand and estimated supply at RZ
are given by Eφ(Z)[DN (RZ)|Z] and Eφ(Z)[SM(RZ)|Z]. There are three cases, or set of
events, to consider depending on whether estimated demand is greater, equal or smaller
than estimated supply. The case of equality is trivial, as it obviously implies that the
term in brackets in the inequality in the lemma is less than �

n for any �> 0. The cases of
estimated excess demand and estimated excess supply are mirror images of one another
and we will thus only consider one of them.

Thus, take events Z for which Eφ(Z)[DN (RZ)|Z] > Eφ(Z)[SM(RZ)|Z], so that the
last clock state of the DCA, the state when the reserve price is reached, is a buyers’ clock
state. This implies that the state preceding the last clock state is either a double clock or a
sellers’ clock state and there was a sequence of clock prices along which the sellers’ price
decreased until it reached RZ and the buyers’ clock price stayed constant or increased
and stopped at RZ − εB. Along that price sequence conditional estimated supply must
be at least as large as conditional estimated demand and the sequence must end with
either a seller or a buyer dropping out of the DCA. Denote by Z− the event that occurred
before the state preceding the last; this is the event used to estimate demand and supply
in the the second to last state. As we have argued, it must be Eφ(Z−)[DN (RZ −εB)|Z−] ≤
Eφ(Z−)[SM(RZ)|Z−], and hence:

(
Eφ(Z)

[
DN (RZ)− SM(RZ)|Z

])2

≤ (
Eφ(Z)

[
DN (RZ)|Z

] −Eφ(Z)

[
SM(RZ)|Z

] +Eφ(Z−)
[
SM(RZ)|Z−

]
−Eφ(Z−)

[
DN (RZ − εB)|Z−

])2
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≤ (
Eφ(Z)

[
DN (RZ)|Z

] −Eφ∗
[
DN (RZ)|Z

] +Eφ∗
[
DN (RZ)|Z

]︸ ︷︷ ︸
= 0

−DN (RZ)+DN (RZ)︸ ︷︷ ︸
= 0

−Eφ∗
[
DN (RZ)|Z−

] +Eφ∗
[
DN (RZ − εB)|Z−

]︸ ︷︷ ︸
≥ 0

− Eφ(Z−)
[
DN (RZ − εB)|Z−

]

−Eφ(Z)

[
SM(RZ)|Z

] +Eφ∗
[
SM(RZ)|Z

] −Eφ∗
[
SM(RZ)|Z

]︸ ︷︷ ︸
= 0

+ SM(RZ)− SM(RZ)︸ ︷︷ ︸
= 0

+Eφ∗
[
SM(RZ)|Z−

] −Eφ∗
[
SM(RZ)|Z−

]︸ ︷︷ ︸
= 0

+Eφ(Z−)
[
SM(RZ)|Z−

])2

≤ 8
(
Eφ(Z)

[
DN (RZ)|Z

] −Eφ∗
[
DN (RZ)|Z

])2 + 8
(
Eφ∗

[
DN (RZ)|Z

] −DN (RZ)
)2

+ 8
(
DN (RZ)−Eφ∗

[
DN (RZ)|Z−

])2 + 8
(
Eφ∗

[
DN (RZ − εB)|Z−

]
−Eφ(Z−)

[
DN (RZ − εB)|Z−

])2

+ 8
(
Eφ(Z)

[
SM(RZ)|Z

] −Eφ∗
[
SM(RZ)|Z

])2 + 8
(
Eφ∗

[
SM(RZ)|Z

] − SM(RZ)
)2

+ 8
(
SM(RZ)−Eφ∗

[
SM(RZ)|Z−

])2

+ 8
(
Eφ∗

[
SM(RZ)|Z−

] −Eφ(Z−)
[
SM(RZ)|Z−

])2

Taking the expectation with respect to P
n
φ∗ , we obtain

1
8

·Eφ∗

[(
Eφ(Z)

[
DN (RZ)− SM(RZ)|Z

]
n

)2]

≤ Eφ∗

[(
Eφ∗

[
DN (RZ)|Z

] −DN (RZ)

n

)2]

+Eφ∗

[(
DN (RZ)−Eφ∗

[
DN (RZ)|Z−

]
n

)2]

+Eφ∗

[(
Eφ∗

[
SM(RZ)|Z

] − SM(RZ)

n

)2]

+Eφ∗

[(
SM(RZ)−Eφ∗

[
SM(RZ)|Z−

]
n

)2]

+ 1

n2Eφ∗
[(
Eφ(Z)

[
DN (RZ)|Z

] −Eφ∗
[
DN (RZ)|Z

])2

+ (
Eφ(Z)

[
SM(RZ)|Z

] −Eφ∗
[
SM(RZ)|Z

])2]
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+ 1

n2Eφ∗
[(
Eφ∗

[
DN (RZ − εB)|Z−

] −Eφ(Z−)
[
DN (RZ − εB)|Z−

])2

+ (
Eφ∗

[
SM(RZ)|Z−

] −Eφ(Z−)
[
SM(RZ)|Z−

])2]
By Corollary 2, the first four terms on the right-hand side of the last expression are
bounded from above by �/n for some � < ∞. The first of the remaining two terms is
equal to half the right-hand side of (15), while the second is equal to half the right-hand
side of (15) conditional on Z− rather than Z and with the demand evaluated at RZ − εB
instead of RZ . Following the same argument as in the proof of Lemma 3, we conclude
that there exists a � < ∞ such that �/n is an upper bound for the two terms. This con-
cludes the proof of Lemma 4 since, as claimed above, the case of events with expected
excess supply at RZ (i.e., such that Eφ(Z)[SM(RZ)|Z]> Eφ(Z)[DN (RZ)|Z]) can be dealt
with analogously to the case of expected excess demand we just considered.

We now conclude the proof of Lemma 2. For all events Z� it is

(
XN

φ∗(RZ ;Z)

n

)2

=
(
XN

φ∗(RZ ;Z)−Eφ(Z)

[
DN (RZ)− SM(RZ)|Z

]
n

+ Eφ(Z)

[
DN (RZ)− SM(RZ)|Z

]
n

)2

≤ 2
(
XN

φ∗(RZ ;Z)−Eφ(Z)

[
DN (RZ)− SM(RZ)|Z

]
n

)2

+ 2
(
Eφ(Z)

[
DN (RZ)− SM(RZ)|Z

]
n

)2

≤ 4 max
{(

XN
φ∗(RZ ;Z)−Eφ(Z)

[
DN (RZ)− SM(RZ)|Z

]
n

)2
�

(
Eφ(Z)

[
DN (RZ)− SM(RZ)|Z

]
n

)2}
�

Taking the expectation E
n
φ∗ on both sides of the inequality, Lemma 2 follows from Lem-

mas 3 and 4, stating that the expectation of each term in curly brackets is less than �/n

for some �> 0.
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