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Strict pure strategy Nash equilibria in large finite-player games
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In the context of anonymous games (i.e., games where the payoff of a player
is, apart from his/her own action, determined by the distribution of the actions
made by the other players), we present a model in which, generically (in a precise
sense), finite-player games have strict pure strategy Nash equilibria if the num-
ber of agents is large. A key feature of our model is that payoff functions have
differentiability properties. A consequence of our existence result is that, in our
model, equilibrium distributions of non-atomic games are asymptotically imple-
mentable by pure strategy Nash equilibria of large finite-player games.
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1. Introduction

It is now well established in economics to address problems of strategic interaction
among many negligible individuals by models of anonymous games. In such games,
the impact on the payoff of a player by the actions chosen by the other players factors
through the distribution of these actions.1 A particular and convenient class of mod-
els of anonymous games is formed by games with a “continuum of players” or, more
precisely, “non-atomic games” (henceforth, continuum games for short). In continuum
games, there is no longer a distinction between the distribution of the actions chosen
by all players and the distribution of the actions chosen by all but one player, so that,
concerning equilibrium existence, these games are rather easy to analyze. In fact, there
are several results on existence of pure strategy Nash equilibrium for such games, the
pioneering ones provided by Schmeidler (1973) and Mas-Colell (1984). In these results,
no linear structure is imposed on players’ action sets. After all, of course, continuum
games are idealizations of situations with a large but finite number of players, and in
this respect the following questions naturally arise:
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1We follow Kalai (2004) in defining the notion of anonymous game this way. Actually, Kalai (2004) speaks
of semi-anonymous games to indicate that in the incomplete information setting he considers, a player’s
identity is encoded in his type. Since we do not consider incomplete information, the prefix “semi” has
been dropped. We note that in Khan and Sun (1999) the notion of anonymous game is reserved for games
with a continuum of players specified solely by distributions of players’ characteristics.
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Q1. To what extent do pure strategy Nash equilibrium existence results for continuum
games carry over to pure strategy Nash equilibrium existence results for games
with a large but finite number of players?

Q2. Are equilibria of continuum games artifacts of having a continuum of players or
are they realizable as “limits” of pure strategy Nash equilibria of large finite-player
games? That is, given a continuum game and an equilibrium of this game, are
there “close” large finite-player games having “similar” pure strategy Nash equi-
libria?

In other words, are continuum games and equilibria of such games good idealizations
of situations with a large but finite number of players?

The “to what extent” clause is incorporated in the first question because it is well
known that finite-player games may fail to have pure strategy Nash equilibria (unless
action sets are convex and quasiconcavity assumptions on payoff functions are made).
In fact, this may be the case for a fixed distribution of payoff functions, regardless of the
number of players in such games (see the example after the statement of Theorem 1 in
Section 3.5). Thus, the best one can hope for in regard to Q1 is to get positive results
in terms of genericity analysis. As made clear by the literature on competitive equilib-
rium in exchange economies, a suitable and convenient setting for genericity analysis is
a setting where agents’ characteristics have differentiability properties. In this paper, we
develop such a setting for anonymous games, so that there is a generic set of continuum
games such that finite-player games forming a sequence with an increasing number of
players and a “limit” in this set have pure strategy Nash equilibria if the number of play-
ers is large enough.

Of course, a differentiability assumption on payoff functions necessarily implies that
the domains of these functions are subsets of a linear space (for which we take a Eu-
clidean space). In particular, we have a linear structure on the action sets of players.
This is a restriction compared with the analysis in Mas-Colell (1984), where the action
sets of players (which in Mas-Colell (1984) are the same for all players in a game) can be
any compact metric space.2

Based on our existence result, we deal with Q2. We show that, in our model, any
equilibrium of any continuum game is asymptotically implementable in the sense that
there exists a sequence of finite-player games, with an increasing number of players,
and a corresponding sequence of strict pure strategy Nash equilibria such that the given
continuum game and its equilibrium arise as limit (in an appropriate sense).3 This bears

2In fact, action sets in our model have nonempty interior in some Euclidean space. We remark in this
regard that pure strategy Nash equilibria with actions belonging to the interior of action sets do not have
a mixed strategy interpretation unless payoff function are linear in the own actions of players. Models of
games with action sets having nonempty interior in Euclidean spaces arise in several applications. We men-
tion models of Cournot competition where firms can vary outputs continuously and models of auctions
where bids can vary in products of intervals.

3This notion of asymptotic implementation is more specific than that in Khan and Sun (1996), where
asymptotic implementation signifies, in the sense of nonstandard analysis, a “transfer” of any results for
games with a hyperfinite Loeb spaces of players to games with a finite number of players (see Loeb and
Wolff 2015, p. 355).
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some surprise: It is well known that an equilibrium correspondence need not be lower
hemicontinuous, which suggests that the set of limits of strict equilibria of all sequences
of finite-player games “converging” to a given continuum game could still form a proper
subset of the equilibrium set of the limit continuum game. As our result shows, this
intuition is incorrect.4

The above result is important for applications that assume a continuum of players
since, by considering the set of all equilibria of a game with a continuum of players, one
can rest assured that none of these equilibria is a spurious implication of the (tractable
but unrealistic) assumption of an infinite population. The intuition for this result is that
any equilibrium of a continuum game can be made strict in a nearby continuum game
and that any strict equilibrium of a continuum game is robust, i.e., it yields a strict equi-
librium for all finite-player games close to it.

As mentioned above, an important aspect of our analysis is that the equilibria that
we obtain for large finite-player games are strict, i.e., best reply sets in an equilibrium are
singletons; thus, there is no issue of specifying certain actions in the best reply sets as
equilibrium actions. This makes our results immune against an objection as formulated
by Mas-Colell (1977), which addresses general equilibrium theory, but applies to game
theoretic contexts as well. To quote Mas-Colell (1977), “[i]mportant as those results are,
the notion of equilibrium they deal with has some unattractive features. In particular,
knowledge by the consumers of the equilibrium price system (plus the preference max-
imization hypothesis) does not determine the equilibrium; one needs, in addition, a
possibly very careful specification of each consumer’s commodity bundles. This makes
the equilibrium a ‘decentralized’ one only in some weak sense.”

To note some details of our model, action sets are compact subsets of some Eu-
clidean space, with dense interior, and for any player, the externality, i.e., the channel
through which his/her payoff is affected by the actions of the other players, is given, as
in Araújo et al. (2000), Balder (2002), Rauh (2003), or Yu and Zhu (2005), by finitely many
summary statistics (e.g., the first noncentral moments) of the distribution of these ac-
tions. From the viewpoint of applications, this is not a big restriction; in fact, in many ap-
plications of anonymous games, e.g., Cournot oligopoly games, it is just the mean action
of the other players that determines a player’s payoff in addition to his/her own action.
Payoff functions in our model are twice continuously differentiable. The main costs of
our results, compared with standard game theory, are an assumption that implies that
the best replies of a player against the distributions of the actions of the other players
are always in the interior of his/her action set. This assumption is needed to be in a
position in which differentiability assumptions on payoff functions can be conveniently
exploited. On the set of players’ characteristics (i.e., payoff functions), we define a suit-
able topology; because the actual definition requires some technical constructions, we
refer to Section 3.4 and here say only that this topology is defined in terms of graphs
of payoff functions to accommodate the fact that action sets may differ across players.
A continuum game is specified as a Borel probability measure with compact support on

4This does not imply lower hemicontinuity, which means in the above context that the set of limits of
strict equilibria of any sequence of finite-player games converging to a given continuum game equals the
equilibrium set of the limit continuum game.
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the space of players’ characteristics. The compact support condition requires that play-
ers’ characteristics in a continuum game are not too dissimilar. Equilibria of continuum
games are described by equilibrium distributions, as in Mas-Colell (1984).

“Generic” in the set of continuum games is formally expressed as open and dense in
the topology that treats two such games as close if they are close in the narrow topology
and if their supports are close in the Hausdorff metric topology. “Close” for two contin-
uum games in the former topology means that they involve similar players’ characteris-
tics with similar frequencies; the extra requirement of being close in the latter topology
means that they are close only if they involve similar players’ characteristics. In the no-
tion of a generic set of continuum games, “open” means stability against perturbations,
and “dense” means that every continuum game can be approximated by continuum
games belonging to the generic set.

We remark that the generic set of continuum games we identify in the proof of our
main result (Theorem 1) is defined intrinsically in the sense that no reference to the par-
ticular problem of equilibrium existence in large finite-player games is made. Roughly,
this set consists of those continuum games ν that have an equilibrium distribution such
that the corresponding externality (which is the same for all players in a continuum
game) has a neighborhood on which (a) the correspondence that sends externalities to
the externalities determined by the best replies of the players with characteristics in the
support of ν can be identified with a differentiable function, and (b) at each point, the
derivative of this function minus the identity matrix has maximal rank.

The organization of the paper is as follows. In the next section, we mention some of
the related literature. In Section 3, the model is set up and the results are stated. Detailed
proofs can be found in Section 5, after Section 4 provides an outline of the proof of the
main result. In the Appendix, some auxiliary lemmata, which combine some more or
less well known mathematical facts, are stated and proved.5

2. Related literature

Results related to ours can be found in Rashid (1983), Khan and Sun (1999), Kalai (2004),
Carmona and Podczeck (2009), and Carmona and Podczeck (2012), who have estab-
lished that sufficiently large finite-player games have pure strategy approximate equi-
libria.6 Relative to that literature, the contribution of the present paper consists in pre-
senting a setting of games that allows us to drop the “approximate” qualifier generically
(see Theorems 1 and 3 below). This is important because approximate equilibria are not
always appealing;7 thus, by dispensing with this qualification, this is something we do

5A longer version of this paper (Carmona and Podczeck 2019) contains additional material, including a
somewhat broader literature review, an application of our results to Cournot oligopoly, and some discus-
sion of games with essentially ordinally nonequivalent payoff functions.

6Here pure strategy approximate equilibrium means a strategy profile such that for some numbers ε > 0
and 0 ≤ η< 1, players who make up a fraction of at least 1 −η cannot deviate so that payoffs increase more
than ε (in Kalai (2004) and some of the results of Carmona and Podczeck (2009) the number η is zero),
and sufficiently large means that these numbers can be chosen arbitrarily small if one takes the number of
players large enough.

7Consider a finite-player game where each player can choose one number in the interval [0�1] and each
player’s payoff is the average choice of the entire population (including his own choice). If this game is
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not have to worry about in our results. In fact, we obtain strict equilibria (i.e., players
have unique best replies) generically, so in an equilibrium there is no indeterminacy re-
garding which actions players will choose. For these reasons, our analysis provides an
important supplement to the above-mentioned results.

Asymptotic implementation of equilibria of continuum games, as defined in the In-
troduction, is considered in Housman (1988) and Carmona and Podczeck (2020a). The
corresponding results in those papers are stated in terms of approximate equilibria of
finite-player games. As above, we can drop the “approximate” qualifier. In fact, in our
model, every equilibrium of every continuum game, not just an equilibrium of a generic
continuum game, can be asymptotically implemented in terms of strict pure strategy
Nash equilibria of finite-player games (see Theorems 2 and 3).

In our companion paper (Carmona and Podczeck (2020b)), we deal with the same
questions as in this paper, but without differentiability assumptions on payoff functions.
There, for the case of finite action spaces, we obtain results that are analogous to those
in the present paper. In contrast, beyond the finite actions case, our results in Carmona
and Podczeck (2020b) rely, directly or indirectly, on the use of “highly concentrated”
mixed strategies; here, we show that mixed strategies can be completely dispensed with
in our setting.

In the present paper, the goal is to allow players’ actions to vary continuously and at
the same time to obtain strict pure strategy Nash equilibria for large finite-player games.
For this, we adopt a setting in which payoff functions have differentiability properties.
The main idea of our analysis is that, with such payoff functions, there is a generic set
of continuum games that have equilibria for which the following statements are true:
(i) at the equilibrium actions, payoff functions are locally strictly concave in the own
actions of players, so that best reply sets are singletons locally; (ii) this implies that best
reply sets are singletons globally, (iii) this property remains true in the product of some
neighborhood of a game belonging to the generic set and some neighborhood of the
externality arising in the equilibrium under consideration; (iv) we can use (iii) to get
the existence of strict pure strategy Nash equilibrium along sequences of finite-player
games with a limit in the generic set of continuum games if the number of players is
large enough.8

A similar idea underlies the analysis of Mas-Colell (1977, Theorem 2), who consid-
ers nonconvex differentiable preferences in a general equilibrium framework of large
economies. Concerning (i) above, see also Trockel (1984, p. 10). For an analysis of large
economies where agents’ preferences are convex, see Dierker (1975).

Apart from this similarity, the arguments in our proofs and in those of Mas-Colell
(1977) differ to a large extent. For instance, in Mas-Colell (1977) the existence of equilib-
ria in large finite economies close to generic continuum economies can be established

played by n players, then the pure strategy profile where each player chooses 0 is an ε-equilibrium with
ε= 1/n; however, for each player, 1 is a strictly dominant strategy.

8We can only be sketchy here. We just note that even though we do not assume action sets to be convex,
(i) makes sense because we may assume them to have dense interior, and open sets in a Euclidean space
include convex neighborhoods of each of their points.
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by just applying an implicit function theorem to a (locally defined) excess demand func-
tion depending on prices and distributions of preferences (actually, Mas-Colell (1977)
refers to Dierker (1975) at this point). In our setting, we cannot proceed this way, be-
cause, in finite-player games, different players may face different summary statistics of
the actions of the respective other players, so that the dimension of domain of the prob-
lem increases with the number of players; as a consequence, we need a fixed-point result
to get pure strategy Nash equilibria. We also remark that in Mas-Colell (1977) there is no
counterpart of the treatment of asymptotic implementability of any equilibrium of any
continuum game.

As already pointed out in the Introduction, Schmeidler (1973) and Mas-Colell (1984)
established the existence of pure strategy Nash equilibrium for games with a continuum
of players. We contribute to this literature by establishing the generic existence of pure
strategy strict equilibrium for sufficiently large finite-player games.

Schmeidler (1973) is part of a literature where, different from the distributional ap-
proach adopted in the present paper to describe continuum games and their equilibria,
an explicitly specified atomless measure space of players and a measurable map from
this space to some space of players’ characteristics are taken as given, and equilibria
are described directly by strategy profiles (see also, e.g., Balder (2002) or the more re-
cent treatment by Khan et al. (2017)). For the purpose of our paper, the distinction be-
tween the individualistic and the distributional approach is not important for two rea-
sons. First, the focus of our asymptotic generic existence result is on finite-player games;
continuum games matter only as a “reference point” and their equilibrium distributions
provide all the information needed. Second, our asymptotic implementation result can
be translated to the individualistic context using standard arguments: Given an explicit
atomless measure space of players and a map from this space to a space of players’ char-
acteristics, the joint distribution of this map and an equilibrium strategy profile is an
equilibrium distribution to which we can apply our asymptotic implementation result.

It bears some repetition to emphasize that our asymptotic implementation result
provides a robust version for the equilibrium existence results of Schmeidler (1973) and
Mas-Colell (1984). Regarding the latter result, it provides a sense in which equilibrium
distributions of continuum games can be regarded as involving pure strategies, as they
are shown to be limits of strict pure strategy equilibria of large finite-player games.

3. The model and the results

3.1 General notation and terminology

If X is any metric space, we write ρH for the Hausdorff metric on the set of nonempty
compact subsets of X .9 Recall that on the set of nonempty compact subsets of a metric
space X , the topology defined from the Hausdorff metric depends only on the topology
of X , not on the particular metric.

9That is, ρH(A�B) = max{maxa∈A d(a�B)�maxb∈B d(b�A)} for any two nonempty compact sets A, B ⊆ X ,
writing d for the metric of X .
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For a subset A of a topological space X , intA denotes the interior of A, ∂A denotes
the boundary of A, clA denotes the closure of A, and A \ B denotes set-theoretic sub-
traction. If A⊆ R

n, then coA denotes the convex hull of A.
If μ is a Borel measure on a separable metric space X , we write supp(μ) for the sup-

port of μ, i.e., the smallest closed subset of X with full measure. (Recall that every Borel
measure on a separable metric space has a support.) If μ is a Borel measure on a prod-
uct X × Y of metric spaces, μX and μY denote the marginal measures on X and Y ,
respectively.

Euclidean spaces are regarded as being equipped with the Euclidean norm. For any
point x in such a space and for any number r > 0, we write B(x� r) for the open ball of
center x and radius r, and write B̄(x� r) for the closed ball of center x and radius r.

Let X ⊆R
k be such that intX is dense in X (which is true, in particular, if X is convex

and intX �= ∅). We say that a function f : X → R
	 is continuously differentiable if there

is an open X̃ ⊆ R
k including X such that f can be extended to a function f̃ : X̃ → R

	

that is continuously differentiable in the usual sense; the derivatives of f at non-interior
points of X are defined to be those of f̃ (note that these derivatives do not depend on the
particular choice of the extension f̃ if intX is dense in X .) In this case, we write Df(x)

for the derivative of f at x ∈X and write Df for the map x �→Df(x). If Df happens again
to be continuously differentiable in the above sense, we say that f is twice continuously
differentiable; in this case, D2f (x) stands for DDf(x), and D2f stands for the map x �→
D2f (x). If f is defined on a product X × Y , where Y is any set and X is as above, then
Dxf(x� y) means the derivative of f (·� y) at x ∈X if f (·� y) is continuously differentiable;
if f (·� y) is twice continuously differentiable, D2

xf (x� y) stands for DxDxf(x� y).

3.2 Actions and externality

We consider games with a large number of players (as a particular case, with a contin-
uum of players), where the payoff of a player is determined by his/her own action and an
externality that is given by finitely many summary statistics of the distribution of the ac-
tions of the other players, as in Balder (2002) or Rauh (2003), and payoff functions have
differentiability properties. We start setting up the model by fixing an ambient space so
as to get suitable sets for the domains of payoff functions.

There is a universe A of possible actions, which is a nonempty and compact subset
of Rn, with dense interior. Action sets of games are included in A and also have dense
interior.

Summary statistics of a distribution τA of actions in A are given by the formu-
lae

∫
g1(a)dτA(a)� � � � �

∫
gm(a)dτA(a), where gi, i = 1� � � � �m, is a continuously differ-

entiable function from A to R (given independently of τA). We write g for the vector
(g1� � � � � gm) and write

∫
g(a)dτA(a) for the vector

(∫
g1(a)dτA(a)� � � � �

∫
gm(a)dτA(a)

)
.

A natural example is obtained by setting

g(a) = (
a(1)� a

2
(1) � � � a

k
(1)� a(2)� a

2
(2) � � � a

k
(2)� � � � � a(n)� � � � � a

k
(n)

)
for each a ∈ A, where superscripts are exponents and the subscript (h) means the hth
coordinate of a, h = 1� � � � � n; in this case, m = kn and

∫
g(a)dτA(a) is the vector of the
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first k noncentral moments of the coordinate distributions determined by τA; see Rauh
(2003). A special case of this example is given if m= n and g is the restriction to A of the
identity on R

n, so that
∫
g(a)dτA(a) is the “mean action” corresponding to the distribu-

tion τA on A.
For any player and any distribution τA on A induced by the actions of the other

players in a game, the externality is e(τA) = ∫
g(a)dτA(a). Set

E =
{∫

gdτA : τA is a probability measure on A

}
�

Note that E is a convex and compact subset of Rm, and that E is just the convex hull of
the compact set g(A). Every point of E can arise as an externality for a player in some
continuum game. Thus, the set E can be seen as the universe of possible externalities.

In finite-player games, the set of externalities an individual player could actually face
is of the form

∑l
j=1 g(Aj)/l. To ensure that in games with sufficiently many players such

sets have dense interior, i.e., are appropriate for differentiability assumptions on payoff
functions, we make the following assumption on the map g: Whenever O is an open
set in R

n with O ⊆ A, then g(O) affinely spans R
m (in other words, the smallest affine

subspace in R
m including g(O) is Rm itself); see Lemma 9 in the Appendix for the desired

conclusion. This assumption simply imposes some kind of homogeneity property on
the map g. We remark that the assumption is satisfied if g is such that

∫
gdτA is, as

in the example above, the vector of the first k noncentral moments of the coordinate
distributions determined by τA; see Lemma 10 in the Appendix.10

3.3 Payoff functions

A payoff function is a real-valued function u with domu = Au × Eu, where Au and Eu

are subsets of the actions universe A and the externalities universe E, respectively. The
set Au is the action set of a player with payoff function u. (We thus specify actions sets
of players by components of the domains of payoff functions; this is for notational effi-
ciency.) The set Eu is referred to as the externalities factor in domu.

This formalization of payoff functions is convenient because it gives an easy way
to set up a space of payoff functions so that in actual games, the domain of the payoff
function of any player does not depend on action profiles that this player cannot ob-
serve. For example, in a finite-player game, the set of externalities relevant for the payoff
of an individual player is of the form

∑l
j=1 g(Aj)/l, where the Ajs are the action sets of

the other players, so this set is the natural choice of the externalities factor in the domain
of the payoff function of this player. (Also see Remark 2 below.)

We write ϕ(u�e) for the best reply set of a player with payoff function u if he faces
e ∈ Eu as externality. Thus,

ϕ(u�e) =
{
a ∈Au : u(a�e) = max

a′∈Au

u
(
a′� e

)}
�

10For an example where this assumption fails, put A = [0�1] and let g : A → R be a continuously differ-
entiable function with a nonzero derivative at some point of A, but such that the derivative vanishes on
some nondegenerate subinterval of A.
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We assume that for a payoff function u, and the associated sets Au and Eu, the fol-
lowing conditions are satisfied:

(U1) The sets Au and Eu are nonempty compact subsets of A and E, respectively,
such that both Au and Eu have dense interior.

(U2) The function u is twice continuously differentiable.

(U3) If (a� e) ∈ ∂Au ×Eu, then there is an a′ ∈Au such that u(a′� e) > u(a�e).

Note that (U1) and (U2) imply that ϕ(u�e) is nonempty for each e ∈ Eu, and that (U3)
implies that ϕ(u�e) ⊆ intAu for each e ∈Eu.

3.4 Space of payoff functions

The set of payoff functions is denoted by U . In Section 5.1, we show that there is a unique
metrizable topology on U such that a sequence 〈uk〉 in U converges to some u ∈ U if and
only if the following statements hold:

(a) We have ρH(domu�domuk) → 0 and ρH(∂Au�∂Auk)→ 0.

(b) If (a� e) ∈ domu and (ak� ek)∈ domuk, k ∈ N, are such that (ak� ek) → (a� e), then
uk(ak� ek) → u(a�e), Duk(ak� ek) →Du(e�a), and D2uk(ak� ek) →D2u(e�a).11

In the rest of the paper, U is regarded as being equipped with this topology, and for
definiteness we fix any metric ρ that induces this topology, so that U can be regarded
as a metric space if necessary. None of our results depends on any specific metric that
induces the topology of U ; in particular, none of them depends on the choice of the met-
ric ρ.

Evidently on subsets of U consisting of functions with a common domain, the topol-
ogy of U is just the topology of C2-uniform convergence. We also note that U is a sepa-
rable topological space (see Lemma 2 in Section 5.1).

Concerning the condition ρH(∂Au�∂Auk) → 0 in (a) above, this condition is needed
in addition to the condition ρH(domu�domuk) → 0 to have a notion of closeness of ac-
tion sets such that an interior point of an action set is also an interior point of nearby ac-
tion sets. This is central for our results, but unfortunately is not implied by the condition
ρH(domu�domuk) → 0 alone unless action sets are assumed to be convex. In fact, for
convex action sets, ρH(domu�domuk) → 0 implies ρH(∂Au�∂Auk) → 0 (see Wills 2007).
Of course, in scenarios where all players have the same action set (as considered in The-
orem 3 below), the condition ρH(∂Au�∂Auk) → 0 can be dropped from (a).

3.5 Finite-player games

Recall that m is the dimension of the ambient Euclidean space of the externalities
universe E. We consider finite-player games given by pairs (I�G), where I is a fi-
nite set of players, with #(I) ≥ max{2�m + 1}, and G is a map from I to U such that

11Concerning (a), note that by remarks in Section 3.1, convergence for the Hausdorff metric on the family
of nonempty compact subsets of a Euclidean space X is topological, i.e., does not depend on the particular
metric that induces the topology of X .
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Ei = ∑
j∈I\{i} g(Aj)/((#I) − 1) for each i ∈ I, writing Ei for EG(i) and Aj for AG(j). Note

that for a player i in a finite-player game (I�G), any distribution of actions chosen by the
other players is of the form

∑
j∈I\{i} δaj /((#I) − 1), where δaj denotes Dirac measure at

point aj in the action set Aj of j ∈ I \{i}. Thus, the equality Ei = ∑
j∈I\{i} g(Aj)/((#I)−1)

means that the externalities factor in the domain of the payoff function of a player i is ex-
actly the set of externalities the player could actually face in the game (I�G). If #(I) >m,
then by Lemma 9, int

∑
j∈I\{i} g(Aj)/((#I) − 1) is dense in

∑
j∈I\{i} g(Aj)/((#I) − 1), so

the conditions Ei = ∑
j∈I\{i} g(Aj)/((#I) − 1) are consistent with (U1) in the assump-

tions on payoff functions and, therefore, are consistent with the definition of U . Because
the focus of our paper is on large games, there is no problem with a condition based on
imagining that a game has sufficiently many players.

A strategy profile in a finite-player game (I�G) is a map f : I → A such that f (i) ∈Ai

for each i ∈ I. Given any strategy profile f , we write ef�i for the externality faced by player
i; that is, ef�i = ∑

j∈I\{i} g(f (j))/(#(I) − 1) or, in other words, ef�i = ∫
g(a)dτA�f�i(a),

where τA�f�i is the distribution of the actions chosen by the players j ∈ I \ {i}. Thus,
for any Borel set B ⊆ A,

τA�f�i(B) = #
({
j ∈ I \ {i} : f (j) ∈ B

})
/
(
#(I)− 1

)
�

A strategy profile f : I → A is a pure strategy Nash equilibrium if f (i) ∈ ϕ(G(i)� ef�i) for
each i ∈ I. A pure strategy Nash equilibrium is called strict if #(ϕ(G(i)� ef�i)) = 1 for each
i ∈ I.

Every finite-player game (I�G) defines a distribution on U , i.e., a distribution of
payoff functions. We write νG for such a distribution. Thus, for any Borel set B in U ,
νG(B) = #({i ∈ I : G(i) ∈ B})/#(I).

3.6 Continuum games

Recall from Section 3.4 that U can be regarded as a metric space. Let M be the set
of all Borel probability measures on U with compact support. (By Lemma 2 in Sec-
tion 5.1, U is separable, so any Borel measure on U has a support.) We regard M as
being given the topology such that νn → ν if both νn → ν in the narrow topology12 and
ρH(supp(νn)� supp(ν)) → 0, i.e., supp(νn) → supp(ν) in the Hausdorff metric topology.
Note that for any finite-player game, νG as defined in the previous section belongs to
M. Given ν ∈ M, let

E(ν) =
{∫

gdτA : τ is a probability measure on U ×A such that

τU = ν and (u�a) ∈ supp(τ) implies a ∈Au

}
�

12Recall that the narrow topology on the set of Borel measures on a metrizable topological space is the
topology of pointwise convergence on the bounded continuous functions defined on this space, evaluation
being given by integration.
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Following Mas-Colell (1984), we define a continuum game as a distribution on the
space of players’ characteristics. We add the assumption that the support of the dis-
tribution of players’ characteristics in a continuum game is compact, i.e., that players’
characteristics in a continuum game are not too dissimilar. With a continuum of players,
every player is negligible in the strict mathematical sense, so that there is no distinction
between the distribution of the actions chosen by all players and the distribution of the
actions chosen by all but one player. Thus, because in any game, the externalities factor
in the domains of payoff functions must be equal to the set of externalities players could
actually face, in our model, a continuum game is an element ν ∈ M such that Eu =E(ν)

for each u ∈ supp(ν). By Lemma 5(a), requiring these equalities is consistent with the
definition of U . We write G for the set of continuum games and give G the subspace
topology induced by the topology of M (see the Introduction for the meaning of this
topology).

Pure strategy Nash equilibria of continuum games are specified in our model in
terms of equilibrium distributions, as in Mas-Colell (1984). In our notation, an equilib-
rium distribution of a continuum game ν ∈ G is a Borel probability measure τ on U ×A

such that τU = ν and supp(τ) ⊆ {(u�a) ∈ U ×A : a ∈ ϕ(u�e(τA))}. By Mas-Colell (1984),
every continuum game ν ∈ G has an equilibrium distribution.

Remark 1. Given ν ∈ G, there are plenty of sequences 〈(In�Gn)〉n∈N of finite-player
games such that #(In) → ∞ and νGn → ν in M. Indeed, in Lemma 7 in Section 5.1, we
show, based on the law of large numbers and the Shapley–Folkman theorem, that such
sequences do exist. Of course, given such a sequence, there are uncountably many (or-
dinally nonequivalent) modifications of the countably many payoff functions involved
such that the resulting sequences of finite-player games still converge to ν.

Remark 2. In our setup, whether a sequence of finite-player games converges to some
continuum game depends only on players’ payoffs at actions in their own actions sets
and on the externalities they can potentially observe in an actual game. This would not
be the case had we taken U to be a space of functions defined on the product of the
entire actions universe and the entire externalities universe.

3.7 Results

Our first result gives precision to the idea that, generically, pure strategy Nash equilib-
rium existence results for continuum games carry over to large finite-player games in
a setting with differentiable payoff functions. In the context of this result, the compact
support condition on the distributions of players’ characteristics in continuum games
means that along sequences of finite-player games, players’ characteristics must not
become too dissimilar if the number of players increases toward infinity.

Theorem 1. There is an open and dense subset G∗ of G such that whenever ν ∈ G∗, and
〈(In�Gn)〉n∈N is a sequence of finite-player games such that #(In) → ∞ and νGn → ν, there
is an N ∈N such that (In�Gn) has a strict pure strategy Nash equilibrium if #(In) ≥N .
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The idea of the proof is first to identify an open and dense set G∗ ⊆ G such that if
ν ∈ G∗, then ν has an equilibrium distribution τ such that for some neighborhood V of
supp(ν) and some neighborhood W of e(τA), best replies on V ×W are given by a (con-
tinuously differentiable) function. Given such a ν, if 〈(In�Gn)〉 is a sequence of finite-
player games such that νGn → ν, then supp(νGn) must be in V eventually. In addition, at
this point, the idea is to get strict pure strategy Nash equilibria for the games (In�Gn) if n
is large enough by a fixed-point argument, using the fact that best replies on V ×W are
given by a function, but taking care of the fact that in finite-player games, different play-
ers may face different externalities. A more detailed overview of the proof of Theorem 1
is provided in Section 4.

The following example shows that in the context of Theorem 1, we cannot do better
than to obtain a result for generic distributions of players’ characteristics, regardless of
the number of players, i.e., of the size of I.

Example. Let A= [−1/2�3/2] and let v : A→ R+ be a twice continuously differentiable
function, with Dv(1/2) = D2v(1/2) = v(1/2) = 0, assuming a global maximum, equal to
1, exactly at the points 0 and 1. Let g : A → R be the restriction to A of the identity on
R. Then E = [−1/2�3/2], and for each f : I → A and each i ∈ I, the externality ef�i ∈ E

faced by i is the mean of the actions of the players different from i. Let #(I) be even,
with #(I) ≥ 4. Partition I into sets H and J of equal size. For i ∈ H, the payoff function
is uH : A×E →R defined by setting

uH(a�e) = v(a)(3/2 − e) if a < 1/2 and uH(a�e) = v(a) if a≥ 1/2�

and for i ∈ J, the payoff function is uJ : A×E → R defined by setting

uJ(a� e) = v(a)(e+ 1/2) if a < 1/2 and uJ(a� e) = v(a) if a≥ 1/2�

Note that for all i ∈ I and all values of ef�i, the best reply sets are included in {0�1},
and that if f : I → A is a strategy profile such that f (i) ∈ {0�1} for all i ∈ I, then ef�i =
#{j ∈ I \ {i} : aj = 1}/#(I − 1) for each i ∈ I.

Now suppose f : I → A is a pure strategy Nash equilibrium. Consider i, i′ ∈ H and
suppose f (i) = 0 and f (i′) = 1. Then, by optimal choice of actions, ef�i ≤ 1/2 and ef�i′ ≥
1/2. However, calculating frequencies, we see that f (i) = 0 and f (i′) = 1 together imply
that ef�i > ef�i′ , and from this contradiction it follows that all members of H must choose
the same action, say 0. But then, because #(I) is even, ef�i < 1/2 for all members i of J,
so they all must play 1, by optimal choice of actions. This, however, means that ef�i > 1/2
for all members of H, again because #(I) is even, so their optimal actions are also equal
to 1, and this contradiction shows that no pure strategy Nash equilibrium exists.

In regard to this example, note that the set of games that have pure strategy Nash
equilibria is closed in the set of all games with the given number of players. Thus, this
example actually provides a counterexample to the idea that it could be possible in our
model to define, for any finite number of players, a generic set of payoff functions such
that every game with the given finite number of players and payoff functions in this set
had a pure strategy Nash equilibrium.
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The arguments in the proof of Theorem 1 can be used to show that in our model,
every equilibrium distribution of every continuum game is the limit of some sequence of
finite-player games and corresponding strict pure strategy Nash equilibria, in the sense
of the following definition.

Definition. Let ν ∈ G be a continuum game and let τ be an equilibrium distribution
for ν. A sequence 〈(In�Gn)〉n∈N of finite-player games such that #(In)→ ∞ and νGn → ν

is said to asymptotically implement (ν� τ) if for all n larger than some N ∈N, (In�Gn) has
a strict pure strategy Nash equilibrium fn such that the sequence of distributions of the
maps Gn×fn converges to τ narrowly. We say that (ν� τ) is asymptotically implementable
if it can be asymptotically implemented by some sequence 〈(In�Gn)〉n∈N with #(In) →
∞ and νGn → ν.

Theorem 2. Every (ν� τ), where ν ∈ G is a continuum game and τ is an equilibrium distri-
bution for ν, is asymptotically implementable by a sequence 〈(In�Gn)〉n∈N of finite-player
games such that νGn ∈ G for each n.

We emphasize that every continuum game can be taken in Theorem 2, not just a
game from a generic set. Thus, Theorem 2 shows that in our model, no equilibrium
distribution of any continuum game is an artifact of having continuum many players.

The idea of the proof is to show first that any continuum game ν ∈ G and any equi-
librium distribution τ of ν can be approximated by ν′s belonging to the generic set G∗
from Theorem 1, together with equilibrium distributions that witness this. We then ex-
tend the arguments of the proof of Theorem 1 and show that, given any ν′ ∈ G∗ and any
equilibrium distribution τ′ that witnesses this, along every sequence 〈(In�Gn)〉 of finite-
player games such that νGn → ν′, there are strict pure strategy Nash equilibria fn if n is
large enough such that the distributions of the maps Gn × fn converge to τ′ narrowly.
Coupling these arguments with an argument (based on the law of large numbers) that
shows that sequences of finite player games converging to a given continuum game do
exist, Theorem 2 follows by an obvious diagonal argument.

We note that the approximating sequence of finite player games is, in general, dif-
ferent from a finite-player truncation of the given continuum game, i.e., it is not gener-
ally the case that supp(νGn) ⊆ supp(ν). However, if 〈(În� Ĝn)〉n∈N is a sequence of finite-
player games such that #(În) → ∞, ν

Ĝn
→ ν and supp(ν

Ĝn
) ⊆ supp(ν), then (În� Ĝn) and

(In�Gn) are arbitrarily close when n is large.
In much of the literature on continuum games it is assumed, following Schmeidler

(1973) and Mas-Colell (1984), that all players have the same action set. In our model,
the set of continuum games in which all players have the same action set is not open in
the set of all continuum games, so Theorems 1 and 2 do not apply to this special case.
We address this case with another theorem. To this end, it is convenient to settle some
additional notation.

Let C be the set of all closed subsets C of the actions universe A such that C has
dense interior. For each C ∈ C, let SC = {u ∈ U : Au = C}. Note that SC is closed in U for
each C ∈ C. For each C ∈ C, let MC = {ν ∈ M : supp(ν) ⊆ SC} and GC = G ∩MC .
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Theorem 3. Given any C ∈ C, there is a relatively open dense subset G∗
C of GC such

that whenever ν ∈ G∗
C and 〈(In�Gn)〉n∈N is a sequence of finite-player games such that

#(In) → ∞ and νGn → ν, then there is an N ∈ N such that (In�Gn) has a strict pure strat-
egy Nash equilibrium if #(In) ≥ N . Moreover, every (ν� τ), where ν ∈ GC is a continuum
game and τ is an equilibrium distribution for ν, is asymptotically implementable by a
sequence 〈(In�Gn)〉n∈N of finite-player games such that νGn ∈ MC for each n.

The ideas of the proof are the same as those of the proofs of Theorems 1 and 2, mod-
ulo that concerning asymptotic implementation of equilibrium distributions of contin-
uum games, one has to take care to choose finite-player games in which all players have
the correct action set.

4. Overview of the proof of the main result

In this section we sketch the argument for our main result, Theorem 1, in the special
case in which all players have the same action set A= [0�1] and the externality map g is
the identity on A, i.e., g = idA (which is actually a special case of Theorem 3).

In this special case, regardless of the number of players in a game, in particular, re-
gardless of whether the set of players is finite or a continuum, the externality set of any
player is equal to [0�1], so that [0�1] can be taken to be the universe E of externalities.
Thus, the space U of possible payoff functions is the space of twice continuously differ-
entiable functions on A × E ≡ [0�1] × [0�1], and the topology of U is just the standard
topology of C2-uniform convergence. Note also for the sequel that the choice of g to be
idA entails that the boundary assumption (U3) on payoff functions implies that equilib-
rium externalities are always in the interior of E.

We build up to the generic set G∗ by considering first the subset G1 of G that consists
of those ν such that for some equilibrium distribution τ of ν, the following conditions
hold:

(i) We have #(ϕ(u�e(τA))) = 1 for each u ∈ supp(ν).

(ii) For each u ∈ supp(ν), D2
au(au� e(τA)) < 0, where au is the unique element of

ϕ(u�e(τA)).

Using the implicit function theorem and the choice of the topology on U , we can show
that the conditions imply that for each ν ∈ G1, there are neighborhoods V of supp(ν) in U
and W of e(τA) in E such that, on V ×W , best replies of u against e can be described by a
continuous map h such that h(u� ·) is continuously differentiable. In particular, for each
e ∈ W ,

∫
h(u�e)dν(u) is the resulting externality when players reply against e optimally.

Hence, the map ξ : W →R
m, defined by setting

ξ(e) =
∫

h(u�e)dν(u)− e

for each e ∈ W , is such that its zeros are equilibrium externalities; for each equilibrium
externality e, the corresponding equilibrium distribution is ν ◦ (idU ×h(·� e))−1. Also, by
Leibniz’ rule, the map ξ is continuously differentiable.
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Let G∗ be the subset of G1 that consists of those ν such that for some equilibrium
distribution τ of ν, the associated map ξ has a derivative Dξ(e(τA)) different from zero.
This is needed in the fixed-point argument sketched below. The set G∗ is the generic set
of Theorem 1. We next sketch the reason why G∗ is open and dense in G.

To see that G∗ is open, fix ν ∈ G∗, and let V , W , and h be as above. By the choice of the
topology on G, there is a neighborhood U of ν in G such that supp(ν′) ⊆ V for all ν′ ∈ U .
We can, therefore, define a map ξU : U ×W →R

m by setting

ξU
(
ν′� e

) =
∫

h(u�e)dν′(u)− e

for each ν′ ∈ U and e ∈ W , which has the property that ξU(ν′� e) = 0 implies that e is an
equilibrium externality in the continuum game ν′. The defining properties of G∗ imply
that we can use a version of the implicit function theorem to obtain a continuous map
ν′ �→ e(ν′) : U → W such that ξU(ν′� e(ν′)) = 0 for each ν′ ∈U (shrinking U , if necessary).
Thus, e(ν′) is an equilibrium externality of the continuum game ν′ and the correspond-
ing equilibrium distribution is, as above, τ′ = ν′ ◦ (idU × h(·� e(ν′)))−1. Thus, any ν′ ∈ U

has an equilibrium distribution such that (i) in the definition of G1 holds. Condition (ii) is
easy to verify as is the condition that DeξU(ν

′� e(ν′)) �= 0, the latter because DeξU(ν
′� e′)

depends continuously on (ν′� e′). It thus follows that G∗ is open.
Denseness of G∗ is established by perturbing the payoff functions in any given con-

tinuum game. Such a perturbation is used first to show that G1 is dense in G: Fix ν ∈ G
and let τ be an equilibrium distribution of ν. For each (u�a) ∈ supp(τ), the action a is
made to be a strict best reply for the payoff function u, roughly by adding a function ρ

to u. Specifically, choose a twice continuously differentiable map ρ : R → R such that
ρ(0) = 0 > ρ(x) for all x ∈ R \ {0} and D2ρ(0) < 0. For each k ∈ N, u ∈ supp(ν), and a ∈ A,
define uk�a : A×E →R by setting

uk�a
(
a′� e

) = u
(
a′� e

) + 1
k+1

(
ρ
(
a− a′))

for each (a′� e) ∈ A × E. If k is large enough, then all assumptions on payoff func-
tions are satisfied by uk�a, and uk�a is close to the corresponding u. We can then con-
struct a continuum game by changing payoff functions u to uk�a; formally, define a map
λk : supp(ν)×A → U by setting λk(u�a) = uk�a for each u ∈ supp(ν) and a ∈ A. Then τk
defined as τk = τ◦(λk× idA)

−1 is an equilibrium distribution for νk = τ◦λ−1
k , witnessing

that νk ∈ G1. It follows that G1 is dense in G.
For the denseness of G∗, it now suffices to show that G∗ is dense in G1. Fix ν ∈ G1

and let τ be an equilibrium distribution for ν, witnessing that ν ∈ G1. Set ē = e(τA).
Roughly, the argument consists of constructing a family of a continuum of games νλ,
indexed by λ ∈ [0�1), and corresponding equilibrium distributions τλ, both depending
continuously on λ, such that the externality e(τλ�A) is always ē and the derivative Dξλ(ē)

is zero for at most one value of λ, where ξλ is associated with τλ as above. This is done
as follows. For each u ∈ supp(ν) and each λ ∈ [0�1), define uλ : A×E → R by setting

uλ(a�e) = u
(
a� (1 − λ)ē+ λe

)
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for each (a� e) ∈ Au × E(ν). There is no difference between uλ(·� ē) and u(·� ē); hence,
changing the payoff function from u to uλ yields a continuum game that belongs to G1.
Indeed, define κλ : supp(ν) → U by setting κλ(u) = uλ. Set νλ = ν ◦κ−1

λ and τλ = ν ◦ (κλ ×
h(·� ē))−1. Clearly, for every uλ ∈ supp(νλ), the optimal response against ē is the same
as that of the corresponding u ∈ supp(ν), so νλ belongs to G1 and τλ is an equilibrium
distribution for νλ witnessing this. Moreover, we have

Dξλ(ē) = λ

∫
U
Deh(u� ē)dν(u)− 1�

so Dξλ(ē) can be zero for at most one value of λ. Hence, it is possible to choose λ as
close to 1 as we please, while having Dξλ(ē) �= 0. As each νλ belongs to G1, it follows that
G∗ is dense in G1.

Finally, we outline the proof of the existence of pure strategy Nash equilibria for
members of the tail of a sequence 〈(In�Gn)〉n∈N of finite-player games such that #(In) →
∞ and νGn → ν ∈ G∗. To see this, let τ be an equilibrium distribution for ν, witness-
ing that ν ∈ G∗. Let V , W , h, and ξ be associated with ν and τ as above. For large n,
supp(νGn) ⊂ V , so best replies for any u ∈ supp(νGn) against any e ∈ W are given by the
function h. The idea now is to set up a fixed-point problem as follows.

Let Ŵ be a compact interval such that e(τA) ∈ int Ŵ and Ŵ ⊆ intW . If n is large
enough, then for each strategy profile f ∈AIn and each i ∈ In,∫

adτA�f�i(a)−
∫

adτA�f (a)+ e ∈W

whenever e ∈ Ŵ . Thus, for large n, we can define a map � : AIn × Ŵ →AIn ×R by setting

�(f�e) =
(〈

h

(
Gn(i)�

∫
adτA�f�i(a)−

∫
adτA�f (a)+ e

)〉
i∈In

�

∫
adτA�f (a)

)
for each f ∈ AIn and e ∈ Ŵ . If (f� e) is a fixed point of this map, then e = ∫

adτA�f (a)

and, thus, for each i ∈ In,
∫
adτA�f�i(a), that is the externality induced by the actions

of the players other than i, equals
∫
adτA�f�i(a) − ∫

adτA�f (a) + e, implying that fi =
h(Gn(i)�

∫
adτA�f�i(a)). Thus, f is a pure strategy Nash equilibrium of (In�Gn). It is

important to note that � is not a self-map. But since ν ∈ G∗ and τ witnesses this, we
have Dξ(e(τA)) �= 0. In particular, there is neighborhood of e(τA) included in Ŵ on
which ξ(e) = 0 if and only if e = e(τA). Based on these facts, we can show that a fixed-
point result due to Mas-Colell (1983) can be applied to the situation (again if n is large
enough).

We now mention some of the difficulties in extending these arguments to the gen-
eral case considered in Theorem 1. First, the externalities set of a player in a finite-player
game depends, in general, on the number of players in the game. This is so even when
there is a common action set. For example, take A= [0�1] as above, but take a �→ (a�a2)

for the map g; this just adds some notion of dispersion to the average of actions consid-
ered above as externality.

Second, in general, the boundary assumption on payoff functions does not guar-
antee that equilibrium externalities are in the interior of the externality sets. This is so
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even with a continuum of players and even when players have the same common action
sets. As an example, again take A = [0�1] for the common action set of players, and for
g, take the map a �→ (a�a2) : A → R

2. To show that, for continuum games, equilibrium
externalities are, generically, in the interior of the externality sets, which is needed to
be in a convenient position to apply differentiability techniques, makes up for the main
difficulty of this paper.

5. Proofs

This section contains the proofs of our results. Here is a short road map.
In Section 3.4, we made a convention on the topology of the space U of payoff func-

tions. In Lemma 1 below, we prove the existence of this topology, and in Lemma 2, we
prove that U (with this topology) is separable.

We continue with some more preparatory lemmata. We mention Lemma 7, which
proves the fact announced in Remark 1 that in our model, every continuum game can
be approximated by finite-player games, a fact that is a prerequisite for asymptotic im-
plementability of equilibrium distributions of continuum games.

The set G∗ in the statement of Theorem 1 is defined in part (c) of the proof of this
theorem. The proof that this set is dense in G is delegated to a separate lemma (Lemma 8
after the proof of Theorem 1). This lemma is stated in greater generality than is actually
needed in the proof of Theorem 1 so that it can also be used in the proof of Theorem 2.

5.1 Preliminaries

Lemma 1. There is a unique metrizable topology on U (with which U is regarded as be-
ing endowed) such that a sequence 〈uk〉 in U converges to some u ∈ U if and only if the
following statements hold:

(a) We have ρH(domu�domuk) → 0 and ρH(∂Au�∂Auk) → 0;

(b) If (a� e) ∈ domu and (ak� ek)∈ domuk, k ∈ N, are such that (ak� ek) → (a� e), then
uk(ak� ek)→ u(a�e), Duk(ak� ek) →Du(e�a), and D2uk(ak� ek) →D2u(e�a).

Proof. It suffices to find one metric ρ on U for which convergence of any sequence in U
is equivalent to the truth of (a) and (b). Write �f for the graph of a function f and define
ρ by setting

ρ
(
u�u′) =ρH

(
domu�domu′) + ρH(∂Au�∂Au′)

+ ρH(�u��u′)+ ρH(�Du��Du′)+ ρH(�D2u��D2u′)

for u, u′ ∈ U . Clearly ρ is a metric on U . Let u ∈ U and let 〈uk〉 be a sequence in U .
Assume ρ(u�uk) → 0. Directly from the definition of ρ, we see that (a) must be true.

As for (b), let (a� e) and (ak� ek), k ∈ N, be as hypothesized. Note that ρH(�u��uk) → 0
because ρ(u�uk) → 0. Thus, by the definition of ρH , the sequence 〈(ak� ek�uk(ak� ek))〉
must be bounded and any of its cluster points must belong to �u, and, therefore (by
the definition of graph), must be of the form (a� e�u(a� e)) since (ak� ek) → (a� e). Thus,
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the assertion of (b) follows (because, in a Euclidean space, a bounded sequence has a
cluster point, x say, and is convergent to x if x is the only cluster point). Similarly, the
other assertions of (b) follow.

Assume that (a) and (b) are true. Combining the first of the facts in (b) with the fact
that ρH(domu�domuk) → 0, we see that �u ⊆ Li�uk .13 Suppose (a� e� r) ∈ Ls�uk . Then
for some sequence 〈ni〉i∈N in N, there are points (aki � eki) ∈ domuki , i ∈ N, such that
(aki � eki �uki(aki � eki)) → (a� e� r). From the fact that ρH(domu�domuk) → 0, we see
that (a� e) ∈ domu. Again by this fact, there is a sequence 〈(ak� ek)〉k∈N such that
(ak� ek) → (a� e) and (ak� ek) ∈ domuk for each k. Define a sequence 〈(a′

k� e
′
k)〉k∈N

by setting (a′
k� e

′
k) = (aki � eki) if k = ki for some i, and (a′

k� e
′
k) = (ak� ek) otherwise.

Then (a′
k� e

′
k) ∈ domuk for each k and (a′

k� e
′
k) → (a� e). Consequently (b) implies

that uk(a′
k� e

′
k) → u(a�e). In particular, we have uki(uki � eki) → u(a�e) and, therefore,

r = u(a�e). Thus, Ls�uk ⊆ �u and it follows that �u = Ls�uk = Li�uk . Now because domu

and domuk, k ∈ N, are all included in the compact set A × E, and because the maps u

and uk are continuous, (a) and (b) imply, in particular, that the sets �u and �uk , k ∈ N,
are commonly included in a compact subset of the ambient Euclidean space, so the fact
that �u = Ls�uk = Li�uk implies that ρH(�u��uk) → 0.

Similarly, we see that both ρH(�Du��Duk) and ρH(�D2u��D2uk
) converge to 0 as k →

∞. By the definition of ρ, we conclude that ρ(u�uk) → 0.

Lemma 2. The space U is separable.

Proof. Let F0 be the set of all nonempty compact subsets of Rn+m, let F1 be the set
of all nonempty compact subsets of Rn+m × R, let F2 be the set of all nonempty com-
pact subsets of Rn+m × R

n+m, and let F3 be the set of all nonempty compact subsets of
R
n+m × R

(n+m)2
. For each i = 0�1�2�3, give Fi the Hausdorff metric topology, so that

each Fi becomes a separable metric space. Write F = F0 ×F0 ×F1 ×F2 ×F3 and give F
the product topology. Then F is a separable metrizable topological space. Consider the
map φ : U → F defined by setting

φ(u) = (domu�∂Au��u��Du��D2u)

for each u ∈ U . By definition of the topology of U , φ is a homeomorphism from U onto
φ(U). As F is separable and metrizable, any subset of F is separable (in the subspace
topology). In particular, φ(U) is separable, and it follows that U is separable.

Lemma 3. Let C and Ck, k ∈N, be compact subsets of R	, all with nonempty interior, such
that both ρH(C�Ck) → 0 and ρH(∂C�∂Ck) → 0 as k → ∞. Let x ∈ intC and suppose 〈xk〉
is a sequence in R

	 such that xk → x. Then xk ∈ intCk for all sufficiently large k.

Proof. Otherwise, passing to a subsequence if necessary, we can assume xk /∈ intCk for
each k. As ρH(C�Ck)→ 0, we can find a yk ∈ Ck for each k so that yk → x. Now using the

13Here and below, Li�uk is the set of limits of sequences 〈(ak� ek� rk)〉 such that (ak� ek� rk) ∈ �uk for all k,
and Ls�uk is the set of cluster points of such sequences.
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fact that the Cks are closed, we can select a λk ∈ [0�1] for each k so that zk = (1−λk)yk +
λkxk ∈ ∂Ck. As xk → x as well as yk → x, we also have zk → x. As ρH(∂C�∂Ck) → 0, it
follows that x ∈ ∂C, contradicting the hypothesis about x.

Lemma 4. Let C and Ck, k ∈ N, be compact subsets of R	, all with nonempty interior, such
that both ρH(C�Ck) → 0 and ρH(∂C�∂Ck) → 0 as k → ∞. Let K be a compact subset of
intC. Then K ⊆ intCk for all sufficiently large k.

Proof. Otherwise, passing to a subsequence if necessary, for each k we can find an xk ∈
K such that xk /∈ intCk. As K is compact, we can assume that xk → x, again passing to a
subsequence, if necessary. Now x ∈ K ⊆ intC, so by Lemma 3 we must have xk ∈ intCk

for large k, thus getting a contradiction.

Lemma 5. (a) For every ν ∈ M, E(ν) is a compact convex subset of E with nonempty inte-
rior in R

m. (b) If νn → ν in M, then ρH(E(νn)�E(ν)) → 0.

Proof. Clearly E(ν) is convex for each ν ∈ M. As for compactness, fix ν ∈ M and set
Y = supp(ν). By the definition of M, Y is compact, and by hypothesis, so is the ac-
tions universe A. Thus, the set Z of all Borel probability measures on Y ×A is narrowly
compact. Evidently the set of those Borel probability measures that matter in the defi-
nition of E(ν) can be regarded as a narrowly closed subset of Z, and, thus, E(ν) must be
compact, because g is continuous.

For the other claims, consider the correspondence θ : U → 2R
m

defined by setting

θ(u)= cog(Au)

for each u ∈ U . Then θ has nonempty compact convex values, all with a nonempty inte-
rior by Lemma 9(b). The fact that θ has convex values implies that

∫
θdν is convex for all

ν ∈ M, and the fact that θ has compact values, all included in the compact set cog(A),
implies that

∫
θdν is compact for all ν ∈ M (see Hildenbrand 1974, D.II.4, Proposition 7).

Note that the correspondence u �→ Au : U → 2A is continuous (see Hildenbrand 1974,
B.III, Problem 4). Because the map g is continuous, this implies that the correspon-
dence u �→ g(Au) : U → 2R

m
is continuous. By Hildenbrand (1974, B.III, Propositions 6

and 10), it follows that θ is continuous.
We claim that E(ν) = ∫

θ(u)dν(u) for each ν ∈ M. To see this, fix any ν ∈ M and
any p ∈R

m. Note that the map p ◦ g from A to R is continuous. Consequently, since the
correspondence u �→Au is continuous, with nonempty compact values, it has a measur-
able selection h such that (p ◦ g)h(u) = max(p ◦ g)Au for each u ∈ U (use the maximum
theorem together with Hildenbrand 1974, B.III, Proposition 1 and D.II.2, Lemma 1). We
must, therefore, have maxpE(ν) = ∫

U maxpg(Au)dν(u), by the definition of E(ν), and
also ∫

U
maxpg(Au)dν(u) =

∫
U

maxp cog(Au)dν(u) = maxp
∫
U
θ(u)dν(u)�

As p is an arbitrary element of Rm, and both E(ν) and
∫
U θ(u)dν(u) are compact and

convex, it follows that E(ν) = ∫
U θ(u)dν(u), as claimed.
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Now from this equality, we can see that intE(ν) �= ∅ for each ν ∈ M. Indeed, pick
any ν ∈ M and any u′ ∈ supp(ν). As noted above, intθ(u′) �= ∅, so there is a compact set
K ⊆ intθ(u′) such that intK �= ∅. By Lemma 4, there is an open neighborhood V of u′
such that K ⊆ θ(u′′) for each u′′ ∈ V . As u′ ∈ supp(ν), ν(V ) > 0, so the set ν(V )K has a
nonempty interior. Now

ν(V )K +
∫
U\V

θ(u)dν(u) ⊆
∫
V
θ(u)dν(u)+

∫
U\V

θ(u)dν(u) =
∫
U
θ(u)dν(u)�

showing that int
∫
U θ(u)dν(u) �=∅. Finally, to see that part (b) of the lemma is true, note

that since θ is continuous, with nonempty compact values, for each p ∈ R
m, the map

u �→ maxpθ(u) : U → R is continuous, by the maximum theorem. Moreover, this map
is bounded because the values of θ are included in the compact set E ⊆ R

m. Hence,
for each p ∈ R

m, the map ν �→ ∫
U maxpθ(u)dν(u) : M → R is continuous. By the facts

used above, we see that θ has a measurable selection h such that ph(u) = maxpθ(u)
for each u ∈ U , implying that

∫
U maxpθ(u)dν(u) = maxp

∫
U θ(u)dν(u), and it follows

that for each p ∈ R
m, the map ν �→ maxp

∫
U θ(u)dν(u) : M → R is continuous. Because∫

U θ(u)dν(u) is nonempty convex and compact for each ν ∈ M, it follows that the map
ν �→ ∫

U θ(u)dν(u) is continuous for the Hausdorff metric on the set of all nonempty
compact subsets of Rm (see Castaing and Valadier 1977, II-23). Thus we get (b), again
by the equality E(ν) = ∫

U θ(u)dν(u) established above.

Lemma 6. Let ν ∈ G, and let 〈(In�Gn)〉n∈N be a sequence of finite-player games such that
#(In) → ∞ and νGn → ν in M. Let W be a compact subset of intE(ν). Then there is an
N ∈N such that W ⊆EGn(i) for each i ∈ In whenever n≥N .

Proof. In this proof, we write En�i for EGn(i) and write ln for #(In)− 1.
(a) There are numbers N1 ∈ N and ε > 0 such that whenever n ≥ N1 and i ∈ In, then

W ⊆ coEn�i but dist(e� ∂ coEn�i) ≥ ε for each e ∈ W . To see this, for each n and each i ∈ In
define νn�i ∈ M by setting νn�i = (1/ln)

∑
j∈In\{i} δGn(j). Note that E(νn�i) = coEn�i for each

n and each i ∈ In. Consider any sequence 〈in〉 with in ∈ In for each n. The hypothesis that
νGn → ν in M implies that νn�in → ν in M. By Lemma 5(b), it follows that coEn�in →E(ν),
and, therefore, by Lemma 5(a) and Lemma 4, that W ⊆ int coEn�i if n is sufficiently large.
Thus, were the claim wrong, there would be a subsequence 〈Ink〉 of the sequence 〈In〉
such that dist(ek� ∂ coEnk�ik) → 0 for some points ik ∈ Ink and ek ∈ W , k ∈ N. Now be-
cause all the sets E(ν) and coEnk�ik , k ∈ N, are compact, convex, and have a nonempty
interior, it follows from the material in Wills (2007) that ρH(∂E(ν)� ∂ coEnk�ik)) → 0 and,
therefore, that dist(ek� ∂E(ν)) → 0. Because W is compact, we can assume that ek → e

for some e ∈ W . But then, because ∂E(ν) is closed, we must have e ∈ W ∩ ∂E(ν), contra-
dicting the hypothesis that W ⊆ intE(ν).

(b) There are numbers η> 0 and N2, with N2 ≥m (m being the dimension of the am-
bient Euclidean space of the externalities universe), such that if ln ≥ N2, then for each
i ∈ In and each J ⊆ In \ {i} with #(J) = m, the set

∑
j∈J g(AGn(j)) includes a ball of radius

η. To see this, consider the correspondence θ : supp(ν) → 2A, given by setting θ(u) =Au

for each u ∈ supp(ν). Then θ is continuous (see Hildenbrand 1974, B.III, Problem 4), with
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nonempty compact values, all with nonempty interior. Moreover, ρH(∂Au�∂Auk) → 0
whenever uk → u in supp(ν). Using Lemma 4 and the fact that supp(ν) is compact,
we see from these properties that there is a nonempty finite set C of compact balls
in A (all with radius > 0), such that for each u ∈ supp(ν), intAu includes some mem-
ber of C. As ρH(suppν� supp(νGn)) → 0, another invocation of Lemma 4 and the fact
that supp(ν) is compact now show that there is an N ′

2 ∈ N such that whenever n ≥ N ′
2,

then for each i ∈ In, AGn(i) includes some member of C. Let F be the set of all families
F = (BF�1� � � � �BF�m), where BF�i = C for some C ∈ C, i = 1� � � � �m. Then F is finite and, by
Lemma 9 in the Appendix, for each F ∈ F ,

∑m
i=1 g(BF�i) includes a ball of radius ηF > 0.

Set η = min{ηF : F ∈ F}. As F is finite, η > 0. Thus, setting N2 = max{N ′
2�m}, the claim

follows.
(c) Because the actions universe is compact and g is continuous, there is a number

δ′ > 0 such that diam(g(AGn(i))) ≤ δ′ for all i ∈ In and n. Set δ0 = mδ′, so that we have
diam(g(AGn(i))) ≤ δ0 for all i ∈ In and n as well as diam(

∑
j∈J g(AGn(j))) ≤ δ0 if J is as

above. Choose a number h ∈N with hη ≥mδ0. Note that for all n and i ∈ In,

lnEn�i =
∑

j∈In\{i}
g(AGn(j))�

and that if ln ≥ hm, the latter sum can be written in the form∑
j∈J1

g(AGn(j))+ · · · +
∑
j∈Jh

g(AGn(j))+
∑

j /∈⋃h
k=1 Jk

g(AGn(j))�

where the Jks, k = 1� � � � �h, are pairwise disjoint and #(Jk) = m for all k = 1� � � � �h. By
Howe (1979, Proposition 2), it follows that if n ≥N2 is such that ln ≥ hm and z ∈ co(lnEn�i)

is such that dist(z� ∂ co(lnEn�i)) ≥ hδ0, then z ∈ lnEn�i.14

Note that (a) implies that whenever n ≥ N1 and i ∈ In, then lnW ⊆ co(lnEn�i) and
for each e ∈ lnW , we have dist(e� ∂ co(lnEn�i)) ≥ lnε. By the previous paragraph, it follows
that if n ≥ max{N1�N2} is such that both ln ≥ hm and lnε≥ hδ0, then lnW ⊆ lnEn�i for each
i ∈ In, and, thus, W ⊆ En�i for each i ∈ In. As n → ∞ implies ln → ∞, this establishes the
lemma.

Lemma 7. Given ν ∈ G, there is a sequence 〈(In�Gn)〉n∈N of finite-player games such that
#(In)→ ∞ and νGn → ν in M.

Proof. (a) Let ν ∈ G be given. Write X = supp(ν). By the law of large numbers
(Glivenko–Cantelli version), there is a sequence 〈un〉 in X such that the sequence 〈νn〉,
defined by setting νn = 1/(n + 1)

∑n
i=0 δui for each n ∈ N, converges to ν narrowly. Since

supp(νn) ⊆ X = supp(ν), narrow convergence of 〈νn〉 to ν implies that we also have
ρH(supp(νn)� supp(ν)) → 0. Thus, we have νn → ν in the topology of M. For each
n ∈ N \ {0} and each 0 ≤ i ≤ n, define νn�i ∈ M by setting νn�i = 1/n

∑
j∈Jn�i δuj where

14Note that the h here corresponds to the m in Howe (1979, Proposition 2), while dimV and ν there are
what is called m and η here, respectively.
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Jn�i = {0� � � � � n}\{i}; set ν0�0 = ν0. Note that for each n ∈N\{0} and each 0 ≤ i ≤ n, we have
‖νn − νn�i‖V ≤ 2/n, writing ‖·‖V for the variation norm on M. Consequently, because
νn → ν, we have νn�in → ν as n → ∞ whenever 〈in〉 is a sequence in N with 0 ≤ in ≤ n

for each n. By Lemma 5, it follows that ρH(E(ν)�E(νn�in)) → 0 whenever 〈in〉 is as in the
previous sentence.

Fix b ∈ intE(ν). By Lemma 3, it follows from the conclusion of the previous para-
graph that b ∈ intE(νn�i) for each 0 ≤ i ≤ n if n is large enough; we can assume that this
is true for all n. Now, for each n, we can define rn > 0 to be the largest real number r ≤ 1
such that r(E(νn�i) − {b}) + {b} ⊆ E(ν) for each 0 ≤ i ≤ n. We must have rn → 1. To see
this, fix 0 < r < 1. Since E(ν) is convex and b ∈ intE(ν), we have r(E(ν) − {b}) + {b} ⊆
intE(ν). Using the fact that ρH(E(ν)�E(νn�in)) → 0 whenever 〈in〉 is a sequence in N with
0 ≤ in ≤ n for each n, it follows that if n is large, then r(E(νn�i) − {b}) + {b} ⊆ intE(ν) for
all 0 ≤ i ≤ n. Thus, rn ≥ r for such n. As 0 < r < 1 is arbitrary, we conclude that rn → 1.

(b) For each n and each i = 0� � � � � n, define a map ũn�i : Aui × E(νn�in) → R by set-
ting ũn�i(a� e) = ui(a� rn(e − b) + b) for (a� e) ∈ Aui × E(νn�i) and note that ũn�i ∈ U . We
claim that for any ε > 0, there is an nε such that whenever n > nε, then ρ(ũn�i� ui) < ε

for all i = 0� � � � � n (where ρ is the metric on U chosen in Section 3.4). Indeed, otherwise
there are points ũnk�ik and uik , k ∈ N, such that nk → ∞ as k → ∞ and ρ(ũnk�ik�uik) ≥
ε > 0 for each k. Because uik ∈ supp(ν) and supp(ν) is compact, we can assume that
uik → ū for some ū ∈ supp(ν). But then, using Lemma 1 together with the facts that
ρH(E(ν)�E(νnk�ink )) → 0 and rnk → 1, it follows that also ũnk�ik → ū, and we get a contra-
diction.

(c) For each n ∈ N \ {0} and each 0 ≤ i ≤ n, set En�i = 1/n
∑

j∈Jn�i g(Aj). Note
that E(νn�i) = 1/n

∑
j∈Jn�i cog(Aj) (cf. the proof of Lemma 5); thus, En�i ⊆ E(νn�i). Let

un�i : Aun�i × En�i → R be the restriction of ũn�i to Aun�i × En�i. By Lemma 9(a) and the
hypothesis on g made in Section 3.2, there is an n̄ ∈ N such that if n ≥ n̄, then for all
0 ≤ i ≤ n, intEn�i is dense in En�i and, thus, un�i ∈ U . Because all the sets En�i are in-
cluded in the compact convex externalities universe E, it follows from the Shapley–
Folkman theorem that for each ε > 0, there is a n′

ε ∈ N such that ρH(En�i�E(νn�i)) < ε

for all 0 ≤ i ≤ n if n ≥ n′
ε. Using Lemma 1, it follows from this and (b) that for each ε > 0,

there is an n′′
ε ∈ N such that ρ(un�i�ui) < ε for all 0 ≤ i ≤ n whenever n ≥ max{n̄� n′′

ε}, be-
cause un�i is just the restriction of ũn�i to Aun�i ×En�i.

Now, for each n ∈N with n≥ n̄, set In = {0�1� � � � � n} and define Gn : In → U by setting
G(i) = un�i for each i ∈ In. For n < n̄, let (In�Gn) be an arbitrary finite-player game.
By (a), νn = 1/(n + 1)

∑n
i=0 δui → ν narrowly and ρH(supp(νn)� supp(ν)) → 0, so from

the end of the previous paragraph, we see that ρH(supp(νGn)� supp(ν)) → 0 and that∫
hdνGn → ∫

hdν whenever h : U → R is a bounded uniformly continuous function. By
Billingsley (1968, Theorem 2.1), the latter fact implies that νGn → ν narrowly. We con-
clude that νGn → ν in the topology of M.

Remark 3. Inspecting the proof of Lemma 7 shows that, given any ν ∈ G, the sequence
〈(In�Gn)〉n∈N as guaranteed by Lemma 7 can be chosen so that for each n, u ∈ supp(νGn)

implies Au = Au′ for some u′ ∈ supp(ν). This observation is useful in regard to the proof
of Theorem 3.
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5.2 Proofs of the theorems

Proof of Theorem 1. (a) As noted in Section 3.6, every continuum game ν ∈ G has an
equilibrium distribution, i.e., there is a Borel probability measure τ on U × A such that
τU = ν and supp(τ) ⊆ {(u�a) ∈ U ×A : a ∈ ϕ(u�e(τA))}. By (U3) in the assumptions on
payoff functions, we have ϕ(u�e) ⊆ intAu for each u ∈ U and each e ∈ E(ν). Thus if τ is
an equilibrium distribution of ν ∈ G, then a ∈ intAu for each (u�a) ∈ supp(τ).

(b) Write G1 for the subset of G consisting of those ν such that for some equilibrium
distribution τ of ν, the following statements hold:

(i) We have #(ϕ(u�e(τA))) = 1 for each u ∈ supp(ν).

(ii) For each u ∈ supp(ν), D2
au(au� e(τA)) is negative definite, where au is the unique

element of ϕ(u�e(τA)) (note that au ∈ intAu, so D2
au(au� e(τA)) is defined).

(iii) We have e(τA) ∈ intE(ν).

Write Uc = {u ∈ U : Eu is convex}. We claim that given any ν ∈ G1 and any equilibrium
distribution τ of ν such that (i)–(iii) are true, there are open neighborhoods Ṽ of supp(ν)
in U and W of e(τA) in R

m, with clW ⊆ intE(ν), such that, setting V̂ = {u ∈ Ṽ : W ⊆ Eu}
and V = Ṽ ∩ Uc , the following relationships hold: V ⊆ V̂ and on V̂ ×W , the best replies
of u against e are given by a continuous map h : V̂ ×W → A such that (c1) h(u� ·) is dif-
ferentiable for each u ∈ V̂ , (c2) the derivative of h(u� ·) depends continuously on (u�e),
and (c3) D2

au(h(u�e)� e) is negative definite for each (u�e) ∈ V̂ ×W .
To see that this claim is true, choose a compact neighborhood W1 of e(τA) such that

W1 ⊆ intE(ν), which is possible by (iii). Then by compactness of supp(ν), Lemma 1, and
Lemma 4, there is a (relatively) open neighborhood V1 of supp(ν) in Uc such that W1 ⊆
intEu for all u ∈ V1. Now pick any u ∈ supp(ν). As above, let au ∈ intAu be the unique
element of ϕ(u�e(τA)). Then there is a compact and convex neighborhood Uau of au in
intAu such that D2

au(a�e(τA)) is negative definite for every a ∈ Uau . Now we can find
numbers r1 and r2 such that u(au� e(τA)) > r1 > r2 > u(a�e(τA)) for each a ∈ Au \ Uau .
In particular, we must have r1 > u(a�e(τA)) for all a ∈ cl(Au \ Uau). Using Lemma 1
and Lemma 4, we see that there is a neighborhood Ṽ ′

u of u in U such that Uau ⊆ intAu′

for each u′ ∈ Ṽ ′
u. Because the actions universe A is compact, Lemma 1 now shows that

there are open neighborhoods Ṽu of u in U and Wu of e(τA) in R
m, with Ṽu ∩Uc ⊆ Ṽ ′

u ∩ V1

and Wu ⊆ W1, such that, setting V̂u = {u′ ∈ Ṽu : Wu ⊆Eu′ }, u′(au� e) > r1 > u′(a� e) for each
u′ ∈ V̂u, e ∈ Wu, and a ∈ Au′ \ Uau , and such that D2

au
′(a� e) is negative definite for each

u′ ∈ V̂u, e ∈ Wu, and a ∈ Uau . In particular, for each u′ ∈ V̂u and e ∈ Wu, u′(·� e) is strictly
concave on Uau . Consequently, for each u′ ∈ V̂u and e ∈ Wu, the best reply of u′ against
e is unique. Apply this argument to each u ∈ supp(ν). Then by compactness of supp(ν),
there are u1� � � � � uk ∈ supp(ν) such that supp(ν) ⊆ Ṽ = ⋃k

i=1 Ṽui . Set W = ⋂k
i=1 Wui and

K = ⋃k
i=1 Uai . Then for V and V̂ (defined relative to the sets Ṽ and W according to

the previous paragraph), we have V ⊆ V̂ , and for each (u�e) ∈ V̂ × W , the best reply
of u against e is unique and belongs to K. Thus, on V̂ × W , the best reply correspon-
dence ϕ can be identified with a function h taking values in K. Using the fact that K
is compact, we see that h is continuous. Note that by construction, D2

au(h(u�e)� e) is
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negative definite for each (u�e) ∈ V̂ × W , i.e., we have (c3). In view of this, the implicit
function theorem applied to the maps (a� e) �→ Dau(a�e), u ∈ V̂ , shows that (c1) is true.
Using Lemma 1 we see that the evaluation maps (u�a� e) �→ D2

au(a� e) and (u�a� e) �→
DeDau(a�e), which are defined on the set {(u�a� e) ∈ U ×A×E : a ∈ intAu� e ∈ Eu}, are
continuous. From this we see that (c2) is true.

Let ν ∈ G1 and let τ be an equilibrium distribution for ν such that (i)–(iii) are satisfied.
Let W correspond to τ as above. We can then define a map ξτ : W →R

m by setting

ξτ(e) =
∫

g
(
h(u�e)

)
dν(u)− e

for each e ∈ W . Then by the generalized version of Leibniz’ rule in Schwartz (1967,
Chap IV.11, Theorem 115), ξτ is continuously differentiable on W , and we have Dξτ(e) =∫
De(g ◦ h)(u�e)dν(u)− I, where I is the (m×m) identity matrix.

(c) Let G∗ be the subset of G consisting of those ν ∈ G such that for some equilibrium
distribution τ of ν, (i)–(iii) of (b) are satisfied and Dξτ(e(τA)) has full rank, where ξτ is
associated with τ as above. (Note that while the choice of the neighborhood W of e(τA),
i.e., the domain of ξτ , involves some arbitrariness, Dξτ(e(τA)) is uniquely determined.)
By Lemma 8 below, G∗ is dense in G, and we are now going to show that G∗ is open in G.

(d) Fix ν ∈ G∗. We need to show that ν has a neighborhood U in G such that U is
included in G∗. Let τ be an equilibrium distribution for ν, witnessing that ν ∈ G∗. Let W ,
V , h, and ξτ be associated with τ as in (b).

(i) Pick a compact neighborhood W1 of e(τA) with W1 ⊆ W . Then there is a k ∈ N

and a neighborhood V1 of supp(ν) in Uc , with V1 ⊆ V , such that ‖De(g ◦ h)(u�e)‖ ≤ k

for each (u�e) ∈ V1 × W1. Indeed, otherwise, for each k ∈ N \ {0}, we can find points
ek ∈ W1 and uk ∈ V such that ‖De(g ◦ h)(uk� ek)‖ > k but dist(uk� supp(ν)) < 1/k. Since
W1 and supp(ν) are compact, we may assume that (uk� ek) → (u�e) for some (u�e) ∈
supp(ν) × W1. Now De(g ◦ h)(uk� ek) = Dg(h(uk� ek))Deh(uk� ek), and because Dg, h,
and Deh are continuous, it follows that De(g ◦h)(uk� ek) →De(g ◦h)(u�e), and we get a
contradiction.

(ii) Write W2 for the interior of W1 in R
m. Choose an open neighborhood U1 of ν in G

such that supp(ν′) ⊆ V1 for each ν′ ∈ U1. Note that W2 ⊆ E(ν′) for each ν′ ∈ U1. We can,
therefore, define a map ξU : U1 ×W2 →R

m by setting

ξU
(
ν′� e

) =
∫

g
(
h(u�e)

)
dν′(u)− e

for each ν′ ∈ U1 and e ∈ W2. As above, we see that for each fixed ν′ ∈ U1, ξU(ν′� ·) is
continuously differentiable on W2, with DeξU(ν

′� e)= ∫
De(g ◦ h)(u�e)dν′(u)− I, where

I is the (m × m) unit matrix. Now ξU is continuous and DeξU(ν
′� e) depends con-

tinuously on (ν′� e). Indeed, suppose that ek → e in W2 and uk → u in V1. Then
(g ◦ h)(uk� ek) → (g ◦ h)(u�e), because h and g are continuous, and as in (i), we see that
De(g ◦ h)(uk� ek) → De(g ◦ h)(u�e). Thus, uniformly on compact subsets of V1, we have
both (g ◦ h)(·� ek) → (g ◦ h)(·� e) and De(g ◦ h)(·� ek) → De(g ◦ h)(·� e). Using Billingsley
(1968, Theorem 5.5), it follows that if νk → ν′ in U1, then the corresponding sequences
of distributions of the maps (g ◦ h)(·� ek) and De(g ◦ h)(·� ek) converge narrowly to the
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distributions of (g ◦ h)(·� e) and De(g ◦ h)(·� e), respectively. As g ◦ h takes values in the
compact set E, we can now use change of variables to see that ξU(νk� ek) → ξU(ν

′� e).
Similarly, by (c1), we see that DeξU(νk� ek) → DeξU(ν

′� e). Thus, on U1 × W2, ξU is con-
tinuous and DeξU(ν

′� e) depends continuously on (ν′� e), as claimed.
Now as τ is an equilibrium distribution for ν, we have ξU(ν� e(τA)) = 0, and since

ν ∈ G∗, DeξU(ν� e(τA)) ≡ Dξτ(e(τA)) has full rank. Hence, by a version of the implicit
function theorem (see Schwartz, 1967, Chap. III.8, Theorem 25, or Mas-Colell, 1985,
Chapter 1, C.3.3), there is an open neighborhood U of ν in G, with U ⊆ U1, and a con-
tinuous map ν′ �→ e(ν′) : U → W2 such that for each ν′ ∈ U , ξU(ν′� e(ν′)) = 0. Also, since
DeξU(ν

′� e) depends continuously on (ν′� e), DeξU(ν
′� e(ν′)) has full rank for each ν′ ∈U ,

shrinking U if need be.
Fix any ν′ ∈U and set τ′ = ν′ ◦ (id × h(·� e(ν′)))−1. Then

supp
(
τ′) ⊆ {

(u�a) ∈ U ×A : a ∈ ϕ
(
u�e

(
ν′))}

by the choice of h and

e
(
τ′
A

) =
∫

g
(
h
(
u�e

(
ν′))) dν′(u) = ξU

(
ν′� e

(
ν′)) + e

(
ν′) = e

(
ν′)�

Thus, τ′ is an equilibrium distribution for ν′. By the choices of V and W , and since
e(ν′′) ∈ W2 ⊆ W for each ν′′ ∈ U , (i)–(iii) of (b) are true for τ′. Let V ′, W ′, h′, and ξτ′ be
associated with τ′ as in (b). Then V ′ ∩V1 is a neighborhood of supp(ν′) in Uc and W ′ ∩W2

is a neighborhood of e(τ′
A) = e(ν′). Moreover, h and h′ agree on (V ′ ∩ V1) × (W ′ ∩ W2),

and, hence, so do ξτ′ and ξU(ν
′� ·). Thus, Dξτ′(e(τ′

A)) has maximal rank. It follows that
every ν′ ∈U belongs to G∗. As ν ∈ G∗ is arbitrary, G∗ is open.

(e) Let ν ∈ G∗ and let 〈(In�Gn)〉n∈N be a sequence of finite-player games such that
#(In) → ∞ and νGn → ν in M. For each n, we can write In = {1� � � � �kn}, where kn =
#(In). Let Â be the convex hull of the actions universe A and identify g with a con-
tinuous extension to Â. For any map f : In → Â and any i ∈ In, we write τ

Â�f
for the

probability measure on Â given by setting τ
Â�f

(B) = #{j ∈ In : f (j) ∈ B}/#(In) for each

Borel set B ⊆ Â, and write τ
Â�f�i

for the probability measure on Â that is given by setting

τ
Â�f�i

(B) = #{j ∈ In \ {i} : f (j) ∈ B}/(#(In)− 1) for each Borel set B ⊆ Â.

Write ‖·‖V for the variation norm on the space M(Â) of all signed Borel measures on
Â. Note that for any n ∈ N and any f : In → Â, ‖τ

Â�f�i
− τ

Â�f
‖V ≤ 2/#(In) for each i ∈ In.

Because g is bounded on Â, it follows that for any δ > 0, there is an Nδ ∈ N such that if
n ≥Nδ, then ‖∫ g(a)dτ

Â�f�i
(a)− ∫

g(a)dτ
Â�f

(a)‖ < δ for each f : In → Â and each i ∈ In.

Let τ be an equilibrium distribution for ν, witnessing that ν ∈ G∗. Let Ṽ , V̂ , W , and h

be as in the paragraph after the statement of (i)–(iii) in (b).
As ν ∈ G∗, the derivative of ξτ at e(τA) has full rank, which implies that on some

convex compact neighborhood W1 of e(τA) in R
m, with W1 ⊆ W , ξτ(e) = 0 if and only

if e = e(τA). Let W2 be a convex compact neighborhood of e(τA) in R
m such that W2 ⊆

intW1.
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Now because νGn → ν and, therefore, ρH(supp(νGn)� supp(ν)) → 0, Lemma 6 implies
that there is an N ∈N such that whenever n ≥N , then supp(νGn) ⊆ V̂ (i.e., supp(νGn)⊆ Ṽ

and W ⊆ EGn(i) for each i ∈ In). By the second paragraph of this part of the proof, we can
assume that N is so large that if n ≥N , then for each f ∈ ÂIn and i = 1� � � � �kn,∫

g(a)dτ
Â�f�i

(a)−
∫

g(a)dτ
Â�f

(a)+ e ∈W1

whenever e ∈ W2. For n ≥ N , consider the function � : ÂIn ×W2 → ÂIn ×R
m defined by

setting

�(f�e)

=
(
h1

(∫
g(a)dτ

Â�f�1(a)−
∫

g(a)dτ
Â�f

(a)+ e

)
� � � � �

hkn

(∫
g(a)dτ

Â�f�kn
(a)−

∫
g(a)dτ

Â�f
(a)+ e

)
�

∫
g(a)dτ

Â�f
(a)

)
�

writing hi(·) in place of h(G(i)� ·) for each i ∈ {1� � � � �kn}. Then a fixed point of � gives a
strict pure strategy Nash equilibrium of (In�Gn).

We claim that there is an N1 ≥N such that for n ≥N1, the fixed-point theorem stated
in the Appendix as Theorem 4 applies to �. Clearly � is continuous, and for X = ÂIn and
Y = W2, the requirements of Theorem 4 on X and Y are satisfied. With the map ξτ , it
is also clear that we have (a) of Theorem 4. Let γ > 0 be such that ‖ξτ(e)‖ ≥ γ for each
e ∈ ∂W2. We need to show that for some N1 ≥N also (b) of that theorem is satisfied for �
and ξτ if n ≥N1.

To this end, fix n ≥N and suppose that f ∈ ÂIn and e ∈ ∂W2 are such that

f =
(
h1

(∫
g(a)dτ

Â�f�1(a)−
∫

g(a)dτ
Â�f

(a)+ e

)
�

� � � �hkn

(∫
g(a)dτ

Â�f�kn
(a)−

∫
g(a)dτ

Â�f
(a)+ e

))
�

Note that∥∥∥∥∥ 1
kn

kn∑
i=1

g
(
f (i)

) − e− ξτ(e)

∥∥∥∥∥ =
∥∥∥∥∥ 1
kn

kn∑
i=1

g
(
f (i)

) − e−
(∫

g
(
h(u�e)

)
dν(u)− e

)∥∥∥∥∥
=

∥∥∥∥∥ 1
nk

nk∑
i=1

g
(
f (i)

) −
∫

g
(
h(u�e)

)
dν(u)

∥∥∥∥∥
≤

∥∥∥∥∥ 1
kn

kn∑
i=1

g
(
f (i)

) − 1
kn

kn∑
i=1

g
(
hi(e)

)∥∥∥∥∥
+

∥∥∥∥∥ 1
kn

kn∑
i=1

g
(
hi(e)

) −
∫

g
(
h(u�e)

)
dν(u)

∥∥∥∥∥
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=
∥∥∥∥∥ 1
kn

kn∑
i=1

g
(
f (i)

) − 1
kn

kn∑
i=1

g
(
hi(e)

)∥∥∥∥∥
+

∥∥∥∥∫
g
(
h(u�e)

)
dνGn(u)−

∫
g
(
h(u�e)

)
dν(u)

∥∥∥∥�
Since supp(ν) is compact, there is a neighborhood Ṽ1 of supp(ν) in U , with Ṽ1 ⊆ Ṽ ,
and a δ > 0 such that for z ∈ R

m with e + z ∈ W , ‖g(h(u�e + z)) − g(h(u�e))‖ < γ/3
whenever u ∈ Ṽ1 ∩ V̂ , e ∈ W1, and ‖z‖ < δ, and as noted earlier, if n is large, then
‖∫ g(a)dτ

Â�f�i
(a) − ∫

g(a)dτ
Â�f

(a)‖ < δ for each f ∈ ÂIn and each i ∈ In. Hence, as
ρH(supp(νGn)� supp(ν)) → 0, we have∥∥∥∥∥ 1

kn

kn∑
i=1

g
(
f (i)

) − 1
kn

kn∑
i=1

g
(
hi(e)

)∥∥∥∥∥ < γ/3

for large n whenever f ∈ ÂIn and e ∈ ∂W2 are as above. Also, combining the first part of
the penultimate sentence with the fact that νGn → ν narrowly, we see that each e ∈ ∂W2

has a neighborhood U in ∂W2 such that for large n, we have ‖∫ g(h(u�e′))dνGn(u) −∫
g(h(u�e′))dν(u)‖ < (2γ)/3 for each e′ ∈ U . Thus, since ∂W2 is compact, if n is large,

then ‖∫ g(h(u�e))dνGn(u) − ∫
g(h(u�e))dν(u)‖ < (2γ)/3 for every e ∈ ∂W2. It follows

that for some N1 ≥N , ∥∥∥∥∥ 1
kn

kn∑
i=1

g
(
f (i)

) − e− ξτ(e)

∥∥∥∥∥ < γ

for n ≥N1 whenever f ∈ ÂIn and e ∈ ∂W2 are as above. Consequently, because

1
kn

kn∑
i=1

g
(
f (i)

) =
∫

g(a)dτ
Â�f

(a)�

(b) of Theorem 4 is satisfied if n ≥N1.
We can conclude that for n ≥ N1, � has a fixed point and, thus, (In�Gn) has a strict

pure strategy Nash equilibrium.

Lemma 8. Let G∗ be defined as in the proof of Theorem 1. Let ν ∈ G and let τ be an equilib-
rium distribution for ν. Then there is a sequence 〈νk〉 of elements of G∗ and a sequence 〈τk〉
of corresponding equilibrium distributions such that νk → ν in the topology of G, τk → τ

narrowly, and for each k, τk witnesses that νk ∈ G∗.

Proof. In the sequel, for elements ν and νk, k ∈ N, in G, we write νk → ν to mean con-
vergence of the sequence 〈νk〉 to ν in the topology of G; for equilibrium distributions τ

and τk, k ∈ N, we write τk → τ to mean convergence of the sequence 〈τk〉 to τ in the
narrow topology. Given ν ∈ G, we often write Y for supp(ν). The set G1 ⊆ G is defined as
in the proof of Theorem 1. We write G2 for the set of elements of G that have an equilib-
rium distribution satisfying (i) and (ii) in the definition of G1, and write G3 for the subset
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of G2 consisting of the elements ν of G2 such that for some ū ∈ supp(ν), there is a de-
creasing sequence 〈Wl〉 of compact subsets of Y , with Au = Aū for each u ∈ W0, such
that

⋂∞
l=0 Wl = {ū}, and ν(Wl) > 0 for each l. The proof of the lemma is organized in the

following steps.
(a) If ν ∈ G and τ is an equilibrium distribution for ν, there is a sequence 〈νk〉 in G2

and a sequence 〈τk〉 of equilibrium distributions for the νks such that νk → ν, τk → τ,
and for each k, τk witnesses that νk ∈ G2.

(b) If ν ∈ G2 and τ is an equilibrium distribution for ν, witnessing that ν ∈ G2, then
there is a sequence 〈νk〉 in G3 and a sequence 〈τk〉 of equilibrium distributions for the
νks such that νk → ν, τk → τ, and for each k, τk witnesses that νk ∈ G3.

(c) If ν ∈ G3 and τ is an equilibrium distribution for ν, witnessing that ν ∈ G2, then
there is a sequence 〈νk〉 in G1 and a sequence 〈τk〉 of equilibrium distributions for the
νks such that νk → ν, τk → τ, and for each k, τk witnesses that νk ∈ G1.

(d) If ν ∈ G1 and τ is an equilibrium distribution for ν, witnessing that ν ∈ G1, then
there is a sequence 〈νk〉 in G∗ and a sequence 〈τk〉 of equilibrium distributions for the
νks such that νk → ν, τk → τ, and for each k, τk witnesses that νk ∈ G∗.

Putting (a)–(d) together, proves the lemma.
Step (a). Let ν ∈ G and τ any equilibrium distribution for ν. Choose a twice con-

tinuously differentiable map ρ : Rn → R such that ρ(0) = 0 > ρ(x) for all x ∈ R
n \ {0}

and D2ρ(0) is negative definite. For each k ∈ N, a ∈ A, and u ∈ Y , define a function
uk�a : Au ×E(ν) →R by setting

uk�a
(
a′� e

) = u
(
a′� e

) + 1
k+1

(
ρ
(
a− a′))

for each (a′� e) ∈Au ×E(ν). Evidently (U1) and (U2) in the definition of payoff functions
are satisfied for each uk�a. Using Lemmata 1 and 3, we see from compactness of Y , A,
and E(ν) that there is a k0 ∈N such that also (U3) in the definition of payoff functions is
satisfied whenever k≥ k0. We can assume that k0 = 0.

Now, for each k, define a map λk : Y × A → U by setting λk(u�a) = uk�a for each
u ∈ Y and a ∈ A. Write projY for the projection of Y × A onto Y . Using Lemma 1, we
see that λk is continuous for each k and that the sequence 〈λk〉 converges uniformly to
projY as k→ ∞. Because A and Y are compact, and λk is continuous for each k, we can
define an element νk in M for each k by setting νk = τ ◦ λ−1

k . Evidently E(νk) = E(ν) for
each k, so each νk actually belongs to G. The fact that 〈λk〉 converges uniformly to projY
implies that νk → ν, because τU = ν by the fact that τ is an equilibrium distribution for ν.

Write projA for the projection of U ×A onto A. For each k, define a continuous map
κk : Y × A → U × A by setting κk = λk × projA and set τk = τ ◦ κ−1

k . Then τk�U = νk
and τk�A = τA for each k. As 〈λk〉 converges uniformly to projY , 〈κk〉 converges uni-
formly to the identity on Y ×A, and, thus, we have τk → τ. Fix any k. Note that because
Y × A is compact and κk is continuous, supp(τk) = {(κk(u�a) : (u�a) ∈ Y ×A}; that is,
supp(τk) = {(uk�a�a) : (u�a) ∈ Y ×A}. Thus if (u′� a′) ∈ supp(τk), then for some (u�a) ∈
supp(τ), u′ = uk�a and a′ = a. But if (u�a) ∈ supp(τ), then a ∈ ϕ(u�e(τA)) since τ is an
equilibrium distribution; in particular, D2

au(a�e(τA)) is negative semidefinite. Conse-
quently, by the choice of the functions uk�a, if (u′� a′) ∈ supp(τk), then ϕ(u′� e(τA)) = {a′}
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and D2
au

′(a′� e(τA)) is negative definite. As τk�U = νk and τA = τk�A, it follows that τk is
an equilibrium distribution for νk and that νk ∈ G2.

Step (b). Let ν ∈ G2 and let τ be an equilibrium distribution for ν, witnessing that
ν ∈ G2. If there is a u ∈ Y with ν({u}) > 0, we can simply set νk = ν and τk = τ for each
κ. Suppose that ν({u}) = 0 for each u ∈ Y . Pick an arbitrary point ū in Y . By Lemma 11
in the Appendix, there is an increasing sequence 〈Aūk〉 of nonempty compact subsets
of Aū, all with dense interior, such that Aūk ⊆ intAū for each k, and both ρH(Aū�Aūk) →
0 and ρH(∂Aū� ∂Aūk) → 0. Now by Lemma 4, for each k, there is a closed neighborhood
V ′
k of ū in U such that Aūk ⊆ intAu for each u ∈ V ′

k. For each k, set Vk = V ′
k ∩ Y . Then

ν(Vk) > 0 for each k, because ū ∈ Y (≡ supp(ν)). We can assume that the sequence 〈Vk〉
is decreasing and that

⋂∞
k=0 Vk = {ū}.

For each k and each u ∈ Y , define a map u′
k by setting u′

k = u � (Aūk ×E(ν)) if u ∈ Vk
and u′

k = u otherwise. Then all these maps are twice continuously differentiable on their
domains. As ρH(Aū�Aūk) → 0 and ρH(∂Aū� ∂Aūk) → 0, we can see, as in Step (a), that
if k is sufficiently large, then (U3) in the assumptions on payoff functions is satisfied by
all the maps u′

k. We can assume that this is true for each k, so that we can define a map
λ′
k : Y → U for each k by setting λ′

k(u) = u′
k for each u ∈ Y . Note that the restrictions of

λ′
k to Vk and Y \Vk are both continuous. Thus, for each k, λ′

k is measurable, so ν′
k = ν◦λ′

k

is defined. Evidently, for each k, supp(ν′
k) is compact, so ν′

k ∈ M. Using Lemma 1 and
the choice of the sequence 〈Aūk〉, it follows that the sequence 〈λ′

k〉 converges uniformly
to the identity on Y , which implies that ν′

k → ν in the topology of M.
Now by Lemma 5, ρH(E(ν)�E(ν′

k) → 0. Moreover, E(ν′
k) ⊆ E(ν) for each k. Indeed,

fix any k. Then ∫
Vk

cog(Aūk)dν = ν(Vk) co g(Aūk) = ν′
k

({
ū′
k

})
co g(Aūk)�

so by the proof of Lemma 5 and the choice of ν′
k,

E(ν) =
∫
Y

cog(Au)dν(u) ⊇
∫
Y\Vk

cog(Au)dν(u)+
∫
Vk

cog(Aūk)dν

=
∫
Y\Vk

cog(Au)dν′
k(u)+ ν′

k

({
ū′
k

})
co g(Aūk) =E

(
ν′
k

)
�

For each u ∈ Y , we can, therefore, define a map uk : Au × E(ν′
k) → R by setting

uk(a�e) = u(a�e) for (a� e) ∈ Au × E(ν′
k), and for each u ∈ Vk, we can define a map

ũk : Aūk × E(ν′
k) → R by setting ũk(a� e) = u(a�e) for (a� e) ∈ Aūk × E(ν′

k). For each
k, define λk : Y → U by setting λk(u) = uk for u ∈ Y \ Vk and setting λk(u) = ũk for
u ∈ Vk. As with λ′

k, we see that λk is measurable for each k, so νk = ν ◦ λ−1
k is defined.

Clearly supp(νk) is compact and E(νk) = E(ν′
k) for each k, so νk belongs to G. Since

ρH(E(ν)�E(ν′
k) → 0, we see that 〈λk〉 converges uniformly to the identity on Y , using

Lemma 1 and the choice of the sequence 〈Aūk〉. Thus, νk → ν.
Since ν ∈ G2 and τ witnesses this, we see as in (i) in the proof of Theorem 1 that

there is continuous map f : Y → A such that ϕ(u�e(τA)) = {f (u)} for all u ∈ Y ; in par-
ticular, τ = ν ◦ (idY × f )−1. By (U3) in the assumptions on payoff functions, we have
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f (ū) ∈ intAū. Consequently, by Lemma 3 and the choice of the sequence 〈Aūk〉, we must
have f (ū) ∈ intAūk for large k, and, therefore, by the choice of the sequence 〈Vk〉, conti-
nuity of f implies that f (u) ∈Aūk for each u ∈ Vk if k is large enough. We can assume that
this is true for all k. Now for each k, set τk = ν◦(λk×f )−1. Then τk�U = νk for each k. Be-
cause Y and Vk ⊆ Y are compact, and the maps f , u �→ uk : Y → U , and u �→ ũk : Vk → U
are continuous, the set {(uk� f (u)) : u ∈ Y } ∪ {(ũk� f (u)) : u ∈ Vk} is closed and, therefore,
includes supp(τk). Note that e(τk�A) = ∫

g(f (u))dν(u) = e(τA). By the hypothesis that τ
is an equilibrium distribution for ν satisfying (i) and (ii) in the definition of G1, together
with the choice of the uks and ũks, it follows that τk is an equilibrium distribution for νk,
also satisfying (i) and (ii) in the definition of G1. Clearly the sequence 〈λk� f 〉 converges
uniformly to idY × f , so τk → τ, because τ = ν ◦ (idY × f )−1.

Finally to see that each νk actually belongs to G3, fix any k. Note first that λk(ū) ∈
supp(νk). Indeed, note that λk is continuous on Vk and that ū belongs to the relative
interior of Vk in Y . Hence whenever O is an open neighborhood of λk(ū), there is a rela-
tively open neighborhood U of ū in Y , with U ⊆ Vk, such that λk(U) ⊆O. Consequently,
for any such O and U ,

νk(O) = ν(
{
u ∈ Y : λk(u) ∈O

} ≥ ν(U) > 0�

since ū ∈ Y (≡ supp(ν)).
Now set Wl = λk(Vk+l) ∩ supp(νk) for each l ∈ N, so that each Wl is a closed sub-

set of supp(νk), because Vk+l is compact and λk is continuous on Vk+l. By the choice
of the sequence 〈Vk〉, we have

⋂∞
l=0 Vk+l = {ū}, therefore

⋂∞
l=0 λk(Vk+l) = {λk(ū)} since

λk is continuous on Vk, and hence
⋂∞

l=0 Wl = {λk(ū)}. Also, for each l, the relative in-
terior of Vk+l in Y is nonempty, therefore ν(Vk+l) > 0 since Vk+l ⊆ supp(ν), and hence
νk(λk(Vk+l)) > 0. Thus νk(Wl) > 0 for each l. By construction, Au = Aλk(ū) for each
u ∈W0, and it follows that νk satisfies the requirements to be a member of G3.

Step (c). Let ν ∈ G3 and let τ be an equilibrium distribution for ν, witnessing that
ν ∈ G2. As in (b), there is a continuous map f : Y → A such that ϕ(u�e(τA)) = {f (u)} for
all u ∈ Y , and we have e(τA) = ∫

g(f (u))dν(u) and τ = ν ◦ (idY × f )−1.
(i) Suppose first that there is a ū ∈ Y with ν({ū}) > 0. Write α for ν({ū}). Note that

f (ū) ∈ intAū. Let 〈Wk〉 be a nonincreasing sequence of compact convex neighborhoods
of f (ū) in Aū such that

⋂
k=1 Wk = {f (ū)}. By Lemma 9(b), int cog(Wk) is nonempty for

each k. For each k, fix a point eū�k ∈ int cog(Wk). Using Caratheodory’s theorem, for each
k, we can find points ak�h, h = 1� � � � �m+ 1, in Wk such that eū�k = ∑m+1

h=1 βk�hg(ak�h) for

some numbers βk�h with βk�h ≥ 0 and
∑m+1

h=1 βk�h = 1. Note that E(ν) = α co(g(Aū)) +∫
Y\{ū} cog(Au)dν(u). Thus, setting ek = αeū�k + ∫

Y\{ū} g(f (u))dν(u), we have ek ∈
intE(ν) for each k. Also, ek → e(τA) by continuity of g, since ak�h → f (ū) for each h

if k→ ∞ by choice of the points ak�h.
As f (ū) ∈ intAū, we can find numbers 0 < r1 < r2 such that B̄(f (ū)� r1) ⊆ B̄(f (ū)�

r2)⊆ intAui . Let ρ : Rn →R be a twice continuously differentiable map such that ρ(a) =
1 if a ∈ B(f (ū)� r1), 0 ≤ ρ(a) ≤ 1 for all a ∈ R

n, and ρ(a) = 0 if a /∈ B(f (ū)� r2). As ak�h →
f (ū) for each h= 1� � � � �m+ 1 if k→ ∞, we can assume for each k and each h that ak�h ∈
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B(f (ū)� r1) and that a + ρ(a)(f (ū) − ak�h) ∈ intAū whenever a ∈ B(f (ū)� r2). Define a
map ūk�h : Aū ×E(ν) →R for each h= 1� � � � �m+ 1 and each k by setting

ūk�h(a� e) = ū
(
a+ ρ(a)

(
f (ū)− ak�h

)
� e

)
− ū

(
a+ ρ(a)

(
f (ū)− ak�h

)
� ek

) + ū
(
a+ ρ(a)

(
f (ū)− ak�h

)
� e(τA)

)
for each (a� e) ∈ Aū ×E(ν); for each u ∈ Y and each k, define a map uk : Au ×E(ν) → R

by setting

uk(a�e) = u(a�e)− u(a�ek)+ u
(
a�e(τA)

)
for each (a� e) ∈ Au ×E(ν). Then, for each k, all the maps uk and ūk�h, h = 1� � � � �m+ 1,
are twice continuously differentiable on their domains. Using the facts that ek → e(τA)

and that ak�h → f (ū) for each h = 1� � � � �m + 1, we can assume, as in (a), that they all
satisfy (U3) in the assumptions on payoff functions.

Now for each k, define λk : Y → U by setting λk(u) = uk for each u ∈ Y and note
that λk is continuous. For each k, set ν′ = ν − αδū and νk = α

∑m+1
h=1 βk�hδūk�h + ν′ ◦ λ−1

k .

Because Y is compact and λk is continuous, supp(ν′ ◦ λ−1
k ) is compact for each k and,

hence, so is supp(νk) for each k. Thus, νk ∈ M for each k. Because the distribution
of action sets induced by ν is the same as that induced by νk, we have E(νk) = E(ν),
and, thus, νk actually belongs to G for each k. Using Lemma 1, we see that λk con-
verges uniformly to the identity on Y , and from this, we see that ν′ ◦ λ−1

k → ν′ nar-

rowly and that ρH(supp(ν′)� supp(ν′ ◦ λ−1
k )) → 0. Also α

∑m+1
h=1 βk�hδūk�h → αδū narrowly

and ρH(supp(αδū)� supp(α
∑m+1

h=1 βk�hδūk�h)) → 0 by the facts that ak�h → f (ū) for each
h= 1� � � � �m+ 1 and that ek → e(τA). Consequently we have νk → ν.

Set τk = α
∑m+1

h=1 βk�hδūk�h�ak�h + ν′ ◦ (λk × f )−1 for each k. We claim that if k is large
enough, then τk is an equilibrium distribution for νk such that such that (i)–(iii) in the
definition of G1 are true. Indeed, it is clear that τk�U = νk. Note next that by the facts that
f and λk are continuous and Y is compact, the set{

(ūk�h�ak�h) : h= 1� � � � �m+ 1
} ∪ {(

λk(u)� f (u)
) : u ∈ Y

}
is closed and must, therefore, include supp(τk). Note also that

e(τk�A)= α

m+1∑
h=1

βk�hg(ak�h)+
∫

g
(
f (u)

)
dν′(u) = ek�

Now for any u ∈ Y , we have λk(u)(a� ek) = u(a�e(τA)) for each a ∈ Au by the choice of
λk(u); hence, ϕ(λk(u)� ek) = {f (u)} and D2λk(u)(f (u)� ek) is negative definite, because
τ is an equilibrium distribution for ν satisfying (i) and (ii) in the definition of G1. From
the second property of τ, we also see that there is a compact neighborhood Ū of f (ū) in
intAū such that D2

aūk�h(a� ek) is negative definite for each a ∈ Ū and each h= 1� � � � �m+
1 if k is large enough, because ūk�h → ū for each h= 1� � � � �m+ 1. Since ak�h → f (ū) and
Daūk�h(ak�h� ek) = Daū(f (ū))� e(τA)) = 0 for each h = 1� � � � �m + 1, it now follows from
first of the properties noted for the equilibrium distribution τ that ϕ(ūk�h� ek) = {akh}
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for each h = 1� � � � �m + 1 if k is large enough. By construction, e(τk�A) = ek ∈ intE(ν) =
intE(νk) for each k and, thus, the above claim is true.

Clearly, the sequence 〈α∑m+1
h=1 βk�hδūk�h�ak�h〉 of measures on U converges nar-

rowly to αδū�f (ū), and since 〈λk × f〉 converges uniformly to idY × f , the sequence
〈ν′ ◦ (λk × f )−1〉 of measures on U converges narrowly to ν′ ◦ (idY × f )−1. Since
αδū�f (ū) = αδū ◦ (idY × f )−1 and ν′ ◦ (idY × f )−1 = (ν − αδū)(idY × f )−1, it follows that
τk → ν ◦ (idY × f )−1 narrowly; that is, τk → τ, because τ = ν ◦ (idY × f )−1. Thus the
assertion of (c) is true in case there is a ū ∈ Y with ν(ū) > 0.

(ii) Now suppose ν({u}) = 0 for each u ∈ Y . As ν ∈ G3, we can choose a ū ∈ Y and a
decreasing sequence 〈Wl〉 of compact subsets of Y such that

⋂∞
l=0 Wl = {ū}, ν(Wl) > 0 for

each l, and Au =Aū for each u ∈W0.
For each l, define a map fl : Y → A by setting fl = 1Y\Wl

f + 1Wl
f (ū) and set el =∫

Y\Wl
g(f (u))dν(u)+ ν(Wl)g(f (ū)). Note that el → e(τA) as l → ∞ and that el ∈ E(ν) for

each l. Now for each l and each u ∈ Y , define a map ul : Au ×E(ν →R by setting

ul(a� e) = u(a�e)− u(a�el)+ u
(
a�e(τA)

)
for (a� e) ∈ Au × E(ν), and for each u ∈ Wl and each l, define ūl : Aūl × E(ν) → R by
setting

ūl(a� e) = ū(a� e)− ū(a� el)+ ū
(
a�e(τA)

)
for (a� e) ∈ Aūl × E(ν). As in (i), all these maps are twice continuously differentiable on
their domains and we may assume that they all satisfy (U3) in the assumptions on payoff
functions. For each l, define λl : Y → U by setting λl(u) = ul for u ∈ Y \Wl and λl(u) = ūl
for u ∈ Wl. As in (b), λl is measurable for each i, so νl = ν ◦ λ−1

l is defined. As in (i), it
follows that νl ∈ G for each l. Using Lemma 1 and the fact that el → e(τA), we see that
〈λl〉 converges uniformly to the identity on Y . This implies that νl → ν. Moreover, we
have νl({ū}) ≥ ν(Wl) > 0 for each l.

For each l, set τl = ν ◦ (λl × fl)
−1. Then τl�U = νl for each l. For reasons as in (b),

we have supp(τl) ⊆ {(ul� f (u)) : u ∈ Y } ∪ {(ūl� f (ū)}. Noting that e(τl�A) = ∫
g ◦ fl dν = el,

it follows from the hypothesis that τ is an equilibrium distribution for ν satisfying (i)
and (ii) in the definition of G1, together with the choice of the uls and ūls, that τl is an
equilibrium distribution for νl, also satisfying (i) and (ii) in the definition of G1. Finally,
note that τ = ν ◦ (idY × f )−1 and that the sequence 〈λl × fl〉 converges uniformly to
idY × f . Consequently, τl → τ.

(iii) Combining (i) and (ii), proves the assertion of (c).
Step (d). Let ν ∈ G1 and let τ be an equilibrium distribution for ν, witnessing that

ν ∈ G1. Let V , W , h, and ξτ be associated with τ as in (b) of the proof of Theorem 1. Write
ē = e(τA). If detDξτ(ē) �= 0, then ν ∈ G∗. Otherwise, pick any 0 < λ < 1. For each u ∈ Y ,
define uλ ∈ U by setting uλ(a�e) = u(a� (1 −λ)ē+λe) for each (a� e) ∈Au ×E(ν), so that,
in particular, domuλ = domu. Note that for each u ∈ Y and a ∈ Au, we have uλ(a� ē) =
u(a� ē). Define a map κλ : Y → U by setting κλ(u) = uλ. By Lemma 1, κλ is continuous.
Thus, νλ = ν ◦ κ−1

λ has compact support (since ν has) and, therefore, νλ belongs to M.
Because the distribution of action sets induced by νλ is the same as that induced by ν,
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we have E(νλ) = E(ν), and, thus, νλ actually belongs to G. Set τλ = ν ◦ (κλ × h(·� ē))−1.
Clearly τλ�U = νλ. Moreover,

e(τλ�A) =
∫
U
g
(
h(u� ē)

)
dν(u) = ē�

Further, if (u′� a′) ∈ supp(τλ), then for some u ∈ Y , u′ = κλ(u) = uλ and a′ = h(u� ē). Since
uλ(a� ē) = u(a� ē) for each u ∈ Y and a ∈Au, it follows that τλ is an equilibrium distribu-
tion for νλ satisfying (i) and (ii) in the definition of G1. Because ē ∈ intE(ν) (by hypoth-
esis), and since E(νλ) = E(ν) and e(τλ�A) = ē, also (iii) in the definition of G1 is true for
τλ. Thus, τλ is an equilibrium distribution for νλ, witnessing that νλ ∈ G1.

Using Lemma 1 and the fact that Y is compact, we see that whenever 〈λk〉 is a se-
quence in (0�1) such that λk → 1, then the sequence 〈κλk〉 converges uniformly to idY

and, thus, ρH(supp(ν)� supp(νλk)) → 0. Hence, for large λ ∈ (0�1), supp(νλ) ⊆ V and,
therefore, h(uλ� ·) : W → A is defined for each u ∈ Y ; in particular, Deuλ(h(uλ� ē)� ē)

must be defined. Clearly, for such λ, we have h(uλ� ē) = h(u� ē) for each u ∈ Y , and,
in addition, we must have D2

auλ(h(uλ� ē)� ē) = D2
au(h(u� ē)� ē) and Deuλ(h(uλ� ē)� ē) =

λDeu(h(u� ē)� ē)); therefore,

De(g ◦ h)(uλ� ē) = λDe(g ◦ h)(u� ē)�

Consequently,

Dξτλ(ē) =
∫
U
De(g ◦ h)(uλ� ē)dν(u)− I = λ

∫
U
De(g ◦ h)(u� ē)dν(u)− I�

Because the characteristic polynomial of the matrix
∫
U De(g ◦ h)(u� ē)dν(u) can have

only finitely may zeros, we have

det
(∫

U
De(g ◦ h)(u� ē)dν(u)− 1

λ
I

)
�= 0

for all sufficiently large 0 < λ < 1, and, hence, det(λ
∫
U De(g ◦ h)(u� ē)dν(u) − I) �= 0 for

such numbers λ.
As earlier, write idY for the identity on Y . Let 〈λk〉 be a sequence in (0�1) such that

λk → 1. Then, as noted above, the sequence 〈κλk〉 converges uniformly to idY , so νλk →
ν. The fact that 〈κλk〉 converges uniformly to idY implies also that the sequence 〈κλk ×
h(·� ē)〉 converges uniformly to idY × h(·� ē), and, thus, we have τλk → τ. By what was
also noted above, each τλk belongs to G1. Combining these facts with the conclusion of
the previous paragraph, we see that there is a sequence 〈νk〉 in G∗ and a sequence 〈τk〉
of equilibrium distributions for the νks such that νk → ν, τk → τ, and, for each k, τk
witnesses that νk ∈ G∗.

Proof of Theorem 2. (a) Let G∗ be defined as in the proof of Theorem 1. Fix any
ν ∈ G∗ and let τ be an equilibrium distribution for ν such that the requirements in
(c) of the proof of Theorem 1 are satisfied. Suppose 〈(In�Gn)〉n∈N is a sequence of
finite-player games such that #(In) → ∞, νGn ∈ M for each n, and νGn → ν. Let V̂ ,
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W , W1, and h : V̂ × W → A be as in (e) of the proof of Theorem 1. Observe that
τ = ν ◦ (idV̂ ×h(·� e(τA)))−1. Let 〈W2�k〉 be a nonincreasing sequence of compact convex
neighborhoods of e(τA), with W2�k ⊆ intW1 for each k, such that

⋂∞
k=0 W2�k = {e(τA)}.

Instead with a fixed W2, the argument in (f) in the proof of Theorem 1 can be applied
with each member of the sequence 〈W2�k〉 to yield an increasing sequence 〈nk〉 in N, and
for each k ∈ N, an equilibrium fk of the game (Ink�Gnk) such that fk can be written in
the form fk(i) = h(Gnk(i)� ek + zk(i)), i ∈ Ink , where ek ∈ W2�k and ‖zk(i)‖ ≤ εk for each
i ∈ Ink and εk → 0 as k→ ∞.

For each k, let f ′
k : Ink → A be the map defined by setting f ′

k(i) = h(Gnk(i)� ek) for
each i ∈ Ink . Let τk be the distribution of Gnk × fk, and let τ′

k be that of Gnk × f ′
k. As ek ∈

W2�k for all k and
⋂∞

k=0 W2�k = {e(τA)}, we have ek → e(τA). From this we see that idV ×
h(·� ek) → idV ×h(·� e(τA)) uniformly on compact subsets of V , because h is continuous.
Consequently,

τ′
k = νGnk

◦ (
idV × h(·� ek)

)−1 → ν ◦ (
idV × h

(·� e(τA)))−1 = τ�

i.e., the sequence 〈τ′
k〉 of distributions of the maps Gnk × f ′

k converges to τ narrowly.
Now note that if 〈u′

k〉 is any sequence in supp(ν), and 〈zk〉 is a sequence in R
m such that

h(u′
k� ek + zk) is defined and ‖zk‖ → 0, then∥∥h(

u′
k� ek + zk

) − h
(
u′
k� ek

)∥∥ → 0�

because supp(ν) is compact, h continuous, and ek → e(τA). Since νGn → ν and, thus,
ρH(supp(νGnk

)� supp(ν)) → 0, it follows that for every ε′ > 0, there is a kε′ ∈ N such that
whenever k ≥ kε′ , then∥∥h(

Gnk(i)� ek + zk(i)
) − h

(
Gnk(i)� ek

)∥∥ ≤ ε′

for all i ∈ Ink , i.e., ‖fk(i)− f ′
k(i)‖ ≤ ε′ for all i ∈ Ink , and, thus, for some product metric ρ̃

on U ×A (recall that U can be regarded as a metric space), we have

ρ̃
((
Gnk(i)� fk(i)

)
�
(
Gnk(i)� f

′
k(i)

)) ≤ ε′

for all i ∈ Ink whenever k ≥ kε′ . In view of this, we can conclude, using Billingsley (1968,
Theorem 4.1), that the fact that the sequence 〈τ′

k〉 of distributions of the maps Gnk ×
f ′
k converges narrowly to τ implies that the sequence 〈τk〉 of distributions of the maps
Gnk × fk converges narrowly to τ, too.

(b) By Lemma 7, given ν ∈ G, a sequence 〈(In�Gn)〉n∈N of finite-player games such
that νGn → ν, νGn ∈ M for each n, and #(In) → ∞ does exist. Putting this fact together
with (a) and Lemma 8 proves the theorem.

Proof of Theorem 3. Fix C ∈ C. Let G∗ be defined as in the proof of Theorem 1. Set
G∗
C = G∗ ∩ GC . Then G∗

C is relatively open in GC . As for density, note that the only step
in the proof of Lemma 8 that requires perturbation of action set is step (b) there, and
this step is not needed if ν ∈ GC . Thus, the assertion of Lemma 8 is true with GC sub-
stituted for G and G∗

C substituted for G∗; in particular, G∗
C is dense in GC . Now, with the
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appropriate substitutions, (e) of the proof of Theorem 1 yields the first assertion of The-
orem 3, and the proofs of Theorems 2 , together with the fact noted in Remark 3, apply
to establish the second assertion.

Appendix

Lemma 9. Let A be a nonempty subset of Rn, with dense interior, and let g : A→R
m be a

continuously differentiable function. Suppose that g(O) affinely spans Rm whenever O is
a nonempty open set in R

n such that O ⊆A. Then the following statements hold:

(a) If A1� � � � �Al are nonempty closed subsets of A such that intAi is dense in Ai for
each i = 1� � � � � l, then int

∑l
i=1 g(Ai)/l is dense in

∑l
i=1 g(Ai)/l if l ≥m.

(b) If A′ is a nonempty closed subset of A such that intA′ is dense in A′, then
int cog(A′) �=∅.

Proof. (a) Fix an integer l ≥ m. Let g̃ : Al → R
m be the function defined by setting

g̃(a1� � � � �αl) = ∑l
i=1 g(ai) for each (a1� � � � � al) ∈ Al. Then g̃ is continuously differen-

tiable, with derivative Dg̃(a1� � � � � al) = (Dg(a1)� � � � �Dg(al)) at each (a1� � � � � al) ∈Al. Let
Ã be the set of elements of intAl at which the derivative of g̃ has rank m. Then Ã is open.
Moreover, the restriction of g̃ to Ã is an open map (see Guillemin and Pollack 1974, p.
25, Exercise 1).

We next show that Ã is dense in intAl. We first claim that given any nonempty open
and convex set O ⊆ R

n such that O ⊆ A, the set C of all column vectors of the matrices
Dg(a) as a runs over O linearly spans R

m. Suppose, if possible, otherwise. Then C is
included in a linear subspace L of Rm with dimL<m. Fix any a0 ∈ O. Note that as O is
convex, we have ta+ (1 − t)a0 ∈O for all a ∈O. Consequently, for each a ∈O, we have

g(a)− g(a0) =
∫

[0�1]
d

dt
g
(
ta+ (1 − t)a0

)
dt =

∫
[0�1]

Dg
(
ta+ (1 − t)a0

)
(a− a0)dt ∈ L�

But this implies that g(O) ⊆L+ {g(a0)}, contradicting the hypotheses about g.
Let (a1� � � � � al) ∈ intAl, and let U ⊆ intAl be a neighborhood of this point. We can

assume that U is of the form O1 × · · · × Ol, where Oi is a convex neighborhood of ai,
i = 1� � � � � l. By the previous paragraph, we can choose an a′

1 ∈ O1 such that Dg(a′
1) has a

nonzero column vector v1. Again by the previous paragraph, we can choose an a′
2 ∈ O2

such that Dg(a′
2) has a column vector v2 such that v1 and v2 are linearly independent.

Continuing in this fashion, we find points a′
1� � � � � a

′
m such that each matrix Dg(a′

i) has
a column vector vi such that the matrix (v1� � � � � vm) has rank m. If l > m, let a′

i be an
arbitrary point of Oi for m < i ≤ l. Then the matrix (Dg(a′

1)� � � � �Dg(a′
l)) has rank m.

Thus, Ã is dense in intAl.
Now let A1� � � � �Al be nonempty closed subsets of A, all with dense interior. Then

int(A1 × · · · × Al) = intA1 × · · · × intAl �= ∅, so int(A1 × · · · ×Al) is dense in A1 × · · · ×
Al, and, thus, Ã ∩ int(A1 × · · · × Al) is open and dense in A1 × · · · × Al. Because g is
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continuous, it follows that the set{
1
l

l∑
k=1

g(ai) : (a1� � � � � al) ∈ Ã∩ int(A1 × · · · ×Al)

}

is dense in
∑l

i=1 g(Ai)/l, and since g̃ is an open map, it follows that the former set is
open. We conclude that int

∑l
i=1 g(Ai)/l is dense in

∑l
i=1 g(Ai)/l.

(b) By (a), int
∑m

i=1 g(A
′)/m �= ∅ and, of course,

∑m
i=1 g(A

′)/m⊆ cog(A′).

Lemma 10. Let A be a nonempty subset of Rn, with dense interior, let m = kn, where
k ∈ N, and let g : A→R

m be given by setting

g(a) = (
a(1)� a

2
(1) � � � a

k
(1)� a(2)� a

2
(2) � � � a

k
(2)� � � � � a(n)� � � � � a

k
(n)

)
for each a ∈ A, where the subscript (h) means the hth coordinate of a, h = 1� � � � � n. Then
g(O) affinely spans Rm whenever O is a nonempty open set in R

n with O ⊆A.

Proof. Fix a nonempty open set O ⊆ R
n with O ⊆ A and choose elements a1� � � � � ak

in O such that for each coordinate h = 1� � � � � n, the points a1�(h)� a2�(h)� � � � � ak�(h) are
distinct. Reorder the columns of the matrix (Dg(a1)� � � � �Dg(ak)) so as to get a block
diagonal matrix ⎛⎜⎜⎜⎝

B1 0 � � � 0
0 B2� � � � 0
� � � � � � � � � � � � � � � � �

0 0 � � � Bn

⎞⎟⎟⎟⎠ �

where Bh, h = 1� � � � � n, is a (k× k) matrix of the form

Bh =

⎛⎜⎜⎜⎜⎜⎜⎝

1 1 1 � � � 1
2a1�(h) 2a2�(h) 2a3�(h) � � � 2ak�(h)
3a2

1�(h) 3a2
2�(h) 3a2

3�(h) � � � 3a2
k�(h)

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

kak−1
1�(h) kak−1

2�(h) kak−1
3�(h) � � � kak−1

k�(h)

⎞⎟⎟⎟⎟⎟⎟⎠ �

Now for each h, the determinant of the matrix Bh is just a positive multiple of the Van-
dermonde determinant and, thus, is nonzero because the points a1�(h)� a2�(h)� � � � � ak�(h)
are distinct. This shows that the matrix (Dg(a1)� � � � �Dg(ak)) has rank kn and, therefore,
since kn = m, that g(O) cannot be included in an affine subspace of dimension smaller
than m.

Lemma 11. Let K be a nonempty compact subset of Rn, with dense interior. Then there is
a nondecreasing sequence 〈Kk〉 of nonempty compact subsets of K, all with dense interior,
such that Kk ⊆ intK for each k and both ρH(K�Kk)→ 0 and ρH(∂K�∂Kk)→ 0.
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Proof. For each k ∈N, let K′
k = {x ∈K : dist(x�∂K)}> 1/(k+1) and let Kk = clK′

k. Then
K′

k is open for each k. Also, for sufficiently large k, K′
k is nonempty; we may assume

that this is true for each k. Further, ∂Kk ⊆ {x ∈K : dist(x�∂K) = 1/(k+ 1)} for each k,
so, as ∂K is compact, we need only show that given any y ∈ ∂K and any ε > 0, we have
dist(y� ∂Kk) < ε if k is large enough. To see this, fix y ∈ ∂K and ε > 0. As intK is dense
in K, there is an x ∈ B(y� ε) ∩ intK. In particular, there is a k̄ ∈ N such that x ∈ K′

k if
k > k̄. Pick any k > k̄. Consider the line segment Z = {λx+ (1 − λ)y : 0 ≤ λ≤ 1}. Clearly
Z ⊆ B(y� ε). But also, Z ∩ Kk is closed, and since x ∈ K′

k and y /∈ Kk, Z must contain a
boundary point of Kk.

The following theorem is a special version of a result by Mas-Colell (1983).

Theorem 4. Let X ⊆ R
	 and Y ⊆ R

m be compact convex sets with nonempty interior.
Let � : X × Y → X × R

m be a continuous function; write �X for projX ◦� and �Y for
proj

Rm ◦�. Suppose there is an open set U ⊆ R
m, with Y ⊆ U , and a continuously dif-

ferentiable function ζ : U → R
m such that, setting γ = min{‖ζ(y)‖ : y ∈ ∂Y }, the following

conditions hold:

(a) For some y∗ ∈ intY , Dζ(y∗) has full rank and ζ(y) = 0 if and only if y = y∗ (so that,
in particular, γ > 0).

(b) If y ∈ ∂Y and x =�X(x� y), then ‖�Y(x� y)− y − ζ(y)‖ < γ.

Then � has a fixed point, i.e., there is an (x� y) ∈X ×Y such that �(x� y) = (x� y).
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