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Monitoring experts

Yaron Azrieli
Department of Economics, The Ohio State University

We study the design of contracts that incentivize experts to collect information
and truthfully report it to a decision maker. We depart from most of the previous
literature by assuming that the transfers cannot depend on the realized state or
on the ex post payoff of the decision maker. The contract thus has to induce the
experts to “monitor each other” by making the transfers contingent on the entire
vector of reports. We characterize the least costly contract that implements any
given vector of efforts and derive the cost function for the decision maker. We
then study properties of optimal contracts by comparing the value of information
and its cost.
Keywords. Moral hazard, information acquisition, monitoring, value of informa-
tion.
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1. Introduction

Policy makers, managers, journal editors, and individual consumers, to name just a few,
often rely on the advice of experts to make critical decisions. In cases where the expert
is not directly affected by the eventual choice of the decision maker (DM, henceforth),
and where the quality of information is not verifiable, a moral hazard problem naturally
arises: The expert would prefer not to incur the cost of collecting information; the DM
in turn needs to design the contract in a way that motivates the expert to exert effort, as
well as to truthfully report his findings.

If the environment is such that the payment to the expert can depend on the ex-post
realized state, or, at least, on the eventual payoff of the DM, then the situation is sim-
ilar to the classic principal-agent problem. Indeed, incentives to provide high-quality
information can be created by paying high rewards in cases where the expert’s recom-
mendation turned out to be a good one, and low rewards after a bad advice.1 However,
there are many cases in which contracting on the realized state or payoff is infeasible.
One such scenario occurs when the state is observed only in the far future, e.g., when
an expert is asked to evaluate the effectiveness of a certain proposal to reduce global
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warming. Second, it may be difficult or even impossible to verify the true state, e.g., in
the case where a political candidate hires a pollster to estimate public sentiment on a
certain issue, or when a journal editor asks a referee to evaluate the quality of a paper.
Designing performance-based contracts in this type of environments is a challenging
task.

A potential solution for the DM, and the one we study in this paper, is to hire sev-
eral experts and have them “monitor each other.” The basic idea goes as follows: When
an expert exerts a high effort he gets an accurate signal of the state, so if all experts ex-
ert high efforts and truthfully report their signals then (under reasonable assumptions)
these signals are likely to be close to each other. Thus, by paying high compensations in
the event of matching signals and low compensations when a mismatch occurs the DM
can incentivize the experts to work hard and to reveal what they find. Put differently,
the contract creates a coordination game between the experts and nature’s unknown re-
alized state serves as a focal point; if an expert believes that other experts’ reports are
likely to concentrate around this focal point, then he has an incentive to collect infor-
mation so that his report will match the state as well; the DM in turn learns about the
state through the experts’ reports.2

This method of peer-monitoring works not only in theory—we are aware of several
real-world instances where similar methods have been applied. The Sensors and Sens-
ing Systems Program of the National Science Foundation (NSF) ran a pilot review pro-
cess in 2013 where each submitted grant proposal was evaluated by several PIs who also
submitted proposals to the same program. The instructions state that “Each individual
PI’s rankings will be compared to the global ranking, and the PI’s ranking will be ad-
justed in accordance with the degree to which his/her ranking matches the global rank-
ing. This adjustment provides an incentive to each PI to make an honest and thorough
assessment of the proposals to which they are assigned as failure to do so results in the
PI placing himself/herself at a disadvantage compared to others in the group.”3

A second example comes from crowdsourcing platforms such as Amazon Mechan-
ical Turk. Requestors (i.e., people who post jobs) on these platforms have the option
to assign the same task to multiple workers, and to pay a worker only if his/her answer
matches that of other workers assigned to the same task. Platforms explicitly market this
tool as a way to ensure that tasks are completed in a high-quality manner.4 A related area
where similar methods have been used is experimental economics: One well-known ex-
ample is the work of Krupka and Weber (2013) on social norms, where subjects were
asked to reveal their view on what is appropriate behavior in various versions of the “dic-
tator game”; subjects were paid a bonus if their response matched the modal response in

2Similar ideas have been studied before in various contexts; see the related literature section below.
3For a complete description of the review process see https://www.nsf.gov/pubs/2013/nsf13096/

nsf13096.jsp. This method was based on a proposal of Merrifield and Saari (2009). An interest-
ing discussion of this proposal by Rakesh Vohra appears in “The Theory of the Leisure Class” blog at
https://theoryclass.wordpress.com/2013/06/06/a-mechanism-design-approach-to-peer-review. I thank
Bruno Salcedo for pointing me to this example.

4See for example the explanation at https://blog.mturk.com/cooking-tip-5-ask-multiple-workers-to-
complete-a-hit-ec21c9fc0734.
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their session.5 A similar elicitation method was used in Xiao and Houser (2005) to incen-
tivize subjects tasked with categorizing natural language messages of previous subjects
who played ultimatum games.

The main contribution of this paper is to provide insights into properties of optimal
contracts in the above setup. To gain tractability, we consider a simple model with binary
state-space and signal-space for each expert. The probability that an expert receives
the “correct” signal increases in that expert’s (continuous) effort. There is a common
prior belief shared by the DM and all the experts, and signals of different experts are
independent conditional on the true state. We focus on the case of risk-neutral parties
and assume that experts are protected by limited liability.6

Our analysis of optimal contracts is based on the Grossman and Hart (1983) ap-
proach: As a first step, for each vector of efforts find the least costly way for the DM
to implement it. Second, once the cost function is obtained, maximize the difference
between the value of information and its cost over all implementable effort vectors.

For a given effort vector, the minimization problem describing the least costly con-
tract implementing that vector boils down to a linear program with three constraints.
One is a standard first-order condition guaranteeing that there is no profitable devia-
tion from the required effort level, assuming truthful reporting. But this is not sufficient,
since an expert may nevertheless find it profitable to reduce his effort and misreport his
signal. The two other constraints make sure that is not the case.7 We point out that,
except for the case of a uniform prior, one of these two adverse selection constraints is
binding. Thus, the cost to the DM is strictly higher than in the case of pure moral hazard
where signals are verifiable; see Section 4.2.1 for details.

Our first main result is that the least costly incentive compatible contract has a par-
ticularly simple form: For any effort vector, the experts are paid only in the event where
they all report the same signal. This gives an expert the maximal incentive to work
relative to the expected cost of the contract with that expert. Note that this contract
punishes the entire group if one expert misreports (or is unlucky), similar to the classic
Holmstrom (1982) mechanism; however, the event that triggers the punishment here
(disagreement of reports) is of a different nature than in Holmstrom (low output). The
solution allows us to derive an explicit formula for the DM’s cost function.

We then move on to study the value of information for the DM. It is important to
point out that this part is independent of the contracting problem and is typically miss-
ing in traditional models of moral hazard or adverse selection. In our setting of con-
tracting for information, the output of the experts’ work is an input for the DM choice of

5The cost of collecting information in this case can be thought of as the time and effort involved in
contemplating what to choose.

6While this is a highly stylized setup, the binary-binary information structure is common in the liter-
ature and allows for a clean characterization of the cost-minimizing contract. In Section 4.2, we discuss
several possible extensions, including the case in which each expert obtains information about a different
dimension of the (multidimensional) state, the case of non-common priors, the case in which experts are
heterogeneous in their cost or productivity, and the case of risk-averse experts.

7In particular, the first-order approach does not apply in our environment. This is reminiscent of the
situation in the standard moral hazard setup when the agent can “burn” output: Incentive compatibility
forces the contract to be monotonic in output even when monotonicity is not implied by the first-order
condition (See, e.g., Bolton and Dewatripont (2005, p. 148)).
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action. This implies certain restrictions on the mapping from effort vectors to DM’s ex-
pected utility. In particular, we prove the following: If two sets of experts have the same
average accuracy8 of signals, and in one of these sets the spread of accuracies is larger
than the other, then the former gives higher utility to the DM in every decision prob-
lem. This is equivalent to saying that the former is more informative than the latter in
the sense of Blackwell (1953). For example, ignoring the cost, in every decision problem
two experts with respective accuracies 7

8 and 5
8 generate higher expected utility to the

DM than two experts each with accuracy of 3
4 , and the latter generates higher expected

utility than 3 experts with accuracy of 2
3 each.

This latter result expresses a certain kind of convexity in the value of information,9

and has important implications for the optimal contract problem. Technically, it im-
plies that first-order conditions for effort vectors are not sufficient for optimality, even
if the cost function derived in the first step is convex. But it also implies economically
meaningful necessary conditions for optimality. For example, we show that even in our
symmetric environment an optimal contract typically requires uneven compensations
to the experts. The intuition is that a given total effort generates the least amount of in-
formation when divided equally between the experts.10 Thus, discrimination between
experts naturally follows from optimality considerations and need not be the result of
prejudice or bias. A similar point in a very different context is made in Winter (2004).

Another property of optimal contracts is that they never involve many low-effort ex-
perts. More precisely, we show that if the derivative of the cost function is positive at
zero effort, then the cost of hiring n experts uniformly diverges to +∞ as n grows. This
implies that a given “budget of effort” should never (i.e., for no decision problem) be di-
vided among many experts, as this is both more costly and less informative than dividing
it between a small number of experts. See Section 6 for details, as well as for additional
properties of optimal contracts.

An obvious shortcoming of the optimal contracts we derive is that they do not im-
plement the desired equilibrium uniquely; after all, the experts can all report the same
signal without collecting any information.11 However, for the experts to be able to match
their reports they need to coordinate on one of the signals, and if they cannot commu-
nicate with one another then this may be hard to achieve. This is especially true if none
of the two signals is ex ante focal. Collecting information creates a focal point (truthfully
reporting one’s signal) even when a priori none of the options stands out. If the like-
lihood of successful coordination increases in the focality of one of the actions, as the
theory of Schelling (1960) suggests, then we should expect agents to be willing to incur
a cost in order to create a focal point. In Section 7, we further discuss the multiplicity
problem and show that the DM can utilize indirect mechanisms to reduce its severity.

8Accuracy is the increase in the probability that the signal matches the state relative to the uninformative
structure where this probability is 1

2 .
9The classic result of Radner and Stiglitz (1984) expresses a different kind of nonconcavity in the value of

information; see also Chade and Schlee (2002).
10The cost is typically convex, and hence minimized at the equal split point. This is why our result holds

only for a dense set of decision problems and not everywhere.
11The work of Prendergast (1993) emphasizes the problem of experts second-guessing each other in a

similar setup to ours. However, in his model each expert observes a noisy signal of the information held by
other experts in addition to his own private signal about the state.
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2. Related literature

This paper combines elements from several strands of literature, including moral haz-
ard, monitoring design, value of information, and costly information acquisition. There
are two previous papers we are aware of that solve for the optimal contract when a DM
uses peer monitoring of information providers: In Bohren and Kravitz (2016), the prin-
cipal faces an infinite stream of identical decision problems, each with a fixed positive
payoff if her action matches the state and a payoff of 0 otherwise. The principal can
hire workers to verify the state at a cost, and the main interest is in the optimal rate of
monitoring—how often should two workers (and not just one) be assigned to the same
problem to make sure that reports about the state are genuine, and how the optimal
monitoring structure depends on the commitment power of the principal. The second
paper is Gromb and Martimort (2007) who study a model of delegated expertise and
compare the case of a single expert with two signals to the case of two experts with one
signal each. The DM in their model can either undertake a project or not, and the ex
post outcome (the state) is observable and contractible when the project is undertaken.
In the two experts case, the optimal contract involves payments contingent not only on
the outcome of the project, but also on whether the two reports agree. This additional
instrument makes hiring two experts better for the DM than hiring just one. Gromb
and Martimort’s focus is on the implications of the possibility of collusion between the
experts for the optimal contract and the principal’s payoff.12

While the method of incentivizing effort is similar to ours, in the above two papers
the workers/experts face a binary choice of either exerting effort or not, so there is no
scope to study the tradeoff between the quality of information and its cost. Our richer
environment uncovers properties such as the nonmonotonicity of the DM’s cost func-
tion and the asymmetry of the optimal contract that cannot be discussed in these previ-
ous models. Moreover, we do not restrict attention to a particular decision problem as
the other papers do, and instead study general properties of optimal contracts that are
satisfied uniformly across all problems.

The first paper to explicitly suggest that effort and truthful reporting may be induced
by comparing the reports of multiple agents is Miller et al. (2005), whose mechanism
elicits honest feedback from raters who experience a certain product.13 Their mech-
anism assigns to each rater a “reference rater” and applies a proper scoring rule to the
pair of reports. This paper has been extended by many authors, including Witkowski and
Parkes (2012) who relax the common prior assumption; Dasgupta and Ghosh (2013) who
showed how to eliminate bad equilibria when workers engage in multiple tasks; and Ju-
rca and Faltings (2005, 2009) who studied the implications of potential collusion among
raters. See also Friedman et al. (2007) for a handbook explanation of the Miller et al.
mechanism. This literature does not explicitly model the value of information, nor the
cost of obtaining it, and is therefore silent about contract optimality.

12Collusion here means that the experts play other equilibria than the one intended by the principal.
13A similar mechanism was suggested at about the same time by Prelec (2004) in his “truth serum” paper.

This paper’s main concern is inducing truthful reporting, not incentivizing effort.
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In Pesendorfer and Wolinsky (2003), a consumer sequentially sample experts who
need to exert costly and unobservable effort in order to determine the appropriate ser-
vice. In equilibrium, the consumer sometimes searches until the recommendations of
two experts coincide, and then buys the service from one of them. This way the experts
are incentivized to exert effort. The focus of this paper is on the effect that the moral
hazard problem has on price competition in the market for experts’ advice.

Rahman (2012) emphasized the ability of a principal to monitor workers by secretly
recommending actions and base compensations on reported signals as well as on these
recommendations.14 In the leading example, he shows how this can be used to “monitor
the monitor”: If a worker was (secretly) asked to shirk and the monitor reported other-
wise, then the monitor gets punished. The alternative solution for the principal that
we study here is to hire two monitors and pay them only if their reports match. While
this still requires the principal to secretly ask the worker to shirk sometimes (to keep the
monitors uncertain), the payments need not depend on the recommendation.15

It has been known since the early mechanism design literature that correlation in
agents’ types facilitates the extraction of private information. A classic reference is the
work of Crémer and McLean (1988) on full extraction of surplus in auctions. Note that, in
contrast to Crémer and McLean (1988), we assume limited liability, and hence that the
experts typically obtain positive expected utility in the optimal contract. In addition,
in our model the experts choose the information structure rather than it being exoge-
nously given. A recent work of Bikhchandani and Obara (2017) extends the results of
Crémer and McLean to environments where agents can acquire information. In Azrieli
(2019), we build on the ideas of this literature, and in particular on the work of Rahman
(2011), to characterize the vectors of information structures that the DM can implement
in general environments that include the binary framework of the current paper as a
special case.

Finally, the experts in our model have no stake in the choice of the DM, which sepa-
rates our framework from most of the extensive literature on “cheap talk” and “Bayesian
persuasion.” But there are several papers in this literature demonstrating that the re-
ceiver can significantly improve the quality of information she gets by comparing mes-
sages from multiple senders. Some examples are Krishna and Morgan (2001), Battaglini
(2002), and Gentzkow and Kamenica (2017). Another strand of relevant literature stud-
ies the design of committees when committee members may acquire information prior
to voting on an issue they all care about, e.g., Persico (2003), Martinelli (2006), Gerardi
and Yariv (2008), and Gershkov and Szentes (2009). In these papers, incentives to collect
information are provided through the voting rule and not through transfers.

14See also Strausz (2012) on the connection between Rahman’s paper and the classic mechanism design
framework of Myerson (1982).

15In our formal model, we do not consider contracts that condition payments on secret recommen-
dations to the experts. Allowing for such contracts significantly expands the possibilities for the DM: An
expert can be monitored by asking another expert to exert effort only with small probability, with payments
made only when monitoring takes place. This requires of course that payments become arbitrarily large as
the probability of monitoring goes to zero, which makes such contracts less practical and extremely sen-
sitive to experts’ risk attitudes. As we show, experts can effectively monitor each other even when effort
recommendations are public.
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3. The contracting environment

A decision maker (DM) faces a decision problem under uncertainty. There are two pos-

sible states: Black (B) or White (W ). The prior probability of state B is γ, and we as-

sume that 1
2 ≤ γ < 1 (the case 0 < γ < 1

2 can be obtained by reversing the labels of the

states).

The DM hires a setN of |N| = n risk-neutral experts to collect information about the

realized state. Each expert i ∈ N chooses an effort level ei ∈ [0, 1
2 ]. The cost of effort is

described by the function c : [0, 1
2 ] → R. We assume that c is strictly increasing, strictly

convex, twice continuously differentiable, and that c(0) = 0. Let C be the set of all cost

functions with these properties.

Each expert privately observes a signal from Si = {b, w}, where the distribution over

signals conditional on each state depends on the effort level that the expert exerts.

Specifically, if i chooses ei then he observes the “correct” signal with probability 0.5 + ei
and the “wrong” signal with probability 0.5 − ei. Thus, i’s information structure is de-

scribed by the following stochastic matrix, where each row corresponds to the distribu-

tion over signals conditional on a state:

mi(ei ) :=
b w

B 0.5 + ei 0.5 − ei
W 0.5 − ei 0.5 + ei

Note that no effort leads to uninformative signal, and that informativeness increases

with effort. We assume that signals for different experts are independent conditional on

the state. Given the vector of effort levels e= (e1, � � � , en ), denote by m(e) the informa-

tion structure obtained by observing the signals of all the experts.

The experts have no stake in the decision, and the DM may offer monetary com-

pensation for their efforts. However, effort is unobservable and realized signals are pri-

vately observed by the experts and are unverifiable. Moreover, compensations occur

immediately after the experts report their signals, so transfers cannot be contingent

on the true state. We consider direct mechanisms in which each expert submits a re-

port si ∈ Si and gets compensated based on the entire vector of reports s ∈ S := ×n
i=1Si.

Thus, a contract is a list x = (x1, � � � , xn ) with each xi : S → R+. Note that we assume

that payments are nonnegative, which captures limited liability on the part of the ex-

perts.

A contract x induces a game between the experts. A pure strategy for expert i in this

game is a pair (ei, ri ), where ei ∈ [0, 1
2 ] is i’s effort level and ri : Si → Si is the report that

i sends to the DM as a function of the signal he observed. The payoff to expert i given

strategy profile (e, r ) = ((e1, � � � , en ), (r1, � � � , rn )) is

Ui(e, r; xi ) := E(e,r )
[
xi(s)

] − c(ei ), (1)
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where the distribution of s used to calculate the expectation is derived from the strate-
gies (e, r ) by

P(e,r )(s) =
∑

s′∈r−1(s)

[
γ

∏
{j:s′j=b}

(0.5 + ej )
∏

{j:s′j=w}

(0.5 − ej )

+ (1 − γ)
∏

{j:s′j=w}

(0.5 + ej )
∏

{j:s′j=b}

(0.5 − ej )

]
.

It will be convenient to introduce the following notation. For every subset of experts
A ⊆ N and every effort vector e, let e(A) = ∏

j∈A(0.5 + ej ) and ē(A) = ∏
j∈A(0.5 − ej ).

Thus, e(A) is the probability that all experts inA obtain the “correct” signal, and ē(A) is
the probability they all obtain the “wrong” signal. Given a vector of signals s ∈ S, denote
Nb
s = {j : sj = b} and Nw

s = N \Nb
s = {j : sj = w}. Finally, let r∗ = (r∗1 , � � � , r∗n ) denote the

vector of truthful reporting strategies. Using this notation, we have that

P(e,r∗ )(s) = γe(Nb
s

)
ē
(
Nw
s

) + (1 − γ)e
(
Nw
s

)
ē
(
Nb
s

)
.

Say that a contract x implements the vector of efforts e = (e1, � � � , en ) if (e, r∗ ) is
an equilibrium of the game induced by x with payoff functions as in (1); using Myer-
son’s (1982) terminology, x implements e if honesty (truthful reporting) and obedience
(choosing the desired effort level) is a best response for each expert given that all other
experts are honest and obedient.16 Effort vector e is implementable if there exists a con-
tract x that implements it.

4. Cost of information

4.1 The cost-minimizing contract

There would typically be many contracts x that implement a given e. Let ψi(e) be the
minimal expected payment that the DM would need to make to expert i in a contract
that implements e. Formally, ψi(e) is the value of the minimization problem (COST)
given by

ψi(e) = min
xi

E(e,r∗ )
[
xi(s)

]
(COST)

s.t.
(
ei, r

∗
i

) ∈ arg max
(e′i ,r

′
i )

{
Ui

((
e′i, r

′
i

)
,
(
e−i, r∗−i

)
; xi

)}
and xi(s) ≥ 0 ∀s ∈ S.

The following theorem gives the solution to program (COST) and the cost function
of the DMψi(e). To state the result it will be useful to write b (w) for the vector of reports
s ∈ S in which si = b (si =w) for all i. Also, we will use the shorter notation N−i =N \ {i}
andN−ij =N \ {i, j}.

16We sometimes refer to x as being an incentive compatible contract in this case.
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Theorem 1. Let e = (e1, � � � , en ) be such that 0 < ei < 0.5 for every i. Then e is imple-
mentable, and a solution to program (COST) is given by

x∗
i (s) = 1

γ(1 − γ)
[
e(N−i )2 − ē(N−i )2]

×

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

γē(N−i )
[
(0.5 − ei )c′(ei ) + c(ei )

] + (1 − γ)e(N−i )
[
(0.5 + ei )c′(ei ) − c(ei )

]
if s = b,

γe(N−i )
[
(0.5 − ei )c′(ei ) + c(ei )

] + (1 − γ)ē(N−i )
[
(0.5 + ei )c′(ei ) − c(ei )

]
if s =w,

0 otherwise.

Furthermore, the cost function for the DM is given by

ψi(e)

=
[
γē(N ) + (1 − γ)e(N )

][
γe(N−i ) + (1 − γ)ē(N−i )

]
c′(ei ) + (2γ− 1)e(N−i )ē(N−i )c(ei )

γ(1 − γ)
[
e(N−i )2 − ē(N−i )2] .

Proof. We break the proof into four steps. Proofs of auxiliary lemmas appear in the
Appendix.

Step 1: Simplifying the constraints. Lemma 1 below shows that one can replace the
incentive compatibility constraint in (COST) by three linear constraints: Equation (2)
is the first-order condition with respect to effort at ei; by convexity of c it is necessary
and sufficient for deviations to other effort levels to be unprofitable (assuming honest
reporting). Inequality (3) guarantees that deviating to zero effort and constant report-
ing ri ≡ b is not profitable. Similarly, inequality (4) is the constraint associated with the
deviation to zero effort and constant reporting ri ≡w.

Lemma 1. A contract xi : S → R+ is feasible for program (COST) if and only if it satisfies
the following constraints:17

∑
s−i

[
γe

(
sb−i

)
ē
(
sw−i

) − (1 − γ)e
(
sw−i

)
ē
(
sb−i

)][
xi(b, s−i ) − xi(w, s−i )

] = c′(ei ), (2)

∑
s

P(e,r∗ )(s)xi(s) − c(ei ) ≥
∑

s−i∈S−i

P(e−i ,r∗−i )(s−i )xi(b, s−i ), (3)

∑
s

P(e,r∗ )(s)xi(s) − c(ei ) ≥
∑

s−i∈S−i

P(e−i ,r∗−i )(s−i )xi(w, s−i ). (4)

The constraints (2)–(4), together with the objective E(e,r∗ )[xi(s)] and the non-
negativity constraints define a linear program that, given Lemma 1, is equivalent to

17As is standard, (si , s−i ) with si = b or si =w denotes the vector of reports (or signals) in which i reports
si and all other experts report according to s−i .
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(COST). We refer to this auxiliary program as (AUX):

min
xi

E(e,r∗ )
[
xi(s)

]
(AUX)

subject to (2)–(4) and xi(s) ≥ 0 ∀s ∈ S.

Step 2: x∗
i is feasible for (AUX). First, since c is convex and satisfies c(0) = 0 we have

that c(ei ) ≤ eic′(ei ). This implies that x∗
i in the statement of the theorem is nonnegative.

Second, plugging x∗
i to the constraints (2)–(4) gives

[
γe(N−i ) − (1 − γ)ē(N−i )

]
x∗
i (b) − [

γē(N−i ) − (1 − γ)e(N−i )
]
x∗
i (w) = c′(ei ),[

γe(N ) + (1 − γ)ē(N )
]
x∗
i (b) + [

γē(N ) + (1 − γ)e(N )
]
x∗
i (w) − c(ei )

≥ [
γe(N−i ) + (1 − γ)ē(N−i )

]
x∗
i (b),

and

[
γe(N ) + (1 − γ)ē(N )

]
x∗
i (b) + [

γē(N ) + (1 − γ)e(N )
]
x∗
i (w) − c(ei )

≥ [
γē(N−i ) + (1 − γ)e(N−i )

]
x∗
i (w),

respectively. We leave it for the interested reader to verify that these all indeed are satis-
fied.18 It follows that x∗

i is feasible for (AUX).
Step 3: The dual of (AUX) and a feasible solution. The dual of program (AUX) is given

by the following:

max
z1,z2,z3

{
c′(ei )z1 + c(ei )(z2 + z3 )

}
(DUAL)

s.t. z2, z3 ≥ 0, and for every s−i ∈ S−i[
γe

(
sb−i

)
ē
(
sw−i

) − (1 − γ)e
(
sw−i

)
ē
(
sb−i

)]
z1 − P(e,r∗ )(w, s−i )z2 + P(e,r∗ )(b, s−i )z3

≤ P(e,r∗ )(b, s−i ) (5)

and

[
γe

(
sb−i

)
ē
(
sw−i

) − (1 − γ)e
(
sw−i

)
ē
(
sb−i

)]
z1 − P(e,r∗ )(w, s−i )z2 + P(e,r∗ )(b, s−i )z3

≥ −P(e,r∗ )(w, s−i ). (6)

Lemma 2 below introduces a particular vector z∗ = (z∗
1, z∗

2, z∗
3 ) and argues that it is

feasible for (DUAL). To prove the lemma, we first show that the constraint (5) associ-
ated with s−i = b−i is satisfied at z∗ (with equality), and then argue that constraints (5)
associated with other s−i’s are less stringent at z∗, and hence satisfied as well. A similar
argument applies for the set of constraints (6), with w−i taking the role of b−i.

18We note that the middle constraint holds as equality and that the last inequality boils down to c(ei ) ≤
eic

′(ei ).
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Lemma 2. Let

z∗
1 =

(
γē(N ) + (1 − γ)e(N )

)(
γe(N−i ) + (1 − γ)ē(N−i )

)
γ(1 − γ)

[
e(N−i )2 − ē(N−i )2] ,

z∗
2 = (2γ− 1)e(N−i )ē(N−i )

γ(1 − γ)
[
e(N−i )2 − ē(N−i )2] and z∗

3 = 0.

Then z∗ = (z∗
1, z∗

2, z∗
3 ) is feasible for (DUAL).

Step 4: x∗
i is optimal for (COST). The value of the objective of (AUX) at x∗

i is

E(e,r∗ )
[
x∗
i (s)

] = P(e,r∗ )(b)x∗
i (b) + P(e,r∗ )(w)x∗

i (w),

and that of the objective of (DUAL) at z∗ is

c′(ei )z∗
1 + c(ei )z

∗
2.

It is immediate to check that these two values coincide (and also coincide with the for-
mula for ψi(e) given in the statement of the theorem). Therefore, by the weak duality
theorem of linear programming, x∗

i is optimal for (AUX). From Lemma 1, it now follows
that x∗

i is optimal for (COST) as well, which completes the proof.

Remark 1. If ei = 0 for some expert i, then xi ≡ 0 solves (COST) and ψi(e) = 0. In addi-
tion, the signals obtained from zero-effort experts are uninformative. We can therefore
restrict attention only to experts that exert strictly positive efforts. However, for e to be
implementable it is necessary (and sufficient) that at least two experts exert effort.

Remark 2. If the cost function c satisfies c′(0.5) < +∞ then the theorem remains true
for any vector e with 0< ei ≤ 0.5, i.e., even if some experts’ signals fully reveal the state.
The only difference in the proof is that the equality in the first-order condition (2) is
replaced by a greater-or-equal inequality, but at the optimum this constraint binds so
the result is unchanged.

Let ψ(e) = ∑n
i=1ψi(e). Thus, ψ is the DM’s cost function, describing the total ex-

pected cost of the least costly contract that implements e.

Example 1. Suppose that the DM hires n= 2 experts, that the prior is uniform γ = 0.5,

and that the cost of effort is given by c(ei ) = e2
i

2 . Theorem 1 implies that the cost function
for the DM is given by

ψ(e1, e2 ) =ψ1(e1, e2 ) +ψ2(e1, e2 ) =
(

1
2

+ 2e1e2

)(
e1

2e2
+ e2

2e1

)
. ♦

Example 2. Consider the same setup as in the previous example but with cost of effort

given by c(ei ) = e2
i

2 + ei. The cost function for the DM is then

ψ(e1, e2 ) =ψ1(e1, e2 ) +ψ2(e1, e2 ) =
(

1
2

+ 2e1e2

)(
e1 + 1

2e2
+ e2 + 1

2e1

)
. ♦
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Figure 1. The left and right panels show several isocost curves (dashed lines) of ψ when the

cost of effort is c(ei ) = e2
i

2 and c(ei ) = e2
i

2 + ei, respectively. Curves closer to the axes correspond
to higher costs. The solid line is the main diagonal e1 = e2.

Figure 1 shows four of the isocost curves of ψ in Examples 1 (left panel) and 2 (right

panel). Notice that the isocosts are sometimes upward sloping and are ordered in an

unusual way, reflecting nonmonotonicity of ψ. The reason underlying this nonmono-

tonicity is discussed in Section 6.2 below.

4.2 Variations and extensions

Theorem 1 derives the cost-minimizing contract in our basic setup. We now discuss

whether and how this result would change for various changes in the underlying con-

tracting environment.

4.2.1 Observable signals Consider a variant of our model in which the DM directly ob-

serves the experts’ signals, or, alternatively, that experts’ reports are freely verifiable.

Without adverse selection, incentive compatibility is characterized by the first-order

condition (2) alone. The set of feasible contracts is therefore the intersection of the

hyperplane defined by (2) with the nonnegative orthant, similar to the frontier of the

budget set of a consumer.19 Since the objective is linear, there is always an optimal con-

tract at one of the extreme points of the feasible set, i.e., an optimal contract in which

the expert is paid at only one realized signal vector s. This s is determined by minimizing

the ratio of the coefficients of xi(s) in the objective and in the constraint, just like when

19Note that for some vectors s the coefficient of xi(s) in (2) is negative, so the feasible set is unbounded;
but for such s an optimal contract would have xi(s) = 0, so we may ignore those for the current discussion.
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solving for an optimal bundle when the goods are perfect substitutes for the consumer
(though here we look for a minimum rather than a maximum).20

When γ > 0.5, it is not hard to check that the unique solution is at s = b, that is,
experts are paid only if they all obtain the ex ante more likely signal. Specifically, the
contract is given by

xi(b) = c′(ei )
γe(N−i ) − (1 − γ)ē(N−i )

and xi(s) = 0 for all other s ∈ S. The expected payment to expert i comes out to be

γe(N ) + (1 − γ)ē(N )
γe(N−i ) − (1 − γ)ē(N−i )

c′(ei ).

Notice that this contract is not feasible in the original problem with unobservable
signals—experts are only paid when they report b so exerting no effort and reporting b
is a dominant strategy. The expert therefore has additional rents due to the exclusive
access he has to the signal. More generally, no contract that pays at just one s can sat-
isfy both (3) and (4). This implies that none of the extreme points of the feasible set of
contracts with observable signals remains feasible with unobservable signals.

When γ = 0.5, both “corners” corresponding to s = b and s = w are optimal, and,
therefore, so is any of their convex combinations. In particular, the optimal contract de-
rived in Theorem 1 is optimal in the program without the adverse selection constraints
(3) and (4).21 Thus, the expected payment to i is the same with observable or unobserv-
able signals and equals

ψi(e) = e(N ) + ē(N )
e(N−i ) − ē(N−i )

c′(ei ).

Finally, it is important to point out that with observable signals it is possible to pro-
vide incentives even without hiring multiple experts, so long as the prior is not uniform.
Indeed, an expert exerting effort ei gets the b signal with probability γ(0.5 + ei ) + (1 −
γ)(0.5 − ei ). If γ > 0.5, then this is an increasing function of ei, so by conditioning the
payment on the realized signal the DM can induce any level of effort. With a uniform
prior the distribution of signals is independent of effort so hiring additional experts is
necessary.

Chade and Kovrijnykh (2016, Section 3) analyzed essentially the same contracting
problem as ours (with observable signals), but with a single expert and a particular de-
cision problem.22 They apply the first-order approach to find the optimal contract. As
already mentioned, when signals are not observable the first-order condition on effort
is not sufficient for incentive compatibility.

20It is well known that in the moral hazard problem with a risk-neutral agent protected by limited liability
the least costly way to implement a given action involves a binary contract with just two payoff levels. See,
e.g., Demougin and Fluet (1998). This continues to hold in our setup with multiple agents.

21We note that with a uniform prior program (COST) has multiple solutions.
22The decision problem they consider is essentially the one in Example 4 below.
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4.2.2 Contractible state Suppose that, in addition to the vector of reports s, the pay-
ment to an expert can also depend on the realized state of nature. Formally, a contract
with expert i is a mapping xi : {B,W } ×S→R+. Since i’s collected information concerns
the state, and since the reports of other experts s−i are noisy estimates of the state, it can
be expected that the DM has nothing to gain by conditioning the payment to i on s−i. In
other words, the state is “sufficient statistic” for incentivizing i. The following corollary
confirms this intuition.

Corollary 1. Fix e= (e1, � � � , en ) and consider the variant of program (COST) in which
xi may depend on the state (as well as on s). Then there is an optimal solution in which xi
is constant in s−i, i.e., the payment to i depends only on the state and on his own report.
The expected payment under the optimal contract is (0.5 + ei )c′(ei ).

Proof. Fix e = (e1, � � � , en ) and an expert i. Note that the state being contractible is
equivalent to having another expert n + 1 with en+1 = 0.5 (assuming this fictitious ex-
pert is honest and obedient). Therefore, we can find the cost of an optimal contract
by plugging in (e1, � � � , en, 0.5) to ψi of Theorem 1. Since ē(N ) = ē(N−i ) = 0 in this
case, ψi(e1, � � � , en, 0.5) boils down to (0.5 + ei )c′(ei ). However, the same cost can be
achieved by a contract that depends only on si and on the state. Indeed, ψi(ei, 0.5) =
(0.5 + ei )c′(ei ) as well.

It is interesting to note that the optimal contract x∗
i given in Theorem 1 depends on

the entire vector of reports, even when ej = 0.5 for some j �= i. It follows that the optimal
contract is not unique in such cases (whenever n > 2).

There are quite a few papers analyzing the contracting problem when the ex post re-
alized state is contractible, e.g., Osband (1989), Zermeño (2011), Rappoport and Somma
(2015), Carroll (2017), Clark (2017), and Häfner and Taylor (2018), among others. Since
there is no need to hire multiple experts to generate incentives, these papers all consider
a single expert.

4.2.3 Risk averse experts It is instructive to compare our setup with risk-neutral ex-
perts to the more classical case in which the experts are risk averse. Suppose that expert
i’s payoff given contract xi and strategy profile (e, r ) is given by E(e,r )[u(xi(s))] − c(ei ),
where u : R+ → R is strictly increasing and concave. To facilitate the comparison to the
basic model, we maintain the limited liability constraint xi ≥ 0.

For a given vector e, incentive compatibility is still characterized by the constraints
(2)–(4), but with u ◦ xi replacing xi everywhere. Geometrically, this implies that the set
of incentive compatible contracts is no longer polyhedral as in the risk-neutral case; it is
not even convex.

We can however still show that a cost-minimizing contract xi has the following prop-
erty: There is no s−i for which both xi(b, s−i ) and xi(w, s−i ) are positive.23 In particular,

23Indeed, suppose that xi(b, s−i ) > 0 and xi(w, s−i ) > 0. Take ε, δ > 0 such that xi(b, s−i ) − ε > 0,
xi(w, s−i ) − δ > 0, and u(xi(b, s−i )) − u(xi(w, s−i )) = u(xi(b, s−i ) − ε) − u(xi(w, s−i ) − δ). Then it is easy
to verify that this modified contract still implements e, and it is clearly cheaper for the DM.
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with n= 2 experts the optimal contract still pays positive amounts only when the reports
match, just as in the risk-neutral case. With more than two experts this is no longer the
case, as for any report of i (b or w) there would typically be multiple s−i’s at which the
payment to i is positive. Therefore, roughly speaking, an optimal contract insures an
expert against wrong signals obtained by other experts but not against his own bad luck.

4.2.4 Multidimensional states It is often the case that multiple experts are being con-
sulted because each of them has expertise in a different aspect of the problem at hand.
In our basic setup, all experts collect information about the same (one-dimensional)
state, but we now sketch an extension in which the state is multidimensional and dif-
ferent experts are hired to collect information on different dimensions. As long as there
is correlation between the dimensions the report of one expert can be used to monitor
others just as in the one-dimensional case, though as we now show the cost for the DM
would increase as the correlation decreases.24

Suppose that the state space is the product {B1,W1} × {B2,W2}. The prior is given by
the following matrix, where ρ ∈ [ 1

4 , 1
2 ]:

B2 W2

B1 ρ 0.5 − ρ
W1 0.5 − ρ ρ

Thus, if ρ = 1
4 then the dimensions are independent, and if ρ = 1

2 then there is perfect
correlation and we are essentially back in the basic setup; higher ρ implies higher (posi-
tive) correlation.

The DM hires two experts to collect information, each on a separate dimension. The
mapping from effort to information is just as in the original model, but for expert i the
distribution over signals depends only on whether the state has Bi orWi. All other ingre-
dients are unchanged relative to the model of Section 3.

Suppose that the experts choose effort levels (e1, e2 ) > 0 and truthfully report their
signals. Then a direct calculation shows that the distribution over pairs of reports is
given by

P(e,r∗ )(b, b) = P(e,r∗ )(w, w) = 0.5 + (4ρ− 1)e1e2,

and

P(e,r∗ )(b, w) = P(e,r∗ )(w, b) = 0.5 − (4ρ− 1)e1e2.

From this, we can derive the analogue of program (COST) to find the cost-minimizing
contract that implements (e1, e2 ) with, say, expert 1: The objective is[

0.5 + (4ρ− 1)e1e2
][
x1(b, b) + x1(w, w)

] + [
0.5 − (4ρ− 1)e1e2

][
x1(b, w) + x1(w, b)

]
;

24In Dewatripont and Tirole (1999), two “advocates” collect information on two different dimensions
of the state. Since the dimensions are independent, it is impossible to generate incentives by comparing
messages. Instead, Dewatripont and Tirole assumed that information comes as “hard evidence” that can
only be found if effort is exerted.
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the first-order condition for effort (2) is now replaced by

e2(4ρ− 1)
[
x1(b, b) + x1(w, w) − x1(b, w) − x1(w, b)

] = c′(e1 );

the misreporting constraints (3) and (4) are replaced by

[
0.5 + (4ρ− 1)e1e2

][
x1(b, b) + x1(w, w)

]
+ [

0.5 − (4ρ− 1)e1e2
][
x1(b, w) + x1(w, b)

] − c(e1 )

≥ 0.5
[
x1(b, b) + x1(b, w)

]
, 0.5

[
x1(w, w) + x1(w, b)

]
.

When ρ = 1
4 (independent dimensions), there is clearly no feasible contract. For

every ρ > 1
4 , the solution has x1(b, w) = x1(w, b) = 0 as before (this is a consequence

of the positive correlation). We can then show that x1(b, b) = x1(w, w) = c′(e1 )
2e2(4ρ−1) is

optimal, and that the expected cost for the DM is c′(e1 )[ 1
2e2(4ρ−1) + e1]. Thus, the cost is

decreasing in ρ and becomes arbitrarily large as ρ ↓ 1
4 .

The above example is particularly simple since it involves only two dimensions/
experts and a prior with uniform marginals. We expect however that qualitatively the
results would be similar with more dimensions and other priors. A more complete anal-
ysis is left for future work.

4.2.5 (Non)common priors The common prior assumption, while standard in the liter-
ature, may be problematic in applications if experts have prior knowledge of the issues
before contracting takes place.25 Consider a generalization of our setup that allows for
heterogeneous priors, with γi being the ex ante probability assigned to state B by expert
i, i= 1, � � � , n. Note that, from the point of view of expert i, the distribution of the signal
vector s depends only on γi and on the effort vector e, not on the priors of other experts
j �= i (assuming everyone is honest and obedient). This implies that the set of incentive
compatible contracts xi is exactly the same as in the common prior case, with γi taking
the role of γ.

On the other hand, disagreement between the priors of an expert and the DM does
have consequences for the cost-minimizing contract. Denote by γ0 the prior of the DM.
The objective function of (COST) is now calculated using γ0, while the feasible set is
determined by γi. If γ0 is sufficiently different from γi, then the optimal contract may
be located at a different extreme point of the feasible set than in the case where γ0 = γi.
For a concrete example, suppose that n = 2, fix (e1, e2 ), and let γ1 (the prior of expert
1) be only slightly above 0.5. If the DM has the same prior, γ0 = γ1, then recall that
constraint (3) binds at the optimal contract x∗

1, and it is not hard to check that x∗
1(b, b)>

x∗
1(w, w). If, on the other hand, γ0 is close to 1 then the DM believes that reports (b, b)

are much more likely than (w, w), so would find such a contract too costly. The optimal
contract would now pay a lower sum at (b, b) and a higher sum at (w, w). Furthermore,
the binding constraint would be (4) rather than (3).

25The effectiveness of a policy to reduce global warming mentioned in the Introduction is a good exam-
ple.
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4.2.6 Heterogeneous experts Our model assumes complete symmetry between the ex-
perts in terms of their cost of effort and their production function. This is unrealistic in
many contexts. However, we now argue that allowing heterogeneity along these dimen-
sions does not qualitatively change Theorem 1.

Consider first the case in which experts differ in their cost of effort, namely that ex-
pert’s i cost of exerting effort ei is ci(ei ). Since an expert does not directly care about the
cost of effort of other experts, the optimal contract in this case would be the same as in
Theorem 1 with ci replacing c.

Second, suppose that when i exerts effort ei he gets the correct signal with probabil-
ity 1

2 + gi(ei ) and the wrong signal with the complementary probability 1
2 − gi(ei ) (the

same probabilities in both states), where gi is a strictly increasing function with gi(0) = 0
and gi(0.5) = 0.5. This generalization captures heterogeneity in the productivity of ex-
perts. Here, too, the result of Theorem 1 remains essentially unchanged, provided that
the composite function c ◦ g−1

i is convex. Indeed, by the change of variable ti = gi(ei )
one gets back to the original setup with ci(ti ) := c(g−1

i (ti )) being the cost of attaining
accuracy ti.

5. Value of information

Finding the cost of obtaining information, we now consider the value of information
for the DM. A decision problem is a triplet (γ,A, u), where as before γ is the prior over
the states {B,W }, A is the set of actions available to the DM, and u : {B,W } ×A→ R

describes the utility of the DM for each state-action pair. Let �({B,W }) be the set of
probability distributions over the states, and identify each distribution in this set with
the probability q ∈ [0, 1] that the state is B. Any decision problem has an induced value
function v : �({B,W }) → R given by

v(q) = max
a∈A

{
qu(B, a) + (1 − q)u(W , a)

}
,

i.e., v(q) is the maximal achievable expected utility of the DM given that her belief is q.26

The function v is the pointwise maximum of a family of linear functions and is therefore
convex and continuous. Conversely, any convex and continuous v can be obtained from
some decision problem (see, e.g., Azrieli and Lehrer (2008)). It will be convenient to
work directly with v rather than explicitly modeling decision problems. Let V be the set
of all convex and continuous functions v : [0, 1] →R.

After receiving the vector of signals s from the information structure m(e), the DM
updates her belief using Bayes rule and chooses the alternative that maximizes her ex-
pected utility. If we letMe denote the distribution over posterior beliefs induced bym(e),
then the value of information in decision problem v ∈ V is27

Vv(e) :=
∫ 1

0
v(q)dMe(q).

26Existence of a maximum is guaranteed wheneverA is compact and u is continuous on A.
27The distribution over posteriors as well as the value of information obviously depend on the prior γ.

For expositional reasons, we omit γ from the notation whenever no confusion may arise.
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Figure 2. The left panel shows several indifference curves for the DM when the decision prob-
lem is as in Examples 3 and 4. The right panel shows indifference curves for Example 5. Indiffer-
ence curves further away from the origin correspond to higher levels of expected utility.

Example 3. Suppose that the set of available alternatives is A = {B,W } (same as the
set of states) and that the DM gets a utility of 1 if her choice matches the state and a
utility of 0 otherwise. Then the induced v is given by v(q) = max{q, 1 − q}. Suppose that
the prior is uniform γ = 0.5 and that the DM hires two experts n= 2. Then the optimal
alternative for the DM is independent of the signal reported by the expert exerting the
lower of the two efforts. It is therefore easy to check that the value of information is given
by Vv(e1, e2 ) = 0.5 + max{e1, e2}. ♦

Example 4. Suppose that the DM needs to choose between a safe alternative S and a
risky alternative R. Choosing S yields a sure utility of 0, while choosing R yields a utility
of 1 in state B and a utility of −1 in state W . The corresponding v is then v(q) = 0 for
0 ≤ q ≤ 0.5 and v(q) = 2q− 1 for 0.5< q ≤ 1. With a uniform prior and two experts, the
value of information is given by Vv(e1, e2 ) = max{e1, e2}. ♦

Example 5. Let the set of alternatives be the unit intervalA= [0, 1], and the utility func-
tion be u(a, B) = −(1 − a)2 and u(a,W ) = −a2 for every alternative a ∈ [0, 1]. Then it is
well known and easy to check that when the DM’s belief is q her optimal choice is a= q.
This gives v(q) = −q(1 − q). If γ = 0.5 and n = 2, then a tedious but straightforward

calculation gives Vv(e1, e2 ) = − (1−4e2
1 )(1−4e2

2 )
4(1+4e1e2 )(1−4e1e2 ) . ♦

Figure 2 illustrates several indifference curves for the DM in each of the Examples 3,
4 (left panel), and 5 (right panel). Notice that in all these examples the upper contour
sets are not convex. As we shall now see, this is no coincidence.

Our goal in this section is to formulate a condition on a pair of effort vectors e, e′
which guarantees that Vv(e) ≥ Vv(e′ ) for every v ∈ V (i.e., for every decision problem);
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this will later allow us to draw general conclusions about which effort vectors may be op-
timal for the DM. As is well-known since Blackwell (1953), this relation between informa-
tion structures can also be described through their stochastic matrices (the “garbling”
condition), or by the distributions over posteriors Me,Me′ they induce (the “mean-
preserving spread” condition). We will describe this relation by saying that m(e′ ) is a
garbling ofm(e), or thatm(e) is more informative thanm(e′ ).

For the rest of this section, we assume (without loss) that efforts are ordered in
decreasing order from highest to lowest. Consider two effort vectors e = (e1 ≥ e2 ≥
· · · ≥ en ) and e′ = (e′1 ≥ e′2 ≥ · · · ≥ e′m ). Say that e dominates e′ if ei ≥ e′i for every

i = 1, � � � , max{m, n}, and that e weakly majorizes e′ if
∑k
i=1 ei ≥ ∑k

i=1 e
′
i for every k =

1, � � � , max{m, n}, where in case m �= n, the shorter of the two vectors is appended with
zeroes.28 Domination clearly implies weak majorization, but the converse is not true:
e= (3/8, 1/8) majorizes e′ = (1/4, 1/4) but does not dominate it.

A classic result of Blackwell and Girshick (1954, Theorem 12.3.1 on p. 332) says that if
information structure P is more informative than P ′ andQ is more informative thanQ′,
and if each of the pairs (P ,Q) and (P ′,Q′ ) are independent conditional on the state, then
the combined information (P ,Q) is more informative than the combined information
(P ′,Q′ ). This implies that if e dominates e′ then m(e) is more informative than m(e′ ).
Thus, for every v, Vv is nondecreasing in each expert’s effort. The next Theorem 2, which
may be of independent interest, strengthen this result by showing that if e weakly ma-
jorizes e′ thenm(e) is more informative thanm(e′ ). In other words, for every v, the value
of information Vv is a Schur-convex function of effort vectors.29 In particular, except
for pathological examples, the value of information is not quasi-concave in efforts. We
note that a different kind of nonconcavity in the value of information has been shown
by Radner and Stiglitz (1984) (see also Chade and Schlee (2002)).

To gain some intuition, consider the case of two experts exerting equal efforts e1 =
e2 = 1/4. This means that each of their signals has accuracy of 3/4. Now, suppose that
expert 1 increases his effort to e1 = 1/4 + δ, while expert 2 decreases his effort by the
same amount to e2 = 1/4 − δ. When δ= 1/4, the first expert learns the state for sure and
expert 2’s signal is completely uninformative, which is clearly better than the original
effort vector in any decision problem. Theorem 2 implies that informativeness is not
only higher at δ= 1/4 than at δ= 0, rather it is monotonically increasing throughout the
interval δ ∈ [0, 1/4]; moreover, higher spread of efforts continues to be more informative
with any number of experts.

Theorem 2. If eweakly majorizes e′, thenm(e) is more informative thanm(e′ ).

Proof. Suppose that eweakly majorizes e′. First, we may assume without loss of gener-
ality that both have the same number n of experts; otherwise, add zero-effort experts to

28The definition of weak majorization allows the total sum
∑n
i=1 ei to be strictly larger than

∑n
i=1 e

′
i, while

majorization requires that the two sums are equal. For our results, it is sufficient to assume weak majoriza-
tion.

29Roughly speaking, a function is Schur-convex if it is (1) symmetric and (2) convex in a restricted set of
directions.
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the shorter of the two. Second, it is without loss to assume that
∑
i ei =

∑
i e

′
i: If eweakly

majorizes e′ and
∑
i ei >

∑
i e

′
i, then there exists e′′ such that (i) e′′ (exactly) majorizes e′,

and (ii) e dominates e′′ (Marshal et al. (2011, Proposition A.9 on p. 177)). By Blackwell
and Girschick’s result,m(e) is more informative thanm(e′′ ), so the case of unequal total
effort follows from the case of equal total effort.

Now, for two vectors z, z′ ∈ R
n say that z′ is obtained from z by a Pigou–Dalton (PD)

transfer if there are coordinates i, j with zi ≥ zj and 0 ≤ δ≤ zi − zj such that z′
j = zj + δ,

z′
i = zi − δ, and z′

k = zk for every k �= i, j. Also, say that z′ can be obtained from z by a
sequence of PD transfers if there are L and vectors z1, � � � , zL such that z1 = z, zL = z′,
and zl is obtained from zl−1 by a PD transfer for every l= 2, � � � , L. It is well known (see,
e.g., Marshal et al. (2011, Proposition A.1 on p. 155)) that if z (exactly) majorizes z′ then
z′ can be obtained from z by a sequence of PD transfers.30

Therefore, to complete the proof we only need to show that if e′ is obtained from e by
a PD transfer thenm(e) is more informative thanm(e′ ). But since a PD transfer changes
the efforts of only two experts, it follows from Blackwell and Girschick’s result that we
may ignore all other experts and consider only the case n= 2. This is established in the
following lemma, whose proof appears in the Appendix.

Lemma 3. Suppose that e1 ≥ e2 and e′1 ≥ e′2 are such that e1 + e2 = e′1 + e′2 and e1 ≥ e′1
(i.e., e′ is obtained from e by a PD transfer). Then m(e1, e2 ) is more informative than
m(e′1, e′2 ).

6. Optimal contracts

We now consider the DM’s problem of maximizing the difference between the value of
information and its cost. Recall that the primitives of the model are the prior γ, the cost
of effort function c ∈ C, and the value function v ∈ V . For any e, let πc,v,γ(e) = Vv,γ(e) −
ψc,γ(e) be the net expected utility of the DM given effort vector e, where, by convention,
πc,v,γ(e) = −∞ when e is not implementable. We sometimes omit the subscripts c, v, γ
when no confusion may arise. Even though the arguments of π are effort vectors, we
refer to a maximizer of this function as an optimal contract ; one can think of a contract
as specifying both the required efforts e and the payments x that implement e in the
least costly way.

Given the shapes of the cost and value of information functions (see Figures 1 and
2), a characterization of optimal contracts is too much to ask for. In particular, even
when these functions are smooth, first-order conditions are generally not sufficient for
optimality since by Theorem 2 the value function is not concave. Nevertheless, in what
follows we prove several properties of optimal contracts that hold for large classes of
environments.

6.1 Asymmetry

Given the symmetry in the cost of effort and the technology for collecting information
across experts, one may expect that optimal contracts typically involve equal levels of

30The converse of this statement is true as well, but is not needed for our purposes.



Theoretical Economics 16 (2021) Monitoring experts 1333

effort. Our first result is that quite the opposite is true—the optimal contract often in-
volves discriminating between the experts. The intuition for this result comes directly
from Theorem 2: Getting two signals of the same accuracy is less valuable than getting
one more accurate and one less accurate signals, subject to the two combinations hav-
ing the same average accuracy. However, the cost of the former option is typically lower
than the cost of the latter, so we cannot immediately conclude that equal efforts are not
optimal. Nevertheless, in the next proposition we prove that near any decision problem
v there is another decision problem ṽ such that, for every cost function c, equal efforts
are not optimal.

Proposition 1. Fix v ∈ V , a prior γ ∈ [0.5, 1), and ε > 0. Then there is ṽ ∈ V such that:

(i) |ṽ(q) − v(q)| ≤ ε for all q ∈ [0, 1]; and

(ii) For every c ∈ C and every even n≥ 2, if e= (e1 � � � , en )> 0 satisfies e1 = · · · = en then
there is e′ = (e′1 � � � , e′n )> 0 such that πc, ṽ,γ(e)<πc, ṽ,γ(e′ ).

Proof. Given v ∈ V , γ ∈ [0.5, 1), and ε > 0, let v′ ∈ V be given by31 v′(q) = εmax{0, q−γ},
and let ṽ = v+ v′. Then ṽ ∈ V as the sum of two convex and continuous functions, and
|ṽ(q) − v(q)| = |v′(q)| ≤ ε for all q ∈ [0, 1].

We first consider the case of two experts n= 2. Fix some c ∈ C and an effort vector e
with 0 < e1 = e2 < 0.5. Define e(δ) = (e1 + δ, e2 − δ), where |δ| is small enough so that
these efforts remain between 0 and 0.5. Note that e(0) = e. We show that πc, ṽ,γ(e(δ))
has a strict local minimum at δ= 0, from which part (ii) of the proposition follows.

First, from Theorem 2 we know that for all δ,

Vv,γ
(
e(δ)

) ≥ Vv,γ(e). (7)

Second, a direct calculation gives

Vv′,γ
(
e(δ)

) =
{

2εγ(1 − γ)(e1 + δ) if 0 ≤ δ≤ δ̄,

2εγ(1 − γ)(e2 − δ) if − δ̄≤ δ≤ 0.
(8)

Also, since ψc,γ is symmetric and differentiable, the derivative dψc,γ(e(δ))
dδ is zero at δ= 0.

It follows that the right derivative at δ= 0 of the difference

Vv′,γ
(
e(δ)

) −ψc,γ
(
e(δ)

)
is +2εγ(1 − γ) and the left derivative of this difference at δ= 0 is −2εγ(1 − γ). Thus, for
all δ �= 0 sufficiently close to zero,

Vv′,γ
(
e(δ)

) −ψc,γ
(
e(δ)

)
> Vv′,γ(e) −ψc,γ(e). (9)

31Recall that v′ is obtained from a decision problem with two alternatives similar to Example 4.
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Summing up, for all δ �= 0 sufficiently close to zero,

πc, ṽ,γ
(
e(δ)

) = Vv,γ
(
e(δ)

) + Vv′,γ
(
e(δ)

) −ψc,γ
(
e(δ)

)
≥ Vv,γ(e) + Vv′,γ

(
e(δ)

) −ψc,γ
(
e(δ)

)
> Vv,γ(e) + Vv′,γ(e) −ψc,γ(e) = πc, ṽ,γ(e),

where the first equality is by linearity of expectation, the weak inequality is by (7), the
strict inequality is by (9), and the last equality is again by linearity of expectation.

Consider now the case of even n > 2 and fix e with 0 < e1 = · · · = en < 0.5. Simi-
lar to the n = 2 case, define e(δ) = (e1 + δ, e2 − δ, e3, � � � , en ). As before, we have that
Vv,γ(e(δ)) ≥ Vv,γ(e) and that dψc,γ(e(δ))

dδ = 0 at δ= 0, so to complete the proof it is enough
to show that Vv′,γ(e(δ)) has a strictly positive right derivative and a strictly negative left
derivative at δ= 0.

We can calculate Vv′,γ(e(δ)) by conditioning on the realized numberk ∈ {0, 1, � � � , n−
2} of b signals received by experts 3, � � � , n. Let p(k) be the probability of exactly k b
signals among these experts, and let q(k) be the posterior of state B conditional on this
event. Note that p(k) and q(k) are independent of δ. We have

Vv′,γ
(
e(δ)

) =
n−2∑
k=0

p(k)Vv′,q(k)(e1 + δ, e2 − δ).

For every k the right derivative of Vv′,q(k)(e1 + δ, e2 − δ) at δ= 0 is nonnegative by Theo-
rem 2, and for k= n−2

2 we have q(k) = γ, so the right derivative is strictly positive by (8).
For the same reason, the left-derivative is strictly negative at δ= 0.

Finally, e1 = · · · = en = 0.5 is not optimal (when implementable) since the DM can
learn the state at a lower cost by choosing e1 = 0.5 and ei < 0.5 for each i= 2, � � � , n (this
is easy to verify directly).

6.2 The cost and benefit of monitoring

Our next observation is that a necessary condition for optimality can be obtained by
studying the cost and benefit of improved monitoring. We start with the following defi-
nition.

Definition 1. Fix c, γ and n. Let e−i = (e1, � � � , ei−1, ei+1, � � � , en ) be an effort vector of
all experts except i. We say that ei ∈ (0, 0.5) is a dominated effort level given e−i if there
is e′i > ei such that ψc,γ(ei, e−i )>ψc,γ(e′i, e−i ).

In words, ei is dominated (given e−i) if the DM can save costs by inducing i to exert
more effort. The motivation for this definition stems from the obvious fact that if ei is
dominated given e−i then the entire effort vector e= (ei, e−i ) cannot be optimal in any
decision problem. Indeed, since higher effort implies a more informative signal, the
DM would have both higher value and lower cost at (e′i, e−i ) than at e. Put differently,
a necessary condition for optimality of e in some decision problem is that none of its
coordinates ei is dominated given e−i.



Theoretical Economics 16 (2021) Monitoring experts 1335

How can an increase in the effort of one of the experts lead to cost savings for the
DM? The answer is that an increase in ei has opposite effects on the expected costs of
the contracts with expert i and with the rest of the experts j �= i. This is formalized in the
following proposition.

Proposition 2. For any interior e and two experts i �= j, it holds that ∂ψi(e)
∂ei

> 0 and
∂ψj(e)
∂ei

< 0.

It is not surprising that an increase in expert’s i effort requires higher expected pay-
ment to that expert. But higher ei also means that i’s report is more correlated with the
state and, therefore, that it allows better monitoring of the efforts and reports of other
experts. For example, recall from Corollary 1 that in the extreme case ei = 0.5 the report
of i always matches the state, and there exist optimal contracts with other experts j that
only rely on i’s report for monitoring. More generally, the improved monitoring allows
the DM to reduce the payments of all other experts.

The overall change in the cost for the DM when ei increases depends on which of

the above two effects is stronger. Namely, in ∂ψ(e)
∂ei

= ∂ψi(e)
∂ei

+ ∑
j �=i

∂ψj(e)
∂ei

the first term is
positive and the second is negative, so the overall marginal cost of inducing more effort
may be either positive or negative. In the latter case, e is not optimal in any decision
problem as explained above.

We now demonstrate that Definition 1 is not vacuous by describing two scenarios
in which dominated effort levels do exist. In both cases, sufficiently low effort levels are
dominated, implying that they are never part of an optimal contract.

Corollary 2. Fix c, γ and n. If c′(0) = c′′(0) = 0, then for every e−i there is a number
f (e−i ) ∈ (0, 0.5) such that any ei < f (e−i ) is dominated given e−i.

Proof. Fix e−i. Since c′(0) = c′′(0) = 0, it follows from the proof of Proposition 2 that

lim
ei↓0

∂ψi(ei, e−i )
∂ei

= 0.

In addition, it follows from the same proof that

lim
ei↓0

∂ψj(ei, e−i )
∂ei

< 0.

Therefore, the total cost ψc,γ(ei, e−i ) is initially decreasing in ei, so any small enough ei
is dominated given e−i.

If there are just two experts then the conclusion of Corollary 2 holds without any
additional assumption on the cost function.

Corollary 3. Fix c and γ, and suppose that n= 2. Then for every e1 there is a number
f (e1 ) ∈ (0, 0.5) such that any e2 < f (e1 ) is dominated given e1. Similarly, any e1 < f (e2 )
is dominated given e2.
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Figure 3. The left and right panels show the bounds f for the cost functions c(ei ) = e2
i

2 and

c(ei ) = e2
i

2 + ei, respectively. In each panel, the concave curve is the bound f (e1 ) and the convex
is f (e2 ). At any point (e1, e2 ) below the concave curve e2 is dominated given e1, and at any point
(e1, e2 ) to the left of the convex curve e1 is dominated given e2. Thus, an optimal contract is
never (for no decision problem) below the concave curve or to the left of the convex curve.

Proof. Fixing e1, it follows from the expression for ψi(e) in Theorem 1 that
lime2↓0ψ1(e1, e2 ) = +∞ and that lime2↓0ψ2(e1, e2 ) is finite. Therefore, the total cost
ψc,γ(e1, e2 ) diverges to +∞ as e2 ↓ 0,32 implying that any small enough e2 is dominated
given e1. The same argument applies when e2 is fixed and e1 ↓ 0.

To illustrate the bounds implied by Corollary 3, we revisit Examples 1 and 2 of Sec-
tion 4. For a fixed e1, the cost function ψc,γ(e1, e2 ) in these examples is convex in e2,
first decreasing and then increasing. Denoting by f (e1 ) the effort level e2 at which
ψc,γ(e1, e2 ) is minimal, we have that any e2 < f (e1 ) is dominated given e1. By symmetry,
the same f also applies for e1 when e2 is held fixed. Figure 3 shows the resulting bounds
for the two examples.

6.3 Quality over quantity

Our last observation is that under certain conditions optimal contracts never involve
many low-effort experts. The reason is that such contracts are less informative and more
costly than contracts with few experts each of which exerting high effort. To formalize
this, for each t̄ ∈ (0, 0.5) and n̄ ≥ 2 denote by e( t̄, n̄) the constant effort vector with n̄
experts each exerting effort t̄.

Proposition 3. Fix γ and c with c′(0)> 0. Let e= (e1, � � � , en )> 0. If t̄, n̄ satisfy:

(i) ei ≤ t̄ for all i;

32This is not surprising given that (e1, 0) is not implementable. See Remark 1.
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(ii)
∑n
i=1 ei ≤ t̄n̄; and

(iii) n≥ 2ψc,γ(e( t̄, n̄))
c′(0) ,

then e( t̄, n̄) is more informative and less costly than e. In particular, if such t̄, n̄ exist then
e is not optimal for any decision problem v ∈ V .

Proof. First, for every e = (e1, � � � , en ) > 0 and every expert i we have that ψi(e) ≥
(0.5+ei )c′(ei ), since this is the expected payment to iwhen the state itself is contractible
(recall the discussion in the previous subsection). It follows that the total cost of imple-
menting e satisfies

ψc,γ(e) =
n∑
i=1

ψi(e) ≥ 1
2

n∑
i=1

c′(ei ) ≥ n

2
c′(0),

where the last inequality is by convexity of c. Therefore, if n ≥ 2ψc(e( t̄, n̄))
c′(0) (condition (iii)

of the proposition) then ψc,γ(e)>ψc,γ(e( t̄, n̄)).
Second, if t̄, n̄ satisfy conditions (i) and (ii) of the proposition then e is weakly ma-

jorized by e( t̄, n̄), so e( t̄, n̄) is more informative than e by Theorem 2.

To illustrate how Proposition 3 may be applied, consider the case where γ = 0.5 and

c(ei ) = e2
i

2 + ei. For any t̄, n̄ we have that

ψc,γ
(
e( t̄, n̄)

) = n̄ (0.5 + t̄ )n̄ + (0.5 − t̄ )n̄
(0.5 + t̄ )n̄−1 − (0.5 − t̄ )n̄−1 ( t̄ + 1).

Plugging in t̄ = 1
3 and n̄= 2, we get ψc,γ( 1

3 , 1
3 ) = 26

9 . Therefore, any e= (e1, � � � , en ) with

(i) ei ≤ 1
3 for all i, (ii)

∑n
i=1 ei ≤ 2

3 , and (iii) n ≥ 2∗ 26
9

c′(0) = 5.77 is dominated by ( 1
3 , 1

3 ) and,
therefore, never optimal.

In the case where fully learning the state is implementable, we can obtain a uniform
bound on the number of experts in an optimal contract.

Corollary 4. Suppose c′(0) > 0 and c′(0.5) < +∞. Then for every decision problem
v ∈ V , an optimal contract uses at most 4c′(0.5)

c′(0) experts.

Proof. Let t̄ = 0.5 and n̄ = 2. The cost of e( t̄, n̄) is given by n̄c′( t̄ ) = 2c′(0.5). Thus, by

the first part of the proof of the last proposition, if e has n experts and n≥ 2ψc,γ(e(0.5,2))
c′(0) =

4c′(0.5)
c′(0) then ψc,γ(e) > ψc,γ(e( t̄, n̄)). Also, e( t̄, n̄) is clearly at least as informative as any
e.

Considering again the example where γ = 0.5 and c(ei ) = e2
i

2 + ei, we have c′(0) =
1 and c′(0.5) = 1.5, so 4c′(0.5)

c′(0) = 6. It follows that it is never (for no decision problem)
optimal to hire more than 6 experts.
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7. Collusion

7.1 No-effort equilibria

As already mentioned in the Introduction, our notion of implementation only requires
that honesty and obedience is an equilibrium, and does not rule out the existence of
other equilibria in the game induced by the contract. In particular, under the op-
timal contract x∗ derived in Theorem 1 there would typically be a no-effort equilib-
rium which Pareto-dominates the intended honest-obedient equilibrium: If the ex-
perts could communicate with each other and coordinate on one of the announce-
ments b or w then they would secure the highest possible payoff without exerting any
effort.33

If the DM is worried about the possibility of such “collusion,” then she may prefer
another contract that, while increasing the cost for her, implements the desired vec-
tor of efforts e uniquely. Unfortunately, it is easy to see that for any contract there al-
ways exists a no-effort equilibrium. Indeed, fix some contract and suppose that all ex-
perts other than i choose a strategy with zero effort. Then the reported messages of
these experts are independent of the state, so even if i exerts positive effort his mes-
sage would be independent of the messages of the other experts. But this implies that
i can achieve the same expected payment without incurring the cost of effort. Hence,
i’s best-response is to exert zero effort as well. Once we restrict attention to no-effort
strategies the experts play a finite game, so Nash’s theorem guarantees existence of equi-
librium, possibly only in mixed strategies. Note that the same argument applies also for
indirect (finite) mechanisms where the set of messages may be different than the set of
signals.34

In the case of n= 2 experts, the problem with no-effort equilibria is more severe in
the following sense: If x= (x1, x2 ) is any contract that implements e= (e1, e2 )> 0, then
in the game induced by x both strategy profiles (b, b) and (w, w) (with zero efforts) are
equilibria; moreover, for each expert at least one of these equilibria gives a higher pay-
off than under honesty and obedience (though there need not be one equilibrium that
gives higher payoffs to both experts). However, we now illustrate via an example how
indirect mechanisms can be used to make honesty and obedience the Pareto-dominant
equilibrium.

Suppose that the prior is uniform γ = 0.5, that the cost of effort is c(ei ) = 10e2
i , and

that the DM would like to implement e= (0.25, 0.25). It is straightforward to verify that a
cost-minimizing contract that implements e is given by x1(b) = x2(b) = x1(w) = x2(w) =
10 and xi(s) = 0 otherwise. Thus, without efforts the experts play the following matrix

33It may be that x∗
i (b)< x∗

i (w) for some experts, while x∗
i (b)> x∗

i (w) for the others, so different experts
would prefer different zero-effort equilibria. But if the prior is uniform (or sufficiently close to uniform)
then b gives the highest possible payoff to all experts.

34No-effort equilibrium exists even if the signal that the experts receive when they exert no effort is infor-
mative. Indeed, if all experts except i ignore their signal, then it is a best response for i to ignore his signal
as well.
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game:

b w

b 10, 10 0, 0

w 0, 0 10, 10

By coordinating their announcements, the experts obtain a payoff of 10, while the payoff
under honesty and obedience is 10 ∗ ( 3

4 ∗ 3
4 + 1

4 ∗ 1
4 ) − 10 ∗ ( 1

4 )2 = 45
8 . Suppose that the

DM adds another possible message, denoted φ, and modifies the payoffs as follows:

b w φ

b 10 + λ, 10 + λ λ, λ 0, 0

w λ, λ 10 + λ, 10 + λ 0, 10 + δ
φ 10 + δ, 0 0, 0 1, 1

Here, λ and δ are small positive constants satisfying 5
8δ < λ < δ. Note first that, since

λ < δ, the strategy profiles (b, b) and (w, w) are no longer equilibria in this modified
game. In fact, the no-effort equilibrium with the highest payoff is the one where both ex-
perts choose b orwwith equal probabilities, yielding an expected payoff of 5+λ for each
expert. Furthermore, this game still implements the desired effort levels of e1 = e2 = 0.25
in the sense that choosing these efforts and truthfully reporting the observed signal (i.e.,
choosing the action that corresponds to the observed signal) is an equilibrium.35 The
payoff to each expert under this desired equilibrium is 45

8 + λ, higher than in any no-
effort equilibrium. Since λ can be made arbitrarily small, the cost to the DM is virtually
the same as in the original contract. Thus, while it is impossible to completely elimi-
nate no-effort equilibria in our environment, indirect mechanisms have the potential to
make them less attractive.

In an environment with a contractible state, Khanna et al. (2015) proposed a mech-
anism that induces a group of experts to acquire information and truthfully reveal their
signals. Their mechanism rewards the experts for being correct about the state, but also
for disagreeing with other experts. They show that even if agents can communicate (us-
ing cheap-talk messages) before submitting their reports the mechanism implements
the desired equilibrium uniquely. As explained above, this is not possible in our setup
with noncontractible state.

7.2 Multiple equilibria with effort

Even if we restrict attention to equilibria in which the experts exert positive levels of
effort and truthfully report their signals, it is still not necessarily the case that honesty
and obedience is the only equilibrium. However, as the following proposition shows, at
least in some environments we do get uniqueness.

35To see why, note first that when both experts choose b or w their payoffs are the same as in the original
contract plus the constant λ, implying that, restricted to those strategies, incentives are the same as before.
The condition 5

8δ < λ guarantees that there is no profitable deviation to strategies involving the action φ
whenever λ, δ are sufficiently small.
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Proposition 4. Suppose that the prior is uniform γ = 0.5 and that either (1) c′ is strictly
concave, or (2) c′ is strictly convex, c′(0) = 0 and n ∈ {2, 3}. Let e= (e1, � � � , en ) be such that
0< ei < 0.5 for every i. Then in the game induced by the optimal contract x∗ of Theorem 1,
(e, r∗ ) is the only equilibrium with truthful reporting and positive levels of effort.

Proof. Fix an interior e and let x∗ be the least costly contract that implements e derived
in Theorem 1. Consider the game in which each expert i only chooses effort level ei
and the realized signal is truthfully reported to the mechanism. Then it is immediate
to verify that this is a supermodular game in the sense of Milgrom and Roberts (1990)
(see Theorem 4 in that paper). By Topkis (1998, Theorem 4.2.1), the set of equilibria is a
lattice. It follows that if e′ and e′′ are both equilibria then their coordinatewise maximum
is an equilibrium as well, so if there are two equilibria with positive efforts then there are
two equilibria with positive efforts with one dominating the other. However, we now
show that under the conditions of the proposition there cannot be two equilibria with
positive efforts in which one dominates the other; since e is one equilibrium, the result
follows.

Suppose by contradiction that 0 < e′i ≤ e′′i for all i, that e′ �= e′′, and that both are
equilibria under x∗. Then for each i the first-order condition with respect to effort must
hold at both e′ and e′′. This gives

[
e′(N−i ) − ē′(N−i )

]x∗
i (b) + x∗

i (w)
2

= c′(e′i) and

[
e′′(N−i ) − ē′′(N−i )

]x∗
i (b) + x∗

i (w)
2

= c′(e′′i ).

Therefore, for each expert i we have

e′(N−i ) − ē′(N−i )
e′′(N−i ) − ē′′(N−i )

= c′
(
e′i

)
c′

(
e′′i

) .

Now, suppose that c′ is strictly concave. Then c′(x)
x is strictly decreasing on [0,0.5],

which implies that
c′(e′i )
c′(e′′i )

≥ e′i
e′′i

for all i, with strict inequality whenever e′i < e
′′
i . Thus,

e′(N−i ) − ē′(N−i )
e′′(N−i ) − ē′′(N−i )

≥ e′i
e′′i

for all iwith strict inequality for at least one expert (recall that e′ �= e′′). Cross-multiplying
and summing-up these n inequalities gives

n∑
i=1

e′′i
[
e′(N−i ) − ē′(N−i )

]
>

n∑
i=1

e′i
[
e′′(N−i ) − ē′′(N−i )

]
.

However, it is not hard to check that this last inequality is inconsistent with 0 < e′i ≤ e′′i
for all i, hence the desired contradiction.
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In the other case where c′ is strictly convex and c′(0) = 0, we have that c
′(x)
x is strictly

increasing, so [
e′(N−i ) − ē′(N−i )

]
[
e′′(N−i ) − ē′′(N−i )

] = c′
(
e′i

)
c′

(
e′′i

) ≤ e′i
e′′i

holds for every i with strict inequality at least once. If the number of experts is either
n= 2 or n= 3, then similar to the previous paragraph we get a contradiction.

As mentioned in the last proof, under the optimal contract x∗ of Theorem 1 (and as-
suming truthful reporting), the game of effort choices is supermodular. It follows that
the game has a largest equilibrium that dominates all other equilibria. Furthermore, it
is immediate to check that the payoff of each expert is increasing in other experts’ ef-
forts, so by Theorem 7 in Milgrom and Roberts (1990) the largest equilibrium Pareto-
dominates all other equilibria. Thus, in environments with multiple positive-efforts
equilibria, if the DM wants to implement an equilibrium other than the largest one then
she should be more concerned about over-investment than about underinvestment.

8. Final comments

In Theorem 1, we explicitly derive the cost function for the binary-binary model of the
paper. As shown in Section 4.2, the key feature that experts get paid only when all the
reports match continues to hold in several variants of the basic setup. Furthermore,
one can show that this property holds even if the symmetry between the two states is
relaxed, i.e., if the probability of observing the correct signal differs between states B
and W . The key is that the vectors of signals s−i at which the likelihood ratio P(s−i|B)

P(s−i|W ) is
maximal and minimal are s−i = b−i and s−i = w−i, respectively. It would be interesting
to know whether this generalizes to environments with more states and signals.

The binary-binary framework also allows to derive the strong nonconcavity result of
Theorem 2. This result is of independent interest and may be useful in other applica-
tions. There are (at least) two natural ways to extend Theorem 2 to more general infor-
mation structures: First, an equivalent statement of this theorem is that if e, e′ are two
effort vectors such that observing the signal of one randomly (uniformly) chosen expert
from e is more informative than observing the signal of one randomly chosen expert
from e′, then observing the signals of all experts in e is more informative then observing
the signals of all experts in e′. This property does not extend to more general vectors of
information structures.36 Second, the theorem is equivalent to the claim that m(e1, e2 )
is more informative thanm(λe1 + (1 −λ)e2, (1 −λ)e1 +λe2 ) for any λ ∈ [0, 1]. This prop-
erty also does not generalize beyond symmetric binary information structures.37 While
Theorem 2 seems to be specific to the type of information structures we consider, it sug-
gests that deriving the demand for information is likely to pose serious challenges in
many cases.

36I thank Eran Shmaya for suggesting a simple counter example.
37This potential generalization was suggested to me by Marcin Peski.
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Appendix: Missing proofs

Proof of Lemma 1. If xi is feasible for (COST) then clearly it must satisfy constraints
(2)–(4), so it is feasible for (AUX) as well. Conversely, suppose that xi satisfies (2)–(4).
Then the first-order condition (2) guarantees that deviations (e′i, r

∗
i ) (i.e., deviations only

from the required effort level ei without misreporting of observed signals) are not prof-
itable. Indeed, convexity of c implies that Ui((e′i, r

∗
i ), (e−i, r∗−i ); xi ) is concave in e′i, so

the first-order condition is both necessary and sufficient for optimality.
Next, consider deviations (e′i, ri ) with ri ≡ b, i.e., i reports b regardless of his signal. If

there exists such a profitable deviation then the deviation to (0, ri ) is profitable as well,
since it gives i the same expected transfer as (e′i, ri ) at a minimal cost. But inequality (3)
says that (0, ri ) is not profitable, so (e′i, ri ) is not profitable as well. A similar argument
applies for deviations (e′i, ri ) with ri ≡w.

Finally, consider deviations (e′i, ri ) with ri(b) = w and ri(w) = b (i.e., the report is
opposite from the observed signal). Then

P((0,r∗i ),(e−i ,r∗−i )) ≡ ei

ei + e′i
P((e′i ,ri ),(e−i ,r∗−i )) + e′i

ei + e′i
P(e,r∗ ),

that is, the distribution of reported vectors of signals when i exerts zero effort and re-
ports truthfully is a convex combination of the distributions when i is honest and obe-
dient and when he plays the proposed deviation (assuming all others are honest and
obedient). This implies that

E((0,r∗i ),(e−i ,r∗−i ))
[
xi(s)

]
= ei

ei + e′i
E((e′i ,ri ),(e−i ,r∗−i ))

[
xi(s)

] + e′i
ei + e′i

E(e,r∗ )
[
xi(s)

]
. (10)

Therefore,

Ui
((
e, r∗

)
; xi

) ≥Ui
((

0, r∗i
)
,
(
e−i, r∗−i

)
; xi

) = E((0,r∗i ),(e−i ,r∗−i ))
[
xi(s)

]
= ei

ei + e′i
E((e′i ,ri ),(e−i ,r∗−i ))

[
xi(s)

] + e′i
ei + e′i

E(e,r∗ )
[
xi(s)

]

≥ ei

ei + e′i
Ui

((
e′i, ri

)
,
(
e−i, r∗−i

)
; xi

) + e′i
ei + e′i

Ui
((
e, r∗

)
; xi

)
,

where the first inequality is by the first paragraph of this proof, the first equality follows
from c(0) = 0, the next equality is by (10), and the last inequality is by non-negativity of
the cost function. It follows thatUi((e, r∗ ); xi ) ≥Ui((e′i, ri ), (e−i, r∗−i ); xi ), so (e′i, ri ) is not
a profitable deviation.

Proof of Lemma 2. To simplify the notation, we write P instead of P(e,r∗ ) when no
confusion may arise. Also, it will be convenient to write P(s−i|B) = e(sb−i )ē(sw−i ) and
P(s−i|W ) = ē(sb−i )e(sw−i ) for the conditional probability of s−i given each state of nature.
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Using this notation, constraint (5) for s−i = b−i at z∗ becomes[
γP(b−i|B) − (1 − γ)P(b−i|W )

]
z∗

1 − P(w, b−i )z∗
2 ≥ P(b),

or, more explicitly,[
γe(N−i ) − (1 − γ)ē(N−i )

]
z∗

1 − [
γ(0.5 − ei )e(N−i ) + (1 − γ)(0.5 + ei )ē(N−i )

]
z∗

2

≤ γe(N ) + (1 − γ)ē(N ).

It is tedious but straightforward to verify that this constraint holds with equality.
Now, consider constraint (5) at z∗ for some other s−i. After a slight rearrangement it

becomes

γP(s−i|B) − (1 − γ)P(s−i|W )
P(b, s−i )

z∗
1 − P(w, s−i )

P(b, s−i )
z∗

2 ≤ 1.

Thus, to establish this inequality it is sufficient to show that γP(s−i|B)−(1−γ)P(s−i|W )
P(b,s−i ) is max-

imized at s−i = b−i and that P(w,s−i )
P(b,s−i ) is minimized at s−i = b−i (note that z∗

1, z∗
2 ≥ 0). For

the coefficient of z∗
1 we have

γP(s−i|B) − (1 − γ)P(s−i|W )
P(b, s−i )

= γP(s−i|B) − (1 − γ)P(s−i|W )
γ(0.5 + ei )P(s−i|B) + (1 − γ)(0.5 − ei )P(s−i|W )

= 1

(0.5 + ei ) + 1 − γ
γ

(0.5 − ei )P(s−i|W )
P(s−i|B)

− 1
γ

1 − γ (0.5 + ei ) P(s−i|B)
P(s−i|W )

+ (0.5 − ei )
,

which clearly increases in the likelihood ratio P(s−i|B)
P(s−i|W ) , and is hence maximal at s−i = b−i.

And for the coefficient of z∗
2 we have

P(w, s−i )
P(b, s−i )

= γ(0.5 − ei )P(s−i|B) + (1 − γ)(0.5 + ei )P(s−i|W )
γ(0.5 + ei )P(s−i|B) + (1 − γ)(0.5 − ei )P(s−i|W )

=
γ(0.5 − ei ) P(s−i|B)

P(s−i|W )
+ (1 − γ)(0.5 + ei )

γ(0.5 + ei ) P(s−i|B)
P(s−i|W )

+ (1 − γ)(0.5 − ei )
,

which decreases in P(s−i|B)
P(s−i|W ) and so minimized at s−i = b−i. This proves that (5) holds at

z∗ for every for every s−i ∈ S−i.
The proof that constraints (6) hold at z∗ is similar. First, it is not hard to check that

for s−i =w−i constraint (6) is satisfied with equality at z∗. Next, for any other s−i we can
rewrite the constraint as

γP(s−i|B) − (1 − γ)P(s−i|W )
P(w, s−i )

z∗
1 − z∗

2 ≥ −1.
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The coefficient of z∗
1 is decreasing in the likelihood ratio P(s−i|W )

P(s−i|B) and hence minimized at
s−i =w−i. It follows that (6) is satisfied for every s−i at z∗. This completes the proof.

Proof of Proposition 2. First,

∂ψi
∂ei

=
[
γe(N−i ) + (1 − γ)ē(N−i )

][−γē(N−i ) + (1 − γ)e(N−i )
] + (2γ− 1)e(N−i )ē(N−i )

γ(1 − γ)
[
e(N−i )2 − ē(N−i )2]

× c′(ei )

+
[
γē(N ) + (1 − γ)e(N )

][
γe(N−i ) + (1 − γ)ē(N−i )

]
γ(1 − γ)

[
e(N−i )2 − ē(N−i )2] c′′(ei ).

The first term simplifies to just c′(ei )> 0, and the second term is clearly positive, which
proves that ∂ψi∂ei

> 0.

As for the other derivative ∂ψi
∂ej

with j �= i, note first that the denominator γ(1 −
γ)[e(N−i )2 − ē(N−i )2] of ψi is increasing in ej , and that the second term (2γ − 1) ×
e(N−i )ē(N−i )c(ei ) in the numerator ofψi is decreasing in ej . To prove that the derivative
is negative it is therefore enough to prove that the ratio[

γē(N ) + (1 − γ)e(N )
][
γe(N−i ) + (1 − γ)ē(N−i )

]
e(N−i )2 − ē(N−i )2

decreases in ej . After some rearranging, the numerator of the derivative of this ratio with
respect to ej becomes

{
2γ(1 − γ)

[
e(N−i )e(N−j ) − ē(N−i )ē(N−j )

]
− 2eje(N−ij )ē(N−ij )

[
γ2(0.5 − ei ) + (1 − γ)2(0.5 + ei )

]}
× {
e(N−i )2 − ē(N−i )2}

− 2
{
e(N−i )e(N−ij ) + ē(N−i )ē(N−ij )

}
× {
γ2ē(N )e(N−i ) + (1 − γ)2e(N )ē(N−i ) + γ(1 − γ)

[
e(N )e(N−i ) + ē(N )ē(N−i )

]}
.

Eliminating some of the clearly negative terms, we get that this expression is bounded
above by

2γ(1 − γ)
[(
e(N−i )e(N−j ) − ē(N−i )ē(N−j )

)][
e(N−i )2 − ē(N−i )2]

− 2γ(1 − γ)
[
e(N−i )e(N−ij ) + ē(N−i )ē(N−ij )

][(
e(N )e(N−i ) + ē(N )ē(N−i )

)]
.

It is immediate to verify that this last expression is negative, which completes the proof.

Proof of Lemma 3. Fix e1 ≥ e2. The set of possible signals in the information struc-
tures m(e1, e2 ) can be identified with {∅, 1, 2, 12}, corresponding to the coalition of ex-
perts who got signal b. For each signal A in this set denote by pe(A) = 1

2 [e(A)ē(Ac ) +
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ē(A)e(Ac )] the probability that signalA is observed, and by qe(A) = 1
2 e(A)ē(Ac )
pe(A) the pos-

terior probability that the state is B after signal A is observed (assuming a uniform
prior). We view the posterior of state B as a [0, 1]-valued random variable which takes
the values {qe(A)} with corresponding probabilities {pe(A)}. The cumulative distribu-
tion function (cdf) of this variable is

Fe(t ) =
∑

{A:qα(A)≤t}
pe(A).

Let e′1 ≥ e′2 be obtained from (e1, e2 ) by a PD transfer, i.e., e1 + e2 = e′1 + e′2 and e1 ≥
e′1. The probabilities pe′(A) and qe′(A), and the cdf Fe′(t ) are defined in an analogous
way to the above definitions. By Blackwell and Girshick (1954, Theorem 12.4.1 on page
332),m(e) is more informative thanm(e′ ) if and only if∫ x

0
Fe(t )dt ≥

∫ x

0
Fe′(t )dt (11)

holds for every x ∈ [0, 1]. To complete the proof we now show that (11) holds at the
four atoms of Fe, i.e. at the points x = qe(∅), qe(1), qe(2), and qe(12). Since Fe and Fe′
are nondecreasing step-functions this would imply that (11) holds for every x ∈ [0, 1].
Indeed, if

∫ x
0 Fe(t )dt <

∫ x
0 Fe′(t )dt at some x ∈ [0, 1], then the same must be true at one

of the jumps of Fe adjacent to x.
We will need the following simple observations, whose proofs can be found at the

end of this proof:

(a) qe(∅) ≤ qe(2) ≤ 1
2 ≤ qe(1) ≤ qe(12).

(b) qe′(∅) ≤ qe′(2) ≤ 1
2 ≤ qe′(1) ≤ qe′(12).

(c) qe(∅) ≤ qe′(∅), qe(2) ≤ qe′(2), qe′(1) ≤ qe(1), and qe′(12) ≤ qe(12).

(d) Fe(t ) = 1 − Fe(1 − t ) and Fe′(t ) = 1 − Fe′(1 − t ) for every t ∈ [0, 1].

1. x= qe(∅):
From observations (b) and (c) it immediately follows that qe(∅) is smaller than the

four possible posteriors under e′. Thus, Fe′(t ) = 0 for every t ∈ [0, qe(∅)], which implies∫ qe(∅)
0 Fe′(t )dt = 0. Inequality (11) at x= qe(∅) follows.

2. x= qe(2):

From observation (a) we have that
∫ qe(2)

0 Fe(t )dt = [qe(2) − qe(∅)]pe(∅), and from

observations (b) and (c) we have that either
∫ qe(2)

0 Fe′(t )dt = [qe(2) − qe′(∅)]pe′(∅) or∫ qe(2)
0 Fe′(t )dt = 0. In the latter case there is nothing to prove, so suppose the former is

true. We therefore need to show that[
qe(2) − qe(∅)

]
pe(∅) ≥ [

qe(2) − qe′(∅)
]
pe′(∅),

or equivalently that

qe(2)
[
pe(∅) −pe′(∅)

] ≥ qe(∅)pe(∅) − qe′(∅)pe′(∅). (12)
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Using the equality e1 + e2 = e′1 + e′2, simple algebra gives that the right-hand side of (12)
is equal to 1

2 (e1e2 − e′1e′2 ). Also, it is easy to verify that pe(∅) − pe′(∅) = e1e2 − e′1e′2, so
(12) becomes

qe(2)
(
e1e2 − e′1e′2

) ≥ 1
2

(
e1e2 − e′1e′2

)
.

Since the area of a rectangle with a given perimeter decreases in the difference between
its length and its width, we have that e1e2 −e′1e′2 ≤ 0, and by observation (a) we have that
qe(2) ≤ 1

2 . This proves (12).
3. x= qe(1):
This inequality is the “mirror image” of the inequality of the previous case. Indeed,

using the symmetry of Fe around 0.5 (observation (d)) and a simple change of variables
we get that

∫ qe(1)

0
Fe(t )dt = qe(1) −

∫ 1

0
Fe(t )dt +

∫ 1−qe(1)

0
Fe(t )dt,

and similarly that

∫ qe(1)

0
Fe′(t )dt = qe(1) −

∫ 1

0
Fe′(t )dt +

∫ 1−qe(1)

0
Fe′(t )dt.

Now, since the expected posterior is equal to the prior, we have that
∫ 1

0 Fe(t )dt =∫ 1
0 Fe′(t )dt. Thus, inequality (11) at x = qe(1) is equivalent to

∫ 1−qe(1)
0 Fe(t )dt ≥∫ 1−qe(1)

0 Fe′(t )dt. But notice that 1 − qe(1) = qe(2), so the last inequality is the same
as the one proved for x= qe(2).

4. x= qe(12):
As in the previous case, it is simple to show that inequality (11) at x= qe(12) is equiv-

alent to the inequality at x= qe(∅) proven above. We omit the details.
Proofs of observations (a)–(d):
(a): The posterior probability of state B is clearly nondecreasing (with respect to set

inclusion) in the coalition of experts who obtained signal b. Thus, to prove observa-
tion (a) we only need to check that qe(2) ≤ 1

2 ≤ qe(1). The latter inequality immediately
follows from e1 ≥ e2, since

qe(2) = 1

1 + (0.5 + e1 )(0.5 − e2 )
(0.5 + e2 )(0.5 − e1 )

and qe(1) = 1

1 + (0.5 + e2 )(0.5 − e1 )
(0.5 + e1 )(0.5 − e2 )

.

(b): The proof is identical to that of observation (a) (recall that e′1 ≥ e′2).
(c): We have

qe(∅) = 1

1 + (0.5 + e1 )(0.5 + e2 )
(0.5 − e1 )(0.5 − e2 )

and qe′(∅) = 1

1 +
(
0.5 + e′1

)(
0.5 + e′2

)
(
0.5 − e′1

)(
0.5 − e′2

)
,
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so we need to show that (0.5+e1 )(0.5+e2 )
(0.5−e1 )(0.5−e2 ) ≥ (0.5+e′1 )(0.5+e′2 )

(0.5−e′1 )(0.5−e′2 )
. The latter is equivalent to (0.5 +

e1 )(0.5 + e2 )(e′1e′2 − e1e2 ) ≥ (0.5 − e1 )(0.5 − e2 )(e′1e′2 − e1e2 ), which follows from e′1e′2 ≥
e1e2.

Next,

qe(2) = 1

1 + (0.5 + e1 )(0.5 − e2 )
(0.5 − e1 )(0.5 + e2 )

and qe′(2) = 1

1 +
(
0.5 + e′1

)(
0.5 − e′2

)
(
0.5 − e′1

)(
0.5 + e′2

)
,

so qe(2) ≤ qe′(2) is equivalent to (0.5+e1 )(0.5−e2 )
(0.5−e1 )(0.5+e2 ) ≥ (0.5+e′1 )(0.5−e′2 )

(0.5−e′1 )(0.5+e′2 )
, which follows from e1 ≥

e′1 and e2 ≤ e′2. The rest of the inequalities are proved in a similar fashion, the details are
omitted.

(d): Fe(t ) is the probability that the posterior of state B is less or equal to t,
while 1 − Fe(1 − t ) is the probability that the posterior of state W is less or equal
to t. Since the prior and the information structure are symmetric between the two
states, these two probabilities must be equal. The same argument holds for Fe′ .
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