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Strategy-proofness (SP) is a sought-after property in social choice functions be-

cause it ensures that agents have no incentive to misrepresent their private in-

formation at both the interim and ex post stages. Group strategy-proofness (GSP),

however, is a notion that is applied to the ex post stage but not to the interim stage.

Thus, we propose a new notion of GSP, coined robust group strategy-proofness

(RGSP), which ensures that no group benefits by deviating from truth telling at the

interim stage. We show for the provision of a public good that the Minimum De-

mand rule (Serizawa (1999)) satisfies RGSP when the production possibilities set

satisfies a particular topological property. In the problem of allocating indivisible

objects, an acyclicity condition on the priorities is both necessary and sufficient

for the Deferred Acceptance rule to satisfy RGSP, but is only necessary for the Top

Trading Cycles rule. For the allocation of divisible private goods among agents

with single-peaked preferences (Sprumont (1991)), only free disposal, group re-

placement monotonic rules within the class of sequential allotment rules satisfy

RGSP.
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1. Introduction

Strategy-proofness (SP) in social choice functions is a highly desirable property. It guar-
antees that the participating agents never (strictly) benefit by misrepresenting their pri-
vate information in any realized state. This definition is equivalent to requiring that truth
telling is a weakly dominant strategy in the direct revelation game associated with any
strategy-proof rule. Although SP is demanding, many prominent rules satisfy it. These
include, for instance, the Deferred Acceptance (DA) or Top Trading Cycles (TTC) rules in
the problem of allocating indivisible objects, the Minimum Demand rule in the provi-
sion of public goods, and the Uniform Rule in allotment economies with single-peaked
preferences.

For strategy-proof rules, truth telling is an optimal strategy for each individual when
there is asymmetric information. In this sense, SP is a notion that is not only applicable
to the ex post stage but also to the interim stage. Given the prevalence of asymmet-
ric information in socioeconomic situations, the importance of strategy-proof rules in
practice is deservedly paramount.

Despite its desiderata, SP does not take into account the possibility of group devia-
tions. The notion of group strategy-proofness (GSP) corrects this oversight. Specifically,
GSP requires that no group benefits by misreporting its private information in any real-
ized state.1 Although this definition is a straightforward adaptation of SP to the possibil-
ity of group deviations, GSP, unlike its individual version, is not an interim-stage notion.
In other words, depending on the informational structure, a group may find it profitable
to misreport its private information in the direct revelation games associated with some
group strategy-proof rules. The following example illustrates how a group strategy-proof
rule can be manipulated in the presence of asymmetric information.

Example 1.1 (Motivating Example). Let us consider a Scarf–Shapley economy with
three agents and three indivisible objects. A(nn), B(eth), and C(arol) own objects a, b,
and c, respectively. The agents have strict preferences, and these objects are allocated
according to the celebrated Top Trading Cycles rule, fTTC, which is known to satisfy both
SP and GSP.2 Hence, at any state (or, equivalently, preference profile), no agent or group
of agents can profit by misrepresenting their preferences. We now introduce some infor-
mational asymmetry. Suppose that the agents know that Ann and Beth have preferences
RA and RB, respectively, represented by the following utility functions:

uA(c) = 10, uA(b) = 6, uA(a) = 1,

uB(c) = 10, uB(a) = 6, uB(b) = 1.

1See Barberá et al. (2016) and Barberá et al. (2010), which establish sufficient conditions for the equiva-
lence of strategy-proofness and group strategy-proofness.

2In Section 3, we give the formal definition of the Top Trading Cycles rule with respect to a given priority
function. To use the rule in this example, set the priority function so that each object gives the highest
priority to its owner.
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Carol’s preferences, on the other hand, could be either RC or R̃C , which are represented
by the following utility functions:

uC(a) = 10, uC(b) = 6, uC(c) = 1,

ũC(b) = 10, ũC(a) = 6, ũC(c) = 1.

Carol knows her own preferences, but Ann and Beth believe Carol’s preferences are ei-
ther RC or R̃C with equal probability. Would the agents reveal their preferences truth-
fully in this case?

Because fTTC is strategy-proof, truth telling is a dominant strategy for each agent.
Hence, in the absence of communication, the agents would reveal their preferences
truthfully. Consequently, depending on Carol’s preferences, their allocation would be

fTTC(RA, RB, RC ) = (c, b, a) and fTTC(RA, RB, R̃C ) = (a, c, b).

The expected utilities of Ann and Beth are 5.5.
However, what happens if Ann and Beth can coordinate? In this case, they could

misreport their preferences as R̃A and R̃B, which are represented by the following utility
functions, respectively:

ũA(b) = 10, ũA(c) = 6, ũA(a) = 1,

ũB(a) = 10, ũB(c) = 6, ũB(b) = 1.

Then the TTC rule would make the following assignment:

fTTC(R̃A, R̃B, RC ) = fTTC(R̃A, R̃B, R̃C ) = (b, a, c).

As a result of the misreport, both Ann and Beth get the expected utility of 6, which is
an improvement over truth telling. Consequently, whether a group deviates from truth
telling could depend on the information (or belief), even for rules, such as TTC, that
satisfy GSP.3 ♦

The example above illustrates an important point: in the presence of asymmetric
information, rules satisfying SP remain nonmanipulable by individuals, whereas rules
satisfying GSP may become manipulable by some groups. In this particular example,
some group of agents who face uncertainty about those who are not in the group are
able to insure against the risk by jointly misreporting their own preferences. This means
that something is lost in the standard generalization from SP to GSP. We believe that the
nonrobustness of GSP to asymmetric information—a realistic feature in many economic
environments—is a rather serious drawback.

To address this shortcoming, we propose a new notion of GSP, coined robust group
strategy-proofness (RGSP). We follow the Wilson doctrine, which refers to the vision, ar-
ticulated in Wilson (1987), that economic theory should not rely heavily on the common

3We note here that our notion of GSP depends only on the ordinal (not cardinal) utility rankings over
outcomes.
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knowledge assumption. As in Bergemann and Morris (2005), we allow agents to have
any belief regarding others’ types. The key requirement for a blocking coalition is that its
members must be able to rationalize their collusive agreement. Specifically, any coali-
tion member should have a type who improves under the new arrangement for some
belief of hers. In our terminology, such a type provides one tier of reasoning for the col-
lusion. Furthermore, this type should be able to justify her belief. This means that the
support of the belief should include only those who can provide one tier of reasoning for
the collusion. In this case, we say the type provides two tiers of reasoning for the collu-
sion. Continuing with the same logic, a type provides k+ 1 tiers of reasoning if the type
improves by colluding over truth telling for some belief whose support is over those who
can provide k tiers of reasoning. If each coalition member is able to provide infinite tiers
of reasoning for the collusion, we say the coalition rationalizes the collusion. A rule sat-
isfies RGSP if no coalition can rationalize any collusion. Thus, our notion ensures that
no group agrees to deviate from truth telling regardless of beliefs.

Unlike GSP, our notion does not require that the members of any blocking coalition
have degenerate and identical beliefs about others’ types. Consequently, RGSP is much
more stringent than GSP, which in turn is more demanding than SP. This raises a ques-
tion: How common are robust group strategy-proof rules? To provide an answer, we
consider some classic settings with well-known rules satisfying GSP.

We first investigate the provision of a single public good, for which agents must split
the cost. Here, we find that the Minimum Demand rule with equal cost-sharing and
convex costs (Serizawa (1999)) satisfies RGSP when the production set of public goods
satisfies a technical condition. Specifically, the production range should be completely
closed below: All subsets must contain their infimum. For instance, this requirement is
satisfied if the range of public good production is finite.

Next, we turn to the allocation of private goods and consider the problem of allocat-
ing indivisible objects among agents with strict preferences. The DA rule satisfies RGSP
if and only if objects’ priorities are acyclic: Each object gives its highest priorities to a
fixed set of agents (although the exact order could vary from object to object) and its
lowest priorities to the remaining agents in a common order. For the other celebrated
rule in this setting—Top Trading Cycles (TTC)—the same condition is necessary but not
sufficient. Consequently, the DA rule outperforms the TTC rule in terms of RGSP.

Finally, we examine the allocation of a divisible resource on the domain of single-
peaked preferences. We find the classic uniform rule of Sprumont (1991) violates RGSP.
Thus, we widen our search for robust group strategy-proof rules to the larger class of
rules, studied by Barberá et al. (1997), that are characterized by efficiency, SP, and re-
placement monotonicity. Every rule in this class satisfies GSP, but only those that sat-
isfy free disposability4 and group replacement monotonicity are robust group strategy-
proof.

To the best of our knowledge, RGSP is the first notion of GSP from the interim per-
spective. Wilson’s seminal paper (Wilson (1978)) started the literature on core under

4Free disposal rules designate an individual who is allocated the leftover resource after satisfying the
others. See Section 3.3 for the formal definition.
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asymmetric information that also focuses on the interim stage. Although both GSP and
the core concern coalitional deviations, they are different. Deviating coalitions in the
former manipulate the revelation game through joint misreports, but they do not have
any power to change game rules. In the latter, however, any deviating coalition opts out
of the allocation process altogether and is free to allocate the coalition’s resources in any
way. On the technical side, the literature on core with asymmetric information fixes the
informational structure and the agents have common beliefs, whereas our model does
not have the common knowledge assumption.

The paper proceeds as follows: The next section describes our framework and de-
fines RGSP. Section 3 studies three different well-known settings and identifies some
rules satisfying RGSP. Section 4 discusses possible modifications of RGSP and concludes.
The Appendix contains proofs.

2. Setup

Let N = {1, � � � , n} be a finite set of agents where n ≥ 2. For each i ∈ N , let Ai be agent
i’s set of alternatives, and A = A1 × · · · × An is the set of (social) alternatives. For each
i ∈N , let Ai be a σ-algebra on Ai and �Ai be the set of probability measures on (Ai, Ai ).
Every agent i ∈N has a preference relation Ri over �Ai, and Pi and Ii stand for the strict
and the indifference part of Ri, respectively. The set of preference relations for agent i is
Ri. We assume that each Ri ∈ Ri is represented by an expected utility function. That
is, for each Ri ∈ Ri, there exists a Bernoulli utility function u

Ri
i : Ai → R such that for all

αi, α′
i ∈ �Ai,

αi Ri α
′
i ⇐⇒

∫
Ai

u
Ri
i dαi ≥

∫
Ai

u
Ri
i dα′

i.
5

The set of preference profiles is R = ×i∈NRi, and we refer to the typical element
R = (Ri )i∈N ∈ R as a state. In addition, we use the term (payoff) type Ri for agent i

whose preference relation is Ri. For each R ∈ R, i ∈ N , and S ⊆ N , we use the following
conventional notation: R−i ≡ (Rj )j �=i, R ≡ (Ri, R−i ), RS ≡ (Ri )i∈S , R−S ≡ (Ri )i /∈S , R ≡
(RS , R−S ), R−i ≡ ×j �=iRj , R ≡ Ri × R−i, RS ≡ ×i∈SRi, R−S ≡ ×i /∈SRi, and R ≡ RS ×
R−S . We sometimes write Ri1i2···im for R{i1,i2, ���,im}, Ri1i2···im for R{i1,i2, ���,im}, R−i1i2···im for
R−{i1,i2, ���,im}, and R−i1i2···im for R−{i1,i2, ���,im}.

As we indicated in the Introduction, each agent knows her own type but not neces-
sarily the other agents’ types. In other words, we are interested in the interim stage anal-
ysis in which each type Ri can have any subjective belief regarding other agents’ types.
To formalize, for each i, fix a σ-algebra Gi on R−i, and let Bi be the set of all probability
measures on (R−i, Gi ). Type Ri’s belief βi is a probability measure in Bi. We assume that
Gi includes the singleton set {R−i} for each R−i ∈ R−i, implying that all the degenerate
probability measures are in Bi. The notation Supp(βi ) stands for the support of βi.

Let X ⊆ A be the set of feasible outcomes—the social alternatives that are allowed
in the model—and x = (x1, � � � , xn ) ∈ X be a feasible outcome. If each x ∈ X is constant

5Here, the expectation is a Lebesgue integral, and u
Ri
i : Ai → R is a random variable, i.e., a Borel-

measurable function on (Ai, Ai ).



1356 Kivinen and Tumennasan Theoretical Economics 16 (2021)

across agents (i.e., if xi = xj for all i, j ∈ N), then the model features pure public goods.
We assume that there are no externalities, i.e., for each x, y ∈ X we have x Ri y if and
only if xi Ri yi.6

A rule (or social choice function) f is a function that maps each state R ∈ R to a
feasible outcome, i.e., f : R → X . The notation fi(R) indicates the alternative agent i
obtains in state R under rule f .

The planner’s goal is to implement f , but she does not know the realized state. In
this paper, we concentrate only on direct mechanisms, i.e., the planner collects type
reports from agents and determines the outcome according to f based on these reports.
We now consider the agents’ expected utilities in the interim stage depending on type

reports. For each S ⊆ N , i ∈ S, and R̃S ∈ RS , we first define the function f
R̃S
i : R−i → Ai

such that f
R̃S
i (R−i ) ≡ fi(R̃S , R−S ) for all R−i ∈ R−i. If a coalition S were to report R̃S

(regardless of its members’ types) while the others report their preferences truthfully,
then the expected utility of i ∈ S with type Ri and belief βi is

∫
R−i

u
Ri
i ◦ f R̃S

i dβi

where uRi ◦ f R̃S
i (R−i ) ≡ u

Ri
i (f R̃S

i (R−i )) for all R−i ∈ R−i.7

Before we move on, let us note that only the ordinal utility information is relevant
for the new notion we propose in the next section. We clarify this issue in Remark 2.9.
Thus, all of the examples we consider from here on will only specify preference rankings
and not utility functions.

2.1 Robust group strategy-proofness

Strategy-proofness (SP) has long been a cornerstone of mechanism design. In the direct
revelation game associated with a strategy-proof rule, truth telling is a weakly dominant
strategy.

Definition 2.1 (SP: Definition I). A rule is strategy-proof if for every R, R̃ ∈ R and i ∈N ,

f (Ri, R̃−i ) Ri f (R̃).

For strategy-proof rules, regardless of one’s belief regarding the others’ types and
regardless of the others’ strategies, one weakly prefers truth telling over any other report.
Thus, strategy-proof rules provide very strong incentives to report truthfully in the direct
revelation game associated with these rules.8 In the literature, the following technically
equivalent definition is widely used.

6This property is sometimes called selfishness.
7For the expected utility to be well-defined, it is sufficient to assume that f R̃S

i : R−i → Ai is measurable

from (R−i, Gi ) to (Ai, Ai ). Then because u
Ri
i is a random variable, the function u

Ri
i ◦ f

R̃S
i is a random

variable on (R−i, Gi ).
8There has been some recent work arguing that some strategy-proof rules work better in practice than

others. See, for instance, Saijo et al. (2007), Li (2017), and Bochet and Tumennasan (2017).
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Definition 2.2 (SP: Definition II). An agent i ∈ N manipulates f at state R ∈ R if there
exists R̃i ∈ Ri such that

f (R̃i, R−i ) Pi f (R).

A rule f is strategy-proof if no agent can manipulate it at any state.

Observe that the definition above takes the ex-post approach. Specifically, once the
state is realized each agent contemplates deviating from truth telling under the assump-
tion that the others reveal their types truthfully. Our concern is the interim stage where
each agent knows one’s own type but not that of the others. Thus, we introduce another
definition, which is also technically equivalent to Definition I.

Definition 2.3 (SP: Definition III). An agent i ∈ N subjectively manipulates f if there
exists Ri, R̃i ∈ Ri, and a belief βi ∈ Bi such that

∫
R−i

u
Ri
i ◦ f R̃i

i dβi >

∫
R−i

u
Ri
i ◦ fRi

i dβi.

A rule f is strategy-proof if no agent can subjectively manipulate it.

Here, each agent contemplates deviating from truth telling after observing her type.
As in Definition II, the deviating agent assumes that the other agents reveal their types
truthfully. We emphasize that there is no restriction on the belief one can have regarding
the others’ types. In this sense, SP is a belief-free notion.

SP does not consider the possibility of group deviations. The group version of SP
seeks to correct this oversight. The standard notion of group strategy-proofness (GSP) is
a generalization of Definition II of SP, and its roots are traced to the notions of core and
strong Nash equilibrium (Aumann (1959)). Below we state the formal definition.9

Definition 2.4 (Group Strategy-Proofness). A coalition S ⊆ N manipulates f at state
R ∈ R if there exists R̃S ∈ RS such that f (R̃S , R−S ) Pi f (R) for each i ∈ S. A rule f is group
strategy-proof if it is not manipulated by any coalition at any state.

This definition states that in the direct revelation game associated with any rule sat-
isfying GSP, no coalition improves its members by deviating from truth telling in any
realized state.10 Because GSP is a generalization of Definition II of SP, it is an ex post no-
tion. However, as we demonstrated in Example 1.1, GSP is not an interim notion: some
groups may improve over truth telling in the interim stage for rules satisfying GSP. To
remedy this problem, we propose a notion of GSP in the spirit of Definition III of SP.11

9See, for instance, Barberá et al. (2010) or Barberá et al. (2016).
10Notice that we only consider deviating coalitions in which each member is strictly better off. The

literature sometimes calls this version weak GSP. On the other hand, a rule f satisfies “strong” GSP if there
does not exist S, R ∈ R, and R̃S such that f (R̃S , R−S ) Ri f (R) for each i ∈ S and f (R̃S , R−S ) Pj f (R) for some
j ∈ S.

11To the best of our knowledge, the group equivalent of dominant strategy has not been defined. Hence,
we do not pursue a generalization of Definition I.
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In our proposed notion, agents contemplate forming coalitions to collectively de-
viate from truth telling as in GSP. Thus, the agents assume that everyone’s status-quo
behavior is truth telling. We justify this assumption as follows: our notion is more de-
manding than SP, which means that each agent realizes that truth telling is an optimal
strategy from an individual’s perspective in the absence of collusion. Therefore, when
an agent is not in a deviating coalition, she acts rationally and reports her preferences
truthfully.

We first define the analog of subjective manipulation in Definition III of SP for coali-
tional deviations. In addition, this notion needs to be belief-free. To achieve this goal, we
follow the approach used in epistemic game theory as well as in the robust mechanism
design literature.12,13 To be concrete, suppose that some coalition S, after deliberating,
agrees to some report R̃S . This means that the members of S are able to justify their
agreement to R̃S . For this, we require that the coalition members are able to provide
infinite tiers of reasoning for the collusion:

• Type Ri of agent i ∈ S is able to provide one tier of reasoning for the collusion if S
reporting R̃S improves Ri over truth telling for some belief of hers.

• Type Ri is able to provide two tiers of reasoning for the collusion if S reporting R̃S

improves Ri over truth telling for some belief of hers whose support is over those
who can provide one tier of reasoning.

• Type Ri is able to provide k (≥ 2) tiers of reasoning for the collusion if S reporting
R̃S improves Ri over truth telling for some belief of hers whose support is over those
who can provide k− 1 tiers of reasoning.

If S were to successfully commit to R̃S , then each member of S would need to provide
infinite tiers of reasoning for the collusion. We supplement this discussion with the fol-
lowing two examples.

Example 2.5. The set of agents is {1, 2} and the set of (public) alternatives is {a, b, c}.
Each agent i ∈ {1, 2} can have three preferences, Ri, R̄i, and R̃i. The rule f and the pref-
erences are as follows:

f

R2 R̄2 R̃2

R1 a a a

R̄1 a b b

R̃1 a b c

R1 R̄1 R̃1

a b c

c b

a a

R2 R̄2 R̃2

a b c

c b

a a

Observe here that rule f satisfies both SP and GSP. Suppose now that agents 1 and 2 agree
to report (R̃1, R̃2 ). Clearly, type R1 or type R2 would never agree to (R̃1, R̃2 ) because

12For instance, see Dekel and Siniscalchi (2015) and Bergemann and Morris (2005).
13One key difference is that beliefs in our case are only about the payoff types while in other literatures

they include strategies. The justification for this is that in our setting, the agents stick with truth telling due
to SP.
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they get their most preferred alternative, namely a, by reporting their type truthfully. In
other words, neither R1 nor R2 provides one tier of reasoning for (R̃1, R̃2 ). Type R̄1, on
the other hand, improves over truth telling if she believes agent 2’s type is R2. However,
because agent R2 cannot provide one tier of reasoning, R̄1 cannot provide two tiers of
reasoning for the collusion. Similar arguments show that R̄2 cannot provide two tiers of
reasoning. Let us now concentrate on R̃1, who provides one tier of reasoning for the col-
lusion if she has a belief assigning a nonzero probability to the event that agent 2’s type is
either R2 or R̄2. Unfortunately, neither R2 nor R̄2 can provide two tiers of reasoning for
the collusion, as noted above. Thus, R̃1 is unable to provide three tiers of reasoning for
her commitment to (R̃1, R̃2 ). The same analysis is true for type R̃2. Therefore, (R̃1, R̃2 )
cannot be justified. ♦

The next example shows how a group can justify a misreport.

Example 2.6. The set of agents is {1, 2, 3} and the set of (public) alternatives is
{a, b, c, d, e}. Each agent i ∈ {1, 2, 3} can have two preferences, Ri and R̃i. The rule f

and the preferences are as follows:

f

R3 R̃3

R2 R̃2 R2 R̃2

R1 a b c b

R̃1 d e d e

R1 R̃1 R2 R̃2 R3 R̃3

b d d b a c

c e a e

e e

a b

d c

Suppose that agents 1 and 2 agree to report (R̃1, R̃2 ). Observe that neither R̃1 nor R̃2 is
able to provide one tier of reasoning for (R̃1, R̃2 ). Type R1, however, can provide one tier
of reasoning if she believes that agents 2 and 3 have types (R2, R3 ). Similarly, R2 provides
one tier of reasoning with his belief that agents 1 and 3 have types (R1, R̃3 ). Then, of
course, R1 provides two tiers of reasoning for her commitment to (R̃1, R̃2 ) with the same
belief she uses in her one tier of reasoning. The same applies to R2. This way, (R1, R2 )
can provide infinite tiers of reasoning for their commitment to (R̃1, R̃2 ). Observe here
that the two agents learn each other’s type already after two tiers of reasoning once they
agree to (R̃1, R̃2 ). However, they never agree on agent 3’s type. ♦

Let us formalize the discussion above. As before, suppose that coalition S agrees to
R̃S . Fix any R̂ = ×i∈NR̂i ⊆ R with R̂i = Ri for all i /∈ S. Think of R̂ as the set of types
that can provide some tiers of reasoning for the collusion. We are looking for the set of
types that can provide the next tier of reasoning. Of course, a certain type of member of
S can provide the next tier of reasoning only if the collusion brings a better payoff than
truth telling for some belief of hers whose support is in R̂. For technical convenience, we
assume all the types of those not in S can provide the next tier of reasoning. To eliminate
the types that cannot benefit by colluding, we define an operator ξ[R̃S ] : 2R → 2R such
that ξ[R̃S ](R̂) = ×i∈Nξi[R̃S ](R̂) where for each i /∈ S,

ξi[R̃S ](R̂) = Ri
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and for each i ∈ S,

ξi[R̃S ](R̂) =
⎧⎨
⎩Ri ∈ R̂i

∣∣∣∣∣
∫
R−i

u
Ri
i ◦ f R̃S

i dβi >

∫
R−i

u
Ri
i ◦ fRi

i dβi

for some βi with Supp(βi ) ⊆ R̂−i

⎫⎬
⎭ .

Because each agent has an expected utility function, ξ[R̃S ](R̂) can be written for
each i ∈ S as follows:

ξi[R̃S ](R̂) = {
Ri ∈ R̂i | uRi

i

(
fi(R̃S , R−S )

)
> u

Ri
i

(
fi(Ri, R−i )

)
for some R−i ∈ R̂−i

}
.

As a result, the operator ξ depends only on ordinal utility rankings over alternatives.
Let us now discuss when S justifies R̃S . If a type can provide infinite tiers of reason-

ing, then the collusion must be preferable over truth telling for some belief of hers that
has a support over those who can provide infinite tiers of reasoning. Thus, the set of
types that can provide infinite tiers of reasoning is necessarily a fixed point of ξ[R̃S ]. At
the same time, a type of S’s member who is a part of any nonempty fixed point of ξ[R̃S ]
can provide infinite tiers of reasoning for R̃S with some belief whose support is over the
fixed point. Thus, ξ[R̃S ] having a nonempty fixed point is both necessary and sufficient
for S to provide infinite tiers of reasoning for the collusion. As previously noted, our ap-
proach is an adaptation of the robust mechanism design literature to our setting. Thus,
we will borrow the term “rationalization” from this point on.

Definition 2.7 (Rationalization). A coalition S rationalizes a report R̃S if there exists a
nonempty set RR̃S ∈ T such that

ξ[R̃S ]
(
RR̃S

) = RR̃S .

The operator ξ[R̃S ] does not restrict the types of those not in S. Thus, we sometimes

use abusive language and say that RR̃S
S is a fixed point of ξ[R̃S ].

Let us remark that it is possible for S to collude at R̃S even when their type is R̃S ,

i.e., R̃S ∈ RR̃S
S where RR̃S is a nonempty fixed point of ξ[R̃S ]. Here, everyone reports her

type truthfully, but each must believe that at least one other agent in S is misreporting

her type. Otherwise, we would have {R̃S } = RR̃S
S , but by the definition of ξ, ξ[R̃S ](RR̃S ) =

ξ[R̃S ]({R̃S }) = ∅, i.e., {R̃S } is not a fixed point of ξ[R̃S ].
We are now ready to introduce our notion of GSP.

Definition 2.8 (Robust Group Strategy-Proofness). A coalition S ⊆ N subjectively ma-
nipulates f if there exists R̃S ∈ RS such that S rationalizes R̃S . A rule f : R → X satisfies
robust group strategy-proofness (RGSP) if there exists no coalition S ⊆N that can subjec-
tively manipulate f .

Remark 2.9. RGSP is dependent only on ordinal (not cardinal) utility rankings over al-
ternatives. This is simply because the operator ξ is dependent only on ordinal utility
rankings. Therefore, one can think of the reports the agents submit in the direct revela-
tion mechanism as simply ordinal rankings of alternatives.
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Let us now investigate the relationship between our notion and GSP. Consider any
rule f , which violates GSP. This means that there exists a state R, a coalition S, and a
report R̃S with u

Ri
i (fi(R̃S , R−S )) > u

Ri
i (fi(R)) for all i ∈ S. Then {RS } is a fixed point of

ξ[R̃S ] because each member of S prefers R̃S to truth telling for her belief that assigns
probability 1 to R−i. Hence, RGSP implies GSP. The opposite is not true. To demonstrate
this, let us revisit the motivating example in the Introduction. Consider (R̃A, R̃B ). Ob-
serve that {(RA, RB )} is a fixed point of ξ[(R̃A, R̃B )] because both women would agree to
report (R̃A, R̃B ) if they believe that the state is either (RA, RB, RC ) or (RA, RB, R̃C ) with
equal probability. Consequently, RGSP is more demanding than GSP.

Next, we remark that if the deviations are restricted to individuals (not to coalitions),
then our definition is equivalent to SP. Each type of agent i weakly prefers truth telling to
any other report regardless of beliefs in the direct revelation game associated with any
strategy-proof rule. This means that for any R̃i, ξ[R̃i](R) = ∅. On the other hand, if a rule
is not strategy-proof, then there exists at least one state R in which some type Ri finds
it profitable to deviate to another report R̃i. Consequently, {Ri} is a fixed point of ξ[R̃i].
Hence, the rule fails RGSP. This discussion confirms our expectation that if one restricts
the size of coalitions to one, then our notion is equivalent to SP.

RGSP does not rely on the agents’ knowledge of the others’ beliefs. Thus, we are fol-
lowing the Wilson doctrine, which questions the reliance on the common knowledge
assumption. As a result, robust group strategy-proof rules are highly desirable. A poten-
tial pitfall of RGSP is that the set of rules satisfying it may be very limited. Clearly, the
dictatorship rules in the case of public good economies and the serial dictatorship rules
in the case of private good economies satisfy RGSP.14 In the next section, we consider
three settings and investigate whether some well-known rules satisfy RGSP.

3. Robust group strategy-proof rules

Before we consider how stringent RGSP is in different applications, let us introduce
some concepts that will be needed later. The first one is efficiency, which requires that
no agent can be made better off without hurting others.

Definition 3.1 (Efficiency). A rule f is efficient if for all R, there exists no y ∈ X such
that

y Pi f (R) for some i ∈N

y Rj f (R) ∀j ∈N .

The next property is nonbossiness (Satterthwaite and Sonnenschein (1981)), which
states that one cannot change the alternatives the others obtain under a rule without
affecting her own.

14A rule in a public good setting is a dictatorship if one specific agent’s top choice is always selected.
Such an agent would not be part of any colluding coalition, and so neither would any other agent. Hence,
a dictatorship satisfies RGSP. In the case of private good settings, a rule is a serial dictatorship if there is an
ordering of agents such that they choose their most preferred alternative sequentially based on availabil-
ity. Of course, the highest-ranked agent has no incentive to be a part of any blocking coalition. This then
prevents the next highest-ranked agent from colluding, and so on.
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Definition 3.2 (Nonbossiness). A rule f is nonbossy if whenever fi(R̃i, R−i ) = fi(R) for
some i ∈N , R̃i ∈ Ri and R ∈ R we have that f (R̃i, R−i ) = f (R).

Notice that nonbossiness is vacuously satisfied for public good environments.

3.1 Provision of public goods

In this subsection, we consider the public good cost-sharing problem of Serizawa (1999).
In this environment, n agents submit their preferences over the level of public good pro-
vision, which has production range Y . We assume that Y ⊆ R+ (nonnegative reals),
0 ∈ Y , and Y is compact. The public good y ∈ Y is produced at cost C(y ). We assume
that C(y ) is (strictly) increasing, convex, and C(0) = 0. For any convex subset Y ′ ⊆ Y ,
we assume that C(y ) is differentiable and has strictly positive derivative at each y ∈ Y ′.

Each agent i contributes ti ≥ 0 (transfer) to the provision of the public good. A typical
alternative for agent i is (ti, y ), and Ai = R+ ×Y is the set of alternatives. The (Bernoulli)
utility function for agent i with preference Ri is u

Ri
i : R+ × Y → R+. We assume that

u
Ri
i (·, ·) is continuous, strictly quasi-concave, and strictly monotonic in the sense that it

is decreasing in the transfer and increasing in the provision of public good.
The set of feasible outcomes is X = {(t1, t2, � � � , tn, y ) | y ∈ Y &

∑n
i=1 ti =C(y )}. A rule

f = (f1, � � � , fn, fy ) is a function mapping R to X . We will concentrate on a promi-
nent rule in the literature: the minimum demand rule with respect to the equal cost-
sharing scheme, denoted by fME. For this rule, the amount each agent pays is deter-
mined by the equal cost-sharing scheme τ : Y → R

n+ with τi(y ) = C(y )/n for all i ∈ N

and y ∈ Y . Observe here that, corresponding to the equal cost-sharing scheme, each
type Ri’s utility depends only on the provision of public good. That is, if y units of pub-
lic good are provided then Ri’s utility is v

Ri
i (y ) ≡ u

Ri
i (C(y )/n, y ). Let p(Ri ) = {y ∈ Y |

v
Ri
i (y ) ≥ v

Ri
i (y ′ ), ∀y ′ ∈ Y } be the peak correspondence. Furthermore, let p(Ri ) = infp(Ri )

and p̄(Ri ) = supp(Ri ). For the minimum demand rule, fME
y (R) = mini∈N {p̄i(Ri )}. In

summary, the minimum demand rule with respect to the equal cost-sharing scheme is
fME(R) = (C(fME

y (R))/n, � � � , C(fME
y (R))/n, fME

y (R)) for all R ∈ R.

Given the equal cost-sharing scheme, vRi
i (y ) represents an induced preference over

Y for type Ri. We abuse notation so that y ′Riy if and only if vRi
i (y ′ ) ≥ v

Ri
i (y ). We define

the following notions of single-peakedness.

Definition 3.3. Preferences Ri are weakly single-peaked if they satisfy the following:

• p(Ri ) has at most two elements and Y ∩ (p(Ri ), p̄(Ri )) = ∅.

• For all y, y ′ ∈ Y , y ′ < y ≤ p(Ri ) implies y Pi y
′.

• For all y, y ′ ∈ Y , p̄(Ri ) ≤ y < y ′ implies y Pi y
′.

Preferences Ri are single-peaked on Y if they are weakly single-peaked and |p(Ri )| = 1.

We denote single-peaked preferences and weakly single-peaked preferences (on Y )
as Rs

i and Rw
i , respectively. The analysis is greatly simplified if R = Rw. The following

lemma states that this is the case if uRi
i (·, ·) and C(·) satisfy certain properties.
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Lemma 3.4. If uRi
i (y, ti ) is continuous, strictly quasi-concave, increasing in y, and de-

creasing in ti, and C(y ) is convex on Y , then Ri is weakly single-peaked on Y . In addition,
if Y is convex, then Ri is single-peaked.

Proof. For a proof, see the Appendix.

Lemma 3.4 identifies conditions that guarantee the weak single-peakedness of pref-
erences. We thus focus on weakly single-peaked preferences. While the minimum de-
mand rule satisfies GSP, for this rule to satisfy RGSP one needs an additional restriction,
which we introduce below.

Definition 3.5. The set Y is completely closed below (CCB) if infY ′ ∈ Y ′ for all Y ′ ⊆ Y .

When Y is CCB, there is no infinite, (strictly) decreasing sequence in Y . Any finite
subset of the nonnegative real numbers is CCB. While some infinite sets (such as the
nonnegative integers) are CCB, others (such as R+) are not CCB. The following result
characterizes the RGSP of the minimum demand rule.

Proposition 3.6. For R = Rw, the minimum demand rule with respect to the equal cost-
sharing scheme satisfies RGSP if and only if Y is CCB.

Proof. For any Y ′ ⊆ Y and i ∈ N , define Ri(Y ′ ) = {Ri ∈ Ri | p(Ri ) ∩ Y ′ �= ∅, Y ′ ⊆ Y }
and R(Y ′ ) = ×iRi(Y ′ ). In words, this is the set of weakly-single peaked preferences that
have a peak in Y ′.

Necessity: Suppose Y is not CCB. Set S = {1, 2} and fix an arbitrary Y ∗ ⊆ Y with
infY ∗ /∈ Y ∗. Then, for any Ri ∈ Ri(Y ∗ ) ∩Rs

i and ε > 0, there exists y ∈ (infY ∗, infY ∗ + ε).
Furthermore, fix R̃S such that R̃i ∈ Ri(Y ∗ ) ∩Rs

i for i = 1, 2 and p̄(R̃1 ) = p̄(R̃2 ). For each
i ∈ S, set

R∗
i = {

Ri ∈ Ri

(
Y ∗)∩Rs

i | p̄(Ri ) < p̄(R̃i ) & ∀ε > 0, ∃y ∈ (
infY ∗, infY ∗ + ε

)
with p̄(R̃i ) Pi y

}

and for each i /∈ S, set

R∗
i = {

Ri ∈ Ri

(
Y ∗) ∩Rs

i | p̄(Ri ) ≥ p̄(R̃1 )
}

.

In addition, R∗ = ×i∈NR∗
i . By construction of R∗, for any R ∈ R∗, we have that

fME
y (R̃S , R−S ) = p̄(R̃1 ) = p̄(R̃2 ). Let us now consider ξ[R̃S ](R∗

S ×R−S ). Fix i ∈ S and R∗
i ∈

R∗
i . By construction, there exists y∗ ∈ (infY ∗, p̄(R∗

i )) such that p̄(R̃i )P∗
i y

∗. For j ∈ S \ {i},
let R∗

j ∈ Rj have p̄(R∗
j ) = y∗. Fix any R∗

−S ∈ R∗
−S . Observe that p̄(R∗

j ) < p̄(R∗
i ) < p̄(R∗

	 )

for all 	 /∈ S. Thus, fME
y (R∗ ) = p̄(R∗

j ) = y∗ and fME
y (R̃S , R∗

−S ) = p̄(R̃i )P∗
i f

ME
y (R∗ ). In other

words, if i with R∗
i has a belief that assigns probability 1 to the event that the others’

type is R∗
−i then i agreeing to R̃S is profitable. Thus, any R∗

i ∈ R∗
i is in ξi[R̃S ](R∗

S ×R−S ).

Consequently, ξS[R̃S ](R∗
S ×R−S ) = R∗

S . Thus, fME does not satisfy RGSP.
Sufficiency: Consider arbitrary set S, R̂S �= ∅ and R̃S ∈ RS . We will show that

ξ[R̃S ](R̂S ×R−S ) �= R̂S ×R−S . Let

Ŷ = {
y ∈ Y | y = p̄(Ri ) for some i ∈ S & Ri ∈ R̂i

}
.
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Because Y is CCB, inf Ŷ ∈ Ŷ . This further implies that there exists i ∈ S and R∗
i ∈ R̂i

with p̄(R∗
i ) = inf Ŷ . We show that R∗

i /∈ ξi[R̃S ](R̂S × R−S ). Suppose otherwise. Then
there exists R−i ∈ R̂S\{i} × R−S such that fME

y (R̃S , R−S ) P∗
i fME

y (R∗
i , R−i ). By construc-

tion, fME
y (R∗

i , R−i ) ≤ inf Ŷ = p̄(R∗
i ). By weak single-peakedness, we can dispose of the

equality case immediately. The case fME
y (R∗

i , R−i ) < inf Ŷ implies that there is an agent

j /∈ S with p̄(Rj ) < inf Ŷ . Then fME
y (R̃S , R−S ) ≤ p̄(Rj ). By weak single-peakedness,

fME
y (R∗

i , R−i ) R∗
i fME

y (R̃S , R−S ), a contradiction. Consequently, R̂S is not a fixed point

of ξ[R̃S ]. Given that S, R̃S and R̂S are selected arbitrarily, the minimum rule satisfies
RGSP.

To understand how Y being CCB guarantees the RGSP of the minimum demand
rule, consider a deviating coalition S with proposed misreport R̃S . For simplicity, let us
suppose that the agents have single-peaked preferences. To see that ξ[R̃S ] has no fixed
point, fix an arbitrary set R̂. Let us collect the peaks of those in S under preferences R̂S .
The set of peaks must contain its infimum because Y is CCB. This means that under
some preference in R̂S , someone in S must have a preference peak equal to the infi-
mum. But then she has no incentive to collude: if she believes someone outside of S
has a lower peak than she has, then under truth telling the minimum demand rule im-
plements a lower level of public good than her peak. Of course, the collusion cannot
increase the level of public good implemented by the minimum demand rule because
of the outsider’s peak. On the other hand, if she believes that no one outside of S has a
lower peak than she has then truth telling leads to the implementation of her peak. Thus,
she will not improve by colluding. Hence, ξ[R̃S ](R̂) �= R̂. Given that R̂ is an arbitrary set,
ξ[R̃S ] has no fixed point outside of the empty set.

3.2 Allocation of indivisible goods in strict preference domains

In this subsection, we focus on the allocation of indivisible objects. The set of al-
ternatives for each agent is the same and consists of m ≥ 2 indivisible objects, i.e.,
Ai = O = {0, o1, � � � , om}, where 0 is the null object. Each object o ∈ O can be allocated
to up to qo ∈ Z++ agents. For technical convenience, we set q0 = ∞. We refer to qo as
object o’s quota and the collection of quotas q = (qo )o∈O as the quota. An outcome x

is feasible if |{i ∈ N | xi = o}| ≤ qo for all o ∈ O. Agent i’s set of preferences, Ri, is the
set of all possible strict preference relations over Ai. We examine two prominent rules:
Gale’s Top Trading Cycles (TTC) and Deferred Acceptance (DA). To introduce these rules
formally, we need to define the priority functions. For each object o ∈O, a priority func-
tion πo is a bijection from N to {1, � � � , n}. We say agent i has a higher priority than j at
object o if πo(i) < πo(j). Let π ≡ (πo )o∈O . The TTC rule is efficient while the DA rule is
stable.15

Top trading cycles mechanism: A rule fTTC is a TTC rule with respect to priority π and
quota q if the outcome for a given profile R is found according the following algorithm.
In round 1, the set of active agents is N and the set of active objects is O.

15A rule f is stable if for each R, (i) fi(R) Ri 0 for each i ∈ N , and (ii) there does not exist i and o ∈ O \ {0}
such that o Pi fi(R), πo(i) <πo(j) and fj(R) = o.
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Round k: Each active agent points to her most preferred active object under R, and each
active object points to the active agent who has the highest priority among the active
agents at the object under π. Every agent who points to the null object is matched to it.
Among the unmatched active agents and active objects we look for trading cycles where
a cycle is an ordered set {i1, o1, i2, o2, � � � , ik, ok} such that for each l ∈ {1, � � � , k}, il points
to object ol while ol points to il+1 where ik+1 = i1. Each agent in any cycle is matched to
the object to which she pointed. The set of active agents at round k + 1 is modified by
eliminating the agents who are matched in round k. The set of active objects in round
k+ 1 consists of the objects that have not filled their quotas.

The algorithm stops when each agent is matched to an object (possibly the null object).

Deferred acceptance mechanism: A rule fDA is a DA rule with respect to priority π if
the outcome for a given profile R is found by the following algorithm.

Round 1: Each agent “applies” to her most preferred object. Each object o “holds” up to
a maximum of qo applicants with the highest priorities (if there are any) and rejects all
others.

Round k: Each agent whose application was rejected in the previous round applies to
her most preferred object which has not yet rejected her. Each object o considers the
pool of applicants composed of the current applicants and the agents whom o has been
holding from the previous round (if there are any). Each object o “holds” up to a maxi-
mum of qo agents in the pool who have the highest priority and rejects all others.

The algorithm stops when no applicant is rejected, and each object is assigned to the
agents whom it held at the final round.

It is well known that the two rules discussed above satisfy GSP.16 Here, we investigate
their performance in terms of RGSP. First, we point out that neither rule satisfies RGSP.

Example 3.7. Let N = {1, 2, 3} and suppose that O = {a, b, 0}. The quota for each object
other than the null object is 1. Let the object priorities and the agent preferences be
given as follows:

πa(1) <πa(2) <πa(3), πb(1) <πb(3) <πb(2),

a P1 b P1 0, b P̃1 a P̃1 0,

b P2 a P2 0, b P̃2 0 P̃2 a,

a P3 b P3 0, a P̃3 0 P̃3 b.

If agents 2 and 3 have the respective preferences of R2 and R3, then depending on agent
1’s preferences f ∈ {fDA, fTTC} returns the following outcome:

f (R1, R2, R3 ) = (a, 0, b) and f (R̃1, R2, R3 ) = (b, a, 0).

16The DA rule does not satisfy strong GSP as defined in footnote 11, but the TTC does.
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If agents 2 and 3 misreport their preferences as R̃2 and R̃3, respectively, then depending
on agent 1’s preferences the outcome is as follows:

f (R1, R̃2, R̃3 ) = (a, b, 0) and f (R̃1, R̃2, R̃3 ) = (b, 0, a).

Here, agent 3 prefers f (R̃1, R̃2, R̃3 ) to f (R̃1, R2, R3 ) while agent 2 prefers f (R1, R̃2, R̃3 )
to f (R). In other words, {(R2, R3 )} is a fixed point of ξ[(R̃2, R̃3 )]. Thus, both the TTC and
DA rules with respect to priority π do not satisfy RGSP. ♦

The preceding example leads to our next question: what conditions guarantee that
the DA and TTC rules satisfy RGSP? Given that priorities are designed by the planner,
we identify a restriction on π. We need one more definition to introduce this restriction
formally: for each agent i and object o, let Uo(i) denote the set of agents who have higher
priorities than i at o, i.e., Uo(i) ≡ {j ∈N | πo(j) <πo(i)}.

Definition 3.8 (Acyclicity). A priority function and quota pair (π, q) is acyclic if there
do not exist objects a, b and agents i, j, k satisfying the following two conditions:

(C) πa(i) <πa(j) <πa(k), and πb(k) <πb(i) or πb(k) <πb(j).

(S) There exist disjoint sets Na, Nb ⊆ N \ {i, j, k} such that Na ⊆ Ua(j), Nb ⊆ Ub(i),
|Na| = qa − 1, and |Nb| = qb − 1.

Similar acyclicity conditions have been introduced in the literature before. Ergin
acyclicity (2002), which is both necessary and sufficient for the efficiency of the DA rule,
is obtained by replacing Condition (C) in Definition 3.8 with the following condition.

(EC) πa(i) <πa(j) <πa(k), and πb(k) <πb(i).

Condition (C) is weaker than (EC). Thus, acyclicity is more stringent than Ergin
acyclicity. Kesten (2006) studied the stability of the TTC rule and identified the following
acyclicity condition as both necessary and sufficient.

Definition 3.9 (Kesten Acyclicity). A priority function and quota pair (π, q) is Kesten
acyclic if there do not exist objects a, b and agents i, j, k satisfying the following two
conditions:

(KC) πa(i) <πa(j) <πa(k), πb(k) <πb(i), and πb(k) <πb(j).

(KS) There exists a set Na ⊆ N \ {i, j, k} such that Na ⊆ Ua(i) ∪ (Ua(j) \ Ub(k)) and
|Na| = qa − 1.

Acyclicity is neither weaker nor stronger than Kesten acyclicity. Clearly, Condition
(C) is weaker than (KC). When each object has the quota of 1, both conditions (S) and
(KS) are vacuously satisfied. Hence, in such cases, acyclicity is more demanding than
Kesten acyclicity. However, when the quota is not 1 for some objects, acyclicity is some-
times satisfied whereas Kesten acyclicity is not.
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Example 3.10. Consider three objects {a, b, c, 0} with qa = qb = 1 and qc = 2, and three
agents {1, 2, 3}. The priority structures are the following:

πa(1) <πa(2) <πa(3),

πb(2) <πb(1) <πb(3),

πc(3) <πc(1) <πc(2).

Notice that (π, q) is acyclic but not Kesten acyclic. ♦

Lemma 3.11 below identifies an intuitive structure that acyclic priorities satisfy.
Specifically, for any pair of objects a and b, an acyclic priority structure divides agents
into two classes. High-ranked (low-ranked) agents, specifically those with a priority
weakly lower (strictly higher) than qa + qb, must be the same for objects a and b. Fur-
thermore, the low-ranked agents must have identical ranking across goods a and b.

Lemma 3.11. The following two statements are equivalent:

(i) A pair (π, q) is acyclic.

(ii) A pair (π, q) satisfies that for any a, b ∈O, and agent i ∈N ,

πa(i) ≤ qa + qb ⇐⇒ πb(i) ≤ qa + qb

and

πa(i) > qa + qb =⇒ πa(i) = πb(i).

Proof. For a proof, see the Appendix.

Our main results of this section relate the DA and TTC rules to acyclicity. We next
show that acyclicity is necessary for the DA and TTC rules to satisfy RGSP.

Theorem 3.12. Let f be the TTC or DA rule with respect to (π, q). If f satisfies RGSP then
(π, q) is acyclic.

Proof. Pick f ∈ {fDA, fTTC} and suppose that (π, q) is cyclic. By Lemma 3.11, there
exist a and b such that either (a) πa(	) ≤ qa + qb ⇐⇒ πb(	) ≤ qa + qb for any 	 but qa +
qb < πa(	) �= πb(	) for some 	 or (b) there exist 	 with πa(	) ≤ qa + qb < πb(	). Without
loss of generality, assume that qa ≤ qb.

Case (a). In this case, we can find j and k with qa + qb < πa(j) <πa(k) and qa + qb <

πb(k) < πb(j). Let i be the agent for whom πa(i) = qa. By assumption, πb(i) ≤ qa + qb.
Let Na = {	 ∈ N | πa(	) < qa}. The assumptions of this case allow the construction of Nb

such that Na ∩Nb = ∅, |Nb| = qb − 1 and for each 	 ∈Nb, πa(	) ≤ qa + qb ≥ πb(	).
Let R be such that all agents prefer 0 to any object in O \ {a, b, 0}. Let R−ijk be such

that a is the most preferred object for each 	 ∈ Na, b for each 	 ∈ Nb and 0 for each
	 /∈Na ∪Nb ∪ {i, j, k}.
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We now consider Rijk and R̃ijk such that

a Pi b Pi 0 and 0 P̃i a P̃i b

a Pj b Pj 0 and b P̃j 0 P̃j a

a Pk b Pk 0 and a P̃k 0 P̃k b.

Consequently, we have that

fijk(R) = (a, 0, b) fijk(R̃jk, R−jk ) = (a, b, 0)

fijk(R̃i, R−i ) = (0, a, b) fijk(R̃ijk, R−ijk ) = (0, b, a).

Observe that j prefers f (R̃jk, R−jk ) to f (R) under Rj . At the same time, k prefers
f (R̃ijk, R−ijk ) to f (R̃i, R−i ) under Rk. Thus, {Rjk} is a fixed point of ξ[R̃jk]. Conse-
quently, in this case, f does not satisfy RGSP, a contradiction.

Case (b). There must exist j with πa(j) ≤ qa + qb < πb(j) and k with πa(k) > qa +
qb ≥ πb(k). We claim that πa(j) ≤ qa. Suppose otherwise. Let i be the agent for whom
πa(i) = qa. By following the exact same steps as in case (a), we reach a contradiction.
Hence, πa(j) ≤ qa. By symmetry, πb(k) ≤ qb. Let N1 = {	 ∈ N | πa(	) ≤ qa & πb(	) >
qa + qb}. We know that j ∈ N1. Let n1 = |N1|. Pick any 	 with qa < πa(	) ≤ qa + qb. We
now claim that πb(	) ≤ qb + qa − n1. Suppose otherwise. This means that qb ≤ qb +
qa − n1 < πb(	) ≤ qa + qb. Fix an agent i ∈ N1. Then we must have that πa(i) ≤ qa <

πa(	) ≤ qa + qb < πa(k) and πb(k) ≤ qb < qa + qb − n1 < πb(	) ≤ qa + qb < πb(i). Let
Na = {i′ �= i | πa(i′ ) ≤ qa}. By construction, |Na| = qa − 1. Clearly, |Ub(	)| ≥ qa + qb − n1.
In addition, N1 ∩Ub(	) = ∅. Note here that at most qa − n1 agents in Na can have higher
priorities than 	 at b. Consequently, |Ub(	)\Na| ≥ qb +qa −n1 − (qa −n1 ) = qb. Thus, we
can construct Nb such that |Nb| = qb−1, k /∈Nb, and Nb ⊂ Ub(	)\Na. By relabeling j by 	

in the proof of part (a), we reach a contradiction. Consequently, any i′ with qb+qa−n1 <

πb(i′ ) ≤ qa +qb must have πa(i′ ) ≤ qa. Set now N2 =N1 ∪ {i′ ∈N | qb +qa −n1 <πb(i′ ) ≤
qa + qb}. Observe that |N2| = 2n1. By using the same logic as before, we can show that
for each 	 with qa < πa(	) ≤ qa + qb must have πb(	) ≤ qb + qa − 2n1. In turn, any i′ with
qb + qa − 2n1 < πb(i′ ) ≤ qa + qb must have πa(i′ ) ≤ qa. Continuing with the same logic,
we eventually find that any 	 with qa < πa(	) ≤ qa + qb must have πb(	) ≤ qb. However,
there are qb such agents. In addition, as pointed out earlier, πb(k) ≤ qb. Thus, there are
at least qb + 1 agents with the top qb priorities at b, a contradiction.

The result above highlights the importance of acyclicity for truth telling under DA
and TTC: it is impossible for either rule to satisfy RGSP when (π, q) is cyclic. We now
turn our attention to the result that the DA rule satisfies RGSP when priorities are acyclic.
First, we present the following two lemmas that are instrumental in the proof.

Lemma 3.13. Suppose (π, q) is acyclic and let a and ā be nonnull objects with the lowest
and highest quotas, respectively. For any a and agent i,

πa(i) ≤ qa + qā =⇒ πa(i) ≤ qa + qā
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and

πa(i) > qa + qā =⇒ πa(i) = πa(i).

Proof. For a proof, see the Appendix.

Lemma 3.14. Let N∗ ≡ {i ∈ N | πa(i) ≤ qa + qā} and (π, q) be acyclic. Furthermore, let a
be the most preferred object of i under some preference profile R. If πa(i) ≤ qa + qa then:

(a) fDA
i (R) is at worst the second most preferred object of i under R.

(b) fDA
i (R) = a whenever the set

Na(R, i) ≡ {
j ∈N∗ | πa(j) <πa(i) & a Rj b, ∀b ∈O

}
has no more than qa − 1 agents.

Proof. For a proof, see the Appendix.

We are now ready to present the sufficiency of acyclicity for the RGSP of the DA rule.

Theorem 3.15. If (π, q) is acyclic, then the DA rule satisfies RGSP.

Proof. Suppose the DA rule with respect to (π, q) does not satisfy RGSP. Then there
must exist S and R̃S such that S rationalizes R̃S .

Clearly, |S| �= 1; otherwise, we obtain a contradiction with the SP of the DA. We need
several steps to complete the proof.

Claim 1. If S can rationalize R̃S , then S ∩N∗ can rationalize R̃N∗∩S .

Proof of Claim 1. Let RR̃S be a fixed point of ξ[RS ]. Let S ∩ N∗ �= ∅. For each i ∈ S,
there exists Ri ∈ RR̃S such that

fDA(
R̃S , Ri

−S

)
Pi
i f

DA(
Ri

)
.

By Lemma 3.13, for each i ∈N∗, j /∈N∗ and b ∈ O,

πb(i) <πb(j).

It is easy to see that for any R and R̄−N∗ ,

fDA
N∗ (R) = fDA

N∗ (RN∗ , R̄−N∗ ).

Consequently, for each i ∈N∗ ∩ S and R−N∗ ,

fDA
N∗

(
R̃S∩N∗ , Ri

N∗\S , R−N∗
) = fDA

N∗
(
R̃S , Ri

−S

)
& fDA

N∗
(
Ri

) = fDA
N∗

(
Ri
N∗ , R−N∗

)
.

Hence, for each i ∈N∗ ∩ S and R−N∗ , we have that

fDA(
R̃S∩N∗ , Ri

N∗\S , R−N∗
)
Pi
i f

DA(
Ri
N∗ , R−N∗

)
.

Consequently, S ∩N∗ can rationalize R̃N∗∩S .
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Due to Claim 1, we can assume without loss of generality that S ⊆ N∗. In addition,
fix any RR̃S which is a fixed point of ξ[R̃S ].

Claim 2. Pick any agent i ∈ S and Ri. If there exists a such that πa(i) ≤ qa + qa and aRib

for all b then Ri /∈ RR̃S
i .

Proof of the Claim 2. We prove the claim by induction. Assume that for any j ∈ S, Rj

and b with πb(j) ≤ κ where κ < qb + qa and bRjc for all c, Rj /∈ RR̃S
j . Pick i ∈ S, Ri and a

with πa(i) = κ+ 1 and aRic for all c. Suppose Ri ∈ RR̃S
i . Then there exists R ∈ RR̃S such

that

fDA(R̃S , R−S ) Pi f
DA(R).

If κ ≤ qa − 1, then fDA
i (R) is i’s most preferred object, contradicting the relation above.

Hence, let κ ≥ qa. Let ai = fDA
i (R) and, by Lemma 3.14, ai is the second most pre-

ferred object under Ri. Thus, fDA
i (R̃S , R−S ) = a. Consider Na(R, i), which is defined

in Lemma 3.14(b). The same lemma yields that |Na(R, i)| ≥ qa. By the induction as-
sumption, Na(R, i) ∩ S = ∅. Then by Lemma 3.14(a), fDA

i (R̃S , R−S ) �= a, a contradiction.

By extending the same arguments as above, we obtain the following claim.

Claim 3. Let a+ ∈ O \ {a} be an object with qa+ ≤ qb for all b ∈ O \ {a}. Pick any agent

i ∈ S and Ri. If πa(i) ≤ qa+ + qa and aRib for all b, then Ri /∈ RR̃S
i .

Claim 4. S = ∅.

Proof of Claim 4. Suppose otherwise. Let i ∈ S be the agent with the best priority
at a among those who are in S. Let N− ≡ {j ∈ N∗ | πa(j) < πa(i)} and N+ ≡ {j ∈ N∗ |
πa(j) > πa(i)}. By construction, N− ∩ S = ∅. By Lemma 3.11, if πa(i) ≤ qa + qa+ then
πa(i) ≤ qa + qa for each a ∈O. This and Claims 2 and 3 imply i /∈ S. Thus,

πa(i) > qa + qa+ .

Because i ∈ S, there exists R ∈RR̃S such that

fDA(R̃S , R−S ) Pi f
DA(R).

Let b∗ be the most preferred object of i under R. Denote a∗ ≡ fDA
i (R̃S , R−S ). Under

the DA algorithm at profile R, a∗ rejects i.
Let us partition O into O− ≡ {a ∈ O | πa(i) > qa + qa} and O+ ≡ {a ∈ O | πa(i) ≤ qa +

qa}. By Claim 2, b∗ ∈O−.
Pick a ∈ O−. By Lemma 3.11, πa(i) = πa(i), πa(j) < πa(i) for j ∈ N− and πa(j) >

πa(i) for j ∈N+. Thus, a ∈O− rejects i only in favor of those in N−.
We now show that in the first step of the DA algorithm at R, at least one object a ∈O−

receives qa applicants in N−. Suppose otherwise. We know that eventually a∗ receives
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qa∗ applicants in N−. Thus, at some point, someone in N− must be rejected by some
object. Consider the very first step of the DA in which some agent j ∈ N− is rejected
by some object b which cannot be in O−. By then, i is still held by her most preferred
object b∗. This means b holds at least qb agents who have priorities better than qb +
qa. Consequently, b∗ will not reject any applicants who hold its first qb∗ + qb priorities.
Because b /∈ O−, πa(i) ≤ qb + qa ≤ qb∗ + qa. Given that πa(i) = πb∗(i) (recall b∗ ∈O−), we
obtain that i gets b∗ under profile R, a contradiction.

Pick any b ∈ O+. By Lemma 3.11, each j ∈ N∗ must have πb(j) ≤ qb + qa. Suppose
that someone in N∗ applies to b in the DA algorithm at a report in which the preferences
of N− are RN− . We know that at least one object a ∈ O− receives qa applicants in N− ⊂
N∗. Everyone in N− has one of b’s top qb +qa ≤ qb +qa priorities. Thus, b does not reject
any applicant in N∗ at any report in which the preferences of N− are RN− .

Consider now R and (R̃S , R−S ) in which N− reports the same preferences. Thus,
those objects in O− which receive more applicants from N− than their quotas are the
same in step 1 of the DA at the two profiles. Thus, any agent in N∗ ⊃ N− who applies to
b ∈ O+ is not rejected. Thus, the set of agents in N− who are rejected in the first step of
the DA is the same at the two profiles. In fact, this is true at any step of the DA. Hence,

fDA
N− (R) = fDA

N− (R̃S , R−S ).

Clearly, there cannot be any object a ∈ O− such that aPib
∗ and (strictly) less than qa

agents in N− get a under R. Consequently, if i was assigned to any object a ∈ O−, it is
because b∗Ria. Hence, fDA

i (R) Pi f
DA
i (R̃S , R−S ), a contradiction.

Notice that acyclicity is both sufficient and necessary for DA to satisfy RGSP. How-
ever, acyclicity is only a necessary condition for TTC to satisfy RGSP. In the following
example, we present a case in which the TTC rule violates RGSP under acyclic priorities.

Example 3.16. Recall Example 3.10. We have already pointed out that (π, q) is acyclic.
We will now show that fTTC does not satisfy RGSP in this example. We will consider a
coalition S = {1, 3} with preferences:

b R1 a R1 c R1 0

b R3 a R3 c R3 0.

Agent 2’s preferences are one of the following:

c R2 b R2 a R2 0

b R̃2 c R̃2 a R̃2 0.

Under the TTC, fTTC
1 (R1, R2, R3 ) = a, fTTC

3 (R1, R2, R3 ) = b, fTTC
1 (R1, R̃2, R3 ) = a and

fTTC
3 (R1, R̃2, R3 ) = c. Now consider the report:

b R̃1 c R̃1 a R̃1 0

a R̃3 c R̃3 b R̃3 0.
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The outcomes now change. Specifically, fTTC
1 (R̃1, R2, R̃3 ) = b, fTTC

3 (R̃1, R2, R̃3 ) = a,
fTTC

1 (R̃1, R̃2, R̃3 ) = c, and fTTC
3 (R̃1, R̃2, R̃3 ) = a.

Observe that agent 1 prefers fTTC
1 (R̃1, R2, R̃3 ) = b to fTTC

1 (R1, R2, R3 ) = a, while
agent 3 prefers fTTC

3 (R̃1, R̃2, R̃3 ) = a to fTTC
3 (R1, R̃2, R3 ) = c. Therefore, {1, 3} rational-

izes R̃{1,3}. ♦

The example above along with Theorems 3.12 and 3.15 demonstrate that the DA rule
outperforms the TTC rule in terms of RGSP: both rules do not satisfy RGSP if priorities
are cyclic. However, acyclicity is sufficient only for DA to satisfy RGSP. Consequently, DA
satisfies RGSP whenever TTC does, but the opposite is not true.

Remark 3.17. It is well known that strong GSP implies nonbossiness in this setting.17

One may wonder if RGSP also implies nonbossiness. This is not the case. To see this,
consider an example with 2 agents and 3 objects. The rule matches agent 1 to her most
preferred object but agent 2 to agent 1’s second most preferred object. This rule is bossy,
but it satisfies RGSP because agent 1 has no incentive to be in any colluding coalition.

3.3 Division of finite, divisible resources in single-peaked preference domains

In this subsection, we focus on the setting first studied in Sprumont (1991). Here, the
planner allocates a divisible, finite stock of a resource among agents with single-peaked
preferences. Specifically, �> 0 is the stock, and the set of feasible outcomes is X = {x ∈
R
n+ | ∑

i∈N xi = �}. A preference relation Ri is single-peaked over [0, �] if there exists
p(Ri ) ∈ [0, �] such that for each xi, yi ∈ [0, �], the condition yi < xi ≤ p(Ri ) or p(Ri ) ≤
xi < yi implies xi Pi yi. For each agent i ∈ N , Ri is the set of single-peaked preferences
over [0, �].

A rule that is central in this model is the so-called Uniform rule, denoted f u and
defined for each R ∈ R and each i ∈N as

f ui (R) =

⎧⎪⎪⎨
⎪⎪⎩

min
{
p(Ri ), λ

}
if

∑
i∈N

p(Ri ) ≥�

max
{
p(Ri ), λ

}
if

∑
i∈N

p(Ri ) ≤�

where λ solves
∑

i∈N fui (R) =�.
Sprumont (1991) shows that the only rule that satisfies efficiency, SP, and equal treat-

ment of equals is the uniform rule.18 Furthermore, this rule is group strategy-proof.
However, we show below that the uniform rule fails RGSP.

Example 3.18. Let N = {1, 2, 3} and � = 13. Let us now show that f u fails RGSP. Let
p(R1 ) = 2 and p(R2 ) = 7. If p(R3 ) = 3, then f u(R1, R2, R3 ) = (3, 7, 3). When p(R̃3 ) = 5,
we have f u(R1, R2, R̃3 ) = (2, 6, 5). Suppose that agents 1 and 2 report R̃1 and R̃2, re-
spectively, so that p(R̃1 ) = 1.5 and p(R̃2 ) = 7.5. Then f u(R̃1, R̃2, R3 ) = (2.5, 7.5, 3) and

17See Pápai (2000).
18A rule f satisfies the equal treatment of equals if whenever Ri = Rj for any i, j ∈ N , and R, fi(R) = fj(R).
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f u(R̃1, R̃2, R̃3 ) = (1.5, 6.5, 5). Clearly, agent 1 prefers f u(R̃1, R̃2, R3 ) = (2.5, 7.5, 3) to
f u(R1, R2, R3 ) = (3, 7, 3), and agent 2 f u(R̃1, R̃2, R̃3 ) = (1.5, 6.5, 5) to f u(R1, R2, R̃3 ) =
(2, 6, 5). Thus, {(R1, R2 )} is a fixed point of ξ[(R̃1, R̃2 )]. Hence, f u violates RGSP. ♦

Due to the negative result above, we search for robust group strategy-proof rules
within a larger class of rules that are known to satisfy GSP. Barberá et al. (1997) study the
class of rules characterized by SP, efficiency, and replacement monotonicity.19

Definition 3.19 (Replacement Monotonicity (Barberá et al. (1997))). A rule f satisfies
replacement monotonicity if whenever fi(R̃i, R−i ) ≥ fi(R) for some i, R, and R̃i,

fj(R̃i, R−i ) ≤ fj(R), ∀j �= i.

As Barberá et al. (1997) demonstrate, replacement monotonicity implies nonbossi-
ness. In addition, it is well known that any rule satisfying all of efficiency, SP, and replace-
ment monotonicity is group strategy-proof. Because the uniform rule satisfies replace-
ment monotonicity, Example 3.18 shows that efficiency, SP, and replacement mono-
tonicity together do not imply RGSP. To understand why this is the case, let us inves-
tigate Example 3.18 closely. There, agent 3’s preference peak determines whether the
sum of the agents’ peaks strictly exceeds � (overdemanded case) or is strictly less than
� (underdemanded case). This leads to a possibility in which a joint misreport of agents
1 and 2 helps agent 1 in an underdemanded case and agent 2 in an overdemanded case.
This suggests that either the overdemanded or under-demanded cases need to be ruled
out. In a literal sense, we cannot achieve this, but one can manufacture a similar situa-
tion by appointing one agent who is allocated the “leftover” resource after satiating the
remaining agents. This way the agents other than the unlucky one never get (strictly)
more resource than their peak. We call such rules free disposal rules.

Definition 3.20 (Free Disposal Rule). A rule f is a free disposal rule if there exists i∗ ∈ N

such that

fi∗(R) = max
{

0, �−
∑
i �=i∗

p(Ri )

}
.

We now show that any rule satisfying RGSP, efficiency, and replacement monotonic-
ity is a free disposal rule.

Theorem 3.21. If some rule f satisfies RGSP, efficiency, and replacement monotonicity
then f is a free disposal rule.

Proof. For a proof, see the Appendix.

We next demonstrate that free disposability along with efficiency, SP, and replace-
ment monotonicity does not lead to RGSP. The following example illustrates this point.

19This is the class of sequential allotment rules. See Barberá et al. (1997) for the formal definition.
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Example 3.22. N = {1, 2, � � � , 5} and � = 20.

Case 1: If
∑4

i=1 p(Ri ) < 20, then

fi(R) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p(Ri ) if i = {1, � � � , 4}

20 −
4∑

j=1

p(Rj ) if i = 5.

Case 2: If
∑4

i=1 p(Ri ) ≥ 20, then

f1(R) = min
{
p(R1 ), 7 + max

{
0, 3 −p(R3 )

} + max
{

0, 10 −p(R2 ) −p(R4 )
}}

f2(R) = min
{
p(R2 ), 7 + max

{
0, 3 −p(R4 )

} + max
{

0, 10 −p(R1 ) −p(R3 )
}}

f3(R) = min
{
p(R3 ), max

{
3, 20 − min

{
10, p(R2 ) +p(R4 )

} − f1(R)
}}

f4(R) = min
{
p(R4 ), max

{
3, 20 − min

{
10, p(R1 ) +p(R3 )

} − f2(R)
}}

f5(R) = 0.

The rule above can be interpreted as follows: 7 units of resource are earmarked for each
of agents 1 and 2, and 3 units for each of agents 3 and 4. If either agent 1 or 3 demands
less than her earmarked amount (i.e., the agent’s preference peak is less the earmarked
amount), then the other’s earmarked amount increases by the difference. The same ap-
plies to agents 2 and 4. If the total demand of agents 1 and 3 is less than 10 units, first
increase agent 2’s earmarked amount by the difference and then agent 4’s if 2 demands
less than her new earmarked amount. If agents 2 and 4 demand less than 10, then a sim-
ilar scenario unfolds starting with agent 1’s and then with 3’s earmarked amount. If the
total demand of the first four agents is less than 20, then agent 5 is allocated the excess
supply.

Clearly, f is a free disposal rule, but it does not satisfy RGSP, which we show below.
Suppose that p(R1 ) = 7, p(R2 ) = 5, p(R3 ) = p(R4 ) = 5, p(R5 ) = 0, p(R̃1 ) = 5 and

p(R̃2 ) = 7. Then

f (R1, R2, R3, R4, R5 ) = (7, 5, 3, 5, 0) and f (R̃1, R̃2, R3, R4, R5 ) = (5, 7, 5, 3, 0).

If agents 3 and 4 report their preferences as R̃3 and R̃4 where p(R̃3 ) = p(R̃4 ) = 4, then

f (R1, R2, R̃3, R̃4, R5 ) = (7, 5, 4, 4, 0) and f (R̃1, R̃2, R̃3, R̃4, R5 ) = (5, 7, 4, 4, 0).

Clearly,

f (R1, R2, R̃3, R̃4, R5 ) P3 f (R1, R2, R3, R4, R5 )

f (R̃1, R̃2, R̃3, R̃4, R5 ) P4 f (R̃1, R̃2, R3, R4, R5 ).

Thus, {(R3, R4 )} is a fixed point of ξ[(R̃3, R̃4 )] yielding that f fails RGSP. ♦
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The rule considered in the example above fails RGSP for the following reason: the
total allocation to agents 1, 2, and 5 is the same for profiles (R1, R2, R3, R4, R5 ) and
(R̃1, R̃2, R3, R4, R5 ), but the allocations to agents 3 and 4 differ for the above mentioned
two profiles even though their preferences remain unchanged. One of them is better
off while the other is worse off under one preference profile, but the situation reverses
under the other profile. Thus, agents 3 and 4 want to avoid such risks, which is accom-
plished through a joint misreport. As we will see next, if a rule is to satisfy RGSP then the
scenario we have just described cannot occur. In fact, whenever some group’s total al-
location increases with a preference change of the group, each remaining agent should
receive less of the resource.

Definition 3.23 (Group Replacement Monotonicity). A rule f is group replacement
monotonic if whenever

∑
i∈S fi(R̃S , R−S ) ≥ ∑

i∈S fi(R) for some S ⊆ N , R, and R̃S we
have that fj(R̃S , R−S ) ≤ fj(R), ∀j ∈ N \ S.

Clearly, group replacement monotonicity is more demanding than replacement
monotonicity. We next show that RGSP along with efficiency, SP, and replacement
monotonicity implies group replacement monotonicity.

Theorem 3.24. Any rule f that satisfies RGSP, efficiency, and replacement monotonicity
must satisfy group replacement monotonicity.

Proof. For a proof, see the Appendix.

We are finally ready to show that efficiency, SP, group replacement monotonicity, and
free disposal are sufficient for RGSP.

Theorem 3.25. Suppose that f satisfies all of efficiency, strategy-proofness, group re-
placement monotonicity, and free disposal. Then f satisfies RGSP.

Proof. Let i∗ be the agent with fi∗(R) = max{0, �−∑
i �=i∗ p(Ri )} for all R. Let us denote

N \ {i∗} by N∗. Suppose that f fails RGSP.

Claim 1. There exists S and R̃S such that |S| ≥ 2, S ⊂ N∗ and RR̃S �= ∅, which is a fixed
point of ξ[R̃S ].

Proof of Claim 1. Because f is not robust group strategy-proof, there must exist S̄ and
R̄S̄ such that RR̄S̄ �= ∅ is a fixed point of ξ[R̄S̄ ]. If i∗ /∈ S̄, then we are done. Suppose i∗ ∈ S̄.

Because f is strategy-proof, |S̄| ≥ 2. For each i ∈ S̄, fix any Ri ∈ RR̄S̄
i . Then there exists

Ri
−i ∈ RR̄S̄

−i such that

f
(
R̄S̄ , Ri

−S̄

)
Pi f

(
Ri, R

i
−i

)
. (1)
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Fix R∗
i∗ with p(R∗

i∗ ) = 0. Because f is a free disposal rule, f (Ri, Ri
−i ) = f (Ri, R∗

i∗ , Ri
N∗\{i} )

and f (R̄S̄ , Ri
−S̄

) = f (R̄S̄\{i∗}, R
∗
i∗ , Ri

−S̄∪{i∗}
). Thus, for agent i of type Ri,

f
(
R̄S\{i∗}, R

∗
i∗ , Ri

−S̄∪{i∗}

)
Pi f

(
Ri, R

∗
i∗ , Ri

N∗\{i}

)
.

The proof is complete once we set S = S̄ \ {i} and R̃S = R̄S̄\{i∗}.

Claim 2. Fix R∗ with p(R∗
i ) = � for all i. There exists S ⊂ N∗ and R̃S such that R∗

S ∈ RR̃S
S

where RR̃S
S is a fixed point of ξ[R̃S ]. In addition, for each i ∈ S, there exists Ri

−S with

f
(
R̃S , Ri

−S

)
Pi f

(
R∗
S , Ri

−S

)
.

Proof of Claim 2. By Claim 1, there exist S ⊂ N∗, R̃S , and RR̃S �= ∅ such that RR̃S is a

fixed point of ξ[R̃S ]. Fix any i ∈ S and Ri ∈ RR̃S
i . There exists Ri

−i ∈ RR̃S
−i such that

f
(
R̃S , Ri

−S

)
Pi f

(
Ri, R

i
−i

)
. (2)

Because f is a free disposal, efficient rule, for (2) to hold, it must be that p(Ri ) +∑
j∈N∗\{i} p(Ri

j ) >� and p(Ri ) > fi(Ri, Ri
−i ). In addition, (2) and the single-peakedness

of preferences yield fi(R̃S , Ri
−S ) > f (Ri, Ri

−i ). Furthermore, because p(R∗
i ) ≥ p(Ri ) >

fi(Ri, Ri
−i ), f (R∗

i , Ri
−i ) = f (Ri, Ri

−i ) (Lemma A.1(b)). As a result,

f
(
R̃S , Ri

−S

)
P∗
i f

(
R∗
i , Ri

−i

)
.

This proves that R∗
S ∈ RR̃S

S . Consider f (Ri, R∗
S\{i}, R

i
−S ). By replacing Ri

j by R∗
j sequen-

tially for each j ∈ S \ {i} and by using replacement-monotonicity and Lemma A.1(c), we
obtain that

fi
(
Ri, R

i
−i

) ≥ fi
(
Ri, R

∗
S\{i}, R

i
−S

)
.

We know that p(R∗
i ) ≥ p(Ri ) > fi(Ri, Ri

−i ). By Lemma A.1(b),

f
(
R∗
S , Ri

−S

) = f
(
Ri, R

∗
S\{i}, R

i
−S

)
.

Consequently,

f
(
R̃S , Ri

−S

)
P∗
i f

(
R∗
S , Ri

−i

)
.

This completes the proof. We are finally ready to prove the theorem.

Thanks to Claim 2, fix S ⊂N∗, R̃S and Ri
−S such that for all i ∈ S,

f
(
R̃S , Ri

−S

)
Pi f

(
R∗
S , Ri

−S

)
. (3)

Consider
∑

j∈N\S fj(R∗
S , Ri

−S ). Let j∗ be the agent in S such that

∑
j∈N\S

fj
(
R∗
S , Rj∗

−S

) ≥
∑

j∈N\S
fj

(
R∗
S , Ri

−S

)
, ∀i ∈ S.
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By group replacement monotonicity, it must be that

fj
(
R∗
S , Rj∗

−S

) ≤ fj
(
R∗
S , Ri

−S

)
, ∀j, i ∈ S. (4)

Furthermore, we know that

p(R̃i ) ≤ p
(
R∗
i

)
, ∀i ∈ S

and

fj∗
(
R̃S , Rj∗

−S

)
> fj∗

(
R∗
S , Rj∗

−S

)
.

Clearly, (R∗
S , Rj∗

−S ) is an overdemanded case. However, for the last inequality to hold,

there must exist some ĵ ∈ S (ĵ �= j∗) with

p(R̃ĵ ) < fĵ
(
R∗
S , Rj∗

−S

)
.

By combining this with (4), we have that

p(R̃ĵ ) < fĵ
(
R∗
S , Rj∗

−S

) ≤ fĵ
(
R∗
S , Rĵ

−S

)
.

Efficiency (if there is an overdemand) or the fact that ĵ �= i∗ imply that

fĵ
(
R̃S , Rĵ

−S

) ≤ p(R̃ĵ ) < fĵ
(
R∗
S , Rĵ

−S

) ≤ p
(
R∗
ĵ

)
.

By single-peakedness, we have

f
(
R∗
S , Rĵ

−S

)
P∗
ĵ
f
(
R̃∗
S , Rĵ

−S

)

which contradicts (3). Thus, f must satisfy RGSP.

The theorem above shows that any robust group strategy-proof rule in the class of
rules satisfying SP, efficiency, and replacement monotonicity must satisfy the additional
requirements of group replacement monotonicity and free disposability. The new re-
quirements are restrictive but many rules satisfy them (along with efficiency and SP).
For instance, consider the following rule: first appoint an agent who is allocated 0 or the
leftover stock depending on whether the other agents can be fully satiated. If the others
demand more than the total stock, then use the uniform rule to determine the allocation
among these lucky agents.20

4. Discussion and conclusion

We have proposed a new notion of GSP, RGSP, that takes into account asymmetric infor-
mation about types. While our notion is belief-free, one could think of various notions
of GSP in the interim stage by placing requirements on the beliefs of the members of
a blocking coalition. A natural restriction is to assume that the agents have common

20Here, the uniform rule can be replaced by any fixed path rule of Moulin (1999).
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beliefs, in which case the new definition of interim GSP would require that no coali-
tion profit by deviating from truth telling for any common belief. However, this ap-
proach has its own problem: because expected utilities are used, the Bernoulli utilities
become very important. To be specific, recall that Ann and Beth were able to collude
in Example 1.1. However, now change the example by altering the Bernoulli utilities to
uA(b) = uB(a) = 4. Then, as long as Ann and Beth have a common belief, they cannot
collude at (R̃A, R̃B ) and improve. Thus, the new notion of GSP would depend on cardi-
nal utilities, which is somewhat unsatisfactory. This discussion demonstrates potential
challenges of defining interim notions of GSP under the common knowledge assump-
tion.

Another natural way to modify RGSP is to consider the information blocking coali-
tions share. In our notion, the deviating coalition members rationalize their coopera-
tion but do not explicitly share any information. One possible requirement is that the
blocking coalition members reveal their types to each other truthfully.21 Clearly, such a
modification should enlarge the set of rules satisfying the new version of RGSP. However,
this does not happen in some of the settings and rules we consider in this paper.22

One open question is whether the rules satisfying RGSP and GSP coincide under
certain conditions. Specifically, it is desirable to identify sufficient conditions on the
rules or the preference domain that guarantee the equivalence of robust group strategy-
proof and group strategy-proof rules in general environments as Barberá et al. (2016) do
for the equivalence of SP and GSP. We leave this question for future research.

Appendix

A.1 Proofs

Proof of Lemma 3.4. To prove this lemma, it suffices to show that v
Ri
i (·) is strictly

quasi-concave on Y . Fix any λ ∈ (0, 1) and y, y ′ ∈ Y such that λy+ (1−λ)y ′ ∈ Y . Because
ui is strictly quasi-concave, we have

u
Ri
i

(
λC(y )/n+ (1 − λ)C

(
y ′)/n, λy + (1 − λ)y ′)> min

{
u
Ri
i

(
C(y )/n, y

)
, uRi

i

(
C

(
y ′)/n, y ′)}.

The convexity of C(y ) and the assumption that ui is strictly decreasing ti imply that

u
Ri
i

(
C

(
λy + (1 −λ)y ′)/n, λy + (1 −λ)y ′) ≥ u

Ri
i

(
λC(y )/n+ (1 −λ)C

(
y ′)/n, λy + (1 −λ)y ′).

The two inequalities above along with the definition of vRi
i (·) imply that vRi

i is strictly
quasi-concave.

21In this case, the credibility issue will arise.
22Formally, a rule f satisfies fine robust group strategy-proofness (FRGSP) if there is no S, RS , R̃S and

(Ri
−S )i∈S such that ui(f (R̃S , Ri

−S ), Ri ) > ui(f (RS , Ri
−S ), Ri ) for all i ∈ S. Acyclicity remains the necessary and

sufficient condition for DA to satisfy FRGSP while it is only necessary for TTC. Within the class of efficient,
strategy-proof, and replacement monotonic rules, only the group replacement monotonic, free disposal
rules satisfy FRGSP. These results can be provided upon request.
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Proof of Lemma 3.11. (i) =⇒ (ii): Fix any a, b ∈O\0 and pick i with πa(i) ≤ qa+qb. In
contrast to the lemma, suppose πb(i) > qa +qb. Then there exists k with πa(k) > qa +qb
but πb(k) ≤ qa + qb. First let us show that πa(i) = qa + qb and πa(k) = qa + qb + 1. In
contrast assume that πa(i) < qa + qb or πa(k) > qa + qb + 1. Then let j be the agent with
πa(j) = max{πa(i) + 1, qa}. Observe that j �= k. Pick now a set Na ⊂ Ua(j) \ {i, j, k} with
|Na| = qa − 1. Consider the set Ub(i) which satisfies |Ub(i)| ≥ qa + qb. As a result,

∣∣Ub(i) \ (
{i, j, k} ∪Na

)∣∣ ≥ qa + qb − 2 − (qa − 1) = qb − 1.

Thus, we can find Nb ⊆ Ub(i) \ {i, j, k} such that Nb ∩ Na = ∅ and |Nb| = qb − 1. Con-
sequently, i, j, k and a, b satisfy both (C) and (S). This contradicts (π, q) is acyclic.
Thus, πa(i) = qa + qb and πa(k) = qa + qb + 1. Also, the same proof implies that
πb(k) = qa + qb and πb(i) = qa + qb + 1. Furthermore, for any i′, πa(i′ ) < qa + qb if and
only if πb(i′ ) < qa +qb. Pick k∗ with πb(k∗ ) = qa +qb − 1. Observe that πa(k∗ ) < qa +qb.
Thus, πa(k∗ ) ≤ qa+qb−1 <πa(i) <πa(k) and πb(k∗ ) = qa+qb−1 <πb(k) <πb(i). Fur-
thermore, observe that |Ua(i) \ {i, k, k∗}| = |Ub(k∗ ) \ {i, k, k∗}| = qa +qb − 2. We can thus
find disjoint sets N̄a ⊂ Ua(i) and N̄b ⊂ Ub(k∗ ) such that |N̄a| = qa − 1 and |N̄b| = qb − 1.
Then i, k, k∗, N̄a and N̄b satisfy both (C) and (S). This contradicts the acyclicity of (π, q).

We now show that πa(i) > qa+qb implies πa(i) = πb(i). Suppose otherwise. Because
of the first part of this lemma, there must exist j and k with qa + qb < πa(j) <πa(k) and
qa + qb < πb(k) <πb(j). Let i be the agent with πb(i) = qa + qb. By the first part, πa(i) ≤
qa + qb. Consider i, j, k, a and b, and note that condition (C) is satisfied because πa(i) <
πa(j) < πa(k) and πb(k) < πb(j). In addition, πa(k) > πa(j) > qa + qb ≥ πa(i) implies
|Ua(j)| ≥ qa + qb − 1. At the same time, πb(j) > πb(k) > qa + qb = πb(i) implies that
|Ub(i)| = qa +qb −1. Thus, we can find disjoint sets Na ⊂ Ua(j) and Nb ⊂Ub(i) such that
|Na| = qa − 1 and |Nb| = qb − 1. Consequently, Condition (S) is satisfied contradicting
that (π, q) is acyclic.

(ii) =⇒ (i): Suppose that (π, q) is cyclic. Fix i, j, k ∈ N and a, b ∈ O satisfying con-
ditions (C) and (S). If πa(k) > qa + qb then πb(k) = πa(k) as required by (ii). In addi-
tion, (ii) gives that either πa(i) ≤ qa + qb or πa(i) = πb(i). In both cases, πb(i) < πb(k).
The same argument yields that πb(j) < πb(k). This contradicts Condition (C). Conse-
quently, πa(k) ≤ qa + qb. Then πa(j) ≤ qa + qb and πa(i) ≤ qa + qb, which, together with
(ii), implies that πb(i) ≤ qa + qb. Thus, |Ua(j)| ≤ qa + qb and |Ub(i)| ≤ qa + qb. In addi-
tion, by (ii), the first qa + qb priorities in both objects must be given to the same agents.
Thus, |Ua(j) ∪ Ub(i) \ {i, j, k}| ≤ qa + qb − 3. Then there cannot exist two disjoints sets
Na ⊆ Ua(j) \ {i, j, k} and Nb ⊆ Ub(i) \ {i, j, k} with |Na| = qa − 1 and |Nb| = qb − 1. Con-
sequently, Condition (S) is violated.

Proof of Lemma 3.13. Pick any a ∈ O and any i with πa(i) ≤ qa + qā. Because qa ≤ qā,
Lemma 3.11 yields that

πa(i) ≤ qa + qa =⇒ πa(i) ≤ qa + qa ≤ qa + qā

and

πa(i) > qa + qa =⇒ πa(i) = πa(i) ≤ qa + qā.

On the other hand, if πa(i) > qa + qā, by Lemma 3.11, πa(i) = πa(i) > qa + qā.
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Proof of Lemma 3.14. (a) If fDA
i (R) �= a, then a must reject i at some point. After-

wards, a holds qa agents who have better priorities than i at a. Let i apply to her second
most preferred object b. By Lemma 3.11, the first qa+qb priorities at both a and b belong
to the same group of agents. Given that qa of these are held by a, b does not reject any
agent who has one of its first qa + qb priorities. Hence, i is assigned to its second most
preferred object.

(b) Suppose that |Na(R, i)| ≤ qa − 1. Clearly, i cannot be rejected by a in Step 1 of
the DA algorithm. Pick any j /∈ Na(R, i) such that πa(j) < πa(i) and j prefers some ob-
ject b to a. Let N̂ ≡ {k ∈ N | πa(k) ≤ qa + qb}. Clearly, πa(j) < πa(i) ≤ qa + qb, and by
Lemma 3.11, N∗ which includes i and j holds the first qa + qb priorities at both a and b.
Suppose j is rejected from b and then applies to a. In the DA algorithm, j is rejected
only in favor of qb agents who in this case are in N̂ . However, |{k ∈ N | πa(k) <πa(i)}| ≤
qa + qb − 1. Given that qb of these agents are held by b, there can be only qa − 1 appli-
cants whose priorities are better than i’s at a. Hence, i cannot be rejected by a when j

applies to a. Given that j is picked arbitrarily, the proof is complete.

The following well-known results are used in some of the proofs in Section 3.3.

Lemma A.1. Consider the Sprumont setting. If some rule f is strategy-proof, efficient and
replacement monotonic, then f satisfies the following conditions.

(a) f is peak-only, i.e., for any two profiles R and R̃ with p(Ri ) = p(R̃i ) for all i ∈ N ,
f (R) = f (R̃).

(b) If p(Ri ) ≤ fi(R) and p(R̃i ) ≤ fi(R) for some i, R and R̃i then f (R) = f (R̃i, R−i ).
Similarly, if p(Ri ) ≥ fi(R) and p(R̃i ) ≥ fi(R) for some i, R and R̃i then f (R) =
f (R̃i, R−i ).

(c) If p(R̃i ) ≥ fi(R) ≥ p(Ri ) for some i, R and R̃i, then p(Ri ) ≤ fi(R̃i, R−i ) ≤ p(R̃i ).
Similarly, if p(R̃i ) ≤ fi(R) ≤ p(Ri ) for some i, R and R̃i, then p(Ri ) ≥ fi(R̃i, R−i ) ≥
p(R̃i ).

Proof of Theorem 3.21. We will prove the theorem in several steps.

Claim 1. If there exist Ri, Rj , Ri
−ij and R

j
−ij with fi(Ri, Rj , Ri

−ij ) > p(Ri ) and fj(Ri, Rj ,

R
j
−ij ) <p(Rj ), then fi(Ri, Rj , R

j
−ij ) = 0.

Proof of Claim 1. Suppose otherwise. Because fi(Ri, Rj , Ri
−ij ) >p(Ri ) ≥ 0 it must be

that fj(Ri, Rj , Ri
−ij ) <�. By efficiency,

fi
(
Ri, Rj , R

j
−ij

) ≤ p(Ri ) < fi
(
Ri, Rj , R

i
−ij

)

fj
(
Ri, Rj , R

j
−ij

)
<p(Rj ) ≤ fj

(
Ri, Rj , R

i
−ij

)
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and for any k ∈ N \ {i, j},

p
(
Ri
k

) ≤ fk
(
Ri, Rj , R

i
−ij

)

fk
(
Ri, Rj , R

j
−ij

)
<p

(
R
j
k

)
.

Let R̃i
−ij and R̃

j
−ij be preferences such that p(R̃i

k ) = fk(Ri, Rj , Ri
−ij ) and p(R̃

j
k ) =

fk(Ri, Rj , R
j
−ij ) for each k ∈N \ {i, j}. By Lemma A.1(b), it must be that f (Ri, Rj , Ri

−ij ) =
f (Ri, Rj , R̃i

−ij ) and f (Ri, Rj , R
j
−ij ) = f (Ri, Rj , R̃

j
−ij ). Fix ε > 0 such that p(Ri ) < fi(Ri, Rj ,

Ri
−ij ) −ε, 0 < fi(Ri, Rj , R

j
−ij ) −ε, fj(Ri, Rj , R

j
−ij ) +ε < p(Rj ) and fj(Ri, Rj , Ri

−ij ) +ε <�.

Fix R̃i and R̃j with p(R̃i ) = fi(Ri, Rj , R
j
−ij ) − ε and p(R̃j ) = fj(Ri, Rj , Ri

−ij ) + ε. Con-

sider now f (Ri, R̃j , R̃i
−ij ). By construction of ε and R̃j , we must have that p(Ri ) +

p(R̃j ) + ∑
k�=i,j p(R̃i

k ) < �. By Lemma A.1(c), efficiency and replacement monotonic-

ity, we find that fi(Ri, R̃j , R̃i
−ij ) = fi(Ri, Rj , R̃i

−ij ) − ε > p(Ri ), fj(Ri, R̃i, R̃i
−ij ) = p(R̃j )

and fk(Ri, R̃i, R̃i
−ij ) = p(R̃i

k ) for all k �= i, j. Because the preferences are single-peaked,

f (Ri, R̃j , R̃i
−ij ) Pi f (Ri, Rj , R̃i

−ij ). Finally, let us consider (R̃i, R̃j , R̃i
−ij ) which differs from

(Ri, R̃j , R̃i
−ij ) only in the preferences of i. Because p(R̃i ) < p(Ri ) < fi(Ri, R̃i, R̃i

−ij ), by

Lemma A.1(b), it must be that f (R̃i, R̃j , R̃i
−ij ) = f (Ri, R̃j , R̃i

−ij ). Consequently, we find

f (R̃i, R̃j , R̃i
−ij ) Pi f (Ri, Rj , R̃i

−ij ). By using the mirror image arguments, we find that

f (R̃i, R̃j , R̃
j
−ij ) Pj f (Ri, Rj , R̃

j
−ij ). The last two findings mean that {(Ri, Rj )} is a fixed

point of ξ[R̃ij ] contradicting the RGSP of f .

Claim 2. For each R with
∑

j∈N p(Rj ) < � there exists a unique agent iR with fiR(R) >
p(RiR ).

Proof of Claim 2. Because
∑

i∈N fi(R) = �, efficiency implies the existence of an
agent j with p(Rj ) < fj(R). In contrast to the claim suppose that there are more than
two such agents. Select any one of them randomly and denote the selected agent by i∗.
Fix ε > 0 so that mini∈{j|p(Rj )<fj(R)}{fi(R)} − 4ε > 0. Let R1 be a preference profile such
that

p
(
R1
i∗
) = fi∗(R) − 3ε

p
(
R1
i

) = fi(R) ∀i �= i∗.

Observe here that ∑
i∈N

p
(
R1
i

) =�− 3ε.

In addition, Lemma A.1(b) implies that

f
(
R1) = f (R).
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Consequently,

fi∗
(
R1) = fi∗(R) = p

(
R1
i∗
) + 3ε

fi
(
R1) = fi(R) = p

(
R1
i

) ∀i �= i∗.

Pick any j∗ �= i∗ with fj∗(R) > p(Rj∗ ) which is feasible because of the supposition. Fix a
preference profile R2 such that

p
(
R2
j∗

) = fj∗
(
R1) + 2ε

p
(
R2
i

) = fi
(
R1) ∀i �= j∗.

Observe that R2 and R1 differ only in agent j∗’s peak. In addition,
∑

i∈N p(R2
i ) =�− ε <

�. Now Lemma A.1(c), efficiency and replacement monotonicity imply that

fi∗
(
R2) = fi∗

(
R1) − 2ε= fi∗(R) − 2ε= p

(
R2
i∗
) + ε

fj∗
(
R2) = fj∗

(
R1) + 2ε= fj∗(R) + 2ε= p

(
R2
j∗

)
fi

(
R2) = fi

(
R1) = fi(R) = p

(
R2
i

) ∀i �= i∗, j∗.

Pick any agent k∗ �= i∗, j∗. Fix a preference profile R3 such that

p
(
R3
k∗

) = fk∗
(
R2) + 2ε

p
(
R3
i

) = fi
(
R2) ∀i �= k∗.

Observe that R3 and R2 differ only in agent k∗’s peak. In addition,
∑

i∈N p(R3
i ) = �+ε >

�. By Lemma A.1(c), we know that

fk∗
(
R3) ≥ fk∗

(
R2).

By replacement monotonicity we know that

fi
(
R3) ≤ fi

(
R2) ∀i �= k∗.

Given that k∗’s allocation at most increases by 2ε, i∗’s decreases by 2ε at most. Thus,
fi∗(R3 ) ≥ fi∗(R2 ) − 2ε= fi∗(R) − 4ε > 0 (by construction of ε). If fi(R3 ) < fi(R2 ) = p(R3

i )
for some i �= k∗ then we reach contradiction to Claim 1 by comparing R2 and R3. Thus,
we must have that

fi
(
R3) = fi

(
R2) = p

(
R3
i

) ∀i �= k∗, i∗. (5)

We could have reached R3 from R1 by changing k∗’s preferences first and then j∗’s. This
would give us

fi
(
R3) = p

(
R3
i

) ∀i �= j∗, i∗.
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By combining this with (5), we find that

fi
(
R3) = p

(
R3
i

) = fi(R) ∀i �= i∗, j∗, k∗

fj∗
(
R3) = p

(
R3
j∗

) = fj∗(R) + 2ε

fk∗
(
R3) = p

(
R3
k∗

) = fk∗(R) + 2ε

fi∗
(
R3) = p

(
R3
i∗
) − ε= fi∗(R) − 4ε.

Consider a preference profile R4 which satisfies

p
(
R4
i∗
) = fi∗(R) + 2ε > fi∗

(
R3)

p
(
R4
i

) = fi
(
R3) ∀i �= k∗.

The profiles R3 and R4 differ in i∗’s peak. By Lemma A.1, we know that

f
(
R4) = f

(
R3).

Consequently, fi∗(R4 ) < fi∗(R) and fj∗(R4 ) > fj∗(R). These inequalities will reverse if
we switch the places of i∗ and j∗ in the sequence of preference changes that reach R4

from R. This is the contradiction we are looking for.

Claim 3. There exists unique agent i∗ such that whenever
∑

i∈N p(Ri ) <�, fi∗(R) = �−∑
i �=i∗ p(Ri ).

Proof of Claim 3. By Claim 2 and efficiency, we know that for each R, there exists iR,
such that fiR(R) = � − ∑

i �=iR p(Ri ). To prove the current claim, it suffices to show that

for any two profiles R and R̃ with
∑

i∈N p(Ri ) <� and
∑

i∈N p(R̃i ) <� we have iR = iR̃.
Let us partition N \ {iR} into two sets: N− = {i ∈ N \ {iR} | p(R̃i ) < p(Ri )} and N+ = {i ∈
N \ {iR} | p(R̃i ) ≥ p(Ri )}. If N− �= ∅, then fix a random agent i ∈N−. Let us now consider
f (R̃i, R−i ). Because i’s preference peak decreased there is still an underdemand. Since
p(R̃i ) < p(Ri ) = fi(R), Lemma A.1(c) implies fi(R̃i, R−i ) ≤ fi(R). Then by replacement
monotonicity fiR(R̃i, R−i ) ≥ fiR(R) >p(RiR ). This immediately implies i(R̃i ,R−i ) = iR. By
changing the preferences of those in N− sequentially and using the same arguments we
find that

i(R̃N− ,R−N− ) = iR.

We now change R−N+ to R̃−N+ sequentially one agent’s preferences at a time. Observe
that along these changes we will always have an underdemand because

∑
i∈N p(R̃i ) <�.

Pick any agent i ∈N+. If p(Ri ) = p(R̃i ) then by Lemma A.1(a) and nonbossiness,

f (R̃{i}∪N− , R−{i}∪N− ) = f (R̃N− , R−∪N− ) & i(R̃{i}∪N− ,R−{i}∪N− ) = iR.

If p(Ri ) <p(R̃i ), by (b) and (c) of Lemma A.1, we find

p(Ri ) = fi(R) = fi(R̃N− , R−∪N− ) ≤ fi(R̃{i}∪N− , R−{i}∪N− ) ≤ p(R̃i ).
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Because there is an underdemand, we must have

fi(R̃{i}∪N− , R−{i}∪N− ) = p(R̃i ).

By replacement monotonicity and efficiency, we find that

fj(R̃{i}∪N− , R−{i}∪N− ) = p(R̃j ), ∀j �= iR.

Consequently,

i(R̃{i}∪N− ,R−{i}∪N− ) = iR.

By using the same arguments sequentially, we find that

i(RiR
,R̃−iR ) = iR.

Finally, because p(R̃j ) = fj(RiR , R̃−iR ) for all j �= iR, we cannot have the case in which
p(R̃iR ) > fiR(RiR , R̃−iR ) because

∑
j∈N p(R̃j ) <�. Then by Lemma A.1(b), we have that

f (R̃) = f (RiR , R̃−iR ) & iR̃ = iR.

Let i∗ be the agent for whom fi∗(R) >p(Ri∗ ) for all R with
∑

i∈N p(Ri ) <�.

Claim 4. For each R with
∑

j �=i∗ p(Rj ) <�, fi∗(R) = �− ∑
j �=i∗ p(Rj ) and fi(R) = p(Ri )

for all i �= i∗.

Proof of Claim 4. Claim 3 proves the current claim when
∑

i∈N p(Ri ) < �. In addi-
tion, efficiency yields the claim if

∑
i∈N p(Ri ) = �. Let us focus on the case in which∑

i∈N pi(Ri ) > � but
∑

i �=i∗ p(Ri ) < �. If fi∗(R) < � − ∑
i �=i∗ p(Ri ) then by feasibility,

there exists i �= i∗ with fi(R) > p(Ri ) which cannot happen when there is an overde-
mand. Hence, fi∗(R) ≥ � − ∑

i �=i∗ p(Ri ). Set N∗ ≡ {i ∈ N \ {i∗} | p(Ri ) > 0}. If N∗ = ∅,
then p(Ri∗ ) >� and p(Ri ) = 0 for all i �= i∗. This case cannot happen in our model. Sup-
pose |N∗| ≥ 2. In contrast to the claim, suppose fi∗(R) >� − ∑

j �=i∗ p(Rj ). Fix any ε > 0

such that ε < mini∈N∗{p(Ri )} and � − ∑
j �=i∗ p(Rj ) + ε < p(Ri∗ ). Let R̃i∗ be preferences

of i∗ such that p(R̃i∗ ) = � − ∑
j �=i∗ p(Rj ) + ε < p(Ri∗ ). Pick any arbitrary agent j∗ ∈ N∗.

Consider R̃j∗ with p(R̃j∗ ) = 0. We now investigate (R̃j∗ , R̃i∗ , R−i∗j∗ ) and observe that

p(R̃i∗ ) +p(R̃j∗ ) +
∑

i �=i∗,j∗
p(Ri ) = p(R̃i∗ ) +

∑
i �=i∗,j∗

p(Ri ) =�− (
p(Rj∗ ) − ε

)
<�.

By Claim 3,

fj∗(R̃j∗ , R̃i∗ , R−i∗j∗ ) = 0

fi(R̃j∗ , R̃i∗ , R−i∗j∗ ) = p(Ri ) ∀i �= i∗, j∗

fi∗(R̃j∗ , R̃i∗ , R−i∗j∗ ) = �−
∑
j �=i∗

fj(R̃j∗ , R̃i∗ , R−i∗j∗ ) >p(R̃i∗ ).
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Consider f (R̃i∗ , R−i∗ ). By construction, p(R̃i∗ ) + ∑
i �=i∗ p(Ri ) = � + ε. If fi∗(R̃i∗ , R−i∗ ) <

� − ∑
i �=i∗ p(Ri ), then by feasibility, we will have that p(Rj ) < fj(R̃i∗ , R−i∗ ) for some

j �= i∗ which cannot happen when there is an overdemand. If fi∗(R̃i∗ , R−i∗ ) > � −∑
i �=i∗ p(Ri ) > 0, then for some j ∈ N∗, p(Rj ) > fj(R̃i∗ , R−i∗ ). If j �= j∗, i∗, there would

be a contradiction with Claim 1 (compare (R̃j , R̃i, R−i∗j∗ ) and (Rj , R̃i, R−i∗j∗ ). However,
for all k∗ �= j∗, we must have that p(Rk∗ ) = fk∗(R̃i∗ , R−i∗ ). Recall that j∗ is picked arbi-
trarily from N∗ and |N∗| ≥ 2. We could have chosen some other agent in N∗. This would
give us that p(Rj∗ ) = fj∗(R̃i∗ , R−i∗ ). Consequently,

fi(R̃i∗ , R−i∗ ) = p(Ri ) ∀i �= i∗

fi∗(R̃i∗ , R−i∗ ) = �−
∑
j �=i∗

p(Rj ) <p(R̃i∗ ).

Finally, consider R which differs from (R̃i∗ , R−i∗ ) only in i∗’s preferences. We know that
p(Ri∗ ) > p(R̃i∗ ) > f (R̃i∗ , R−i∗ ). By Lemma A.1(c), we obtain that f (R) = f (R̃i∗ , R−i∗ ), a
contradiction. This proves the claim when |N∗| ≥ 2. Lastly, consider |N∗| = 1. Denote
the agent in N∗ by j∗. Because fj(R) ≤ p(Rj ) for all j (thanks to efficiency), we have that
fi(R) = 0 for all i �= i∗, j∗. If the current claim is not true, then it must be that fi∗(R) >
� − p(Rj∗ ) and fj∗(R) < p(Rj∗ ). Pick any agent i �= i∗, j∗ and fix ε > 0 such that ε < � −
p(Rj∗ ). Fix preferences of i, R̃i, such that p(R̃i ) = ε. Consider (R̃i, R−i ). By construction,
p(R̃i ) + ∑

j �=i∗,i p(Rj ) < � but p(R̃i ) + ∑
j �=i p(Rj ) > �. In addition, two agents, j∗ and

i, have peaks exceeding 0. Thus, as we showed for the |N∗| ≥ 2 case, it must be that
p(R̃i ) = fi(R̃i, R−i ) = ε > fi(R) and p(Rj∗ ) = fj∗(R̃i, R−i ) > fj∗(R). These inequalities
are incompatible with replacement monotonicity.

Claim 5. If
∑

i �=i∗ p(Ri ) >�, then fi∗(R) = 0.

Proof of Claim 5. Suppose fi∗(R) > 0. By efficiency, we know that p(Ri∗ ) ≥ fi∗(R) > 0.
Construct R̃ so that p(R̃i∗ ) = p(Ri∗ ), p(R̃i ) ≤ p(Ri ) for all i �= i∗, and

∑
i �=i∗ p(R̃i ) =�− ε

where ε < fi∗(R) ≤ p(Ri∗ ). Observe that
∑

i∈N p(R̃i ) > �. Thus, by Claim 4, fi(R̃) =
p(R̃i ) for all i �= i∗ and fi∗(R̃) = ε. Now let us change the preferences of those in N \ {i∗}
from R̃−i∗ to R−i∗ sequentially. By construction, each agent’s peak weakly increases.
Thus, whenever we change some agent’s preferences, by (b) and (c) of Lemma A.1, this
agent’s allocation weakly increases. This means that in each step, i∗’s allocation weakly
decreases by replacement monotonicity. Consequently, fi∗(R) < ε which is a contradic-
tion.

Proof of Theorem 3.24. By Theorem 3.21, there exists i∗ such that fi∗(R) = max{0,
�− ∑

j �=i∗ p(Rj )}. Fix any S, R and R̃S satisfying
∑

j∈S fj(R̃S , R−S ) ≥ ∑
j∈S fj(R).

Claim 1. If
∑

i p(Ri ) ≤� then fj(R̃S , R−S ) ≤ fj(R), ∀j ∈ N \ S.

Proof of Claim 1. Because f is a free disposal rule, efficiency implies that fi(R) =
p(Ri ) for all i �= i∗ and fi∗(R) = � − ∑

i �=i∗ fi(R). If
∑

i∈S\{i∗} p(R̃i ) + ∑
i∈−S\{i∗} p(Ri ) ≤
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�, again we have p(R̃i ) = fi(R̃S , R−S ), for all i ∈ S \ {i∗}, p(Rj ) = fj(R̃S , R−S ) for all
j ∈ N \ (S ∪ {i∗}), and fi∗(R̃S , R−S ) = � − ∑

i �=i∗ fi(R̃S , R−S ). If i∗ ∈ S, we have that

fj(R) = fj(R̃S , R−S ) for each j /∈N \S which is what we are looking for. If i∗ /∈ S, then each
j ∈N \S other than i∗ gets their peak under f (R̃S , R−S ). But because fj(R) = fj(R̃S , R−S )
for each j ∈ N \ S and

∑
i∈S fi(R̃S , R−S ) ≥ ∑

i∈S fi(R), we have that fi∗(R̃S , R−S ) ≤ fi∗(R).
Consequently, we have shown that fj(R̃S , R−S ) ≤ fj(R), ∀j ∈ N \ S if

∑
i∈S\{i∗} p(R̃i ) +∑

i∈−S\{i∗} p(Ri ) ≤ �. Finally, let
∑

i∈S\{i∗} p(R̃i ) + ∑
i∈−S\{i∗} p(Ri ) > �. Then i∗ gets

fi∗(R̃S , R−S ) = 0 ≤ fi∗(R). In addition, by efficiency fj(R̃S , R−S ) ≤ p(Rj ) = fj(R) for all
j ∈N \ (S ∪ {i∗}). This is what we are looking for.

Claim 2. If
∑

i p(Ri ) ≥ � and
∑

i∈S fi(R) = ∑
i∈S fi(R̃S , R−S ), then fj(R) = fj(R̃S , R−S )

for each j ∈N \ S.

Proof of Claim 2. Set S∗ = {j ∈ N \S : fj(R) �= fj(R̃S , R−S )}. If S∗ = ∅ then we are done.
Suppose S∗ �= ∅ which means that the claim is false. Let R1

N\S∗ and R2
N\S∗ be such that

p
(
R1
i

) = fi(R) & p
(
R2
i

) = fi(R̃S , R−S ), ∀i ∈N \ S∗.

By repeatedly using Lemma A.1(b) we obtain that

f
(
R1
N\S∗ , RS∗

) = f (R) & f
(
R2
N\S∗ , RS∗

) = f (R̃S , R−S ). (6)

By efficiency, fi(R) ≤ p(Ri ). If fj(R) = p(Rj ) for all j ∈ S∗, then efficiency and feasi-
bility imply fj(R̃S , R−S ) = p(Rj ) = fj(R) for all j ∈ S∗ which contradicts that S∗ = ∅. By
feasibility,

∑
j∈S∗ fj(R) = ∑

j∈S∗ fj(R̃S , R−S ). Consequently, it cannot be that the case in

which fj(R) < fj(R̃S , R−S ) for each j ∈ S∗. Thus, for some j ∈ S∗, fj(R̃S , R−S ) < fj(R) ≤
p(Rj ). By efficiency, we then have that fi(R̃S , R−S ) ≤ p(Ri ) for all i ∈ N . Consequently,
we have that

min
{
fj(R), fj(R̃S , R−S )

}
< max

{
fj(R), fj(R̃S , R−S )

} ≤ p(Rj ) ∀j ∈ S∗. (7)

Let R̂S∗ be such that

p(R̂j ) = (
fj(R) + fj(R̃S , R−S )

)
/2, ∀j ∈ S∗.

Due to (7), we have

min
{
fj(R), fj(R̃S , R−S )

}
<p(R̂j ) < max

{
fj(R), fj(R̃S , R−S )

} ≤ p(Rj ) ∀j ∈ S∗. (8)

In addition, ∑
j∈S∗

p(R̂j ) =
∑
j∈S∗

fj(R) =
∑
j∈S∗

fj(R̃S , R−S ).

Consider now (R1
N\S∗ , R̂S∗ ) and (R1

N\S∗ , R̂S∗ ). By construction,
∑

i∈N\S∗ p(R1
i ) +∑

i∈S∗ p(R̂i ) =� and
∑

i∈N\S∗ p(R2
i ) + ∑

i∈S∗ p(R̂i ) =�. Thus, by efficiency,

fj
(
R1
N\S∗ , R̂S∗

) = fj
(
R2
N\S∗ , R̂S∗

) = p(R̂j ), ∀j ∈ S∗.
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By combining the equation above, (6) and (8), we find that for each j ∈ S∗ with fj(R) >
fj(R̃S , R−S ),

f
(
R2
N\S∗ , R̂S∗

)
Pj f

(
R2
N\S∗ , RS∗

)
.

Similarly, for each j with fj(R) < fj(R̃S , R−S ) then

f
(
R1
N\S∗ , R̂S∗

)
Pj f

(
R1
N\S∗ , RS∗

)
.

The two relations above mean that {RS∗ } is a fixed point of ξ[R̂S∗ ] contradicting that f is
robust group strategy-proof.

Claim 3. If
∑

i p(Ri ) ≥ � and
∑

i∈S fi(R̃S , R−S ) >
∑

i∈S fi(R) then fj(R̃S , R−S ) ≤ fj(R)
for all j ∈N \ S.

Proof of Claim 3. Suppose otherwise. By efficiency, we know that fi(R̃S , R−S ) ≤
p(R̃i ) for all i ∈ S. Fix R1 be such that

p
(
R1
i

) = fi(R̃S , R−S ) ∀i ∈ S

R1
i =Ri ∀i ∈N \ S.

By repeatedly using Lemma A.1(b), we obtain that

f
(
R1) = f (R̃S , R−S ). (9)

In addition, p(R1
i ) = fi(R1 ) for any i ∈ S. Let R2 such that

p
(
R2
i

) ≤ p
(
R1
i

) ∀i ∈ S∑
i∈S

p
(
R2
i

) =
∑
i∈S

fi(R)

R2
i = Ri ∀i ∈N \ S.

We now reach R2 from R1 by sequentially changing the preferences of those in S. Be-
cause

∑
i∈S p(R2

i ) = ∑
i∈S fi(R) and fi(R) ≤ p(Ri ) for all i ∈N , at any step of this process,

there will be an overdemand. Therefore, by efficiency and strategy-proofness, the alloca-
tion of the agent whose preference peak decreases must decrease to her new peak. Then
by replacement monotonicity, the allocation of those in N \ S must weakly increase.
Hence, we find that

fj(R) = fj
(
R2) ≥ fj

(
R1) = fj(R̃S , R−S ) ∀j ∈ N \ S (10)

and

p
(
R2
i

) = fi
(
R2) ∀i ∈ S.

By construction,
∑

i∈S p(R2
i ) = ∑

i∈S fi(R) and R2
−S = R−S . Thus, by Claim 2 we must

have

fj
(
R2) = fj(R), ∀j ∈N \ S.

By combining the equation above, (9) and (10), we complete the proof.
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