
Theoretical Economics 16 (2021), 1471–1512 1555-7561/20211471

Renegotiation of long-term contracts as part of an implicit
agreement

Rumen Kostadinov
Department of Economics, McMaster University

I study a repeated principal–agent game with long-term output contracts that can
be renegotiated at will. Actions are observable but not contractible, so they can
only be incentivized through implicit agreements formed in equilibrium. I show
that contract renegotiation is a powerful tool for incentive provision, despite the
stationarity of the environment. Continuation contracts are designed to punish
deviations in noncontractible behavior. If the equilibrium actions are observed,
these contracts are renegotiated away. This form of anticipated renegotiation re-
sults in welfare improvements over outcomes attainable by one-period contracts
or by long-term contracts that are not renegotiated. When the principal is not
protected by limited liability, first-best outcomes are attainable regardless of the
impatience of the players. Equilibrium strategies are shown to satisfy various con-
cepts of renegotiation-proofness.
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1. Introduction

Long-term relationships offer two channels for incentive provision: formal and infor-
mal contracting. Formal contracts are contingent on outcomes that can be enforced in
a court of law. However, many aspects of behavior can be observable within the relation-
ship, but difficult to verify by an outside party such as the court. They can be supported
by informal contracting: implicit agreements sustained in equilibrium that reward and
punish current actions through future behavior.

Previous work on the interplay between formal and informal contracting has re-
stricted attention to formal contracts that either last for a single period or are station-
ary and cannot be renegotiated.1 This paper studies long-term formal contracts that
can be renegotiated with the consent of all parties. In this setting the renegotiation of
a formal contract becomes part of informal contracting, and it has a powerful impact
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on incentives. In efficient equilibria, the parties anticipate rewriting the future terms
of their formal contract contingent on behavior observed in the interim. Such premed-
itated renegotiation creates a welfare improvement over outcomes attainable without
renegotiation or long-term contracts.

These ideas are developed in a stylized repeated principal–agent model. A risk-
neutral principal (she) hires a risk-averse agent (he) with unbounded utility. The parties
can write long-term formal contracts contingent on the entire history of output. At the
beginning of each period, the principal offers such a contract. The agent can accept,
reject in favor of the existing contract, or take an outside option. Effort is observable
but noncontractible. After observing effort and output, the principal pays the agent the
salary specified in their current contract as well as a discretionary bonus. The model
builds on Pearce and Stacchetti (1998), where output contracts specify wages for the
current period only, leaving no scope for renegotiation.

The potential for future renegotiation combined with the unrestricted length and
history dependence of the contracts make it challenging to identify equilibrium behav-
ior. Signing a contract commits the principal to the salaries specified for the initial pe-
riod, but the remaining terms can be discarded later on if the agent accepts a new offer.
Despite this, the future terms of the contract are not rendered irrelevant by renegoti-
ation. To the contrary, they inform renegotiation, as the agent can maintain them by
refusing to renegotiate. The difficulty is that the agent’s utility following no renegoti-
ation is determined endogenously in equilibrium, and since contracts are incomplete,
multiple equilibria are possible. This challenge is amplified by the potential complexity
of the contracts the principal can offer and the contract currently in place.

The main result of this paper, Theorem 1, shows the attainability of a range of first-
best outcomes for any parameters of the model, even when the players are arbitrarily
impatient. On the equilibrium path, the players sign a two-period contract with heavily
unbalanced compensation for the second period. These inefficient terms create pun-
ishments for (off-path) deviations. On the equilibrium path, however, the inefficient
terms are never implemented, as the parties renegotiate them to the same two-period
contract.

The crucial part of the construction lies in the punishment equilibria facilitated by
the future terms. It may be intuitive to consider punishment strategies that maintain
these inefficient terms following any deviation. However, the resulting payoffs for both
players would be so low that the principal could offer a balanced contract that guaran-
tees mutual improvement. Instead, the punishments exploit the multiplicity of equilib-
ria in the subgame where the risky terms are not renegotiated. In one equilibrium, the
agent receives no bonuses and his utility is low. In another, he receives a bonus when
his contractual salary is low. This bonus has arbitrarily high marginal utility when the
salaries are sufficiently unbalanced. Thus, the rejection of a future offer can be seen as
an endogenous outside option for the agent, calibrated in equilibrium to punish either
party for their past actions. If the agent deviates, the payoff he can secure by refusing to
renegotiate is low. If the principal deviates, she receives a low payoff because the agent’s
utility following no renegotiation is high.
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Signing contracts with the expectation of their future renegotiation is an essential

feature of first-best equilibria. Proposition 2 shows that when the players are impatient,

first-best outcomes with costly effort cannot be attained by one-period contracts as in

Pearce and Stacchetti (1998) or without contractual rewriting. Thus, on-path renegotia-

tion is strictly welfare-improving. This is distinct from the usual view of renegotiation as

a response to changes in the underlying environment. Here, the production technology

is static and there is no asymmetric information, so renegotiation occurs solely for the

purpose of incentive provision.

While the first-best equilibria I construct use contracts with unfavorable future

terms, they do not rely on inefficient punishment strategies that the players would find

profitable to renegotiate. Proposition 3 shows that under the assumption of vanishing

marginal utility, efficient equilibria can satisfy two notions of renegotiation-proofness:

strong optimality (Levin (2003)) and contestable norms (Safronov and Strulovici (2018)).

I also explore an extension of the model where the principal can shut down the firm.

Unlike in the baseline model, the first best is generally not attainable, since the worst

punishments for both players are bounded below by their outside options. However,

there exists a continuation contract that can hold either player down to their respective

outside payoff in equilibrium. This makes the model equivalent to a one-period con-

tracting problem with exogenously given worst punishments, akin to standard models

in the relational contracting literature. Theorem 2 leverages this finding to provide a

recursive characterization of efficient equilibrium payoffs.

To the best of my knowledge, the only other paper to consider long-term contract

renegotiation in the presence of informal contracting is the independent and simultane-

ous work of Watson et al. (2020) (henceforth WMO). WMO’s solution concept is contrac-

tual equilibrium (Watson (2013), Miller and Watson (2013)), which leverages risk neu-

trality to develop a cooperative approach to bargaining over contracts, transfers, and

continuation strategies. In contrast, risk aversion is central to my analysis. My approach

to bargaining also differs: formal contracts are renegotiated noncooperatively, and the

renegotiation of strategies relies on equilibrium refinements distinct from contractual

equilibrium.

The comparison to WMO is discussed in more detail in Sections 3.7 and 4.4. WMO’s

main result is that without loss of generality, formal contracts signed in equilibrium are

semistationary: their terms for all non-initial periods are identical. Despite the mod-

elling differences, this is also true in my setting as well as in the extended model of

Section 4. In addition, I examine an equivalent definition of contractual equilibrium

by Miller and Watson (2013) based on axiomatic equilibrium refinements. I show that

the principal-optimal efficient equilibrium payoffs are attainable in an equilibrium that

satisfies these refinements.

I proceed by presenting the baseline model in Section 2 and analyzing it in Section 3.

The results of the extended model where the principal has limited liability are reported

in Section 4. This is followed by a literature review and a short conclusion.
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2. The model

2.1 Preferences and timing

A principal (she) and an agent (he) interact repeatedly at times t = 1, 2,.... They can
sign long-term contracts on output, which takes values in Y = {h, l} every period with
h > l ≥ 0.2 A contract is a sequence c = (ct )∞t=1 of functions ct : Yt → [0, s̄], where s̄ is an
exogenous upper bound needed to rule out Ponzi schemes (see Appendix A.1). While
contracts are infinitely long, I interpret some of them as short-term contracts as follows:
a contract c is a t-period contract if cτ(yτ ) = 0 for all τ > t and yτ ∈ Yτ .3 Let C denote the
space of all contracts.

Notation 1. For any contract c ∈ C, let sy := c1(y ) denote the contemporaneous salary
for output y and let cy denote the continuation contract following output y, i.e.,

cty(y1, � � � , yt ) = ct+1(y, y1, � � � , yt ) for all t ∈N, (y1, � � � , yt ) ∈ Yt .
At the beginning of each period, the parties inherit a residual contract c∗ that com-

priseshe remaining terms of the last contract they signed. Thus, if they sign a contract c
and output y is realized, the residual contract at the beginning of the next period is cy .
In the initial period the residual contract is the null contract 0 given by 0t(yt ) = 0 for all
t ∈ N, yt ∈ Yt .

Each period the principal and the agent play a sequential game of perfect informa-
tion. It begins with a contract offer c by the principal, which represents a proposal to
renegotiate the residual contract c∗ currently in place to c. The principal has an implicit
option to refuse renegotiation by setting c = c∗. The agent’s contract response is to ac-
cept c (A), reject c in favor of c∗ (R) or take an outside option (O).4 The outside option
terminates the relationship: the agent works for an outside employer at a constant wage
r ≥ 0 and the principal receives 0 in all subsequent periods.5

If the agent does not take the outside option, the game continues with his choice of
effort e ∈ [0, 1]. His cost of effort is given by a convex, strictly increasing, and differen-
tiable functionψ : [0, 1] →R+ withψ(0) = 0. Effort e generates output y with probability
pey = ep1

y + (1 − e)p0
y , where 0<p0

h < p
1
h < 1, 0<p1

l < p
0
l < 1, and p1

h+p1
l = p0

h+p0
l =1.

The agent is paid a wage from the contract currently in effect, amounting to sy if he
accepted the offer c and to s∗y if he rejected. Finally, having observed the contract re-
sponse, effort, and output, the principal makes a voluntary bonus payment b≥ 0 to the
agent. Figure 1 summarizes this timing and shows the continuation contract following
each stage-game history. This continuation contract becomes the residual contract in
the next period.

2When output is not binary, the results remain unchanged as long as each effort level has full support
over the realizations of output.

3It is possible to model short-term contracts explicitly by allowing them not to specify salaries past a
certain period. This change in interpretation has no effect on the results.

4Alternatively, it is possible to treat the agent’s outside option as a clause present in all contracts that
allows him to terminate the relationship at any time during the period before output is realized. This has
no effect on the results.

5The results remain unchanged if the players received their outside options for one period and continued
interacting in the next period with residual contract 0.



Theoretical Economics 16 (2021) Renegotiation of long-term contracts 1475

Figure 1. The stage game.

The per-period expected payoffs are given by

agent:
∑
y

peyu(sy + by ) −ψ(e)

principal:
∑
y

pey(y − sy − by ),

where e is the agent’s effort, sh and sl are the salaries from the contract in effect after the
negotiations, and bh and bl are the bonuses following high and low output. The agent’s
utility function u : R+ → R ∪ {−∞} is assumed strictly concave, strictly increasing, and
differentiable with u(0) = −∞ and lims→∞ u(s) = ∞. Let u−1 denote the inverse of u.

The (expected) payoffs in the game are denoted as a pair (x, v), which correspond to
the payoffs of the agent and the principal, respectively. They are given by

x= (1 − δ)
∞∑
t=1

δtxt and v= (1 − δ)
∞∑
t=1

δtvt ,

where (xt , vt ) are the payoffs in period t and δ ∈ (0, 1) is a common discount factor.6

Let � be the space of parameters θ = (Y , p0
h, p0

l , p1
h, p1

l , r, u, ψ) that satisfy the as-
sumptions of the model. In the results of the paper, θ is held fixed, while the remaining
parameters δ and s̄ may vary.

2.2 Strategies and equilibrium

Let�= C×{A, R}×[0, 1]×Y×R+ be the space of all one-period histories where no sep-
aration has occurred, and let�0 =�∪ (C× {O}) be the space of all one-period histories.

6Equal patience is assumed for expositional purposes: it is not needed for any of the results.
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A strategy for the agent is a pair of maps

σA1 :
∞⋃
t=1

�t−1 ×C → {A, R, O} and σA2 :
∞⋃
t=1

�t−1 ×C × {A, R} → [0, 1],

which specify the agent’s contract response and effort in each period t for each possible
history. A strategy for the principal is a pair of maps

σP1 :
∞⋃
t=1

�t−1 → C and σP2 :
∞⋃
t=1

�t−1 ×C × {A, R} × [0, 1] →R+.

I consider the pure-strategy subgame-perfect equilibria of this game.

2.3 Recursive characterization

It is convenient to develop a recursive characterization of equilibrium payoffs by adapt-
ing the dynamic programming methods of Abreu et al. (1990), henceforth APS. One chal-
lenge is that long-term contracts break the stationarity of the game: subgames from the
beginning of a period with different residual contracts may admit different equilibria.
However, if the residual contracts are the same, the subgames are identical, because the
history of play does not contain other payoff-relevant information. Hence, the model
represents a stochastic game where the state variable is the residual contract and next
period’s state variable is the continuation contract, as shown in Figure 1. Similarly, the
prevailing contract in any subgame from the agent’s effort determines the equilibrium
payoff set in that subgame, as reflected in the following notation.

Notation 2. The subgame from the beginning of a period with residual contract c∗ is
denoted subgame c∗. Hence, subgame 0 is the subgame from the initial period.

The subgame starting from the agent’s effort choice when contract c is in effect (either
through acceptance of an offer c or rejection in favor of a residual contract equal to c) is
denoted subgame (c, E).

Let P0 be the space of bounded correspondences 
 : C⇒ R
2. Let E ∈ P0 be the cor-

respondence describing the equilibrium payoff sets of all subgames from the start of a
period. The recursive representation decomposes payoffs in these subgames into strate-
gies for the initial period and continuation payoffs. This is accomplished through a class
of auxiliary games with structure identical to the stage game in Figure 1. Each auxiliary
game is indexed by a residual contract c∗ and a function f : �0 → R

2 that assigns con-
tinuation payoffs to each history ω such that f (ω) = (u(r ), 0) for every ω ∈�0 \�. The
payoffs of such a game (c∗, f ) at any history ω are given by

(1 − δ)(first-period payoffs in subgame c∗ following historyω) + δf (ω).

Definition 1 (Admissibility). A profile (σ , f ) of strategies σ in the stage game and a
continuation payoff function f :�0 → R

2 is admissible with respect to 
 ∈ P0 at c∗ with
value (x, v) if σ is an equilibrium of (c∗, f ) with payoffs (x, v) and f (ω) ∈ 
(c′ ) for any
ω ∈� such that the continuation contract in subgame c∗ following ω is c′.
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Let (c∗,
) denote the class of auxiliary games with residual contract c∗ and contin-
uation payoffs drawn from a payoff correspondence
 ∈ P0. An equilibrium of (c∗,
) is
defined as a strategy profile σ such that (σ , f ) is admissible with respect to 
 at c∗ for
some continuation payoff function f . In particular, an equilibrium of (c∗, E ) is an equi-
librium of subgame c∗. Let B
(c∗ ) denote the set of values of profiles admissible with
respect to 
 at c∗, i.e., the equilibrium payoff set of (c∗,
).

Definition 2. A correspondence 
 ∈ P0 is called self-generating if 
(c∗ ) ⊆ B
(c∗ ) for
all c∗ ∈ C.

Any self-generating correspondence
 can be used to construct equilibrium payoffs
as follows. Any payoff (x, v) ∈
(0) is also in B
(0) so it can be decomposed into strate-
gies for the initial period and continuation payoffs drawn from
. But then the continu-
ation payoffs following every first-period history are in B
, so they can be decomposed
into strategies for the second period and continuation payoffs. The equilibrium strate-
gies can be constructed inductively in this manner, and incentive compatibility in each
period is guaranteed by the admissibility condition. This is the self-generation result of
APS stated below.7

Proposition 1 (APS). If 
 is self-generating, then B
(c∗ ) ⊆ E(c∗ ) for all c∗ ∈ C.

Proposition 1 is used throughout Section 3 to establish the main results of this pa-
per. Unlike many applications of APS, the stage game played each period is sequential,
which complicates working with the operator B. It is thus useful to consider an interme-
diate step in its computation: finding the payoffs in the subgame starting from the effort
choice.

Let �c = {c} × {A} × [0, 1] × Y × R+ be the space of one-period histories where a
contract c has been offered and accepted. Let (c, E, fE ) denote the subgame of (c∗, f )
following the acceptance of a contract c, where fE is the restriction of f to �c . Since
the residual contract becomes payoff-irrelevant after a new one is accepted, subgame
(c, E, fE ) inherits no dependence on c∗.

Definition 3 (E-admissibility). A profile (σE , fE ) of strategies σE in the stage game fol-
lowing acceptance and continuation payoffs fE : �c → R

2 is E-admissible with respect
to 
 at c with value (x, v) if σE is an equilibrium of (c, E, fE ) with payoffs (x, v) and
fE(ω) ∈
(cy ) for any ω ∈�c , where the realized output is y.

An equilibrium of (c, E,
) is defined as a strategy profile σE such that (σE , fE ) is
E-admissible with respect to
 at c for some fE . Let B
(c, E) denote the set of values of
profiles E-admissible with respect to 
 at c. The following lemma links the equilibrium
payoffs of subgames from the beginning of a stage and from the agent’s effort. Omitted
proofs of all subsequent results are provided in the Appendix.

7See Section 5.7.1 of Mailath and Samuelson (2006).
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Lemma 1. Let c∗ ∈ C, 
 ∈ P0, and (x∗, v∗ ) ∈ B
(c∗ ). If (x, v) ∈ B
(c, E) for some c ∈ C
and (x, v) ≥ (x∗, v∗ ), then (x, v) ∈ B
(c∗ ).

The proof of Lemma 1 alters the equilibrium of (c∗,
) with payoffs (x∗, v∗ ) by having
contract c offered and accepted, after which the equilibrium of (c, E,
) with payoffs
(x, v) is played.

2.4 First-best outcomes

For each level of agent utility x, there exists a corresponding first-best payoff for the
principal, denoted by vFB(x). I assume that the agent never takes his outside option in a
first-best outcome. Thus,

vFB(x) = max
e

∑
y

peyy − u−1(x+ψ(e)
)
.

Let eFB(x) denote the associated first-best effort, which is unique since u−1 and ψ are
convex and strictly increasing, and u−1 is strictly convex. Let xFB denote the inverse of
vFB.

3. Results

The main result of this paper is the existence of first-best equilibria for any parameters
of the model, including the patience of the players, provided that the contract space is
sufficiently unrestricted.

Theorem 1. Fix any parameters θ ∈ � and δ ∈ (0, 1). For any s̄ sufficiently large, there
exists x̄≥ u(r ) such that any first-best outcome with agent utility x ∈ [u(r ), x̄] is attainable
in an equilibrium of subgame 0. Furthermore, x̄ > u(r ) if eFB(u(r ))> 0.

To attain the first best, the parties sign a contract c with an output-invariant contin-
uation contract ch = cl = c∗. Only the first-period terms of c are realized on the equi-
librium path, as the parties renegotiate c∗ to c in each subsequent period. The con-
tract c∗ plays an instrumental role in enforcing the equilibrium actions: any deviation
is punished by an adverse equilibrium for the corresponding player in the next-period
subgame c∗. The heart of the proof of Theorem 1 lies in showing that subgame c∗ ad-
mits punishment equilibria with sufficiently low payoffs for each player. Section 3.1
constructs equilibria that attain the agent’s worst payoffs. The proof is completed in
Section 3.2, where it is shown that subgame c∗ admits an arbitrarily harsh punishment
equilibrium for the principal whenever the upper bound on salaries s̄ is sufficiently high.

3.1 Agent’s worst equilibrium payoffs in key subgames

This section characterizes the agent’s worst equilibrium payoffs in subgames from the
start of a period and from his effort choice. LetU(c∗ ) be the payoff the agent can guaran-
tee in subgame c∗ if he never accepts another contract offer. Thus, U(c∗ ) is the highest



Theoretical Economics 16 (2021) Renegotiation of long-term contracts 1479

utility he can obtain by choosing each period whether to take his outside option or to ex-
ert effort, expecting the salaries from c∗ and no bonuses. If effort is chosen and output
y realizes, the agent receives s∗y and faces the same problem in the subsequent period
starting with residual contract c∗y . Hence, U solves the Bellman equation

U
(
c∗

) = max
{
UE

(
c∗

)
, u(r )

}
whereUE

(
c∗

) = max
e

∑
y

pey
[
(1 − δ)

(
u
(
s∗y

) −ψ(e)
) + δU(

c∗y
)]

. (1)

Since salaries are upper bounded by s̄ and the agent can guarantee u(r ), standard ar-
guments establish that there exists a continuous solution for U , which is unique in the
class of bounded functions on C.8 This uniquely determines the continuous function
UE .

It follows that U(c∗ ) and UE(c∗ ) are lower bounds on the agent’s equilibrium payoff
in subgames c∗ and (c∗, E), respectively. Lemma 2 below states that these bounds can
be attained in equilibrium.

Lemma 2. For any c∗ ∈ C, there exist

• an equilibrium σA(c∗ ) of subgame c∗ with agent payoff U(c∗ )

• an equilibrium σA(c∗, E) of subgame (c∗, E) with agent payoff UE(c∗ ).

The equilibrium σA(c∗ ) has payoffs (U(c∗ ), V (c∗ )), where

V
(
c∗

) =
⎧⎨
⎩

max
c
Vc

(
c∗

)
ifU

(
c∗

)
> u(r )

max
{

max
c
Vc

(
c∗

)
, 0

}
ifU

(
c∗

) = u(r )

Vc
(
c∗

) =max
e

∑
y

pey
[
(1 − δ)(y − sy ) + δV (cy )

]

such thatUE(c) ≥U(
c∗

)
(2)

UE(c) =
∑
y

pey
[
(1 − δ)

(
u(sy ) −ψ(e)

) + δU(cy )
]

(3)

and Vc(c∗ ) is set to −∞ whenever (2) does not hold. Note that the payoff functions U
and V depend on all parameters of the model θ, δ, s̄. This dependence is omitted from
the notation for simplicity.

The equilibrium σA(c∗ ) is constructed by showing that the payoff correspondence

 with 
(ĉ) = {(U(ĉ), V (ĉ))} for all ĉ ∈ C is self-generating. Hence, the continuation
equilibrium payoffs from the start of a period are fully determined by the residual con-
tract. This makes it optimal for the principal to pay no bonuses. Since the agent’s effort

8The contract space C is treated as the countable product ×∞
t=1C

t endowed with the product topology,
where Ct is the space of functions ct : Yt → [0, s̄]. This makes the functions c∗ 
→ s∗y and c∗ 
→ c∗y continuous
for all y , so the Bellman operator preserves continuity.
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does not affect his continuation payoff, he obtains UE(c∗ ) upon rejecting any contract
offer. For the same reason, he obtains UE(c) if he accepts a contract c, reflected in (3).
Given the agent’s behavior, the principal has two options in subgame c∗. First, she can
obtain Vc(c∗ ) by offering a contract c that is acceptable to the agent, i.e., it satisfies (2).
In this case, the agent receives U(c∗ ), since (2) binds due to the lack of limited liability,
reflected in the assumption u(0) = −∞. Second, if the agent cannot guarantee more
than his outside option by rejecting in favor of c∗, the principal can induce the outside
option by offering an unattractive contract, e.g., c∗. In this case, the agent also receives
his guaranteed payoff U(c∗ ), which equals u(r ).

The equilibrium strategies depend on the residual contract c∗ only through the
agent’s guaranteed payoff U(c∗ ), so the following corollary is immediate.

Corollary 1. For any c, c∗, c∗∗ ∈ C, ifU(c∗ ) =U(c∗∗ ), then V (c∗ ) = V (c∗∗ ) and Vc(c∗ ) =
Vc(c∗∗ ).

Consider any subgame c∗ and suppose there exists an equilibrium in the further sub-
game (c∗, E) following rejection, where the agent receives x∗ ≥U(c∗ ). This can be used
to modify the strategies σA(c∗ ) and obtain an equilibrium of subgame c∗ with agent pay-
off x∗. The following lemma generalizes this result to any correspondence containing
the payoffs of the equilibrium constructed to prove Lemma 2.

Lemma 3. Let c∗ ∈ C and 
 ∈ P0 such that (U(ĉ), V (ĉ)) ∈ 
(ĉ) for any ĉ ∈ C. If there
exists an equilibrium of (c∗, E,
) with agent payoff x∗ ≥U(c∗ ), then there exists an equi-
librium of (c∗,
) with agent payoff x∗.

3.2 Proof of Theorem 1

Let θ ∈ � and δ ∈ (0, 1). In what follows, θ and δ are held fixed, while s̄ is varied. The
statement of the theorem is shown for x̄= xFB(V (0)).

Case 1: eFB(u(r )) = 0. Consider a contract c with salaries ct(yt ) = r for any t ∈ N,
yt ∈ Yt . Since c exhibits constant salaries, it follows that UE(c) = u(r ) = U(c). Then
Vc(c) = ∑

y p
0
y[(1 − δ)(y − r ) + δV (c)], since ch = cl = c and the unique effort that satis-

fies (3) is e= 0. But V (c) ≥ Vc(c), so Vc(c) ≥ ∑
y p

0
y(y−r ) = vFB(u(r )), since eFB(u(r )) = 0.

Moreover, V (0) ≥ Vc(0) = Vc(c), where the equality follows from Corollary 1 and U(c) =
U(0) = u(r ). Thus, V (0) = vFB(u(r )), so x̄ = u(r ). By Lemma 2, there exists an equilib-
rium of subgame 0 with payoffs (U(0), V (0)) = (u(r ), vFB(u(r ))), as required.

Case 2: eFB(u(r ))> 0. I begin by showing that V (0) is bounded away from vFB(u(r ))
uniformly over all s̄. To see this, consider the equilibrium σA(0) with principal pay-
off V (0). Due to the agent’s outside option, the principal’s continuation payoff from
the second period is bounded above by vFB(u(r )). Thus, if V (0) is arbitrarily close to
vFB(u(r )), then the principal’s first-period payoff is arbitrarily close to vFB(u(r )) and,
consequently, the agent’s first-period effort e is arbitrarily close to eFB(u(r )). Then the
strict concavity of u implies that the agent’s first-period salaries must be arbitrarily close
to u−1(u(r ) + ψ(e)), since σA(0) prescribes no bonuses. It follows that the agent can
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deviate to zero effort to obtain approximately (1 − δ)u−1(u(r ) + ψ(e)) + δu(r ), which
exceeds his on-path payoff u(r ) when e is sufficiently close to eFB(u(r )). Hence, there
exists α > 0 such that vFB(u(r )) − V (0) > α regardless of the value of s̄. In particular,
x̄ > u(r ), as required.

To show the existence of the desired first-best equilibria, it suffices, by Proposition 1,
to show that the following correspondence
 is self-generating for all s̄ sufficiently large:


(0) = {(
x, vFB(x)

)
|u(r ) ≤ x≤ xFB(

V (0)
)} ∪ {(

u(r ), V (0)
)}



(
c∗

) =
(0) ∪ {(
x∗, vp

)}

(ĉ) = {(

U(ĉ), V (ĉ)
)}

for any ĉ ∈ C \ {
0, c∗

}
.

The idea of the construction is that in subgame 0, the parties sign a contract c with
sh = sl = 0 and ch = cl = c∗, where c∗ has contemporaneous salaries s∗h and s∗l given by

s∗h = s̄ and max
e

∑
y

peyu
(
s∗y

) −ψ(e) = u(r ), (4)

and continuation contracts c∗h = c∗l = 0. The unboundedness of the agent’s utility im-
plies that there exists s̄1 such that for all s̄ ≥ s̄1, c∗ is well defined with e = 1 solving the
maximization problem in (4). Since U(0) = u(r ), it follows that U(c∗ ) = UE(c∗ ) = u(r )
and, by Corollary 1, V (c∗ ) = V (0).

After accepting c, the agent exerts the first-best effort, receiving zero salaries from
the contract and a bonus independent of the output realization (but contingent on first-
best effort). In each subsequent period, the residual contract is c∗, and the parties obtain
the same first-best payoffs by renegotiating c∗ to c and replicating their play from the
initial period. Any deviation from the equilibrium path except for bonus payments is
followed by the agent’s worst equilibrium constructed in the proof of Lemma 2. If the
principal reneges on the bonus, the equilibrium with payoffs (x∗, vp ) is played in the
next-period subgame c∗, where

x∗ = (1 − δ)
∑
y

p1
y

(
u
(
s∗y + b∗

y

) −ψ(1)
) + δu(r ) (5)

b∗
h = 0, and b∗

l = δ

1 − δ
(
vFB(

u(r )
) − V (0)

)
. (6)

As s̄→ ∞, u(s∗h ) → ∞, since u is unbounded above. Moreover, u(s∗l +b∗
l ) ≥ u(αδ/(1−δ)).

Thus, x∗ → ∞ as s̄→ ∞. Since vp ≤ vFB(x∗ ), the principal’s punishment for reneging on
the bonus becomes arbitrarily harsh as s̄→ ∞ in the sense that vp → −∞.

In the remainder of the proof, I show that any payoffs in 
(ĉ) are also contained
in B
(ĉ) for any ĉ ∈ C. Since (U(ĉ), V (ĉ)) ∈ 
(ĉ) for all ĉ, it follows from the proof of
Lemma 2 that (U(ĉ), V (ĉ)) ∈ B
(ĉ) for all ĉ. Two steps remain. The first is to show
that the desired first-best payoffs are in B
(0) and B
(c∗ ). The second step shows that
(x∗, vp ) ∈ B
(c∗ ).

Step 1: First-best payoffs. Let x ∈ [u(r ), xFB(V (0))]. To show that (x, vFB(x)) ∈
B
(0) ∩ B
(c∗ ), it suffices, by Lemma 1, to show that (x, vFB(x)) ∈ B
(c, E). This is
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because U(0) =U(c∗ ) = u(r ) ≤ x and V (0) = V (c∗ ) ≤ vFB(x), where the latter inequality
follows from x≤ xFB(V (0)).

Consider the following strategies σ in (c, E,
). The agent exerts effort eFB(x). Fol-
lowing any output y, the principal pays a bonus b = u−1(x + ψ(eFB(x))) if the agent’s
effort is eFB(x) and pays no bonus otherwise. The continuation payoffs f are given by

• (x, vFB(x)) if no one deviated from σ

• (u(r ), V (0)) if the agent deviated from σ

• (x∗, vp ) if the principal deviated from σ but the agent did not.

Notice that the continuation contract following any history is c∗, and the above contin-
uation payoffs are contained in 
(c∗ ). Now consider the incentives to follow σ given
the continuation payoffs in f . When the agent deviates, paying no bonus is optimal,
as bonuses do not affect the principal’s continuation payoff. Following effort eFB(x),
paying the bonus b is incentive compatible only if

(1 − δ)u−1(x+ψ(
eFB(x)

)) ≤ δ(vFB(x) − vp)
.

Since vp → −∞ as s̄→ ∞, there exists s̄2 such that whenever s̄ ≥ s̄2, the incentive con-
straint above is satisfied for any x ∈ [u(r ), xFB(V (0))]. Moreover, the agent obtains −∞
upon deviating, since following any output y, he receives salary sy = 0 and no bonus.
Thus, (σ , f ) isE-admissible with respect to
 at c with value (x, vFB(x)) whenever s̄ ≥ s̄2.

Step 2: (x∗, vp ) ∈ B
(c∗ ) for some vp. By Lemma 3, it suffices to show that there
exists an equilibrium of (c∗, E,
) with agent payoff x∗. To this end, consider the follow-
ing strategies σ∗. The agent exerts effort e = 1. Following output y, the principal pays
bonus b∗

y (defined in (6)) if e= 1 is observed, and pays no bonus otherwise. Continuation
payoffs f ∗ are given by

• (u(r ), vFB(u(r ))) if no one deviated from σ∗

• (u(r ), V (0)) otherwise.

Notice that c∗h = c∗l = 0 and the continuation payoffs above are contained in 
(0). Now
consider the incentives to follow σ∗ given the continuation payoffs in f ∗. Paying no
bonuses following e 
= 1 is optimal, since they do not affect the principal’s continuation
payoff. If e= 1 and output is y, the principal receives vFB(u(r )) if she pays b∗

y and receives
V (0) otherwise, which makes b∗

y incentive compatible by (6). As for the agent, notice
that he obtains x∗ if he chooses e = 1. Alternatively, if he deviates in effort, he receives
no more than

max
e

(1 − δ)
∑
y

pey
(
u
(
s∗y

) −ψ(e)
) + δu(r ). (7)

When s̄ ≥ s̄1, effort 1 is optimal in (4) and, consequently, it is also optimal in problem
(7). Moreover, setting e= 1 in (7) provides a lower bound on x∗ by (5). Hence, the agent
has no profitable deviation. It follows that (σ∗, f ∗ ) is E-admissible with respect to 
 at
c∗ with agent payoff x∗ whenever s̄ ≥ s̄1.

Thus, 
 is self-generating when s̄ ≥ max{s̄1, s̄2}. This completes the proof.
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3.3 Discussion of Theorem 1

The key part of the construction of the first-best equilibria is c∗—the next-period con-
tinuation contract at all on-path histories. Any deviation is followed by an adverse equi-
librium for the corresponding player in the next-period subgame c∗. In particular, the
agent can be held down to his outside option, while the principal’s payoff can be made
arbitrarily low when the contract space is large enough. Hence, any bonus can be in-
centive compatible, regardless of the principal’s impatience. The construction takes ad-
vantage of this by making c, the contract the parties negotiate to every period, exhibit
zero contemporaneous salaries. This trivializes effort incentives, since the agent’s entire
equilibrium compensation comprises effort-contingent bonuses.

The severity of the punishments is enabled by the unbounded risk aversion of the
agent. The first-period compensation in c∗ is heavily unbalanced: a high salary for high
output and a low salary for low output.9 In the agent’s punishment equilibrium σA(c∗ )
of subgame c∗, he is held down to the value he can guarantee by maintaining the terms
of c∗ in anticipation of no bonuses. Despite the high salary for high output, this guar-
antee equals his outside option due to his unbounded risk aversion (u(0) = −∞) and
his inability to save income in prior periods to insure against a low output realization.
In contrast, the principal’s punishment equilibrium in subgame c∗ features a bonus for
low output when the agent maintains c∗ by rejecting the principal’s offer. This bonus
has arbitrarily high marginal utility, as the salary for low output approaches 0. Hence,
the agent can obtain an arbitrarily large payoff by rejecting any contract offer, making
the principal’s payoff arbitrarily low. The size of the contract space is crucial: as the
principal becomes impatient, the incentive compatibility of any positive bonus requires
an arbitrarily harsh punishment, which can only be attained through a continuation
contract with high salaries.

It is important to note that the punishments are not merely a consequence of the
poor insurance c∗ provides on paper. If maintaining the terms of c∗ always resulted in
low payoffs for both players, they would renegotiate c∗ to a more balanced contract, re-
gardless of any past deviations. Instead, the role of c∗ is to admit a large multiplicity
of equilibria, so that the value players attach to it can vary significantly based on the
history, creating punishments for past transgressions. In this manner, c∗ enables en-
dogenous shifts in bargaining power. It can be seen as a source of strategic ambiguity,
as described by Bernheim et al. (1998), who argue that environments where contracts
are incomplete may make it optimal for parties to sign contracts that are even more in-
complete. Here, c∗ does not add strategic ambiguity by leaving out contractual terms
directly, but it adds endogenous incompleteness through equilibrium multiplicity.

3.4 Necessity of contract renegotiation

A prominent feature of the first-best equilibria constructed above is that the players re-
peatedly sign a continuation contract c∗, only to renegotiate it in the following period.

9Even though c∗ is a high-powered contract, this does not need to be the case. A contract with a high
salary for low output and a low salary for high output can be used to the same effect.
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They deliberately choose c∗ for its potential to be extremely damaging to either of them,
recognizing that it curbs their own opportunistic behavior. The terms of c∗ are never
meant to be realized: once it is observed that no one deviated from the equilibrium ac-
tions, c∗ has served its purpose and is renegotiated to a contract the present terms of
which are more conducive to attaining the first best. This is a robust feature: Proposi-
tion 2 below shows that whenever the players are sufficiently impatient, first-best out-
comes with costly effort are not attainable in equilibria without on-path contract rene-
gotiation.10 Hence, there are settings where even the combination of formal and infor-
mal contracting cannot attain maximum welfare unless the parties use renegotiation as
part of their informal contract.

Definition 4. An equilibrium without on-path renegotiation exhibits no acceptance
of contracts different from the residual contract on the equilibrium path, except when
the residual contract is 0.

Equilibria without on-path renegotiation require the parties to continue using their
previously signed contract with a few exceptions. In the initial period, where the residual
contract is 0, they can sign any contract in order to start their relationship. Recontracting
is also permitted in any subsequent period where the residual contract is 0. One inter-
pretation is that the parties can sign short-term contracts and renegotiate them after
their expiry, signified by the null contract.

Proposition 2. Fix any parameters θ ∈ �. For any effort level e > 0, there exists δ > 0
such that no first-best outcome with effort e can be attained in an equilibrium without
on-path renegotiation of subgame 0 whenever δ < δ, regardless of the value of s̄.

Proof. Consider any equilibrium without on-path renegotiation of subgame 0 that
attains a first-best outcome with effort e > 0. Let x be the agent’s utility so that e =
eFB(x). The agent’s total compensation, comprising a salary and a bonus, must equal
u−1(x+ψ(e)) at all on-path histories. Since bonuses are nonnegative, the lack of renego-
tiation implies that no contract signed on the equilibrium path can have a salary higher
than u−1(x + ψ(e)). Thus, at any on-path history up to the beginning of a period, the
principal can guarantee −u−1(x + ψ(e)) by offering the residual contract for the rest
of the game and paying no bonuses (recall that output is nonnegative). Similarly, her
equilibrium payoff in subgame 0 is bounded below by 0, which implies that x≤ xFB(0).

In what follows, I show that whenever δ is sufficiently small, at least one of the
bonuses paid in the initial period on the equilibrium path must exceed

b := min
x̂∈[u(r ),xFB(0)]

u−1(x̂+ψ(e)
) − u−1(x̂)

2
= u−1(u(r ) +ψ(e)

) − r
2

.

10If the players are patient enough, some first-best outcomes can be attained through informal contract-
ing alone. For instance, it is possible to construct an equilibrium with payoffs (u(r ), vFB(u(r ))), where the
null contract 0 is used on path and the agent’s compensation consists entirely of bonuses. The continua-
tion strategies following any deviation are taken from the agent’s worst equilibrium constructed to prove
Lemma 2. In particular, the principal has no incentive to deviate from the equilibrium bonus when δ is
sufficiently high, as her continuation payoff V (0) is lower than her on-path payoff vFB(u(r )).
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Let sh and sl be the first-period salaries for high and low output of the initial contract
signed in equilibrium. Suppose sh ≥ u−1(x+ψ(e)) − b and sl ≥ u−1(x+ψ(e)) − b with
at least one strict inequality. Then the concavity of u implies that

∑
y

p0
yu(sy )> u

(
u−1(x+ψ(e)

) − b)

≥ u
(
u−1(x+ψ(e)

) − u−1(x+ψ(e)
) − u−1(x)

2

)

= u
(
u−1(x+ψ(e)

) + u−1(x)

2

)
≥ x+ ψ(e)

2
.

It follows that if the agent deviates to zero effort in the initial period, he can obtain a
payoff greater than

(1 − δ)

(
x+ ψ(e)

2

)
+ δu(r ) = x+ ψ(e)

2
− δ

(
x+ ψ(e)

2
− u(r )

)
,

which exceeds his on-path payoff x whenever δ < δ1 :=ψ(e)/(ψ(e) + 2(xFB(0) − u(r ))).
Hence, one of the bonuses paid on the equilibrium path in the initial period, denoted by
b, satisfies b≥ b whenever δ < δ1.

On the equilibrium path, the principal receives a next-period continuation payoff
vFB(x) after paying the bonus b. Hence, the lower bound on the principal’s payoff de-
rived earlier implies that b is incentive compatible only if

b≤ δ

1 − δ
(
vFB(x) + u−1(x+ψ(e)

))
.

Let δ2 be the unique discount factor that satisfies

b= δ2

1 − δ2

(
vFB(

u(r )
) + u−1(xFB(0) +ψ(e)

))
.

It follows that whenever δ < min{δ1, δ2}, there exists no first-best equilibrium without
on-path renegotiation of subgame 0 where the agent exerts effort e.

In a hypothetical first-best equilibrium without on-path renegotiation, the agent
should not value any of the contractual salaries much higher than his equilibrium utility;
otherwise, his compensation would be distorted. This limits the punishment that can
be exerted on the principal, unlike in the equilibrium constructed to prove Theorem 1,
where the punishment is unbounded. It follows that only vanishingly small bonus pay-
ments are credible, as the principal becomes arbitrarily impatient. However, when the
first-best effort is costly, nontrivial bonuses are needed to provide incentives, rendering
such an equilibrium impossible. Hence, by Theorem 1, when the parties are impatient,
contract renegotiation on the equilibrium path provides a Pareto improvement as long
as the contract space is large enough. Proposition 2 also shows that this welfare gap does
not shrink as the contract space is expanded, i.e., s̄ is increased.
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While Proposition 2 implies that renegotiation must occur at least once on the equi-
librium path, it is silent on the minimal frequency of renegotiation that suffices to imple-
ment first-best outcomes. The equilibria constructed in the proof of Theorem 1 exhibit
renegotiation after every on-path history. However, it is possible to reduce the renego-
tiation frequency by amending them as follows. Instead of signing a contract with zero
salaries in the initial period and a continuation contract c∗, the parties sign a contract
with little compensation in the first T periods, followed by c∗. If the principal deviates,
the agent can reject her offers until c∗ is reached, where he receives a high payoff, as
in the proof of Theorem 1. When s̄ is large enough, such a construction can support the
first-best outcomes in Theorem 1 through on-path renegotiation that occurs every T pe-
riods for any finite T . However, obtaining less renegotiation in this manner necessitates
a higher upper bound on salaries, as the agent needs to wait longer for the salaries in c∗.

3.5 Contract length

One implication of Proposition 2 is that one-period formal contracts as in Pearce and
Stacchetti (1998) cannot replicate the first-best outcomes attained by long-term con-
tracts with renegotiation. The advantage of longer contracts is that their future terms
can create threats for bad behavior without being realized on the equilibrium path. This
force is so powerful that even two-period contracts can attain the first-best outcomes in
Theorem 1, as shown in the equilibrium construction. However, longer contracts can
reduce the size of the contract space required to attain the first best.

This can be illustrated as follows. Recall the on-path continuation contract c∗ with
highly skewed first-period salaries s∗h � s∗l and no further compensation. Consider a
contract c∗∗ that exhibits the same skewed compensation for two periods instead, i.e.,
s∗∗
y = s∗y and c∗∗

y = c∗ for all y. It can be shown that subgame c∗∗ admits a worse equi-
librium payoff for the principal in comparison to the equilibrium of subgame c∗ with
payoffs (x∗, vp ) constructed in Step 2 of the proof of Theorem 1. In the latter, the prin-
cipal pays a bonus b∗

l = (vFB(u(r ) − V (0))δ/(1 − δ) whenever the agent rejects in favor
of c∗ and output is low. But when the residual contract is c∗∗ instead, this bonus can
be increased to (vFB(u(r ) − vp )δ/(1 − δ) by threatening the principal with continuation
payoff vp in the next-period subgame c∗ whenever she reneges on the bonus.

Thus, the construction of first-best equilibria in the proof of Theorem 1 can be
amended so that the contract c signed each period has a continuation contract c∗∗ in-
stead of c∗. In this new equilibrium, the principal has stronger incentives to pay the on-
path bonuses due to the harsher punishment available in the continuation subgame c∗∗.
Since this punishment payoff decreases in s̄, it follows that equilibria with three-period
contracts can attain the payoffs of the first-best equilibria with two-period contracts in
the proof of Theorem 1 for lower values of s̄.11 It can be similarly shown that longer
contracts decrease the required value of s̄ further.

11The improvement resulting from three-period contracts is not necessarily strict. When δ is high, there
exist first-best equilibria where 0 is the only contract signed on the equilibrium path (see footnote 10).
However, for sufficiently low δ, it is possible to show the following stronger result: there are values of s̄ for
which no equilibrium with two-period contracts can attain the first-best outcomes in Theorem 1, but an
equilibrium with three-period contracts can.
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It is interesting to combine this with the observation at the end of Section 3.4. To-
gether, they suggest that, everything else equal, the frequency of renegotiation can be
reduced by writing longer contracts.

3.6 Renegotiation proofness

In the baseline model, players are able to renegotiate contracts, but they cannot escape
inefficient equilibria by renegotiating their strategies. To account for the latter, this sec-
tion presents two renegotiation-proofness refinements.

The classic notions of renegotiation-proofness (Bernheim et al. (1989), Farrell and
Maskin (1989), Pearce (1987)) were developed in the context of repeated simultaneous-
move games. They do not apply directly to this model, because the stage game is se-
quential and varies with the long-term contract in place at the beginning of the period.
Nevertheless, Levin (2003) considers a generalization to dynamic stage games, which
can be seen as a stronger version of strong consistency (Bernheim et al. (1989)) and
strong renegotiation-proofness (Farrell and Maskin (1989)). Levin’s (2003) strong opti-
mality essentially posits that the parties renegotiate to efficient equilibria on and off the
equilibrium path, and this renegotiation occurs at the beginning of the period. Though
this refinement is developed in the context of a stationary game, it is easily adapted to
the stochastic game considered here.

Definition 5. An equilibrium is strongly optimal if the continuation equilibrium at any
history up to the beginning of a period is efficient in the sense that its payoffs are Pareto
optimal in E(c∗ ), where c∗ is the residual contract.

Safronov and Strulovici (2018) propose an alternative approach that models the ne-
gotiation of strategies explicitly. They consider an augmented game where at the end of
each period, one of the players is randomly selected to propose a continuation equilib-
rium. This is similar to the noncooperative approach to contract renegotiation adopted
here. Safronov and Strulovici (2018) define a contestable norm to be an equilibrium of
the augmented game where within any subgame from the beginning of a period, any
strategy profile that is accepted is played as long as no off-path proposals were accepted
in the past.12 All strongly optimal equilibrium payoffs are attainable by contestable
norms, as there exist no Pareto improving proposals for continuation play from the start
of a period.

The following proposition shows that under the assumption of vanishing marginal
utility, all efficient equilibrium payoffs can be attained in strongly optimal equilibria, so
they also satisfy the weaker refinement of contestable norms.

Proposition 3. Fix any parameters θ ∈� and δ ∈ (0, 1) such that lims→∞ u′(s) = 0. For
any s̄ sufficiently large and any c∗ ∈ C, the payoffs of any efficient equilibrium of subgame
c∗ are attainable in a strongly optimal equilibrium of subgame c∗.

12Safronov and Strulovici (2018) also consider the case of more than two players with threshold accep-
tance rules.
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To see why Proposition 3 holds, consider any efficient equilibrium σ of any subgame
c∗ and any history up to the beginning of a stage. If this history is reached with positive
probability on the equilibrium path, then continuation play must be efficient; other-
wise, replacing the continuation strategies with a Pareto improving equilibrium would
strengthen incentives at preceding histories and Pareto improve the payoffs from σ . In
contrast, a Pareto improvement of continuation payoffs at off-path histories does not
necessarily preserve incentives, as it may make deviations at preceding histories more
attractive. However, since actions are sequential, incentives are unchanged if the Pareto
improving equilibrium leaves the payoff of the last deviating player unchanged, improv-
ing only the other one.

It follows that Proposition 3 holds provided that for any player and any equilibrium
σ of any subgame c∗, there exists an efficient equilibrium of subgame c∗ with the same
payoff for this player. If salaries were unrestricted, such an equilibrium can be con-
structed from another efficient equilibrium by adjusting the first-period salaries to in-
crease one player’s payoff at the expense of the other. This is the approach to proving
strong optimality in the extended model of Section 4. However, in the baseline model
considered here, the exogenous upper bound on salaries may make it impossible to de-
crease the principal’s payoff by increasing salaries of equilibrium contracts. The proof
of Proposition 3 overcomes this issue by showing that the principal’s worst equilibrium
payoff in any subgame c∗ is lower bounded by vFB(u( s̄)), which is shown to be attain-
able in a first-best equilibrium with agent utility u( s̄). This follows from the assumption
of vanishing marginal utility, which ensures that the above first-best outcome involves
zero effort. The proof offers a direct construction of all efficient equilibria, showing that
they are first best.

3.7 Relation to WMO

Watson et al. (2020) consider a general setting where each period consists of a coop-
erative negotiation phase followed by a noncooperative action phase. Two risk-neutral
players sign long-term formal contracts governing the structure of the action phase. In
the bargaining phase, players negotiate a contract, transfers, and continuation strategies
according to a contractual equilibrium (Watson (2013), Miller and Watson (2013)), where
joint surplus is maximized and split according to the generalized Nash bargaining solu-
tion. The threat point for Nash bargaining is given by an equilibrium of the game from
the action phase under the residual contract (i.e., when the formal contract has not been
renegotiated), with next-period continuation payoffs drawn from the set of contractual
equilibria. WMO find that, without loss of generality, the long-term contracts signed in
any contractual equilibrium are semistationary, that is, they have identical terms for all
periods except the initial one, regardless of the history of verifiable outcomes.

Contractual equilibrium is conceptually distinct from the noncooperative approach
to contract negotiation and the notions of renegotiation-proofness used in this paper.
Nevertheless, WMO’s main result remains true. The construction from the proof of The-
orem 1 can be amended so that the on-path continuation contract c∗ has the same
skewed compensation in every period (see Proposition 4 below). This makes the on-
path contract c semistationary.
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Another point of comparison is the attainability of the first-best outcomes from The-
orem 1 in a contractual equilibrium. This cannot be accomplished directly, as the def-
inition in WMO relies on transferable utility. However, WMO argue that an alternative
definition of contractual equilibrium can be obtained by replacing their cooperative bar-
gaining phase with a noncooperative bargaining protocol and applying an equilibrium
refinement based on three axioms from Miller and Watson (2013).13 These axioms do
not depend on risk preferences, so they can be interpreted in the context of my model.
In general terms, the internal agreement consistency axiom (IAC) states that accepted
proposals are implemented.14 The no-fault disagreement axiom (NFD) states that the
outcome of disagreement over a proposal does not depend on the proposal. Instead of
presenting the last axiom, Pareto external agreement consistency (PEAC), I consider a
stronger version: payoffs following the acceptance of any proposal are Pareto optimal in
the class of equilibria that satisfy IAC and NFD.

Proposition 4 below shows that the principal-optimal first-best outcome can be at-
tained in an equilibrium of my model that satisfies IAC, NFD, and PEAC. A notable differ-
ence in the meaning of the axioms comes from the nature of proposals: in my model, the
principal proposes contracts, whereas in WMO, players propose strategies as well. For
example, IAC does not have bite here, since an accepted contract automatically comes
into effect. However, Proposition 4 would continue to hold if the principal were able to
propose strategies in addition to contracts. This is due to the nature of the equilibrium
constructed in the proof, where the principal’s continuation payoff following any his-
tory up to the beginning of a period equals her highest feasible (first-best) payoff given
what the agent can obtain by rejection or his outside option. Notably, punishments are
created by varying the agent’s payoff following rejection based on prior deviations, but
not on the current contract offer.

Proposition 4. Fix any parameters θ ∈ � and δ ∈ (0, 1) such that u′(s) → 0 as s→ ∞.
For any s̄ sufficiently large, the payoffs (u(r ), vFB(u(r ))) are attainable in a strongly opti-
mal equilibrium with the following properties:

(i) The continuation strategies at any history following the rejection of a contract do
not depend on the contract that was offered.

(ii) The continuation payoffs at any history following the acceptance of any contract c
are Pareto optimal in the class of equilibria of subgame (c, E) that satisfy (i).

In addition, all contracts signed on the path of this equilibrium are semistationary.

4. Limited liability for the principal

The continuation contracts used to attain the first-best outcomes in Theorem 1 expose
the principal to liability that may be orders of magnitude larger than the value of the firm

13See Appendix B.3 of WMO.
14This is a stronger version of the axiom than the one in Miller and Watson (2013), which considers only

proposals to switch to the continuation equilibrium strategies following a different history.



1490 Rumen Kostadinov Theoretical Economics 16 (2021)

when δ is small. Therefore, in this section I extend the model by allowing the principal
to shut down the firm at the contract offer stage.15 As the exercise of the agent’s outside
option, this shutdown is permanent and results in payoffs (u(r ), 0). Contractual salaries
are unrestricted: an upper bound is no longer needed as both parties can terminate the
relationship. The model is otherwise identical to the game analyzed so far and retains
the same notation. In addition, let x(c∗ ) and v(c∗ ) denote the worst equilibrium payoffs
in subgame c∗ for the agent and the principal, respectively.

For ease of exposition, I assume that there exists an equilibrium of subgame 0 such
that the outside options are not taken in the initial period.

4.1 Equilibrium characterization

The main result of this section is a characterization of the frontier of efficient equilib-
rium payoffs using the recursive techniques of APS. Let F denote the space of all func-
tions f : [u(r ), x̄] → [0, vFB(u(r ))], where x̄ ≥ u(r ). For each f ∈ F , let dom f denote the
domain of f and let

βf (x) = max
e,{sy ,by ,xy }y∈Y

∑
y

pey
[
(1 − δ)(y − sy − by ) + δf (xy )

]

such that x=
∑
y

pey
[
(1 − δ)

(
u(sy + by ) −ψ(e)

) + δxy
]

x≥ max
e′∈[0,1]

∑
y

pe
′
y

[
(1 − δ)

(
u(sy ) −ψ(

e′
)) + δu(r )

]
(8)

0 ≤ by ≤ δ

1 − δf (xy ) for all y ∈ Y (9)

e ∈ [0, 1], sy ≥ 0, xy ∈ dom f for all y ∈ Y .

Consider the operator T : F → F such that for any f ∈ F , Tf is the restriction ofβf to the
domain {x≥ u(r )|βf (x) ≥ 0}. Theorem 2 below shows that T can be used to characterize
efficient equilibrium payoffs.

Theorem 2. Let f0 ∈ F with dom f0 = [u(r ), xFB(0)] be given by f0(x) = vFB(x). The
sequence (fn ) given by fn+1 = Tfn converges pointwise to a function f ∗ ∈ F such that
f ∗ = Tf ∗.

The set of efficient equilibrium payoffs in subgame 0 consists of all payoffs (x, f ∗(x))
in the graph of f ∗ such that f ∗(x) ≥ v(0).

The characterization in Theorem 2 is based on the operator β, which obtains ef-
ficient equilibrium payoffs from the set of efficient next-period continuation payoffs.
Strikingly, β contains no explicit reference to long-term contracts and renegotiation.
The reason behind this simple characterization lies in the following result, which follows
from the analysis in Appendix B.2.

15This timing of the outside option is prevalent in the relational contracting literature. If the principal
could also shut down after the agent’s contract response, the results would remain unchanged.
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Lemma 4. There exists a contract c∗ such that x(c∗ ) = u(r ) and v(c∗ ) = 0.

Recall that the construction of first-best equilibria in the baseline model uses a pun-
ishment contract c∗ such that subgame c∗ admits equilibria with the harshest possible
punishments for each player: an arbitrarily low payoff for the principal and u(r ) for the
agent. Lemma 4 provides a similar result for the extended model, where neither player
can be held below their outside utility in equilibrium. The punishment contract for the
extended model has skewed compensation in each period, mirroring the one from the
baseline model (see Lemma 10 and Corollary 2 in Appendix B.2). The reason is similar:
by varying the bonus complementing the salary for low output, it is possible to con-
struct equilibria of subgame (c∗, E) with any agent payoff greater than or equal to his
outside option. In the agent’s punishment equilibrium of subgame c∗, he receives u(r )
in subgame (c∗, E) following rejection. In the principal’s punishment equilibrium the
agent can guarantee such a high payoff from rejection that the principal prefers to shut
down.16

Lemma 4 implies it is possible to restrict attention to equilibria where all contracts
accepted on path have output-invariant continuations equal to c∗. Thus, the next-
period worst punishments are exogenously given by the outside options, which is re-
flected in the incentive constraints (8) and (9). This is a tremendous simplification, even
in comparison to the model of Pearce and Stacchetti (1998) with one-period contracts.
In the latter, a similar characterization applies, but the next-period punishments are
determined endogenously as the worst equilibria of subgame 0, since contracts do not
specify future terms.

Many models of relational contracting exhibit exogenously given worst equilibrium
threats. Typically, this follows from two assumptions: (i) no formal contracts are per-
mitted and (ii) the agent’s least costly action cannot generate payoffs that dominate the
outside options. They imply the existence of an equilibrium where the relationship is
terminated immediately; otherwise, the agent would exert no effort in anticipation of
no bonuses. Neither of these assumptions holds in my model. Instead, the worst pun-
ishments arise from the availability of long-term contracts and the careful design of their
future terms.

4.2 Necessity of contractual renegotiation

As in the baseline model, the renegotiation of contracts on the equilibrium path is nec-
essary for efficiency in some environments. To demonstrate this in a simple example,
consider any model where

δ

1 − δv
FB(
u(r )

) = u−1(u(r ) +ψ(
eFB(

u(r )
))) − r (10)

so that equilibrium bonuses are upper bounded by the difference between the agent’s
compensation in the principal-optimal first-best outcome and his outside wage. Hence,
in any first-best equilibrium with agent payoff u(r ), the agent’s realized contractual

16It is also possible to construct efficient punishment equilibria (see Proposition 5 below).
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salaries in any period are at least r. Given this, no salary can be strictly larger than r;
otherwise, the agent could profitably deviate to zero effort. Hence, the agent’s on-path
compensation in every period must consist of a salary r and a bonus given by (10).

Theorem 2 implies that the principal-optimal first-best outcome can be attained in
an equilibrium of subgame 0 using the above compensation scheme. However, it is
unattainable in an equilibrium without on-path renegotiation when

∑
y p

0
yy − r > 0. To

see this, consider any history up to the bonus payment in the first period on the path
of such an equilibrium. Since the bonus is given by (10), a deviation must result in a
second-period continuation payoff of 0 for the principal. However, in the second period,
she can guarantee more by offering a contract c with contemporaneous salaries slightly
higher than r and continuation contracts ch = cl = 0. The agent does not take his out-
side option in response to such an offer, as he can guarantee more by accepting it and
exerting no effort. But regardless of whether he accepts or rejects, the principal receives
at least

∑
y p

0
yy in expected output and pays close to or less than r to the agent. The lat-

ter holds because the contract signed in the initial period cannot contain salaries higher
than r due to the lack of renegotiation. Thus, the principal has a profitable deviation.

4.3 Renegotiation-proofness

Unlike in the baseline model, the strong optimality of efficient equilibria can be shown
without making additional assumptions. This is owed to the lack of upper bound on
salaries, which makes it possible to continuously modify the payoffs of any equilibrium
to either player’s benefit by adjusting the underlying contract.

Proposition 5. Fix any contract c∗. The payoffs of any efficient equilibrium of subgame
c∗ are attainable in a strongly optimal equilibrium of subgame c∗.

4.4 Relation to WMO

The main result of Watson et al. (2020) also holds in this model. As mentioned in the
discussion following Lemma 4, it is without loss of generality that each contract offered
in equilibrium has the same skewed compensation in all periods except possibly in the
initial one. An analogue of Proposition 4 also holds: the principal-optimal efficient pay-
offs in subgame 0 can be attained in an equilibrium that satisfies the axioms underlying
WMO’s contractual equilibrium. I omit the argument, as it is similar to the construction
used to prove Proposition 4.

These similarities suggest that WMO’s results are not only robust to risk aversion, but
also to the potential nonstationarity of efficient equilibrium strategies that arises from
it, suggested by Theorem 2. In comparison, WMO show that risk neutrality implies that
efficient equilibrium play is stationary without loss of generality, extending the result of
Levin (2003).

5. Literature review

This paper contributes to the literature on relational contracts, which studies infor-
mal contracting as an equilibrium of a repeated game (Bull (1987), Thomas and Worrall
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(1988), MacLeod and Malcomson (1989), Levin (2003)). Many authors have considered
environments with both formal and informal contracting (Baker et al. (1994), Schmidt
and Schnitzer (1995), Bernheim et al. (1998), Pearce and Stacchetti (1998), Che and Yoo
(2001), Battigalli and Maggi (2008), Kvaløy and Olsen (2009), Iossa and Spagnolo (2011),
Hermalin et al. (2013), Itoh and Morita (2015)). These studies are limited to formal con-
tracts that are either one-period long or are stationary but cannot be renegotiated. In
comparison, I consider arbitrary long-term contracts that can be renegotiated (as previ-
ously discussed, this is also done in WMO). In addition, I contribute to the comparatively
smaller literature on relational contracts with risk aversion (Thomas and Worrall (1988),
Pearce and Stacchetti (1998), MacLeod (2003), Thomas and Worrall (2018)).

The incomplete contracts literature examines settings where some but not all ob-
servable outcomes are contractible, emphasizing the structure of formal contracts and
their renegotiation. One strand, originating in Hart and Moore (1988), uses a mech-
anism design approach, later generalized by Maskin and Moore (1999) and Segal and
Whinston (2002), where contracts are contingent on messages sent by the players after
observing nonverifiable outcomes. Since messages identify the entire history of play and
players can costlessly renegotiate their contract after sending them, the revelation prin-
ciple implies that without loss of generality contracts are not renegotiated; otherwise,
players could incorporate the renegotiated terms into their original contract (Brennan
and Watson (2013)). Hence, under this approach, renegotiation is not an equilibrium
phenomenon, but a restriction on the contract space.

In my paper, renegotiation is modelled strategically as part of a noncooperative
game without making use of contracts contingent on messages. This approach is used in
a variety of one-period settings, including holdup (Huberman and Kahn (1988b)), lever-
aged buyout (Huberman and Kahn (1988a)), and a principal–agent model (Hermalin
and Katz (1991)). Guriev and Kvasov (2005) consider a dynamic holdup problem where
a seller makes persistent investments that improve the value of trade with a buyer. They
obtain conditions under which the first-best surplus can be attained in an equilibrium
where the players repeatedly renegotiate to the same long-term contract. There is a
unique equilibrium, so the players do not rely on implicit contracting to create incen-
tives. Instead, the seller is punished for underinvesting because the persistence of his
investment lowers the utility he can guarantee under the continuation contract, deteri-
orating his bargaining position at the next instant when the contract is renegotiated. In
contrast, the actions unrelated to contract renegotiation have no persistent effect on my
environment.

Rey and Salanie (1990) analyze a setting with moral hazard where the second best,
attained by long-term contracts, can be replicated by overlapping two-period contracts
renegotiated in equilibrium. In their setting every observable outcome is contractible,
which makes optimal long-term contracts renegotiation-proof. Thus, renegotiation is
only useful when contract length is exogenously limited.

6. Conclusion

This paper analyzes a novel framework combining noncontractible actions with long-
term formal contracts that can be renegotiated at will. I show it is beneficial to sign
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contracts in anticipation of their future renegotiation, despite the lack of persistence in
the environment. This is a powerful form of implicit contracting: continuation contracts
provide harsh punishments for deviations, but are renegotiated away on the path of ef-
ficient equilibria. The result is driven by the interaction of risk aversion and voluntary
bonus payments, so it may apply to other environments with risk-sharing and informal
contracting.

Appendix A: Proofs for the baseline model

A.1 Boundedness of contracts

Contracts must be bounded to ensure equilibrium existence by preventing Ponzi
schemes. To see this, suppose wages are unrestricted but an equilibrium exists. Fix any
equilibrium of any subgame c∗ with payoffs (x, v). The maximum feasible payoff for the
principal is vmax = ∑

y p
1
yy since salaries and bonuses are nonnegative. If v = vmax, the

agent must receive zero salaries and bonuses, so he is better off deviating to his outside
option. Hence, v < vmax.

I now argue that the principal can secure a payoff arbitrarily close to vmax with a
multistage deviation involving a Ponzi scheme. In the initial period, the principal offers
a contract c with c(yt ) = s for all t ∈N, yt ∈ Yt with the exception of c(h, h). When c(h, h)
is sufficiently large, the agent can guarantee at least x following his acceptance of c, even
when s is arbitrarily small (see Section 3.1). The principal’s worst equilibrium payoff in
subgame cl is lower bounded by −s, as she can offer the residual contract in each sub-
sequent period and pay no bonuses. Thus, the highest bonus the agent can anticipate
in equilibrium following the acceptance of c when output is low is (vmax + s)δ/(1 − δ).
Hence, for c(h, h) sufficiently large, the agent would accept a deviant offer c and exert
effort 1 in the initial period regardless of the continuation equilibrium he anticipates.

Now suppose the principal makes the deviant offer c and consider the next period
with residual contract ch or cl. Since c(yt ) = s for any t > 2, yt ∈ Yt , the bonus paid by the
principal in the initial period of any equilibrium of subgame (ch, E) or (cl, E) is upper
bounded by (vmax + s)δ/(1 − δ). Thus, the agent’s equilibrium payoff in these subgames
can be upper bounded. Hence, if the principal deviates in subgame ch or cl by offering
a contract c′ with the same structure as c, i.e., c′(h, h) high and other salaries arbitrar-
ily small, then the agent accepts in any equilibrium and exerts effort 1. By making the
same deviation in each subsequent period, the principal can ensure that the agent exerts
maximal effort for almost no pay, which gives her a payoff arbitrarily close to vmax.

A.2 Proof of Lemma 1

Let (σ∗, f ∗ ) be a profile admissible with respect to
 at c∗ with value (x∗, v∗ ). Let (σE , fE )
be a profile E-admissible with respect to
 at c with value (x, v) ≥ (x∗, v∗ ). Consider the
strategies σ identical to σ∗ except that the principal offers c, the agent accepts c, and
the following changes after the agent’s contract response to c. The continuation of σ
following the acceptance of c equals σE . The continuation of σ following rejection of c is
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given by the continuation strategies of σ∗ following the rejection of the contract offered
in σ∗.

Construct a function f identical to f ∗ except at histories where c is offered. The re-
striction of f to histories where c is accepted is identical to fE . For any historyωwhere c
is offered and rejected, let f (ω) = f ∗(ω′ ), whereω′ is identical toω except that the prin-
cipal’s offer equals the one made in σ∗. It follows that (σ , f ) is admissible with respect
to 
 at c∗ with value (x, v), as required.

A.3 Proof of Lemma 2

If V is continuous and bounded, then each Vc is a well defined continuous function due
to the continuity of U , UE , u, and ψ. Moreover, for any c∗ ∈ C, the set of contracts c for
which Vc(c∗ ) > −∞ is nonempty (as it includes a contract with constant salaries equal
to u−1(U(c∗ )) in every period) and compact (due to the continuity ofUE). It follows that
maxc Vc is continuous. It is also bounded, since U(c∗ ) is bounded below by the agent’s
outside option and bounded above due to the upper bound on salaries s̄. Hence, stan-
dard dynamic programming arguments show that there is a unique bounded solution
for V , which is continuous.

The strategies constructed below break indifferences in favor of the principal, so it
is useful to denote by e(c) one of the possible multitude of optimal effort levels in the
definition of Vc(c∗ ). Notice that e(c) it is independent of c∗, since c∗ does not enter
constraint (3).

By Proposition 1, an equilibrium where the agent receives U(c∗ ) in any subgame c∗
exists if the correspondence



(
c∗

) = {(
U

(
c∗

)
, V

(
c∗

))}
for all c∗

is self-generating. Hence, it suffices to show that for any c∗ ∈ C, there exists an equilib-
rium of (c∗, f ) with payoffs (U(c∗ ), V (c∗ )), where f (ω) = (U(c′ ), V (c′ )) for any history
ω ∈ � such that the continuation contract in subgame c∗ following first-period history
ω equals c′.

The strategy of the principal is to offer c∗ if U(c∗ ) = u(r ) and 0>maxc Vc(c∗ ), and to
offer a contract c that maximizes Vc(c∗ ) otherwise. The agent takes his outside option if
the principal offers c∗, U(c∗ ) = u(r ), and 0>maxc Vc(c∗ ). Otherwise, he accepts an offer
c when UE(c) ≥ U(c∗ ), rejects it when UE(c∗ ) > U(c), and takes his outside option in
the remaining cases. The agent’s effort is e(c) if he accepted c and is e(c∗ ) if he rejected.

I now verify that the strategies described above form an equilibrium of (c∗, f ). It
is optimal for the principal to pay no bonuses, as they do not affect her continuation
payoffs. The agent’s effort choice following rejection is optimal since e(c∗ ) solves (1)
and the agent’s continuation payoff following output y equalsU(c∗y ). Similarly, e(c) is an
optimal effort choice following acceptance of any contract c. Thus, accepting c gives the
agent UE(c), while rejecting gives him UE(c∗ ), making his contract response optimal.

Finally, consider the principal’s choice of contract offer c. Given the agent’s strat-
egy, the highest payoff the principal can obtain by offering a contract c that will be ac-
cepted by the agent is Vc(c∗ ) and the highest payoff she can obtain by having her offer



1496 Rumen Kostadinov Theoretical Economics 16 (2021)

rejected is Vc∗(c∗ ). Thus, her payoff cannot exceed max{maxc Vc(c∗ ), 0}. Moreover, when
U(c∗ )> u(r ), the agent does not take his outside option, so the principal’s payoff cannot
exceed maxc Vc(c∗ ). In both cases, these upper bounds are attainable. If U(c∗ ) = u(r )
and 0 > maxc Vc(c∗ ), she can offer c∗, which results in the agent taking his outside op-
tion. Otherwise, she can offer a contract c, which maximizes Vc(c∗ ), resulting in the
agent’s acceptance and effort e(c), which gives the desired payoff.

In both cases the agent’s payoff equals U(c∗ ): the agent takes the outside option
only if U(c∗ ) = u(r ), and the contract c that maximizes Vc(c∗ ) has UE(c) = U(c∗ ). To
see the latter, notice that if c satisfies (2), then sh > 0 and sl > 0, as u(0) = −∞. Hence, if
UE(c)>U(c∗ ), a contract c′ with c′y = cy and u(s′y ) = u(sy )−ε for all y hasUE(c′ )>U(c∗ )
when ε > 0 is small and Vc′(c∗ ) > Vc(c∗ ) as (3) continues to hold at e = e(c) when c is
replaced by c′.

Thus, the strategies form an equilibrium of (c∗, f ) with payoffs (U(c∗ ), V (c∗ )), as
required. Moreover, for any c ∈ C, the restriction of the strategies to the auxiliary game
(c, E, f ) is an equilibrium with agent payoff UE(c). This concludes the proof.

A.4 Proof of Lemma 3

Let c∗, x∗, and
 satisfy the hypothesis of the lemma. Then there exists a profile (σ∗, f ∗ )
that is E-admissible with respect to 
 at c∗ with value (x∗, v∗ ) for some v∗. Consider
any contract ĉ with UE(ĉ) = x∗. Let (σ , f ) be the first-period strategies and second-
period continuation payoffs in the equilibrium σA(ĉ) of subgame ĉ constructed to prove
Lemma 2. By the hypothesis of the lemma, f (ω) = (U(c′ ), V (c′ )) ∈
(c′ ) for any history
ω ∈� where the continuation contract is given by c′.

Now modify (σ , f ) as follows. First, following rejection of any contract offer, the
strategies and continuation payoffs are given by σ∗ and f ∗, respectively. Second, set the
principal’s offer to 0 if v∗ > V (ĉ). Thus, the principal either obtains v∗ by offering 0,
which will be rejected by the agent, or the game unfolds as in the agent’s worst equilib-
rium σA(ĉ), since the agent can guarantee x∗ =U(ĉ) by rejecting.

The modified profile is admissible with respect to 
 at c∗ with payoffs (x∗, v̂), where
v̂= max{v∗, V (ĉ)}. To see this, first notice that incentives from the effort stage onward are
satisfied by construction, since an equilibrium of (c∗, E,
) is played following rejection
and an equilibrium of (c, E,
) is played following the acceptance of any contract c. The
agent’s contract response is also optimal, since he receives x∗ =U(ĉ) upon rejection and
UE(c) upon accepting any contract c. Finally, the incentives for the contract offer hold
since the principal obtains V (ĉ) by making the best acceptable offer and obtains v∗ by
making an offer that will be rejected, e.g., 0.

A.5 Proof of Proposition 3

I begin by showing that the assumption of vanishing marginal utility implies that first-
best outcomes with high agent utility involve no effort. Using this result, Lemma 6 ob-
tains bounds on equilibrium payoffs.
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Lemma 5. Fix any parameters θ ∈ � such that u′(s) → 0 as s → ∞. There exists x̄ such
that for any δ ∈ (0, 1) and s̄ ≥ 0, eFB(x) = 0 whenever x≥ x̄.

Proof. A sufficient condition for eFB(x) = 0 is that
∑
y

(
pey −p0

y

)
y < u−1(x+ψ(e)

) − u−1(x) (11)

holds for all e ∈ (0, 1]. Since u and ψ are differentiable, (11) can be rewritten as

e
∑
y

(
p1
y −p0

y

)
y < e

ψ′(0)

u′(u−1(x)
) + o(e) as e→ 0.

It follows that there existK1 > 0 and e > 0 such that (11) holds for all e ∈ (0, e) whenever
u′(u−1(x)) < 1/K1. Let K2 = (h− l)/ψ(e) and K = max{K1,K2}. Since u is unbounded
and u′(s) → 0 as s→ ∞, there exists x̄ such that u′(u−1(x̄)) < 1/K. Let x ≥ x̄. It follows
from the monotonicity of u′ and u−1 that (11) holds for all e ∈ (0, e). Moreover, for any
e ∈ [e, 1],

∑
y

(
pey −p0

y

)
y < h− l ≤Kψ(e) ≤

∫ x+ψ(e)

x

1

u′(u−1(z)
) dz = u−1(x+ψ(e)

) − u−1(x)

so (11) holds as well. Hence, eFB(x) = 0 for all x≥ x̄, as required.

Lemma 6. Fix any parameters θ ∈� such that u′(s) → 0 as s→ ∞ and let δ ∈ (0, 1). There
exists s̄min such that E(c∗ ) ⊆ [u(r ), u( s̄)] × [vFB(u( s̄)), vFB(u(r ))] for any c∗ ∈ C whenever
s̄ ≥ s̄min.

Proof. The lower bound on the agent’s payoff and the upper bound on the principal’s
payoff are immediate. Suppose the principal offers a contract c̄ with c̄t(yt ) = s̄ for all t,
yt and pays no bonuses in all periods. When s̄ > r, a lower bound on her payoff from
deviating to this strategy in any equilibrium is

∑
y p

0
yy − s̄, as the agent will not find it

profitable to reject c̄ in favor of his outside option. Moreover, Lemma 5 implies that the
first-best outcome with agent utility u( s̄) involves no effort when s̄ is large, so vFB(u( s̄)) =∑
y p

0
yy − s̄. Hence, there exists s̄min such that the lower bound on the principal’s payoff

holds whenever s̄ ≥ s̄min. Finally, the upper bound on the agent’s payoff is obtained from
the first-best outcome where the principal’s utility is at the lower bound.

To prove Proposition 3, consider the correspondence 
 ∈ P0 such that



(
c∗

) =
⋃

(x,v)∈E(c∗ )

{(
x, vFB(x)

)
,
(
xFB(v), v

)}
for all c∗ ∈ C.

In what follows, I show that 
 is self-generating. By Proposition 1, this implies that any
efficient equilibrium payoffs in any subgame c∗ are first best and can be attained in a
strongly optimal equilibrium.
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To this end, let c∗ ∈ C. Consider any equilibrium of subgame c∗ with payoffs (x, v)
and denote its first-period strategies by σ . For any ω ∈ �, let c∗ω and (xω, vω ) be, re-
spectively, the continuation contract and the continuation payoffs following historyω in
subgame c. Since (xω, vω ) ∈ E(c∗ω ), it follows that (xω, vFB(xω )), (xFB(vω ), vω ) ∈
(c∗ω ).

I proceed to construct two equilibria of (c∗,
): one where the principal’s payoff
equals v and another where the agent’s payoff equals x. Both of them are given by the
strategies σ , though the continuation payoffs drawn from 
 may differ. Toward the for-
mer, consider the continuation payoff function f such that for any ω ∈�, f (ω) is given
by

• (xω, vFB(xω )) if ω shows that the agent deviated from σ but the principal paid the
bonus specified by σ in the subsequent subgame

• (xFB(vω ), vω ) otherwise.

The restriction of σ to any subgame of (c∗, f ) starting with the bonus payment is an
equilibrium since the principal’s continuation payoff following any history ω where she
deviates from σ is unchanged relative to the equilibrium of subgame c∗, while her pay-
off from following σ resulting in some history ω is either unchanged (and equal to vω)
or higher (equal to vFB(xω )). Given this, the restriction of σ to any subgame of (c∗, f )
starting from the effort choice is an equilibrium since the agent’s deviation payoff is
unchanged, while his payoff from following σ is no smaller. Similarly, the agent’s con-
tract response and the principal’s contract offer prescribed by σ are incentive com-
patible. Thus, (σ , f ) is admissible with respect to 
 at c with value (x′, v) for some
x′ ∈ [x, xFB(v)].

Now consider the continuation payoff function f̂ identical to f except that f̂ (ω) =
(xω, vFB(xω )) at any history ω reached by σ with positive probability. Analogous argu-
ments establish that (σ , f̂ ) is admissible with respect to 
 at c∗ with value (x, v′ ) for
some v′ ∈ [v, vFB(x)].

Since (x, v′ ), (x′, v) ∈ B
(c∗ ), Lemma 1 implies that (x, vFB(x)), (xFB(v), v) ∈ B
(c∗ )
if there exist profiles that are E-admissible with respect to 
 with these values. Hence,
Lemma 6 implies that Proposition 3 is true if for any x ∈ [u(r ), u( s̄)], there exists an E-
admissible profile with respect to 
 at some c with value (x, vFB(x)).

Let x̄ satisfy the conditions of Lemma 5. Let x ∈ [x̄, u( s̄)] and consider the stationary
contract cx with ctx(yt ) = u−1(x) for all t, yt . To see that (x, vFB(x)) ∈ B
(cx, E), consider
a strategy profile where the agent exerts no effort and no bonuses are paid. Continua-
tion payoffs after any history are given by (x, vFB(x)). They are contained in 
(cx ) by
Lemma 2 and U(cx ) = x. This profile of strategies and continuation payoffs forms an
equilibrium of (cx, E,
) with payoffs (x, vFB(x)), since x≥ x̄ implies eFB(x) = 0.

Now suppose x < x̄ and consider the contract c from the proof of Theorem 1, i.e.,
sh = sl = 0 and ch = cl = c∗, where s∗h and s∗l are defined in (4) and c∗h = c∗l = 0. Following
Step 2 of the proof, whenever s̄ is larger than some s̄min, there exists an equilibrium of
subgame (c∗, E) with agent payoff x∗, where x∗ satisfies

u−1(x̄+ψ(1)
) ≤ δ

1 − δ
(
vFB(x̄) − vFB(

x∗)). (12)
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In this equilibrium, the principal pays a bonus b∗
l = (vFB(u(r ))−V (0))δ/(1−δ) when

the agent rejects any offer and output is low. Since reducing this bonus payment is in-
centive compatible, there exist equilibria of subgame (c∗, E) with any payoff smaller
than x∗ but no less than the agent’s outside utility. It follows from Lemma 3 and Lemma 2
that there exists an equilibrium of subgame c∗ with the same payoff for the agent. Hence,
whenever s̄ ≥ s̄min, for any x̂ ∈ [u(r ), x∗], there exists v̂ such that (x̂, v̂) ∈ E(c∗ ) and, con-
sequently, (x̂, vFB(x̂)) ∈
(c∗ ).

This can be used to construct the desired equilibrium of (c, E,
) as follows. Con-
sider the following strategies σ : the agent exerts effort eFB(x), the principal pays an
output-independent bonus u−1(x + ψ(eFB(x))) following effort eFB(x), and pays no
bonuses otherwise. Continuation payoffs f are given by

• (x, vFB(x)) if no player deviated from σ

• (u(r ), vFB(u(r ))) if the agent deviated from σ

• (x∗, vFB(x∗ )) if the principal deviated from σ but the agent did not.

By (12), the principal has no profitable deviation. Moreover, the agent’s continuation
payoff following any deviation equals u(r ) = U(c∗ ), so his deviation payoff cannot ex-
ceed U(c) = u(r ). Hence, (σ , f ) is E-admissible with respect to 
 at c with value
(x, vFB(x)) whenever s̄ ≥ s̄min, as required.

A.6 Proof of Proposition 4

Let c∗ be a stationary contract with c∗,t(yt−1, y ) = s∗y for any t ∈ N, y ∈ Y , yt−1 ∈ Yt−1,
where s∗h and s∗l are the salaries used in the proof of Theorem 1, defined in (4). Let x̄
satisfy the statement of Lemma 5 and let x∗ satisfy (12) from the proof of Proposition 3.
Define the function g : [x∗, u( s̄)] →R as

g(z) = (1 − δ)

(∑
y

p1
yu

(
s∗y + b∗

y

)) + δu(r ),

where b∗
h = 0, b∗

l = min
{
s̄− s∗l ,

δ

1 − δ
(
vFB(

u(r )
) − vFB(z)

)}
. (13)

Since s∗y + b∗
y ≤ s̄ for all y, g ≤ u( s̄). Moreover, for high s̄, effort e= 1 is optimal in (4), so

g(z) = u(r ) + (1 − δ)p1
l (u(s∗y + b∗

y ) − u(s∗y )). Since s∗l → 0 as s̄→ ∞, it follows that g ≥ x∗
for sufficiently high s̄. Hence, by Brouwer’s fixed point theorem, g has a fixed point z∗.

Consider the payoff correspondence
 ∈ P0:



(
c∗

) = {(
x, vFB(x)

)
|u(r ) ≤ x≤ z∗}


(ĉ) = {
(U(ĉ), vFB(

U(ĉ)
)}

for any ĉ ∈ C \ {
c∗

}
.

By Proposition 1 it suffices to show that for any ĉ ∈ C and (x, vFB(x)) ∈ 
(ĉ), there
exist a semistationary contract c and the following equilibria:

(EQ1) An equilibrium of (c, E,
) with payoffs (x, vFB(x)).
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(EQ2) An equilibrium of (ĉ, E,
) with agent payoff x̂ such that x= max{x̂, u(r )}.

Then an equilibrium of (ĉ,
) with the desired properties can be constructed by playing

(EQ1) following the acceptance of c and playing (EQ2) following the rejection of any of-

fer. Given these strategies, the agent can guarantee exactly x by rejection or his outside

option, so it is incentive compatible to accept c. Moreover, the principal cannot ob-

tain more than vFB(x) given the agent’s guarantee, so offering c is incentive compatible

regardless of the outcomes following the acceptance of other contracts.17

In what follows I construct the contract c and equilibria (EQ1) and (EQ2) given any

ĉ and (x, vFB(x)) ∈ 
(ĉ). I begin with the descriptions of c and (EQ1). If x ≥ x̄, let c

equal the contract cx from the proof of Proposition 3, and use the associated strate-

gies and continuation payoffs. If x < x̄, define c as sh = sl = 0 and ch = cl = c∗. Since

c∗ is stationary, c is semistationary. Consider the following strategies in (c, E,
): the

agent exerts eFB(x), the principal rewards eFB(x) with an output-independent bonus

u−1(x + ψ(eFB(x))), and pays no bonuses otherwise. Continuation payoffs are given

by (z∗, vFB(z∗ )) if the principal deviated from the prescribed bonus and by (x, vFB(x))
otherwise. The continuation payoffs are contained in 
(c∗h ) = 
(c∗l ) = 
(c∗ ), since

x < x̄ < x∗ by (12). Since z∗ ≥ x∗, (12) implies that the bonus is incentive compatible. The

agent’s incentives hold since he receives no compensation if he deviates from eFB(x).

Thus, the strategies form the required equilibrium of (c, E,
).

I proceed with the construction of (EQ2). If x = U(ĉ), use the first-period strate-

gies of σA(ĉ, E) from Lemma 2, and continuation payoffs (U(c′ ), vFB(U(c′ ))) at any

history with continuation contract c′. The principal’s incentives are trivial since she

pays no bonuses, and the agent’s incentives are unchanged relative to σA(ĉ, E) since

he receives no bonuses and his continuation payoffs are unchanged. Hence, the above

strategies form an equilibrium of (ĉ, E,
) with agent payoff UE(ĉ). Since U(ĉ) =
max{UE(ĉ), u(r )}, this forms the desired equilibrium (EQ2).

If x 
=U(ĉ), then ĉ = c∗ and x ∈ (u(r ), z∗]. Then the desired equilibrium of (c∗, E,
)
can be constructed as follows. The agent exerts effort e = 1, the principal pays a

bonus bl ∈ [0, b∗
l ] if effort is 1 and output is low, and pays no bonus otherwise. Con-

tinuation payoffs are (z∗, vFB(z∗ )) ∈ 
(c∗ ) if the principal reneges on the bonus, and

(u(r ), vFB(u(r ))) ∈ 
(c∗ ) otherwise. Hence, the agent receives u(r ) if bl = 0 and z∗ if

bl = b∗
l , since z∗ is a fixed point of g. Thus, bl ∈ [0, b∗

l ] can be chosen to make the agent’s

payoff equal to x. The incentive compatibility of the bonuses follows from (12). Recall

that for high s̄, effort 1 is optimal in (4), so the agent obtains at most u(r ) by deviat-

ing. Thus, the above strategies form an equilibrium of (c∗, E,
) with agent payoff x, as

required.

17Strictly speaking, condition (ii) in the statement of Proposition 4 must be verified by establishing the
existence of Pareto optimal equilibrium payoffs in any subgame (c′, E) in the class of equilibria satisfying
(i). This class is nonempty, as it contains σA(c′, E). Furthermore, it can be shown by adapting arguments
from APS that the set of payoffs of equilibria in subgame (c′, E) satisfying (i) is compact.
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Appendix B: Proofs for the extended model with limited liability for the

principal

Let C be the space of all contracts and let P0 be the space of correspondences
 : C⇒ F ,
where F = [u(r ), xFB(0)] × [0, vFB(u(r ))] is the set of feasible and individually rational
payoffs. For any 
 ∈ P0, define the auxiliary games (c∗,
) and (c, E,
) as well as their
payoff sets B
(c∗ ) and B
(c, E) analogously to Section 2.3. As in the baseline model,
E ∈ P0 denotes the equilibrium payoff correspondence, and a correspondence 
 is self-
generating if 
⊆ B
.18 The following results can be adapted from APS.

Proposition 6 (Self-generation). If 
 is self-generating, then B
⊆ E .

Proposition 7 (Factorization). We have BE = E .

Let P be the set of nonempty, compact-valued, and upper hemicontinuous payoff
correspondences 
 in P0. For any c∗ ∈ C, let x
(c∗ ) denote the agent’s worst payoff in

(c∗ ), and let v
(c∗ ) and v̄
(c∗ ) denote the principal’s worst and best payoffs in 
(c∗ ),
respectively. The following sections characterize B
 and B
(·, E) for any payoff corre-
spondence 
 ∈ P .

Equilibrium set of (c, E,
)

For any c ∈ C and
 ∈ P , the payoff set B
(c, E) consists of the values of all profiles that
are E-admissible with respect to 
 at c, as defined below.

Definition 6 (E-admissibility). Let c ∈ C and 
 ∈ P . A profile of actions (e, bh, bl ) and
continuation payoffs (xh, vh ) ∈ 
(ch ), (xl, vl ) ∈ 
(cl ) is E-admissible with respect to 

at c with value (x, v) if

x=
∑
y

pey
[
(1 − δ)

(
u(sy + by ) −ψ(e)

) + δxy
]

v=
∑
y

pey
[
(1 − δ)(y − sy − by ) + δvy

]

x≥ max
e′∈[0,1]

∑
y

pe
′
y

[
(1 − δ)

(
u(sy ) −ψ(

e′
)) + δx
(cy )

]
(14)

0 ≤ by ≤ δ

1 − δ
(
vy − v
(cy )

)
for all y. (15)

To see this, notice that in any equilibrium of (c, E,
), it is without loss of generality
that each deviation is punished with the worst continuation equilibrium for the devia-
tor (Abreu (1988)). Hence, the principal receives her worst continuation payoff v
(cy )
when she reneges on the equilibrium bonus by for effort e following output y. If the
agent deviates to effort e′, he receives no bonuses and his worst continuation payoff

18Set operations on correspondences are defined pointwise.
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x
(cy ) following any output y. Hence, the incentive constraints for effort and bonuses
are given by (14) and (15), respectively. Notice that B
(·, E) is compact-valued and up-
per hemicontinuous. Let x(c, E,
) and v(c, E,
) denote, respectively, the agent’s and
the principal’s worst payoffs in B
(c, E).

Equilibrium set of (c∗,
)

Let 
 ∈ P and c∗, c ∈ C. Let (c∗, c,
) denote the subgame of (c∗,
) following an offer c
by the principal. The principal’s worst payoff in this subgame is obtained in one of three
types of equilibria. In the first type, the agent accepts c, so without loss of generality he
receives his worst equilibrium payoff x(c∗, E,
) following rejection. The lowest payoff
the principal can receive in such an equilibrium equals

v
(
c∗, c,
;A

) = inf
{
v|(x, v) ∈ B
(c, E), x≥ max

{
u(r ), x

(
c∗, E,


)}}
,

where inf∅ = ∞; otherwise the infimum is attained due to the compactness of B
(c, E).
In the second type of equilibrium, the agent rejects c. The worst payoff for the prin-

cipal obtained in this manner equals v(c, c∗,
;A) by symmetry of the subgames follow-
ing acceptance and rejection.

Finally, consider an equilibrium where the agent takes his outside option. Such an
equilibrium exists if and only if there are equilibria following both acceptance and rejec-
tion where the agent’s payoff is no larger than his outside option. Thus, the principal’s
worst equilibrium payoff in subgame (c∗, c,
) is given by

v
(
c∗, c,


) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
{

0, v
(
c∗, c,
;A

)
, v

(
c, c∗,
;A

)}
if u(r ) ≥ max{x(c, E,
), x(c∗, E,
)}

min
{
v
(
c∗, c,
;A

)
, v

(
c, c∗,
;A

)}
otherwise.

In the principal’s worst equilibrium in (c∗,
), she receives her lowest payoff in subgame
(c∗, c,
) following any offer c ∈ C. Hence,

vB

(
c∗

) = max
{

0, sup
c∈C

v
(
c∗, c,


)}
. (16)

The payoff set B
(c∗ ) consists of the values of all profiles admissible with respect to

 at c∗, as defined below.

Definition 7 (Admissibility). Let c∗ ∈ C and 
 ∈ P . A profile “out” with value (u(r ), 0)
is admissible with respect to 
 at c∗ if vB
(c∗ ) = 0. A profile c ∈ C with value (x, v) ∈
B
(c, E) is admissible with respect to 
 at c∗ if

v≥ vB
(
c∗

)
(17)

and x≥ max
{
u(r ), x

(
c∗, E,


)}
. (18)
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To see this, consider any equilibrium of (c∗,
) where the outside options are taken
by either player. It follows that vB
(c∗ ) = 0; otherwise, there exists a contract the prin-
cipal can offer to guarantee a positive payoff. Moreover, if vB
(c∗ ) = 0, there is an equi-
librium where the principal shuts down, because she receives her worst continuation
payoff following any contract offer.

Now consider an equilibrium of (c∗,
) with payoffs (x, v), where the outside op-
tions are not taken. It is without loss of generality that the principal’s contract offer c is
accepted by the agent, as any equilibrium with rejection can be replicated with an offer
equal to c∗. Thus, (x, v) ∈ B
(c, E). Since vB
(c∗ ) equals the principal’s worst payoff
from deviation at the contract offer stage, her incentive compatibility is equivalent to
(17). As for the agent, accepting c is incentive compatible if and only if (18) holds, as he
receives his worst payoff following rejection.

B.1 Proof of Proposition 5

The key intermediate result in the proof of Proposition 5 is Lemma 7 below, which es-
tablishes that equilibrium payoffs in subgames from the agent’s effort can be modified
continuously to the benefit of one of the players.

Lemma 7. Let 
 ∈ P . Consider any contract c and any equilibrium of subgame (c, E,
)
with payoffs (x, v) such that x 
= −∞. For any ε > 0, the following situations exist:

• A contract c′ and an equilibrium of (c′, E,
) with payoffs (x′, v′ ) such that x < x′ <
x+ ε and v− ε < v′ < v+ ε.

• A contract c′ and an equilibrium of (c′, E,
) with payoffs (x′, v′ ) such that x− ε <

x′ < x+ ε and v < v′ < v+ ε.

Proof. Consider a profile σ of strategies (e, bh, bl ) and continuation payoffs (xy , vy )y
that are E-admissible with respect to 
 at c.

For any e′, s′h, s′l, let

A
(
e′, s′h, s′l

) =
∑
y

pe
′
y

[
(1 − δ)

(
u
(
s′y + by

) −ψ(e)
) + δxy

]

A
(
e′, s′h, s′l

) =
∑
y

pe
′
y

[
(1 − δ)

(
u
(
s′y

) −ψ(e)
) + δx
(cy )

]

P
(
e′, s′h, s′l

) =
∑
y

pe
′
y

[
(1 − δ)

(
y − s′y − by

) + δvy
]
.

In what follows, I obtain a contract c′ from c by changing the first-period salaries to
s′h and s′l. Then the profile of strategies (e′, bh, bl ) and continuation payoffs (xy , vy )y
is E-admissible with respect to 
 at c′ with value (A(e′, s′h, s′l ), P(e′, s′h, s′l )) if and only if
A(e′, s′h, s′l ) ≥ maxê A(ê, s′h, s′l ). In particular, when c′ = c theE-admissibility of σ implies
that

A(e, sh, sl ) ≥ max
ê
A(ê, sh, sl ). (19)
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Let ε > 0. I begin by constructing the equilibrium that improves the principal’s pay-
off. Suppose sh > 0 and sl > 0. Consider s′h ∈ (0, sh ) and s′l ∈ (0, sl ) such that

u(sh ) − u(s′h) = u(sl ) − u(s′l).

The profile (e, bh, bl ), (xy , vy )y is E-admissible with respect to 
 at c′, since

max
ê∈[0,1]

A
(
ê, s′h, s′l

) = max
ê∈[0,1]

A(ê, sh, sl ) − (1 − δ)
(
u(sh ) − u(s′h))

≤A(e, sh, sl ) − (1 − δ)
∑
y

pey
(
u(sy + by ) − u(s′y + by

))

=A(
e, s′h, s′l

)
,

where the inequality follows from (19) and the concavity of u. Thus, there is an equilib-
rium of (c′, E,
) with payoffs (A(e, s′h, s′l ), P(e, s′h, s′l )). Since A and P are continuous,
these payoffs are within ε of (x, v) whenever (s′h, s′l ) is sufficiently close to (sh, sl ). More-
over, P(e, ·, ·) is strictly decreasing in both arguments, so P(e, s′h, s′l )> v, as required.

Now suppose sy = 0 for some y. Without loss of generality, let y = h. Since u(0) = −∞
and x 
= −∞, it follows that bh > 0. Let b′

h < bh and b′
l = bl. The profile (e, b′

h, b′
l ),

(xy , vy )y is E-admissible with respect to 
 at c since lower bonuses are incentive com-
patible and the right-hand side of (14) equals −∞ due to u(sh ) = −∞. Hence, there
exists an equilibrium of subgame (c, E,
) where the only difference in on-path behav-
ior relative to the equilibrium with payoffs (x, v) lies in the smaller bonus for output h.
Thus, the principal’s payoff is improved at the expense of the agent. The equilibrium
payoffs are within ε of (x, v) when b′

h is sufficiently close to bh.
It remains to construct an equilibrium that improves the agent’s payoff. Suppose

(19) holds at equality, bh = bl = 0, and xy = x
(cy ) for all y. Thus, A = A. Let s′h > sh
and s′l = sl. Let e′ be a maximizer of A(·, s′h, sl ). The profile (e′, bh, bl ), (xy , vy )y is E-
admissible with respect to 
 at c′, since

A
(
e′, s′h, sl

) =A(
e′, s′h, sl

) = max
ê∈[0,1]

A
(
ê, s′h, sl

)
.

Hence, there exists an equilibrium of (c′, E,
) with payoffs (A(e′, s′h, sl ), P(e′, s′h, sl )).
Since s′h > sh, it follows that A(e′, s′h, sl ) =A(e′, s′h, sl )>A(e, sh, sl ) =A(e, sh, sl ). More-
over, A and P are continuous, so the equilibrium payoffs are within ε of (x, v) when s′h
is sufficiently close to sh.

Now suppose (19) holds at equality and there exists y such that at least one of by > 0
and xy > x
(cy ) holds. Thus,A>A and

max
e′∈[0,1]

A
(
e′, sh, sl

)
> max
ê∈[0,1]

A(ê, sh, sl ) =A(e, sh, sl ).

SinceA and P are continuous, there exists e′ such that

x=A(e, sh, sl )<A
(
e′, sh, sl

)
< x+ ε

v− ε < P(
e′, sh, sl

)
< v+ ε.
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It follows from (19) that A(e′, sh, sl )>maxê∈[0,1]A(ê, sh, sl ). Thus, (e′, bh, bl ), (xy , vy )y is
E-admissible with respect to 
 at c with the desired payoffs.

Finally, suppose that (19) holds at a strict inequality. Let s′h > sh and s′l = sl. By the
maximum theorem, A(e, ·, sl ) and maxê∈[0,1]A(ê, ·, sl ) are continuous. It follows that
when s′h is sufficiently close to sh, the profile (e, bh, bl ), (xy , vy )y is E-admissible with
respect to 
 at c′. Hence, there exists an equilibrium of (c′, E,
) with payoffs within ε
of (x, v) such that the agent’s payoff is higher than x.

Recall from the discussion following Proposition 3 that showing the attainability of
efficient equilibrium payoffs in a strongly optimal equilibrium amounts to the state-
ment of Lemma 8 below for 
 = E . Thus, Proposition 5 follows from E ∈ P , which is
established in the proof of Proposition 8 in Appendix B.2.

Lemma 8. Let 
 ∈ P and c∗ ∈ C. Consider any equilibrium of (c∗,
) with payoffs
(x∗, v∗ ). There exist an efficient equilibrium of (c∗,
) where the agent’s payoff is x∗ and
an efficient equilibrium of (c∗,
) where the principal’s payoff is v∗.

Proof. Consider any equilibrium of (c∗,
) with payoffs (x∗, v∗ ). Let

v̄= max
{
v|(x, v) ∈ B
(

c∗
)
, x≥ x∗}

x̄= max
{
x|(x, v̄) ∈ B
(

c∗
)}

,

which are well defined by Lemma 12 in Appendix B.2. An efficient equilibrium of (c∗,
)
with agent payoff x∗ exists if and only if x̄= x∗.

Toward a contradiction, suppose x̄ > x∗. It follows that (x̄, v̄) 
= (u(r ), 0), so there
exists a profile c with value (x̄, v̄) admissible with respect to 
 at c∗. By Lemma 7, there
exists an equilibrium of (c, E,
) with payoffs (x, v) such that x > x∗ and v > v̄ ≥ v∗.
Since (x∗, v∗ ) ∈ B
(c∗ ), x > x∗, and v > v∗, it follows from (17) and (18) that (x, v) ∈
B
(c∗ ), contradicting the maximality of v̄. Hence, there exists an efficient equilibrium of
(c∗,
) where the agent receives x∗. A symmetric argument for the principal completes
the proof.

The results of this section imply that any correspondence containing the equilibrium
payoffs generates a nontrivial Pareto frontier of payoffs from the agent’s effort including
the outside utilities of each player. This is shown in Lemma 9 below, which is used to
prove Theorem 2 in the following section.

Lemma 9. Let 
 ∈ P such that 
 ⊇ E . Then there exists x̄ > u(r ) and a function
f : [u(r ), x̄] → [0, vFB(u(r ))] such that f (x̄) = 0, and (x, f (x)) is Pareto optimal in
∪c∈CB
(c, E) ∩ F for any x ∈ [u(r ), x̄].

Proof. Let 
 ∈ P such that 
 ⊇ E . The set G
 := ∪c∈CB
(c, E) ∩ F is compact, since
B
(·, E) is compact-valued and upper hemicontinuous. By assumption, there exists
(x, v) ∈ E(0) with (x, v) 
= (u(r ), 0). By Proposition 7 and admissibility, (x, v) ∈ BE(c, E)∩
F for some c ∈ C. Hence, the monotonicity of B(·, E) implies that (x, v) ∈G
. The result
then follows from Lemma 7 and Lemma 8.
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B.2 Proof of Theorem 2

The proof of Theorem 2 is based on the algorithmic result of APS stated below.

Proposition 8 (APS algorithm). Let
1 = F and
n+1 = B
n for all n ∈N. Then
n+1 ⊇

n for all n and ∩n
n = E .

In stationary repeated games, this result is shown in two steps. First, the operator
B maps compact payoff sets (instead of correspondences) to compact sets, so the algo-
rithm yields a decreasing sequence of compact sets. Second, this sequence converges
to a compact self-generating set. In the stochastic game considered here, the second
step requires the upper hemicontinuity of each correspondence 
n. Thus, Lemma 12,
the analogue to the first step, shows that B preserves compact-valuedness and upper
hemicontinuity, as well as the properties of the following class P+ ⊆ P . A payoff corre-
spondence 
 ∈ P is in P+ if 
⊇ E and there exists an optimal punishment contract for

 in the following sense.

Definition 8. A contract c
 ∈ C is an optimal punishment contract for 
 ∈ P if
vB
(c
 ) = 0 and x(c
, E,
) ≤ u(r ).

By admissibility, an optimal punishment contract c
 satisfies B
(c
 ) ⊇ B
(c∗ ) for
all c∗ ∈ C. Lemma 10 is used to show that each 
n has an optimal punishment contract
c
n . This is essential to establishing the compact-valuedness of each 
n and their limit
E . For the latter, one needs to obtain a convergent subsequence of a sequence of con-
tracts (cn ) such that cn is admissible with respect to
n. This is not immediate due to the
unboundedness of C, so the convergence proceeds in the following two steps. First, the
continuation contracts of each cn+1 are equal to the optimal punishment contract c
n

without loss of generality. The sequence (c
n ) is shown to converge to a stationary opti-
mal punishment contract for E (Corollary 2). Second, the first-period salaries of each cn

are uniformly bounded, as shown in Lemma 11.

Lemma 10. Let 
 ∈ P and let ε > 0 such that v̄
(c∗ ) − v
(c∗ ) ≥ ε for some c∗ ∈ C. Then
there exists an optimal punishment contract c
 for 
. In addition, if 
⊇ 
̂⊇ E for some

̂ ∈ P , there exists η(
̂)> 0 independent of
 and ε such that v̄B
(c
 ) −vB
(c
 ) ≥ η(
̂).

Proof. Fix any 
, c∗, and ε as in the statement of the lemma. Let (x̄, v̄), (x, v) ∈
(c∗ )
such that v̄ = v̄
(c∗ ) and v = v
(c∗ ). Let c
 be a contract with continuation contracts
c
h = c
l = c∗ and salaries s
h and s
l such that

(1 − δ)
∑
y

p1
y

(
u
(
s
y

) −ψ(1)
) + δxFB(0) = u(r ). (20)

Since u is unbounded, there exist multiple salary pairs (s
h , s
l ) satisfying (20), where s
h
can be arbitrarily large and s
l → 0 as s
h → ∞.

Consider an equilibrium of (c
, E,
) where no bonuses are paid and continuation
payoffs are constant, the latter being possible due to c
h = c
l . The agent’s continuation
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payoffs are upper bounded by xFB(0), his highest payoff in F , since 
 ∈ P . For s
h suffi-
ciently large, s
l is small, so effort 1 is optimal. It follows from (20) that x(c
, E,
) ≤ u(r ).

Now consider the following equilibrium of (c
, E,
). The agent exerts effort 1 and
the principal pays no bonuses unless effort equals 1 and output is low; in this case, she
pays b = εδ/(1 − δ). Continuation payoffs are given by (x̄, v̄) if the principal did not
deviate and by (x, v) if she did. Since ε ≤ v̄ − v, the principal’s incentives hold. The
agent’s payoff is at least

(1 − δ)
(
p1
hu

(
s
h

) +p1
l u

(
s
l + b) −ψ(1)

) + δu(r ).

When s
h is sufficiently high, s
l is small, so the marginal utility of the bonus b becomes
arbitrarily high. It follows from (20) that there exists an equilibrium of (c
, E,
) with an
arbitrarily high payoff for the agent. In particular, if the agent receives more than xFB(0),
then v(c, c
,
;A) ≤ 0 for any c ∈ C. Thus, vB
(c
 ) = 0, as required.

Consider any 
̂ ∈ P such that 
 ⊇ 
̂ ⊇ E . By Lemma 9, there exist c, c′ ∈ C, (x, v) ∈
B
̂(c, E) ∩ F , and (x′, v′ ) ∈ B
̂(c′, E) ∩ F such that v′ > v. Since 
 ⊇ 
̂, it follows from
the properties of c
 and admissibility that (x, v), (x′, v′ ) ∈ B
(c
 ). The proof is then
completed by setting η(
̂) = v′ − v.

Lemma 11. Let 
 ∈ P and c ∈ C. If a profile c with some value (x, v) is admissible with
respect to 
 at some c∗ ∈ C, then sh and sl are upper bounded by

s̄ =
h+ δ

1 − δv
FB(
u(r )

)
min

{
p1
l , p0

h

} .

Proof. A profile c with value (x, v) ∈ B
(c, E) is admissible with respect to 
 ∈ P at c∗
only if v ≥ vB
(c∗ ) ≥ 0. However, if max{sh, sl} > s̄, every equilibrium of (c, E,
) has a
negative payoff for the principal. To see this, notice that her continuation payoff is at
most vFB(u(r )), since 
 ∈ P . Hence, her payoff is upper bounded by

(1 − δ)

(
max
e

∑
y

peyy − min
e

∑
y

peysy

)
+ δvFB(

u(r )
)

< (1 − δ)
(
h− min

{
p1
l , p0

h

}
s̄
) + δvFB(

u(r )
) = 0.

Lemma 12. Let 
 ∈ P+ such that 
⊇ B
. Then B
 ∈ P+.

Proof. Since 
 ⊇ E , Proposition 7 and the monotonicity of B imply that B
 ⊇ E .
Hence, it follows from the assumption of equilibrium existence that B
 is nonempty.19

Moreover, 
 ⊇ B
 ⊇ E and Lemma 10 imply that an optimal punishment contract for
B
 exists if B
 ∈ P , which is demonstrated below.

To see that B
 is compact-valued, consider any c∗ ∈ C and a sequence of profiles
(σn ) with value (xn, vn ) admissible with respect to 
 at c∗. Since (xn, vn ) ∈ F for all n,

19Existence can also be established directly by a construction similar to Lemma 2.
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there exists a subsequence along which the values converge to some (x, v) ∈ F . It suf-
fices to show that (x, v) is the value of a profile admissible with respect to 
 at c∗. If
there exists a (further) subsequence along which σn = out, this is immediate. Other-
wise, there exists a subsequence along which σn = cn for some sequence of contracts
(cn ). Since 
 ∈ P+, there exists c∗
 such that 
(c∗
 ) ⊇
(cn ) for all n. Thus, it is without
loss of generality that cnh = cnl = c∗
 for all n. Moreover, by Lemma 11, sny ≤ s̄ for all n, y. It
follows that cn converges to some contract c, taking a subsequence if necessary. By the
upper hemicontinuity of B
(·, E), a profile c with value (x, v) is admissible with respect
to 
 at c∗, as required.

The upper hemicontinuity of B
 obtains if for any c∗ and any sequence of pro-
files cn with value (xn, vn ) admissible with respect to 
 at c∗ such that cn → c and
(xn, vn ) → (x, v), a profile c with value (x, v) is admissible with respect to 
 at c∗. It suf-
fices to show that x(·, E,
) and vB
 are lower semicontinuous so that (17) and (18) from
the definition of admissibility hold in the limit as cn → c. The lower semicontinuity of
x(·, E,
) follows from the upper hemicontinuity ofB
(·, E). Since the pointwise supre-
mum of lower semicontinuous functions is lower semicontinuous, (16) implies that vB


is lower semicontinuous if v(·, c,
;A) and v(c, ·,
;A) are lower semicontinuous for
any c. This follows from the lower semicontinuity of x(·, E,
) and the upper hemicon-
tinuity of B
(·, E).

Proof of Proposition 8. Since 
1 = F , it is immediate that 
1 ∈ P+ and 
1 ⊇
2. It
follows from Lemma 12 and the monotonicity of B that 
n ∈ P+ and 
n ⊇ 
n+1 for all
n ∈N. Let
 := ∩n∈N
n. As the intersection of nested compact sets,
(c∗ ) is compact for
any c∗ by the finite intersection property. Similar arguments establish that 
 is upper
hemicontinuous. Thus, 
 ∈ P , so the definitions of admissibility and E-admissibility
can be used to characterize B
 and B
(·, E), respectively. Since 
 ⊇ E , Proposition 6
implies that 
= E obtains if 
 is self-generating. Toward this goal, consider any c∗ ∈ C
and any (x, v) ∈
(c∗ ).

Case 1: (x, v) = (u(r ), 0).
Then vB
n(c∗ ) = 0 for all n since (x, v) ∈ 
(c∗ ) ⊆ 
n(c∗ ). Hence, (u(r ), 0) ∈ B
(c∗ )

obtains if limn→∞ vB
n(c∗ ) = vB
(c∗ ). This is shown in the sequel by a backward induc-
tion argument through the stage game.

Step 1: x
n(c∗ ) ↗ x
(c∗ ) and v
n(c∗ ) ↗ v
(c∗ ) for any c∗ ∈ C. By the monotonic-
ity of (
n ) (i.e., 
n+1 ⊇ 
n), x
n(c∗ ) is an increasing sequence upper bounded by
x
(c∗ ). Since each 
n is compact-valued, there exists a sequence (vn ) → v such that
(x
n(c∗ ), vn ) ∈ 
n for all n. Thus, for any m ∈ N, the compactness of 
m(c∗ ) and the
monotonicity of (
n ) imply that (limx
n(c∗ ), v) ∈ 
m(c∗ ). Hence, limx
n(c∗ ) ≥ x
(c∗ )
and the result obtains. A similar argument establishes that v
n(c∗ ) ↗ v
(c∗ ).

Step 2: ∩n∈NB
n(c, E) = B
(c, E) for any c ∈ C. By the monotonicity of (
n ), it
suffices to show that any sequence σn of profiles E-admissible with respect to 
n at c
with value (x, v) has a subsequence converging to a profile E-admissible with respect
to 
 at c. To this end, notice that the continuation payoffs of any E-admissible profile
lie in the compact set F and bonuses are upper bounded by vFB(u(r ))δ/(1 − δ). Thus,
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there exists a subsequence of σn converging to a profile σ . Since x
n(cy ) → x
(cy ) and
v
n(cy ) → v
(cy ) for all y, σ is E-admissible with respect to 
 at c.

Step 3: x(c, E,
n ) ↗ x(c, E,
) for any c ∈ C. By the monotonicity of (
n ),
x(c, E,
n ) is an increasing sequence upper bounded by x(c, E,
). Consider any se-
quence (xn, vn ) → (x, v) such that (xn, vn ) ∈ B
n(c, E) for all n. For any m, the mono-
tonicity of (
n ) implies that (x, v) ∈ B
m(c, E), since B
m(c, E) is compact. Thus,
(x, v) ∈ B
(c, E) follows from Step 2, and limx(c, E,
n ) ≥ x(c, E,
), as required.

Step 4: v(c∗, c,
n;A) ↗ v(c∗, c,
;A) for any c∗, c ∈ C. By the monotonicity
of (
n ), v(c∗, c,
n;A) is an increasing sequence upper bounded by v(c∗, c,
;A).
Consider any sequence (xn, vn ) → (x, v) such that (xn, vn ) ∈ B
n(c, E) and xn ≥
max{u(r ), x(c∗, E,
n )} for all n. It follows from Steps 2 and 3 that (x, v) ∈ B
(c, E)
and x≥ max{u(r ), x(c∗, E,
)}. Thus, limv(c∗, c,
n;A) ≥ v(c∗, c,
;A) in the event that
v(c∗, c,
n;A) does not equal ∞ for any n; otherwise, the inequality holds trivially.

Step 5: It follows from Steps 3 and 4 that v(c∗, c,
n ) ↗ v(c∗, c,
) for any c∗, c ∈ C.
Thus, for any c∗,

lim
n→∞ sup

c∈C
v
(
c∗, c,
n

) = sup
n∈N

sup
c∈C

v
(
c∗, c,
n

) = sup
c∈C

sup
n∈N

v
(
c∗, c,
n

) = sup
c∈C

v
(
c∗, c,


)
.

Thus, (16) implies that vB
n(c∗ ) → vB
(c∗ ), as required.
Case 2: (x, v) 
= (u(r ), 0).
Then for each n, there exists a profile cn with value (x, v) admissible with respect to


n at c∗.
An inductive application of Lemma 10 shows that the optimal punishment contract

c
n for each
n can be chosen to satisfy

v̄B
n
(
c
n

) − vB
n(c
n) ≥ η(
).

Thus, by Lemma 10, it is possible to choose optimal punishment contracts (c
n ) with
the same first-period salaries, denoted by s
h and s
l . Moreover, B
n(c
n ) ⊇ B
n(c
n+1

y )

for any y ∈ Y , n ∈ N. Thus, c
n+1
h = c


n+1
l = c
n without loss of generality. It follows that

c
n → c
, where c
,t(yt−1, y ) = s
y for all t ∈N, yt−1 ∈ Yt−1, and y ∈ Y .20

For each n, the properties of the optimal punishment contract c
n imply that cn+1
h =

cn+1
l = c
n without loss of generality. Moreover, by Lemma 11, sny ≤ s̄ for all y ∈ Y , n ∈ N.

Thus, (cn ) converges to a contract c with ch = cl = c
, taking a subsequence if necessary.
The admissibility of cn implies that (x, v) ∈ B
n(cn, E) for all n. By the monotonicity

of (
n ), (x, v) ∈ B
n(cm, E) for all n ∈ N, m ≥ n. Hence, the upper hemicontinuity of
B
n(·, E) implies that (x, v) ∈ B
n(c, E) for all n. It follows from Step 2 of Case 1 that
(x, v) ∈ B
(c, E). Moreover, from Steps 3 and 5,

vB

(
c∗

) = lim
n→∞v

B
n
(
c∗

)

max
{
u(r ), x

(
c∗, E,


)} = lim
n→∞ max

{
u(r ), x

(
c∗, E,
n

)}
.

20The convergence is in the product topology; see footnote 8.
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Thus, a profile c with value (x, v) is admissible with respect to 
 at c∗, as required.

Corollary 2. We have E ∈ P+.

Proof. In the notation of the proof of Proposition 8, 
 = E ∈ P , so it suffices to show
that c
 is an optimal punishment contract for 
. The monotonicity of (
n ) implies
that vB
n(c
m ) = 0 for all n ∈ N, m ≥ n. Since c
m → c
, the upper hemicontinuity of
B
n implies that vB
n(c
 ) = 0 for all n. Hence, Step 5 from Case 1 yields vB
(c
 ) =
0. A similar argument using Step 3 from Case 1 establishes that x(c
, E,
) ≤ u(r ), as
required.

To prove Theorem 2, recall from the proof of Proposition 8 that
n ∈ P+ for all n. Let
f
n ∈ F be the Pareto frontier of ∪cB
n(c, E) ∩ F obtained from Lemma 9. Letting c
n

denote an optimal punishment contract for 
n,
⋃
c∈C

B
n+1(c, E) ∩ F =
⋃
c∈C

{
B
n+1(c, E) ∩ F|ch = cl = c
n

}
.

Since x(c
n , E,
n ) ≤ u(r ), v
n+1 (c
n ) = 0, and (u(r ), f
n+1 (u(r ))) ∈ B
n(c, E) for some
c, it follows from admissibility that x
n+1 (c
n ) = u(r ). Since the worst payoffs in

n+1(c
n ) for both players equal their respective outside options, it follows from E-
admissibility that f
n+1 = Tf
n . Since (
n ) is monotone, (f
n ) is monotone in the sense
that f
n+1 ≤ f
n on dom f
n+1 and dom f
n+1 ⊆ dom f
n . Thus, f
n converges pointwise
to some f E . Using Step 3 of the proof of Proposition 8 gives

⋃
c∈C

BE(c, E) ∩ F =
⋃
c∈C

⋂
n∈N

B
n(c, E) ∩ F =
⋂
n∈N

⋃
c∈C

B
n(c, E) ∩ F .

Hence, f E gives the Pareto frontier of ∪cBE(c, E) ∩ F . Moreover, since E ∈ P , Lemma 9
implies that f E ∈ F .

It follows from admissibility and Proposition 7 that (x, v) is an efficient equilibrium
payoff of subgame c∗ ∈ C if and only if x ∈ dom f E , v= f E (x), x≥ max{u(r ), x(c∗, E,
)},
and v ≥ v(c∗ ). Theorem 2 then follows from x(0, E, E ) = −∞, implied by the existence
of an equilibrium of subgame (0, E) where no bonuses are paid.
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