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Modern information technologies make it possible to store, analyze, and trade
unprecedented amounts of detailed information about individuals. This has led
to public discussions on whether individuals’ privacy should be better protected
by restricting the amount or the precision of information that is collected by
commercial institutions on their participants. We contribute to this discussion
by proposing a Bayesian approach to measure loss of privacy in a mechanism.
Specifically, we define the loss of privacy associated with a mechanism as the dif-
ference between the designer’s prior and posterior beliefs about an agent’s type,
where this difference is calculated using Kullback–Leibler divergence, and where
the change in beliefs is triggered by actions taken by the agent in the mechanism.
We consider both ex post (for every realized type, the maximal difference in beliefs
cannot exceed some threshold κ) and ex ante (the expected difference in beliefs
over all type realizations cannot exceed some threshold κ) measures of privacy
loss. Applying these notions to the monopolistic screening environment of Mussa
and Rosen (1978), we study the properties of optimal privacy-constrained mech-
anisms and the relation between welfare/profits and privacy levels.
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1. Introduction

Modern information technologies make it possible to store, analyze, and trade unprece-
dented amounts of detailed information about individuals. At the same time, the rapid
growth of online markets has significantly increased the participation of individuals in
decentralized pricing mechanisms that rely on personal information provided by the
participants. Consequently, the organizers of these markets are able to gather vast
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amounts of data on individuals’ characteristics such as their tastes and willingness-to-
pay for products and services. These data are valuable to a variety of entities including
commercial firms as well as political institutions. If leaked to these entities, this infor-
mation may be used against the users’ interests. In light of this, there has been a growing
sentiment that governments should enact laws that regulate the ability of private enti-
ties to collect and use personal information. If the growing concerns for maintaining
privacy were to lead to regulations that impose privacy constraints on pricing mecha-
nisms, how would that affect the design of these mechanisms, and what is the trade-off
between profits, welfare and privacy? This paper takes a step towards addressing these
questions by proposing a Bayesian approach to the measurement of loss of privacy and
applying this approach to the design of optimal mechanisms that are restricted in the
amount/precision of private information that they can elicit from participants.

The cornerstone of our approach is the idea that loss of privacy is a relative notion:
How much information is effectively extracted from an individual through his actions
should be measured relative to what is already known about that individual. For ex-
ample, if it is publicly known that some individual was convicted of some crime, then
there is no loss of private information when that person voluntarily discloses his con-
viction. Similarly, how much privacy is lost when a reputed business manager (say, the
CEO of a publicly traded firm) discloses his wealth should depend on existing public in-
formation (e.g., about his annual income). In the context of private information that is
gleaned through trade, a seller who operates in a particular zip code may already know
the wealth distribution of the residents in that zip code. Similarly, if an individual who
is already active on some platform (say, an online radio) decides to make a purchase on
that platform, the information revealed from the purchase itself is in addition to the data
that the platform has already collected prior to the purchase, such as that person’s taste
in music.

Taking the idea of relative privacy to mechanism design, we suppose that the de-
signer already possesses some information about the participants in the form of a prior
belief over their “types.” He updates this belief as a result of the participants’ interac-
tions with the mechanism, which reveal more information about them. For example,
if the mechanism consists of a menu, then an individual’s choice of a particular menu
item enables the designer to learn additional information about this person’s prefer-
ences. Consequently, the designer’s posterior belief about the participant’s type may be
quite different from her prior belief. This suggests that the difference between the de-
signer’s prior and posterior beliefs should serve as the basis for measuring the loss of
privacy associated with a particular mechanism.

Building on this observation, we propose a Bayesian measure of relative privacy loss
for mechanisms and apply it to screening mechanisms, which shut down the strategic
interaction among different participants. Specifically, we consider the classic Mussa–
Rosen set-up in which a monopolist seller faces increasing marginal cost for producing
a higher quality of a product, and wishes to offer the optimal menu of quality-price pairs
to consumers with private willingness-to-pay per unit of quality. The standard solution
implies that, under a regularity condition, all consumer types that opt in perfectly reveal
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their private types. Hence, the optimal solution entails complete loss of privacy: The
designer has a degenerate posterior belief on the type of each participant.

To study the design of mechanisms that preserve some level of privacy, we follow the
information theory literature and propose to measure a mechanism’s inherent loss of
privacy as the maximal relative entropy (i.e., the maximal Kullback–Leibler divergence)
between the seller’s posterior and prior beliefs. The posterior belief is derived from the
“message” received in the mechanism, and the maximum KL divergence is computed
across all messages (i.e., across all consumer types). We then augment the standard
mechanism design problem by restricting attention to mechanisms with privacy loss
at most κ. The parameter κ, which takes values between zero (full privacy) and infin-
ity (no privacy), captures the strength of the privacy requirement. For any finite κ, our
approach imposes an upper bound on the amount of new information that a designer
may learn about any participant. While in our analysis we use the functional form of KL-
divergence, our results extend to the more general class of f-divergences (see footnote 14
for details).

Before describing our results, we offer some discussion of this modeling framework.
By imposing an exogenous privacy constraint, we take a “paternalistic” approach to pri-
vacy in the sense that we do not explicitly model consumers’ preferences over privacy
(i.e., how consumers trade-off privacy, consumption and money), but rather assume
that mechanisms are required to guarantee a certain level of privacy. This is motivated
by research showing that most consumers are not fully aware of the implications of al-
lowing commercial entities to record information about them. Indeed, many users make
public postings on social media, log in to websites through their social media accounts
and do not delete cookies (see, e.g., Acquisti and Grossklags (2005), Barth and de Jong
(2017), and Kokolakis (2017)).1 Our paternalistic approach is analogous to the one that
is frequently taken in the design of commitment mechanisms, which try to help agents
with self-control problems by limiting their choice sets even when there is no demand
for such commitment devices on part of the agents.2

This perspective that a regulator imposes the exogenous privacy constraint moti-
vates our choice of an information-theoretic measure of privacy loss. Our measure re-
quires making no specific assumptions about the exact form of future interactions be-
tween the data holder and the agent. This approach reflects our view that the continua-
tion game is often unknown (especially to the regulator), making it impossible to predict
how data collected today will be used in the future.3

1Even if consumers were to fully endogenize the consequences of disclosing their private information, it
is often the case that individuals neglect the effects of sharing their information on others. For a discussion
of the negative externalities and the “public bad” properties of loss of privacy see, e.g., Fairfield and Engel
(2015) and Choi et al. (2019).

2Laibson (2018) called it the commitment paradox and gave the following example: “College instructors
adopt course policies that force students to focus on their course work: pop quizzes, classroom attendance
requirements, cold calling, graded problem sets, deadlines, classroom wifi blocking, and classroom laptop
bans. In my experience, most students do not welcome these paternalistic restrictions.”

3Oftentimes data that are collected for one purpose are used for a surprisingly different one. A notable
example is the 2018 Cambridge Analytica political scandal in which it was revealed that Cambridge Ana-
lytica had harvested the personal data of millions of peoples’ Facebook profiles without their consent and
used it for political advertising purposes.
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Thus, a regulator may prefer the relative entropy measure, which is portable and ap-
plicable to any mechanism design setting regardless of the particular type space. As our
analysis demonstrates, relative entropy (or any f -divergence) also makes the problem
especially tractable. In particular, our results suggest that the (ex post) relative entropy
privacy measure admits an equivalent “reduced-form” implementation, where the reg-
ulator simply requires each outcome in the designer’s menu to cater to a sufficiently big
proportion of the population. This is discussed in further detail below.

Our main results highlight the following key properties of optimal privacy-preserving
mechanisms. The optimal κ-constrained mechanism partitions the type space into
finitely many intervals (whose number depends on κ), such that consumers truthfully
announce to which interval their type belongs. Thus, even though there is a continuum
of types, and the privacy constraint allows for a continuum of noisy messages,4 maximal
profits are attained with only finitely many messages. When the production cost func-
tion and the type distribution satisfy some additional properties that we provide, any
optimal κ-constrained mechanism consists of intervals that are monotonically ordered
according to their mass from left to right, so that the gain from differentiating higher
types either diminishes or increases.

We show that an interval partition of the type space satisfies the κ-privacy constraint
if and only if the probability mass of each interval is at least e−κ. From a practical view-
point, this latter constraint on interval size may be more easily implemented by a regu-
lator. Specifically, to verify that a firm did not violate the privacy constraint, the regula-
tor only needs to get the data on the proportion of consumers who bought each menu
item. He then needs to check that each item is bought by at least e−κ fraction of the
consumers. This equivalent implementation does not require the regulator to know the
prior distribution of types, nor the equilibrium strategies. In fact, similar restrictions are
already used in practice in related contexts. For instance, the US government often re-
quires publicly released statistics (say, for research based on the US Census) to be based
on cells containing a minimum number of people or firms. Our contribution is to show
that such practices are optimal under a general notion of relative privacy.

We then study the welfare consequences of varying the privacy constraint κ. A priori,
it is not clear whether stricter privacy requirements help or harm consumers since such
requirements distort allocative efficiency. We show that when the marginal production
cost is convex, buyer surplus is maximized at κ = 0, where every type receives the same
quality, and it is minimized at κ = ∞, where types are fully separated. However, we find
that when costs are quadratic and the prior density function is decreasing in the type,
total welfare is minimized at κ = 0 (full privacy) and maximized at κ = ∞ (no privacy).
This result suggests that regulators may face a trade-off between consumer protection
and trade efficiency.

To illustrate a complete characterization of the optimal privacy-preserving mech-
anism, we analyze the uniform-quadratic case where types are drawn from a uniform
distribution and costs are quadratic. In this case, for any κ ∈ [log(n), log(n + 1)), the
κ-optimal mechanism divides the type space into n equal intervals. Hence, when κ is

4For example, when each type θ reports θ+ ε, where ε is a continuous random variable.
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in the interior of this interval, the privacy constraint is slack and profit is constant as κ

increases within this interval.
A consumer’s action or message can be thought of as a noisy signal that the designer

observes about the consumer’s type. Ex ante, there is a distribution over these signals
induced by the prior type distribution and each type’s optimizing behavior. An alter-
native, more permissive notion of privacy would require that on average, the reduction
in the designer’s uncertainty regarding the consumer should not exceed some thresh-
old. More formally, one could impose that the expected relative entropy between the
designer’s posterior and prior beliefs should be at most κ. This ex ante notion of privacy,
in contrast to the ex post notion discussed previously, is lenient to events of high loss
of privacy that occur with small probabilities. Thus, the designer can preserve privacy
in a differential manner across consumer types, so long as on average a given level of
privacy is maintained. This allows the designer to take advantage of the fact that some
consumers’ private information may be more valuable than others, e.g., uncovering high
valuation types may be more profitable than uncovering low valuation types.

We show that many of our findings continue to hold under the ex ante notion of pri-
vacy. However, there are a number of major differences. First, even though it is again
without loss to consider mechanisms that involve interval partitions, existence of an
optimal mechanism is no longer straightforward. The difficulty arises since the ex ante
constraint, unlike our original ex post version, allows for partitions with countably many
intervals. Without a finite upper bound on the number of intervals, it is more challeng-
ing to use a compactness argument to prove existence. To show that an optimal mech-
anism indeed exists, we show that there can be at most one interval of arbitrarily small
mass, i.e., at most one set of types about which the seller attains very precise informa-
tion. This property restores compactness and settles the existence issue; it also implies
that for κ small (near full privacy), the optimal ex ante κ-constrained mechanism has
exactly two intervals. Another distinction of the ex ante constraint is that the resulting
optimal mechanism always exhausts the privacy constraint. Consequently, the optimal
mechanism in the uniform-quadratic case is different from the one derived for ex post
privacy: For κ ∈ (log(n− 1), log(n)], there is exactly one “short” interval and n− 1 “long”
intervals of equal length; the lengths are uniquely determined by the binding privacy
constraint, and the position of the short interval does not matter.

In the absence of a commonly-agreed-upon notion of privacy loss, our main con-
tribution is to propose a Bayesian definition that builds upon a familiar concept from
information theory, which has already been adopted by economists as a measure of the
cost of information. This privacy notion can be easily incorporated into the standard
mechanism design framework, and has the advantage of allowing to quantify the ef-
fect of a marginal change in the privacy threshold on profits and welfare. As our results
suggest, the proposed privacy notion also provides a rationale for using simple/coarse
mechanisms with restricted message spaces.

We proceed as follows. In Section 2, we review the related literature. In Section 3,
we introduce our ex post Bayesian privacy notion, and in Section 4 we use this notion
to analyze optimal privacy-constrained mechanisms in a monopolistic screening set-
ting. Section 5 presents an alternative, ex ante, Bayesian privacy measure and solves
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for the corresponding optimal mechanisms under this constraint. Section 6 considers
an extension where the seller possibly excludes a subset of consumers from trade, and
Section 7 concludes.

2. Related literature

Our work is related to rational inattention (Sims (2003), Caplin and Dean (2015), Matějka
and McKay (2015), Matějka (2016), Steiner et al. (2017), Caplin et al. (2019)). In that lit-
erature, an uninformed decision maker chooses the structure of a signal she wants to
observe, subject to the information constraint that the signal can only contain a lim-
ited amount of information about the state (as measured by mutual information). Note
that mutual information is equal to the expected KL divergence between the decision
maker’s posterior and prior beliefs. Thus, the rational inattention approach connects
to our mechanism designer’s problem under the ex ante privacy constraint. The key
difference is that in our setting, the “signal” observed is the agent’s message, which is
bound by an additional incentive constraint. Thus, the seller in our model cannot di-
rectly choose what information to acquire, but rather needs to incentivize another party
to disclose that information to her. Studying the interaction between the information
constraint and the incentive constraint is the main objective of our work.

The privacy constraint in our model entails that, in equilibrium, agents cannot com-
municate all their private information to the designer. Several papers have investigated
a related question of optimal mechanism design with limited communication, by im-
posing exogenous restrictions on the cardinality of the action space available to agents.
Notable examples are Green and Laffont (1986, 1987), Melumad et al. (1992), Blumrosen
et al. (2007), Bergemann et al. (2012), Kos (2012), and Blumrosen and Feldman (2013).
In a different setting, Mookherjee and Tsumagari (2014) studied a dynamic mechanism
design problem with costly communication and compare between centralized and de-
centralized production decisions. Van Zandt (2007), Fadel and Segal (2009), and Babaioff
et al. (2013) studied the interaction between communication capacity and incentive fea-
sibility by quantifying the “cost of selfishness”—the amount of excess information (bits)
that needs to be exchanged to implement a given social choice function, relative to the
case in which agents honestly report their types. More generally, optimization prob-
lems over partitions have been considered in Alonso and Matouschek (2008) and Frankel
(2014), who study delegation, as well as in Crémer et al. (2007), who study language de-
sign within an organization.

A number of papers have studied privacy in dynamic models, where the agent’s pref-
erences for privacy is derived from how the designer can use the information against him
in the future. Such models appear in Taylor (2004), Calzolari and Pavan (2006), Conitzer
et al. (2012) among others. In contrast, our approach based on the divergence between
prior and posterior beliefs is reduced-form and especially applicable to the question of
regulation, where it is not a priori clear what the seller would/could do with the collected
consumer data. Static models about privacy have been studied in Gradwohl (2018), who
analyzes the problem of full implementation when agents prefer to protect their privacy,
in Gilboa-Freedman and Smorodinsky (2018), who axiomatize preferences over privacy
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and in Bird and Neeman (2020), who study how to regulate what information a firm
can use when interacting with a consumer so as to maximize the consumer’s welfare.5

Finally, in the two-sided market setting, Hidir and Vellodi (2018) and Ichihashi (2019)
have considered letting the consumer directly communicate to the seller via cheap talk
or Bayesian persuasion. In our model, however, the consumer reveals information about
his private type by responding to the seller’s mechanism.

Turning to the computer science literature, our notion of privacy differs from the
popular measure of “differential privacy.”6 Introduced by Dwork et al. (2006), differen-
tial privacy roughly means that changing the data of a single individual (or of a single
attribute of an individual) should have a negligible effect on computations done on the
entire data. In the context of mechanism design, Pai and Roth (2013) showed that this
notion can be formalized as follows. Suppose there are n individuals, who each draws
a private type from some set T . Define a mechanism M as a mapping from profiles of
types t ∈ Tn to distributions over some set of outcomes X . Then M is ε-differentially pri-
vate if for all pairs of type profiles (t, t ′ ) that differ only in ti, and for any payoff function
u : X →R, it holds that

EM(t )u(x) ≤ exp(ε) ·EM(t ′ )u(x).

This definition implies that the message of a single player has a negligible effect on the
outcome, such that any action is almost weakly dominant in the sense that it cannot
affect a player’s payoff by a multiplicative factor of more than 2ε, regardless of the other
players’ actions. In light of this, several studies in computer science have used the above
notion to design mechanisms where truth-telling is either almost or exactly weakly dom-
inant; see, e.g., McSherry and Talwar (2007), Kearns et al. (2014), and Nissim et al. (2012).
Other studies attempt to incorporate agents with privacy concerns into mechanism de-
sign, assuming an additive cost for loss of privacy that increases with the level of differ-
ential privacy (i.e., with the ε above). Examples are Ghosh and Roth (2011), Ligett and
Roth (2012), Fleischer and Lyu (2012).

What distinguishes our approach is that we measure privacy loss relative to a prior,
whereas differential privacy is independent of the prior. Additionally, note that the dif-
ferential privacy constraint is stated solely in terms of the (random) outcome distribu-
tion, sidestepping any action taken in the mechanism. This captures privacy loss from
the perspective of an outside observer, but does not correspond to what the mechanism
designer may learn through observing participants’ choices. In this paper, we focus on
constraining the amount of information learned by the mechanism designer, and study
a benchmark in which the designer cannot commit not to access the data received.

5Also related is Ollár et al. (2016), who analyze uniform pricing rules in markets with multiple traders
facing Gaussian information structures. Their focus is on the information that traders may learn about
each other from any feedback provided by the mechanism. They show that in their environment, privacy—
in the sense that no trader learns anything about the other traders’ valuations—is necessary for truthful
bidding.

6For more detailed surveys on privacy in computer science and economics, see Pai and Roth (2013),
Heffetz and Ligett (2014), and Acquisti et al. (2016).
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Thus, we measure privacy loss using posterior beliefs that are derived from the mes-
sages sent, rather than the outcomes induced. In particular, the designer in our model
does not gain from randomizing over allocations.

A notion related to differential privacy is that of “informational smallness” (see, e.g.,
Gul and Postlewaite (1992) and McLean and Postlewaite (2002)). In an environment
with asymmetric information, an agent is informationally small if, given the prior dis-
tribution over states, the probability that revealing his information would have a non-
negligible effect on the posterior distribution is small (assuming that the other agents
reveal their information truthfully). Like our privacy measure, informational smallness
is also prior-dependent. The main difference is that we measure the designer’s reduc-
tion in uncertainty relative to the prior, whereas informational smallness measures the
sensitivity of the posterior belief to each agent’s report.

Another line of research in computer science deals with distortion and anonymiza-
tion of databases and communication channels due to privacy concerns. This literature
uses KL divergence to measure loss of privacy in a setting where a sender wants to send
part of a dataset to a receiver in such a way that the receiver learns as little as possi-
ble about some other sensitive part of the data. The problem is formulated as finding
the message that minimizes the KL divergence between the common prior on the sen-
sitive data and the posterior, given the sender’s message, subject to the constraint that
the receiver attains some level of utility. Examples of works in this literature include
Agrawal and Aggarwal (2001), Díaz et al. (2002), Rebollo-Monedero et al. (2009), Sankar
et al. (2013), and Wang et al. (2016). However, these papers do not consider the strategic
interaction between privacy, mechanism, and agent behavior, as we do here.

3. Bayesian privacy

A single agent has a privately known type θ ∈� and a type-dependent vNM utility func-
tion u : Z × � → R, where Z is the set of outcomes to be determined by a mechanism.
The mechanism designer does not know the agent’s type θ, but has a prior belief about
θ represented by a probability measure F on �, with strictly positive density f (with
respect to a base Borel measure). The designer’s payoff function is π : Z ×�→R.

To maximize expected payoff, the designer devises a mechanism M = 〈M , g〉, where
M is an arbitrary set of messages, and g : M →Z is a function that maps each message in
M to an outcome z ∈Z.7 A strategy for the agent is a measurable function σ : �→ 	(M ).
A strategy σ∗ is said to be an equilibrium in the mechanism M if each type θ ∈ � best
responds to M.

At the outset, the designer already has some information about the agent in the form
of his prior belief F . Given a mechanism M and an equilibrium σ∗, when the agent sends
message m ∈M , the designer updates her information to the posterior belief F(·|m, σ∗ ).
This change of beliefs entails loss of privacy for the agent. For convenience, we define
F(·|m, σ∗ ) = F for any message m sent with zero probability by every type in σ∗.

7We restrict the message set to be a Polish space, and endow it with its Borel σ-algebra. We let 	M denote
the set of all Borel probability measures over M endowed with the weak* topology.
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We measure the loss of privacy entailed by a message m ∈M in an equilibrium σ∗ by
the relative entropy between the posterior belief triggered by m and the prior belief: If the
posterior measure F(·|m, σ∗ ) has density f (·|m, σ∗ ), the relative entropy (or Kullback–
Leibler divergence) from F(·|m, σ∗ ) to F is defined by8

DKL
(
F

(·|m, σ∗)‖F) =
∫
�
f
(
θ|m, σ∗) · log

f
(
θ|m, σ∗)
f (θ)

dθ. (1)

If instead F(·|m, σ∗ ) does not admit a density, we define DKL(F(·|m, σ∗ )‖F ) = +∞
(when F(·|m, σ∗ ) has an atom this definition preserves continuity). Throughout the pa-
per, “log” represents the natural logarithm.

We define the ex post loss of privacy associated with an equilibrium σ∗ in a mecha-
nism M to be the maximum divergence between the possible posteriors and the prior.

Definition 1. The ex post loss of privacy in an equilibrium σ∗ of a mechanism M is
given by

I
(
M, σ∗) = sup

m

[
DKL

(
F

(·|m, σ∗)‖F)]

Thus, in equilibrium, the change in the designer’s beliefs is no more than I(M, σ∗ )
regardless of the agent’s type. In the next section, we study the problem of a designer
who is restricted to use only mechanisms for which the above measure does not exceed
some threshold.

Note that privacy loss, according to Definition 1, is not a property only of the mecha-
nism M—it also depends on which equilibrium is played. Thus, in case of multiple equi-
libria, to apply our notion of Bayesian privacy one needs to specify the relevant equilib-
rium. As we explain in the next section, this will not be an issue in the application that
we analyze in this paper.

Note also that using relative entropy to quantify changes in beliefs does not bind our
privacy measure to a particular metric over the set of types. To be specific, one could
alternatively measure belief changes in a way that takes into account not only the rela-
tive probabilities between prior and posterior beliefs, but also where these probabilities
lie according to a certain distance function between types (such as the Euclidean met-
ric). However, sticking to any particular metric might be misleading because how the
collected data will be used in future interactions is often unknown at present. Further-
more, a metric-based measure is highly sensitive to the context. In some contexts, there
is greater loss of privacy in knowing that the agent is either of two “far-away” types (ac-
cording to the adopted metric) than knowing that he is one of two “close-by” types, while
the opposite is true in other contexts. For example, in the context of body weight where
distance between types is measured in pounds, there is greater loss of privacy in know-
ing that an individual is either extremely obese or extremely underweight (i.e., far-away

8The relative entropy exhibits a number of key properties: DKL(G‖F ) ≥ 0 for all G and F with equality if
and only if G = F , and DKL(G‖F ) is convex in both G and F . It is however not a metric due to the failure of
symmetry and of the triangle inequality.
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types) than knowing that his weight is either 150 lbs or 160 lbs (close-by types). In con-
trast, in the context of geographic location where distance between types is measured
in miles, there is greater loss of privacy in knowing that the agent’s residential address is
one of two adjacent streets in Provo, Utah, than in knowing that his address is either a
street in Los Angeles or some street in New York.9

The above examples suggest that when information reveals the agent type to belong
to a subset of types, privacy loss should be inversely related to the prior probability of
this subset: finer information leads to greater privacy loss. Moreover, a metric-less mea-
sure of privacy loss should only depend on this prior probability. Our relative entropy
measure exactly captures these properties; see equation (2) below.

Next, we apply our definition of privacy loss to the well-known problem of monop-
olistic screening.

4. Optimal privacy-constrained screening mechanisms

We consider the classic Mussa–Rosen (1978) set-up of monopolistic screening. A seller
(she) wishes to sell a product of quality q ∈ R

+ to a buyer (he), in exchange for payment
p ∈R. Thus, the set of outcomes Z is the set of price and quality pairs. The seller’s profit
is given by

π(p, q, θ) = p− c(q),

where c(·) is a twice-continuously differentiable cost function that satisfies c(0) =
c′(0) = 0 and c′′(q) > 0 for all q ≥ 0.10 The buyer’s type θ ∈ [θ, θ] represents his will-
ingness to pay per unit of quality, which is unknown to the seller. If the buyer consumes
q and pays p, his utility is

u(p, q, θ) = q · θ−p.

We assume that the buyer’s virtual valuation, v(θ) ≡ θ − (1 − F(θ))/f (θ), is increasing
in θ and satisfies v(θ) ≥ 0. To facilitate some technical arguments, we make the slightly
stronger assumption that v is continuously differentiable and v′ > 0.

Positive virtual valuation allows us to focus on the case in which the seller wants to
include all buyer types, and the only question is what quality and price should be offered
to each buyer type. Nonetheless, our results extend to the case where v(θ) is negative;
see Section 6 for details.

To sell the good, the monopolist uses a mechanism M = 〈M , p, q〉, where p : M → R
+

and q : M → R
+ are functions that map each message in M to an outcome: Given a

message m ∈M , the seller provides the quality q(m) and charges the price p(m).11

The seller’s expected profit in an equilibrium σ∗ of a mechanism M is given by



(
M, σ∗) = Em

[
p(m) − c

(
q(m)

)]
9Another related issue is that it is often not the collected data per se that matters for privacy consider-

ations, but rather other variables that are correlated with the data. It is thus impossible to a priori choose
one “right” metric that fits all possible relevant variables in all future scenarios.

10In this application, the designer’s payoff function (i.e., profit) is independent of the agent’s type θ.
11The functions p(·) and q(·) correspond to the outcome function g(·) in the previous section.
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where Em is evaluated according to the probability that each message m ∈ M is sent
under the strategy σ∗.

Note that a priori we allow the buyer to randomize over messages that he finds indif-
ferent. However, it will follow from our analysis (Lemma 1 below) that almost all buyer
types do not randomize at the optimum.

In the absence of privacy constraints, an optimal (expected-profit maximizing)
mechanism in this set-up is a direct revelation mechanism in which: (i) the buyer
truthfully reports his type θ, (ii) the produced quality q(θ) is determined such that
c′(q(θ)) = v(θ), and (iii) the requested price is p(θ) = q(θ)θ− ∫ θ

θ q(x)dx.
Recall that, in general, the privacy loss associated with a mechanism M depends on

the equilibrium σ∗ that is played. However, in our monopolistic screening setting multi-
ple equilibria only arise when a positive measure of buyer types are indifferent between
two messages, which must then lead to the same quality-price pair. As we discuss below,
such messages are “wasteful” and without loss excluded from the optimal mechanism.
Hence, to simplify the exposition, from now on we omit the reference to the equilib-
rium σ∗ from the notation of privacy-loss. Thus, I(M) is the privacy loss entailed by the
(essentially unique) equilibrium of M.

4.1 The design problem

A regulator requires the seller to design a mechanism that does not exceed some privacy
capacity κ > 0. The seller’s problem can then be described as follows: Find a mechanism
M =〈M , p, q〉 and a strategy σ for the buyer that maximize the expected profit 
(M) =
Em[p(m) − c(q(m))] subject to three constraints:

1. Incentive-compatibility—given M, the strategy σ is optimal for the buyer:

u
(
p(m), q(m), θ

) ≥ u
(
p

(
m′), q

(
m′), θ

)
(IC)

for all θ ∈�, all m ∈ supp(σ(θ)) and all m′ ∈M ,

2. Individual-rationality—given M, a buyer who follows σ is not worse off than if he
did not participate in M:

u
(
p(m), q(m), θ

) ≥ 0 (IR)

for all θ ∈� and all m ∈ supp(σ(θ)),

3. Privacy constraint –

I(M) ≤ κ. (P)

We refer to any mechanism that satisfies the above constraints as a κ-feasible mech-
anism.12 Any mechanism that is profit-maximizing among all κ-feasible mechanisms
is called a κ-optimal mechanism. Our objective is to derive key properties of this
constrained-optimal mechanism. In particular, we are interested in addressing the fol-
lowing questions: What information does each buyer type disclose to the mechanism

12How relevant the value of κ is for feasibility depends on the prior, as does the KL divergence measure.
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(Proposition 1)? Do some buyer types disclose more information than others (Proposi-
tion 2)? Is the privacy constraint even binding (Proposition 3 and ensuing discussion)?

4.2 Interval mechanisms

In standard mechanism design, the monopolist maximizes her expected profit sub-
ject only to the incentive-compatibility and individual-rationality constraints. Under
our assumptions on the virtual valuation, the optimal mechanism in this case perfectly
screens every buyer type, and each of the posterior beliefs is a degenerate distribution
with a single atom on the buyer’s exact type. The loss of privacy entailed by such a mech-
anism is infinite according to our definition, and is therefore infeasible for any finite κ.
This means that in a κ-optimal mechanism the monopolist obtains only a noisy sig-
nal about the buyer’s type. Our first result establishes that this noise has a particular
structure, which can be interpreted as a coarse revelation principle: There is no loss of
generality in focusing on mechanisms that partition the type space into intervals and
each type reports the interval he belongs to.

Lemma 1. For any κ-feasible mechanism, there exists another κ-feasible mechanism M =
〈M , p, q〉 with the same profit level, such that M consists of intervals that partition [θ, θ],
and each type θ ∈� reports the message m ∈M for which θ ∈m.

For future reference, we call such mechanisms as described in the lemma “interval
mechanisms.”

The intuition for this result is as follows (see the Appendix for the formal proof).
First, messages that lead to the same quality-price pair can be combined without affect-
ing the outcome of the mechanism. Due to convexity of the relative entropy function,
this also relaxes the privacy constraint. We can thus without loss assume that different
messages in the mechanism are strictly ranked by the quality levels they are mapped
into. Next, we argue that the set of types selecting the same message in equilibrium
must form an interval; this is because buyer preference is single crossing in the type and
quality served. Finally, any two of these intervals do not intersect each other except at
the boundary, since the indifference condition holds for at most one type. The lemma
then follows.13

We highlight that our model does allow the buyer to mix over different messages,
in case he is indifferent. But Lemma 1 shows that buyer randomization does not hap-
pen in the optimal mechanism. This result stands in contrast to the rational inattention
literature, where entropy-based constraints often lead to stochastic, nonpartitional sig-
nals. The distinction arises because in our setting, stochastic “signals” (i.e., messages)
are constrained by the buyer’s indifference condition and turn out to be costly for the
seller.

It is also worth noting that the above argument only uses the convexity of KL diver-
gence, so that combining “redundant” messages decreases the maximum relative en-
tropy between prior and posterior beliefs. Because of this, Lemma 1 would continue

13The same argument and result hold even if the designer’s objective is to maximize a weighted sum of
profit and consumer surplus.
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to hold if the privacy measure were an arbitrary convex function of the distribution of
posterior beliefs (as often assumed in the literature on costly information acquisition).

Specializing to the case of KL divergence, we next derive the privacy loss of any in-
terval mechanism. Note that when the seller sees a message m = [θ′, θ′′] in equilib-
rium, her posterior density updates to f (θ | m) = f (θ)/(F(θ′′ ) − F(θ′ )) for θ ∈ [θ′, θ′′],
and f (θ | m) = 0 otherwise. The relative entropy between this posterior belief and the
prior is computed as

∫ θ′′

θ′
f (θ | m) log

f (θ | m)
f (θ)

dθ = − log
[
F

(
θ′′) − F

(
θ′)]. (2)

Since the ex post privacy constraint requires this to be at most κ, we derive the following
result.

Lemma 2. An interval mechanism is κ-feasible if and only if each of the intervals has
mass at least e−κ according to the prior distribution F .14

Taken together, Lemmas 1 and 2 imply that the seller’s problem reduces to select-
ing a finite menu of quality-price pairs such that the mass of consumers who take any
option from the menu must exceed e−κ. This allows for a natural reformulation of the
problem by specifying the privacy constraint in terms of λ ≡ e−κ, the lowest admissible
probability mass of an interval of pooled types. The advantage of using this alternative
parametrization is that, in contrast to the parameter κ, the parameter λ is expressed in
probability units which are easily interpretable.

Assuming now that the intervals in M are m1 = [θ0, θ1], m2 = [θ1, θ2], � � � , mn =
[θn−1, θn], with θ = θ0 < θ1 < · · · < θn = θ. Given the number n and cutoffs θ1, � � � , θn−1,
we can derive the optimal quality and price that a κ-optimal mechanism assigns to each
message. Specifically, note that the expected profit for the seller from employing this
interval mechanism is given by15


(M) =
n∑

i=1

[
q(mi )

∫ θi

θi−1

v(θ)f (θ)dθ− c
(
q(mi )

) · [F(θi ) − F(θi−1 )
]]

, (3)

14Essentially the same result holds if KL divergence is replaced by a more general class of f-divergences
which take the form of

∫
θ φ[f (θ | m)/f (θ)]dF(θ) for some convex function φ, with KL being the special

case of φ(x) = x logx (Ali and Silvey (1966)). Indeed, Lemma 2 would state that in any κ-feasible interval
mechanism, each interval has mass at least l, where l is defined such that l · φ( 1

l ) = κ. Since this lower
bound on interval mass is the only feasibility constraint (for the ex post privacy model), our subsequent
results also generalize to this class of divergences so long as κ is suitably scaled according to φ.

15To see this, recall that in every mechanism that satisfies (local) IC and binds IR at the lowest type, the

seller’s profit is given by 
(M) = ∫ θ
θ [q̃(θ)θ− ∫ θ

θ q̃(x)dx− c(q̃(θ))]f (θ)dθ, where q̃(θ) is the quality provided
to type θ. The first term in the integrand is the social surplus generated by selling quality q̃(θ) to type θ, the
second term is the minimal information rent that is left with type θ in every IC mechanism, and the third
term is the cost of producing q̃(θ). The seller is the residual claimant of welfare. Equation (3) is obtained
from this formula using integration by parts.
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where v(θ) is the virtual valuation of type θ. Therefore, the quality that maximizes the
expected profit while maintaining IC and IR is uniquely determined by16

c′(q(mi )
) = EF

[
v(θ)|θ ∈ [θi−1, θi]

]
for any mi = [θi−1, θi] ∈M . (4)

The standard envelope condition (derived from local IC) for buyer surplus also pins
down the requested price:

p(mi ) = q(mi ) · θi−1 −
i−1∑
j=0

(θj − θj−1 ) · q(mj ) for any mi = [θi−1, θi] ∈M . (5)

It follows that the assignment of types to quality-price pairs in any κ-optimal mecha-
nism is completely determined by the interval partition. To save notation, we will write
qi and pi in place of q(mi ) and p(mi ) whenever the partition is fixed by the context.

Summarizing the above discussion, we have reduced the problem to finding the
profit-maximizing interval partition subject to each interval having mass at least λ =
e−κ, where profit follows from equations (3) and (4).

4.3 Characterization

With the above preliminary analysis, we can show that a κ-optimal (interval) mechanism
exists. Indeed, by Lemma 1, it is sufficient to show there exists a profit-maximizing inter-
val partition. For this, we apply a compactness argument. Consider the following metric
on the space of finite partitions: If M consists of cutoffs {θ1, � � � , θn−1} and M ′ consists of
cutoffs {θ′

1, � � � , θ′
m−1}, then define d(M , M ′ ) to be the smallest δ ≥ 0 such that for each

θi there exists θ′
j within δ distance from it, and vice versa. It is straightforward to check

this is indeed a metric, and that the resulting qualities qi and profit 
(M) are continuous
with respect to this metric.

When the number of cutoffs is bounded above by eκ (as ensured by Lemma 2), the
space of partitions is compact in the topology induced by this metric. Thus, if we con-
sider any sequence of feasible partitions that approximates the supremum profit, there
exists a convergent subsequence. The limit partition is also feasible under the ex post
privacy constraint, and by continuity it must achieve the supremum profit. Hence, we
have found an optimal interval mechanism.

Proposition 1. There exists a κ-optimal mechanism M = 〈M , p, q〉, such that M con-
sists of intervals (each with mass at least λ = e−κ) that partition [θ, θ], and each type θ ∈�

reports the interval to which it belongs. The number of intervals in the optimal partition
is bounded above by 1/λ and bounded below by 1/2λ.

The bounds on the optimal number of intervals provide a direct sense of how the
privacy requirement constrains the screening ability. The upper bound of 1/λ follows

16Since c is strictly convex and c′(0) = 0, the first-order condition (4) uniquely determines the value of
the optimal q(mi ). The fact that virtual valuation is increasing ensures that higher types receive higher
quality in equilibrium, and thus local IC implies global IC.
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from the fact that each feasible interval has mass at least λ. The lower bound of 1/(2λ)
holds because each interval in the optimal partition has mass at most 2λ; otherwise,
it could be split into two subintervals both with mass exceeding λ. By Lemma 2, the
resulting partition would be feasible, and Lemma 4 in the Appendix shows that this split
would increase the seller’s profit.

An immediate corollary of Proposition 1 is the following.

Corollary 1. For 0 < κ < log(2), any κ-optimal interval mechanism involves perfect
pooling. For log(2) ≤ κ < log(3), any κ-optimal interval mechanism consists of exactly
two intervals.

The first part is immediate when the privacy constraint is expressed in terms of λ.
Indeed, when κ < log(2) then λ > 0.5, implying that at least 50% of the consumers must
choose each menu item. Thus, an optimal mechanism can offer no more than one
quality-price pair. As for the second part, κ ∈ [log(2), log(3)) means that λ ∈ (1/3, 1/2),
implying that the optimal mechanism can offer at most two quality-price pairs. More-
over, by Lemma 4 in the Appendix, the seller always benefits from having more infor-
mation in the form of dividing an interval into two subintervals (so long as the resulting
partition is still feasible). In particular, any feasible two-item menu leads to higher profit
compared to a singleton menu, leading to the above result.

In general, it is difficult to fully characterize the optimal number n of intervals and
their cutoffs for an arbitrary distribution F and cost function c, without imposing addi-
tional structure on these primitives. Our next result provides a step toward that charac-
terization by showing that under certain conditions on F and c, the optimal mechanism
has the property that the precision of information that the designer collects is mono-
tonic in the agent’s type: i.e., she either knows more about lower types or knows more
about higher types.

To present this result, we introduce the function G(x) = F−1(x) · (x − 1) for all
x ∈ [0, 1]. Observe that G(F(θ)) = θ(F(θ) − 1), whose derivative with respect to θ is
v(θ)f (θ). Hence, by the chain rule, G′(F(θ)) = v(θ). We say that v(θ) is strictly more
concave (convex) than F(θ) if G′(x) is strictly concave (convex) in x.

Proposition 2. Suppose that the cost function c(·) has a nonnegative third derivative,
and that the virtual valuation v(θ) is strictly more concave than F(θ). Then any κ-
optimal mechanism consists of intervals that are ordered in increasing mass from left to
right; that is, F(θi+1 ) − F(θi ) ≥ F(θi ) − F(θi−1 ) for all i ∈ {1, � � � , n − 1}. Symmetrically,
the intervals in the optimal mechanism would be ordered in decreasing mass if c′′′ ≤ 0
and v(θ) is strictly more convex than F(θ).

We mention that a sufficient condition for v(θ) to be more concave than F(θ) is that
the prior density function f (θ) is increasing and log-concave; in fact, F(θ) would be
convex and v(θ) concave.17 For example, this is satisfied when F(θ) = θr − s with θ =

17We have v′′(θ) = (f ′(θ)/f (θ))′ · (1 − F(θ))/f (θ) − (f ′(θ)/f (θ)) · (1 + f ′(θ)(1 − F(θ))/f (θ)2 ) < 0.
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s(1/r ) and θ = (s + 1)(1/r ), where r and s are parameters satisfying r > 1 and s > 1/r (the
latter ensuring that virtual valuations are positive).

The intuition for Proposition 2 is as follows. From c′(qi ) = EF [v(x)|x ∈ [θi−1, θi]], we
see that the second derivative c′′ measures the extra production cost incurred when the
seller divides an interval into two subintervals and adjusts quality/price accordingly. So
c′′′ > 0 means that the seller faces greater production cost in trying to screen the higher
types. On the other hand, observe that the derivative of the virtual valuation captures
the revenue gain when dividing an interval into two. Thus, v(θ) being more concave
than F implies that the seller benefits less from differentiating high types. Both effects
combine to yield intervals that are optimally ordered in increasing mass.

4.4 Uniform-quadratic case

To give a complete characterization of an optimal κ-constrained mechanism, in this
subsection we consider a specific distribution of types and cost function. We will pro-
vide detailed results for this particular example to illustrate properties of the optimal
mechanisms that we derived in the previous subsection. One specification that admits
an elegant analytical characterization is the “uniform-quadratic” case, where F is uni-
form and c is quadratic. Since in this case c′′′ = 0 and v(θ) is as convex as F(θ) (in fact
both are linear in θ), the results in Proposition 2 suggest that the ordering of intervals
does not matter for profit. As we show below, this property enables us to focus on the
lengths of the intervals and obtain a full characterization of the optimal partition.

Proposition 3. Suppose F ∼ U[θ, θ] with θ ≤ 2θ (so that v(θ) ≥ 0), and c(q) = q2/2.
Then, given any positive integer N and any κ ∈ [log(N ), log(N + 1)), the κ-optimal mech-
anism divides the type space into N equal intervals.

In terms of the lower bound λ on the mass of each interval, the condition κ ∈
[log(N ), log(N + 1)) translates to λ ∈ (1/(N + 1), 1/N ]. Phrased in this way, the result
says that in the uniform-quadratic case it is optimal to divide the type space into as
many equal intervals as feasible.

We highlight that the optimal mechanism in this case is locally the same as κ in-
creases. Thus, for κ in the interior of the interval (log(N ), log(N+1)), the optimal mech-
anism entails a privacy loss of log(N ) which is strictly less than κ. It follows that the ex
post privacy constraint is often slack. This is one of the challenges in obtaining a full
characterization of the optimal mechanism more generally.

4.5 Welfare analysis

Varying the privacy capacity of a mechanism affects the seller’s profit, the buyer sur-
plus and the total welfare. In this section, we analyze how κ changes these quantities.
Throughout this section, we assume F has monotone hazard rate, i.e., f (θ)/(1 − F(θ))
increases in θ. This property implies that the virtual valuation v(θ) is increasing.

Because higher κ relaxes the privacy constraint (P) in the seller’s problem, it is im-
mediate to notice that the expected profit 
 is weakly increasing in κ.
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Corollary 2. Profit from a κ-optimal mechanism is increasing in κ.

As the uniform-quadratic case shows, this monotonicity is not necessarily strict ev-
erywhere. However, we do know that profit is uniquely maximized at κ= ∞ (when there
is no privacy concern), and uniquely minimized at κ= 0 (with full privacy).18

On the other hand, one may expect that buyer surplus is higher when the privacy
constraint is tighter. However, this is not obvious because privacy may hurt allocative
efficiency so much that it actually damages the buyer’s payoff. As far as we are aware,
there is no general finding in the literature regarding how buyer surplus varies with the
interval partition.

We are able to answer a simpler question of which privacy level maximizes/
minimizes buyer surplus. Specifically, we have the following.

Proposition 4. Suppose the cost function c satisfies c′′′ ≥ 0. Then buyer surplus from a
κ-optimal mechanism is maximized at κ = 0, where every type receives the same alloca-
tion, and it is minimized at κ= ∞, where types are fully separated.

For an intuition of this result, we write buyer surplus as E[q(θ) · (1 − F(θ))/f (θ)],
since any additional quality provided to type θ benefits all higher types by the same
amount. Note that the quality q(θ) increases in θ while the inverse hazard rate (1 −
F(θ))/f (θ) decreases in θ. Thus for any given expected quality E[q(θ)], the expected
buyer surplus E[q(θ) · (1 − F(θ))/f (θ)] is maximized when q(θ) is constant in θ.19

Next, recall that for any interval mechanism, when θ ∈ [θi−1, θi] the optimal quality
q(θ) is given by c′(q(θ)) = E[v(θ̂) | θ̂ ∈ [θi−1, θi]], which equates the marginal cost to the
expected virtual valuation on the interval. Thus we have E[c′(q(θ))] = E[v(θ)], meaning
that the expected marginal cost does not depend on the partition. Since c′ is by assump-
tion a convex function, we conclude that the expected quality E[q(θ)] is also maximized
when q(θ) is constant.

Combining both effects described above, we see that the coarsest partition that
pools all types maximizes expected buyer surplus (in fact, across all interval partitions).
A similar argument shows that the finest partition (i.e., κ= ∞) minimizes buyer surplus.

Finally, a regulator might be interested in finding the level of κ that maximizes total
welfare. The answer turns out to be more subtle, as the following partial characterization
suggests.

Proposition 5. Assume quadratic costs c(q) = q2/2. If the density f (θ) increases in θ,
then total welfare is maximized at κ = 0 and minimized at κ = ∞. Conversely, if f (θ)
decreases in θ, then total welfare is minimized at κ= 0 and maximized at κ= ∞.

18This is because profit strictly increases when an interval is divided into two subintervals (and quali-
ties/prices are adjusted accordingly). See Lemma 4 in the Appendix.

19This is because if the quality q(θ) is not constant across types, then decreasing it for higher types and
increasing it for lower types, in a way that preserves the expected quality E[q(θ)], increases the expected
buyer surplus E[q(θ) · (1 − F(θ))/f (θ)].
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Our proof shows that with increasing density and quadratic cost, total welfare nec-
essarily increases when the seller obtains less information in the form of combining two
intervals into one. Thus, in this case the coarsest partition maximizes welfare while the
finest partition minimizes welfare. One difficulty in obtaining a more general result lies
in the fact that total welfare takes into account both buyer and seller surplus, which de-
pend on the value distribution, the cost function, as well as their interaction.20 Separate
assumptions about each of these primitives typically do not lead to clear predictions.

5. Ex ante Bayesian privacy

So far we have analyzed an ex post notion of privacy loss. Under this criterion, the mo-
nopolist cannot learn too much about any buyer type. In this section, we explore an al-
ternative, less stringent, notion of privacy, requiring the designer not to learn too much
about the buyer type on average. Formally, we weaken the ex post privacy constraint
I(M) ≤ κ to its ex ante version.

Definition 2. The ex ante loss of privacy entailed by mechanism M =〈M , p, q〉 is given
by

Iea(M) = Em
[
DKL

(
F(·|m)‖F)]

where Em is evaluated according to the probability that each message m ∈M is sent in an
equilibrium of M.21

That is, we impose an upper bound on the average change in the seller’s beliefs, as
measured by relative entropy. Given κ > 0, we say a mechanism is ex ante κ-feasible if
Iea(M) ≤ κ. It is ex ante κ-optimal if it is profit-maximizing among all mechanisms M

that satisfy IC, IR and the ex ante privacy constraint.

5.1 Existence

To begin the analysis, we can use essentially the same argument to show that Lemma 1
also holds under the ex ante criterion. Thus, it is without loss to consider interval mech-
anisms. Using equation (2), we can compute the ex ante loss of privacy entailed by a
(finite) interval mechanism to be

Iea(M) =
n∑

i=1

−[
F(θi ) − F(θi−1 )

] · log
[
F(θi ) − F(θi−1 )

] = H(gM ), (6)

20Specifically, the marginal cost function determines optimal qualities, and the cost function itself maps
these qualities into expected production cost (averaged across types using the prior distribution). This
is a more complicated situation than our previous result about buyer surplus, which is fully determined
by optimal qualities and the prior distribution. In other words, the effect of c(·) on buyer surplus can be
analyzed separately from F(·), but such separation is lost in the study of total welfare.

21In calculating Iea(M), we adopt the convention that 0 · ∞ = 0 and, therefore, Iea(M) can still be finite
if there is a measure-zero set of messages (sent in equilibrium) that induce posterior distributions F(·|m)
whose divergence from the prior F is infinite. But if the set of such messages has positive measure, then
Iea(M) = +∞ according to our definition.
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where gM (mi ) = F(θi ) − F(θi−1 ) is a discrete distribution over the elements of M in-
duced by the prior, and H(·) is the Shannon entropy function. At this moment, we can-
not rule out the possibility that there are countably many intervals. In that case, the
discrete distribution gM is defined in the same way, and we again have Iea(M) = H(gM ).

This discussion suggests that under the ex ante privacy constraint, the profit maxi-
mization problem reduces to finding an interval partition M subject to H(gM ) ≤ κ that
maximizes the profit in equation (3) with qualities given by (4). Note that the privacy
constraint H(gM ) ≤ κ can be interpreted as requiring that the weighted geometric mean
of the masses of the intervals must exceed e−κ (where the weight applied to each inter-
val’s mass is just this mass itself).

However, existence of an optimal mechanism is not straightforward in this case. The
reason is that the feasibility constraint H(gM ) ≤ κ allows for countably many intervals,
which lose compactness (unlike with the ex post constraint). We settle the existence
issue in the following result.

Proposition 6. There exists an ex ante κ-optimal mechanism M = 〈M , p, q〉, such that
M consists of finitely many intervals that partition [θ, θ], and each type θ ∈ � reports the
interval to which it belongs.22

We provide a sketch of the proof here, leaving further details to the Appendix. Con-
sider a sequence of ex ante κ-feasible interval mechanisms Mj = 〈Mj , pj , qj〉 such that

(Mj ) converges to the supremum profit 
∗ across feasible mechanisms. We will re-
place each mechanism Mj by another feasible interval mechanism M̃j = 〈M̃j , p̃j , q̃j〉,
such that the new message set M̃j consists of at most N intervals, where N is a con-
stant that depends only on F and κ. This upper bound N restores compactness and
allows us to find a subsequence of the partitions {M̃j } that converges to some limit par-
tition M̃∞, under the metric defined in Section 4.3. By continuity, M̃∞ is also a feasible
mechanism, and it achieves the limit profit along the convergent subsequence. There-
fore, if we could carry out the replacement in such a way that 
(M̃j ) ≥ 
(Mj ), then

(M̃∞ ) ≥ lim supj 
(M̃j ) =
∗ and M̃∞ would be ex ante κ-optimal.

It remains to find the appropriate replacements M̃j . As discussed, starting from any
mechanism Mj , merging two adjacent intervals in Mj into a single interval (and adjust-
ing the qualities/prices accordingly) strictly decreases the profit. However, by doing so
the seller is able to save on the ex ante privacy measure, which enables him to divide any
other interval in Mj into two subintervals, increasing the profit. The key argument then
is to compare the profit gain in the latter step to the profit loss in the former. We show that
whenever two adjacent intervals are both of mass smaller than some constant ε, they
can be combined to create enough slackness in the privacy constraint; and if the slack-
ness is used to break another (big) interval into two, the seller achieves a net profit gain.

22It is instructive to compare this result to an analogous result in the rational inattention literature.
Matějka (2016) showed that a rationally inattentive seller would charge only finitely many prices even
though there is a continuum of states. The argument used to prove that result relies on properties of Her-
mite polynomials. In contrast, the proof in our environment is simpler and only makes use of the trade-off
between privacy and profit when merging/dividing intervals.
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Intuitively, this profit comparison holds because the entropy function severely punishes
against precise knowledge about any small set of types. So when the seller combines
two “small” intervals into a single one, the saved privacy measure is significant relative
to the reduction in profit.

By repeatedly combining adjacent “small” intervals, we are able to transform Mj into
a mechanism M̃j with weakly higher profit, and with no adjacent intervals both having
mass < ε. The upshot is that M̃j has at most N := 2/ε + 1 intervals, completing the
proof.23

5.2 Properties of optimal ex ante constrained mechanisms

In contrast to the ex post problem, the ex ante privacy constraint always binds at the
optimal mechanism. Moreover, unlike Lemma 2, the number of intervals now admits a
lower bound of 1/λ (where λ ≡ e−κ).

Proposition 7. The privacy constraint is exhausted in any ex ante κ-optimal mecha-
nism M; that is, Iea(M) = κ. Moreover, any optimal mechanism involves at least 1

λ inter-
vals.

The first part holds because the seller always benefits from dividing an interval into
two. By choosing one of the subintervals to be “small,” the average privacy constraint is
still satisfied. The second part is a result of the first part, equation (6) and the following
well-known estimate of the Shannon entropy (applied to gM ).

(Cover and Thomas (2006, Theorem 2.6.4)). If a discrete random variable X takes n
values, then its Shannon entropy satisfies H(X ) ≤ log(n), with equality if and only if X
has a uniform distribution.

On the other hand, we show that when the ex ante privacy constraint is stringent,
two messages are sufficient to implement the optimal mechanism. This complements
the previous Corollary 1.

Proposition 8. There exists κ > 0 such that any ex ante κ-optimal interval mechanism
with κ ∈ (0, κ) consists of exactly two intervals.

We prove the result via a lemma stating that there can be at most one interval with
arbitrarily small mass. Thus, even though the average privacy constraint allows the seller

23To be fully rigorous, in the proof we first find a replacement with finitely many intervals. This can be
done because for any limit point Mj (more precisely, the bounds of intervals in Mj ) may have, the seller
incurs little profit loss if she combines all the small intervals near this limit point. Such loss is covered by
the net profit gain in merging two small intervals and dividing a long one. Once we have a finite Mj to begin
with, we still need to guarantee that the process of “combining small intervals” will come to an end. We do
this by combining two pairs of adjacent small intervals at once and breaking a big interval into two. There
is still net profit gain, and in addition the total number of intervals strictly decreases. The final M̃j involves
at most one pair of adjacent small intervals, so its size is again bounded uniformly across j.
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to learn almost perfectly about sets of small types, the optimal solution involves at most
one such set. In the above proof sketch for Proposition 6, we have already discussed why
having two adjacent “small” intervals is suboptimal. The next lemma additionally rules
out the presence of two “small” intervals that are nonadjacent.

Lemma 3. For every k > 0, there exists ε > 0 such that any ex ante κ-optimal interval
mechanism with κ≤ k has at most one interval with mass < ε.

Finally, Proposition 2, which gives sufficient conditions for the optimality of inter-
vals that are increasing/decreasing in mass, continues to hold under the ex ante privacy
measure. This is because the proof of Proposition 2 is based on evaluating whether profit
increases or decreases when two adjacent intervals are “switched.” Since switching does
not affect the amount of privacy loss under both the ex post and ex ante measures, this
argument extends without change.

The welfare results Proposition 4 and Proposition 5 also generalize to the current set-
ting, since their proofs only involve welfare comparison when combining two adjacent
intervals. Whether we adopt the ex post or ex ante privacy measure, the coarsest interval
partition corresponds to κ= 0, and the finest partition to κ= ∞. These levels of privacy
requirement thus maximize/minimize buyer surplus and/or total welfare.

5.3 Uniform-quadratic case revisited

Recall that in the uniform-quadratic case, the solution under the ex post constraint di-
vides the type space evenly. Since this solution does not always exhaust the (ex ante
or ex post) privacy constraint, we know from Proposition 7 that profit is not maximized
under the ex ante constraint. Indeed, the optimal mechanism under the ex ante privacy
constraint differs from the optimal mechanism under the ex post constraint. Moreover,
it has novel implications regarding the trade-off between privacy and profit, which does
not arise under the ex post constraint. In light of this, we revisit the uniform-quadratic
example to further illustrate the difference between the two privacy notions.

Proposition 9. Suppose F ∼ U[θ, θ] with θ ≥ 2θ, and c(q) = q2/2. Then, given any
positive integer N > 1 and any κ ∈ (log(N−1), log(N )], the ex ante κ-optimal mechanism
divides the type space into N intervals.

Specifically, N − 1 of these intervals have the same lengths �b, while the last interval
has weakly smaller length �s . These two lengths are uniquely determined by the total
length θ− θ and the binding privacy constraint:

θ− θ = �s + (N − 1)�b

κ= − �s

(θ− θ)
log

�s

(θ− θ)
− (N − 1) · �b

(θ− θ)
log

�b

(θ− θ)

The optimal interval partition is unique up to reordering of the intervals.
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Figure 1. The privacy-profit frontier in the uniform-quadratic case.

The proof consists of three steps. First, we show that the expected profit (and privacy

measure) only depends on the lengths of the intervals in the partition, and not on the

ordering of these intervals. Next, we argue that the first- and second-order conditions

for the constrained maximization problem can only be satisfied if the intervals have at

most two lengths, with exactly one interval having shorter length. Lastly, we determine

the optimal number of intervals from the binding privacy constraint.

The structure of this optimal mechanism has an interesting implication for the

trade-off between privacy and profit. For θ = 1 and θ = 2 in the uniform-quadratic case,

Figure 1 depicts the expected profit of the monopolist in the ex ante κ-optimal mecha-

nism as a function of κ.

The kinks in Figure 1 represent values of κ where the number of intervals in the κ-

optimal mechanism increases. Between kink points the number of intervals remains

fixed but the intervals change. Notice that while there are diminishing returns to loss of

privacy when the number of intervals increases, there are increasing returns to loss of

privacy when κ increases but the number of intervals remains fixed (i.e., the curve be-

tween kink points is convex). This means that when we introduce a new (small) interval,

the initial change in expected profit is small relative to the loss of privacy; intuitively,

the ex ante privacy measure punishes against precise information about a small set of

types. But as we continue to lower privacy, expected profit rises at an increasing rate

until a new interval is added.

We mention that the qualitative features of the privacy-profit frontier are robust to

small changes in the prior distribution (away from uniform). This is because the set of

ex ante κ-optimal mechanisms, when viewed as a correspondence from the distribution

F to the space of interval partitions, is upper hemicontinuous.24

24This follows from the maximum theorem, since the seller solves a constrained optimization problem
in which profit is continuous in the interval partition (with respect to the metric defined in Section 4.3), and
the constraint H(gM ) ≤ κ is both upper and lower hemicontinuous.
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6. Negative virtual values

So far we have focused on the case where all types have nonnegative virtual values.
While our results are more easily stated under this simplifying assumption, they gen-
eralize to the case where v(θ) is negative. In this section, we discuss this extension and
describe how some of the results need to be slightly modified. Throughout this section,
we work with the ex post privacy constraint.

First of all, the optimality of interval mechanisms reported in Lemma 1 holds with-
out change. This is because our proof of this result primarily uses the convexity of KL-
divergences and the single-crossing property of buyer preferences, which continue to
hold even with negative virtual values.

It is also still true that every interval in the partition has mass at least λ = e−κ, al-
though the lowest interval may now have a negative average virtual value and lead to an
optimal quality of zero. Note that if there are more than one interval with negative av-
erage virtual value, then these intervals can be combined without affecting the privacy
constraint or profit. So below we assume there is at most one such interval. A corollary
is that apart from the lowest two intervals, all higher intervals consist of types with pos-
itive virtual values.25 Because of this, Proposition 2 (regarding the intervals ordered in
increasing/decreasing mass) holds except possibly for the lowest two intervals.

The next result generalizes Proposition 3 and completely characterizes the optimal
interval partition in the uniform-quadratic case.

Proposition 10. Suppose F ∼ U[θ, θ] with θ > 2θ (so that v(θ) < 0), and c(q) = q2/2.
Then, given any positive integer N and any λ = e−κ ∈ (1/(N + 1), 1/N ], the κ-optimal
mechanism takes one of three possible forms described below:

1. if θ ≥ ((N − 1)/(2N − 1)) · θ, then dividing the type space into N equal intervals is
optimal;

2. if θ < ((N − 1)/(2N − 1)) · θ and θ/(2N − 1) > λ(θ− θ), then it is optimal to have N
intervals with cutoffs θj = ((j +N − 1)/(2N − 1)) · θ for 1 ≤ j ≤N − 1;

3. otherwise, there exists a unique positive integer m≤N such that

θ

2m− 3
> λ(θ− θ) ≥ θ

2m− 1
,

in which case it is optimal to have m intervals. Except for the lowest interval, the
remaining m− 1 intervals all have mass exactly λ.

To interpret this solution, note that λ ≤ 1/N means it is feasible to divide the type
space into N equal intervals, but λ > 1/(N + 1) means there cannot be more than N

intervals. As we showed in Proposition 3, N equal intervals is optimal in an environment
where virtual values are all positive. More generally, the condition θ ≥ ((N − 1)/(2N −

25Formally, the claim is that it is without loss to consider optimal partitions θ = θ0 < θ1 < · · · < θn = θ

with v(θ2 ) > 0. The uniform-quadratic case studied below shows that v(θ1 ) need not be positive.
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1)) · θ corresponds to the lowest interval having positive average virtual value under the
equal partition.26 Thus, the first part of the above proposition says that if the “first best”
solution of N equal intervals does not require the seller to withhold sale from the lowest
interval, then it is in fact the optimal partition.

However, when this candidate solution involves no sale to the lowest interval, the
optimal solution changes. Intuitively, in this case the seller would like to increase the
length of the lowest interval to charge higher prices and extract more profits from the
other intervals. The second part of Proposition 10 provides a “second best” solution,
which involves a lowest interval with negative average virtual value, and N − 1 other in-
tervals with equal length. Note that as long as the mass lower bound of λ is not binding
(reflected in the condition θ/(2N − 1) > λ(θ − θ)), the optimal length for the N − 1 in-
tervals is θ/(2N − 1) and does not depend on λ in this case. This length turns out to
maximize the seller’s profit from N − 1 equal intervals when the privacy constraint is
ignored.

Lastly, the parameters may be such that the second best no longer satisfies the pri-
vacy constraint. When this happens, the optimal partition involves a lowest interval with
negative average virtual value, and m− 1 other intervals with mass exactly λ. The num-
ber m as determined by the condition θ/(2m− 3) > λ(θ− θ) ≥ θ/(2m− 1) is the biggest
number such that fitting in m−1 intervals with mass λ still makes the lowest one of them
have positive average virtual value. This, as we discussed, is a key necessary property for
the optimal partition.

7. Concluding remarks

This paper proposed a Bayesian approach to incorporating privacy constraints into
mechanism design. The underlying idea is that the designer already has some prior
information about the participants, and the loss of privacy induced by a mechanism
should be measured as the difference between this prior information and the updated
information that can be inferred from the agents’ interaction with the mechanism.
This entails an additional constraint—on top of the standard incentive-compatibility
and individual-rationality constraints—that needs to be satisfied by a mechanism: The
difference between the prior and posterior information must be below some thresh-
old.

We illustrate this approach by using relative entropy to compute the difference be-
tween the prior and posterior beliefs and applying this measure to a canonical monop-
olistic screening problem. We show the implications of imposing the privacy constraint
at the ex post stage (i.e., for every realized consumer type, the loss of privacy must be
below some bound), and at the ex ante stage (i.e., the loss of privacy is bounded when
averaging over possible type realizations). We also demonstrate how our framework can
be helpful in understanding the effect of privacy constraints on consumer and seller
welfare.

26Since v(θ) = 2θ − θ, the average virtual value on [θ, θ1] is positive if and only if θ1 ≥ θ − θ. This holds
under the equal partition if and only if θ+ (1/N )(θ− θ) ≥ θ− θ.
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Our approach opens the door to many interesting questions about mechanism de-
sign and privacy. In particular, how does our analysis extend to an environment with
multiple agents? In Appendix C below, we derive the optimal symmetric mechanism
under ex post privacy for uniformly distributed types. This leaves open the question
of designing optimal privacy-preserving auctions when asymmetric treatment of bid-
ders is allowed. We hope that future research will provide answers to these and related
questions.

Appendix A: Proofs for the main model

A.1 Preliminaries

We define two auxiliary functions. First, we define φ(x) as the inverse of c′, i.e.,
c′(φ(x)) = x for all x ≥ 0. Convexity of the cost function and c′(0) = 0 ensures that φ
is uniquely defined and increasing. In fact, by the chain rule we have

φ′(x) = 1

c′′(φ(x)
) .

Since c′′(q) is positive and continuous for q ≥ 0, we deduce that c′′(φ(x)) is bounded
above and away from zero for x ∈ [v(θ), v(θ)].

Next, we define the function h(x) as follows:

h(x) = φ(x) · x− c
(
φ(x)

)
The first derivative of h(x) is given by

h′(x) = φ′(x) · x+φ(x) − c′(φ(x)
) ·φ′(x) =φ′(x) · x+φ(x) − x ·φ′(x) =φ(x)

Thus, the second derivative h′′ is bounded above and away from zero for x ∈ [v(θ), v(θ)].
The following lemma provides an estimate of the seller’s profit gain when an interval

is divided into two subintervals. It will be used in subsequent proofs.

Lemma 4. There exists a positive constant η depending on F and c(·), such that for any
triple of cutoffs a < b < c, the profit gain 	 incurred when dividing a single interval [a, c]
into two subintervals [a, b] and [b, c] (and adjusting qualities/prices accordingly) satisfies

η≤ 	(
F(b) − F(a)

)(
F(c) − F(b)

)(
F(c) − F(a)

) ≤ 1
η

.

Note from equations (3) and (4) that 	 only depends on a, b, c and is independent of
the remaining cutoffs.

Proof. Let Ev(mi ) denote EF [v(θ)|θ ∈ [θi−1, θi]]. Then the profit of mechanism M =
〈M , p, q〉 as given by equations (3) and (4) can be rewritten as


(M) =
∑
i

h
(
Ev(mi )

) · [F(θi ) − F(θi−1 )
]
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When an interval [a, c] is divided into [a, b] and [b, c], the profit gain is therefore

	 = h
(
E

[
v(θ) | a≤ θ ≤ b

]) · [F(b) − F(a)
] + h

(
E

[
v(θ) | b ≤ θ ≤ c

]) · [F(c) − F(b)
]

− h
(
E

[
v(θ) | a ≤ θ ≤ c

]) · [F(c) − F(a)
]
. (7)

For notational convenience, let v1 = E[v(θ) | a ≤ θ ≤ b], v2 = E[v(θ) | b ≤ θ ≤ c] and v =
E[v(θ) | a≤ θ ≤ c]. Observe that v1 < v < v2 and

v1 · [F(b) − F(a)
] + v2 · [F(c) − F(b)

] =
∫ b

a
v(θ)f (θ)dθ+

∫ c

b
v(θ)f (θ)dθ

= v · [F(c) − F(a)
]
. (8)

Thus, from equation (7) and the strict convexity of h, it is clear that 	> 0.
To obtain a sharper estimate as required by the lemma, we apply second-order Tay-

lor expansion to write

h(v1 ) = h(v) + (v1 − v)h′(v) + (v1 − v)2

2
h′′(ξ)

h(v2 ) = h(v) + (v2 − v)h′(v) + (v2 − v)2

2
h′′(ζ )

for some ξ ∈ (v1, v) and ζ ∈ (v, v2 ). Plugging these into equation (7) and using (8), we
have

	= h(v1 ) · [F(b) − F(a)
] + h(v2 ) · [F(c) − F(b)

] − h(v) · [F(c) − F(a)
]

= (v1 − v)2

2
h′′(ξ) · [F(b) − F(a)

] + (v2 − v)2

2
h′′(ζ ) · [F(c) − F(b)

]
.

Recall that h′′ is bounded above and away from zero, and F(b) − F(a) is on the same
order as b − a (since the density f is bounded above and away from zero). Thus, the
lemma would follow once we show that v−v1 is on the same order as c−b (and similarly
v2 − v is on the same order as b− a).

Indeed, we can rewrite equation (8) as (v2 − v1 ) · [F(c) − F(b)] = (v − v1 ) · [F(c) −
F(a)]. Thus, it remains to show v2 − v1 is on the same order as c − a. Note that

v2 − v(b) =

∫ c

b

[
v(θ) − v(b)

]
f (θ)dθ

F(c) − F(b)
=

∫ c

b

∫ θ

b
v′(y )f (θ)dy dθ

F(c) − F(b)
.

As v′(y )f (θ) is bounded above and away from zero, the numerator above is on the same
order as

∫ c
b

∫ θ
b 1dy dθ = 1

2 (c − b)2. So v2 − v(b) is on the same order as c − b. Similarly,
v(b) − v1 is on the same order as b − a. This proves that v2 − v1 is on the same order as
c − a, and hence the lemma.
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A.2 Proof of Lemma 1

We will show that any mechanism M =〈M , p, q〉 that satisfies I(M) ≤ κ, for some finite
κ > 0, can be transformed into an interval mechanism in a way that does not change the
expected profit of the monopolist, and weakly decreases the loss of privacy.

Given M =〈M , p, q〉 and a best-response strategy σ(·) for the agent under M, we first
drop duplicate messages: We say that message m′ is a duplicate of message m if p(m) =
p(m′ ) and q(m) = q(m′ ). Clearly, if m′ is a duplicate of m, then removing m′ from M

and adjusting σ such that all types who sent m′ would now send m, does not change the
seller’s expected profit. Moreover, the posterior belief given the message m in the new
mechanism is an average of the posterior beliefs given the messages m and m′ in the
original mechanism. Due to the convexity of the divergence function DKL(F(·|m)‖F ) in
its first argument, the entailed loss of privacy I(M) is decreased. This is true under both
the ex post and ex ante measures of privacy.27

Next, denote by μ(m) the set of all types who report the message m ∈M with positive
probability under σ :

μ(m) = {
θ ∈�|m ∈ supp

(
σ(θ)

)}
Since the agent’s preference satisfies increasing differences in (θ, q), the set μ(m) is ei-
ther an interval or a singleton.28 However, since κ is finite, there can be only a zero-
measure subset of messages m ∈ M for which μ(m) is a singleton.29 We can therefore
drop these messages from M , and pick a new best response for each type whose mes-
sage was dropped. Since the behavior of only a zero-measure set of types was affected,
the expected profit 
(M) and the entailed loss of privacy I(M) are both unchanged.

27Given σ and F , denote by Pr(m|σ , F ) and Pr(m′|σ , F ) the probabilities that messages m and m′ are
reported under σ , respectively. Then the convexity of DKL(F(·|m)‖F ) in its first argument implies that

Pr(m|σ , F ) ·DKL
(
F(·|m)‖F) + Pr

(
m′|σ , F

) ·DKL
(
F

(·|m′)‖F)
≥ [

Pr(m|σ , F ) + Pr
(
m′|σ , F

)] ·
[
DKL

(
Pr(m|σ , F ) · F(·|m) + Pr

(
m′|σ , F

) · F(·|m′)
Pr(m|σ , F ) + Pr

(
m′|σ , F

) ∥∥∥F)]

where (Pr(m|σ , F ) · F(·|m) + Pr(m′|σ , F ) · F(·|m′ ))/(Pr(m|σ , F ) + Pr(m′|σ , F )) is the posterior belief that is
induced when all the types who sent m′ in equilibrium would now send m.

This inequality precisely says that ex ante privacy loss is decreased. It further implies that the relative
entropy induced by the new message m is no greater than the maximum of the relative entropies induced
by the two old messages m and m′. Hence, ex post privacy loss is also decreased.

28Formally, if θ′ ∈ μ(m) and θ′′ ∈ μ(m) for some m ∈ M , then θ ∈ μ(m) for all θ ∈ [θ′, θ′′]. To see
this, observe that θ′ ∈ μ(m) implies q(m)θ′ − p(m) ≥ q(m′ )θ′ − p(m′ ) for every message m′. Similarly,
q(m)θ′′ − p(m) ≥ q(m′ )θ′′ − p(m′ ). Since any θ ∈ (θ′, θ′′ ) is a convex combination of θ′ and θ′′, the above
two inequalities lead to q(m)θ − p(m) ≥ q(m′ )θ − p(m′ ). Thus m is a best-response of type θ. It is in fact
a strict best-response because the last inequality is strict whenever m′ �= m; otherwise, q(m)θ′ − p(m) =
q(m′ )θ′ −p(m′ ) and q(m)θ′′ −p(m) = q(m′ )θ′′ −p(m′ ) hold simultaneously, showing that m′ is a redundant
copy of m. Hence, for any θ strictly in between θ′ and θ′′, σ(θ) puts probability 1 on sending the message m.

29When μ(m) is a singleton, the message m is sent by exactly one type and, therefore, m reveals this type
in equilibrium.
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Henceforth, we may assume that μ(m) is an interval for each m. Since there are
no duplicates, for every pair of messages m and m′ the intersection μ(m) ∩ μ(m′ ) is ei-
ther empty or a singleton (in other words, almost all types do not randomize between
messages as part of their best-response).

To complete the transformation ofM into an interval mechanism, we now use a stan-
dard revelation argument: replace every message m ∈ M with the corresponding interval
μ(m), and adjust the function p (resp., q) such that whenever the agent reports the inter-
val μ(m) in the “transformed” mechanism he would get the price (resp., quality) that he
would have got if he reported the message m in the “original” mechanism. The elements
in the transformed message set are pairwise disjoint intervals whose union is �, and
therefore they constitute a partition of �. IC, IR, privacy loss and profit are maintained
under this transformation, which proves the lemma.

A.3 Proof of Proposition 1

Given Lemma 1 and Lemma 2, it only remains to prove the bounds on the optimal num-
ber of intervals. This follows from the argument given in the main text, after Proposi-
tion 1.

A.4 Proof of Proposition 2

We focus on the case where c′′′ ≥ 0 and v(θ) is strictly less convex than F(θ). The proof
strategy is to show that whenever an interval has more mass than its adjacent interval on
the right, these two intervals can be “switched” to increase profit. That is, we considering
changing the two intervals [θt−1, θt ] and [θt , θt+1] into two new intervals [θt−1, θ̃t ] and
[θ̃t , θt+1], where θ̃t is defined by F(θ̃t ) − F(θt−1 ) = F(θt+1 ) − F(θt ). By the assumption
that the (original) left interval has greater mass, we have θ̃t < θt .

Let u, w, ũ, w̃ denote the expected virtual valuation on the four intervals [θt−1, θt ],
[θt , θt+1], [θt−1, θ̃t ], [θ̃t , θt+1], respectively. Then, as in the proof of Lemma 4, the profit
increase due to switching the two intervals is given by

	= (
h(w̃) − h(u)

) · [F(θt ) − F(θt−1 )
] − (

h(w) − h(ũ)
) · [F(θt+1 ) − F(θt )

]
.

Observe that (w̃ − u) · [F(θt ) − F(θt−1 )] = (w − ũ) · [F(θt+1 ) − F(θt )].30 So to show 	 is
positive we just need to show

h(w̃) − h(u)
w̃ − u

>
h(w) − h(ũ)

w − ũ
.

We claim that the above inequality follows from w̃ + u > w + ũ, which we will prove
later. Indeed, as h is strictly convex, the RHS of this inequality increases in w. So it
suffices to prove the weak version of the inequality assuming w̃+u = w+ ũ. For that, we
rewrite it as (w − ũ) · ∫ w̃

u h′(y )dy ≥ (w̃ − u) · ∫ w
ũ h′(y )dy, which is in turn equivalent to

(w − w̃ + u− ũ) ·
∫ w̃

u
h′(y )dy ≥ (w̃ − u) ·

[∫ u

ũ
h′(y )dy +

∫ w

w̃
h′(y )dy

]
.

30Both are equal to
∫ θt+1
θt

v(θ)f (θ)dθ− ∫ θ̃t
θt−1

v(θ)f (θ)dθ.
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Since we assume u − ũ = w − w̃ (and w̃ > u), this last inequality holds whenever h′ is a
concave function. Recall that h′(y ) = φ(y ) and φ′(y ) = 1/c′′(φ(y )). So we have h′′(y ) =
1/c′′(φ(y )), which is indeed decreasing in y because c′′′ > 0.

To complete the proof, it remains to verify that w̃ + u > w + ũ. Recall that G(x) =
F−1(x) · (x − 1) for all x ∈ [0, 1], such that G(F(θ)) = θ(F(θ) − 1), whose derivative is
v(θ)f (θ). Thus, the expected virtual valuation w̃ = E[v(θ) | θ̃t ≤ θ ≤ θt+1] can be written
as

w̃ =

∫ θt+1

θ̃t

v(θ)f (θ)dθ

F(θt+1 ) − F(θ̃t )
= G

(
F(θt+1 )

) −G
(
F(θ̃t )

)
F(θt+1 ) − F(θ̃t )

.

For notational convenience, we let a= F(θt−1 ), b = F(θt ), c = F(θt+1 ) with a < b < c and
b > 1

2 (a+ c). Then F(θ̃t ) = a+ c − b < b and we have w̃ = (G(c) −G(a+ c − b))/(b− a).
With similar computations for u, w, ũ, we only need to prove

G(c) −G(a+ c − b) +G(b) −G(a)
b− a

>
G(c) −G(b) +G(a+ c − b) −G(a)

c − b
.

This is equivalent to

2(c − b) ·
∫ b

a+c−b
G′(x)dx > (2b− a− c) ·

[∫ a+c−b

a
G′(x)dx+

∫ c

b
G′(x)dx

]
,

which holds so long as G′ is a strictly concave function. This is indeed the case because
G′(F(θ)) = v(θ), which is less convex than F(θ). The proposition follows.

A.5 Proof of Proposition 3

The following lemma gives a simple formula for the profit in the uniform-quadratic case.

Lemma 5. In the uniform-quadratic case, the profit from any interval partition with cut-
offs θ = θ0 < θ1, � � � , θn−1 < θn = θ is


=
(

1
6

(θ− θ)2 + 1
2
θ2 − 1

6(θ− θ)

n∑
i=1

(θi − θi−1 )3

)
,

which depends only on the lengths {θi − θi−1}ni=1.

Proof. When the agent’s type is uniformly distributed over [θ, θ], the virtual value of
type θ is given by v(θ) = 2θ − θ, and the optimal quality for any interval [θi−1, θi], as
determined by equation (4), is θi = θi + θi−1 − θ.

The profit as given by equation (3) is


(ω) =
n∑

i=1

(θi + θi−1 − θ) ·
∫ θi

θi−1

(2x− θ)
1

θ− θ
dx− (θi + θi−1 − θ)2

2
θi − θi−1

θ− θ

= 1

2(θ− θ)

(
n∑

i=1

(θi − θi−1 )(θi + θi−1 )2
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− 2
n∑

i=1

(
θ2
i − θ2

i−1

) · θ+
n∑

i=1

(θi − θi−1 ) · θ2

)
.

The three terms in the parentheses above can be simplified as follows:
∑n

i=1(θi −
θi−1 ) = (θ − θ),

∑n
i=1(θ2

i − θ2
i−1 ) = (θ

2 − θ2 ), and
∑n

i=1(θi − θi−1 )(θi + θi−1 )2 = 4
3 (θ

3 −
θ3 ) − 1

3

∑n
i=1(θi − θi−1 )3.31 Plugging the three expressions back, we obtain the lemma.

Back to the proposition, when κ ∈ [log(N ), log(N + 1)), we have eκ < N + 1. So by
Lemma 2, any feasible interval mechanism has at most N intervals. Now by Lemma 5,
among interval partitions with at most N intervals, maximizing profit is equivalent
to minimizing

∑N
i=1 x

3
i , where xi = θi − θi−1 is the length of the interval mi (which

can be zero if less than N intervals are used). Subject to xi ≥ 0 and the total length∑N
i=1 xi = θ − θ, the cubic sum

∑N
i=1 x

3
i is clearly minimized when the intervals have

equal lengths. Hence, the equal partition maximizes profit among all partitions with at
most N intervals, even ignoring the feasibility constraint. Since it is κ-feasible, it must
then be the ex post κ-optimal mechanism.

A.6 Proof of Proposition 4

By the envelope theorem, the interim expected utility of a buyer with type θ̂ is given by∫
θ≤θ̂ q(θ)dθ. Thus, ex ante buyer surplus can be computed as

∫ ∫
θ≤θ̂

q(θ)dθdF(θ̂) =
∫

q(θ)
(
1 − F(θ)

)
dθ. (9)

In what follows, we consider the effect of combining two adjacent intervals in a
mechanism into a single interval. Specifically, let θj−1, θj , θj+1 be three adjacent cut-
offs in a constrained-optimal mechanism (for any κ). Write vj = E[v(θ) | θ ∈ [θj−1, θj ]],
vj+1 = E[v(θ) | θ ∈ [θj , θj+1]], and v = E[v(θ) | θ ∈ [θj−1, θj+1]]. Then the corresponding
optimal qualities for these intervals are qj = φ(vj ), qj+1 = φ(vj+1 ) and q = φ(v). Thus,
the change in buyer surplus when “eliminating” the cutoff θj is

	 := q ·
∫ θj+1

θj−1

(
1 − F(θ)

)
dθ− qj ·

∫ θj

θj−1

(
1 − F(θ)

)
dθ− qj+1 ·

∫ θj+1

θj

(
1 − F(θ)

)
dθ

= (q− qj ) ·
∫ θj

θj−1

(
1 − F(θ)

)
dθ− (qj+1 − q) ·

∫ θj+1

θj

(
1 − F(θ)

)
dθ.

We will show 	≥ 0. Indeed, observe that

v
(
F(θj+1 ) − F(θj−1 )

) =
∫ θj+1

θj−1

v(θ)dθ = vj
(
F(θj ) − F(θj−1 )

) + vj+1
(
F(θj+1 ) − F(θj )

)
.

31To simplify the third term, we used the identity (x− y )(x+ y )2 = 4
3 (x3 − y3 ) − 1

3 (x− y )3.
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So (v − vj )(F(θj ) − F(θj−1 )) = (vj+1 − v)(F(θj+1 ) − F(θj )). Hence,

q− qj

qj+1 − q
= φ(v) −φ(vj )

φ(vj+1 ) −φ(v)

≥ v − vj

vj+1 − v
= F(θj+1 ) − F(θj )

F(θj ) − F(θj−1 )
≥

∫ θj+1

θj

(
1 − F(θ)

)
dθ

∫ θj

θj−1

(
1 − F(θ)

)
dθ

, (10)

which precisely means that 	 ≥ 0. In the above, the first inequality holds because φ is
concave (as its inverse function c′ is assumed to be convex). The last inequality holds
because it can be rewritten as∫ θj

θj−1

(
1 − F(θ)

)
dθ

F(θj ) − F(θj−1 )
≥

∫ θj+1

θj

(
1 − F(θ)

)
dθ

F(θj+1 ) − F(θj )
,

where the LHS is (
∫ θj
θj−1

(1 − F(θ))dθ)/(
∫ θj
θj−1

f (θ)dθ) ≥ (1 − F(θj ))/f (θj ) by the assump-

tion that (1−F(θ))/f (θ) is decreasing, and similarly the RHS is at most (1−F(θj ))/f (θj ).
This completes the proof that 	 ≥ 0.

Now, starting from any mechanism, repeatedly combining adjacent intervals even-
tually leads to the fully pooling mechanism, which yields weakly higher buyer surplus.
Thus, κ= 0 maximizes buyer surplus. Similarly, κ= ∞ minimizes buyer surplus.

A.7 Proof of Proposition 5

With quadratic costs, total welfare contributed by a buyer of type θ is θq(θ) − (q(θ))2/2.
Thus ex ante total welfare is

∫
q(θ) ·(θ− q(θ)

2 )f (θ)dθ. Note that on each interval [θi−1, θi],
q(θ) is constant and equal to the expected virtual valuation on this interval. Thus, ex
ante total welfare can be equivalently written as∫

q(θ) ·
(
θ− v(θ)

2

)
f (θ)dθ. (11)

Compared with the above equation (9) for buyer surplus, the difference here is that the
function (θ− v(θ)/2)f (θ) takes the place of 1 − F(θ).

Note that f (θ) is increasing implies that θ− v(θ)/2 is decreasing, since its derivative
is −(1 − F(θ))f ′(θ)/(2f (θ)2 ). Thus, we can repeat the above argument to show that
combining two intervals increases total welfare, which must be maximized at κ = 0 and
minimized at κ= ∞. This proves the first half of the proposition.

As for the second half, we can apply a symmetric argument: If f (θ) is decreasing,
then θ− v(θ)/2 is increasing. This implies that combining two intervals would decrease
total welfare, since the last inequality in equation (10) would be reversed (and the first
inequality would hold equal thanks to quadratic costs). Therefore, total welfare would
be minimized with a single interval, and maximized with full screening.
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A.8 Proof of Proposition 10

Throughout, we assume λ = eκ ∈ (1/(N + 1), 1/N ]. The seller’s problem is to find an in-
terval partition such that each interval has mass at least λ, and profit is maximal subject
to buyer incentive constraints. Note that on any interval [θi−1, θi], the optimal quality is
either the average virtual value θi−1 + θi − θ when this is positive, or zero when the aver-
age virtual value is negative. Correspondingly, the profit contribution of any interval is
either (θi−1 + θi − θ)2/2, or zero. It is no greater than (θi−1 + θi − θ)2/2 in either case.

Thus, for any interval partition with cutoffs θ = θ0 < θ1, � � � , θn−1 < θn = θ, total
profit is bounded from above by what is calculated in Lemma 5, with equality if and
only if the lowest interval has nonnegative average virtual value. Now recall that each
interval has mass ≥ λ > 1/(N + 1), so the number of intervals satisfies n ≤ N . It follows
that the profit given by Lemma 5 is maximized when n = N and all intervals have equal
length. This upper bound is achieved in our current setting if and only if the lowest
interval under the equal partition has nonnegative average virtual value. This requires
θ+ (θ+ (θ− θ)/N ) − θ ≥ 0, which is precisely the condition stated in the first part of the
proposition.

Below we consider the case where this first best is not achievable, i.e., θ < ((N −
1)/(2N − 1)) · θ. Suppose the optimal partition has exactly n − 1 intervals with positive
average virtual values, starting from some type θ̂. Then the optimal mechanism simply
excludes the types lower than θ̂ and reduces to an optimal mechanism for the uniform
distribution on [θ̂, θ]. It follows from Lemma 5 that these n − 1 intervals above θ̂ must
have equal length (in order to minimize the cubic sum of their lengths). Thus, n ≤N , for
otherwise the lowest of these n − 1 equal intervals would have negative average virtual
value, by the assumption that θ < ((N − 1)/(2N − 1)) · θ.

We can now formulate the seller’s problem as choosing a cutoff type θ̂ and a positive
integer n ≤ N in order to minimize the profit from an equal partition of [θ̂, θ] into n− 1
equal intervals, subject to the following two constraints:

(i) θ̂ > ((n− 2)/(2n− 3)) ·θ, so the lowest of these n− 1 intervals has positive average
virtual value;

(ii) θ− θ̂ ≥ (n− 1)λ(θ− θ), so these intervals have mass at least λ.

The optimal θ̂ will turn out to also satisfy θ̂ < θ−θ and θ̂−θ ≥ λ(θ−θ), which means
there is another interval below θ̂ in the overall partition of [θ, θ]. This nth interval has
negative average virtual value, and has mass at least λ. So the solution to our relaxed
problem will be feasible.

To characterize the optimal θ̂ and n, we rely on the following lemma.

Lemma 6. For each positive integer n > 1, denote by 
n−1(θ̂) the optimal profit from ex-
cluding types below θ̂ and dividing types above θ̂ into n− 1 equal intervals. Then 
n−1(θ̂)
as a function of θ̂ is strictly increasing when θ̂ ∈ [((n− 2)/(2n− 3)) · θ, (n/2n− 1) · θ], and
is strictly decreasing when θ̂ ≥ (n/(2n− 1)) · θ.
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Indeed, using Lemma 5 we can compute that


n−1(θ̂) = θ− θ̂

θ− θ
·
[(

1
6

− 1

6(n− 1)2

)
(θ− θ̂)2 + 1

2
θ̂2

]
,

where the term (θ − θ̂)/(θ − θ) represents the fact that each type in [θ̂, θ] occurs with a
scaled density compared to the uniform distribution on this interval. With a little alge-
bra, the derivative of the above function with respect to θ̂ simplifies to(

(2n− 3)θ̂− (n− 2)θ
) · (nθ− (2n− 1)θ̂

)
2(n− 1)2(θ− θ)

.

This yields Lemma 6.
We will apply this lemma to deduce the second and third parts of Proposition 10.

Suppose θ/(2N−1) > λ(θ−θ), then the seller can choose n= N and θ̂ = (N/(2N−1)) ·θ,
while satisfying the privacy constraint (ii) above. Note that θ̂ < θ − θ by our previous
assumption about θ, and θ̂ − θ > (1/N )(θ − θ) ≥ λ(θ − θ). So as we promised, the ex-
cluded types below θ̂ have negative average virtual value, and do not violate the privacy
constraint.

This feasible solution is optimal when n = N , by Lemma 6. Thus, it only remains to
show that having a smaller n is not profitable. For this, we note the following simple fact:


n−1

(
n− 2

2n− 3
θ

)
=
n−2

(
n− 1

2n− 3
θ

)
. (12)

The reason is that the n − 1 intervals associated with the LHS simply adds the interval
[((n−2)/(2n−3)) ·θ, ((n−1)/(2n−3)) ·θ] to the n−2 intervals on the RHS. But since this
extra interval has average virtual value equal to zero, its optimal quality is zero whether
or not it is included. So excluding it from the LHS has no effect on total profit.

From equation (12) and Lemma 6, we have


n−1

(
n

2n− 1
θ

)
>
n−1

(
n− 2

2n− 3
θ

)
=
n−2

(
n− 1

2n− 3
θ

)
.

This means the optimal profit with n− 1 intervals is higher than the optimal profit with
n − 2 intervals, so on and so forth. Hence, the choices n = N and θ̂ = (N/(2N − 1)) · θ
are optimal among any n ≤N and θ̂ ≥ ((n− 2)/(2n− 3)) · θ. This proves the second part
of the proposition.

Finally, we suppose θ < ((N − 1)/(2N − 1)) · θ and for some m≤N ,

θ

2m− 3
> λ(θ− θ) ≥ θ

2m− 1
.

From the constraints (i) and (ii) above on θ̂, we deduce λ(θ − θ) < θ/(2n − 3). Thus,
the fact that λ(θ − θ) ≥ θ/(2m − 1) implies n ≤ m. Consider the choices n = m and
θ̂ = θ − (m − 1)λ(θ − θ). The privacy constraint (ii) is exactly satisfied, and the virtual
value constraint (i) is satisfied because λ(θ−θ) < θ/(2m− 3). Moreover, from λ(θ−θ) ≥
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θ/(2m− 1) we deduce θ ≤ θ−θ/(λ(2m− 1)) ≤ θ−Nθ/(2m− 1) < ((m− 1)/(2m− 1)) ·θ,
with the last inequality being strict because we already know θ < ((N − 1)/(2N − 1)) · θ
when m = N . Together with θ̂ = θ − (m − 1)λ(θ − θ) ≤ (m/(2m − 1)) · θ, we deduce
that the types below θ̂ have negative average virtual value. The mass of these types is
1 − (m− 1)λ ≥ 1 − (N − 1)λ ≥ λ, so this solution is feasible.

Now observe that given the privacy constraint (ii), θ̂ = θ− (m−1)λ(θ−θ) is the max-
imal value θ̂ can take subject to n = m. As θ̂ ≤ (m/(2m− 1)) · θ, we know from Lemma 6
that this choice of θ̂ is optimal for n =m. From that lemma, we also have


m−1(θ̂) >
m−1

(
m− 2

2m− 3
θ

)
= 
m−2

(
m− 1

2m− 3
θ

)
.

Thus, the choice of m− 1 intervals starting from θ̂ is better than the optimum with m−
2 intervals, which is in turn better than any optimum with even fewer intervals. This
proves the third/last part of Proposition 10.

Appendix B: Proofs for the ex ante measure

B.1 Proof of Proposition 6

We expand on the proof sketch outlined in the main text. As discussed, the key is to
find a replacement M̃ for any mechanism M such that profit is not decreased, and the
number of intervals in M̃ is bounded.

Step 1. Find a “big” interval. Set l = e−κ. We first show that any ex ante κ-feasible
interval mechanism contains a “big” interval with mass ≥ l (according to F). Indeed,
from equation (6) we have

I(M) =
∑
i

−[
F(θi ) − F(θi−1 )

] · log
[
F(θi ) − F(θi−1 )

] ≤ κ.

Since
∑

i[F(θi ) − F(θi−1 )] = 1, there exists some i subject to − log[F(θi ) − F(θi−1 )] ≤ κ.
In other words, the interval mi has mass at least e−κ.

Fixing this choice of l, we define ε to be a small positive constant as given by
Lemma 7 below. Starting from M, we will now look for the replacement M̃.

Step 2. From countable to finite. We first find a replacement M̂ with at least as much
profit and only finitely many intervals. Suppose p is an accumulation point of the cutoffs
in M. Then on the left ofp we can order the intervals in M from left to right as m1, m2, � � � ,
with mi converging to p. In particular, the mass of mi converges to zero, and we can find
some ms and ms+1 both with mass < ε. Applying Lemma 7 below, we can merge the in-
tervals ms and ms+1 and divide the “big” interval into two subintervals, in such a way that
the (ex ante) privacy measure is unchanged and profit is strictly increased. The achieved
profit gain is sufficient to cover the loss from additionally combining all the (countably
many) intervals mt , mt+1, � � � , so long as we choose t to be sufficiently large. As this last
step also relaxes the privacy constraint, we obtain a replacement mechanism in which
p is no longer an accumulation point of intervals on its left. Doing the same exercise for
intervals on the right of p yields a mechanism in which p is not an accumulation point.
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In fact, we can achieve this replacement with some extra properties. Note that when-
ever an accumulation point p exists, the “big” interval must have mass strictly greater
than l = e−κ; otherwise, the privacy constraint requires every interval in M to have mass
exactly l, a contradiction. Thus by choosing ms and ms+1 to have sufficiently small mass,
we can ensure that when they are merged and the “big” interval is divided into two
subintervals, the bigger subinterval still has mass > l. In other words, we can perform
the replacement in such a way that the same big interval is sequentially divided (each
time creating a small subinterval on the left and a big one on the right). The benefit is
that as we get rid of the accumulation points in M one by one (which may be count-
ably many), we obtain a sequence of replacement mechanisms that become finer in the
original “big” interval in M and more coarse everywhere else. This sequence converges,
and the limit mechanism has at most one accumulation point in the “big” interval.32 By
merging and dividing once more, we arrive at M̂ with finitely many intervals and weakly
higher profit than M.

Step 3. From finite to bounded. We now demonstrate how to replace the finite
mechanism M̂ with yet another mechanism M̃ with higher profit and at most N :=
2/ε + 4 intervals. Starting from M̂, if there are two pairs of adjacent intervals (i.e., 4
distinct ones) all with mass < ε, then we combine both pairs at the same time and used
the privacy measure saved from one of the mergers to divide the “big” interval into two
subintervals. The privacy constraint is relaxed, and by Lemma 7 below, total profit is
increased if we choose the merger that induces greater profit loss.

Hence, whenever M̂ contains two pairs of adjacent “small” intervals, it can be re-
placed with a mechanism M̂(1) with higher profit and one less interval in total. The latter
property ensures that when iterating this process, we will eventually reach a mechanism
M̃ in which at most one pair of adjacent intervals both have mass < ε. Excluding this pair
and the two intervals next to them, at least half of the remaining intervals have mass ≥ ε.
So the total number of intervals in M̃ is bounded by N = 2/ε+ 4.

Lemma 7. Given l > 0, there exists ε ∈ (0, l) with the following property. If any interval
mechanismM has two adjacent small intervals both of mass < ε as well as a big interval of
mass ≥ l, then when merging the two small intervals and using the saved ex ante privacy
measure to divide the big interval into two subintervals, the profit gain in the latter step
is at least twice as big as the profit loss in the former step.

Proof. Suppose there are two adjacent intervals with mass x, y < ε; assume without
loss that x ≤ y. If we combine them into a single interval, the profit loss is on the order
of xy(x + y ) by Lemma 4. Meanwhile, equation (6) implies that the amount of privacy
measure saved is

α = (x+ y ) log(x+ y ) − x logx− y log y = x log
(

1 + y

x

)
+ y log

(
1 + x

y

)
. (13)

32If we do not divide the same big interval repeatedly, then it is possible that new accumulation points
arise in the iterative process. That would complicate the argument.
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By assumption, there exists another interval of mass L≥ l. We use the saved privacy
measure to break this interval into two: That is, we look for a subinterval of mass δ ∈
(0, L/2) such that the total privacy measure is restored. This requires

L logL− (L− δ) log(L− δ) − δ logδ = α.

From this, we obtain33

δ · |logδ| ≥ α

2
. (14)

We claim that (13) and (14) together imply δ ≥ x
√
x+ y (whenever x ≤ y < ε). For

this, it suffices to show that

x
√
x+ y · log

(
1

x
√
x+ y

)
<

x log
(

1 + y

x

)
2

<
α

2
.

Rearranging, the above inequality is equivalent to

1

x
√
x+ y

<

(
1 + y

x

) 1
2
√
x+y

.

For small x, y, the exponent 1/(2
√
x+ y ) is at least 4. So by binomial expansion, the RHS

above has size at least⎛
⎝ 1

2
√
x+ y
4

⎞
⎠ ·

(
y

x

)4

≥
(

1

8
√
x+ y

)4

· y
x

= y

4096x(x+ y )2 ≥ 1
8192x(x+ y )

.

This is indeed greater than the LHS, which was 1/(x
√
x+ y ).

Hence, we have shown that when using the saved capacity to divide the big interval
into two subintervals, the smaller subinterval has mass δ ≥ x

√
x+ y. By Lemma 4, the

resulting profit gain is on the order of δ(L − δ)L ≥ L2δ/2. Since L ≥ l which is given,
this profit gain is at least on the order of δ≥ x

√
x+ y. This profit gain exceeds the initial

profit loss (which is about xy(x+ y )) due to combining two small intervals, completing
the proof.

B.2 Proof of Proposition 7

The argument is already sketched in the main text, after Proposition 7. In particular,
Lemma 4 ensures that the seller strictly benefits from dividing any interval into two
subintervals.

33By the mean value theorem, L logL − (L − δ) log(L − δ) = δ(1 + logζ ) for some ζ ∈ (L − δ, L). So
δ(1 + log(ζ/δ)) = α. Since ζ ≥L/2 ≥ δ, this implies

δ≤ α = x log
(

1 + y

x

)
+ y log

(
1 + x

y

)
≤ x · y

x
+ y · x

y
= x+ y ≤ 1

e
.

Thus, we further have 1 + logζ ≤ 1 ≤ − logδ. From δ(1 + log(ζ/δ)) = α, we then deduce δ · |logδ| ≥ α/2.
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B.3 Proof of Proposition 8

We argue that Proposition 8 follows from Lemma 3, which we prove below. Indeed, that
lemma implies the existence of some ε > 0 such that any ex ante κ-optimal interval
mechanism with κ ≤ 1 contains at most one interval with mass < ε. For this ε, define
κ = −ε logε. Then in any κ-optimal mechanism with κ ≤ κ < 1, equation (6) and feasi-
bility implies ∑

i

−[
F(θi ) − F(θi−1 )

] · log
[
F(θi ) − F(θi−1 )

] ≤ κ≤ −ε logε.

In particular, [F(θi ) − F(θi−1 )] · log[F(θi ) − F(θi−1 )] > ε logε holds for every interval.
Note that the function x logx is decreasing for x ∈ [0, 1/e] and increasing for x ∈ [1/e, 1].
Thus, the preceding inequality implies either F(θi )−F(θi−1 ) < ε, or F(θi )−F(θi−1 ) > 1

2 .
In words, each interval in M has mass either less than ε or greater than 1

2 . By defi-
nition of ε, there is at most on interval with mass < ε. It is also clear that at most one
interval can have mass > 1

2 . Hence, any ex ante κ-optimal interval mechanism with
κ≤ κ consists of at most two intervals. Since the ex ante privacy constraint is exhausted,
exactly two intervals are employed.

B.4 Proof of Lemma 3

In the proof of Proposition 6, we showed that in any ex ante κ-feasible mechanism there
is a “big” interval of mass at least e−κ ≥ e−k. So by Lemma 7, there cannot be two adja-
cent intervals both with mass < ε (for some small ε).

It remains to deal with the situation where two small intervals are not adjacent. The
proof strategy is to move one of these intervals to be next to the other, and to show that
the profit change is at most on the order of xy, where x, y are the mass of these small
intervals. Once this is shown, we can repeat the argument in the proof of Lemma 7,
merging the now adjacent small intervals and dividing the big interval. As computed in
that proof, the profit gain in the last step is on the order of x

√
x+ y, which exceeds any

profit loss incurred earlier. This would complete the proof.
To be more specific, suppose the two small intervals are [θi−1, θi] and [θj , θj+1],

for some i < j. Set x = F(θi ) − F(θi−1 ) and y = F(θj+1 ) − F(θj ). Consider moving
the small interval on the left toward the right while maintaining its mass: We can do
this sequentially by replacing θi with θ̃i = F−1(F(θi+1 ) − x), then replacing θi+1 with
θ̃i+1 = F−1(F(θi+2 ) − x), so on and so forth until θ̃j−1 = F−1(F(θj ) − x) and the two
small intervals become adjacent. This process preserves the ex ante privacy measure,
and it remains to estimate the profit change.

Note that in each step, the two intervals [θ̃t−1, θt ] and [θt , θt+1] are changed into two
new intervals [θ̃t−1, θ̃t ] and [θ̃t , θt+1]. Thus, as in the proof of Proposition 2, the profit
increase is given by

	t = h(ũ) · [F(θ̃t ) − F(θ̃t−1 )
] + h(w̃) · [F(θt+1 ) − F(θ̃t )

]
− h(u) · [F(θt ) − F(θ̃t−1 )

] − h(w) · [F(θt+1 ) − F(θt )
]

(15)
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where u, w, ũ, w̃ represent the expected virtual valuation on the intervals [θ̃t−1, θt ],
[θt , θt+1], [θ̃t−1, θ̃t ], [θ̃t , θt+1], respectively.

We first consider the difference h(w̃) · [F(θt+1 ) − F(θ̃t )] − h(u) · [F(θt ) − F(θ̃t−1 )].
By construction, F(θt+1 ) − F(θ̃t ) = F(θt ) − F(θ̃t−1 ) = x, so this difference simplifies to
(h(w̃) − h(u)) · x. Moreover, as we showed in the proof of Lemma 4,

u = E
[
v(θ) | θ̃t−1 ≤ θ ≤ θt

]
= v(θt ) +O(θt − θ̃t−1 ) = v(θt ) +O

(
F(θt ) − F(θ̃t−1 )

) = v(θt ) +O(x)

where “O(·)” is the standard big O notation with implied constants depending on the
distribution and cost function. Thus, h(u) = h(v(θt )) + O(x) and similarly h(w̃) =
h(v(θt+1 )) +O(x). It follows that

h(w̃) · [F(θt+1 ) − F(θ̃t )
] − h(u) · [F(θt ) − F(θ̃t−1 )

]
= [

h
(
v(θt+1 )

) − h
(
v(θt )

)] · x+O
(
x2).

Next, we consider the other difference h(ũ) · [F(θ̃t ) − F(θ̃t−1 )] − h(w) · [F(θt+1 ) −
F(θt )] in equation (15). It simplifies to (h(ũ) − h(w)) · [F(θt+1 ) − F(θt )]. Moreover,

ũ=

∫ θ̃t

θ̃t−1

v(θ)f (θ)dθ

F(θ̃t ) − F(θ̃t−1 )
=

∫ θ̃t

θ̃t−1

v(θ)f (θ)dθ

F(θt+1 ) − F(θt )

=w +

∫ θt

θ̃t−1

v(θ)f (θ)dθ−
∫ θt+1

θ̃t

v(θ)f (θ)dθ

F(θt+1 ) − F(θt )

=w +
[
v(θt ) − v(θt+1 )

] · x
F(θt+1 ) − F(θt )

+

∫ θt

θ̃t−1

[
(v(θ) − v(θt )

] · f (θ)dθ−
∫ θt+1

θ̃t

[
v(θ) − v(θt+1 )

] · f (θ)dθ

F(θt+1 ) − F(θt )

=w +
[
v(θt ) − v(θt+1 )

] · x
F(θt+1 ) − F(θt )

+O
(
x2),

where the last step holds because for each θ ∈ [θ̃t−1, θt ], the difference between [(v(θ) −
v(θt )] · f (θ) and [(v(θ + θt+1 − θt ) − v(θt+1 )] · f (θ + θt+1 − θt ) is at most on the order
of (θt − θ) · (θt+1 − θt ) = O(x) · [F(θt+1 ) − F(θt )]. Thus, h(ũ) = h(w) + h′(w) · ([v(θt ) −
v(θt+1 )] · x/(F(θt+1 ) − F(θt ))) +O(x2 ). It follows that

h(ũ) · [F(θ̃t ) − F(θ̃t−1 )
] − h(w) · [F(θt+1 ) − F(θt )

]
= h′(w) · [v(θt ) − v(θt+1 )

] · x+O
(
x2)

Taken together, we have estimated the RHS of equation (15), so that

	t = {
h
(
v(θt+1 )

) − h
(
v(θt )

) − [
v(θt+1 ) − v(θt )

] · h′(
E

[
v(θ) | θ ∈ [θt , θt+1]

])} · x+O
(
x2).
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Summing across t ∈ {i, � � � , j − 1}, we obtain that when moving the small interval on the
left to be adjacent to the one on the right, the total profit change is34

	LR = O
(
x2) +

j−1∑
t=i

{
h
(
v(θt+1 )

) − h
(
v(θt )

)
− [

v(θt+1 ) − v(θt )
] · h′(

E
[
v(θ) | θ ∈ [θt , θt+1]

])} · x.

If we instead move the small interval on the right to be adjacent to the one on the
left, then total profit change is similarly computed as

	RL = O
(
y2) −

j−1∑
t=i

{
h
(
v(θt+1 )

) − h
(
v(θt )

)
− [

v(θt+1 ) − v(θt )
] · h′(

E
[
v(θ) | θ ∈ [θt , θt+1]

])} · y.

Note the minus sign in front of the second term; this is because when moving from the
right to the left, the ordering of the subscripts need to be reversed.

Now observe that if we compute the weighted sum y ·	LR + x ·	RL, then the second
term is cancelled out. This yields

y ·	LR + x ·	RL =O
(
x2y + y2x

)
.

Therefore, 	LR and 	RL cannot both be very negative. To be concrete, we may without
loss assume 	LR ≥ −O(xy ). Then in moving the small interval on the left to the right, the
initial profit loss (if any) is small relative to the profit gain provided in Lemma 7. This
again contradicts optimality, and hence there cannot even be two small intervals that
are nonadjacent.

B.5 Proof of Proposition 9

We will show that in any profit-maximizing partition with exactly n intervals, all but one
of the intervals have the same lengths and the last interval has weakly smaller length.
To see how this claim implies the result, suppose κ ∈ (log(N − 1), log(N )]. By Proposi-
tion 7, the number of intervals in the optimal solution satisfies n ≥ eκ > N − 1. Thus,
n ≥ N . Moreover, if n > N , then at least N intervals would have the same lengths. It
would follow that each of the intervals in the optimal partition has mass smaller than 1

N ,
which is at most e−κ. This would contradict feasibility, i.e., equation (6). Hence, with the
preceding claim, we will know that the optimal partition involves exactly N intervals.
The two lengths are then uniquely determined, as described in the Proposition. Finally,
the ordering of the intervals does not matter for either the privacy measure or for profit,
thanks to Lemma 5.

It remains to prove the above claim that characterizes the lengths of the optimal in-
tervals. For an interval partition, let xi = (θi − θi−1 )/(θ− θ) denote the probability mass

34There are j − i terms of order at most x2, and since j − i is bounded by the total number of intervals
which in turn is bounded by Lemma 7, their sum is still O(x2 ).
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of the ith interval. In what follows, we will work with the probability masses {xi} instead
of the cutoffs {θi}. By Lemma 5 and equation (6), seller’s profit maximization problem
under the ex ante privacy constraint can be rewritten as the following constrained min-
imization problem: min

∑n
i=1 x

3
i subject to xi ≥ 0,

∑n
i=1 xi = 1, and

∑n
i=1 xi logxi ≤ −κ.

For a fixed n, the Lagrangian is given by

L
(
α, β, {xi}

n
i=1

) =
n∑

i=1

x3
i + α

(
1 −

n∑
i=1

xi

)
−β

( n∑
i=1

xi logxi + κ

)
.

Thus, whenever each xi is strictly positive and {xi} is a local constrained minimizer, the
first-order conditions imply

3x2
i −β logxi = α+β for all 1 ≤ i ≤ n. (16)

If β ≤ 0, then the function 3x2 − β logx is monotonically increasing. Thus, every
xi is the same, which completes the proof; otherwise, assume β > 0. In this case, the
derivative of the function 3x2 −β logx is 6x−β/x, which is monotonically increasing and
crosses 0 at x̂= √

β/6. Thus, the function 3x2 −β logx decreases on [0, x̂] and increases
on [x̂, ∞). Equation (16) yields that xi can take at most two values x and x, with x <

x̂ < x.
Below we analyze the second-order conditions to show that at most one xi can be

equal to x. Suppose for the sake of contradiction that in the optimal solution β> 0 and
x1 = x2 = x. Let g(x) = (

∑n
i=1 xi,

∑n
i=1 xi logxi )′ ∈ R

2 denote the constraint values. Then
its Jacobian Dg(x) is the 2 × n matrix whose first row is all 1s and whose second row is
(1 + logx1, � � � , 1 + logxn ). Consider v = (1, −1, 0, � � � , 0)′ ∈ R

n. Then clearly v belongs to
the null space of Dg(x).

The second derivative of the Lagrangian L(α, β, x) with respect to (the vector) x is
the diagonal matrix H = diag(6x1 −β/x1, � � � , 6xn −β/xn ). It is easy to see that

v′Hv = 6x1 − β

x1
+ 6x2 − β

x2
= 2

(
6x− β

x

)
,

which is negative because x < x̂. But this fails the second derivative test for constrained
local minima; see, e.g., Simon and Blume (1994, page 468). Hence, the proof is complete.

Appendix C: Extension to multiagent mechanisms

Extending our analysis to mechanisms with more than one agent presents some chal-
lenges. In particular, the notion of privacy loss needs to be extended to accommodate
the possibility that different participants are exposed to different losses of privacy.35 One
approach is to require that the maximal loss of privacy for any agent is at most κ; an
alternative is to measure the average loss of privacy across all agents. As in our single-
agent model, the privacy notion also has to address the fact that loss of privacy may
differ across types of the same agent.

35This is particularly important since the literature on optimal mechanisms with restricted message
spaces has highlighted the usefulness of asymmetric mechanisms; see Kos (2012).
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Aside from these challenges, our framework can be extended to allow for multiple
agents. To illustrate, we analyze here the simple case of a seller with a single unit of a
good and no production costs, and m buyers who independently draw private valuations
for the good from a uniform distribution over [θ, θ], where θ ≥ 1

2θ ensuring that virtual
valuations are nonnegative. We restrict attention to symmetric mechanisms and require
that each agent’s ex post privacy loss be at most κ.

By essentially the same arguments as in our single-agent model, it can be shown
that the optimal privacy-constrained mechanism partitions the set of types into finitely
many intervals. In light of this, we consider the class of mechanisms where the types are
partitioned into intervals, each buyer reports the interval to which his type belongs, and
the bidder with the highest report is awarded the good (with ties broken evenly). The
optimal mechanism within this class is given in the following result.

Proposition 11. Suppose there are m≥ 5 buyers with uniformly distributed values, and
no production costs. Then for any κ ∈ [log(n), log(n + 1)), the optimal ex post privacy-
constrained symmetric auction partitions the type space into n intervals. Each of the
upper n − 1 intervals has equal mass of e−κ (which is privacy-binding), and the lowest
interval has the remaining mass of 1 − (n− 1)e−κ (which is weakly greater).

Our proof below also shows that with 2 buyers, the optimal auction partitions the
set of types into n equally long intervals, which coincides with the solution for a single
buyer under quadratic costs. The solutions to 3 or 4 buyers are more complex.

Proof. Consider a symmetric auction that asks each agent which of n intervals his type
belongs to. Suppose the partition has cutoffs θ = θ0 < θ1 < · · · < θn−1 < θn = θ. Then, for
each buyer, the probability of winning upon reporting the interval [θi−1, θi] is computed
as

qi =
m−1∑
k=0

1
k+ 1

(
m− 1
k

)(
θi−1 − θ0

θn − θ0

)m−k−1(θi − θi−1

θn − θ0

)k

,

where each element in the sum corresponds to the event that m−k−1 opponents report
an interval lower than [θi−1, θi] and k opponents report the interval [θi−1, θi], in which
case the buyer wins the object with probability 1/(k + 1). Simplifying the right-hand
side yields36

qi = 1

(θn − θ0 )m−1 · 1
m

· (θi − θ0 )m − (θi−1 − θ0 )m

θi − θi−1
.

36To see this note that (1/(k+ 1))
(m−1

k

) = (1/m)
( m

k+1

)
, and thus

m−1∑
k=0

1
k+ 1

(
m− 1
k

)
(θi−1 − θ0 )m−k−1(θi − θi−1 )k

= 1
m

m−1∑
k=0

(
m

k+ 1

)
(θi−1 − θ0 )m−(k+1)(θi − θi−1 )k

= 1
m

1
θi − θi−1

m∑
l=1

(
m

l

)
(θi−1 − θ0 )m−l(θi − θi−1 )l
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By the envelope theorem, type θi’s interim expected utility is given by the integral of
quantities assigned to lower types, which is

ui =
i∑

j=1

(θj − θj−1 )qj = 1
m

(θi − θ0 )m

(θn − θ0 )m−1 .

The expected payment when reporting the interval [θi−1, θi] is

pi = θi · qi − ui = 1

(θn − θ0 )m−1 · 1
m

· θi−1(θi − θ0 )m − θi(θi−1 − θ0 )m

θi − θi−1

The total profit from all buyers is therefore


(M) = m ·
n∑

i=1

(
θi − θi−1

θn − θ0

)
·pi

= 1

(θn − θ0 )m
·

n∑
i=1

(
θi−1(θi − θ0 )m − θi(θi−1 − θ0 )m

)

= θ0 + 1

(θn − θ0 )m

n∑
i=1

(θi − θ0 )(θi−1 − θ0 )
(
(θi − θ0 )m−1 − (θi−1 − θ0 )m−1).

We denote zi ≡ (θi − θ0 )/(θn − θ0 ). Then the seller seeks to maximize the expression


̂ ≡
n∑

i=1

zi · zi−1
(
zm−1
i − zm−1

i−1

)
, (17)

subject to 0 = z0 < z1 < · · · < zn = 1 and the ex post privacy constraint that requires zi −
zi−1 ≥ e−κ for all 1 ≤ i ≤ n. In what follows we show that when m≥ 5, the solution to this
problem is unique, with all but one interval having the same mass z2 − z1 = z3 − z2 =
· · · = zn − zn−1 = e−κ, and the lowest interval having greater mass z1 ∈ [e−κ, 2e−κ ). As a
corollary, the optimal number of intervals n is also uniquely determined, as stated in the
proposition.

Toward this goal, we first argue that in any optimal solution, the intervals are ordered
in decreasing mass from left to right. That is, zi − zi−1 ≥ zi+1 − zi for all i ∈ {1, � � � , n− 1}.
To prove this, it suffices to consider the effect of “switching” two adjacent intervals on
the profit 
̂. Since this switch essentially replaces zi with the number zi−1 + zi+1 − zi,
the result reduces to showing the following inequality: For any positive numbers a < b <

c < d with d − c = b− a, it holds that

ac
(
cm−1 − am−1) + cd

(
dm−1 − cm−1)> ab

(
bm−1 − am−1) + bd

(
dm−1 − bm−1).

= 1
m

1
θi − θi−1

(
m∑
l=0

(
m

k

)
(θi−1 − θ0 )m−l(θi − θi−1 )l − (θi−1 − θ0 )m

)

= 1
m

(θi − θ0 )m − (θi−1 − θ0 )m

θi − θi−1
.
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Simplifying, we need to show that (c − b)(dm − am ) > (d − a)(cm − bm ), which can also
be rewritten as

(c − b)
∫ d

a
xm−1 dx > (d − a)

∫ c

b
xm−1 dx.

That is, we need to show

(c − b)

(∫ b

a
xm−1 dx+

∫ d

c
xm−1 dx

)
> (b− a+ d − c)

∫ c

b
xm−1 dx.

Since b− a= d − c, we can further rewrite it as

(c − b)

(∫ b

a
xm−1 + (a+ d − x)m−1 dx

)
> (b− a)

(∫ c

b
xm−1 + (a+ d − x)m−1 dx

)
.

Since the function xm−1 is strictly convex when m> 2, the integrand on the LHS is in fact
uniformly larger than the integrand on the RHS, which proves the result.

Next, we argue that z1 < 2(z2 − z1 ), meaning that the longest interval is less than
twice the length of the second longest. Indeed, if this were not the case, we could break
the longest interval into two equal subintervals and still satisfy the ex post privacy con-
straint. As can be easily seen from equation (17), this modification strictly increases the
profit, contradicting optimality.

Finally, we argue that in the optimal solution, the second-longest interval already
exhausts the privacy constraint (and so must every “higher” interval). Indeed, if z2 −z1 >

e−κ, we could increase z1 slightly without violating the privacy constraint. The effect on
profit of this change is

∂
̂

∂z1
= zm−1

2 −mzm−1
1

We have already shown that z1 < 2(z2 − z1 ), so z2 > 1.5z1. Further note that for m ≥ 5,
1.5m−1 > m. Thus, the above display implies that increasing z1 would strictly increase
profit, again leading to a contradiction.

Summarizing the above, we must have z2 − z1 = z3 − z2 = · · · = zn − zn−1 = e−κ and
z1 ∈ [e−κ, 2e−κ ). This proves the proposition.

We mention that a similar (but more involved) analysis yields the optimal partitions
for the cases m = 3 and m = 4 as well. As for m = 2, the profit as given by equation (17)
can be simplified as

n∑
i=1

z2
i zi−1 − z2

i−1zi =
1
3

n∑
i=1

(
z3
i − z3

i−1 − (zi − zi−1 )3) = 1
3

− 1
3

n∑
i=1

(zi − zi−1 )3.

So maximizing profit is this auction problem is equivalent to minimizing the cubic sum
of the interval lengths, as in the single-agent uniform-quadratic case. Hence, the solu-
tion is an equal partition with as many intervals as allowed by the privacy constraint.
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