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Rank-optimal assignments in uniform markets

Afshin Nikzad
Department of Economics, USC

We prove that in a market where agents rank objects independently and uniformly
at random, there exists an assignment of objects to agents with a constant aver-
age rank (i.e., an average rank independent of the market size). The proof builds
on techniques from random graph theory and the FKG inequality (Fortuin et al.
(1971)). When the agents’ rankings are their private information, no Dominant
Strategy Incentive Compatible mechanism can implement the assignment with
the smallest average rank; however, we show that there exists a Bayesian Incentive
Compatible mechanism that does so. Together with the fact that the average rank
under the Random Serial Dictatorship (RSD) mechanism grows infinitely large
with the market size, our findings indicate that the average rank under RSD can
take a heavy toll compared to the first-best, and highlight the possibility of using
other assignment methods in scenarios where average rank is a relevant objective.
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1. Introduction

In assignment problems involving ordinal preferences, rank is a commonly considered
notion for comparing different assignments. School districts consider the number of
students assigned to their first choice, second choice, and so on, to report their as-
signment results or compare different assignments (Abdulkadirouglu et al. (2005), De
Haan et al. (2015), Featherstone (2020)). Similarly, some institutions such as Teach For
America choose assignments explicitly based on such rank distributions (Featherstone
(2020)).1

The notion of rank is also used in evaluating assignments in the National Residency
Matching Program (NRMP (2020)).2 In evaluating course assignment mechanisms as
well some educational institutions focus on rank; e.g., Harvard Business School (HBS)
emphasizes the average over the ranks of the ten courses that a student allocates on
her reported rank-order list. Budish and Cantillon (2012) consider average rank, as well
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1Teach For America assigns college graduates to teach in low-performing public and charter schools in
the United States. (The online appendix can be found in the full version of the paper available at https:
//papers.ssrn.com/abstract_id=3930653.)

2This program places U.S. medical school students into residency training programs through a central
mechanism that elicits rank-order lists from them. There, match success for an applicant is defined as being
matched to the specialty of her first-ranked program (NRMP (2020)).
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as other rank-based notions, to compare different course assignment mechanisms with
the one used at HBS.

The literature on matching markets has thus considered rank as a natural summary
statistic for quality of a match. A closely related notion that we will focus on is average
rank, loosely speaking defined as the average, over all agents, of the rank of the object
assigned to each agent on her list.3 Average rank has been used, e.g., to compare sta-
ble assignments in two-sided markets where every agent ranks the agents on the other
side independently and uniformly at random (Pittel (1989), Ashlagi et al. (2017)) or to
evaluate core allocations in one-sided markets where agents rank objects uniformly at
random (Knuth (1996)).

We similarly consider markets where agents on one side rank objects on the other
side independently and uniformly at random. Our main finding is that, in such markets,
there exists an assignment of objects to agents with a constant average rank. That is,
there exists a constant R, independent of the market size, such that the object assigned
to each agent has an average position of at most R on her list (Theorem 3.1). In addi-
tion, there exists a Bayesian Incentive Compatible mechanism that implements such an
assignment (Section 5).

The proof of our main finding builds on techniques from random graph theory and
probabilistic analysis. We use insights from a theorem of Walkup (1980) on the exis-
tence of perfect matchings in random graphs, together with two applications of the FKG
inequality (Fortuin et al. (1971)), a fundamental correlation inequality in statistical me-
chanics and probabilistic combinatorics.4 This inequality is used to keep track of the
correlations between the objects’ ranks on an agent’s preference list.

Knuth (1996) is among the first to analyze the average rank in the market that we
consider. He computes the exact value of the average rank under the Random Serial
Dictatorship mechanism (RSD), in which agents are ordered randomly and choose ob-
jects one by one in that order (Abdulkadirouglu and Sönmez (1998)). His result implies
that, in markets with an equal number of objects and agents, the average rank under
RSD grows logarithmically in the market size.

Our result, together with that of Knuth (1996), indicates that the average rank can
take a heavy toll under the RSD mechanism compared to the first-best. We further show
that the gap between the first-best average rank and the average rank under RSD can
persist when objects have capacities larger than one.5,6 These findings highlight the
possibility of using assignment methods other than RSD in scenarios where the average
rank is a relevant objective. This is also aligned with the findings of Budish and Cantillon
(2012) who, using field data from HBS, show that switching from the “draft” mechanism

3The formal definition that we use is in Section 3.
4Section 3 recalls this inequality.
5That is when a bounded number of agents may be matched to the same object.
6More precisely, we prove that the first-best average rank does not grow infinitely large as the number of

agents approaches infinity, whereas the average rank under RSD does, as long as objects’ capacities grow
sublogarithmically in the number of agents.
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used at HBS to RSD increases the average rank of the ten courses in a student’s schedule
by a “large magnitude” (from 7.99 to 8.74).7

In Section 5, we consider the scenario where the agents’ preference orders over ob-
jects are their private information, and we ask whether there exists a Dominant Strat-
egy Incentive Compatible (DSIC) mechanism that implements the assignment with the
first-best average rank. While the answer to this question turns out to be negative, we
show that the answer is positive if the notion of DSIC is relaxed to Bayesian Incentive
Compatibility (BIC). Together with Theorem 3.1, this implies the existence of BIC mech-
anisms in our main setup that implement assignments with a constant average rank of
at most R.

Finally, we highlight the work of Che and Tercieux (2018) on the payoff equivalence
of Pareto efficient assignments8 and its connection to our findings. They show that when
the agents’ values for objects are independently and identically drawn (iid) from a dis-
tribution with bounded support, all Pareto efficient assignments achieve the utilitarian
upper bound in the large market limit, and thus are payoff equivalent.9,10 At first glance,
this result may seem contradictory to the large gap between the average ranks of the RSD
and the first-best assignments, as both assignments are Pareto efficient. However, the
payoff equivalence result does not (need to) hold in our setup because the conditions
required for it—the bounded support and the iid assumptions—do not hold here.11

2. Related literature

In the literature on matching markets, rank has been used as a standard notion of eval-
uating assignments. Knuth (1996) is one of the earliest to consider the notion of average
rank in one-sided markets that are drawn uniformly at random. He analyzes the assign-
ment model of Shapley and Scarf (1974) and provides an exact analysis for the average
rank and its variance in that model. He also shows that these statistics are respectively
equal to the average rank and its variance under the RSD mechanism.

The existence of assignments with a constant average rank in uniform markets has
been shown in the literature when there is a surplus of objects that grows linearly in
the market size. For instance, this a direct corollary of the work of Frieze and Melsted
(2009) and Fountoulakis and Panagiotou (2012) on cuckoo hashing. Furthermore, it has
been noted in the literature that in markets with a linear surplus of objects, the average
rank of the assignment generated by RSD is constant.12 Our results complement these

7Remarkably, while the draft mechanism is not strategy-proof, they compute the average rank according
to the students’ true preferences, taken from a survey data conducted by the HBS administration.

8An assignment is Pareto efficient if there is no other assignment in which every agent is weakly better
off with at least one agent being strictly better off.

9Their result is in fact more general: they show that the payoff equivalence result holds even in the pres-
ence of common-value components for objects, as long as the idiosyncratic components are drawn inde-
pendently and uniformly at random from distributions with bounded support.

10Lee and Yariv (2018) establish a similar result in two-sided markets for stable assignments.
11The bounded support assumption does not hold because the rank of an object does not have a

bounded range as the market grows large. The iid assumption does not hold because, if an object is ranked
kth on an agent’s list, no other object can be ranked kth.

12For example, see footnote 13 in Ashlagi et al. (2017)
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findings by showing that the existence of assignments with a constant average rank does
not depend on the level of market imbalance.

Featherstone (2020) defines an assignment to be rank efficient if its rank distribution
cannot be stochastically dominated. He considers rank efficiency as a common objec-
tive of policy makers and shows that it can be attained by looking for local improvements
that increase a natural objective. He also shows that no rank-efficient mechanism is
strategy-proof in general.13

The literature on online assignment problems has also considered rank as a notion
of efficiency. Bruss (2000) develops optimal policies for the hiring problem (also known
as the secretary problem) in which an employer needs to hire the top-ranked employee
from a finite number of applicants, arriving in random order one by one. Chun and
Sumichrast (2006) extend this setting to a matching setting for sequential assignment of
jobs to machines.

In two-sided markets as well, the notions of average rank and rank distribution have
been considered to evaluate assignment efficiency. Abdulkadirouglu et al. (2005) use
data from the NYC high school match to empirically compare different tie-breaking
rules for the Deferred Acceptance algorithm according to their rank distributions. Ash-
lagi et al. (2019) and Ashlagi and Nikzad (2020) compare the effect of tie-breaking rules
on the students’ rank distributions. Pittel (1992) and Ashlagi et al. (2017) analyze the
average rank of agents in stable assignments in the context of marriage markets and
characterize the stark effect of market imbalance on the average rank.14

Finally, we discuss relevant results in random graph theory and random matrix the-
ory. From a technical perspective, we build on techniques from random graph theory
and probabilistic analysis. Our proof uses insights from a theorem of Walkup (1980) on
the existence of perfect matchings in random graphs, together with two applications of
the FKG inequality (Fortuin et al. (1971)), a fundamental correlation inequality in statis-
tical mechanics and probabilistic combinatorics.

We also highlight the Parisi conjecture in random matrix theory, proved by Linusson
and Wästlund (2004) and Nair et al. (2005) independently. The Parisi conjecture states
that in an n × n matrix whose elements are iid from the exponential distribution with
mean 1, there exists a set of n elements, no two in the same row or column, that asymp-
totically sum up toπ2/6. While this is reminiscent of Theorem 3.1 in some aspects, there
is no formal connection to the extent of our knowledge.15 Theorem 3.1 is concerned with
the average rank, whereas the Parisi conjecture is concerned with the sum of iid real
numbers. In particular, in the setting of the Parisi conjecture, the elements of the matrix
are independent, whereas in our setting, the elements in a row (ranks of the objects) are
correlated. For handling these correlations, our proof takes a completely different ap-
proach using the FKG inequality (Fortuin et al. (1971)). Our approach also provides an
upper bound—in the sense of first-order stochastic dominance—on the distribution of
the rank of the object assigned to each agent (Remark 4.11).

13We complement this finding in Section 5 by considering all market sizes and object capacities.
14Their results on the effect of market imbalance also extend to the number of stable partners.
15In Section ii of the Online Appendix, we discuss two natural but unsuccessful proof approaches based

on the Parisi conjecture and the complexities that these approaches encounter. Making a formal connec-
tion to the Parisi conjecture remains an interesting theoretical direction.
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3. Setup

A matching market contains a set of agents A and a set of objects O. We use n, m to
denote |A|, |O|, respectively. Each object has a capacity c. Throughout, we assume that
n= cm, unless explicitly stated otherwise. (We will see that the main theorem also holds
without the latter assumption.) An assignment is a function μ :A→O that assigns each
agent to an object without assigning more than c agents to any object.

Each agent has a strict16 preference order over the objects, which is also called the
preference list of the agent. The position of an object o on the preference list of an agent
a is called the rank of the object for that agent, and it is denoted by ra(o). The average
rank of an assignment μ is defined as

r(μ) = 1
|A| ·

∑
a∈A

ra
(
μ(a)

)
.

The set of preference lists of all agents is called a preference profile. When A, O are
known from the context, we denote the set of all preference profiles by � and a typical
member of it by π. For a preference profile π, let the rank-optimal assignment, r�(π ),
be the assignment with the minimum average rank.

A uniform market is a matching market in which the preference order of each agent
is drawn independently and uniformly at random from the set of all strict orderings of
objects.

We next state some preliminaries required for the main findings.

Asymptotic notions We say a sequence of eventsE1, E2, � � � occurs with high probability
(whp) if P[Ek] approaches 1 as k approaches infinity.

The FKG inequality The Fortuin–Kasteleyn–Ginibre (FKG) inequality (Fortuin et al.
(1971)) is a correlation inequality. Informally, it says that an “increasing event” and a
“decreasing event” are negatively correlated, while two “increasing events” are positively
correlated.

Let L be a finite distributive lattice, V (L) be the set of its elements, and μ : V (L) →
R+ be a nonnegative function that satisfies log-supermodularity, i.e., for any two x, y ∈
V (L),

μ(x∧ y )μ(x∨ y ) ≥ μ(x)μ(y ),

where ∧, ∨ are the meet and join operators of the lattice, respectively.
By the FKG inequality, when f , g : V (L) → R+ are respectively increasing and de-

creasing functions on the lattice L, it holds that( ∑
x∈V (L)

f (x)g(x)μ(x)

)( ∑
x∈V (L)

μ(x)

)
≤

( ∑
x∈V (L)

f (x)μ(x)

)( ∑
x∈V (L)

g(x)μ(x)

)
.

The direction of the inequality is reversed when both functions are increasing (or de-
creasing).

16Strictness simplifies notation, but it is not a necessary assumption.
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3.1 Average rank of rank-optimal assignments

We next show that, in a uniform market, the expected average rank of the rank-optimal
assignment is bounded from above by a constant independent of the market size.

Theorem 3.1. There exists a constant R independent of c, n such that the expected aver-
age rank of the rank-optimal assignment in a uniform market is at most R.

We discuss this result and the proof approach in Section 3.2. There, using numeri-
cal simulations, we illustrate that the constant R is small (less than 2) for any capacity
parameter c. The full proof of the theorem is presented in Section 4.

From this theorem, it also follows that rank-optimal assignments have a constant
expected average rank in uniform markets where there is a surplus or shortage of objects.
(In case of a shortage of objects, the average rank is defined over the agents who are
assigned an object.) This is formally proved in the Online Appendix, Section i.

3.2 Discussion of the result and the proof approach

To prove Theorem 3.1, we show that the expected average rank of the rank-optimal as-
signment is smaller in a uniform market with n agents and n/c objects each with ca-
pacity c than in a uniform market with n agents and n objects each with capacity 1
(Lemma A.1). Thus, by this lemma, any constant R that bounds the expected average
rank in markets with unit capacities will also be a valid upper bound in markets with
larger capacities. Our proof shows that R< 7 3

4 for sufficiently large n, whereas our sim-
ulations demonstrate that R< 2 (Figure 1).

A natural proof approach for the case of unit capacities would be constructing a bi-
partite graph with agents on one side and objects on the other side, where every agent
is connected to her k top-ranked objects, for some constant k ≥ 1. The existence of a
perfect matching17 in such a graph would prove the claim. It turns out, however, for this

Figure 1. For each n ∈ {10, 20, 30, � � � , 400}, we report the average over 1000 independent uni-
form markets with unit capacities. The largest reported average is below 1.83. In addition, for
n = 1000 and n = 10,000 we take the average over 10 independent draws due to computational
limitations; the simulations report average ranks 1.831 and 1.827, respectively.

17We recall that a matching in a graph is a set of edges with no two edges having a node in common.
A perfect matching is one that covers every node of the graph.
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graph to contain a perfect matching, k must grow logarithmically with the number of
agents (Frieze and Karonski (2012)). This construction thus can only prove the existence
of an assignment with an average rank of the order of logn.18,19

Our proof starts with a different graph, which is inspired from a result of Walkup
(1980). He shows that in a random bipartite graph with n nodes on each side, where each
node is connected to two distinct neighbors independently and uniformly chosen from
the other side, there exists a perfect matching with high probability. Inspired by this
result, we construct a bipartite graph G with partitions A and O. In this graph, connect
each node a ∈A to the three top-ranked objects on the preference list of a. We call these
objects the right-neighbors of a. Also, connect every object o to every agent who ranks
o worse than 3 and no worse than ro, where ro is defined as follows. For object o ∈O, let
ro be the smallest integer larger than 3 such that there exists at least 3 agents for whom
o has a rank (strictly) worse than 3 and no worse than ro. If there is no such integer, then
define ro = n. The agents who rank o worse than 3 and no worse than ro are called the
left-neighbors of o.20

Intuitively, the graph that we construct G has similarities with the graph consid-
ered in Walkup (1980), in the sense that each agent is adjacent to three distinct right-
neighbors chosen independently and uniformly at random. Unlike in Walkup (1980),
however, the left-neighbors of objects are not chosen independently: the objects’ left-
neighbors may not be independent from each other or from the agents’ right-neighbors,
as we elaborate later.

In what follows, we describe howG is used to prove the theorem. The proof has two
steps. In step A, we show that G has a perfect matching with high probability, and in
step B, we show that the perfect matching has a constant average rank.

Step A This step shows that G has a perfect matching with probability at least 1 − n−3

for all n ≥ 50. As in Walkup (1980), the proof approach is based on the König theorem.
By this theorem, the size of the maximum matching plus the size of the maximum inde-
pendent set in a bipartite graph equals the total number of nodes.21 Therefore, to prove
that G has a matching of size n, it suffices to show that it has no independent set of size
n+ 1. We prove that the probability that G contains an independent set of size n+ 1 is
at most n−3. This is done by bounding the probability that a fixed subset of nodes of size
n+ 1 forms an independent set, and then taking a union bound over all subsets of nodes
of size n+ 1.

18Remarkably, the average rank generated by RSD is also of the same order.
19When there is a surplus of objects that grows linearly in n, Fountoulakis and Panagiotou (2012) show

that there exists a constant k such that the constructed graph contains a perfect matching with high prob-
ability.

20In the bipartite graph that Walkup (1980) studies, each node is connected to d other nodes drawn
independently and uniformly at random from the other side. This graph cannot be used to prove our main
theorem, because every “left-neighbor” of an object in the graph would rank that object m+1

2 th on her list,
on average. Thus, a perfect matching in this graph would not necessarily have a constant average rank.

21We recall that the size of a matching equals its number of edges and that an independent set in a graph
is a subset of nodes that are pairwise nonadjacent.
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Bounding the probability that a fixed subset of nodes of size n+ 1 forms an indepen-
dent set is relatively straightforward when the neighbors of a node are chosen indepen-
dently, as in Walkup (1980). In the graph that we construct, however, the neighbors of
nodes are not chosen independently. In particular, there are two types of correlations
involved:

i. Correlations across agents and objects. The left-neighbors of a node o ∈ O are not
independent of the right-neighbors of a node a ∈A.

ii. Correlations between objects. The left-neighbors of a node o1 are not independent
of the left-neighbors of a node o2.

To bound the probability that a fixed subset of nodes of size n+ 1 forms an independent
set, we need to handle the above correlations. This is the bulk of the analysis in this step,
and involves applications of the FKG inequality, as outlined next.

Suppose X ⊆A and Y ⊆O are arbitrary subsets of nodes of G such that |X| + |Y | =
n+ 1. We will provide an upper bound on p(X ,Y ), the probability that X ∪ Y forms an
independent set in G. Let R denote the event that there is no node in X which has a
right-neighbor in Y . Also, let L denote the event that there is no node in Y which has a
left-neighbor inX . Thus, p(X ,Y ) = P[L∩R]. We will show that P[L∩R] ≤ P[L]P[R], and
then will bound each of the terms on the right-hand side separately.

The inequality P[L ∩ R] ≤ P[L]P[R] holds intuitively because, by the construction
of the bipartite graph, the event that an object o is not a right-neighbor of an agent
a is negatively correlated with the event that the agent a is not a left-neighbor of the
object o. We prove this negative correlation inequality formally using the FKG inequality
(Claim 4.2). It remains to provide upper bounds on P[L] and P[R].

We can derive a closed-form expression for P[R], essentially because the right-
neighbors of every node a ∈X are chosen independently of the right-neighbors of every
other node a′ ∈X . To provide an upper bound on P[L], let Ly denote the event that an
object y ∈ Y has no left-neighbor inX . We first show that P[L] ≤ ∏

y∈Y P[Ly ] (Claim 4.5).
This holds intuitively because, by the construction of the bipartite graph, the event that
an agent is a left-neighbor of the object y is negatively correlated with the event that the
agent is a left-neighbor of another object y ′ �= y. Finally, we provide an upper bound on
P[Ly ], which gives an upper bound on P[L], and thereby the promised upper bound on
p(X ,Y ) (Claim 4.8).

Step B This step is relatively simpler. We show that a perfect matching in G has an
expected average rank of at most 7 3

4 when n is sufficiently large. Define the weight of
an edge (a, o) in G, denoted by wa,o, to be the rank of object o on agent a’s preference
list. To prove the theorem, we show that the expected rank of the maximum-weight edge
adjacent to an object is bounded by 7 3

4 . To this end, we first note that wa,o ≤ 3 if o is a
right-neighbor of a and wa,o ≥ 4 if a is a left-neighbor of o. Thus, it suffices to show that

E

[
max
a∈A {wa,o : a is a left-neighbor of o}

∣∣ o has a left-neighbor
]

≤ 7
3
4

.



Theoretical Economics 17 (2022) Rank-optimal assignments in uniform markets 33

This bound is proved in Claim 4.10. To provide intuition for it, we consider the case
where o has exactly 3 left-neighbors. These are the 3 agents who, among all agents that
rank oworse than 3, rank o the highest. Let these 3 agents be a1, a2, a3, and let ri denote
the rank of o on agent ai’s list. Without loss of generality, suppose r1 ≤ r2 ≤ r3. The above
bound then boils down to E[r3] ≤ 7 3

4 , the proof for which is sketched below.
Since the market is uniform, the chance that no agent ranks o fourth is at most (1 −

1
n )n; the chance that no agent ranks o fourth or fifth is at most (1 − 1

n )2n; and similarly,
the chance that no agent ranks o fourth, fifth, . . . , kth is at most (1 − 1

n )(k−3)n. Therefore,
r1 −3 has a distribution that is stochastically dominated by a geometric random variable
with failure probability q1 = (1 − 1

n )n. A similar argument shows that r2 − r1 and r3 − r2,
respectively, have distributions that are stochastically dominated by geometric random
variables with failure probabilities q2 = (1 − 1

n )n−1 and q3 = (1 − 1
n )n−2. Therefore,

E[r3] ≤ 3 + 1
1 − q1

+ 1
1 − q2

+ 1
1 − q3

.

This concludes the proof since the right-hand side approaches 3(1 + 1
1−1/e ) ≈ 7.745 as n

approaches infinity.22

4. Proof of Theorem 3.1

We first define the preliminary notions. Some of the notions that we use in the following
analysis were already defined in the proof sketch (Section 3.2); however, we include all
such definitions below to make this section independently readable.

For every finite set S, let U(S) denote the uniform distribution over S. Also, let �(S)
denote the probability simplex defined over S, i.e., the set of all probability distributions
defined over S. For every positive integer i, let [i] denote the set {1, � � � , i}.

We recall that the set of all possible preference profiles in a market is denoted by �.
The preference profile π of a uniform market is drawn from U(�). Thus, unless stated
otherwise, it is assumed in the following analysis that the probability space is defined
by the sample space �, the event space 2�, and the probability function that assigns
probability |�|

|�| to an event�⊆�.
We next prove Theorem 3.1 for the case of unit capacities (c = 1). The proof for non-

unit capacities (c > 1) is a corollary of the proof for unit capacities and is relegated to
Appendix A.1.

Throughout the proof, let d = 3. First, from a given preference profile, we construct
a bipartite graphGwithA, O being the set of nodes on each side. We callA the left side

of the graph and O the right side. The set of edges in the graph is E = �

E ∪ �

E , where
�

E

and
�

E are defined next.
�

E (the set of edges from left to right) contains an edge (a, o) for
every agent a and every object o that is ranked d or better23 on a’s preference list.

We define
�

E (the set of edges from right to left) as follows. For every object o ∈ O,
define ro to be the smallest integer larger than d such that there exists at least d agents

22The convergence to the limit is from above.
23A rank d or better is a rank that belongs to the set {1, � � � , d}.
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Figure 2. n= 8 and d = 3. Each row corresponds to an agents’ preference list. In the left panel,

object o is ranked first by all agents; thus,
�

E would contain no edge adjacent to o. In the middle

panel, o is ranked worse than third only by agent 1; thus,
�

E would contain a single edge adjacent
to o, (1, o). In the right panel, 6 (i.e., at least d) agents rank o worse than third; ro = 5, and thus,
�

E would contain 4 edges adjacent to o, namely (1, o), (2, o), (3, o), (4, o).

for whom o has a rank (strictly) worse than d and no worse than ro. If there is no such

integer, then define ro = n. For every object o,
�

E contains an edge (o, a) for every agent
a that ranks o worse than d and no worse than ro. (Figure 2 illustrates this definition.)

The proof is done in two steps. In step A, we show thatG contains a perfect matching
whp, and then we use this fact in step B to provide an upper bound on the expected
average rank of the rank-optimal matching.

4.1 Step A: Existence of a perfect matching with high probability

A k-tuple is a pair (X , Y ) with X ⊆A and Y ⊆ O such that |X| = k and |Y | = n− k+ 1.
A k-tuple (X , Y ) is independent if (X×Y ) ∩E = ∅. We recall that, by König’s theorem,24

G contains a matching of size n if and only if it does not contain an independent k-tuple
for any positive integer k ≤ n. Let pk denote the probability that G contains an inde-
pendent k-tuple, and define p(n) = ∑n

k=1pk. To complete this step, we will prove that
p(n) ≤ n−3 holds for n ≥ 50. We next present the proof outline and then the complete
proof for this inequality.

By p(X ,Y ) denote the chance that a k-tuple (X , Y ) is independent. Let L, R, respec-

tively, denote the events that (X×Y ) ∩�

E = ∅ and (X×Y ) ∩�

E = ∅. (We recall that every
event is, by definition, a subset of �; therefore, we treat L, R as such subsets.) Define Li
to be the event that there is no edge in

�

E that connects i ∈ Y to an element ofX .
We provide an upper bound onp(X ,Y ), and then take a union bound over all k-tuples

to bound pk. This is done as follows. Observe that p(X ,Y ) = P[L ∩R] = P[R]P[L|R]. We
first write a closed-form expression for P[R] in Claim 4.1. Then we prove the negative
correlation inequalities P[L|R] ≤ P[L] and P[L] ≤ ∏

i∈Y P[Li] in Claim 4.2 and Claim 4.5,
respectively. This would imply that p(X ,Y ) ≤ P[R]

∏
i∈Y P[Li]. Providing a closed-form

upper bound on P[Li] (Claim 4.8) then gives the promised upper bound on p(X ,Y ).
Then, taking a union bound over all k-tuples (X , Y ) gives an upper bound on pk, which
we use to show that

∑n
k=1pk ≤ n−3 (Fact 4.9).

24See, e.g., West (2000).
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For the following claims, without loss of generality, we suppose that X = {1, � � � , k}
and Y = {1, � � � , l}, where l= n− k+ 1.

Claim 4.1. For a k-tuple (X , Y ),

p(X ,Y ) =

⎡
⎢⎢⎢⎢⎣

(
k− 1
d

)
(
n

d

)
⎤
⎥⎥⎥⎥⎦

k

· P[L|R]. (4.1)

Proof. We first note that p(X ,Y ) = P[L ∩ R] = P[R]P[L|R]. Thus, to prove the claim it

suffices to show that P[R] =
[(k−1

d

)(n
d

) ]k
. To this end, for every agent x ∈X , defineRx as the

event that agent x lists no object in Y as one of her top d objects. Thus, R = ⋃
x∈X Rx.

Since the preference list of each agent is distributed uniformly over the set of all strict
orderings of objects, then

P[Rx] =

(
n− |Y |
d

)
(
n

d

) =

(
k− 1
d

)
(
n

d

) .

To complete the proof, we observe that since the agents’ preference lists are iid, then

P[R] =
∏
x∈X

P[Rx] =

⎡
⎢⎢⎢⎢⎣

(
k− 1
d

)
(
n

d

)
⎤
⎥⎥⎥⎥⎦

k

.

Claim 4.2 (Negative correlation of L, R). P[L|R] ≤ P[L].

Proof. We will use the FKG inequality to prove the claim. To define the lattice required
for applying the FKG inequality, we first define the set of its elements, Vl. Each element
x ∈ Vl is a sequence (x1, � � � , xn ), where xi is a subset of [n] with size l (see Figure 3).

To define the lattice order over Vl, we first need a few definitions. For any object i,
let h(i) = i if i > d and let h(i) = n+ i otherwise. Define the total order � on the set of
objects O = {1, � � � , n} by i � j if h(i) ≤ h(j). With slight abuse of notation, for any two
vectors of the same size, namely u= (u1, � � � , us ), v= (v1, � � � , vs ), we write u� v if uj � vj
holds for all j. By −→u , we denote vector that is obtained by sorting the elements of u in
an increasing order with respect to �.

For any x, y ∈ Vl, we define x�l y when{−→
ya � −→

xa , ∀a ∈X−→
xa � −→

ya , ∀a ∈A\X .
(4.2)
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Figure 3. For n = 8 and l = 5, we illustrate an element x = (x1, � � � , xn ) of the lattice where
xi = {1, 5, 6, 7, 8} for i ≤ 4 and xi = {1, 2, 3, 4, 8} for i ≥ 5. The columns from left to right, re-
spectively, correspond to objects 1, � � � , n.

The next fact shows that �l indeed defines a lattice over Vl. Figure 4 provides a graphical
representation of this lattice.

Fact 4.3. The relation �l is a lattice over Vl.

This fact is proved in Appendix A. The intuition is that �l is the Cartesian product of
two lattices: one that orders tuples (x1, � � � , xk ) and one that orders tuples (xk+1, � � � , xn ).

We denote by L[l] the lattice defined by �l. Since l is fixed in the proof of this claim,
we drop the argument and denote the lattice by L throughout the proof of this claim.

We associate each preference profile π with an element of the lattice, which we de-
note by Lπ = (L1

π , � � � , Lnπ ), where Laπ is the set of ranks of the objects 1, � � � , l on agent

Figure 4. n = 8 and l = 5. Panels from left to right: the smallest element of the lattice, an ele-
ment between the smallest and the largest element, and the largest element. The elements are
represented in the same fashion as in Figure 3. Consider each black circle to be a chip. One can
move from a smaller to a larger element in the lattice by moving a chip to an empty cell in the di-
rection of the arrows. Since k= 4, the direction is the same for the first four rows, and is reversed
for the last four rows.
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a’s preference list. For every element x of the lattice, define

�x = {π ∈� : x= Lπ }.

Define the functions fL, fR : L → [0, 1]:

fL(x) = Pπ∼U(�x )[π ∈L],

fR(x) = Pπ∼U(�x )[π ∈R].

In words, fL(x) is the probability that event L occurs at a preference profile π drawn
uniformly at random from the set of all preference profiles whose associated element of
the lattice is x. Similarly, fR(x) gives that probability but for the event R instead of L.

Fact 4.4. For every x ∈ Vl, fR(x) ∈ {0, 1}; also, for every y ∈ Vl with x�l y, fR(x) ≤ fR(y ),
and fL(x) ≥ fL(y ).

The proof for this fact is in Appendix A. The intuition for the first part is that, for any
preference profile π, its associated lattice element Lπ has all the information needed
(i.e., the ranks of objects in Y on agents’ lists) to evaluate whether π ∈ R. The proof for
the second part is technical. A loose intuition can be given through Figure 4: as one
transforms x to y by moving the “chips” one by one along the direction of the arrows, (i)
the total number of preference profiles in �x remains the same (i.e., |�x| = |�y |), (ii) the
number of preference profiles in �x that are a member of R increases, because moving

a chip along the direction of the arrows may eliminate existing edges in
�

E but does not
create any new ones, and (iii) the number of preference profiles that are a member of
L decreases, because by moving a chip along the direction of the arrows one cannot

transform the set
�

E ∩ (X ×Y ) from being nonempty into being empty.
Given Fact 4.4, we are now ready to apply the FKG inequality on the lattice L with the

functions fL and fR and the uniform probability distributionU(Vl ) defined over the lat-
tice elements. By Fact 4.4, the FKG inequality implies the following negative correlation
bound:

Ex∼U(Vl )
[
fL(x)fR(x)

] ≤ Ex∼U(Vl )
[
fL(x)

]
Ex∼U(Vl )

[
fR(x)

]
.

We next observe that when π ∼ U(�), then the lattice element Lπ is distributed uni-
formly at random over Vl, by symmetry. Therefore, we can rewrite the above inequality
as

Eπ∼U(�)
[
fL(Lπ )fR(Lπ )

] ≤ Eπ∼U(�)
[
fL(Lπ )

]
Eπ∼U(�)

[
fR(Lπ )

]
. (4.3)

Since fR(Lπ ) ∈ {0, 1} holds for all π by Fact 4.4, then the left-hand side of the above
inequality equals Pπ∼U(�)[π ∈L∩R]. On the right-hand side, we note that

Eπ∼U(�)
[
fL(Lπ )

] = Pπ∼U(�)[π ∈L], Eπ∼U(�)
[
fR(Lπ )

] = Pπ∼U(�)[π ∈R]

hold by the definition of fL, fR. Therefore, we can rewrite (4.3) as

Pπ∼U(�)[π ∈L∩R] ≤ Pπ∼U(�)[π ∈L]Pπ∼U(�)[π ∈R].

This means Pπ∼U(�)[π∈L∩R]
Pπ∼U(�)[π∈R] ≤ Pπ∼U(�)[π ∈L], which is the promised claim.



38 Afshin Nikzad Theoretical Economics 17 (2022)

Recall thatLi is the event that there is no edge in
�

E that connects i ∈ Y to an element
ofX .

Claim 4.5 (Negative correlation of {Li}i∈Y ). P[L] ≤ ∏l
i=1 P[Li].

Proof. The proof is by induction. For any j ≤ l, we will show that

P[L1 ∩L2 ∩ · · · ∩Lj ] ≤
j∏
i=1

P[Li].

The induction basis for j = 1 is trivial. The induction step supposes that, for some l′ < l,
the claim holds for all j ≤ l′ and then proves the claim for j = l′ + 1.

For the induction step, we need the following definitions. Recall (4.2), which defines
the lattice L[l], parameterized by the parameter l. The lattice that we will use in the
induction step is L[l′]. Thus, Vl′ is the set of the lattice elements; an element of the
lattice is (x1, � � � , xn ), where xi is a subset of [n] with size l′; and the lattice elements are
ordered according to (4.2). For notational simplicity, we denote the lattice L[l′] by K.

We associate a preference profile π with an element of the lattice, denoted by Kπ =
(K1

π , � � � , Knπ ), where Kaπ is the set of ranks of the objects 1, � � � , l′ on agent a’s preference
list. Let�x = {π ∈� : x= Kπ }.

The induction step The induction step will apply the FKG inequality on the lattice K
and the function f , g : V (K) →R+, defined as follows:

f (x) = Pπ∼U(�x )[π ∈L1 ∩ · · · ∩Ll′ ],
g(x) = Pπ∼U(�x )[π ∈Ll′+1].

Fact 4.6. For every x, y ∈ V (K) with x�l′ y, f (x) ≥ f (y ) and g(x) ≤ g(y ).

The proof is in Appendix A. The intuition for the first inequality is similar to the
intuition for fL(x) ≥ fL(y ) from Fact 4.4. A loose intuition for the second inequality can
be given through Figure 4: as one transforms x to y by moving the “chips” one by one
along the direction of the arrows, the total number of preference profiles in �x remains
the same (i.e., |�x| = |�y |) but the number of preference profiles that are a member of
Ll′+1 increases, because by moving a chip along the direction of the arrows one cannot

transform the set
�

E ∩ (X × {l′ + 1}) from being empty into being nonempty.
By Fact 4.6, the FKG inequality implies the following negative correlation inequality:

Ex∼U(V (K))
[
f (x)g(x)

] ≤ Ex∼U(V (K))
[
f (x)

]
Ex∼U(V (K))

[
g(x)

]
. (4.4)

Fact 4.7. For every x ∈ V (K),

Pπ∼U(�x )[π ∈L1 ∩ · · · ∩Ll′+1] = Pπ∼U(�x )[π ∈L1 ∩ · · · ∩Ll′ ] · Pπ∼U(�x )[π ∈Ll′+1].
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The above fact is proved in Appendix A. The intuition is that conditioning on the
agents’ ranks for the object l′ + 1 in π does not affect the probability of the event π ∈
L1 ∩ · · · ∩Ll′ , since π ∼U(�x ) and x ∈ V (K).

By the definition of f , g,

Pπ∼U(�)[π ∈L1 ∩ · · · ∩Ll′+1]

= Ex∼U(V (K))
[
Pπ∼U(�x )[π ∈L1 ∩ · · · ∩Ll′+1]

]
= Ex∼U(V (K))

[
Pπ∼U(�x )[π ∈L1 ∩ · · · ∩Ll′ ] · Pπ∼U(�x )[π ∈Ll′+1]

]
≤ Ex∼U(V (K))

[
Pπ∼U(�x )[π ∈L1 ∩ · · · ∩Ll′ ]

] ·Ex∼U(V (K))
[
Pπ∼U(�x )[π ∈Ll′+1]

]
= Pπ∼U(�)[π ∈L1 ∩ · · · ∩Ll′ ] · Pπ∼U(�)[π ∈Ll′+1],

where in the first equality we have used the fact that the distribution imposed onπ when
x∼U(V (K)) andπ ∼U(�x ) is just the uniform distribution over�. The second equality
is by Fact 4.7, and the inequality is by (4.4). The above bound completes the induction
step and proves the claim.

The next claim gives a closed-form upper bound for p(X ,Y ) by bounding the right-
hand side of (4.1) from above. We then use this claim to provide a closed-form upper
bound on pk, and prove that

∑n
k=1pk ≤ n−3.

Claim 4.8.

p(X ,Y ) ≤

⎡
⎢⎢⎢⎢⎣

(
k− 1
d

)
(
n

d

)
⎤
⎥⎥⎥⎥⎦

k

(ω+ δ)l, (4.5)

where ω= (n−k
d

)
/
(n
d

)
and δ= dn−2d+1ed

nn−2d .

Proof. By (4.1) and Claims 4.2 and 4.5, it suffices to show that P[Li] ≤ω+ δ for i ∈ Y .
To this end, let D be the event in which object i has a rank worse than d in at least d of
the agents’ preference lists. Observe that

P[Li] = P[Li|D] × P[D] + P[Li|D] × P[D].

We will show that (i) P[D] ≤ δ and (ii) P[Li|D] ≤ω, which would imply that P[Li] ≤ω+δ.

(i) P[D] ≤ δ Let Dj be the event in which object i is ranked worse than d by exactly j
agents. Observe that

P[Dj ] =
(
n

j

)(
d

n

)n−j(
1 − d

n

)j
≤

(
n

j

)(
d

n

)n−j
.
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Therefore, we can write

P[D] =
d−1∑
j=0

P[Dj ] ≤ d
(
n

d

)(
d

n

)n−d
≤ dn−2d+1ed

nn−2d
= δ, (4.6)

where the first inequality holds since d = 3 ≤ n
2 , and the second one holds since

(n
d

) ≤
( ned )d (Das (2016)).

(ii) P[Li|D] ≤ω Let Aj be the set of agents who assign rank j to object i, and let Ah =⋃h
j=d+1Aj be such that h is the smallest integer for which |Ah| ≥ d. Such h exists when

the event D holds. Observe that the set Ah is a random variable whose distribution,
conditional on its size being s, is the uniform distribution over the set of all subsets of
A with size s. (This holds because the agents’ preference lists are iid from the uniform
distribution.) Therefore, for every integer g ≥ 1, we can write

P
[
Li|g= ∣∣Ah∣∣] =

(
n− k
g

)
(
n

g

) =
g∏
j=1

n− k− j + 1
n− j + 1

,

where in the middle term the numerator is the number of subsets of A\X of size g, and
the denominator is the number of subsets ofA of size g. Recall that eventD holds if and
only if h exists (and if h exists, then |Ah| ≥ d would also hold). Since the right-hand side
of the above equation is decreasing in g, and since |Ah| ≥ d, then

P[Li|D] ≤

(
n− k
d

)
(
n

d

) =ω,

which is the promised bound.

We now use Claim 4.8 and a union bound over all k-tuples (X , Y ) with |X| = k to
write

pk ≤
(
n

k

)(
n

l

)⎡
⎢⎢⎢⎢⎣

(
k− 1
d

)
(
n

d

)
⎤
⎥⎥⎥⎥⎦

k

(ω+ δ)l

≤
(
n

k

)(
n

l

)⎡
⎢⎢⎢⎢⎣

(
k− 1
d

)
(
n

d

)
⎤
⎥⎥⎥⎥⎦

k

(
ωl + 2lδ

)
,
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where recall that l = n− k+ 1, and the last inequality holds since the term (ω+ δ)l has
2l summands when expanded and ω, δ≤ 1. We therefore can bound p(n) as follows:

p(n) =
n∑
k=1

pk ≤
n∑
k=1

(
n

k

)(
n

l

)
⎡
⎢⎢⎢⎢⎣

(
k− 1
d

)
(
n

d

)
⎤
⎥⎥⎥⎥⎦

k

(
ωl + 2lδ

)

=
n∑
k=1

(
n

k

)(
n

k− 1

)⎡
⎢⎢⎢⎢⎣

(
k− 1
d

)
(
n

d

)
⎤
⎥⎥⎥⎥⎦

k

·ωl

+
n∑
k=1

(
n

k

)(
n

k− 1

)⎡
⎢⎢⎢⎢⎣

(
k− 1
d

)
(
n

d

)
⎤
⎥⎥⎥⎥⎦

k

· 2lδ. (4.7)

Let S1(n) and S2(n), respectively, denote the first and the second summand in (4.7).
Walkup (1980) shows that25

S1(n) ≤ 1
122

(
d

n

)(d+1)(d−2)

. (4.8)

We complete the proof by providing an upper bound on S2(n). Since
(n
j

) ≤ 2n for all

positive integers j, and
[(k−1

d

)(n
d

) ]k ≤ 1, then

S2(n) ≤ 23nδ= 23n · d
n−2d+1ed

nn−2d
. (4.9)

The following fact uses (4.8) and (4.9) to bound S1(n) + S2(n) from above.

Fact 4.9. For d = 3, S1(n) + S2(n) ≤ n−3 for n≥ 50.

Proof. When d = 3 and n≥ 50, (4.8) implies that

S1(n) ≤ 81
122n

(
1
n

)3

≤ 1

2n3 . (4.10)

Also, (4.9) implies that

S2(n) ≤ 23n · 3n−5e3

nn−6 . (4.11)

25This is the last bound in the proof of Theorem 1 in Walkup (1980).
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Let g(n) denote the right-hand side of the above inequality. Define h(n) = 2n3g(n). We
observe that

h′(n) = e323n+13n−5n8−n(n(log(24) − 1
) − n log(n) + 9

)
.

Since

n
(
log(24) − 1

) − n log(n) + 9< 0

for n ≥ 50, then h′(n) < 0 for such n. Therefore, h(n) ≤ h(50) < 1. Recall that h(n) =
2n3g(n). Thus, g(n) ≤ 1

2n3 for n ≥ 50. Together with (4.11), this implies that S2(n) ≤ 1
2n3 .

This bound, together with (4.10), implies that S1(n) + S2(n) ≤ n−3 for n≥ 50.

By (4.7), p(n) ≤ S1(n) + S2(n). By Fact 4.9, the right-hand side is at most n−3 when
n≥ 50. This proves the promised bound on p(n) and completes step A.

4.2 Step B: Bounding the average rank in the perfect matching

Define the weight of an edge (a, o) in the graphG to be the rank of object o on agent a’s
preference list. We showed thatG has a perfect matching with probability at least 1−n−3

when n≥ 50. To bound the expected average rank in the matching, we provide an upper
bound on

∑
o∈O wo, where wo is the weight of the maximum-weight edge adjacent to

o ∈O. (Define wo = 0 if there are no edges adjacent to o.)
For any object o, we provide an upper bound on E[wo], where the expectation is

taken over π ∼ U(�). Since all of the expectation and probability operators are with
respect to π ∼U(�) in the rest of the proof, we drop this subscript from the notation.

Let w = ∑
o∈O wo, and m denote the event that G has a perfect matching. Since

P[m]E[w|m] + P[m̄]E[w|m̄] = E[w], then P[m]E[w|m] ≤ E[w]. Because P[m] ≥ 1 − n−3 as
shown in Step A, then

E[w|m] ≤ E[w]

1 − n−3 .

Therefore, to complete Step B, it suffices to bound E[w] from above.
The next claim will prove that E[w] ≤ 3n(1 + 1

1−(1− 1
n )n−2 ). This would complete the

proof because this inequality together with the above bound implies that, for n≥ 50,

1
n
E[w|m] ≤

3

(
1 + 1

1 −
(

1 − 1
n

)n−2

)

1 − n−3 < 7.9,

where the last inequality holds because the middle term is decreasing in n (since 1 −
(1 − 1

n )n−2 is increasing in n), and the value of the middle term at n= 50 is less than 7.9.
Recall that the probability that G has no perfect matching P[m̄] is at most n−3. When G
has no perfect matching, the rank-optimal assignment has average rank at most n. Thus,
the expected average rank of the rank-optimal assignment is at most 7.9 + n−2. (We
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remark that this bound can be improved for sufficiently large n, as in the latter inequality,
the middle term approaches 3 + 3 e

e−1 as n approaches infinity. Thus, for sufficiently
large n, the bound R on the expected average rank improves to any constant larger than
3 + 3 e

e−1 ≈ 7.746.)
To prove the theorem, it remains to prove the next claim.

Claim 4.10. E[w] ≤ 3n(1 + 1
1−(1− 1

n )n−2 ).

Proof. Equivalently, we will show that for an object o ∈ O, E[wo] ≤ 3(1 + 1
1−(1− 1

n )n−2 ).

Let M be an n×nmatrix such that, for every a ∈A, Ma,1, � � � , Ma,n is the preference list
of agent awhere objects are ordered from the most to the least preferred. We will use the
principle of deferred decisions for the proof. The idea is that, rather than drawing the
preference profile π (associated with the matrix M) at once, we determine the elements
of the matrix M one by one through a stochastic process, namely P .

The process P starts from an empty matrix M (with the values of its entries unde-
termined) and determines the values of the entries of M one by one. At round i of the
process, the values of the entries in column i+ 3 (i.e., M1,i+3, � � � , Mn,i+3) will be deter-
mined one by one. The process stops at the moment that object o appears d = 3 times
in the matrix, or at the end of round n− 3, whichever occurs first. Let s denote the round
at which the process stops. We will complete the proof in two steps by (i) showing that
s+ 3 ≥wo and (ii) providing an upper bound on E[s].

Step (i): s+ 3 ≥wo Every edge in
�

E that is adjacent to o has weight of at most 3. To see

why, recall that
�

E contains an edge (a, o) for every agent a that ranks o third or better
on her preference list.

Also, every edge in
�

E that is adjacent to o has weight of at most s + 3. To see why,

we recall the definition of
�

E . We defined ro to be the smallest integer greater than d = 3
such that there exists at least 3 agents who rank o (strictly) worse than 3 and no worse

than ro. If there is no such integer ro, then we defined ro = n.
�

E contains an edge (o, a)
for every agent a that ranks o better than 3 and no better than ro. Thus, process P stops

in round ro − 3. That is, ro = s + 3. By definition, the weight of every edge in
�

E that is

adjacent to o is at most ro. Therefore, the weight of every edge in
�

E that is adjacent to o

is at most s+ 3. This bound, together with the fact that the weights of the edges in
�

E are
at most 3, concludes step (i).

Step (ii): An upper bound on E[s] Consider a round t ≥ 1 in process P and an agent a.
If agent a has not listed object o on her preference list in the previous rounds (i.e., if
o /∈ {Ma,4, � � � , Ma,t+2}), then P sets Ma,t+3 = o with probability 1

n−t+1 , which is at least
1
n . Conditional on process P not having stopped, there are at most 2 agents who have
listed object o on their list in previous rounds. Thus, the probability that during round
t no agent lists object o on her list is at most (1 − 1

n )n−2. Process P stops at a round s
when at least 3 agents list object o, or by the end of round s = n− 3 if that event never
occurs. Since the chance that no agent lists o during a round is at most (1 − 1

n )n−2, then
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s is stochastically dominated by the sum of three iid geometric random variables with
failure probabilities (1 − 1

n )n−2. Thus, E[s] ≤ 3
1−(1− 1

n )n−2 .

Finally, from steps (i) and (ii) it follows that

E[wo] ≤ E[s+ 3] ≤ 3 + 3

1 −
(

1 − 1
n

)n−2 ,

which concludes the proof.

Remark 4.11. The above analysis can also provide an asymptotic upper bound—in the
sense of first-order stochastic dominance—on the distribution of the rank of the object
assigned to an agent, as described next. Let μ denote a perfect matching of G chosen
uniformly at random; ifG has no perfect matching, which can occur with probability at
most n−3, then draw an assignment of agents to objects uniformly at random and de-
note it by μ. Define the random variable pa as the rank of the object assigned to agent
a in μ. Also, define the random variable qo as the rank that agent μ(o) assigns to o on
her list. Observe that P[pa = i] = P[qo = i] for every a ∈A, o ∈ O, and rank i ∈ [n] (This
holds because the expected number of agents who are assigned to their ith choice in μ
is equal to

∑
a′∈A P[pa′ = i] = nP[pa = i], and also equal to

∑
o′∈O P[qo′ = i] = nP[qo = i]).

Therefore, showing that qo is first-order stochastically dominated by some distribution
D also implies that pa is first-order stochastically dominated by D. When G has a per-
fect matching, qo ≤ wo. Step (ii) in the proof of Claim 4.10 proves that wo is stochas-
tically dominated by a random variable Z = 3 + ∑3

j=1Zj where Zj ’s are iid geometric

random variables with failure probabilities (1 − 1
n )n−2. Hence, P[qo > i] ≤ n−3 +P[Z > i];

which also means that P[pa > i] ≤ n−3 +P[Z > i]. This is the promised asymptotic upper
bound.

5. Mechanisms for eliciting private preferences

In this section, we take a mechanism design perspective by considering the setting
where every agent’s preference list is her private information. After noting that there ex-
ists no Dominant-Strategy Incentive-Compatible (DSIC) mechanism that implements a
rank-optimal assignment, we show that such mechanisms exist if the notion of incentive
compatibility is relaxed to Bayesian Incentive Compatiblity (BIC).

Consider a market, as defined in our main setup in Section 3, with m objects each
with capacity c and n =mc agents. Given a preference profile π in this market, we use
πi to denote the preference list of agent i and the vector π−i = (πj )j∈A,j �=i to denote the
preference lists of the rest of the agents. Let �−i denote the set of all such possible π−i.
Given a preference list σ , we sometimes use [σ ; π−i] to denote a preference profile π
where πi = σ and π−i determines the preference lists of the agents in A\{i}. Finally, let
M denote the set of all assignments in the market.
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5.1 DSIC mechanisms

A mechanism is a function M : �→M . It elicits a preference list πi from every agent
i, constructs the preference profile π = (π1, � � � , πn ), and then assigns objects to agents
according to M(π ). For every agent i, let Mi(π ) denote the object assigned to i in the as-
signment M(π ). A mechanism is DSIC if for every agent i, every preference order σ over
O, and every π−i, agent i weakly prefers the object Mi(π ) to the object Mi([σ ; π−i]).

A mechanism M is rank-optimal if, for every preference profile π, M(π ) is a rank-
optimal assignment (with respect to the objects’ ranks in π). From a result of Feather-
stone (2020), it follows that no DSIC rank-optimal mechanism exists in a market with
4 agents and 4 objects each with capacity 1.26 The proof is by constructing a specific
market. Our next proposition shows that rank-optimal DSIC mechanisms exist in no
parametrization of our setup (i.e., choices of c, m) when m ≥ 4. The proof is by con-
structing a (different) market for every such c,m.

Proposition 5.1. No rank-optimal DSIC mechanism exists whenm≥ 4.

A well-known DSIC mechanism that is applicable to our setup is the Random Se-
rial Dictatorship (RSD) mechanism (Abdulkadirouglu and Sönmez (1998)). RSD orders
agents uniformly at random and then allows each agent to choose her most preferred
object from the set of remaining objects, one agent at a time in that order. We call the
assignment generated by RSD the RSD assignment. Remarkably, there is a quite large
gap between the average ranks of the RSD and rank-optimal assignments. When c = 1,
Knuth (1996) shows that the expected average rank of the RSD assignment almost equals
lnn, and thus approaches infinity as n does, in contrast to the average rank of the rank-
optimal assignment.27 We next show that the gap between the average ranks of these
two assignments persists even when the object capacities are greater than one—in par-
ticular, when c = o(logn).28

Proposition 5.2. The expected average rank of the RSD assignment is at least lnm−1
c .

It remains an open question whether there exist DSIC mechanisms with a constant
average rank (i.e., an average rank independent of the market size). We remark that the
answer is negative if the mechanism is required to be Pareto efficient 29 and nonbossy30

as well. This is because any such mechanism is equivalent to RSD, as shown by Bade
(2020).

We next relax the notion of DSIC to BIC and ask whether rank-optimal BIC mecha-
nisms exist in our main setup.

26His result is in fact stronger, in that he shows that no DSIC mechanism can be rank efficient (in the
sense of first-order stochastic dominance) in the market that he constructs.

27We remark that if there is a linear excess of objects, i.e., m = (1 + ε)n for a constant ε > 0, then the
assignment generated by RSD has a constant average rank (e.g., see Ashlagi and Nikzad (2020, Lemma
D.15)).

28We recall that for two functions f , g : R+ →R+, the notation f = o(g) means limn→∞ f (n)/g(n) = 0.
29An assignment is Pareto efficient if no other assignment exists in which all agents are weakly better off

with at least one agent being strictly better off.
30Nonbossyness essentially means that an agent can only change someone else’s match if she also

changes her own match. See Bade (2020) for the formal definitions and result.
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5.2 BIC mechanisms in uniform markets

To formally define BIC mechanisms, we allow a mechanism to be a function M : �→
�(M ); that is, M(π ) is a probability distribution over assignments for every π ∈�.

For an assignment μ and an agent i, define 1μi ∈ {0, 1}m to be a vector v such that
vo = 1 if and only if o= μ(i). Let Mi(π ) = Eμ∼M(π )[1

μ
i ]. The interim allocation rule η of

a mechanism M is a sequence of functions η1, � � � , ηn where, for every preference list σ
and every agent i, ηi(σ ) = Eπ−i∼U(�−i )[Mi([σ ; π−i])].

A mechanism M with an interim allocation rule η is BIC if, for every agent i ∈ A
with preference order πi, and every strict preference order σ over the set of objects, the
following holds. Let v= ηi(πi ) and v′ = ηi(σ ); also, let �i= πi;31 then, for every o ∈O,∑

q∈O:o�iq
vq ≥

∑
q∈O:o�iq

v′
q. (5.1)

Let M∗ be the mechanism in which, for every π ∈ �, M∗(π ) is the uniform dis-
tribution over all rank-optimal assignments. (Thus, if the rank-optimal assignment is
unique for a given preference profile π, then M∗(π ) is simply the unique rank-optimal
assignment.)

Proposition 5.3. The mechanism M∗ is BIC.

This shows the existence of rank-optimal BIC assignments in uniform markets (i.e.,
where the agents’ preference orders are drawn iid and uniformly at random). The exis-
tence of rank-optimal BIC mechanisms in markets where the agents’ preference orders
are correlated or have a nonuniform distribution remains an interesting open question.

6. Conclusion

We show that in markets where agents rank objects uniformly at random, the average
rank of the rank-optimal assignment (i.e., the first-best average rank) is bounded from
above by a constant independent of the number of agents, and thus does not grow in-
finitely large as the number of agents does. At the same time, the average rank under
the RSD mechanism can grow infinitely large when the object capacities grow at a suffi-
ciently slow rate. Thus, the average rank can take a heavy toll under the RSD mechanism
compared to the first-best. Furthermore, while no DSIC mechanism can implement the
rank-optimal assignment when the agents’ rankings are their private information, we
show that there exists a BIC mechanism that does so. These findings highlight the possi-
bility of using assignment methods other than RSD in scenarios where the average rank
is a relevant objective.

Appendix A: Proofs from Section 4

Consider a market with set of agents A and objects O where each agent has a complete
strict preference list over objects. A preference profile is a function π : A → O|A| that

31Hence, o1 �i o2 means that object o1 is ranked weakly lower than o2 on the preference list πi.
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determines the preference list of each agent. We use a more compact notation of πa
instead of π(a) to denote the preference list of an agent a.

Proof of Fact 4.3. We will show that the lattice defined by the relation �l is the Carte-
sian product of two lattices, namely L1, L2. The claim then would be proved since the
Cartesian product of two lattices is a lattice itself.

The set of the elements of the lattice L1 is denoted by V 1
l . An element w ∈ V 1

l is a
sequence (w1, � � � , wk ) where wi is a subset of [n] with size l. Similarly, the set of the
elements of L2 is V 2

l . An element w ∈ V 2
l is a sequence (wk+1, � � � , wn ) where wi is a

subset of [n] with size l.
Recall that h(i) = i if i > d and let h(i) = n+ i otherwise. Also, recall that for integers

α, β, we defined α� β if h(α) ≤ h(β). Similarly, for two vectors of the same length u, v,
u� v if uj � vj for every coordinate j.

For w, z ∈ V 1
l , we define w �1

l z when
−→
za � −→

wa for all a ∈ X . We observe that �1
l is

a lattice, because it has a well-defined meet operator corresponding to coordinatewise
maximum with respect to �, and a well-defined join operator corresponding to coordi-
natewise minimum with respect to �.

For w, z ∈ V 2
l , define w �2

l z if
−→
wa � −→

za for all a ∈A\X . The relation �2
l is a lattice,

because it has a well-defined meet operator corresponding to coordinatewise minimum
with respect to �, and a well-defined join operator corresponding to coordinatewise
maximum with respect to �.

Consider x, y ∈ V l with x= (x1, � � � , xn ) and y = (y1, � � � , yn ). By the definition of �l,
we have x�l y if (

x1, � � � , xk
) �1

l

(
y1, � � � , yk

)
, (A.1)(

xk+1, � � � , xn
) �2

l

(
yk+1, � � � , yn

)
. (A.2)

That is, the relation �l is the Cartesian product of the lattices �1
l and �2

l . Thus, �l itself
is a lattice.

Proof of Fact 4.4. Recall that R denotes the event (X × Y ) ∩ �

E = ∅ where
�

E con-
tains an edge (a, o) for every agent a and every object o that is ranked d or better
on a’s preference list. Consider an arbitrary preference profile π ∈ � and recall that
Lπ = (L1

π , � � � , Lnπ ) where, for every a ∈ A, Laπ is the set of ranks of objects 1, � � � , l on
agent a’s preference list. We observe that π ∈R if and only if Laπ ∩ {1, � � � , d} = ∅ for every
a ∈X . Therefore, fR(Lπ ) = 1 if the latter condition holds; otherwise, fR(Lπ ) = 0. Thus,
fR(Lπ ) ∈ {0, 1} for every π ∈ �. This proves the first claim since, for every x ∈ Vl, there
exists π ∈� such that Lπ = x.

To prove the second claim, consider preference profiles π, π ′ such that Lπ �l Lπ′ .
For every agent a ∈X , Laπ ∩ {1, � � � , d} = ∅ implies that Laπ′ ∩ {1, � � � , d} = ∅, because Lπ �l
Lπ′ . Thus, fR(Lπ ) = 1 implies that fR(Lπ′ ) = 1, which proves that fR(x) ≤ fR(y ).

It remains to prove that fL(x) ≥ fL(y ). We need a few definitions first. An extension
of an element x= (x1, � � � , xn ) of the lattice, namely χ, is defined as follows. Recall that,
for each a ∈ A, xa is subset of [n] of size l. Then, we define χ = (χ1, � � � , χn ), where
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χa is an l-dimensional vector that contains the elements of xa in some order. (Thus,
every element x of the lattice has (l!)n distinct extensions.) The interpretation of χ is as
follows. Suppose χa = (χa,1, � � � , χa,l ). Then χa,j is the rank of object j on the agent a’s
preference list.

We say a preference profile π is aligned with the extension χ if, for every agent a ∈A
and object j ∈ Y , χa,j equals the rank of object j on agent a’s preference list in π. (Thus,
are ((n− l)!)n distinct preference profiles that are aligned with χ, as the objects in O\Y
can be ranked in (n− l)! different ways on each agent’s preference list.)

An extension χ is consistent with eventL if there exists a preference profile π aligned
with χ such that π ∈ L. (We observe that if there exists one such preference profile π,
then for any preference profile π ′ aligned with χ, π ′ ∈ L. This holds because only the
ranks of the objects in Y = {1, � � � , l} on the agents’ lists determine whether a preference
profile belongs to L, and these ranks are determined by χ.)

Let �x denote the number of extensions of x consistent with L. Therefore,

fL(x) = �x
(
(n− l)!)n

(l!)n((n− l)!)n = �x

(l!)n .

To see why this equality holds, observe that in the middle term (i) the numerator is the
total number of preference profiles belonging to �x ∩L, and (ii) the denominator is the
total number of preference profiles in �x.

By the above equation, to prove fL(x) ≥ fL(y ), it suffices to show that �x ≥ �y . We
will prove this by constructing a bijection B from the set of extensions of y to the set
of extensions of x such that for every extension ψ of y, B(ψ) is consistent with L if ψ is
consistent with L.

Recall that x = (x1, � � � , xn ) and y = (y1, � � � , yn ) where xa and ya are subsets of [n]

with size l. For every a, let
−→
xa = (xa,1, � � � , xa,l ) and

−→
ya = (ya,1, � � � , ya,l ). Let Ca be

a bijection from ya to xa such that Ca(ya,j ) = xa,j for every j ∈ [l]. For an extension
ψ = (ψ1, � � � , ψn ) of y with ψa = (ψa,1, � � � , ψa,l ) for every a ∈ A, define B(ψ) to be the
extension χ= (χ1, � � � , χn ) with

χa = (
Ca

(
ψa,1), � � � , Ca

(
ψa,l)).

Since x� y, then ya,j � Ca(ya,j ) for a ∈X , and Ca(ya,j ) � ya,j for a /∈X . Therefore, if ψ is
consistent with L, B(ψ) is also consistent with L. This proves the promised claim.

Proof of Fact 4.6. The proof for f follows from Fact 4.4, as described next. In Fact 4.4,
we showed that fL(x) ≥ fL(y ) for x�l y, where

fL(x) = Pπ∼U(�x )[π ∈L1 ∩ · · · ∩Ll].

The function f here is the same as the function fL, with the difference that f is defined
over the lattice L[l′] whereas fL is defined over L[l]. Thus, the proof for f (x) ≥ f (y ) if
x�l′ y is the same as the proof for fL(x) ≥ fL(y ) if x�l y but for l replaced with l′.



Theoretical Economics 17 (2022) Rank-optimal assignments in uniform markets 49

To prove the claim for g, we recall the lattice K = L[l′] defined over the set Vl′ . Also,
recall that we say a preference profile π is associated with an element of the lattice, de-
noted by Kπ = (K1

π , � � � , Knπ ) where Kaπ is the set of ranks of the objects 1, � � � , l′ on the
agent a’s preference list. We let �x = {π ∈� : x=Kπ }.

Recall that g(z) = Pπ∼U(�z )[π ∈ Ll′+1] for every z ∈ Vl′ . Thus, to prove that g(x) ≤
g(y ), it suffices to prove the following: there exists a bijection B from �x to �y such that
if π ∈Ll′+1 for a preference profile π ∈�x, then B(π ) ∈Ll′+1. We construct B as follows.

Let x = (x1, � � � , xn ) and y = (y1, � � � , yn ) be the lattice elements. Consider π ∈ �x.
Let rπa (o) denote the rank of object o on a’s preference list in the preference profile π.
We define B(π ) to be the unique preference profile π ′ in which, for every agent a ∈A it
holds that32

i. for all objects o1, o2 ∈ [l′], rπa (o1 ) � rπa (o2 ) if and only if rπ
′

a (o1 ) � rπ′
a (o2 ) and

ii. for all objects o1, o2 /∈ [l′], rπa (o1 ) � rπa (o2 ) if and only if rπ
′

a (o1 ) � rπ′
a (o2 ).

We note that the set of ranks {rπa (o) : o ∈ [l′]} and {rπ
′

a (o) : o ∈ [l′]} are determined by xa

and ya, respectively. Thus, the above two conditions uniquely determine the preference
list of every agent a in π ′ = B(π ). Figure 5 demonstrates the construction of π ′ by an
example.

By the construction of π′, raπ′(l′ + 1) � raπ(l′ + 1) for a ∈ [k] and raπ(l′ + 1) � raπ′(l′ + 1)
for a /∈ [k] hold since x �l′ y. This implies that if π ∈ Ll′+1, then π ′ ∈ Ll′+1. That is, if
π ∈Ll′+1, then B(π ) ∈Ll′+1, which is the promised claim.

Figure 5. n= 8, k= 4, and l′ = 3. The left and right panels correspond to π ∈�x and π′ ∈�y ,
respectively. The rows correspond to the preference lists of agents 1 to n, from top to bottom,
respectively. On each list the objects are ordered from left to right in the order of the most fa-
vorite to the least favorite. We have x1 = {1, 3, 8} (these positions are marked with a circle in
the first row of π), x2 = {1, 6, 8}, x3 = {1, 3, 8}, x4 = {2, 4, 7}, x5 = x6 = x7 = x8 = {4, 5, 6}. Also,
y1 = y2 = {4, 5, 6}, y3 = {5, 7, 8}, y4 = {1, 4, 5}, y5 = y6 = {1, 3, 8}, and y7 = y8 = {1, 3, 6}.

32For the following definition, we recall that for integers α, β, we defined α � β if h(α) ≤ h(β), where
h(i) = i if i > d and h(i) = n+ i otherwise.
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Proof of Fact 4.7. Recall that x is a sequence (x1, � � � , xn ) where, for every a ∈A, xa

is the set of ranks of objects 1, � � � , l on agent a’s preference list. For a subset Q ⊆ O, a
partial preference profile rQ :A×Q→ [n] is a function such that rQ(a, o) �= rQ(a, o′ ) for
every distinct o, o′ ∈ Q, and a ∈ A. Given a preference profile π and a subset Q ⊆ O,
we let πQ denote a partial preference profile such that πQ(a, o) denotes the rank of an
object o ∈Q on an agent a’s preference list.

Let Y ′ = {1, � � � , l′}. Since π ∈ �x, then, an object in Y ′ has a rank belonging to the
set xa, and object l′ + 1 has a rank belonging to the set [n]\xa on the preference list of
an agent a. Thus, when π ∼ U(�x ), conditioning on π{l′+1} does not change the distri-
bution of πY

′
(compared to the unconditional distribution of πY

′
). Since πY

′
and π{l′+1}

are respectively sufficient statistics for determining whether the events π ∈L1 ∩ · · · ∩Ll′
and π ∈Ll′+1 hold, then these events are independent when π ∼U(�x ).

A.1 Proof for the case of nonunit capacities

The proof for nonunit capacities (c > 1) is a corollary of the proof for unit capacities. We
first need a few definitions. The rank distribution of an assignment μ :A→O is a vector

Rμ ∈ R
|O|
+ where its ith entry Rμ(i) denotes the fraction of agents who are assigned by μ

to their ith favorite object (i.e., the object that they rank i).
Consider a uniform market M with its preference profile π drawn uniformly at ran-

dom from the set of all preference profiles possible inM . Letμπ denote the rank-optimal
assignment in M . The expected rank distribution of the rank-optimal assignment in M
is the vector Eπ[Rμπ ].

We say a vector R′ ∈ R
n1+ with

∑n1
i=1 R

′(i) = 1 rankwise dominates another vector
R ∈ R

n2+ with
∑n2
i=1 R(i) = 1 if for all positive integers r ≤ min{n1, n2},

r∑
i=1

R′(i) ≥
r∑
i=1

R(i).

We will use the next lemma to prove Theorem 3.1 for the case of c > 1.

Lemma A.1. LetM ,M ′ be two uniform markets both with n agents. Suppose thatM has n
objects each with capacity 1 andM ′ has n/c objects each with capacity c ≥ 1, respectively.
Let R, R′ denote the expected rank distributions of the rank-optimal assignments in M ,
M ′, respectively. Then R′ rankwise dominates R.

Proof. Let rπ denote the average rank of the rank-optimal assignment in a market with
preference profile π. Let �, �′ denote the set of possible preference profiles in M , M ′.
The proof works by defining a function f :�→�′ that maps every |�|

|�′| elements of � to
precisely one element of �. Moreover, this function is defined such that, for any π ∈�,
the rank distribution of the rank-optimal assignment for π is rankwise dominated by
the rank distribution of the rank-optimal assignment for f (π ). To prove the lemma, it
suffices to show that such a function exists as follows.

Let n be the number of agents in both markets. In the market M , relabel the objects
as O = {o

j
t : j ∈ [c], t ∈ [n/c]}. We say an object o is of type t if o= o

j
t for some j, t. With
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slight abuse of notation, we use t(o) to denote the type of an object o. Given a preference
list σ overO, define σ to be a list in which σ(i) = t(σ(i)). (That is, each object is replaced
with its type.)

Let g(σ ) be a preference order defined over [n/c] as follows: in its ith position, g(σ )
contains the ith distinct number that appears in σ , for i ∈ [n/c]. In other words, the
function g removes the second, third, and higher appearances of a number in σ and
outputs the resulting list.

For a preference profile π ∈ �, define f (π ) to be the preference profile π′ where
π′
a = g(πa ) for all a ∈A. Observe that, by symmetry, |f−1(π ′ )| does not depend on π ′,

i.e., |f−1(π ′ )| = |�|
|�′| . To complete the proof, it remains to show that the rank distribution

of the rank-optimal assignment for π is rankwise dominated by the rank distribution
of the rank-optimal assignment for π ′. Let μ be the rank-optimal assignment for the
preference profile π. We define the assignment μ′ in the market M ′ for the preference
profile π ′ as follows: for each agent a, let μ′(a) = t(μ(a)). Observe that μ′ is a feasi-
ble assignment, and that μ′(a) does not have a worse rank on π ′

a than μ(a) has on πa.
Therefore, the rank distribution of μ′ rankwise dominates the rank distribution of μ.
This completes the proof.

By the rankwise dominance relation established by the above lemma, the expected
average rank of the rank-optimal assignment is weakly higher in M than in M ′. Thus,
the upper bound on the expected average rank of the rank-optimal assignment for the
case of c = 1 is a valid upper bound for the general case (c ≥ 1) as well.

Appendix B: Proofs from Section 5

Proof of Proposition 5.1. For a preference profile π and an assignment μ, letRπ(μ)
denote the sum of the agents’ ranks in the assignment μ, where the ranks are defined
with respect to π.

We first construct the following market:

i. There are n agents, namely agents 1, � � � , n. Also, there are m objects, namely
o1, � � � , om. All of the objects o1, � � � , om have capacity c. The preference order
of agent i is denoted by ≺i.

ii. The preference orders of agents 1, � � � , 4 are defined by

o1 ≺1 o2 ≺1 o3 ≺1 o4 ≺1 o5 ≺1 � � �≺1 om,

o2 ≺2 o3 ≺2 o1 ≺2 o4 ≺2 o5 ≺2 � � �≺2 om,

o3 ≺3 o2 ≺3 o4 ≺3 o1 ≺3 o5 ≺3 � � �≺3 om,

o3 ≺4 o4 ≺4 o1 ≺4 o2 ≺4 o5 ≺4 � � �≺4 om.

iii. Agents S1 = {5, � � � , c+ 3} rank object o1 first and object o4 last.33

33The agents’ preferences are otherwise arbitrary. For example, o1, o2, o3, o5, � � � , om, o4 could be such a
preference order, listing objects from the most to the least preferred.
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iv. Agents in the set S2 = {c+ 4, � � � , 2c+ 2} rank object o2 first and object o4 last.

v. Agents in the set S3 = {2c+ 3, � � � , 3c+ 1} rank object o3 first and object o4 last.

vi. Agents in the set S4 = {3c+ 2, � � � , 4c} rank object o4 first.

vii. For every integer i ∈ [5,m], every agent in the set Si = {c(i − 1) + 1, � � � , ci} ranks
object oi first and ranks the rest of the objects in an arbitrary way in the remaining
positions on her preference list such that objects o1, o2, o3, o4 are ranked as her
least favorite objects, with o4 being ranked last.

Denote the resulting preference profile by π. We first observe that there exists an
assignment μ∗ with Rπ(μ∗ ) = n+ 1: μ∗ is defined by μ∗(j) = oj for j ∈ [4], and μ∗(a) =
ok for every agent a ∈ Sk and k ∈ [m]. In fact, μ∗ is the unique assignment satisfying
Rπ(μ∗ ) ≤ n+ 1. This holds because o4 has capacity c, but only c − 1 agents (i.e., those
in S4) rank o4 first. On the other hand, the only agent not in S4 who ranks o4 second is
agent 4. This uniquely determines μ∗ as specified above.

We next suppose that agent 4 deviates by reporting

o3 ≺4 o2 ≺4 o1 ≺4 o4 ≺4 o5 ≺4 � � �≺4 on.

We will show that, under this deviation, agent 4 will be assigned to object o3, her top-
ranked object.

Let the preference profile resulting from the deviation of agent 4 be denoted by π̄.
There is no assignment μ′ with Rπ̄(μ′ ) < n + 2. This holds because precisely c agents
should be assigned to o4. Thus, at least one agent not in S4 would be assigned to
o4. Note, however, that any such agent would rank o4 third or worse in π̄. Therefore,
Rπ̄(μ′ ) ≥ n+ 2 for every assignment μ′.

We next show that there exists a unique assignment μ with Rπ̄(μ) = n + 2. Recall
that at least one agent not in S4 would be assigned to o4. The only agent not in S4 who
ranks o4 third or better is agent 3, who ranks o4 third. Therefore, μ(3) = o4 must hold if
Rπ̄(μ) = n+2. In addition, every agent other than 3 should be assigned to her top choice
in such μ. This uniquely determines the assignment μ as follows: μ(1) = o1, μ(2) = o2,
μ(3) = o4, μ(4) = o3, and μ(a) = ok for every agent a ∈ Sk and k ∈ [m]. We thus have
shown that μ is the unique rank-optimal assignment in π̄.

Finally, we note that μ∗(4) ≺4 μ(4). Therefore, agent 4 can strictly improve her as-
signed object by misreporting her preference list. This completes the proof.

Proof of Proposition 5.3. Consider an arbitrary agent a ∈A. For every strict prefer-
ence order σ over O and every r ∈ [m], let pσ (r ) denote the probability that agent a is
assigned to the object ranked rth on σ if she reports σ to M∗. (We note this probability
is computed by taking into account the randomization used by the mechanism as well
as the randomization of π−a.) Since the agents’ preference lists are drawn iid and uni-
formly at random, then pσ (r ) = pσ ′(r ) for every preference list σ ′. We therefore use p(r )
to denote the latter quantity, with slight abuse of notation.

We next show that p(r ) is decreasing in r. Suppose this is not the case. Then there
exists s such that p(s)< p(s + 1). Consider the mechanism M′ that, after receiving the
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agents’ preferences, (i) for every agent it swaps the objects at positions s and s + 1 on
her preference list and then (ii) runs M∗ on the resulting preference profile. Let the
random variables μ∗ and μ′, respectively, denote the assignments generated by M∗ and
M′. Since p(s)<p(s+ 1), then the average rank of μ′ is smaller than the average rank of
μ, in expectation. This, however, contradicts the fact that M∗ selects only rank-optimal
assignments. Thus, p(s) is decreasing in s. This implies that no agent can benefit from
misreporting her preference list, in the sense of (5.1).

Proof of Proposition 5.2. Consider the last m agents who choose (i.e., the m agents
with lowest priority numbers). Let them be indexed by a0, � � � , am−1, ordered with re-
spect to their priority numbers with a0 having the best priority number and am−1 having
the worst. Also, let Ri denote the expected rank of agent ai and R= 1

m · ∑m−1
i=0 Ri.

To provide a lower bound on Ri, we define an auxiliary problem instance, which is
running RSD on a market withm agents, namely a′

0, � � � , a′
m−1 andm objects with unit ca-

pacities. Suppose the agents rank objects independently and uniformly at random and
that agents choose objects in the same order as their indices: agent a′

0 chooses first. Let
R′
i denote the average rank of agent a′

i, and R′ = 1
m · ∑m−1

i=0 R′
i. Knuth (1996) shows that

R′ ≥ lnm− 1. The next claim states that Ri ≥R′
i, which implies that R≥R′. That would

complete the proof as it shows that the expected average rank in the original problem is
at least R′ · mn ≥ lnm−1

c .

Claim B.1. For any i ∈ {0, � � � ,m− 1}, Ri ≥R′
i.

Proof. When agent a′
i is choosing in the auxiliary problem, there are exactly i objects

allocated by the agents before her and, therefore, m− i possible choices remain. In the
original problem, when agent ai is choosing, at most i objects have not run out of ca-
pacity; therefore, agent ai has at most m− i possible choices. This implies that the rank
distribution for agent a′

i rankwise dominates the rank distribution for agent ai, which
implies that Ri ≥R′

i.
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