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We introduce a generalization of the school choice problem motivated by the fol-
lowing observations: students are assigned to grades within schools, many stu-
dents have siblings who are applying as well, and school districts commonly guar-
antee that siblings will attend the same school. This last condition disqualifies the
standard approach of considering grades independently as it may separate sib-
lings. We argue that the central criterion in school choice—elimination of justi-
fied envy—is now inadequate as it does not consider siblings. We propose a new
solution concept, suitability, that addresses this concern, and we introduce a new
family of strategy-proof mechanisms where each satisfies it. Using data from the
Wake County magnet school assignment, we demonstrate the impact on fami-
lies of our proposed mechanism versus the “naive” assignment where sibling con-
straints are not taken into account.
Keywords. School choice, matching theory, matching with contracts.

JEL classification. C78, D47, D63, I20.

1. Introduction

School assignment has become one of the most well-studied topics in market design. In
this expansive literature, every paper that we are aware of considers the problem of as-
signing students to schools. In practice, however, many children have siblings involved
in the same assignment procedure, and school boards may guarantee that siblings will
attend the same school. This motivates a new market design problem: assigning families
to schools.

Siblings are assigned concurrently when a family moves to a new city or when a fam-
ily decides to participate in an auxiliary program, such as attending a magnet school. An
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assignment procedure that considers grades independently may separate a large num-
ber of siblings—violating the guarantee. These complications are likely for any school
district that has a policy of keeping siblings together.1

We generalize the standard school choice problem of Abdulkadiroğlu and Sönmez
(2003) by specifying which students are siblings and splitting schools into grades. Each
student reports a ranking over schools, but if siblings want the same-school guarantee,
they are required to report the same preference ranking.2 An assignment is feasible if
grade capacities and sibling guarantees are respected. For technical reasons, we assume
that no child has a twin or more than one sibling. These assumptions are not without
loss of generality, and in Appendix A, by means of examples, we illustrate the limitations
of them.

The central criterion in the school choice literature is respecting a student’s priority.3

We say that student i has justified envy at, or “blocks,” an assignment if i prefers a school
s to her own assignment, and i has a higher priority than a student assigned to s. An
assignment with justified envy is typically interpreted as being unfair.4

This definition is no longer adequate when there are siblings. We discuss two reasons
why. First, in order for siblings to attend a school, both must be admitted; therefore,
a rejected student might have higher priority than an admitted student if the rejected
student has a sibling that did not have high enough priority. A relevant notion of justified
envy must somehow take into account all of i’s siblings; the standard definition does
not. Second, suppose that i has justified envy of j, and that i does not have siblings, but
j does. In this case, removing j would also remove all of j’s siblings (even if the latter
have high priority). We thus argue that one student should not be able to cause more
than one other student to be removed from a school.

We generalize what constitutes a block to resolve these issues. Intuitively, under no
justified envy, a student ranked xth can block the assignment of the yth ranked student
when x < y and both are in the same grade. We extend this to allow the xth and wth
ranked students to block the yth and zth ranked students, so long as x < y and w < z,
and they are in the same respective grades. Specifically, we allow a group of students
J to block an assignment if there is a group of students K such that the students of J,
one by one, have justified envy of the students of K.5 Both J and K must be “closed
under siblings” in the sense that if J (K) contains one sibling in a family, then it must
contain all siblings. Otherwise, replacing K with J would possibly separate a family and
the resulting assignment would not be feasible.

1In North Carolina alone, school districts that offer this guarantee include Charlotte-Mecklenberg,
Durham, Wake County, Union County, and Winston-Salem. Such a guarantee is offered by school districts
in other states including Maryland (Montgomery County) and Oregon (Portland).

2For example, in Wake County Public Schools, siblings may opt to be treated as individual students and
submit different rankings of schools, but a family that chooses to do this forgoes their guarantee to be
assigned to the same school. We do not model the strategic choice of whether siblings should be considered
as individuals or as a family.

3Many school districts, including Boston, New York, and Chicago, have adopted an assignment proce-
dure that respects students’ priorities.

4See also the student placement problem of Balinski and Sönmez (1999).
5Our formal definition allows J to have more students than K if the school in question is not at full

capacity.
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We define an assignment as suitable if there is no such blocking coalition. We make
several observations: When there are no siblings, suitability and elimination of justified
envy are equivalent. A coalition can be a mixture of siblings, only children, and students
from more than one grade. Thus, our blocking coalitions can be quite complex and
allow for far more general combinatorial patterns of blocking than the simple blocking
considered under justified envy.

Our main result shows that a suitable assignment always exists (Theorem 2). This is
surprising given the negative results in the closely related matching with couples prob-
lem.6 Our proof of existence is constructive. We introduce a new family of mechanisms
called Sequential Deferred Acceptance (SDA) whose members always select a suitable
assignment. Furthermore, we show that each mechanism is strategy-proof (Theorem 2).

Related literature

We contribute to the literature on school choice pioneered by Balinski and Sönmez
(1999) and Abdulkadiroğlu and Sönmez (2003).7 To the best of our knowledge, we are
the first to explicitly model siblings, grades, and the ensuing institutional constraint that
siblings must be assigned to the same school.8

Our paper is related to the matching with couples literature, which has focused pri-
marily on assigning doctors to hospitals. In these papers, couples are allowed to apply
together and submit rankings over pairs of (possibly different) hospitals. Roth (1984)
showed that when couples are present, there may be no stable assignment. Klaus and
Klijn (2005) provide maximal domain results (in terms of allowable preferences for the
couples) to ensure the existence of a stable assignment. Some papers also consider the
case (as in ours) where each couple must always be assigned to the same hospital (see
Dutta and Massó (1997)), but have different assumptions about hospital preferences.9

The key theoretical difference between our paper and the matching with couples lit-
erature is that the complementarities between siblings is more structured than those
between couples.10

6We give a more detailed discussion of similarities and differences between our problem and the match-
ing with couples problem in the related literature.

7Some key contributions in school choice are: Abdulkadiroğlu, Pathak, Roth, and Sönmez (2005) and
Abdulkadiroğlu, Pathak, and Roth (2005) examine school choice programs in Boston and NYC; Erdil and
Ergin (2008) and Abdulkadiroğlu, Pathak, and Roth (2009) study issues regarding priority classes and the
breaking of ties; Kesten (2010) proposes a new mechanism for improving on the efficiency of the student
optimal stable match; and Echenique and Yenmez (2015), Kamada and Kojima (2012), and Kamada and
Kojima (2015) study the consequences of distributional constraints and schools’ preferences for diversity.

8Several recent papers also study extensions where students may apply as groups or are assigned se-
quences of seats over time. Dur and Wiseman (2019) consider a problem where students may prefer to
attend the same school as their neighbors, as opposed to their siblings. Kennes, Monte, and Tumennasan
(2014) study the Danish daycare assignment system where each child is assigned to a school in each period,
so that each student must express preferences over sequences of schools. Kurino (2014) studies a related
dynamic problem where instead of each school having a priority, each agent’s current assignment is treated
as an endowment.

9For example, our school’s choice functions do not satisfy Dutta and Masso’s weaker form of substi-
tutability (group substitutability).

10Section 3.1 provides a formal discussion.
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Table 1. Matching with couples versus school assignment with siblings.

NRMP
(1993–1996)

Psychology
(1999–2007)

WCPSS
(2018)

Couples/siblings as % of applicants 4.1% 1.3% 19.5%
Number of hospitals/schools 3,755 1,094 38
Average capacity 6.1 2.5 30

Roth and Peranson (1999) provide a detailed overview of the algorithms imple-

mented in the U.S. National Resident Matching Program (NRMP), wherein couples may

apply to hospitals together. Kojima, Pathak, and Roth (2013) and Ashlagi, Braverman,

and Hassidim (2014) similarly study the matching market for psychologists. Empiri-

cally, the couples problem is significantly different from the siblings problem. Table 1

collates key average statistics from the NRMP, the market for clinical psychologists, and

magnet school admission in Wake County Public School System (WCPSS).11 Two differ-

ences stand out: First, couples make up a substantially smaller proportion of the total

applicants than sibling pairs. Second, there are a large number of hospitals each with

low capacity, while there are a small number of magnet programs each with high capac-

ity. Roth and Peranson (1999) find that despite the negative theoretical results, a stable

assignment exists in each year they observe (for the NRMP). Kojima, Pathak, and Roth

(2013) show that when there are few couples and preference lists are short (relative to the

whole market size), the probability of a stable assignment approaches one as the market

grows. Using several years of data from the market for clinical psychologists, they also

find a stable assignment in each year. Ashlagi, Braverman, and Hassidim (2014) show

similar results, and introduce the concept of “influence trees”—rejection chains likely

to occur because of a couple. In extreme contrast, for each school year in which we have

run the WCPSS school assignment (2015–2018), there has never been an assignment

without justified envy that keeps siblings together.

Our paper also contributes to the matching with contracts literature. In Appendix B,

we model our problem by using the many-to-many matching with contracts framework,

and our results have novel implications.

This paper proceeds as follows. In Section 2, after providing information on our mo-

tivating application, we present our formal model. In Section 3, we introduce a new

respecting priorities criterion, namely suitability, and discuss its properties. Next, in

Section 4 we define a class of suitable and strategy-proof mechanisms. Section 5 com-

pares the performances of this class of mechanisms with a naive implementation of the

DA mechanism by using school choice data from the WCPSS. The last section concludes.

11Statistics for columns 1 and 2 are from Roth and Peranson (1999) Table 1, and Kojima, Pathak, and Roth
(2013) Table 1, respectively.
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2. Motivation and model

2.1 Motivating application: Design of WCPSS assignment procedure

To motivate our theoretical model, we briefly discuss the design and administration of
the assignment procedure for the WCPSS magnet program.12 This was the impetus for
our research, as WCPSS requires that siblings be assigned to the same magnet school.13

In the 2017–2018 academic year, WCPSS was the 15th largest school system in the
U.S. The district is comprised of 183 schools (grades K–12) with over 38 magnet schools;
seats at the latter are assigned to students via a school choice program. The interested
reader may refer to Dur, Hammond, and Morrill (2018), and Dur, Hammond, and Kesten
(2018) for extensive discussions of both the assignment procedure and the demograph-
ics of Wake County. Here, we highlight several details that are critical to our model.

First, all grades at all schools are assigned simultaneously. The vast majority of as-
signments are for students at the entry-grade year (kindergarten, grade 6, and grade 9).
For an entry-grade year, all seats are made through the assignment, but for a nonentry-
grade year, most of the seats are taken by students who attended the school the previous
year. Therefore, there is a heterogeneity in the capacity (used for the assignment) at each
grade, even within the same school.

If a student has an older sibling already attending a school, then the younger sib-
ling is automatically given highest priority at this school. However, when two siblings
apply simultaneously, this is not possible, as the oldest child’s assignment has yet to be
determined. It is a common occurrence. This happens, for example, when a family has
just moved to Wake County or when a family becomes interested in the magnet program
after the older child has already begun attending a nonmagnet school.

Each student is given a certain number of points in order to determine her priority.14

By construction, siblings are each given the same number of priority points. However,
for siblings applying to different grades, both the capacities of the grades and the co-
horts of students the siblings are competing against differ. Therefore, two siblings do
not typically occupy the same place in the ordering of students by priority. Specifically,
it is important to note that it is not uncommon for one sibling to be ranked relatively
high while another is ranked relatively low.

12Since 2015, the authors have been part of the team that designed and implemented the assignment
procedure for the WCPSS magnet program.

13The following is stated in the Wake County Board of Education Policy Manual. “The highest priority
in any of the application processes is for entering grade siblings to attend the same school as an older
sibling, so long as the siblings live at the same address. This means that if you apply for more than one
sibling to attend a school, the application process will not select one sibling without the other. If there are
not available seats for each sibling, the program will select none of the siblings.” Retrieved June 2018 at
https://www.wcpss.net/page/33755. Also see the Wake County Board of Education Policy Manual, Policy
6200 and 6200 R & P “Student Assignment.”

14Typically, the highest number of points are given to a student applying to an entry-grade year with an
older sibling already attending the school; the second-highest are given to students who reside in an area
designated as high-performing; the third-highest are given to students whose base-school assignment is
designated as overcrowded; and the fourth-highest are given to a nonentry-grade student who has an older
sibling already attending the school.

https://www.wcpss.net/page/33755
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2.2 Formal model

We consider the problem of assigning students to schools. As in the standard model,
there is a finite set of students, I, and a finite set of schools, S. Unlike the standard
model, the students are part of a family and each school has multiple grades. Let G =
{1, � � � , n} be the finite set of grades and γ : I →G be the grade function such that student
i applies to grade γ(i). Let γ(J ) = ⋃

i∈J γ(i).
For each grade g ∈ G, let Ig denote the set of students applying for grade g, that is,

Ig = {i ∈ I : γ(i) = g}. Let F be a partition of students into families. For a student i in
family f ∈ F , we will refer to f as i’s family. If i and j are in the same family, we refer
to them as siblings. If i is the only member of i’s family, then we call i an only child.
To avoid technical complications, we restrict families to either one student or two, and
we do not allow there to be twins (i.e., if i and j are siblings, then they are applying for
different grades). This is not without loss of generality, and we explain in Appendix A
complications that these assumptions avoid.15 Each student i ∈ I has a strict ranking
Pi over the set of schools and being unassigned (denoted ∅). Let P be the set of strict
rankings over S ∪ {∅}. For each Pi ∈ P , let Ri be the weak ranking associated with Pi.16

We require that if i and j are siblings, then Pi = Pj (and, therefore, it is unambiguous to
refer to the preferences of a family). This requirement is based on the restriction im-
posed by WCPSS.17 A family also has the option for their children to apply separately as
nonsiblings; in this case, they may express different preferences and forgo their sibling
same-school guarantee. We then treat them as two separate families. With slight abuse
of notation, we represent the preference of a family f with Pf where Pf is the same as
the preference of each member of family f .

Each school s ∈ S has a capacity vector qs = (q
g
s )g∈G ∈ N

|G| where q
g
s denotes school

s’s capacity for grade g ∈ G. In addition, each school s ∈ S has a vector of priority rank-
ings for each grade denoted by �s= (�g

s ) where �g
s is a strict ranking of Ig, the students

applying for grade g ∈ G.18 For each s ∈ S, and each g ∈ G, let �g
s be the weak ranking

associated with �g
s .

A subset of students J ⊆ I is closed under siblings if for each family f ∈ F , either
f ⊆ J or f ∩ J = ∅.19 In words, if J contains a student, then it also contains that student’s
sibling (if any). An assignment μ is a function μ : I → S∪ {∅}. We refer to the assignment
of student i, the students assigned to a school s, and the students assigned to grade g at
s as μi, μs , and μ

g
s , respectively. Mathematically, μs = {i ∈ I : μi = s} and μ

g
s = μs ∩ Ig.

An assignment μ is feasible if for each school s ∈ S: (1) μs is closed under siblings, and

15In the magnet assignment for Wake County Public Schools, these types comprise a relatively small
subset of the applicants. For example, in the 2016–2018 school years, only 3.4% of applicants have a twin
and only 2.4% of applicants have more than one sibling applying to a different grade at the same school.

16For each s, s′ ∈ S, sRi s
′ if and only if s Pi s

′ or s = s′.
17This requirement is also present in, for example, Montgomery County Public Schools (Maryland) and

Portland Public Schools (Oregon).
18Note that this is not equivalent to having a single overall capacity for each school and regarding each

family with two siblings as a single student with “size” two. At any school, each grade has both a different
capacity and a different priority ranking.

19Note that f can either be a set of two siblings or a single student.
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(2) for each grade g ∈ G, |μg
s | ≤ q

g
s . In words, all siblings are assigned to the same school,

possibly ∅, and no school is assigned more students in a grade than it has capacity for.
We restrict our attention to feasible assignments and for expositional convenience will
typically refer to them simply as assignments. When the context is clear, let A be the set
of all possible feasible assignments for the problem at hand. For each assignment μ ∈ A,
each s ∈ S, and each J ⊆ I with J ∩ μs = ∅, school s has available seats for J at μ if for
each g ∈ γ(J ), |{j ∈ J : γ(j) = g}| ≤ q

g
s − |μg

s |.
A problem is a tuple (I, S, G, q, �, P ), and a mechanism (or rule) ϕ recommends for

each problem an assignment (that is feasible for that problem). We denote the assign-
ment selected by mechanism ϕ under problem (I, S, G, q, �, P ) with ϕ(I, S, G, q, �, P )
and the assignment of student i with ϕi(I, S, G, q, �, P ).

We say student i ∈ I (weakly) prefers assignment μ to assignment ν if μi Pi νi (μi Ri

νi). Assignment μ Pareto-dominates assignment ν if each i ∈ I weakly prefers μ to ν, and
some j ∈ I prefers μ to ν. Assignment μ is Pareto-efficient if it is not Pareto-dominated
by any other assignment. Recall that we restrict two siblings to report the same pref-
erence; thus, a manipulation by a family of two is necessarily comprised of changing
both students’ preferences. The next property states that no single student or pair of
siblings is better off when reporting false preferences. A mechanism is strategy-proof
if for each problem (I, S, G, q, �, P ), each f ∈ F , each P ′

f = (P ′
i )i∈f ∈ Pf (with P ′

i = P ′
j

for each i, j ∈ f ), and each i ∈ f , ϕi(I, S, G, q, �, P )Ri ϕi(I, S, G, q, �, P ′
f , P−f ) where

P−f = (Pk )k∈F\{f }. If f is comprised of one student, then the definition is standard. Note
that since siblings have the same preference, and are never separated, there is no need
to define preferences over arbitrary pairs of schools.

3. A new criterion for respecting priorities

In this section, we define which coalitions are able to block an assignment. Through
several illustrative examples, we highlight the issues arising from sibling guarantees. We
interpret a blocking coalition as an objection by a parent (or parents) to an assignment
that the school board would concur with. Without siblings and grades, student i and
school s would form a blocking pair to an assignment if i prefers s to her assignment and
i has a higher priority at s than one of the students j assigned to s. We can define an
analogous concept in our model. To be consistent with the literature (and to differen-
tiate from how we define stability) we say student i ∈ Ig (i.e., a gth grader) has justified
envy at assignment μ if there exists a school s and a student j ∈ μ

g
s such that s Pi μi and

i �g
s j. We emphasize that a student can only have justified envy of another student who

is in the same grade. The presence of siblings means that justified envy is not suffi-
cient to constitute a blocking pair in our more general problem. Consider the following
example.

Example 1. Students i1 and i2 are siblings, while j and k are only children. School s has
two grades, and each grade has one available seat. Each student applies to school s at
their respective grade, and priorities for each grade (indicating each student’s grade) are
shown below.
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�1
s �2

s

i1 k

j i2

Consider the assignment where j and k are assigned to s. Student i1 has justified
envy of j. However, it is not feasible to assign i1 to s unless we also assign her sibling i2
to s. Note that i2 does not have sufficiently high priority at s to warrant admission over
k—so assigning i1 and i2 to s generates justified envy from k. ♦

It is not sufficient for one sibling to be admitted to the school, as this would result
in an infeasible assignment. As a result, it is not enough for one sibling to have justified
envy. All siblings must have justified envy.

The presence of siblings also restricts the ability of only children to block an assign-
ment. Consider the following example.

Example 2. Students i1 and i2 are siblings, while j is an only child. School s has two
grades, and each grade has one available seat. Each student applies to school s at their
respective grade, and priorities for each grade are shown below:

�1
s �2

s

i1 j

i2

There are three feasible assignments:

Grade

1 2

Assignment 1 i1 i2
Assignment 2 ∅ j

Assignment 3 ∅ ∅

The only feasible assignment in which all seats are filled is the first assignment: i1
and i2 are assigned to s. ♦

In Example 2, if we assign i1 and i2 to school s, then student j has justified envy.
However, since the student she envies has a sibling, honoring j’s objection would result
in more than one student being removed from the school. As capacity utilization is of
central importance in school assignment, we view it as undesirable to have a student’s
objection result in more than one student being unassigned. Therefore, we do not allow
a set of students of size n to block the assignments of more than n students.

These two observations motivate our definition of blocking coalitions. It intuitively
extends justified envy in two ways: a block must consider all siblings, and students one
by one have justified envy. We also allow for students to block empty seats.
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Definition 1. A set of students J = {j1, � � � , jn} block an assignment μ if there exists a
set of students K = {k1, � � � , km} (possibly empty) and school s such that:

1. Both J and K are closed under siblings and |J| ≥ |K|.

2. For each x ∈ {1, � � � , m}, μkx = s and jx has justified envy at μ of kx.20

3. If K 
= ∅, then s has available seats for jm+1, � � � , jn at μ. If K = ∅, then s has available
seats for J at μ.

An assignment is suitable if it is not blocked by any set of students. A mechanism is
suitable if for each problem it selects an assignment that is suitable for that problem.

In Definition 1, the first condition addresses our concerns from Examples 1 and 2.
Requiring J and K to be closed under siblings and |J| ≥ |K| means that (1) for each stu-
dent k ∈ K, there is a different student in J that has justified envy over k, (2) we do not
remove more students than we are assigning, and (3) honoring the priorities of students
in J results in a feasible assignment.

Note that this definition is a generalization of justified envy. If there are no siblings,
conditions 1 and 3 hold trivially for any instance of justified envy. Moreover, an only
child with justified envy of another only child is still sufficient to block an assignment.
Thus, with no siblings, the set of suitable assignments coincides with set of assignments
with no justified envy and no wasted seats. Each grade is independent, as the assign-
ment in one grade does not affect possible blocking in another. Alternatively, if there is
only one grade and we allow siblings (or twins), then suitability and no justified envy
still differ.

The following example illustrates several new types of blocking coalitions admitted
under Definition 1.

Example 3. We provide three new types of blocking scenarios. Each grade of school s
has one available seat. For each x ∈ {i, j, k, m}, students x1 and x2 are siblings. Each
student applies to school s at their respective grade, and priorities for each grade are
shown below:

�1
s �2

s �1
s �2

s �1
s �2

s �3
s �4

s �5
s

i1 i2 � n � i1 i2 k1 k2

j1 j2 i1 i2 m1 m2 j1 j2 n

In the left priority profile, students i1 and i2 would be able to block the assignment
of j1 and j2 to s. Similarly, in the middle profile, � and n would be able to block the
assignment of i1 and i2 to s. Our notion also allows for interesting combinations of in-
dividual and sibling pair students to form a blocking coalition. In the right profile, the
combination of single and sibling pair students in the first row would be able to block
the assignment of single and sibling pair students in the second row. ♦

20Under our definition, a student can only have justified envy of a student in her same grade. Therefore,
this condition implies that student jx is in the same grade as student kx.
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If there exists an assignment μ that has no justified envy and no seat is wasted, then
μ is also suitable. No individual agent has justified envy, so it is not possible for any
coalition to have one by one justified envy. A suitable assignment, however, may have
an agent with justified envy. In Example 2, Assignment 1 is suitable but j has justified
envy.

Despite our property being an intuitive generalization of no justified envy, several
interesting properties do not carry over. In the standard school choice problem, there is
a unique assignment that has no justified envy and Pareto-dominates any other assign-
ment that has no justified envy. This is no longer true for suitable assignments, as the
following example shows.

Example 4. Students i1 and i2 are siblings, as are students j1 and j2. School s has two
grades, priorities for students are listed under each grade, and each grade has one avail-
able seat. Each student finds s acceptable:

�1
s �2

s

i1 j2

j1 i2

There are two suitable assignments: assigning either i1 and i2 to s or j1 and j2 to s.
There is no Pareto-ranking of these two assignments. ♦

When schools have rankings over sets of students that are responsive to priorities,
the set of unassigned students at each stable assignment is the same.21 Although we
have not defined stability yet, it is equivalent to having no justified envy and non-
wastefulness when schools have such rankings. In contrast, in the example above, we
observe two suitable assignments where the set of unassigned students is different. Sim-
ilarly, our solution concept remains distinct from others that have been proposed in the
more general many-to-many matching model.22

Any mechanism that selects a nonwasteful assignment without justified envy sat-
isfies an “unassigned invariance” property: adding a new student to the problem does

21This is referred to as the “Rural Hospital Theorem” of Roth (1986). Also see Kojima (2012), Klijn and
Yazıcı (2014), and Martínez, Massó, Neme, and Oviedo (2000).

22The most common solution concept is the setwise-stable set (Roth (1984) and Sotomayor (1999)): the
set of individually rational matchings that cannot be blocked by a coalition that forms new links among its
members, but may preserve its links to members outside of the coalition. Setwise-stability along with sev-
eral other solution concepts such as the individually rational core (Sotomayor (1999)), the pairwise-stable
set, and the fixed-point set are discussed in Echenique and Ovideo (2006). Konishi and Ünver (2006) con-
sider a “farsighted” stability notion they call credibly group-stable. Similar notions have been studied in the
matching with contracts framework by, among others, Klaus and Walzl (2009) and Hatfield and Kominers
(2017). Our concept of suitability is in the spirit of setwise stability, but as setwise stability does not consider
siblings, the two have no direct relationship. Echenique and Ovideo (2006) show that under some substitu-
tion conditions for firms and workers the setwise-stable set equals the pairwise-stable set; however, when
there are siblings, these substitution conditions do not hold. Finally, suitability is not implied by pairwise
stability.
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not cause some previously unassigned student to now be assigned. A mechanism that
selects from the suitable correspondence does not always satisfy this property.

3.1 Choice among sets of students

The primary challenge in our problem is that although we know how a school ranks
students within a grade, we do not know how the school would choose among applicants
across grades. In practice, it is essentially left to the designer to extend priorities over
individual students to selections over sets of students. Here, we consider what choice
functions are consistent with priorities, capacities, and the institutional constraint that
siblings are assigned to the same school.

Formally, let P(I ) denote the powerset of I. A choice function for school s is a func-
tion Cs : P(I ) → P(I ) such that for every J ⊆ I, Cs(J ) ⊆ J. There are two additional
requirements for a choice function to be valid: for any subset of students J ⊆ I 1) for
every grade g, |Ig ∩Cs(J )| ≤ q

g
s and 2) Cs(J ) is closed under siblings in J.23 In words, the

first condition says that s does not choose more students for grade g than the grade has
capacity for. The second condition says that a school must choose either all siblings or
none in J. In general, for any J ⊆ I, we define K to be a valid set in J for school s if K ⊆ J,
|Ig ∩K| ≤ q

g
s for all g ∈G, and K is closed under siblings in J.

In the literature, a choice function is defined to be responsive to a priority ranking
and capacity if it chooses the highest ranked students up to the school’s capacity. Re-
sponsive choice functions are not consistent in general with the requirement that sib-
lings must be assigned to the same school. This can easily be seen in Example 1.

Responsiveness captures the notion that even when there is some ambiguity regard-
ing preferences, some comparisons are unambiguous. If we want to choose two out of
four students, then it is ambiguous whether having the top and last ranked student is
better or worse than having the second- and third-ranked students; however, it is un-
ambiguous that having the first- and second-ranked students is the best possible out-
come. Here, we highlight a second comparison that is unambiguous. It is clear that
having your first and third favorite student is better than having your second and fourth
favorite student. The assignment has improved in each position.

Definition 2. Given two different sets of students J, K ⊆ I, and a priority ranking �s=
(�g

s )g∈G, J rank-dominates K at school s if there exists an ordering of J = {j1, � � � , jn}

and an ordering of K = {k1, � � � , km} such that n ≥m and for every x≤m, jx �γ(jx )
s kx and

either n >m or for some x′ ≤m, jx′ �γ(jx′ )
s kx′ .

A school should never choose a rank-dominated set of students—this motivates the
following definition.

23As a reminder, for each subset of students J ⊆ I, a subset K ⊆ J is closed under siblings in J if for each
f ∈ F , either f ∩ J ⊆ K or (f ∩ J ) ∩ K = ∅. In words, if K contains a student, then it also contains that
student’s sibling if they appear in J.
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Definition 3. Given a priority ranking �s= (�g
s )g∈G, a choice function Cs for school s

conforms to �s if for each subset of students I ′ ⊆ I, there does not exist a set of students
J ⊂ I ′ such that (1) J is a valid set in I ′ for s and (2) J rank-dominates Cs(I ′ ) at s.

Without siblings, a choice function conforming to a priority is equivalent to a choice
function responding to a priority. In particular, when there are no siblings choosing the
q
g
s -highest students for each grade g ∈ G is both feasible and rank-dominates any other

set; therefore, it must be chosen by a choice function that conforms to the ranking. This
is also chosen by a responsive choice function, and so the two definitions are equivalent.
In the rest of our analysis, we focus on the choice functions that conform to each school’s
respective priority ranking.

A choice function is substitutable if for each I ′′ ⊂ I ′ ⊆ I, i /∈ Cs(I ′′ ) implies i /∈ Cs(I ′ ).
We show that a conforming choice function cannot be substitutable. More precisely, we
call a choice process for school s a function which, given a set of grades, and a capacity
and priority for each grade, outputs a choice function for s. We call a choice process
conforming (substitutable) if the output of the choice process is always a conforming
(substitutable) choice function.

Theorem 1. If a choice process is conforming, then it is not substitutable.

Proof. We prove by means of example. Let G = {1, 2}, S = {s}, and I = {i1, i2, j, k, l, m}
where i1 and i2 are siblings. Students {i2, j, k} are second graders, and {i1, l, m} are first
graders. School s has grade-capacities q1

s = 1 and q2
s = 2. Consider the following priori-

ties for s:

�1
s �2

s

m j

i1 k

l i2

We describe several situations where it is unambiguous what must be selected by
any conforming choice function (as it is the only undominated alternative). Let Cs be
any conforming choice function for the problem.

We first consider the students in I1 = {j, i1, i2, �}. The set of students {i1, i2, j} rank-
dominates any valid set in I1 for s. Hence, any conforming choice function Cs selects
{i1, i2, j} when I1 is considered, that is, Cs(I1 ) = {i1, i2, j}.

Second, we consider the students in I2 = I1 ∪ {k}. There are two valid sets in I2 for
s that are not rank-dominated by any other valid sets in I2: {j, k, �} and {i1, i2, j}. If
Cs(I2 ) = {j, k, �}, then since � ∈ I1 ⊆ I2, � /∈ Cs(I1 ), and � ∈ Cs(I2 ), Cs is not substitutable.
Then any conforming and substitutable choice function Cs selects {i1, i2, j} when I2 is
considered, that is, Cs(I2 ) = {i1, i2, j}.

Lastly, we consider all students I = I2 ∪ {m}. The set of students {j, k, m} rank-
dominates any valid set in I for s. Hence, any conforming choice function Cs selects
{j, k, m} when I is considered, that is, Cs(I ) = {j, k, m}. Since k ∈ I2 ⊆ I, k /∈ Cs(I2 ), and
k ∈ Cs(I ), Cs is not substitutable.
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The violation of substitutability is different than what we might initially have ex-
pected. A school must either accept both siblings or accept neither, so the most obvious
type of complements are this type of “left shoe/right shoe” complements. Although this
type of complement is clear, this is not what creates a violation in Theorem 1. These
complements are “hidden” in the sense of Hatfield and Kominers (2016). Since each
school either accepts both students or rejects both, and since siblings submit the same
ranking, a school will never receive the application of just one sibling. Rather, what is
present here is what we refer to as “the enemy of my enemy is my friend” complements.
Suppose a student i, who has no siblings, is rejected in favor of j, who has an older sib-
ling. If the school receives additional applications for the higher grade, this can cause
j’s older sibling to be rejected, which in turn causes j to be rejected. This sequence of
rejections can result in i being accepted as there is now a “free” seat at the lower grade.
In this sense, even an only child can be complements with other only children, as their
application can help only children at other grades be accepted.

4. Existence via a new family of mechanisms

Our main result demonstrates that a suitable assignment always exists. We introduce a
new family of strategy-proof mechanisms wherein each member selects a suitable as-
signment for any problem.

First, we will explain the intuition behind each mechanism in the family. At a high
level, we run Deferred Acceptance (DA) one grade at a time while taking into account
sibling feasibility. Our algorithm can be applied to any ordering of the grades, but for
expositional ease, suppose we are assigning students to elementary schools and we have
sequenced the grades in decreasing order by age (i.e., fifth grade first and kindergarten
last). We first run DA on the fifth grade. Specifically, we have each fifth grader propose
to her favorite school. Fix a school s. Let X be the school’s fifth-grade applicants, recall
that qgs denotes s’s capacity for grade g, and suppose |X| > q5

s . Before tentatively accept-
ing a set of applicants, the school must first check if it is feasible to accept their younger
siblings. For example, consider the fourth grade, and let Y ⊆ X be the set of applicants
who have a younger sibling entering the fourth grade. If |Y | > q4

s , then the school can-
not accept the set Y without violating its capacity for the fourth grade. At most q4

s of
these students can be accepted. In other words, we are certain that the lowest (|Y | − q4

s )
ranked students should be rejected. We repeat this pruning of the applicants for each
lower grade: if there are m> q

g
s applicants for the fifth grade with a younger sibling en-

tering grade g, then we reject the (m − q
g
s )-lowest ranked from these applicants. At the

conclusion of this process, it is possible to accept any subset of size q5
s of the remain-

ing applicants at grade 5 (or all remaining applicants if there are less than q5
s ), as we are

sure there is sufficient capacity at the lower grades to also accept each student’s younger
sibling.

Now we can proceed as usual: the school tentatively accepts the q5
s -highest ranked

remaining applicants for the fifth grade and permanently rejects all other applicants.
The rejected students apply to their next-favorite school, and each school chooses
among its applicants (both the new applicants and the applicants they tentatively ac-
cepted in a previous round) in a manner analogous to the above. When there are no
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new applications, the process stops and each school makes its tentative acceptances
permanent. When the school accepts a student, it also accepts her younger sibling (if
she has one). In this case, we assign the younger sibling to the school, remove her from
consideration, and reduce the capacity of the appropriate lower grade by one. Note that
if a student is unassigned, then we also remove her younger siblings from considera-
tion at lower grades. This concludes the assignment of students to the fifth grade. The
algorithm iterates this process successively for each lower grade.

The intuition for why this algorithm produces a suitable assignment is similar to that
of the standard DA—when a school considers applicants, it is not certain which stu-
dents it wishes to accept but it is certain which applicants it wishes to reject. Therefore,
a school makes rejections permanent and acceptances tentative. When a school never
regrets a rejection, the resulting assignment is guaranteed to be stable: the only students
who desire the school have been rejected and the school does not regret rejecting these
students. The same logic applies to our algorithm and suitability. A school never regrets
rejecting a student since the student either did not have a high enough priority in the
grade she is applying to or else too many higher-ranked applicants also had a sibling ap-
plying for the same grade. In either case, the school does not regret rejecting the student
and, therefore, the resulting assignment is suitable.24

We now provide a formal definition of the mechanism. Let � be a strict precedence
order over G; for each g, g′ ∈ G, g � g′ means the assignment to grade g is performed
before grade g′. Label grades so that g1 � g2 � ... � g|G| . Let I1 = I.

For any problem (I, S, G, q, �, P ) and any precedence order �, the sequential de-
ferred acceptance with respect to � (SDA�) selects its outcome through the following
procedure:

Step 1: Deferred Acceptance with types for grade g1.

Step 1.0: If student i ∈ Ig1 has a sibling in Ig, then she is a type g student. If student i
does not have a sibling, then she is a type g1 student.

Step 1.1: Each student i ∈ Ig1 applies to her favorite choice (possibly being unas-
signed) under Pi. Given a school s ∈ S and grade g ∈ G, let As and A

g
s be

the set of all applicants and type g applicants, respectively. We iteratively
determine which students are rejected. Let Bs denote the students rejected
by s and initialize Bs = ∅. For each grade g 
= g1, and each student i ∈A

g
s , if

∣∣{j : j ∈A
g
s and j �g1

s i
}∣∣ ≥ q

g
s ,

then we add i to Bs. In words, we consider the type g applicants, that is,
those with a sibling in grade g. Since the school has only a capacity of qgs

24This also explains why we have restricted students to have at most one sibling. If not, then it is possible
that a school could “regret” rejecting a student: Suppose student i has a younger sibling in the fourth grade
and in the second grade. Furthermore, suppose i causes student j to be rejected because j has a younger
sibling in the fourth grade, and the school has received too many applicants from students with siblings in
the fourth grade. In a later round, there are sufficiently many higher-ranked students with siblings in the
second grade that i is rejected. If this happens, then the school regrets rejecting j, as there is now space to
accommodate j and their sibling. This regret also causes the assignment to violate suitability.
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for grade g, we reject a student i if there are at least qgs type g applicants who
have higher priority than i. Note that this priority is determined by the grade
the students are applying for, g1. Let A′

s := As \Bs (the applicants that have
not yet been rejected). For each student i ∈A′

s , if

∣∣{j : j ∈A′
s and j �g1

s i
}∣∣ ≥ q

g1
s ,

then we add i to Bs. In words, among the remaining applicants, school s
rejects a student if there are more remaining, higher-ranked applicants than
it has capacity for at grade g1. School s tentatively holds students in As \Bs.

For each m> 1:

Step 1.m: Each student i ∈ Ig1 applies to her favorite choice (possibly being unas-
signed) under Pi that has not rejected her in Steps 1.1 to 1.(m − 1). Given
a school s ∈ S and grade g ∈ G, let As and A

g
s be the set of all applicants

and type g applicants, respectively. For each grade g 
= g1 and each student
i ∈A

g
s , if

∣∣{j : j ∈A
g
s and j �g1

s i
}∣∣ ≥ q

g
s ,

then we add i to Bs. Let A′
s := As \Bs. For each student i ∈A′

s, if

∣∣{j : j ∈A′
s and j �g1

s i
}∣∣ ≥ q

g1
s ,

then we add i to Bs. School s tentatively holds students in As \Bs.

Step 1 terminates when there are no more rejections. Each student i ∈ I1 ∩ Ig1 and
her sibling, if any, are assigned to the school, possibly ∅, tentatively holding i when Step
1 terminates. Each assigned student is removed, and we denote the remaining students
with I2. We update the number of remaining seats qgs in each school s and grade g.

Step k> 1: Deferred Acceptance with types for grade gk.

Step k.0: If student i ∈ Ik ∩ Igk has a sibling in Ig, then she is a type g student. If
student i does not have a sibling, then she is a type gk student.

For each m ≥ 1:

Step k.m: Each student i ∈ Ik ∩ Igk applies to her favorite choice (possibly being
unassigned) under Pi that has not rejected her in Steps k.1 to k.(m − 1)
(if m = 1, then no school has rejected her). Given a school s ∈ S and grade
g ∈ G \ {g1, � � � , gk}, let As and A

g
s be the set of all applicants and type g

applicants, respectively. We initialize the set of rejected students at s to be
empty, Bs = ∅. For each grade g ∈G \ {g1, � � � , gk} and each student i ∈A

g
s ,

if
∣∣{j : j ∈A

g
s and j �gk

s i
}∣∣ ≥ q

g
s ,
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then we add i to Bs . Let A′
s := As \Bs . For each student i ∈A′

s , if
∣∣{j : j ∈A′

s and j �gk
s i

}∣∣ ≥ q
gk
s ,

then we add i to Bs . School s tentatively holds students in As \Bs .

Step k terminates when there are no more rejections. Each student i ∈ Ik ∩ Igk and
her sibling, if any, are assigned to the school, possibly ∅, tentatively holding i when Step
k terminates. Each assigned student is removed and we denote the remaining students
by Ik+1. We update the number of remaining seats qgs in each school s and grade g.

The algorithm terminates after we run DA for all grades, that is, after Step |G|.

Notice that each order � of the grades defines a different mechanism. We illustrate
the dynamics of SDA� in the following example.

Example 5. Let I = {i1, i2, j1, j2, k1, k2, �1, �2, m, n, o}, S = {s1, s2, s3}, G = {1, 2, 3}, and
1 � 2 � 3. For each x ∈ {i, j, k, �}, students x1 and x2 are siblings. Let I1 = {i1, j1, k1, m},
I2 = {i2, j2, �1, n}, I3 = {k2, �2, o}, qs1 = (2, 1, 1), qs2 = (1, 2, 1), and qs3 = (1, 1, 1). Let
preferences and priorities be as below:25

Pi Pj Pk P� Pm Pn Po

s1 s1 s2 s3 s1 s1 s3

s2 s2 s3 s2 s3 s3 s2

s3 s3 s1 s1 s2 s2 s1

s1 s2 s3

�1
s1

�2
s1

�3
s1

�1
s2

�2
s2

�3
s2

�1
s3

�2
s3

�3
s3

i1 i2 k2 j1 �1 k2 k1 n k2

j1 j2 o i1 i2 o m �1 o

m �1 �2 k1 j2 �2 j1 j2 �2

k1 n m n i1 i2

SDA� finds its outcome as follows:

Step 1.0: Students i1 and j1 are type 2, student k1 is type 3, and student m is type 1.

Step 1.1: Students i1, j1, and m apply to s1, and student k1 applies to s2. School s1 first
considers type 2 applicants, A2

s1
= {i1, j1}, and rejects j1, since q2

s1
= 1 and

i1 �1
s1
j1. Then two remaining applicants, i1 and m, are tentatively accepted

by s1. Since k1 is the only applicant for s2, and it has an available seat at
grade 3, s2 tentatively accepts k1.

Step 1.2: Students i1 and m apply to s1, and students k1 and j1 apply to s2. Only
student k1 is rejected from s2, and all the other students are tentatively ac-
cepted.

25Abusing notation, we write the preferences Pi1 = Pi2 as Pi , and similarly for the other siblings.



Theoretical Economics 17 (2022) Family ties: School assignment with siblings 105

Step 1.3: Students i1 and m apply to s1, student j1 applies to s2, and student k1 applies
to s3. Step 1 terminates since no student is rejected. Students i1, i2, and m are
assigned to s1, students j1 and j2 are assigned to s2, and students k1 and k2

are assigned to s3. The updated capacities are: qs1 = (0, 0, 1), qs2 = (0, 1, 1)
and qs3 = (0, 1, 0).

Step 2.0: Student �1 is type 3, and student n is type 2. All other students in I2 were
assigned in Step 1.

Step 2.1: Students �1 and n apply to s3 and s1, respectively. Student �1 is rejected be-
cause there is no remaining seat for her sibling for grade 3, and student n is
rejected because all seats of s1 for grade 2 were allocated in Step 1.

Step 2.2: Students �1 and n apply to s2 and s3, respectively. Step 2 terminates since
no student is rejected. Student �1 and �2 are assigned to s2 and student n is
assigned to s3. The updated capacities are: qs1 = (0, 0, 1), qs2 = (0, 0, 0), and
qs3 = (0, 0, 0).

Step 3.0: Student o is type 3. All other students in I3 were assigned in Steps 1 and 2.

Step 3.1: Student o applies to s3 and is rejected by that school since all seats in s3 for
grade 3 were allocated in Step 1.

Step 3.2: Student o applies to s2 and is rejected by that school since all seats in s2 for
grade 3 were allocated in Step 2.

Step 3.1: Student o applies to s1 and is tentatively accepted. Step 3 terminates since
no student is rejected. Student o is assigned to s1. ♦

Now we are ready to present the properties of SDA�.

Theorem 2. For each precedence order �, the SDA� is suitable and strategy-proof.

Proof. Consider an arbitrary problem (I, S, G, q, �, P ). Let � be such that g� � g�+1 for
each � ∈ {1, � � � , |G| − 1}, and μ = SDA�(I, S, G, q, �, P ).

Suitability: We prove by induction and show that μ cannot be blocked by a valid set
of students. We first consider the set of students who are assigned in Step 1 of the SDA�
algorithm, that is, the students in Ig1 and their siblings from other grades.

Suppose that there exists student i ∈ Ig1 , and school s ∈ S such that s Pi μi, and either
(1) there is an unfilled seat at s at g1, or (2) i �g1

s j for some j ∈ Ig1 ∩ μs . If there is an
unfilled seat and i has no sibling, then |μs ∩Ig1| < q

g1
s . By definition, s tentatively accepts

weakly more students from grade g1 at each step. Thus, at each Step 1.m, if i applies to s,
then i is not rejected—contradicting μi 
= s. If s does not have an unfilled seat at g1, i has
no sibling, and there is j ∈ Ig1 ∩ μs with i �g1

s j, then rejection of i implies that there are
q
g1
s students with higher priority than i at s, and accepting j contradicts the definition of

SDA�.
For each other case, since i was rejected, she must have a sibling applying for some

grade g′ 
= g1. Moreover, by definition, all available seats of s at grade g′ are assigned
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to students who have a sibling also assigned to s and have higher priority than i under
�g1
s . Therefore, μ cannot be blocked by a set of students that includes those students

assigned in Step 1. Note that the set of students assigned in Step 1 includes all students
in Ig1 and their siblings.

Suppose μ cannot be blocked by a set of students that includes those students as-
signed in the first k steps of SDA�. We consider the students assigned in Step k + 1. By
our inductive hypothesis and Definition 1, it suffices to consider the subproblem with
the updated capacities that we have in Step k + 1 of the SDA� algorithm. Suppose that
there exists a remaining student i ∈ Igk+1 , and a school s ∈ S such that s Pi μi and either
(1) there is an unfilled seat at s at gk+1, or (2) i �gk+1

s j for some j ∈ Igk+1 ∩μs.
If i has no sibling, then the reasoning explained above holds. Additionally, in the

case that s does not have an unfilled seat, and there is j ∈ Igk+1 ∩ μs with i �gk+1
s j, it

is possible that j has been assigned in some Step k′ < k + 1 and j has a sibling in Igk′ .
By the induction hypothesis, no student in I1, � � � , Ik is part of a valid set of students
that blocks μ. Thus, since any blocking set of students must include a student that has
justified envy of the sibling of j in Igk′ , μ is not blocked.

Suppose that i has a sibling applying for some grade g′ where gk+1 � g′. If there is
an unfilled seat at s at gk+1, then since i was rejected, by definition, all available seats
of s at grade g′ at Step k + 1 are filled with students whose siblings have higher priority
than i under �gk+1

s (and they are also assigned to s). If seats at s at grade gk+1 are filled,
then by definition, either all available seats of s at grade g′ are filled with students whose
siblings have higher priority than i under �gk+1

s and they are also assigned to s or, j has
been assigned in some Step k′ < k+ 1 and j has a sibling in Igk′ . For the former case, as
explained above μ cannot be blocked by a valid set of students including i. For the latter
case, by the induction hypothesis and as explained above, μ is not blocked.

Therefore, μ cannot be blocked by a group of students Ī that includes the students
assigned in Step k+ 1. Since the algorithm for SDA� ends after a finite number of steps
(|G|), we are done.

Strategy-proofness: Consider Step 1 of the algorithm for SDA�. We will show that stu-
dents in I1 ∩ Ig1 cannot manipulate the mechanism. Let t : I1 ∩ Ig1 →G identify for each
agent a type as follows: For each i ∈ I1 ∩Ig1 , let t(i) be g1 if i has no siblings, and gk if i has
a sibling in grade gk ∈ G. For each s ∈ S, and each g ∈ G, let q̂gs = min{q

g1
s , qgs }. Then the

tuple (I1 ∩ Ig1 , S, (q
g1
s )s∈S , (�g1

s )s∈S , PI1∩Ig1 , t, (q̂
g
s )g∈G,s∈S ) forms a school choice prob-

lem with type-specific quotas as in Abdulkadiroğlu and Sönmez (2003) (what they refer
to as controlled choice with flexible constraints). The assignment at the end of Step 1 of
the SDA� is then the same as the outcome of their modification of the DA mechanism
for I1 ∩ Ig1 . Notice that no agent in I1 ∩ Ig1 is involved in the algorithm again. By Propo-
sition 5 of Abdulkadiroğlu and Sönmez (2003), no agent in I1 ∩ Ig1 can manipulate their
mechanism, and the same follows for the SDA�. Let I2 be the remaining students after
Step 1 is implied. No agent in I2 can affect the assignment given by Step 1.

We repeat this procedure for Step 2; the remaining steps are similar. Let t : I2 ∩ Ig2 →
G identify for each agent a type as follows: For each i ∈ I2 ∩ Ig2 , let t(i) be g2 if i has
no siblings, and gk if i has a sibling in grade gk ∈ G\{g1}. For each grade g ∈ G\{g1},
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let Xg
s be the number of students assigned to grade g at school s in Step 1 of the SDA�.

For each s ∈ S, and each g ∈ G\{g1}, let q̂gs = min{q
g2
s − X

g2
s , qgs − X

g
s }. Then the tuple

(I2 ∩ Ig2 , S, (q
g2
s − X

g2
s )s∈S , (�g2

s )s∈S , PI2∩Ig2 , t, (q̂
g
s )g∈G,s∈S ) forms a school choice prob-

lem with type-specific quotas. By repeating the same reasoning for grade g2 and all
subsequent, we can show that no student can manipulate the SDA�.

Although SDA� is suitable and strategy-proof, it is not Pareto-efficient. This is not sur-
prising, as in the special case of the standard school choice problem, the DA mechanism
is not Pareto-efficient and is equivalent to the SDA�.26

We may ask whether there exists a strategy-proof and suitable mechanism whose
assignment is not Pareto-dominated by any other suitable assignment in each problem.
Indeed, in the standard problem (without siblings), the DA is the only such mechanism
if we consider no justified envy (Gale and Shapley (1962); Dubins and Freedman (1981);
Roth (1982)). Unfortunately, our next proposition demonstrates that for our environ-
ment and suitability, no such mechanism exists.

Proposition 1. There is no strategy-proof and suitable mechanism that selects an as-
signment Pareto-undominated by any other suitable assignment in any problem.

Proof. Suppose by contradiction that there is such a mechanism; call it ϕ. Let I =
{i1, i2, j1, j2, k1, k2, �1, �2}, S = {s1, s2, s3}, G = {1, 2}, and for each x ∈ {i, j, k}, x1 and x2

are siblings in grades 1 and 2, respectively. At each grade, each school has a capacity of
one. Let preferences (of families) and priorities be as below:

Pi Pj Pk P�

s2 s1 s1 s3

s1 s2 ∅ s1

s1 s2 s3

�1
s1

�2
s1

�1
s2

�2
s2

�1
s3

�2
s3

�1 �2 j1 j2 k1 k2

i1 i2 i1 i2 �1 �2

k1 j2

j1 k2

The only suitable assignment that is not Pareto-dominated by some other suitable
assignment assigns i1 and i2 to s2, j1 and j2 to s1, k1 and k2 to ∅, and �1 and �2 to s3.

Consider a second problem that is the same except that family j reports P ′
j = P ′

j1
=

P ′
j2

where s1 P
′
j ∅P ′

j s2 P
′
j s3. By strategy-proofness, j1 and j2 receive the same assignment

under ϕ; by suitability, each other agent receives the same assignment.
Finally, consider a third problem that is the same as the second except that family

k reports P ′
k = P ′

k1
= P ′

k2
where s1 P

′
k s3 P

′
k∅. By strategy-proofness, ϕ does not assign k1

and k2 to s1. By suitability, ϕ assigns s3 to k1 and k2. By feasibility and suitability, ϕ
assigns s1 to �1 and �2, and s2 to i1 and i2. From this assignment, notice that k and �

are better off swapping schools. If they do, this forms a suitable and Pareto-dominating
assignment—contradicting the assumptions on ϕ.

26Also, in the standard school choice problem, there is no mechanism that has no justified envy and is
Pareto-efficient as pointed out by Balinski and Sönmez (1999).
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Finally, one may ask whether or not this family of mechanisms favors siblings or
only-children when compared to the grade-by-grade DA (where for each grade, we run
the DA separately without taking sibling guarantees into account). In general, this com-
parison is ambiguous. Siblings benefit from the SDA� assignment in the case where the
older sibling has a high enough priority to be accepted by a school, but the younger
sibling’s priority is low enough to cause her to be rejected. Under SDA�, both siblings
are accepted. Note that while the only-children at the grade of the younger sibling were
disadvantaged there, they may benefit in the reverse scenario. If an older sibling has rel-
atively low priority and the younger sibling has relatively high priority, then under SDA�
they are both rejected. This rejection thus benefits only-children at the lower grade.

5. Comparison of the naive and SDA� assignments in Wake County

Using data from the WCPSS magnet program assignment for the 2018–2019 school year,
we present a comparison of the assignment outcomes of the grade-by-grade DA (the
“naive” assignment) and the SDA� mechanisms (Table 2).27 A total of 6,994 students ap-
plied for seats across grades K–12. For each level of schooling (elementary, middle, and
high school), the grade precedence order � starts with the highest grade and continues
with the next highest grade. We augment the SDA� to accommodate for twins and family
group sizes of more than two.28, 29

The key finding is that the naive assignment separates siblings at a rate 19 times
that of the SDA�. Furthermore, our new assignment also demonstrates that we can im-
plement the institutional constraint of keeping siblings together with very few students
causing priority violations—only 18 such instances occurred. In Wake County, this may
be because siblings have the same priorities; so “criss-crossed” priorities such as Exam-
ple 4 are not causing violations. Nonetheless, more complicated situations with analo-
gous tensions still appear. In general, other school districts’ siblings may have different
priorities based on characteristics such as exam scores, grades, etc.

The naive assignment does not meet the WCPSS policy of assigning all siblings to
the same school. This is not surprising, as the mechanism does not take into account
the existence of siblings at all. In total, over all grades K–12, 171 students are separated
from their siblings, or 12.6% of the total number of applicants with siblings (1,361). This
percentage is similar for all sublevels of schooling: elementary (12.5%), middle (9.2%),
and high school (15.9%). Much of the mismatch comes from students with siblings in
entry grades. The total number of siblings who are all assigned to the same school (as
opposed to all being unassigned) is also greater in the SDA�. Over all grades K–12, there
are 7% more students assigned under SDA� than in the naive assignment (621 versus
664 of the total number of siblings).

27Code for both mechanisms is available upon request.
28Specifically, for twins we treat each as a single student in the algorithm. Any separation of twins are

recorded as a sibling mismatch. For each student with more than one sibling, when we assign the oldest
sibling to a school, we also assign her younger siblings to the same school.

29In the applications of both mechanisms, we take specific requirements of WCPSS into account, for
example, reserving a portion of seats for students whose parents are not college graduates and assigning
10% of seats via lottery.



Theoretical Economics 17 (2022) Family ties: School assignment with siblings 109

Table 2. WCPSS 2018–2019 comparison of naive and SDA� assignments.

Grade
Total

Applicants
Applicants with

Siblings

Assigned
w/Sibling

Mismatched
Siblings Justified Envy

Naive SDA� Naive SDA� Naive SDA�

K 1,342 374 247 250 42 0 0 0
1 308 107 4 7 7 0 0 2
2 260 88 5 7 13 0 0 1
3 269 100 5 6 24 0 0 1
4 234 90 4 4 13 0 0 0
5 154 65 1 1 4 0 0 0
K–5 2,567 824 266 275 103 0 0 4

6 1,785 204 156 163 17 7 0 7
7 164 28 10 11 1 0 0 0
8 121 29 16 19 6 0 0 0
6–8 2,070 261 182 193 24 7 0 7

9 1,871 215 159 174 22 2 0 3
10 336 36 6 10 15 0 0 4
11 115 15 4 5 4 0 0 0
12 35 10 4 7 3 0 0 0
9–12 2,357 276 173 196 44 2 0 7
K–12 6,994 1,361 621 664 171 9 0 18

We now examine the extent to which the constraint of keeping siblings together

causes instances of justified envy. We count the number students j for which there is an-

other student i who has justified envy of j at the SDA� assignment. For the entire school

district, there were only 18 such instances. Violation of priorities is mainly caused by

the expected situation: a younger sibling follows an older sibling, but individually has a

lower priority than some other students who would rather attend. Of all instances, six

are caused by students who are part of a sibling triple, and the remaining are caused by

students who are part of a sibling pair.

Finally, the reader will note in Table 2 that there are mismatched siblings under

SDA�. All mismatched siblings under SDA� are due to twins. Our algorithm was de-

fined under the assumption that there are no twins, which of course does not hold in

practice.30 In practice, it would be straightforward to ensure that twins are assigned to

the same school. In our implementation, we treated twins as individual students. We

used this augmentation for two reasons. One, it is simple and transparent. Two, the re-

sulting mismatch may be seen as a conservative estimate regarding the efficacy of the

SDA�, as we could make further changes to ensure that twins always attend the same

school and thereby decrease the number of mismatched siblings.

30In 2018, the percentage of students with one sibling, students with a twin and students with two or
more siblings was 17%, 4%, and 2.6%, respectively.
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6. Conclusion

We demonstrate that the seemingly trivial institutional constraint of keeping siblings
together actually forces a careful consideration of grades and sibling structure. From a
theoretical standpoint, sibling constraints (i) render the previous requirement of no jus-
tified envy inadequate, (ii) introduce interesting complementarities in terms of school
selections across grades, and (iii) require the development of new solution concepts and
mechanisms. There also remain open questions regarding more general sibling struc-
tures (e.g., twins, more than two siblings, etc.).

Most school districts have various types of sibling constraints. We argue that for
many, adopting the SDA� mechanism (or one similar to) is an appropriate, systematic,
and fair alternative to heuristic measures used to “patch” the naive assignment (to meet
the constraints).

Appendix A: Extensions

We discuss two extensions to the model where we allow for (1) twins, and (2) more than
two siblings in each family.

Suppose that we allow for twins and require they cannot be separated. The following
example shows that there may not exist a suitable assignment.

Example 6. Let I = {i1, i2, j, k, �}, S = {s1, s2, s3}, G = {1}, q1
s1

= 2, and q1
s2

= q1
s3

= 1.
Here, i1 and i2 are twins. Let preferences and priorities be as below:

Pi Pj Pk P�

s1 s2 s1 s3

∅ s1 s2 s1

s3 ∅ ∅

�1
s1

�1
s2

�1
s3

j k j

� j �

i1
i2
k

Let μ be a suitable assignment. If k is assigned to either s3 or ∅, then k blocks μ. So
in any suitable assignment, k is assigned to either s1 or s2.

Case 1: k is assigned to s1 in μ. Then j is assigned to s2; otherwise, j blocks at s2. By
feasibility, i1 and i2 cannot be separated, so they are unassigned at μ. Then
� is assigned to s3; otherwise, � blocks at s3. Notice that i1 and i2 now block
k at s1, contradicting the suitability of μ.

Case 2.1: k is assigned to s2 in μ, and j is assigned to s1. Then � is assigned to s3,
otherwise � blocks at s3. By feasibility, i1 and i2 are unassigned. Notice that
k blocks at s1, contradicting the suitability of μ.

Case 2.2: k is assigned to s2 in μ, and � is assigned to s1. By feasibility, i1 and i2 are
unassigned. Then j is assigned to s1, otherwise j blocks at s1. Notice that �
blocks at s3, contradicting the suitability of μ.
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Case 2.3: k is assigned to s2 in μ, and i1 and i2 are assigned to s1. Then j is assigned
to s3; otherwise, j blocks at s3. This leaves � unassigned. Notice that j and �

block i1 and i2 at s1, contradicting the suitability of μ. ♦

Similarly, suppose that we allow for families of size larger than two and require that
they cannot be separated. The following example shows that the natural extension of
our algorithm that accounts for three siblings may not result in a suitable assignment.

Example 7. Let I = {i1, i2, j1, j2, j3, k1, k3}, S = {s1, s2}, G = {1, 2, 3}, qs1 = (2, 1, 1), and
qs2 = (1, 1, 1). Let i1 and i2 be siblings, and similarly so for {j1, j2, j3} and {k1, k3}. For
each hx ∈ I, let γ(hx ) = x. Let preferences and priorities be as below:

Pi Pj Pk

s2 s1 s1

s1 ∅ s2

�1
s1

�2
s1

�3
s1

�1
s2

�2
s2

�3
s2

i1 i2 j3 j1 j2 j3

j1 j2 k3 k1 i2 k3

k1 i1

Let � be such that 1�2�3. We follow the steps for the SDA�, and extend the algorithm
naturally when the three siblings appear. We skip Step 1.0.

Step 1.1: j1 and k1 apply to s1, and i1 applies to s2. Since it is not feasible to assign
{j3, k3} to grade 3 at s1, school s1 rejects the lowest priority student in {j1, k1}
according to �1

s1
, which is k1. Schools s1 and s2 tentatively accept j1 and i1,

respectively.

Step 1.2: j1 applies to s1, and i1 and k1 apply to s2. Since it is not feasible to assign
{i1, k1} to grade 1 at s2, school s2 rejects the lowest priority student in {i1, k1}
according to �1

s2
, which is i1. Schools s1 and s2 tentatively accept j1 and k1,

respectively.

Step 1.3: i1 and j1 apply to s1, and k1 applies to s2. Since it is not feasible to assign
{i2, j2} to grade 2 at s1, j1 is rejected. Schools s1 and s2 tentatively accept i1
and k1, respectively.

The final assignment is μi1 = μi2 = s1, μk1 = μk3 = s2, and μj1 = μj2 = μj3 = ∅. Note
that we maintain the “sequential” nature of SDA� by only using �1

s1
and �1

s2
at Step 1.

The only extra comparison required is at Step 1.1 and Step 1.3, which have “reasonable”
rejections in the spirit of SDA�. Since it is feasible for k1 and k3 to attend s1, this assign-
ment is blocked, and thus not suitable. ♦

Appendix B: Modeling as matching with contracts

In this section, we show that there is a natural way to model school assignment with
siblings as a “many-to-many” matching with contracts.31 We may think of each seat at a

31The matching with contracts problem under a many-to-one framework was first introduced by Hat-
field and Milgrom (2005). Hatfield and Kominers (2017) formulate the problem under a many-to-many
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school as a “contract” between a parent and the school. The terms of the contract specify
the student and the grade level; therefore, a family may have multiple contracts with the
same school.

We briefly discuss the many-to-one matching with contracts literature, as we will use
results therein to prove the main theorem in this section. Hatfield and Milgrom (2005)
showed that substitutability of the firms’ choice functions is sufficient to guarantee the
existence of a stable assignment.32 As such, the property is a central point of discussion
in this literature.33,34 If in addition the law of aggregate demand is satisfied, then the
mechanism defined by the cumulative offer process is strategy-proof and selects a stable
assignment.

For the more general many-to-many framework, Hatfield and Kominers (2017) show
that the domain of substitutable choice functions is a maximal one that guarantees the
existence of stable assignments.

We contribute to this literature by identifying a real-life mechanism design appli-
cation where the choice functions of both sides violate substitutability, and yet stable
assignments still exist. Furthermore, we will show that the schools’ choice functions do
not satisfy the law of aggregate demand, yet there is still a strategy-proof mechanism
that selects a stable assignment.

Let (I, S, G, q, �, P ) be a problem as before with minor differences. In particular,
under this model I is the set of parents and P is the rankings of parents over schools.
We allow a school to prioritize parents differently for different grades, for example, i �g

s

j �g′
s i. We denote the subset of grades parent i is applying to by γ(i). For each grade

g ∈G, let Ig denote the set of parents with a child in grade g, that is, Ig = {i ∈ I : g ∈ γ(i)}.
Consistent with Section 2, we assume |γ(i)| ≤ 2 for all i ∈ I. Let X ⊆ I × S × G be the
finite set of possible contracts such that

X =
⋃
i∈I

⋃
s∈S

⋃
g∈γ(i)

(i, s, g).

Let i(x), s(x), and g(x) denote the parent, school, and grade related to contract x, respec-
tively. Similarly, for any subset of contracts Y ⊆ X , i(Y ), s(Y ), and g(Y ) denote the set

framework. Yenmez (2018) studies the college admissions problem with early decisions, and is the only
other paper that we are aware of that also examines a practical application of many-to-many matching
with contracts.

32Aygün and Sönmez (2013) point out that, in addition to substitutability, choice functions must satisfy
irrelvance of removed contracts for existence.

33Hatfield and Kojima (2010) show the extent to which substitutability can be relaxed while maintain-
ing existence and define two progressively weaker notions—unilateral substitutability and bilateral substi-
tutability. Both guarantee the existence of a stable assignment, but for the latter, optimality for any side
of agents as well as a doctor-stategy-proof mechanism is lost. Hatfield et al. (2020) also provide new in-
teresting properties—observable substitutability, observable size monotonicity, and nonmanipulability via
contractual terms—that characterize when a cumulative offer mechanism is strategy-proof and stable.

34Abizada (2016) and Abizada and Dur (2018) study the college admissions problem with stipend offers.
Despite the presence of complementarities causing the failure of bilateral substitutability, they show the
existence of a pairwise stable and strategy-proof mechanism. In pairwise stability, blocking coalitions are
restricted to be a single student and school pair.
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of parents, set of schools and set of grades related to contracts in Y , respectively. Given
a subset of contracts Y ⊆ X , let Yi, Ys , and Yg denote the contracts related to parent i,
school s, and grade g, respectively.

An assignment Y ⊂ X is a set of contracts such that each parent i ∈ I appears in at
most |γ(i)| contracts and each (s, g) pair appears in at most qgs contracts. We refer to Yi

as i’s assignment. A mechanism ϕ recommends for each possible problem an assign-
ment.

For each a ∈ I ∪ S, choice of agent a, denoted by Ca(·), is a function such that for
each Y ⊆X , Ca(Y ) ⊆ Ya. Here, Ca(Y ) = ∅ means that a rejects all contracts in Y .

For any set of contracts, the chosen subset for each parent is determined as follows:
Parent i first considers only schools that give each of their children a seat, then from
these schools, chooses their most preferred one. Formally, given a subset of contracts
Y ⊆ X , let si(Y ) be the set of schools such that (i, s, g) ∈ Y for all g ∈ γ(i) and s Pi ∅.
Each parent i ∈ I has the following choice function:

Ci(Y ) =

⎧⎪⎨
⎪⎩

{ ⋃
g∈γ(i)

(i, s, g) ⊆ Y : sRi s
′ for all s, s′ ∈ si(Y )

}
if si(Y ) 
= ∅

∅ if si(Y ) = ∅.

Let Rei(Y ) = Y \Ci(Y ) be the set of rejected contracts by parent i from Y .
We now turn to schools’ choice functions. Given a set of contracts (possibly span-

ning multiple grades) and its capacities and priorities, a school selects a subset in exactly
the same way each school tentatively accepts students in each step of the SDA� mech-
anism’s algorithm. That is, it proceeds iteratively grade-by-grade and narrows down the
pool of contracts/students in a two-step process. First, for each subgroup of students
with a sibling in a particular downstream grade, select the highest priority students; this
guarantees the feasibility of any selection in the second step. Second, out of the remain-
ing students (who may have siblings across various grades), select the highest priority
students.

More formally, for each school s, we define the sequential choice function of s. Each
school s considers grades sequentially according to a precedence order � where g � g′
means grade g will be processed before grade g′. We denote this choice function with
C�
s and for any given set of contracts Y , the chosen set is calculated as follows:

Step 0: Let Y 1 = Ys . Let gk �gk+1 for all k ∈ {1, 2, � � � , |G| −1}. Let Re�
s (Y ) = C�

s (Y ) = ∅.
Let q̄gks = q

gk
s for all k ∈ {1, 2, � � � , |G|}.

Step 1: Grade g1 selection. (Type determination) For each k > 1, let ak = i(Y 1 ) ∩
i(Yg1 ) ∩ i(Ygk ).

(Downstream feasibility) For each k > 1, if |ak| > q̄
gk
s , then we add

⋃
g∈γ(i)(i,

s, g) ∩Y 1 to Re�
s (Y ) such that |{j ∈ ak : j �g1

s i}| ≥ q̄
gk
s .

(Selection from remaining) Let Ȳ 1 = (Y 1 ∩Yg1 ) \ Re�
s (Y ). Let Cg1

s (Y ) = Ȳ ⊆
Ȳ 1 such that |Ȳ | = min{|Ȳ 1|, q̄g1

s }, and for each ( ī, i′ ) ∈ i(Ȳ ) × (i(Ȳ 1 ) \ i(Ȳ )),
ī �g1

s i′. Let Reg1
s (Y ) = (Y 1 ∩Yg1 ) \Cg1

s (Y ). Add
⋃

i∈i(C
g1
s (Y ))(Yi ∩Ys ) to C�

s (Y )

and add Reg1
s (Y ) ∪ (

⋃
i∈i(Re

g1
s (Y ))(Yi ∩Ys )) to Re�

s (Y ).
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(Update remaining students and capacities) Let Y 2 = Y 1 \ (C�
s (Y )∪Re�

s (Y ))
and q̄

gk
s = q

gk
s − |C�

s (Y ) ∩Ygk| for all k> 1.

In general, for k̄ > 1:

Step k̄: Grade gk̄ selection. (Type determination) For each k > k̄, let ak = i(Yk̄ ) ∩
i(Ygk̄ ) ∩ i(Ygk ).

(Downstream feasibility) For each k > k̄, if |ak| > q̄ks , then we add
⋃

g∈γ(i)(i,

s, g) ∩Yk̄ to Re�
s (Y ) such that |{j ∈ ak : j �gk̄

s i}| ≥ q̄
gk
s .

(Selection from remaining) Let Ȳ k̄ = (Yk̄ ∩Ygk̄ )\Re�
s (Y ). Let C

gk̄
s (Y ) = Ȳ ⊆

Ȳ k̄ such that |Ȳ | = min{|Ȳ k̄|, q̄
gk̄
s }, and for each ( ī, i′ ) ∈ i(Ȳ ) × (i(Ȳ k̄ ) \ i(Ȳ )),

ī �gk̄
s i′. Let Re

gk̄
s (Y ) = (Yk̄ ∩Ygk̄ ) \Cgk̄

s (Y ). Add
⋃

i∈i(C
g
k̄

s (Y ))
(Yi ∩Ys ) to C�

s (Y )

and add Re
gk̄
s (Y ) ∪ (

⋃
i∈i(Re

g
k̄

s (Y ))
(Yi ∩Ys )) to Re�

s (Y ).

(Update remaining students and capacities) Let Yk̄+1 = Yk̄ \ (C�
s (Y ) ∪

Re�
s (Y )) and q̄

gk
s = q

gk
s − |C�

s (Y ) ∩Ygk| for all k> k̄.

The process concludes after Step |G|.
Next, we turn to properties of assignments. An assignment Y ⊂X is stable if:

• (Individually rational) for all a ∈ I ∪ S, Ca(Y ) = Ya, and

• (Unblocked) there does not exist Z ⊂ X such that Z 
= ∅, Z ∩Y = ∅, |s(Z )| = 1, and
for all a ∈ i(Z ) ∪ s(Z ), Za ⊆ Ca(Y ∪Z ).

If there is such a Z ⊂ X satisfying the above, then we say that Z blocks Y (at this prob-
lem).

We define two properties of choice functions that are crucial to the existence of sta-
ble and strategy-proof mechanisms in the matching with contracts literature. The first
states that a contract y that is rejected from a menu of available contracts is still re-
jected if another contract y ′ is added to the menu. A choice function Ca satisfies sub-
stitutability if for all Y ⊂ X , and y, y ′ ∈ X\Y , y /∈ Ca(Y ∪ {y}) implies y /∈ Ca(Y ∪ {y, y ′}).
The second states that the number of contracts chosen (weakly) increases as the menu
size grows. A choice function Ca satisfies the Law of Aggregate Demand (LAD) if for all
Y ⊆ Y ′ ⊆ X we have |Ca(Y )| ≤ |Ca(Y ′ )|.

Proposition 2. For each i ∈ I, Ci satisfies LAD but not substitutability.

Proof. We start with LAD. Consider any subset of contracts Y ⊆ X . By definition, if
Ci(Y ) 
= ∅, then si(Y ) 
= ∅ and |Ci(Y )| = |γ(i)|. Hence, for any Y ⊂ Y ′, si(Y ′ ) 
= ∅, and
|Ci(Y ′ )| = |γ(i)|. That is, the parents’ choice functions satisfy LAD.

Next, we show that Ci is not substitutable via example. Let i be a parent with
s Pi s

′ and γ(i) = {1, 2}. Let Y = {(i, s, 1), (i, s′, 1), (i, s′, 2)} and Y ′ = Y ∪ {(i, s, 2)}. Then
Ci(Y ) = {(i, s′, 1), (i, s′, 2)} and Ci(Y ′ ) = {(i, s, 1), (i, s, 2)}. Hence, parent i’s choice func-
tion is not substitutable.

Proposition 3. If C�
s is the sequential choice function of s, then C�

s satisfies neither
substitutability nor LAD.
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Proof. We prove by example. Let G = {1, 2}. Let I1 = {i, k} and I2 = {i, j}. Let k�1
s i and

i �2
s j. For each g ∈ {1, 2}, qgs = 1. Let 1 � 2. Let Y = {(i, s, 1), (i, s, 2)}, Y ′ = Y ∪ {(k, s, 1)},

Y ′′ = Y ∪ {(j, s, 2)}, and Y ′′′ = Y ′′ ∪ {(k, s, 1)}. Then C�
s (Y ) = {(i, s, 1), (i, s, 2)}, C�

s (Y ′ ) =
{(k, s, 1)}, C�

s (Y ′′ ) = {(i, s, 1), (i, s, 2)}, and C�
s (Y ′′′ ) = {(k, s, 1), (j, s, 2)}. Since Y ⊂ Y ′

and |C�
s (Y )| > |C�

s (Y ′ )|, C�
s does not satisfy LAD. Since Y ′′ ⊂ Y ′′′, (j, s, 2) /∈ C�

s (Y ′′ ) and

(j, s, 2) ∈ C�
s (Y ′′′ ), C�

s is not substitutable.

We consider a problem where � is a precedence order, and each school s has a se-
quential choice function C�

s . Note that � is common across all schools. Despite the fact
that no school’s choice function is substitutable or satisfies LAD, we will show that there
is a stable and strategy-proof mechanism. This mechanism is analagous to the SDA� but
is written in the language of contracts; it operates by iteratively running the cumulative
offer process one grade at a time. The key point is that although no school has a choice
function satisfying substitutability or LAD across grades, each school’s effective choice
function when restricted to a specific grade is substitutable and satisfies LAD.

For each s ∈ S, each g ∈ G, and each grade-specific capacity vector q̂s = (q̂
g′
s )g′∈G,

let a component choice function for s with respect to g and q̂s be a mapping D
g, q̂s
s :

P(Ig ) → P(Ig ) that selects applicants from Ī ⊆ Ig as follows:

Step 1: For each g′ ∈ G\{g}, if the number of applicants from Ī ∩ Ig
′

is more than q̂
g′
s ,

then only the highest priority q̂
g′
s applicants in Ī ∩ Ig

′
according to �g

s are ten-
tatively kept and the rest are rejected.

Step 2: Among the unrejected ones in Ī in Step 1, accept the highest priority q̂
g
s appli-

cants according to �g
s .

Proposition 4. For each s ∈ S, each g ∈ G, and any capacity vector q̂s ∈ N
|G| , Dg, q̂s

s sat-
isfies both substitutability and LAD.

Proof. We start with LAD. Let Ī ⊂ J̄ ⊆ Ig. We compare D
g, q̂s
s (Ī ) and D

g, q̂s
s (J̄ ). We con-

sider the parents in Ī and J̄ who are not rejected in Step 1 of Dg, q̂s
s . By definition, the

number of parents who are not rejected in J̄ ∩ Ig
′

is weakly more than Ī ∩ Ig
′

for all
g′ ∈G \ {g}. Hence, the number of parents considered in Step 2 is weakly more when we

consider J̄ compared to Ī. Then |Dg, q̂s
s (Ī )| ≤ |Dg, q̂s

s (J̄ )|.
Next, we show substitutability. Consider any subset of students Ī ⊂ Ig. Let i /∈

D
g, q̂s
s (Ī ). Then, when D

g, q̂s
s (Ī ) is considered, i is rejected in either Step 1 or Step 2. Sup-

pose i is rejected in Step 1. Then we consider D
g, q̂s
s (Ī ∪ {j}) where j /∈ Ī. By definition,

there are at least q̂
g′
s parents in (Ī ∪ {j}) ∩ Ig

′
with higher priority than i ∈ Ig

′
accord-

ing to �g
s . Hence, i /∈ D

g, q̂s
s (Ī ∪ {j}). Now, suppose i is rejected in Step 2. Then all par-

ents in D
g, q̂s
s (Ī ) have higher priority than i. By LAD and the definition, there will be at

least q̂gs parents in Step 2 with higher priority than i when we consider Ī ∪ {j}. Hence,

i /∈D
g, q̂s
s (Ī ∪ {j}).
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For each precedence order �, we will now define the sequential cumulative offer
mechanism with respect to �, SCO�.35 We will determine an assignment as a sequence
of many-to-one matching with contracts problems where we process grades in order �.

Let g1 � g2 � · · · � gn. Consider the subproblem at grade g1—parents Ig1 , schools
S, preference profile Pg1 = (Pi )i∈Ig1 , capacity profile q, and priority profile �g1= (�g1

s

)s∈S . Treating this as a many-to-one matching problem, run the cumulative offer process
where each school s uses the component choice function D

g1,qs
s . Let μg1 be the resulting

outcome, that is, μg1 : Ig1 → S∪∅ —the interpretation being that for each i, if μg1 (i) 
= ∅,
then i is assigned at each of the grades γ(i) at school μg1 (i). Then the contracts including
i and μg1 (i) are selected as long as μg1 (i) ∈ S.

We revise down capacities for each other grade. For each school s ∈ S, and grade

g′ ∈G\{g1}, let the capacity now be q̂
g′
s = q

g′
s − |{i ∈ Ig1 : μg1 (i) = s and g′ ∈ γ(i)}|.

Consider the subproblem at grade g2—Ig2\Ig1 , schools S, preference profile Pg2 =
(Pi )i∈Ig2 \Ig1 , capacity profile q̂ = (q̂

g′
s )s∈S,g′∈G\{g1}, and priority profile �g2= (�g2

s )s∈S .
Treating this as a many-to-one matching problem, run the cumulative offer process

where each school s uses the component choice function D
g2, q̂s
s . Let μg2 be the resulting

outcome.
Repeat this procedure for the rest of the grades to arrive at (μg )g∈G. Let γ̂(i) be the

�-earliest grade in γ(i). Finally, let SCO� for this problem select

⋃
i∈I:

μγ̂(i)(i) 
=∅

⋃
g∈γ(i)

(
i, μγ̂(i)(i), g

)
.

Theorem 3. Consider an arbitrary precedence order �. If each school s has the sequential
choice function C�

s , then the SCO� mechanism is stable and strategy-proof.

Proof. Let (I, S, G, q, �, P ) be a problem, and g1 �g2 � · · · �gn. Let μ be the assignment
recommended by SCO� for this problem.

Stability: By definition, μ is individually rational. Suppose by contradiction that
there is Z ⊆X such that Z blocks μ. First, observe that in the many-to-one subproblem
consisting of Ig1 , by the substitutability of each school’s component choice function and
Hatfield and Milgrom (2005), the outcome for the subproblem at g1, i.e. the assignment
of parents to schools, is not blocked by parents in Ig1 . Let the �-earliest grade in g(Z )
be g1. Since for each s ∈ S, C�

s chooses contracts related to parents in Ig1 first, Z′ =
Zg1 ∪ {(i, s, g) ∈ Z : i ∈ i(Zg1 )} is chosen in Step 1 for C�

s . This implies that in the many-
to-one subproblem at grade g1, i(Z′ ) blocks the outcome for the subproblem at g1—a
contradiction. So the �-earliest grade in g(Z ) is not g1.

Let the �-earliest grade in g(Z ) be g2. We can repeat the reasoning above: Since for
each s ∈ S, C�

s chooses contracts related to parents in Ig2 \ Ig1 before any others in Z,

35This mechanism is the analogue of the SDA� mechanism for the matching with contracts framework.
We refer to it as a cumulative offer mechanism instead of the DA mechanism in order to follow the naming
conventions in this literature.
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Z′ = Zg2 ∪ {(i, s, g) ∈ Z : i ∈ i(Zg2 )} is chosen in Step 2 for C�
s . This implies that in the

many-to-one subproblem at grade g2, i(Z′ ) blocks the outcome for the subproblem at
g2—a contradiction to the fact that this outcome is not blocked by parents in Ig2 \ Ig1 .

By repetition of this reasoning and the finiteness of G, we conclude that there is no
such Z.

Strategy-proofness: Observe that each parent i is only involved in the construction
of μ at her �-earliest grade in γ(i), say g. At the processing of grade g, i’s report does not
affect the assignment of grades processed earlier—i can only affect the outcome for the
subproblem at grade g. By substitutability and LAD of each school’s component choice
function and Hatfield and Milgrom (2005), the cumulative offer process mechanism is
strategy-proof and i cannot benefit by misreporting.

This result is surprising, since neither the parents’ nor the schools’ choice functions
satisfy substitutability. This is in stark contrast to Hatfield and Kominers (2017), where
they show that the substitutable domain is a maximal domain to guarantee the exis-
tence of a stable assignment. The first key difference is that the grade and sibling struc-
ture forces schools’ preferences to have such complementarities; hence, each schools’
sequential choice function falls entirely outside the substitutable domain. The second
key difference is that in our environment, while priorities vary, the grade and sibling
structure is uniform across schools, and thus the exact same types of resulting comple-
mentarities appear in each school’s choices. This uniform structure is crucial for our
result.
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