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Choosing what to pay attention to

Chad Fulton
Research and Statistics, Federal Reserve Board of Governors

This paper studies static rational inattention problems with multiple actions and
multiple shocks. We solve for the optimal signals chosen by agents and provide
tools to interpret information processing. By relaxing restrictive assumptions pre-
viously used to gain tractability, we allow agents more latitude to choose what to
pay attention to. Our applications examine the pricing problem of a monopolist
who sells in multiple markets and the portfolio problem of an investor who can
invest in multiple assets. The more general models that our methods allow us to
solve yield new results. We show conditions under which the multimarket monop-
olist would optimally choose a uniform pricing strategy, and we show how opti-
mal information processing by rationally inattentive investors can be interpreted
as learning about the Sharpe ratio of a diversified portfolio.

Keywords. Rational inattention, information acquisition, price discrimination,
portfolio choice.

JEL classification. D81, D83, G11.

1. Introduction

Economic models with rational inattention incorporate agents who are not perfectly in-
formed about all freely available data, but who can allocate limited information process-
ing capacity to learn about those aspects that are relevant to them. Traditional mod-
els with imperfect information also involve agents who are not perfectly informed, but
the information available to them—usually formalized through a set of signals about
relevant economic variables, each contaminated by some noise— is typically taken as
given rather than as chosen by the agent. By contrast, rational inattention gives agents
fine control over what they pay attention to—essentially what signals to view—and how
much attention they allocate—essentially controlling the variance of the contaminating
noise.

To fix ideas, we start by presenting the basic structure of the kind of rational inat-
tention model that we will focus on here. An agent is tasked with choosing an action x,
given some economic shocks α and a utility function that depends on both, u(x, α). The
agent has some prior uncertainty about the shocks, P− ≡ Var(α), but can choose to learn
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about them in order to reduce their posterior uncertainty. In our models, optimal learn-
ing can be interpreted as the observation of a signal y, so that posterior uncertainty can
be represented as P+ ≡ Var(α | y ). The rational inattention tradeoff is that reduced pos-
terior uncertainty about the shocks—also interpreted as the observation of less-noisy
signals—allows the agent to better tune their action to achieve higher expected utility,
but processing information is costly. The cases we consider have Gaussian shocks and
quadratic or exponential utility.

In this paper, we solve the problems in three steps, by (a) determining the optimal
level of posterior uncertainty P+ (in Propositions 2–3); (b) identifying a corresponding
optimal signal vector y (using Proposition 1); and (c) determining the optimal action
x conditional on the information received (in Proposition 4). However, the generality
of the problems that we consider—allowing for multiple actions, multiple shocks, and
multiple signals, and without imposing any independence assumptions—introduces
complementarities in information acquisition that must be carefully handled. We will
show that these complementarities imply that agents optimally prefer to process infor-
mation about combinations of the economic shocks and, moreover, that they may prefer
to receive fewer signals than there are shocks. To handle the resulting nonuniqueness
and (often) reduced dimension of optimal signals (results introduced in Lemmas 1 and
2), we show how to construct a unique “canonical” signal (in Lemma 2) that always (a)
reflects optimal information processing by agents, and (b) is straightforward to interpret
in terms of both what agents choose pay attention to as well as how much attention they
pay.

The first application we consider is price setting by an inattentive multimarket mo-
nopolist. Their perfect information strategy is to employ price discrimination to extract
as much surplus as possible, but a growing literature on behavioral industrial organiza-
tion, surveyed in Ellison (2006), has begun exploring various deviations from this base-
line by incorporating boundedly rational agents. In our model, firms must balance the
costs of processing information against increases in profits arising from that informa-
tion. We show that information-constrained firms may optimally choose to collect in-
formation only about aggregate conditions, thus giving up the option of price discrim-
ination. This application is motivated by empirical work showing substantial increases
over the past few decades in data collection by firms about their consumers, and by re-
cent experiments of firms in “dynamic pricing,” in which consumer characteristics (such
as purchasing history) are used to offer a single good to different consumers at different
prices (details about these phenomena can be found in Armstrong (2005) and Taylor
(2004)).

The second application we consider is a standard portfolio selection problem, but by
a rationally inattentive investor. The rational inattention approach to this problem was
pioneered by Van Nieuwerburgh and Veldkamp (2010), who impose a fixed set of signals.
This assumption eliminates much of the choice of what to pay attention to, since in their
model, each signal must be about the returns of a single asset, and the agent cannot
choose to pay attention to signals about portfolios of assets. We extend their model to
allow agents to choose which portfolios to learn about. This has a significant impact on
results: whereas they find that portfolios chosen by rationally inattentive investors will
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be underdiversified, in our setting investors will choose to view a signal that allows them
to maintain a diversified portfolio. At the same time, we confirm in our setting much of
the intuition they develop, so that our models represent complementary approaches.1

The rest of the paper proceeds as follows. In Section 2, we develop two economic
models with rationally inattentive agents, and explain how our approach builds on the
existing literature. In Section 3, we develop core attention allocation problems that stem
from these economic models. In Section 4, we solve the rational inattention problems
and describe optimal behavior and information processing by agents. Our first applica-
tion to price-setting is used as a running example throughout the paper, while in Sec-
tion 5 we solve the portfolio choice problem and describe information processing by
inattentive investors. Finally, in Section 6 we describe how our results fit into dynamic
problems, and in Section 7, we conclude.

2. Model

We build on two strands of the rational inattention literature that is focused on static
problems with Gaussian shocks. The first focuses on problems with quadratic utility
(or log-quadratic approximations to more general utility functions) and includes work
on price-setting, optimal monetary policy, and consumption dynamics. The second fo-
cuses on portfolio choice in the familiar exponential utility case. In each setting, while
prior work has solved special cases of the underlying rational inattention problem, the
contribution of this paper will be to first extend the analytic solution to a more general
formulation, and then second to show how to understand what agents are paying atten-
tion to. We now develop the basic problems for each case and position the contribution
of this paper in the existing literature.

2.1 Quadratic payoffs

Rational inattention models with quadratic utility and Gaussian shocks have proved to
be very popular, both because they are mathematically tractable and also because they
produce results that make them comparable to models with signal extraction problems.2

Nonetheless, even this class of problems is sufficiently difficult to solve that analytic
solutions have so far remained limited. Our goals are to expand the class of models that
can be solved and to provide new tools to interpret information processing by agents.

The model we study begins with some relevant state of the world—a set of fun-
damental economic shocks, for example, modeled as an exogenous random vector α,
drawn from the n-dimensional Gaussian distribution N (a−, P− ), where a− ∈ Rn is the

1In a slightly different setup, Mondria (2010) also notes that when agents are allowed to choose signals
they will maintain a diversified portfolio. As described in more detail below, we build on his work by con-
sidering a more general model and generating sharper results, particularly in terms of intuition about the
chosen signals.

2This literature is now quite large, and has applied rational inattention to study, for example, consump-
tion and permanent income (Sims (2003), Luo (2008)), price-setting (Mackowiak and Wiederholt (2009),
Matejka (2016)), business cycle dynamics (Mackowiak and Wiederholt (2015)), and optimal monetary pol-
icy (Paciello and Wiederholt (2014)).
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prior mean and P− is the n×n prior covariance matrix. Our agent takes an action x ∈Rm,
and receives a payoff u(x, α). Following Sims (2003), we model our agents as rationally
inattentive: processing information about the shocks α allows the action x to depend
on their realization, at least to some extent, but information processing is costly. Thus,
agents have at best imperfect information, and they can only maximize expected pay-
offs, E[u(x, α)]. In the simplest univariate case, u(x, α) = −1

2 (x − α)2, and a rationally
inattentive agent’s goal would be to make their action as close as possible, on average,
to the shock.3 In doing so, they face a trade-off: increased attention implies smaller ex-
pected deviations, but is more costly. Here, we are interested in studying how agents
choose what to pay attention to between multiple shocks, and so we consider the more
general quadratic form

u(x, α) = −1
2
x′Mx+ c′x+ b

where M is an m × m symmetric positive definite matrix, c = Cα + c0, C is an m × n

matrix, c0 is an n × 1 vector, and b ∈ R. This allows agents to prioritize some variables
over others, and accommodates interaction effects. More generally, this could be viewed
as a second-order approximation to a more general payoff function.

To specify the costs from information processing, we follow Sims (2003) in quanti-
fying information in terms of “mutual information,” which measures the reduction in
uncertainty about the shocks α. When the new information takes the form of a signal
vector y, this is denoted I(α, y ), or simply κ. This literature has primarily focused on
two mechanisms of costly attention. In the first, there is some fixed level of available
capacity that cannot be exceeded, so that κ ≡ I(α, y ) ≤ κ∗. In the second, any amount
of information processing capacity can be accessed at a fixed marginal cost, so that the
agent pays f (κ) = λκ.

Before formally stating the problem that we will consider in this paper, we introduce
several results from Sims (2003) that will considerably simplify its formulation.4 First,
he showed that in this setting, when the agent is optimally processing information, it is
as if she is viewing a noisy signal y ∈Rr of the form

y = Zα+ ε ε ∼ N (0, �) (1)

where Z is an r × n matrix and � is an r × r positive definite matrix. The agent’s infor-
mation processing problem thus amounts to the selection of the pair (Z, �) that deter-
mines a particular signal y, and the problem includes the selection of r, the dimension
of the signal. This considerably simplifies matters, as typical Bayesian updating yields
an analytic form for the posterior

α | y ∼ N (a+, P+ ) (2)

a+ = a− +K(y −Za− ) (3)

P+ = (
P−1− +Z′�−1Z

)−1
(4)

3This example is often referred to as a “tracking problem.”
4A more general formulation of the basic rational inattention problem can be found in Section 3.1 of

Sims (2010).
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where K = P−Z′(ZP−Z′ + �)−1 is often referred to in dynamic settings as the Kalman
gain. As a result of this Gaussian posterior, the quantity of information processed
by the agent (measured in nats) takes the following particularly simple form I(α, y ) =
0.5(ln |P−| − ln |P+|).5

The second important result from Sims (2003) is that the optimal action taken by
a rationally inattentive agent in this setting will be of the form x+ = E[x∗ | y], where
x∗ =M−1(Cα+ c0 ) is the perfect information solution. This is the usual certainty equiv-
alence result that is obtained with an exogenous Gaussian signal and a quadratic ob-
jective function. With this, we can rewrite E[u(x+, α)] = −0.5E[(x∗ − E[x∗ | y])′M(x∗ −
E[x∗ | y])] + ζ, where ζ ≡ b+ 0.5E[x∗′Mx∗] does not depend on the signal y. Combining
all of these results with the information constraint and dropping the constant term ζ,
we arrive at the agent’s problem.

Problem 1.

max
Z∈Mr,n,�∈Mr

−1
2
E

[(
x∗ −E

[
x∗ | y])′

M
(
x∗ −E

[
x∗ | y])] − λκ (5)

subject to

x∗ = M−1(Cα+ c0 ) perfect information solution (6)

y =Zα+ ε signal vector (7)

ε ∼ N (0, �) noise due to inattention (8)

� � 0 “no forgetting” constraint (9)

κ≡ I(α, y ) = 1
2

(
ln |P−| − ln |P+|) information processed (10)

P−1+ = P−1− +Z′�−1Z Bayesian updating (11)

Our notation follows Horn and Johnson (2012), so that Mm,n is the set of m-by-n ma-
trices, Mn is the set of n-by-n matrices, and A � B denotes A− B positive definite. This
formulation is written with the fixed marginal cost of attention in mind, but it can also
accommodate the fixed capacity approach by considering λ as a Lagrange multiplier on
the constraint κ ≤ κ∗. Our application to price-setting by a multimarket monopolist,
below revisits the construction of this kind of problem in a concrete setting.

While the statement of this problem is essentially due to the seminal work of Sims
(2003) that introduced rational inattention problems, its solution was not provided
there, and the subsequent literature, which we briefly review below, has only focused
on certain special cases of this problem. Here, we begin by providing a general solu-
tion to this problem, and then we show how to use the solution to examine what agents
choose to pay attention to.

The solution that we provide accommodates problems with the following charac-
teristics: (1) shocks α with any dimension n; (2) an action x with any dimension m; (3)

5See, for example, Sims (2003).
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signal vectors y with any dimension r; (4) correlation between the shocks α (so that P−
is not restricted to be, e.g., diagonal) and in information collection (so that Z and � are
not restricted to be diagonal); and (5) an information constraint modeled in terms of
either a fixed capacity or a fixed marginal cost of attention. Thus, the problems that can
be solved using our tools go beyond those available in the existing literature, which we
now briefly review.

Mackowiak and Wiederholt (2009), which we will refer to as MW, were among the
first to introduce rational inattention in a general equilibrium macroeconomic model.
While their overall model is more complex, it includes a core attention problem that is
in the form of Problem 1 with m= 1, n = 2, P− diagonal, and a fixed capacity constraint.
They solve this problem in two settings. In their baseline model, they impose indepen-
dence for signals (so that Z and � must be diagonal) and show that the agent will choose
two signals, so that r = 2. In an extension, they remove this assumption and show that
the agent will choose a single signal, so that r = 1, and that this signal is of the form
“perfect information solution plus noise.”6

Paciello and Wiederholt (2014), hereafter PW, consider optimal monetary policy with
rationally inattentive firms. Firms face one or two shocks that are assumed to be inde-
pendent, and choose the price of their good. Thus, here, similar to MW, m = 1 and n ≤ 2.
Unlike MW, here firms can access information processing capacity at the cost f (κ). PW
use the fixed marginal costs used in Problem 1, but also introduce a second cost function
that introduces additional convexity, which we do not consider. Similar to the results of
MW, PW show that when signals are assumed to be independent, agents will choose to
observe as many signals as there are shocks, so that r = n, while when this assumption
is not imposed, agents will choose only a single signal, so that r = 1.7

Each of these papers provides analytic solutions to models that featured at most two
shocks, assumed to be independent, and a one-dimensional action, and more general
results have not been available. For example, Sims (2010) only slightly generalizes PW
and MW by increasing the number of shocks to n > 2 and is no longer able to present
an analytic solution.8 Analytic solutions to yet more general versions of the problem, for
example, those including additional choice variables and prior correlation, are similarly
not available in the literature. One technical contribution of this paper is to lift these
restrictions while still allowing an analytic solution.

In independent and concurrent work, Koszegi and Matejka (2020) and Dewan (2019)
formulate static rational inattention problem that are similar to Problem 1. While we
cover some similar ground, there are differences. First, Koszegi and Matejka (2020) focus
on implications for consumption decisions, while Dewan (2019) subsequently consid-
ers an extension to Laplacian priors with mean absolute error loss. We focus on using

6Mackowiak and Wiederholt (2009) solve the attention allocation decision in the context of a general
equilibrium model, and they also provide an analytic solution when the two shocks follow AR(1) processes.

7Paciello and Wiederholt (2014) also solve this attention allocation decision in a larger equilibrium setup.
Additionally, they consider the case that the noise in the signals (ε in our setup) is correlated across firms,
but not the case that the shocks (α in our setup) are correlated.

8In particular, Sims (2010) describes the form that the posterior covariance matrix for the shocks (P+ in
our setup) must take, but can only evaluate it numerically.
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the solution to provide intuition about what agents pay attention to. In addition to the
solutions with quadratic payoffs, we also advance a second strand of the literature that
considers portfolio choice with exponential utility, by providing an analytic solution also
in this case and again describing what rationally inattentive investors pay attention to.9

There are also technical differences between our approaches. First, in order to fo-
cus on the effect of preferences, Koszegi and Matejka (2020) explicitly restrict them-
selves to the case in which the shocks α are uncorrelated and with common variance.
In our terminology, this restricts P− = σ2I. As we will show, the key difficulty in solv-
ing these problems is handling complementarities in information acquisition, and their
restriction precludes an examination of the effect of an important source of comple-
mentarities. This is because if shocks are correlated, then information about one shock
can provide information about other shocks. The methods that we develop here are
required to solve for and interpret the behavior of rationally inattentive agents in the
general case with these complementarities. Second, our setup allows us to provide solu-
tions for both the fixed marginal cost and fixed capacity formulations, while Koszegi and
Matejka (2020) focuses only on the fixed marginal cost case and Dewan (2019) focuses
only on the fixed capacity case.

There has also been recent work advancing dynamic rational inattention problems
with quadratic loss. In the univariate case, Mackowiak et al. (2018) provide analytic so-
lutions for a univariate shock that follows an ARMA(p,q) process. In the multivariate
case, Miao et al. (2019) compute solutions using semidefinite programming methods
and Afrouzi and Yang (2019) computes a solution based on first-order conditions. Fi-
nally, there have been an increasing number of papers that describe rational inattention
problems in terms of the choice of posteriors, as we do here, with Caplin et al. (2019)
and Miao and Xing (2020) as two recent examples.

2.1.1 Multimarket monopolist Our first application considers price-setting by a ratio-
nally inattentive multimarket monopolist. The typical perfect information model as-
sumes that the firm can identify distinct groups with differing demand functions, and
can prevent reselling between the groups. The well-known result is that the monopo-
list optimally charges different prices in each market so as to extract as much surplus as
possible. We will relax the assumption of perfect information, instead assuming that the
firm must process information about demand in each market in order to discriminate
between them, and show that accounting for the firm’s optimal attention allocation can
imply a wide variety of pricing strategies, including no price discrimination at all.

In this section, we begin by setting up and solving the standard problem faced by a
multimarket monopolist in the special cases of perfect information and imperfect infor-
mation with exogenous information. We then show how the rational inattention prob-
lem arises as a natural extension with endogenous information acquisition.

Suppose that a firm faces two markets with linear demand curves qi(pi ) = 	i −mipi

for i = 1, 2, and constant marginal costs of production γ. The firm’s profit function is
then, π(p) = ∑2

i=1(pi − γ)(	i − mipi ), which is a quadratic function in the price vector

9Another recent contribution to the rational inattention literature is Kamdar (2018), which uses the
method of Koszegi and Matejka (2020) to study consumer sentiment.
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p = (p1, p2 )′ ∈ R2++. We assume that the monopolist is inattentive to the levels of de-
mand (	1, 	2 ) and the marginal cost γ, which we model as jointly normally distributed,
so that (γ, 	1, 	2 )′ ≡ α ∼N (a−, P− ).

Step 1: Perfect information. If the firm knows α with certainty, the problem is stan-
dard, maxp∈R2++ π(p), with profit function

π(p) = −1
2
p′Mp+ α′C ′p+ b

M =
[

2m1 0
0 2m2

]
C =

[
m1 1 0
m2 0 1

]
b = −γ(	1 + 	2 )

The solution can be easily found from the first-order condition, p∗ = M−1Cα. Optimal
prices in each market are then p∗

i = 0.5(γ + 	i/mi ), and so the monopolist will price-
discriminate unless the markets have identical demand curves.

Step 2: Exogenous information. Suppose now that the firm does not observe α, but
does have access to an exogenous signal y = Zα + ε, of the form in equation (1). The
firm’s problem is then maxp∈R2++ E[π(p) | y], and because the objective is quadratic and
the shock is Gaussian, we can again find the solution from the first-order condition.
This yields the certainty equivalence result that the optimal price is p+ = E[p∗ | y]. The
firm will try to replicate the perfect information solution as best as possible, given the
information available to them. Since the signal is exogenous, there is little more than
can be said about this solution in general.

Step 3: Rational inattention. Rationally inattention allows us to endogenize infor-
mation by allowing firms to choose which signal to receive, subject to information pro-
cessing costs. A more precise signal can increase expected profits, but requires more
attention. As already described, from Sims (2003) we already know that, in this case, the
optimal signal chosen by the agent will be of the form of equation (1), and we also know
that the optimal policy will be p+ = E[p∗ | y]. Thus, the rational inattention problem
generalizes the exogenous information case by adding an additional decision: the firm
must select the nature of the signal by choosing Z and �. Following the same steps as in
the general case, the firm’s rational inattention problem can now be stated.

Problem 2.

max
Z∈Mr,n,�∈Mr

−1
2
E

[(
p∗ −E

[
p∗ | y])′

M
(
p∗ −E

[
p∗ | y])] − λκ

subject to p∗ =M−1Cα and equations (7)–(11).

Of course, this is simply a specialization of Problem 1 to the case of the problem
faced by the multimarket monopolist. The firm’s problem is to select a signal that allows
them to set prices to be as close as possible, in a least squares sense, to the perfect infor-
mation prices p∗. However, through the influence of the weight matrix M , they are more
concerned about deviations in markets with more elastic demand. This makes sense: if
demand is more sensitive to change in prices, it is more important for the firm to learn
about the optimal price.
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This example has already gone beyond the problems with analytic solutions con-
sidered in the previous literature. First, it includes three shocks (n = 3) and two choice
variables (m = 2), and, second, we have not put any restrictions on the prior covariance
matrix P−, so that the shocks may be correlated. Moreover, while we have focused on
an example with two markets to simplify the exposition, generalizing this example to
an arbitrary number of markets would be entirely straightforward. Finally, we have not
imposed the independence assumption, so that firms optimize both in terms of what to
pay attention to and also how much attention to pay.

To illustrate the variety of situations that can arise, we parameterize

P− = 4σ2

⎡
⎢⎣1 0 0

0 1 ρ

0 ρ 1

⎤
⎥⎦

and set m1 = 0.5. We will investigate how the solution differs for various values of m2, σ2,
and ρ. Our baseline case will have identically sloped demand curves, so that m2 = m1 =
0.5, and uncorrelated demand, so that ρ = 0. To avoid complicating the exposition, we
will assume throughout that the firm has no prior information differentiating the level
of demand between markets, so that E[	1] =E[	2], but we note that this is easy to relax.

2.2 Portfolio choice

The second strand of the literature that we build on considers investment under limited
attention. This literature has extended the standard portfolio choice problem with ex-
ponential utility and exogenous information to include signal selection through rational
inattention. Since payoffs are exponential, the problem does not fit in the framework of
the previous section, and so different techniques are required. Similar to the quadratic
case, however, the difficulty of these models has so-far limited analytic solutions to spe-
cial cases. Our goal will again be to expand the class of models that can be solved and
provide tools to aid interpretation of results.

Portfolio choice problems with rationally inattentive investors were pioneered by
Van Nieuwerburgh and Veldkamp (2010), which we will refer to as VV, and Mondria
(2010), with the former considering a partial equilibrium setting and the latter a general
equilibrium setting. To focus on the rational inattention problem itself, we will remain
in the partial equilibrium setting, and so our model setup follows VV closely. Where we
build on their work is in allowing agents to choose more general signals, since VV impose
in their model essentially the independence assumption of Mackowiak and Wiederholt
(2009). Notably, Mondria (2010) also relaxed the independence assumption, but was
limited to the case with two assets with independent returns. Thus, our contribution
can alternatively be understood as extending Mondria (2010) to allow for an arbitrary
number of assets with correlated returns.10 After we specify the model, we provide a
more detailed comparison with this literature.

10Even though we consider the partial equilibrium case here, the same tools can be used to solve the
more general problem considered by Mondria (2010). In a previous version of this paper, we show how to
do this, solving the general equilibrium problem in which asset prices are not held fixed.
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We consider the problem of an investor tasked with constructing an optimal portfo-
lio among n risky assets with uncertain returns α ∼ N (a−, P− ), given one riskless asset
with known return r. We assume that the investor is able to allocate attention to obtain
information about the realization of the risky assets. The model consists of two stages.
In the first stage, the investor solves a rational inattention problem to optimally process
information about asset returns, and in the second stage the investor solves a portfolio
choice problem conditional on the information collected during the first stage.

The second stage is a standard portfolio optimization problem with exponential util-
ity. Taking as given initial wealth ω0, the risk-free rate r, a vector of asset prices p, and
a signal y about asset returns, the investor must choose a portfolio x of risky assets, in
order to maxx∈Rn E[−exp{−ρω}|y] for a given signal y, subject to ω = ω0r + x′(α − pr),
where ρ is a parameter governing risk aversion. The vector e = α−pr describes the “ex-
cess returns” of the risky assets over an equivalent investment in the riskless asset. In
classic versions of this model, the signal was assumed to be exogenous, while in this
version, it is chosen by the investor in the first stage.

If the first stage yields a signal that of the form y = Zα + ε with ε ∼ N(0, �), as in
the quadratic case, equation (1), then the investor’s posterior beliefs about asset returns
would be Gaussian, α | y ∼ N(a+, P+ ), as in equation (2). The solution to the second
stage would then be entirely standard, x+ = 1

ρP
−1+ (E[α | y] − pr). Broadly speaking, the

investor would choose to hold larger quantities of assets whose returns have greater ex-
pected value and are less uncertain. Unfortunately, it turns out that the observation of
a signal of this form does not represent optimal information processing by the agent, as
demonstrated in Jung et al. (2019). Instead, outside the convenient quadratic Gaussian
case, fully optimal solutions must be obtained numerically, and attention allocation is
no longer easy to work with.11 As a result, in order to maintain tractability, most the
literature on portfolio choice problems with rationally inattentive investors, aside from
Jung et al. (2019), has assumed that agents observe a signal of the form of equation (1),
and we maintain this assumption here. Thus, while this paper advances this literature
by relaxing restrictions on how agents may allocate attention in an important direction,
we still impose some restrictions to ensure a tractable model.

The first stage rational inattention problem is then to choose the pair (Z, �) that
determines the signal y, subject to a constraint on information processing.12

Problem 3.

max
Z∈Mr,n,�∈Mr

E

[
ρE[ω | y] − ρ2

2
Var(ω | y )

]
− λκ (12)

11For example, in many problems with nonquadratic loss or non-Gaussian shocks, including the port-
folio choice problem, agents may prefer to receive discretely distributed signals. While this makes models
more difficult to work with, Matejka (2016) shows that this feature can explain prices that only move be-
tween several fixed values.

12The “mean-variance” form of the objective function presented in Problem 3 can be derived from the
maximization of expected utility in the first stage by assuming that investors have a preference for the early
resolution of uncertainty, as in Van Nieuwerburgh and Veldkamp (2010) and Mondria (2010).
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where

ω=ω0r+ x′+(α−pr) end of period wealth (13)

x+ = 1
ρ
P−1+

(
E[α|y] −pr

)
optimal portfolio (14)

and subject to equations (7)–(11).

Each element of the signal vector provides information about the returns of a partic-
ular portfolio (i.e., linear combination) of assets, and intuitively there are two aspects to
the investor’s problem. First, for a signal about any particular portfolio, increased pre-
cision reduces the investor’s risk but requires additional attention. Second, the agent
must select which portfolios they should optimally learn about.

Van Nieuwerburgh and Veldkamp (2010) study this problem, but they require that
each signal provides information about only a single asset. This eliminates part of the
investor’s problem, since they no longer choose which portfolios to learn about. We
extend their model by allowing for this choice.13

Mondria (2010) studies a general equilibrium version of this problem, in which the
vector of asset prices p is determined in equilibrium rather than taken as given, and
similarly allows agents to choose signals that contain information about portfolios of
assets. To maintain tractability and be able to compute a closed-form solution, he is
limited to only two assets, with independent returns, and he shows that investors choose
to observe a signal that contains information about both assets. We extend this result to
three-or-more assets with potentially correlated returns.14

The literature on rational inattention portfolio choice problems has thus faced es-
sentially the same constraints on analytic solutions as has the macroeconomic ratio-
nal inattention literature with quadratic payoffs: only two shocks and some restriction
on dependence (either the shocks, the signals, or both). We lift these restrictions and
present both a general solution and tools for interpreting information processing.

3. Core rational inattention problems

In this section, we start by noting an issue that arises with the problems formulated
in the previous section: they do not have unique solutions. This makes them difficult
to work with, and so our next step is to reformulate them into what we call the “core
rational inattention problems,” which do not suffer from this issue. Finally, we show how
the solution to each core problem is linked to a set of solutions to the original problems.

13Van Nieuwerburgh and Veldkamp (2010) also explore other versions of the problem that we do not
consider here, including using an alternative (CRRA) preference specification and an alternative (additive)
information cost function.

14More recently, Kacperczyk et al. (2016) consider a similar model to that of Mondria (2010) with more
than two assets, but their analysis takes the form of the signal vector as given, and so they do not solve the
full rational inattention problem for the optimal signal.
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3.1 Nonuniqueness of optimal signals

Lemma 1. There is no unique solution to Problems 1, 2, or 3.

Proof. All proofs are provided in the Appendix.

It is straightforward to illustrate this result using the baseline case of the multimarket
monopolist problem, and we will do so by presenting several signals that could each
represent optimal information processing. To avoid digressing, we simply assert these
results for now, though we prove them later.

A solution to this problem turns out to be a noisy signal of the optimal average price
across markets, p̄∗ ≡ 0.5(p∗

1 + p∗
2 ), and the demand differential between markets, 	̃ ≡

	1 − 	2. This signal can be written

yr =
[
p̄∗
	̃

]
+ εr =

⎡
⎣1

2
1
2

1
2

0 1 −1

⎤
⎦α+ εr , εr ∼ N

(
0,

[
σ2

1 0
0 σ2

2

])

for some scalars σ2
1 and σ2

2 . For the moment, we will assume these are both finite. A triv-
ial example of a second optimal signal is any scalar multiple of this signal, for example
y = 2yr . This alternative signal still satisfies the problem’s constraints, requires the same
information processing capacity (see equation (10)), and leads to an identical posterior
distribution (see equations (2)–(4)).

There are more interesting alternative signals that also represent optimal informa-
tion processing. For example, a signal of the form “perfect information solution plus
noise,” defined to be

yp =
⎡
⎢⎣1

1
2

1 −1
2

⎤
⎥⎦ yr = p∗ + εp, εp ∼ N

(
0,

⎡
⎢⎢⎣σ2

1 + σ2
2

4
σ2

1 − σ2
2

4

σ2
1 − σ2

2

4
σ2

1 + σ2
2

4

⎤
⎥⎥⎦

)

can also be a solution to this problem. In this case, since yp and yr are related by an
invertible linear transformation, if one signal is observed then the other signal can be
losslessly recovered. Intuitively, these signals convey the same information, so if one of
them is optimal, the other must also be. A similar analysis shows that there is no optimal
signal in terms of the fundamental shocks, yf = α + ε, because there is no nonsingular
transformation that would relate yf to the optimal signal yp.

There is an important complication that arises as information costs rise. When in-
formation costs are low enough, the agent will observe both elements of the signal yr ,
and each variance term will correspondingly be finite. However, as costs rise, we will
show that at some point the agent will stop observing information about the demand
differential, which has the effect of sending σ2

2 → ∞. The effect on yr or the alternative
signal y = 2yr is straightforward, as this simply implies that agent stops observing the
second element of each, but this is not true of the signal yp. Instead, once information
costs are high enough, there ceases to be an optimal signal of the form yp. Intuitively,
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this is because at this point the firm wishes to stop collecting information about the de-
mand differential, but a signal about perfect information prices cannot be constructed
without this information.

There are three key points to take away from this example. First, we have illustrated
how multiple optimal signals can occur, both trivial and nontrivial. Second, we have
shown that some signals, such as yr , are in a sense more useful than others, such as yp,
for example, in how they accommodate changes in information costs. This will be im-
portant as we develop the solution to the problem. Finally, this example shows it is not
possible to always focus on signals of the form “perfect information solution plus noise”
or “fundamental shocks plus noise,” even though these have been correct solutions to
special cases considered in the previous literature.

In general, this nonuniqueness presents a difficulty for solving problems formulated
in terms of choosing a signal. This is true even though the nonuniqueness is in a sense
trivial—as each of these equivalent signals is ex ante expected to yield the same pos-
terior information set—because there is not even an obvious normalization that would
allow one to focus on a specific signal vector in the optimal set. One convenient can-
didate would normalize Z = I, implying a signal of the form “fundamental shocks plus
noise,” yf = α+ ε, which we refer to as the “fundamentals” signal. If this normalization
could be imposed in general, then the problem could be reduced to choosing the noise
covariance matrix �. However, in most cases agents optimally choose to observe fewer
signals than there are shocks. When this happens, the set of optimal signals typically
does not include the fundamentals signal, and so this normalization cannot be applied.
For example, we noted that the fundamentals signal is not optimal in the example just
above.

One way around this problem is restricting the agents’ choice of signals, so that the
optimal set always includes the fundamentals signal. Indeed this is one benefit of the in-
dependence assumption that has been made in the literature. However, this approach
has the downside that it usually implies suboptimal information processing by agents.
Instead, we will show how a reparameterization of the problem facilitates a general so-
lution without restricting the set of solutions by reparameterizing the problem. Because
these reparameterized problems are formulated in a way that is similar to the seminal
rational inattention problems described by Sims (2003) and Sims (2010), we call them
the “core rational inattention problems.”

3.2 Transforming the problem

In this section, we first present the core rational inattention problems, in Problems 4 and
5, and then show how their solutions can be linked to solutions of the original problems,
in Proposition 1. We also slightly generalize the setting by explicitly incorporating a prior
information set, I−.

Problem 4. Let α | I− ∼ N (a−, P− ) where I− is some prior information set, and let W
be a positive semidefinite matrix.15 Define the core static quadratic rational inattention

15The formulation of Problem 1 implies W = C ′M−1C, as in Proposition 1.
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problem as

min
P+∈Mn

tr(W P+ ) + λ
(
ln |P−| − ln |P+|)

subject to P+ � 0, P− � P+
With a slight abuse of notation, λ may represent a fixed marginal cost of information
processing or a Lagrange multiplier for the constraint 1

2 (ln |P−| − ln |P+|) ≤ κ∗.

This reparameterizes the quadratic rational inattention problem introduced as
Problem 1, with the key benefit that elements of the set of optimal signal vectors that
solve Problem 1 leads to the unique posterior covariance matrix that solves Problem 4.
Similarly, Problem 5 below, reparameterizes the rational inattention portfolio choice
problem that we introduced as Problem 3.

Problem 5. Let α | I− ∼ N (a−, P− ) where I− is some prior information set, and let W
be a positive semidefinite matrix.16 Define the core rational inattention portfolio choice
problem as

min
P+∈Mn

tr
(−W P−1+

) + λ
(
ln |P−| − ln |P+|)

subject to P+ � 0, P− � P+
While we still allow λ to represent either a fixed marginal cost of attention or a Lagrange
multiplier on a fixed capacity constraint, we note that due to Proposition 3, below, we
will always use the fixed capacity version in practice.

While the original problems selected an optimal signal and then considered the im-
plications for posterior uncertainty, in Problems 4 and 5 we solve for optimal posterior
uncertainty and use that to generate a set of valid signals. The links between the so-
lutions to the original and reparameterized problems are formalized below in Proposi-
tion 1.

Intuitively, the reparameterization refocuses the problem in such a way as to high-
light the core attention allocation decision. To illustrate how this works, we return to the
example of the multimarket monopolist. Technically, the reparameterization is straight-
forward, since

−1
2
E

[(
p∗ −p+

)′
M

(
p∗ −p+

)] (a)= −1
2
E

[
(α− a+ )′C ′M−1C(α− a+ )

] (b)= −1
2

tr(W P+ )

where we have used p∗ = M−1Cα and defined W ≡ C ′M−1C. Combining this with the
definition of κ (and multiplying both by −2) yields the objective function given in Prob-
lem 4, with the two equalities in the above equation reflecting the two steps taken in
refocusing the problem.17

First, the basic problem of the multimarket monopolist is to set prices so as to repli-
cate the perfect information solution, p∗, with minimum weighted mean squared error,

16The formulation of Problem 3 implies W = P− + (a− −pr)(a− −pr)′, as in Proposition 1.
17A similar derivation for Problems 1 and 3 can be found in the proof of Lemma 1.
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where the weights reflect the importance to the firm of minimizing the error in each
market (in particular, we showed earlier that the firm wishes to track prices more closely
in markets that have more elastic demand). This is what is given on the left-hand side
of (a) above. However, as a rationally inattentive agent, what the firm must actually do
is to allocate attention between the fundamental shocks. In moving to the right-hand
side of (a), we have constructed a new weight matrix, that describes the same tradeoff
as before, but now in terms of minimizing errors in each fundamental shock. This new
weight matrix

W = C ′M−1C = 1
2

⎡
⎢⎣m1 +m2 1 1

1 1/m1 0
1 0 1/m2

⎤
⎥⎦

shows, for example, a steeper demand curve in either market would make it more im-
portant for the firm to pay attention to demand in that market, and it would make it
comparatively less important to track costs.

The second step is to reparameterize the problem in terms of the choice of posterior,
rather than the choice of signal vector, so as to avoid the issues noted in the previous
section. Thus, while the left-hand side of (b) gives the problem in terms of expectations
driven by a signal vector (since a+ = E[α | y, I−]), on the right-hand side of (b) we have
rewritten it in terms of the mean squared error driven by the posterior covariance matrix.

3.3 Link to original problems

To link these problems, we need to show (a) how a signal vector that solves Problem 1
or 3 generates a posterior covariance matrix that solves Problem 4 or 5, and (b) how a
posterior covariance matrix that solves Problem 4 or 5 generates a set of signals that
solve Problem 1 or 3. The first part follows directly from the typical Bayesian updating
formula of eq. (4), but we will need some additional results for the second part. In par-
ticular, given some prior information set, we need to show how to construct a signal of
the form in eq. (1) that yields an arbitrary level of posterior uncertainty. We do this in
the next lemma.

Lemma 2. Let α be an n-dimensional random vector and I− be a prior information set,
such that α | I− ∼ N (a−, P− ), and let P+ be a positive definite matrix such that P− � P+.

(a) Simultaneous diagonalization. (i) There exists a nonsingular S ∈ Mn and positive
definite diagonal matrix �+ ∈ Mn with nonincreasing entries δ+

i , i = 1, � � � , n so that
P−1+ = S′�+S and P−1− = S′IS. (ii) Moreover, P−1+ − P−1− = S′(�+ − I )S, with �+ −
I � 0. (iii) If the diagonal elements of �+ are unique, then the matrix S is unique.
Otherwise, S is unique up to permutations of the rows associated with duplicated
elements of �+.

(b) Canonical shocks. Define the “canonical shocks” associated with P− and P+ as βc =
Sα. This satisfies Var(βc | I− ) = I.
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(c) Reduced canonical signal. Define r = rk(�+ − I ) and let �−1
r ∈ Mr be the largest

positive definite submatrix of �+ − I. Define the “reduced canonical signal” associ-
ated with P− and P+ as yr = βr + εr with εr ∼ N(0, �r ), where βr contains the first
r elements of βc . Then Var(α | yr , I− ) = P+ and Var(βc | yr , I− ) = (�+ )−1.

(d) Canonical signal. Let �c = (�r ⊕ ∞In−r ) ∈Mn, and define the “canonical signal” to
be yc = βc + εc with εc ∼N(0, �c ). Then Var(α | yc , I− ) = P+ and Var(βc | yc , I− ) =
(�+ )−1.

(e) Mutual information. Define the mutual information between the ith canonical
shock βi,c and the ith element of the canonical signal yi,c , conditional on the prior
information set I−, to be κi ≡ I(βi,c , yi,c | I− ). Then κi = lnδ+

i , where δ+
i is the ith

diagonal element of �+, and

κ≡ I(α, yc | I− ) =
n∑

i=1

I(βi,c , yi,c | I− ) =
n∑

i=1

κi

The insight of this lemma is that it is possible to construct a set of transformed
shocks that decompose the information differentiating the posterior from the prior into
independent components. This will be key for solving the core rational inattention prob-
lems and constructing a normalized signal vector. We call these transformed shocks the
“canonical” shocks both because they uniquely decouple information processing and
because they share in spirit and methods some similarities to canonical correlations.
These shocks then yield a corresponding “canonical signal” that, together with the prior
information, generates the desired posterior. Importantly, this result is not limited to the
static problems that we consider here, but would also apply to information processing
in the dynamic case. Thus, the tools we develop in the rest of this paper for interpreting
information processing by rationally inattentive agents apply more broadly.

We now formally link the original and reformulated problems.

Proposition 1. (a) Suppose P+ is solution to Problem 4 with W = C ′M−1C, with C and
M defined as in Problem 1 or a solution to Problem 5 with W = P− + (a− −pr)(a− −
pr)′, with p and r defined as in Problem 3.

Then any signal of the form of equation (1) such that Var(α | y, I− ) = P+ yields
a pair (Z, �) that solves Problem 1 or Problem 3, respectively. In particular, the
canonical signal yc associated with P− and P+ is such a solution.

(b) Suppose the pair (Z, �) is a solution to Problem 1 or Problem 3, and compute P+
according to eq. (4).

Then P+ is a solution to Problem 4 or Problem 5, respectively, when W is as de-
fined in part (a).

With these results established, we now turn to solving the rational inattention prob-
lems.
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4. Solution

In this section, we solve the rational inattention problem by (1) determining the poste-
rior covariance matrix P+ that corresponds to optimal attention allocation; (2) identify-
ing signals that represent optimal information processing; and then (3) computing the
optimal action, conditional on the information processed.

4.1 Optimal attention allocation

The chief difficulty in solving the rational inattention problem is that the attention de-
cision for a particular shock is not isolated from the decisions associated with other
shocks. This happens for two reasons that are essentially related to the presence of
complementarities in information acquisition. First, shocks may be correlated, so that
learning about one shock also provides some information about another shock. Sec-
ond, if any action depends on multiple shocks, this induces a dependency in the value
of learning about one shock on the combination of other shocks that are simultaneously
being learned about. One or both of these features is present in most problems of inter-
est. For example, the multimarket monopolist problem contains both, since we have
allowed levels of demand in the two markets to be correlated through the parameter ρ,
and the optimal price in each market depends on both marginal costs and the level of
demand in that market.

Our solution to this is to use the insight of Lemma 2 to identify a transformation
of the fundamental shocks that represent the independent dimensions of uncertainty
that the agent wishes to learn about, and use them to decouple the problem. Intu-
itively, these transformed shocks will have taken into account the complementarities
mentioned above, so that the attention allocation decision for each is isolated from the
others.

Proposition 2. Let α | I− ∼ N (a−, P− ) and let W be a positive semidefinite matrix, as in
Problem 4. Define L to be the lower triangular Cholesky factor of P− and let QDQ′ be the
eigendecomposition of the matrix L′W L, with eigenvalues di arranged in nonincreasing
order. Then

a. Optimal posterior covariance. The matrix P+ = (S′�+S)−1 solves Problem 4,
where S = Q′L−1 is nonsingular and �+ is a diagonal matrix with entries δ+

i =
max{di/λ, 1}, where λ is either the given information cost parameter (in problems
with a fixed marginal cost of attention) or is interpreted as a shadow cost (in prob-
lems with a fixed capacity of attention), defined below. Moreover, S simultaneously
diagonalizes P−1+ and P−1− , since P− = (S′IS)−1.

b. Shadow cost for fixed capacity. Given a fixed capacity of attention κ, the value of λ
that solves the problem is

λ = [
e−2κ�r

i=1di
] 1
r (15)

if κ > 0 and is undefined otherwise. The value of r is determined in concert with λ,
as follows:
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(i) Set r = n

(ii) Compute λ as in eq. (15).

(iii) If di > λ for i = 1, � � � , r, then this pair (r, λ) describes the solution. Otherwise,
set r = r − 1 and repeat from step (2).

c. Optimal signal dimension. The quantity r, defined in Lemma 2 and interpreted as
the number of signals the agent pays attention to, is the integer for which dr > λ ≥
dr+1.18 Moreover, r ≤ rk(W ).

The first part of this proposition can be understood as a generalization of the “re-
verse water-filling” procedure from the information theory literature, used to solve rate
distortion problems with a parallel Gaussian source.19 This latter procedure is only valid
when the weight matrix W is diagonal, which is only the case when, in our terminology,
there are no complementarities in information acquisition.20 Thus, another way to view
our solution is that by recasting the problem in terms of the canonical shocks, we can
recover logic similar to reverse water-filling.21

Most importantly, this proposition provides the optimal posterior covariance matrix
associated with Problem 4. A second key component, however, is that it constructs the
solution in a way that is immediately amenable to Lemma 2, and this allows us to directly
construct and interpret the canonical shocks and signal.

To illustrate this, we return to the baseline case of the multimarket monopolist prob-
lem. After constructing the matrix S using Proposition 2, we can compute the canonical
shocks, βc , as shown below. We also include the matrix D, which we will show, has a
useful interpretation as the weight matrix describing information acquisition tradeoffs
in terms of the canonical shocks:

βc ≡ Sα =

⎡
⎢⎢⎢⎢⎢⎢⎣

1√
3σ2

p̄∗

1

2
√

2σ2
	̃

1√
6σ2

(
γ − 1

2
(	1 + 	2 )

)

⎤
⎥⎥⎥⎥⎥⎥⎦

D= σ2

⎡
⎢⎣6 0 0

0 4 0
0 0 0

⎤
⎥⎦ (16)

The first two elements of the canonical shock βc provide information about the op-
timal average price, p̄∗, and the demand differential between markets, 	̃. These are the
two aspects of information that we previously asserted the optimal signal (yr , above)
comprises. The third element of βc is less easy to directly interpret, though we will re-
turn to it shortly.

18We can define d0 ≡ ∞ and dn+1 ≡ −∞ to encompass degenerate and full rank solutions.
19See, for example, Theorem 10.3.3 and the related discussion from Cover and Thomas (2006).
20The method of Koszegi and Matejka (2020) can also be understood in terms of a generalized reverse

water-filling algorithm. As noted earlier, the procedure here is yet more general than theirs, since we do
not restrict the prior covariance matrix, which is an important source of complementarities in information
acquisition, to be a scalar times the identity matrix.

21An alternative geometric intuition for our solution method is in terms of inscribing non-concentric
ellipsoids. See Fulton (2017) for details.
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Table 1. Information processing by a multimarket monopolist.

m2 ρ r ≤ β1,c ∝ β2,c ∝ d1 d2

0.5 0 2 p̄∗ 	̃ 6σ2 4σ2

0 0 2 	2 p∗
1 ∞ 5σ2

∞ 0 2 γ 	1 ∞ 4σ2

0.5 1 1 p̄∗ · 10σ2 0
0.5 −1 2 	̃ p̄∗ 8σ2 2σ2

We have already seen two ways of viewing the uncertainty faced by the firm, namely
the perfect information prices p∗ and the fundamental shocks α, and the transformation
from the former to the latter allowed us to formulate the core rational inattention prob-
lem. Now given the canonical shocks, we can transform the problem again, and because
the canonical shocks represent the independent dimensions of uncertainty that the mo-
nopolist wishes to learn about, purged of the complementarities that make information
processing difficult to interpret, this transformation will decouple the n-dimensional
problem into n 1-dimensional problems. To see this, rewrite

E
[
(α− a+ )′W (α− a+ )

] =E
[
(βc − bc,+ )′D(βc − bc,+ )

] =
n∑

i=1

di/δ
+
i (17)

where bc,+ = E[βc | y, I−]. First, notice that while W describes the tradeoffs to informa-
tion acquisition in terms of the fundamental shocks, the matrix D describes the trade-
offs in terms of the canonical shocks. Second, since D will always be diagonal by defi-
nition, the tradeoff for each element of these shocks is independent of the tradeoff for
other shocks. A similar result holds for mutual information, since 0.5(ln |P−| − ln |P+|) =
0.5

∑n
i=1 lnδ+

i , and for the “no forgetting” constraint, since P− � P+ is equivalent to
δ+
i ≥ 1, i = 1, � � � , n. Intuitively, in terms of the canonical shocks the firm can consider

each attention allocation decision independently, since the complementarities in infor-
mation acquisition have been internalized.

Returning to our example, we can now examine the third canonical shock, which did
not have an immediate interpretation before. In particular, we can now see that errors
tracking this shock are given zero weight by the firm, since d3 = 0, and so it represents a
dimension of the fundamental shocks that the firm will choose to never learn about. In
fact, the firm would prefer to forget any prior information it had about this shock, but it
is constrained from doing so. As a result, defining this shock is important because it cap-
tures residual information from the firm’s prior that must be accounted for in defining
the optimal posterior.

So far we have only considered the baseline case of the multimarket monopolist
problem, but it is straightforward to apply the same analysis to other parameterizations
of the problem. In Table 1, we showcase the variety of optimal information processing
schemes that can arise by deviating from the baseline case for only one of the parame-
ters m2 or ρ.

This table illustrates how the solution changes in five parameterizations: the base-
line, inelastic demand, highly elastic demand, perfect correlation, and perfect inverse
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correlation.22 In each case, the canonical shocks have a different definition, describ-
ing the independent dimensions of the fundamental shocks that are relevant to the firm
given the particular set of parameters.

We now turn to our second application, of portfolio choice, and show how an analo-
gous method can be used to solve the attention allocation problem.

Proposition 3. Let α | I− ∼ N (a−, P− ) and let W be a positive semidefinite matrix, as
in Problem 5. Define L to be the lower triangular Cholesky factor of P− and let QDQ′ be
the eigendecomposition of the matrix L−1WL−1′

, with eigenvalues di arranged in nonin-
creasing order. Then

a. Given a fixed marginal cost of attention κ > 0, the matrix P+ = (S′�+S)−1 solves
Problem 5, where S = Q′L−1 is nonsingular and �+ is a diagonal matrix with entries

δ+
i =

{
e2κ i = 1

1 i > 1

Thus, the solution always has r = 1. Moreover, S simultaneously diagonalizes P−1+
and P−1− , since P− = (S′IS)−1.

b. No solution exists to Problem 5 when given a fixed marginal cost of attention λ, be-
cause the agent will choose δ+

i → ∞ for every i that satisfies di > 0.

Importantly, in this proposition we are able, as in the quadratic case, to construct
a solution that is amenable to Lemma 2 and that allows us to construct the canonocal
shocks and signals. The main difference between the solutions to the quadratic and
portfolio choice problems stems from different returns to scale for information in those
problems. The quadratic payoffs case of Problem 4 is characterized by decreasing re-
turns to scale, and so there is an interior solution where the agent balances the marginal
benefits of reduced uncertainty about the ith canonical shock against the marginal cost
of increased attention. The agent considers this trade-off separately for each of the n

shocks, and so the number of shocks that she pays attention to, r, may be any number
from zero to n. Problem 5 is instead characterized by increasing returns to scale, so that
solutions will be at the boundaries. This means that, given a fixed information process-
ing capacity, investors will devote all their attention to learn about the returns of one
particular portfolio, which we will describe later.23

4.2 Optimal signals

As a consequence of Propositions 1 and Lemma 2, and given the canonical shocks from
either Proposition 2 or 3, the canonical signal, yc = βc + εc , is always optimal. It is easy

22In cases where a utility weight di becomes arbitrarily large, as in the lines of Table 1 corresponding to
perfectly elastic or inelastic demand, it is usually more useful to model the problem using a fixed capacity
rather than a fixed marginal cost.

23By contrast, if investors were able to observe asset returns to any level of precision for a fixed marginal
cost of attention, they would choose to purchase perfect information. In the simple portfolio choice model
we consider, this would allow them to make arbitrarily large profits.
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to interpret because it is a signal of the canonical shocks, and so the signals are inde-
pendent and can be analyzed individually. In addition, the analysis of canonical shocks
from the previous section applies to the corresponding signals, except that instead of
describing attention in terms of the quantity of information processed, κi = lnδ+

i , we
now describe it in terms of how noisy each signal is, using σ2

i = 1/(1 − δ+
i ).24

Returning to the baseline case of the multimarket monopolist problem, it is easy to
see that the signal yr that we originally asserted was optimal is simply a rescaled version
of the (reduced) canonical signal. This confirms that it is optimal, and we can now define
the noise variance terms, σ2

i = 1/(δ+
i − 1), where δ+

i = max{di/λ, 1}, d1 = 6σ2, and d2 =
4σ2. When information costs are low enough, in particular λ < 4σ2, both variance terms
will be finite. However, as λ increases to 4σ2, we have both σ2

2 → ∞ and κ2 → 0. Both
of these results have the same interpretation: the agent stops paying attention to the
second canonical shock, 	̃.

4.3 Optimal action

We can now describe the optimal action for rationally inattentive agents, by explicitly
computing the posterior expected value of canonical and fundamental shocks.

Proposition 4. Given an optimal canonical signal yc , the posterior expected value of
the canonical shocks, bc,+ = (b1,c,+, � � � , bn,c,+ )′ is

bi,c,+ =

⎧⎪⎨
⎪⎩

1

δ+
i

bi,c,− +
(

1 − 1

δ+
i

)
yi,c δ+

i > 1

bi,c,− δ+
i = 1

Then the posterior expected value of the fundamental shocks is a+ = S−1bc,+, and the
optimal action by a rationally inattentive agent is

x+ = M−1(CS−1bc,+ + c0
)

where in the case with quadratic payoffs M and c0 are given in the problem, and in the
case with exponential payoffs, M ≡ ρP+ and c0 ≡ −pr.

Here again, the transformation into the space of canonical shocks has decoupled
the problem, and this makes Bayesian updating straightforward. The agent processes
information about each canonical shock separately, and the posterior for each is simply
a weighted average of the prior and the associated canonical signal. The weight depends
only on how much attention the agent pays to that shock, as captured by δ+

i . For those
elements about which the agent processes no new information, the posterior is equal to
the prior.

24This highlights a disadvantage of considering signal vectors, because complete inattention yields κi =
0, but σ2

i → ∞. As noted earlier, this is a relatively minor inconvenience for the canonical signal, but it can
present major difficulties for alternative signal representations.
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With these results, we can now fully examine how the introduction of rational inat-

tention affects firm behavior in our application to the multimarket monopolist problem.

To do this, we return to the baseline case and consider how, given a particular realiza-

tion of the fundamental shocks, changes in the cost of information, λ, affect (a) optimal

prices in each market, pi,+; (b) the quantities of information processed, κi, and (c) profit

in each market, πi,+; and we also show (d) correlations between actions and shocks,

corr(pi,+, αj ). Specifically, this exercise sets m1 = m2 = 0.5, ρ = 0, and σ2 = 0.5, and sets

the prior expectation to be a− = (10, 20, 20). We present results in Figure 1, where pan-

els (a)–(c) consider the realization α = (10, 25, 18). Note that while the solution to the

core rational inattention problems did not depend on the realization of the noise aris-

ing from inattention, ε, agents’ realized actions and payoffs do depend on it. Therefore,

in describing the prices set by firms and the profits obtained, we plot lines showing the

expected value and plot shaded areas indicating the interdecile range (IDR) (the range

between the 10th and 90th percentiles).

Figure 1. Solutions to baseline monopolist problem with varying information costs.



Theoretical Economics 17 (2022) Choosing what to pay attention to 175

There are clear differences in outcomes across three regions of information costs.

First, when information costs are high enough—here, λ > 3—the agent chooses to col-

lect no information. Since r is the dimension of the optimal signal vector, this corre-

sponds to the region r = 0 in each graph. As we noted earlier, this threshold is deter-

mined by the largest loss weight, d1 = 6σ2. In this region, prices must be set using only

prior information, and are therefore uncorrelated with the fundamental shocks. Be-

cause the agent is already paying no attention, further increases in information costs

have no further effect. However, if information costs fall below this threshold, the agent

will begin paying attention to the first canonical shock, β1,c ∝ p̄∗, as shown in panel (b).

This corresponds to the region r = 1. Despite collecting some information, the firm can-

not differentiate between markets, since the chosen signal regards the sum γ+	1 +	2. As

a consequence, the firm cannot pursue price discrimination, and so sets the same price

in each market. Since realized overall demand was higher than expected, on average

the firm will tend to raise prices relative to their prior. Acquiring this new information

increases overall expected profits, but because the realized demand in the second mar-

ket was below the firm’s prior, additional information within the region r = 1 actually

decreases expected profits within the second market.

Finally, if information costs fall below the threshold d2 = 4σ2, the firm will begin to

acquire information about the second canonical shock, β2,c ∝ 	̃; this corresponds to the

region r = 2. In this region, the firm collects information that allows them to implement

price discrimination, and expected profits begin to rise even in the second market. As

information costs fall to zero, the firm moves toward the perfect information solution,

and the correlations between the price set in each market and the level of demand in the

other market fall toward zero.

In this way, rational inattention can provide a mechanism for modeling and under-

standing recently implemented price discrimination strategies by firms that appear to

have been made possible by the increased availability of information about their cus-

tomers. These empirical observations have been documented by, for example, Fuden-

berg and Villas-Boas (2006), Armstrong (2005), and Taylor (2004), although the theoret-

ical models they employ to explain this behavior are more detailed than ours (e.g., con-

sidering strategic interactions between firms and consumers). Nonetheless, we have

shown that a very simple model of production can generate empirically relevant pricing

strategies in a straightforward way when coupled with rational inattention. Moreover,

the mechanism here is consistent with observed firm behavior: the increase in informa-

tion collection arising from advances in electronic monitoring made possible efforts to

pursue price discrimination.
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5. Application to portfolio choice

Our second application is to the portfolio choice problem of Van Nieuwerburgh and
Veldkamp (2010). Unlike the case of the monopolist, here we do not need to further pa-
rameterize the problem to make substantial progress in interpreting information pro-
cessing, although to focus on interesting cases, we consider a fixed capacity of atten-
tion and we assume that prior expected excess returns are not identically zero.25 Using
Proposition 3 and Lemma 2, it is straightforward to solve the attention allocation prob-
lem.

Proposition 5. Information processing. Suppose that prior expected excess returns are
not all identically zero. Then optimal information processing by a rationally inattentive
investor is equivalent to observation of either of the following signals:

(i) A signal about the Sharpe ratio of the prior optimal portfolio: yS = S + εS , with

εS ∼ N(0, 1/(δ+
1 − 1)) and where S ≡ x′−e/

√
x′−P−x−.

(ii) A signal about returns of the prior optimal portfolio: yx = x′−α + εx, with εx ∼
N(0, x′−P−x−/(δ+

1 − 1)).

The first representation is particularly interesting because the Sharpe ratio is a well-
known quantity in finance. Intuitively, an asset with a higher Sharpe ratio provides
greater compensation for a given level of risk, and this quantity is often used in prac-
tice for ranking the performance of assets, portfolios, or investment managers. Amenc
et al. (2003) describe it as the most frequently used measure of hedge fund performance.

This result contrasts with that of Van Nieuwerburgh and Veldkamp (2010), who
found that the optimal signal would be about the individual asset with the highest prior
Sharpe ratio. Our results are different because we allow agents to learn about either as-
sets or portfolios of assets. They choose to learn about the prior optimal portfolio x−,
and a second optimal signal representation, given in Proposition 5, is a signal about the
returns of this portfolio.

Given the optimal information processing strategy described above, we can now de-
scribe optimal portfolio choice.

Proposition 6. Optimal portfolio. Suppose prior expected excess returns are not all
identically zero. Then the optimal portfolio for a rationally inattentive investor with fixed
information processing capacity κ is

x+ = (1 +χ)x−

where χ = (δ+
1 − 1)(yS/S− ), δ+

1 = e2κ, and x− is the prior optimal portfolio. The random
variable yS , defined in Proposition 5, is a noisy signal of the Sharpe ratio of the prior
optimal portfolio, and S− =E[S | I−] is the prior expectation of that Sharpe ratio.

25If prior expected excess returns are identically zero, then the prior optimal portfolio has no position in
any asset and so there is no specific portfolio that the agent wishes to learn about. Instead, they will de-
compose the assets into a set of independent portfolios with identical variance and learn about the returns
of an arbitrary portfolio from this set. Because returns to attention are increasing they will still specialize
learning to one portfolio, but no specific portfolio is preferred.
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The optimal posterior portfolio is simply a scaled version of the optimal prior portfo-
lio, where the scale factor depends on the information processed about the risk-adjusted
returns of the prior optimal portfolio. If the investor’s perception of this Sharpe ratio is
high, then they will increase their position, particularly if their prior expectation of this
quantity was low. This proposition yields several predictions, which we collect in the
following corollaries.

Corollary 6.1. Rational inattention and portfolio diversification.

a. Rational inattention does not lead to underdiversification.

b. Additional capacity does not influence portfolio diversification.

Corollary 6.2. Rational inattention and the scale of investment.

a. Information processing decreases purchases of the optimal portfolio if and only if the
perceived Sharpe ratio, yS , is negative.

b. Additional capacity tends to increase the scale of investment.

These results are comforting, since the diversified portfolio chosen by the rationally
inattentive investor is consistent with that described by standard portfolio theory. Im-
portantly, they differ from the results of Van Nieuwerburgh and Veldkamp (2010), which
were derived under the assumption that agents could not pay attention to portfolios of
assets. Nonetheless, we view our models as complementary, since there may be cases
in which this assumption is valid. For example, if assets are of very different types, it
may make less sense to model an agent as processing information directly about port-
folios. When all assets have similar return structures, for example, if they are publicly
traded equities, then it may make more sense to allow agents to choose portfolios to
learn about, as we do here.

6. Dynamic quadratic rational inattention problems

Compared to the static quadratic problem we have considered here, a dynamic version—
in which agents make repeated information allocation decisions over time, faced with
autocorrelated fundamental shocks—incorporates an additional complementarity to
information acquisition: more precise information today can lessen uncertainty tomor-
row. This is not a feature of Problem 4, and so Proposition 2 cannot be used to solve
for the optimal posterior, P+. Despite this, Lemma 2 still applies, and so the analysis
and interpretation of information acquisition that we have introduced—that based on
canonical signals based on canonical shocks—can still be used. In the future, it will be
interesting to combine the tools becoming available to solve for the optimal posteriors
in dynamic problems with the tools for analysis and interpretation of agents’ behavior
that we have developed here.
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7. Conclusion

In this paper, we solve two classes of static rational inattention problems and provide
new tools to analyze optimal information processing and interpret the behavior of ra-
tionally inattentive agents. In particular, we show how to account for complementari-
ties in information acquisition, and so expand analytic results from special cases used
in the prior literature to a more general setting. In two examples, taken from behavioral
industrial organization and finance, we show why this is important. In each case, the
model could not be solved using previously available methods without imposing sim-
plifying assumptions that generate qualitatively different results and imply suboptimal
behavior by agents.

Appendix: Proofs

Lemma A1. Problem 1 is equivalent to

min
Z∈Mr,n,�∈Mr

tr
(
C ′MCP+

) + λ
(
ln |P−| − ln |P+|)

subject to � � 0, P−1+ = P−1− +Z′�−1Z

Proof. Denote x∗+ = E[x∗ | y] and a+ = E[α | y]. Then we can rewrite the first term of
the objective function from Problem 1 as

−1
2
E

[(
x∗ − x∗+

)′
M

(
x∗ − x∗+

)] = −1
2
E

[
(α− a+ )′C ′M−1MM−1C(α− a+ )

]
= −1

2
tr

(
C ′M−1CP+

)
Substituting in for κ in the second term, we have λκ= (λ/2)(ln |P−| − ln |P+|). Finally, we
multiply this transformed objective by −2 and accordingly change from maximization
to minimization.

Lemma A2. Let e = α − pr be the vector of “excess returns.” Since p and r are fixed, the
prior distribution for e follows directly from the prior for α, so that e ∼ N (e−, P− ) where
e− = a− −pr. Then Problem 3 is equivalent to

min
Z∈Mr,n,�∈Mr

− tr
((
P− + e−e′−

)
P−1+

) + λ
(
ln |P−| − ln |P+|)

subject to � � 0, P−1+ = P−1− +Z′�−1Z

Proof. Notice that the posterior for excess returns is e | y ∼ N (e+, P+ ) where e+ = a+ −
pr. Then we can rewrite the first term of the objective function from Problem 3 as

E

[
ρE[ω | y] − ρ2

2
Var(ω | y )

]
= ρω0r+E

[
e′+P−1+ e+ − 1

2
e′+P−1+ P+P−1+ e+

]

= ρω0r− 1
2
n+ 1

2
tr

(
P−1+

(
P− + e−e′−

))
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Substituting in for κ in the second term, we have λκ = (λ/2)(ln |P−| − ln |P+|). We elim-
inate the constant term as it does not influence the solution. Finally, we multiply the
transformed objective by −2 and accordingly change from maximization to minimiza-
tion.

A.1 Proof of Lemma 1

Suppose that the pair (Z ∈Mr,n, � ∈ Mn ) is a solution to Problem 1 or Problem 3, and let
X ∈Mr be nonsingular. We claim that the pair (XZ, X�X ′ ) represents another solution
to the respective problem. To show this, note that both the former and latter signal lead
to the same posterior covariance matrix

P−1− + (XZ )′
(
X�X ′)−1

(XZ ) = P−1− +Z′�−1Z

By Lemmas A1 and A2, either of these signals must therefore yield identical objective
function values. Moreover, for any X nonsingular, � � 0 =⇒ X�X ′ � 0. Therefore, if
the former signal is feasible under the constraints, then so is the latter. Finally, Problem 2
is a special case of Problem 1 and so this proof applies a fortiori.

A.2 Proof of Lemma 2

Part (a): Part (i) follows directly from Theorem 7.6.4 of Horn and Johnson (2012). Part (ii)
follows from the assumption that P− � P+. To prove part (iii), suppose that ∃T �= S such
that P−1+ = T ′�+T and P−1− = T ′IT . Then ∃ orthogonal matrix V such that T ′ = S′V , and
we must have P−1+ = T ′�+T = S′V �+V ′S = S′�+S. This implies V �+ = �+V , or vijλi =
vijλj for all i, j = 1, � � � , n. Since �+ � 0, λi > 0∀i. Then if λi �= λj , then it must be that
vij = 0 and if λi = λj then it must be that vij = 1. Since V is orthogonal, this implies that
it must be a permutation matrix, where the only rows that may be permuted are those
that correspond to duplicated diagonal elements λi.

Part (b): Using the definitions from Part (a) we have Var(βc | I− ) = SP−S′ = I.
Part (c): The first part follows directly from equation (eq. (4)). Then Var(βc | yr , I− ) =

SP+S′ = (�+ )−1.
Part (d): Under the convention that �−1

c = (�−1
r ⊕ 0n−r ), with 0n−r an n − r × n − r

matrix of zeros, this follows directly from equation (eq. (4)). Then Var(βc | yr , I− ) =
SP+S′ = (�+ )−1.

Part (e): We use the well-known definition of mutual information for jointly Gaus-
sian random vectors, I(α, y | I− ) = 1

2 (ln |P−| − ln |P+|) (see, e.g., Sims (2003)). Then
1
2 (ln |P−| − ln |P+|) = 1

2 (ln |I| + ln |�+|) = ∑n
i=1 logb δ

+
i .

A.3 Proof of Proposition 1

The proof for the link between Problems 1 and 4 follows directly from Lemma A1, while
the proof for the link between Problems 3 and 5 follows from Lemma A2.
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A.4 Proof of Proposition 2

A.4.1 Proof of part (a) We note that we can assume WLOG that P+ is positive definite,
since if it were not the objective function would grow without bound. Define Z�+Z′ to
be the eigendecomposition of the matrix L′P−1+ L, and apply Lemma 2(a) to simultane-
ously diagonalize P−1− = S′IS and P−1+ = S′�+S. Let N = (�+ )−1 and note that S = Z′L−1.
Applying the result of Lemma 2 part (e), we can rewrite the objective function in Prob-
lem 1 as tr(Z′L′WLZN ) − λ

∑n
i=1 lnni. The decision variables are now the unitary ma-

trix Z and the diagonal elements of N , but Z only appears in the first term. A stan-
dard result is that when minimizing the first term over unitary matrices, the optimal
Z is exactly the matrix of eigenvectors of L′W L, regardless of the diagonal elements of
N . Thus, defining QDQ′ to be the eigendecomposition of L′WL yields the result that
S = Q′L−1.

Plugging this in, the problem becomes min{ni }ni=1

∑n
i=1(dini −λ lnni ), subject to ni ≤ 1

for i = 1, � � � , n. (Remark: we reserve δ+
i and n+

i for the solution, and so we have used δi
and ni here in the problem definition). We can thus consider the solution for each i

separately.
If di > 0, then the objective is convex and the constraint is linear so that the solution,

denoted n+
i , is characterized by the Kuhn–Tucker conditions. The first-order condition

yields ni = λ/di, and the full solution is n+
i = min{λ/di, 1}.

If di = 0, then the problem is minni −λ lnni and the solution sends ni → ∞ so that the
constraint will be binding and n+

i = 1.

A.4.2 Proof of part (b) The proof to part (a) is still valid in this case, except that λ is in-
terpreted as a Langrange multiplier so that we must also derive its value at the solution.
To do so, note that the associated constraint is 1

2 (logb |P−| − logb |P+|) ≤ κ and we can
rewrite it as 1

2

∑n
i=1 logb δ

+
i ≤ κ.

In any solution, all processing capacity will be used, so that this constraint will hold
with equality. Define r such that di > λ for i = 1, � � � , r and di ≤ λ for i = r+1, � � � , n. From
part (a), we will have δ+

i = 1 for i > r, and so the constraint is
∑r

i=1 logb δ
+
i = 2κ. Then

we have

logb

r∏
i=1

di
λ

= 2κ =⇒ λr = b−2κ
r∏

i=1

di =⇒ λ =
[
b−2κ

r∏
i=1

di

] 1
r

(18)

Since the choice of r depends on λ, we can compute r in the following way. Initialize
r = n. First, compute the λ associated with r. If di > λ for i = 1, � � � , r, then this is the
solution. If ∃i ≤ r for which di ≤ λ, then set r = r − 1 and repeat these steps.

A.4.3 Proof of part (c) To show the first part, notice that δ+
i > 1 iff di > λ. Thus, the

definition of r as the rank of the matrix �+ − I is determined by the number of eigenval-
ues di such that di > λ. For the second part, notice that if rk(W ) = k, then di = 0 ≯ λ for
i > k, so r ≤ k.
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A.5 Proof of Proposition 3

A.5.1 Proof of part (a) Here, we follow the steps in the proof of Proposition 2 part
(a), except that the first term in the objective function is tr(Z′L−1(−W )L−1′

Z�+ ), so
that the optimal Z is the matrix of eigenvectors from L−1W L−1′

(multiplication by −1
does not affect the eigenvectors). Thus, in this case the definition of S is the same,
but we define QDQ to be the eigendecomposition of L−1WL−1′

. After converting to
a maximization problem via multiplication by negative one, we can rewrite Problem 5
as max{δi }ni=1

∑n
i=1 diδi, subject to δi ≥ 1 and 1

2

∑n
i=1 logb δi = κ. Thus, the marginal bene-

fit of increasing any particular δi is a constant, equal to di, but the constraint is concave
in δi. Thus, it will always be optimal for the agent to allocate all attention to a single
canonical shock associated with a maximum eigenvalue di. Since we have ordered {di}
in nonincreasing order, we can without loss of generalization assume that the agent pays
attention to the shock i = 1. In other words, in the case that there are multiple eigenval-
ues that share the maximum value, the agent will choose an arbitrary shock from that
group to allocate all of their attention to, and we order that shock first.

A.5.2 Proof of part (b) Rewriting as in part (a), the problem is max{δi }ni=1

∑n
i=1(diδi −

λ lnδi ), subject to δi ≥ 1 for i = 1, � � � , n. We can thus consider the solution for each i

separately.
If di > 0, then the objective is convex and there is no interior solution. Since the

objective becomes infinite as δi → ∞, there is no solution.
If di = 0, then the problem is maxδi −λ lnδi and the solution sends δi → 0 so that the

constraint will be binding and δ+
i = 1.

A.6 Proof of Proposition 4

The first part of this proposition is simply an application of Bayesian updating given
the reduced canonical representation, yr : a+ = a− + P−S′

r(SrP−S′
r + �r )−1(yr − Sra− ).

Then SrP−S′
r = Ir and SP−S′

r = [Ir ; 0]′. Since �r = (�r − I )−1, we have (SrP−S′
r +�r )−1 =

diag({1 − 1/δ+
i }ri=1 ). Then since yi,c = yi,r for i = 1, � � � , r, we can rewrite bc,+ = Sa+

or bi,c,+ = bi,c,− + (1 − 1/δ+
i )(yi,c − b1,c,− ) for i = 1, � � � , r and bi,c,+ = bi,c,− for i =

r + 1, � � � , n.
The second part of this proposition, a+ = S−1b+, is just an identity resulting from

Lemma 2. It is valid since the matrix S is nonsingular.
The third part of the proposition is straightforward, since in both the quadratic and

exponential case we showed in the definition of the problem that the optimal action
would be x+ = M−1c+ (for the exponential case, this requires defining M ≡ ρP+). Then
we substitute in as follows: M−1c+ =M−1(Ca+ + c0 ) =M−1(CS−1bc,+ + c0 ).

A.7 Proof of Proposition 5

In this case, L−1WL−1′ = (I + (L−1e− )(L−1e− )′ ) and its eigenvectors are the same as
those of (L−1e− )(L−1e− )′. This latter matrix is a rank one matrix, and its only eigen-
vector associated with a nonzero eigenvalue is q1 = L−1e−/‖L−1e−‖, while the other
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eigenvectors qi, i > 1 are defined to form an orthonormal basis with q1. Notice that

‖L−1e−‖ =
√
e′−P−1− e−. The eigenvalues of L−1WL−1′

are d1 = (1+e′−P−1− e− ) and di = 1,

i = 2, � � � , n. Then the first canonical shock is defined by s′1 = q′
1L

−1 = e′−P−1− /
√
e′−P−1− e−.

Recalling that x− = 1
ρP

−1− e−, we can rewrite s1 = x−/
√
x′−P−x−.

The reduced canonical representation is yr = s′1α + εr where εr ∼ N(0, 1/(1 − δ+
1 )).

Two results allow us to to define the signal representations given in the proposition.
First, any scalar multiple of this representation is also a feasible representation. Sec-
ond, any new representation created from yr by the addition of a constant is also fea-

sible. Then we have yx =
√
x′−P−x−yr = x′−α + εx where εx ∼ N(0,

x′−P−x−
δ+

1 −1
), and yS =

yr − s′1pr = S + εS where εS ∼ N(0, 1/(δ+
1 − 1)). Finally, S is the realized Sharpe ratio

associated with the prior optimal portfolio, S = x′−e/
√
x′−P−x−.

A.8 Proof of Proposition 6

Recall that, given our assumptions, the solution is x+ = 1
ρP

−1+ e+, where e+ = a+ − pr.
Then we have

x+ = 1
ρ
S′�+S(a+ −pr) = 1

ρ
S′S(a− −pr) + 1

ρ
S′ι1

(
δ+
i − 1

)
yS

= x− + (
δ+
i − 1

) yS
S−

x− = (1 +χ)x−

where χ= (δ+
i − 1) yS

S− and ιi is the ith column of the identity matrix.

A.9 Proof of Corollary 6.1

Both parts of this corollary follow immediately from Proposition 6, since the effect of
rational inattention is entirely captured by the scalar χ.

A.10 Proof of Corollary 6.2

Formally, part (a) simply notes that the sign of χ is entirely determined by the sign of
yS , which is the perceived Sharpe ratio of the portfolio x−. Part (b) notes the effect of
additional attention is an increase in the parameter δ+

i . For any given perceived Sharpe
ratio yS , a higher δ+

i implies a stronger response (either positive or negative).
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