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Bayesian comparative statics
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We study how changes to the informativeness of signals in Bayesian games and
single-agent decision problems affect the distribution of equilibrium actions. Fo-
cusing on supermodular environments, we provide conditions under which a
more precise private signal for one agent leads to an increasing-mean spread or a
decreasing-mean spread of equilibrium actions for all agents. We apply our com-
parative statics to information disclosure games between a sender and many re-
ceivers and derive sufficient conditions on the primitive payoffs that lead to ex-
tremal disclosure of information.
Keywords. Supermodular stochastic order, convex order, persuasion with many
receievers.

JEL classification. C44, C61, D42, D81.

1. Introduction

Economists have long been interested in how equilibrium actions and welfare in
Bayesian games vary with the quality of information. For example, what happens to
the equilibrium distribution of prices under Cournot or Bertrand competition when
firms observe a more precise signal about their cost parameters? Would more precise
signals lead to more efficient outcomes? Such questions have generally been addressed
in linear-quadratic settings (games with quadratic utility functions and normally dis-
tributed states and signals) in which it is well known that a decrease in the noise of a
player’s private signal leads to a mean-preserving spread in the distribution of actions.

Beyond linear-quadratic settings however, characterizing the effect of information
on the distribution of equilibrium actions has proven difficult. The standard monotone
comparative static tools (Milgrom and Shannon (1994)) are not applicable because most
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stochastic orders, such as mean-preserving spreads or second-order stochastic domi-
nance, over joint probability distributions of actions and states lack a lattice structure
(Müller and Scarsini (2006)). Furthermore, Roux and Sobel (2015) show that compara-
tive statics results about the dispersion of equilibrium actions cannot always be estab-
lished even when players use monotone equilibrium strategies.

In this paper, we identify two classes of Bayesian games (and decision problems) for
which a higher quality of private information unambiguously leads to more dispersed
distribution of equilibrium actions along with monotone shifts to the mean. In particu-
lar, we consider Bayesian settings in which players have supermodular utility functions
with either (i) supermodular and convex marginal utility, or (ii) submodular and con-
cave marginal utility. Games with quadratic utility functions lie at the intersection of
these two classes. Supermodular payoffs imply that there are complementarities be-
tween a player’s action and the state as well as strategic complementarities between any
two players. Supermodular and convex (resp., submodular and concave) marginal utili-
ties further imply that these complementarities are getting stronger (resp., weaker) as a
player’s action increases.

To formally describe the comparative static results, we must first discuss an order
over information structures that captures quality, and an order over distributions of ac-
tions that captures changes in the mean and dispersion.

To compare the quality of information, we first restrict attention to monotone infor-
mation structures, that is, higher signal realizations lead to first-order stochastic shifts in
posterior beliefs. We then use the supermodular stochastic order (Tchen (1980), Meyer
and Strulovici (2012)), a more complete order than the Blackwell order (Blackwell (1951,
1953)) and the Lehmann order (Lehmann (1988)) within the class of monotone infor-
mation structures. Loosely, an information structure ρ dominates another information
structure ρ′ in the supermodular stochastic order if ρ exhibits more interdependence
between signals and states than ρ′.

Each information structure ρ induces a distribution Hi(ρ) over player i’s actions in
equilibrium. Given two information structures ρ and ρ′, we say the players are more re-
sponsive with a higher mean under ρ than ρ′ if, for each player i,Hi(ρ) dominatesHi(ρ′ )
in the increasing convex order. Loosely speaking, players become more responsive with
a higher mean when each player’s distribution over actions undergoes an “increasing-
mean spread.” Alternatively, we say that players are more responsive with a lower mean
under ρ than ρ′ if, for each player i,Hi(ρ′ ) second-order stochastically dominatesHi(ρ).

Our main result shows that for a subclass of supermodular games, players are more
responsive if and only if the quality of information increases in the supermodular
stochastic order. In particular, we show that for supermodular games with supermodu-
lar and convex marginal utilities, players are more responsive with a higher mean under
ρ than under ρ′ whenever ρ dominates ρ′ in the supermodular stochastic order. Fur-
thermore, if players are more responsive with a higher mean under ρ than ρ′ for all su-
permodular games with supermodular and convex marginal utilities, then ρ necessarily
dominates ρ′ in the supermodular stochastic order. We also present symmetric results
linking responsiveness with a lower mean to supermodular games with submodular and
concave marginal utilities.
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As an application of our main result, we consider a Bayesian persuasion game
between a sender and possibly many receivers. The literature commonly takes the
sender’s interim value function as a primitive of the persuasion framework. However,
the sender’s interim value function is endogenous and difficult to derive without as-
suming binary actions and states or assuming that the receivers’ equilibrium strategies
depend only on the first and second moments of their posterior beliefs. For example,
these assumptions are used in Rayo and Segal (2010), Bergemann and Morris (2013),
Gentzkow and Kamenica (2016), Taneva (2019), and Dworczak and Martini (2019). In-
stead, we restrict attention to the two classes of games we consider, and provide condi-
tions for when there is minimal and maximal levels of conflict between the sender and
the receivers based solely on their utility functions. Under our conditions, we show that
the extremal disclosure of information is optimal.

Related literature

The closest paper to ours is Jensen (2018), which also studies how the distribution of
individual decisions and equilibrium outcomes vary with changes in some economic
parameters. While Jensen’s methodology would prove useful to answer the comparative
statics we are interested in, it requires imposing a quasiconvex differences condition on
the players’ interim utility function. Since quasicovexity is not preserved under inte-
gration, we are left with the open question of what conditions on the primitives lead to
interim utility functions with quasiconvex differences. We show that the class of games
we consider do in fact lead to interim utility functions that satisfy quasiconvex differ-
ences with the added benefit that all our assumptions are only on the primitives. We
provide a more detailed discussion in Section 3.1 following our main results.

Methodologically, this paper contributes to the literature on monotone comparative
statics. Specifically focusing on Bayesian single-agent decision problems, Athey (2002)
and Quah and Strulovici (2009) show that optimal actions are a monotone function
of beliefs (for beliefs ordered by stochastic dominance). Similarly, in Bayesian games,
Athey (2001) and Van Zandt and Vives (2007) show that a player’s Bayesian Nash equi-
librium action is a monotone function of the player’s beliefs. We add to this literature
by showing that the distribution of equilibrium actions is monotone (in the increas-
ing/decreasing convex order) as a function of the distribution of beliefs (for distributions
of beliefs ordered consistently with the supermodular stochastic order).

The supermodular stochastic order has been previously studied by Athey and Levin
(2017) who show that for all single-agent decision makers with supermodular prefer-
ences, the value of information increases if and only if the quality of information in-
creases in the supermodular stochastic order. Our main result for the single-agent case
shows that for a subset of supermodular preferences, optimal actions become more dis-
persed if and only if the quality of information increases in the supermodular stochastic
order. Amir and Lazzati (2016) extend Athey and Levin’s result to supermodular Bayesian
games and show that the value of information is increasing and convex in the super-
modular stochastic order. Additionally, Amir and Lazzati show that the gap between
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a player’s highest and lowest equilibrium actions increases as information quality in-
creases in the supermodular stochastic order. Our main result shows that such “disper-
sion” in the players’ equilibrium behavior extends beyond the gap between the highest
and lowest actions; it holds for the entire distribution of equilibrium actions.

The remainder of the paper is structured as follows: Section 2 presents our model
and introduces the orders over distributions of actions and information structures. Our
main result is then presented in Section 3, followed by examples and an application in
Section 4. All proofs are in Appendices A–C.

2. Model

2.1 Preliminary definitions and notation

Let Xi ⊆ R be a compact set for i = 1, � � � ,m. Define X = Śm
i=1Xi and X−i = Ś

j �=i Xj .
We equip X with the coordinatewise order ≥, that is, for x′′, x′ ∈X , x′′ ≥ x′ if x′′

i ≥ x′
i for

all i= 1, 2, � � � ,m. We also equipX−i with the same coordinatewise order.
We say a function g : X → R has increasing (resp., decreasing, or constant) differ-

ences in (x−i; xi ) if g(xi, x′′
−i ) − g(xi, x′

−i ) is increasing (resp., decreasing, or constant) in
xi for all x′′

−i, x
′
−i ∈X−i with x′′

−i ≥ x′
−i.

For a twice differentiable function g : X → R, we write gxi as a shorthand for
∂g(x)/∂xi and gxixj for ∂2g(x)/∂xixj . If g is twice differentiable and has increasing
(resp., decreasing, or constant) differences in (x−i; xi ), then gxixj ≥ 0 (resp., gxixj ≤ 0,
or gxixj = 0) for each j �= i.

All references to “increasing” or “decreasing,” “increasing differences” or “decreasing
differences,” and “convex” or “concave” are in the weak sense.

2.2 Basic game setup

There are n players with N = {1, 2, � � � , n} denoting the set of players. While our exposi-
tion highlights games with n > 1, we emphasize that our setup and results also apply to
single-agent decision problems with n= 1.

Each player i ∈N has a random state variable (or type) θ̃i with support contained in
�i = [θi, θ̄i]. Define � = Ś

i∈N �i and �−i = Ś

j �=i �j . To distinguish random variables

from their realizations, we denote the random state variables by θ̃ = (θ̃i, θ̃−i ) and the
realized states by θ= (θi, θ−i ).

The players hold a common prior given by the joint cumulative distribution function
F : �→ [0, 1]. Let F�i be the marginal distribution of θ̃i and let F�−i (·|θi ) be the joint
distribution of θ̃−i conditional on θ̃i = θi induced by F .

Assumption 1. For all i ∈ N , F�−i(·|θi ) first-order stochastically dominates F�−i(·|θ′
i )

whenever θi > θ′
i. We adopt the notation F�−i(·|θi ) 	FOSD F�−i (·|θ′

i ).

Let Ai = [ai, āi] be the player i’s action space, A = Ś

i∈N Ai, and A−i = Ś

j �=i Aj .
Each player i ∈N has a utility function given by ui :�×A→R.
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Assumption 2. For each i ∈N ,

(a) ui(θ, a) is uniformly bounded, measurable in θ, and twice differentiable in ai,

(b) for all (θ, a−i ) ∈�×A−i, ui(θ, a−i, ·) is strictly concave in ai,

(c) for all (θ, a−i ) ∈�×A−i, there exists an action ai ∈Ai such that uiai(θ, a−i, ai ) = 0,
and

(d) ui(θ, a) has increasing differences in (θ, a−i; ai ).

Assumption 2(a)–(c) imply that players have unique best responses that are charac-
terized by first-order conditions. Assumption 2(d) implies that there are complementar-
ities between the state of the world and a player’s action. Additionally, there are strategic
complementarities between the players’ actions. Thus, player i wants to take a high
action when the state θ is high or when player j takes a high action.

2.3 Information structures

Each player i ∈N observes a signal s̃i from an information structure �ρi = 〈Si,G(·, ·; ρi )〉
where Si ⊆ R is the signal space, G(·, ·; ρi ) : �i × Si → [0, 1] is a joint cumulative distri-
bution of (θ̃i, s̃i ), and ρi is an index. Let G�i(·; ρi ) and GSi (·; ρi ) be the marginal dis-
tribution of θ̃i and s̃i, respectively. Let G�i(·|si; ρi ) be player i’s posterior distribution
conditional on s̃i = si, and let GSi (·|θi; ρi ) be the distribution of signals conditional on
θ̃i = θi.
Assumption 3. For all i ∈N ,

(a) G�i(·; ρi ) = F�i(·),

(b) GSi(·; ρi ) =GSi(·),

(c) G�i(·|si; ρi ) 	FOSD G�i(·|s′i; ρi ) whenever si > s′i, and

(d) GSi(·|θi; ρi ) 	FOSD GSi(·|θ′
i; ρi ) whenever θi > θ′

i.

Assumption 3(a) implies that posterior beliefs satisfy Bayes plausibility (Kamenica
and Gentzkow (2011)). Assumption 3(b), which holds without loss of generality, states
that all information structures induce the same marginal distribution on s̃i.1 Assump-
tion 3(c) implies that higher states are more likely when the signal realization is high
while Assumption 3(d) implies that higher signal realizations are more likely when the
state is high.

Let S = Ś

i∈N Si. We denote the profile of information structures by �ρ = (�ρ1 , � � � ,
�ρn ). A profile �ρ induces a joint distribution G(·, ·; ρ) :�× S→ [0, 1] over (θ̃, s̃). We as-
sume that player i cannot directly learn about (θ̃−i, s̃−i ). Formally, we have the following.

Assumption 4. G(s|θ; ρ) = ∏
i∈N GSi(si|θi; ρi ) for all (θ, s) ∈�× S.

1The assumption is without loss of generality because we can apply the integral probability transform
to any random signal s̃i and create a new, equally informative signal, which is uniformly distributed on the
unit interval. See Lehmann (1988).
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2.4 Equilibrium outcomes

Following the terminology of Gossner (2000), we decompose a Bayesian game into a ba-
sic game and a profile of information structures. The basic game �= 〈N , {Ai, ui}i∈N , F〉
is comprised of (i) a set of players N , (ii) for each player i ∈N , an action space Ai along
with a payoff function ui : �×A→ R that satisfies Assumption 2, and (iii) a common
prior F that satisfies Assumption 1. The profile of information structures �ρ satisfies
Assumption 3 and Assumption 4. Both � and �ρ are common knowledge. The full
Bayesian game is given by Gρ = (�ρ, �). The setting is general enough to accommodate
both finite and continuous types, as well as private, interdependent, or common values.
For example, the IPV case is given by θ̃i ⊥ θ̃j for all j �= i and ui(θ, a) = ui(θi, a) for all
(θ, a) ∈�×A. The pure common values case is given by θ̃i = θ̃j for all j �= i.

Each player i ∈ N first privately observes a signal realization si ∈ Si generated from
�ρi . Then the players participate in the basic game � by simultaneously choosing an
action. A pure strategy for player i ∈N is given by the measurable function αi : Si →Ai.
Let α = (αi, α−i ) be a pure strategy profile. In a Bayesian game Gρ, player i’s interim
utility when taking action ai ∈Ai, given a signal realization si and a profile of opponent’s
strategies α−i, is

Ui(ai, α−i; si, ρ) =
∫
�×S−i

ui
(
θ, α−i(s−i ), ai

)
dG(θ, s−i|si; ρ).

Momentarily ignoring existence issues, let a
(ρ) = (a
1(ρ), a
2(ρ), � � � , a
n(ρ)) be a pro-
file of pure strategy actions that constitute a Bayesian Nash equilibrium (BNE) of the
game Gρ. Thus, for each player i ∈ N and each si ∈ Si, a
i (si; ρ) = arg maxai∈Ai U

i(ai,
a
−i(ρ); si, ρ).

We restrict our attention to monotone BNEs, that is, each player’s equilibrium strat-
egy, a
i (si; ρ) is increasing in the signal realization si. The existence of monotone pure
strategy BNE in supermodular games has long been established. In particular, the ex-
istence result of Van Zandt and Vives (2007) is noteworthy in our setting because their
existence result does not require players to have atomless posterior beliefs when they
participate in the basic game. While restricting attention to monotone BNEs may be
with loss of generality, extremal equilibria are nonetheless monotone. Specifically, the
least and the greatest BNEs of a supermodular Bayesian game are in monotone pure
strategies.

Our goal in this paper is to characterize a comparative statics of a
(ρ) as the infor-
mation structure �ρ changes while holding the underlying basic game � fixed. To do
so, we will first introduce the relevant orders over actions and information structures on
which our comparative statics is based.

2.5 Order over distributions of actions

From an interim perspective, each player i ∈N first observes a signal realization si ∈ Si
and then takes some action αi(si ) ∈Ai. From an ex ante perspective, the signal realiza-
tions are yet to be observed. Therefore, αi( s̃i ) is a random variable that is distributed
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according to the CDFH(·; αi ) : R→ [0, 1] given by

H(z; αi ) =
∫
Si

1[αi(si )≤z] dGSi(si ),

where 1[·] is the indicator function.
Given two pure strategies αi andα′

i, we say thatαi dominatesα′
i in the increasing con-

vex order (resp., decreasing convex order) if for any measurable, convex, and increasing
(resp., decreasing) function ψ : R→ R,∫

ψ(z)dH(z; αi ) ≥
∫
ψ(z)dH

(
z; α′

i

)
.

Loosely, αi dominates α′
i in the increasing convex order if αi is more dispersed and has

a higher mean than α′
i. We write αi 	H α′

i (“H” for higher mean) when αi dominates
α′
i in the increasing convex order. Similarly, αi dominates α′

i in the decreasing convex
order if αi is more dispersed and has a lower mean than α′

i. We write αi 	L α′
i (“L” for

lower mean) when αi dominates α′
i in the decreasing convex order. Given a profile of

pure strategies α= (α1, � � � , αn ) and α′ = (α′
1, � � � , α′

n ), we say that α	H α′ (resp., α	L α′)
if and only if αi 	H α′

i (resp., αi 	L α′
i) for all i ∈N .

Definition 1 (Responsiveness). Given a basic game �, we say players are more respon-
sive with a higher mean under �ρ than �ρ′ if and only if

• for each monotone BNE a
(ρ′ ) of Gρ′ = (�ρ′ , �), there exists a monotone BNE a
(ρ)
of Gρ = (�ρ, �) such that a
(ρ) 	H a
(ρ′ ), and

• for each monotone BNE a
(ρ) of Gρ, there exists a monotone BNE a
(ρ′ ) of Gρ′ such
that a
(ρ) 	H a
(ρ′ ).

If 	H is replaced by 	L, we say players are more responsive with a lower mean.

Responsiveness compares the set of BNE outcomes in the weak-set order. There is
no analogous comparative statics such that every monotone BNE of Gρ dominates ev-
ery monotone BNE of Gρ′ in the increasing or decreasing convex order. In fact, there
are no general comparative statics results for Nash equilibria (and fixed points) in the
strong-set order.2 Thus, while the definition for responsiveness takes into account the
possibility of multiple BNE outcomes, we have to use equilibrium selection rules in ap-
plications. For example, if players are more responsive with a higher mean under �ρ
than �ρ′ , then the extremal (greatest and least) BNE outcomes of Gρ dominate the re-
spective extremal outcomes of Gρ′ in the increasing convex order. Of course, when n= 1,
there is no multiplicity because of Assumption 2.

2Note that Vives (1990) and Milgrom and Roberts (1994) establish monotone comparative statics in
strong-set order only for extremal Nash outcomes. Che, Kim, and Kojima (2019) provides an example in
which Nash equilibria before and after a policy change can be compared by the weak-set order but not the
strong-set order.
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2.6 Order over information structures

The next step is to determine an appropriate way to compare different information
structures. Recall that we focus, without loss of generality, on information structures
that induces the same marginals on θ̃i and s̃i (Assumption 3(a), (b)).

Definition 2 (Supermodular Stochastic Order). We say�ρi dominates�ρ′
i

in the super-
modular stochastic order if and only if for all (θi, si ) ∈�i×Si,G(θi, si; ρi ) ≥G(θi, si; ρ′

i ).

Intuitively, �ρi dominates �ρ′
i

in the supermodular stochastic order if the state and
the signal are more correlated under �ρi . Recall that Assumption 3(c) implies low signal
realizations are more likely for low states. When �ρi dominates �ρ′

i
in the supermodular

stochastic order, a signal s̃i ≤ si from �ρi presents a stronger evidence of a low state than
the same signal from �ρ′

i
, that is,

P(θ̃i ≤ θi|s̃i ≤ si; ρi ) ≥ P
(
θ̃i ≤ θi|s̃i ≤ si; ρ′)

⇔ P(θ̃i ≤ θi|s̃i ≤ si; ρi )GSi(si )︸ ︷︷ ︸
=G(θi ,si;ρi )

≥ P
(
θ̃i ≤ θi|s̃i ≤ si; ρ′

i

)
GSi(si )︸ ︷︷ ︸

=G(θ,s;ρ′
i )

.

We use the notation ρi 	spm ρ′
i whenever �ρi dominates �ρ′

i
in the supermodular

stochastic order. Given two profiles of information structures �ρ = (�ρ1 , � � � , �ρn ) and
�ρ′ = (�ρ′

1
, � � � , �ρ′

n
), we write ρ	spm ρ

′ if and only if ρi 	spm ρ
′
i for all i ∈N .

3. Preferences and main result

The main contribution of this paper is to identify a class of games for which players
become more responsive when information quality increases according to the super-
modular stochastic order. We provide examples of games that fall into these classes in
Section 4.

Let �H be the class of basic games � = 〈N , {Ai, ui}i∈N , F〉 such that F satisfies As-
sumption 1 and the payoff function ui :�×A→ R for each i ∈N satisfies Assumption 2
and has a marginal utility uiai(θ, a) that

(i) is convex in aj for all j ∈N , and

(ii) has increasing differences in (θ, a−j ; aj ) for all j ∈N .

Below, we show �H is linked to responsiveness with a higher mean.
Similarly, let �L be the class of basic games � = 〈N , {Ai, ui}i∈N , F〉 such that F sat-

isfies Assumption 1 and the payoff function ui : �×A→ R for each i ∈ N satisfies As-
sumption 2 and has a marginal utility uiai(θ, a) that

(i) is concave in aj for all j ∈N , and

(ii) has decreasing differences in (θ, a−j ; aj ) for all j ∈N .

Below, we show �L is linked to responsiveness with a lower mean.
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A basic game � ∈ �H ∩�L has a prior F that satisfies Assumption 1 and a payoff func-
tion for each i ∈N that satisfies Assumption 2 with marginal utility uiai(θ, a) that

(i) is linear in aj for all j ∈N , and

(ii) has constant differences in (θ, a−j ; aj ) for all j ∈N .

Below, we show that �H ∩�L is linked to mean-preserving spreads of equilibrium actions.
Theorem 1 states that when the basic game � belongs to the class of games in �H ,

players are more responsive with a higher mean under Gρ = (�ρ, �) than under Gρ′ =
(�ρ′ , �) whenever �ρ dominates �ρ′ in the supermodular stochastic order. Moreover, if
�ρ does NOT dominate �ρ′ in the supermodular stochastic order, then there is a game
� ∈ �H in which the players are NOT more responsive with a higher mean under �ρ.

The theorem also establishes a similar result relating �L and responsiveness with a
lower mean. Thus, for games in �H ∩ �L, players are more responsive both with a higher
and lower mean when information quality increases in the supermodular stochastic or-
der; in other words, an increase in the quality of information leads to a mean-preserving
spread in the distribution of equilibrium actions.

Theorem 1. Consider any two profiles of information structures �ρ and �ρ′ that satisfy
Assumption 3 and Assumption 4. Players are more responsive with a higher (resp., lower)
mean under �ρ than �ρ′ for any basic game � ∈ �H (resp., � ∈ �L) if, and only if, �ρ dom-
inates �ρ′ in the supermodular stochastic order.

For the case of a single-agent, we also provide a companion result in Theorem 2
relating responsiveness to the Blackwell order: the agent is more responsive under �ρ
than under �ρ′ when the latter is a garbling of the former. While the result appears to
be a corollary of Theorem 1, there is a difference—the garbling �ρ′ does NOT have to
be a monotone information structure, that is, does not have to satisfy Assumption 3.
The difference in these two results is made evident in Section 4 when we consider an
application of Bayesian persuasion.

Theorem 2. Let n = 1. Consider any information structure �ρ that satisfies Assump-
tion 3, and let �ρ′ be a garbling of �ρ. If � ∈ �H (resp., � ∈ �L), then the agent is more
responsive with a higher (resp., lower) mean under �ρ than under �ρ′ .

We defer the proof of Theorem 1 and Theorem 2 until Appendix B. Here, we provide
some intuition. We start with the case of a single-agent (n = 1) and drop the player-
index “i” for now. Since u(θ, a) has complementarities between θ and a, we know that
the agent’s optimal action is monotone, that is, it increases as the agent’s posterior be-
lief increases in first-order stochastic dominance. However, monotonicity alone is not
sufficient to obtain our desired comparative statics as shown in Roux and Sobel (2015);
the mapping from posterior beliefs to actions would also have to be appropriately con-
vex or concave. When �ρ is Blackwell more informative than �ρ′ , the distribution over
posteriors induced by �ρ is a mean-preserving spread of the distribution over posteriors
induced by �ρ′ . A monotone and convex (resp., monotone and concave) mapping from
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beliefs to actions transforms the mean-preserving spread in the distribution over poste-
rior beliefs to a shift in the increasing convex order (resp., decreasing convex order) in
the distribution over actions.

We show that if � ∈ �H , the mapping from (FOSD ordered) posterior beliefs to actions
is indeed monotone and convex, thereby obtaining the responsiveness with a higher
mean result in Theorem 2. For games in �H , the complementarities between actions
and states are increasing as actions increase, that is, ua(θ, a) has increasing differences
in (θ; a). Thus, for a fixed action a, the agent’s marginal utility is increasing and also
getting flatter as θ increases. Also, recall from Assumption 2 that the agent’s utility is
concave in her action. Additionally, for games in �H , preferences also feature convex
marginal utilities, that is, ua(θ, a) is convex in a. Thus, for a fixed θ, the agent’s marginal
utility is diminishing but at an increasingly slower rate as actions increase. In other
words, the higher the state or the higher the action, the agent’s marginal value from
further increasing her action diminishes at a decelerating rate. Thus, her incentives to
take higher actions get amplified as her beliefs put more weight on higher states, leading
to the desired convexity property.

For games in �L, the agent’s preferences feature complementarities that are decreas-
ing as actions increase. Thus, for a fixed action a, the agent’s marginal utility is increasing
and also getting steeper as θ increases. The preferences also feature concave marginal
utilities, so that for a fixed θ, the agent’s marginal utility is diminishing at an increas-
ingly faster rate as actions increase. In other words, the higher the state or the higher
the action, the agent’s marginal value from further increasing her action diminishes at
an accelerating rate. Thus, her incentives to take higher actions get dampened as her
beliefs put more weight on higher states, leading to the desired concavity property.

The proof for Theorem 1 when n = 1 generalizes this intuition from the Blackwell
order to the more general supermodular stochastic order.

Remark 1. The convexity/concavity of the mapping from beliefs to actions is not only
sufficient but also necessary for responsiveness. For example, if an agent’s optimal ac-
tion mapping is nonconvex and nonconcave, which necessarily implies � /∈ �H ∪ �L,
we can find a prior and two information structures �ρ and �ρ′ such that ρ 	spm ρ′ but
the agent is NOT more responsive with a higher or lower mean under �ρ than �ρ′ . We
present such an example in Appendix C.

When n > 1, payoffs with increasing differences in (θ, a−i; ai ) imply that the players
have monotone BNE strategies. However, once again, monotonicity alone is not suffi-
cient. With multiple players, player i’s relevant “state” is not just θ̃ but also the random
equilibrium actions of the other players a
−i( s̃−i ). Thus, we extend the marginal utility
conditions in the single-agent case to the enlarged “state space” in order to obtain the
multiplayer responsiveness result in Theorem 1.

It is worthwhile to highlight two effects that only exist in the case for n > 1. First,
when the quality of information for player j �= i increases, the signals s̃i and s̃j become
unconditionally more correlated. This implies that, holding player j’s strategy fixed,
player i can better predict player j’s random action. Second, when the distribution of
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player j’s actions shift in the increasing convex order, player i’s best response also shifts
in the increasing convex order due to the strategic complementarities in the payoffs and
the marginal payoffs. The combination of these effects is that each player’s distribution
of BNE outcomes becomes more dispersed if at least one player gets a higher quality of
information.

3.1 Connection to Jensen

As mentioned in the literature review, the closest paper to ours is Jensen (2018), which
studies how the distribution of individual decisions and equilibrium outcomes vary with
changes in the distribution of some economic parameter. As the connection is most
clear in the single-agent setting, we will focus our discussion to the case when n= 1.

For some belief μ ∈ �(�) and action a ∈A, define the interim payoff function as

U(μ, a) =
∫
�
u(θ, a)μ(dθ)

and let a∗(μ) = arg maxa∈AU(μ, a) be the agent’s optimal choice. Jensen shows that if
U(μ, a) − U(μ, a − δ) is quasiconvex (resp., quasiconcave) for all δ > 0 small enough,
then a∗(μ) is a convex (resp., concave) function of μ. Consequently, the agent’s optimal
actions become more dispersed with a higher (resp., lower) mean as the information
structure becomes Blackwell more informative.

While the quasiconvexity condition is useful to answer the questions we are inter-
ested in, it is not known what conditions on u(θ, a) would yield the quasiconvexity
differences conditions on the interim utility U(μ, a). In particular, quasiconvexity of
u(θ, a) − u(θ, a− δ) in (θ, a) does not imply quasiconvexity of U(μ, a) −U(μ, a− δ) in
(μ, a), as quasiconvexity is not closed under integration.

Below, we show that our class of games are sufficient to establish Jensen’s quasi-
convexity conditions on the interim utility for posteriors that are ranked by first-order
stochastic dominance. Since we are considering differentiable functions, Jensen’s con-
ditions are equivalent to quasiconvexity/quasiconcavity of Ua(μ, a).

Proposition 1. Let n = 1. For any two beliefs μ1, μ2 ∈ �(�) with μ2 	FOSD μ1, any
a1, a2 ∈A, and any λ ∈ [0, 1], � ∈ �H implies

Ua
(
λμ1 + (1 − λ)μ2, λa1 + (1 − λ)a2

) ≤ max
{
Ua(μ1, a1 ),Ua(μ2, a2 )

}
and � ∈ �L implies

Ua
(
λμ1 + (1 − λ)μ2, λa1 + (1 − λ)a2

) ≥ min
{
Ua(μ1, a1 ),Ua(μ2, a2 )

}
.

4. Examples and applications

In this section, we present several examples of games that fit under �H or �L as well
as an application to a game of information disclosure between a sender and multiple
receivers.
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4.1 Examples

Example 1 (Beauty Contests). Consider a beauty contest game in which each player
i ∈N has a payoff

ui(θ, a) = −(1 −βi )(θi − ai )2 −βi
(∑
j �=i

aj

n− 1
− ai

)2

with βi ∈ (0, 1). Each player i wants to match her action to her payoff-relevant state θ̃i
as well as to the average action of the other players. The parameter βi measures the
strength of strategic complementarity. The formulation allows for payoff asymmetry as
well as independent or correlated states, in contrast to the classical formulation with
symmetric payoffs and a pure common value setting (Keynes (1936), Morris and Shin
(2002)). Beauty contests belong to �H ∩ �L. ♦

Example 2 (Joint Projects). Consider N players participating in a joint project. Each
player i ∈N has a payoff

ui(θ, a) = νi(θi )
n∏
j=1

aj − cia2
i ,

where ai ∈ [0, 1], ci > 0, and νi : R → R is an increasing function with νi(0) = 0. Each
player chooses how much costly effort to exert on a group project. The project suc-
ceeds with probability

∏n
j=1 aj and yields the player a random monetary payoff of θ̃i or

fails and yields zero monetary payoff. A player’s preferences over monetary outcomes is
captured by νi(·). This game belongs to �H . ♦

Example 3 (Network Games). Consider a network of N players represented by a (pos-
sibly asymmetric) n × n matrix σ with σij capturing how much player i interacts with
player j. Each player i ∈N has a payoff

ui(θ, a) =
(
Yi(θ) +

∑
j �=i
σi,jXi(aj )

)
ai − cia2

i ,

where ci > 0, and Yi : �→ R+ and Xi : A→ R+ are nonnegative and increasing func-
tions. Each player i chooses how much effort to exert. Effort is costly but yields a direct
marginal benefit ofYi(θ) that is increasing in θ. Additionally, there are positive spillovers
in the form of peer effects captured by σijXi(aj ): the more i interacts with j and the
more effort j exerts, the higher the peer effect. This game belongs to �H (resp., �L) if Xi
is convex (resp., concave) for all i ∈N . ♦

Example 4 (Portfolio Choice by a Prudent and Risk-Averse Agent). Consider a single
risk-averse agent with a Bernoulli utilityϑ : R→ R, which is continuous, strictly increas-
ing, and strictly concave. She can place a fraction a ∈ [0, 1] of her wealthW > 0 in stocks,
which yield a random rate of return x̃ that is distributed according to Pθ on [x, x̄] with
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x < 0< x̄. The remaining 1 −a of her wealth is in cash, which yields a zero rate of return.
Her ex-post payoff is given by

u(θ, a) =
∫ x̄

x
ϑ

(
W (1 + ax)

)
)dPθ(x).

The parameter θ captures the volatility in stocks. In particular, for θ′′ > θ′,∫ z

0
x
[
dPθ′′(x) − dPθ′(x)

] ≥ 0, (RS)

for all z ∈ [x, x̄], with equality when z = x̄. Hence, θ does not affect the average rate
of return on stocks but a higher θ is associated with a lower volatility. Rothschild and
Stiglitz (1971) show that all risk-averse agents invest more in a risky asset distributed
according to Pθ′′ than Pθ′ if, and only if, (RS) holds. Additionally, we assume that∫ x̄
x xdPθ(x) =E[x̃]> 0; otherwise, the agent will never invest in stocks.

When the investor is prudent, that is, ϑ′′′(x) > 0, the absolute prudence coeffi-
cient −ϑ′′′(x)/ϑ′′(x) is nonincreasing, and the relative prudence coefficient satisfies
−xϑ′′′(x)/ϑ′′(x) ≤ 1, then � ∈ �H . ♦

4.2 Application: Information disclosure

We consider a sender who chooses an information structure for a number of receivers
with the intention of affecting the actions the receivers play in a Bayesian game. In the
case of a single receiver, this problem corresponds to the information disclosure game of
Rayo and Segal (2010) as well as the seminal Bayesian persuasion problem of Kamenica
and Gentzkow (2011). The latter show that the persuasion problem is equivalent to
maximizing the sender’s interim expected payoff over Bayes-plausible distributions of
the receiver’s posterior beliefs. Mathevet, Perego, and Taneva (2020) extend this belief-
based approach to many receivers and show that the information disclosure problem
is equivalent to maximizing the sender’s interim expected payoff over consistent and
Bayes-plausible distributions of the receivers’ hierarchies of beliefs.

These results are powerful and general as they allow the sender full flexibility in what
information to disclose to the receiver(s). However, they are also difficult to use in appli-
cations. For example, deriving the sender’s interim value function from the primitives
of a persuasion problem is a nontrivial task, which requires a closed-form solution to
the receiver’s optimization strategy. The literature has mostly focused on tractable bi-
nary environments (binary action and state spaces) or when the optimal strategy of the
receiver depends only on the posterior mean. The problem often becomes more in-
tractable when considering applications with many receivers or a continuum of actions
and states.

We thus depart from the generality in the literature and restrict the sender to choose
monotone information structures such that the receivers’ signals are conditionally in-
dependent. We then apply Theorem 1 to characterize conditions on the preferences of
the sender and the receivers that give maximal or minimal information disclosure.
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Formally, there are n receivers who play a basic game � = 〈N , {Ai, ui}i∈N , F〉. The
payoff ui :�×A→R satisfies Assumption 2 for all i ∈N and the common prior F satis-
fies Assumption 1. The sender has preferences over the state and the receivers’ actions
given by v :�×A→R, which is continuous in a for all θ ∈�.

The information disclosure game is composed of two stages: First, without observ-
ing the state, the sender publicly chooses a profile of information structures �ρ. Then
each receiver/player i ∈ N privately observes a signal realization si ∈ Si generated by
�ρi = 〈Si,G(·, ·; ρi )〉 and participates in the Bayesian game (�ρ, �). We assume that all
players coordinate on either the greatest or least BNE, which are necessarily monotone
pure-strategies. The sender’s ex ante payoff is given by

V (ρ) =
∫
�×S

v
(
θ, a
(s; ρ)

)
dG(θ, s; ρ).

Let P be the set of information structures that satisfy Assumption 3 and Assump-
tion 4. The no-information structure trivially belongs to P . Similarly, player i’s full-
information structure that reveals θ̃i is in P .3 We refer to these two information struc-
tures as the minimal and maximal disclosure policies. We restrict the sender to choose
from information structures in P . Thus, the sender’s problem is sup�ρ∈P V (ρ).

Proposition 2. Suppose v(θ, a) is componentwise convex (resp., componentwise con-
cave) in a, has increasing differences (resp., decreasing differences) in (θ, a−i; ai ) for each
i ∈N , and one of the following holds:

(i) � ∈ �H and v(θ, a) is increasing (resp., decreasing) in a,

(ii) � ∈ �L and v(θ, a) is decreasing (resp., increasing) in a, or

(iii) � ∈ �H ∩ �L.

For any two information structures �ρ, �ρ′ ∈ P , V (ρ) ≥ V (ρ′ ) (resp., V (ρ) ≤ V (ρ′ )) if
ρ	spm ρ

′.

Proposition 2 provides sufficient conditions under which there is minimal and max-
imal conflict between the sender and the receiver(s): if their desire to correlate actions
and states goes in the same (opposite) direction and the sender likes (dislikes) dispersion
of the actions, there will be maximal (minimal) disclosure.

We are not the first to study conditions under which there is maximal or minimal
information disclosure. For the case with multiple receivers, Taneva (2019) exploits
the equivalence between Bayes-correlated equilibria and Bayesian Nash equilibria with
information disclosure (Bergemann and Morris (2016)) to characterize conditions for
maximal and minimal information disclosure in binary environments with symmetric
payoffs. Bergemann and Morris (2013) similarly use Bayes-correlated equilibria to char-
acterize conditions for maximal and minimal information sharing between firms in a

3Note the difference from an information structure that reveals θ̃= (θ̃1, � � � , θ̃n ) to player i.
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linear-quadratic setting. While these papers allows the sender to choose any informa-
tion structure, our result allows for richer state and action spaces and richer preferences
while restricting the set of information structures available to the sender.

For the case of a single receiver, Kamenica and Gentzkow (2011) show that the sender
will disclose all (resp., no) information if the sender’s interim value function is convex
(resp., concave) in the receiver’s posterior beliefs. Kolotilin (2018) and Dworczak and
Martini (2019) use duality theory to derive conditions for maximal and minimal infor-
mation disclosure when the sender’s interim utility depends only on the posterior mean.
Mensch (2021) derives novel single-crossing conditions on what he calls the sender’s
“virtual utility” to characterize maximal and minimal information disclosure in envi-
ronments with complementarities. However, the sender’s interim value function or the
sender’s virtual utility are often complicated endogenous functions. Beyond binary en-
vironments or settings where the posterior mean is sufficient, it is unclear what con-
ditions on the primitives of a persuasion problem would imply the desired conditions
on the sender’s interim/virtual utility. In contrast, our assumptions are directly on the
primitives of the persuasion problem and do not necessitate computing the sender’s
interim value function.

When there is a single receiver, the conditional independence assumption (Assump-
tion 4) is no longer relevant. In the special case with binary states, all posteriors are first-
order ranked. This implies it is without loss of generality to focus on monotone informa-
tion structures, that is, Assumption 3 holds trivially. Any information structure is both
dominated by the full-information structure and dominates the no-information struc-
ture in the supermodular stochastic order. Hence, Proposition 2 along with Theorem 1
imply maximal (resp., minimal) disclosure is the sender’s optimal policy out of ALL pos-
sible information structures. The next result extends a part of this result to nonbinary
environments using Theorem 2, which allows for nonmonotone information structures.

Theorem 3. Let n = 1. Full-information revelation is the optimal disclosure policy
among all possible information structures if v(θ, a) is convex in a, has increasing differ-
ences in (θ; a) and one of the following holds:

(i) � ∈ �H and v(θ, a) is increasing in a,

(ii) � ∈ �L and v(θ, a) is decreasing in a, or

(iii) � ∈ �H ∩ �L.

Intuitively, the full-information structure is Blackwell more informative than any
other signal and is trivially a monotone information structure because � is a totally
ordered set when n = 1. Any other information structure, monotone or not, is neces-
sarily a garbling of the full-information structure. Thus, when the sender can use any
information structure, Theorem 2 and the conditions in Theorem 3 imply that there is
minimal conflict between the sender and the receiver, establishing the optimality of full
disclosure.

Once again, notice that the conditions in Theorem 3 are on the primitive preferences
of the sender and the receiver. We do not need to assume further conditions, such as
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convexity of the sender’s interim value function as in Kamenica and Gentzkow (2011),
or quasiconvexity of the receiver’s interim utility as in Jensen (2018).

Appendix A

This section contains results that we use to prove our main theorem. These are not our
results, and are provided for the ease of the reader.

Given a pure strategy αi : Si →Ai for player i ∈N and ex ante distribution of actions
H(·; αi ) : R→ [0, 1], define the quantile function â(·; αi ) : [0, 1] →R by

â(q; αi ) = inf
{
z : q≤H(z; αi )

}
for q ∈ (0, 1).

Lemma A.1 (Theorem 4.A.2–A.3 of Shaked and Shanthikumar (2007)). Given two pure
strategies αi and α′

i, the following are equivalent:

(i) αi 	H α′
i.

(ii) For all x ∈R,
∫ ∞
x H(z; αi )dz ≤ ∫ ∞

x H(z; α′
i )dz.

(iii) For all t ∈ [0, 1],
∫ 1
t â(q; αi )dq≥ ∫ 1

t â(q; α′
i )dq.

Similarly, the following are equivalent:

(iv) αi 	L α′
i.

(v) For all x ∈R,
∫ x
−∞H(z; αi )dz ≥ ∫ x

−∞H(z; α′
i )dz.

(vi) For all t ∈ [0, 1],
∫ t

0 â(q; αi )dq≤ ∫ t
0 â(q; α′

i )dq.

Lemma A.2 (Theorem 3.8.2 of Müller and Stoyan (2002) or Tchen (1980)). Given two
information structures �ρi and �ρ′

i
, ρi 	spm ρ′

i if, and only if, for all integrable functions
ψ :�i × Si →R that satisfy increasing differences (ID) in (θi; si ),∫

�i×Si
ψ(θi, si )dG(θi, si; ρi ) ≥

∫
�i×Si

ψ(θi, si )dG
(
θi, si; ρ

′
i

)
.

Lemma A.3 (Lemma 1 of Quah and Strulovici (2009)). Let g : [x, x̄] →R and h : [x, x̄] →R

be integrable functions.

(i) If g is increasing and
∫ x̄
z h(x)dx ≥ 0 for all z ∈ [x, x̄], then

∫ x̄
x g(x)h(x)dx ≥

g(x)
∫ x̄
x h(x)dx.

(ii) If g is decreasing and
∫ z
x h(x)dx ≥ 0 for all z ∈ [x, x̄], then

∫ x̄
x g(x)h(x)dx ≥

g(x̄)
∫ x̄
x h(x)dx.
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Appendix B

Proof of Theorem 1. ( =⇒ ) We only prove the case for �H . A symmetric argument

establishes the result for the case for �L. Without loss of generality, let the marginal GSi
be the uniform distribution on the unit interval for each i ∈N (see footnote 1).

Fix a basic game � ∈ �H . For each player i ∈N , let αi : Si →Ai be an arbitrary mea-

surable and monotone strategy. Since αi is monotone, it is almost everywhere equal to

its quantile function, that is, αi(si ) = â(si; αi ) for almost all si ∈ [0, 1] = Si. Thus, given

two monotone strategies αi and α′
i, from Lemma A.1, αi 	H α′

i if and only if

∫ 1

t
αi(s)dsi ≥

∫ 1

t
α′
i(si )dsi

for all t ∈ [0, 1].

Let Ai be the set of all monotone and measurable strategies and let A = Ś

i∈N Ai.
Given a profile of information structures �ρ = (�ρ1 , � � � , �ρn ) and opponents’ strategies

α−i ∈ A−i, let aBR
i (·; α−i, ρ) : Si →Ai be player i’s best response strategy. Specifically, for

all si ∈ Si,

aBR
i (si; α−i, ρ) = arg max

ai∈Ai

∫
�×S−i

ui
(
θ, α−i(s−i ), ai

)
dG(θ, s−i|si; ρ).

Using Assumption 1–Assumption 4 and monotone comparative statics of Bayesian su-

permodular games (Van Zandt and Vives (2007)), aBR
i (·; α−i, ρ) ∈ Ai for all i ∈N .

For any given profile of monotone strategies α = (α1, � � � , αn ) ∈ A, denote the pro-

file of best-response strategies by aBR(α, ρ) = (aBR
1 (·; α−1, ρ), � � � , aBR

n (·; α−n, ρ)). Then

a monotone BNE a
(ρ) of a Bayesian game Gρ = (�ρ, �) is given by the fixed point

aBR(a
(ρ), ρ) = a
(ρ).

The proof proceeds in three steps:

(i) Player i’s best response strategy increases in the increasing convex order when

any player j’s information quality increases in the supermodular stochastic order

(Lemma B.1). This concludes the proof if n= 1.

(ii) For all j ∈ N\{i}, player i’s best response strategy increases in the increasing

convex order when player j’s strategy increases in the increasing convex order

(Lemma B.2).

(iii) Given (i)–(ii), apply comparative statics on fixed points to get desired result.

Lemma B.1. Fix some i ∈N and some monotone strategy α−i ∈ A−i. Take two profiles of

information structures �ρ′′ = (�ρ′′
j
, �ρ−j ) and �ρ′ = (�ρ′

j
, �ρ−j ) for some j ∈N . If ρ′′

j 	spm

ρ′
j , then aBR

i (·; α−i, ρ′′ ) 	H aBR
i (·; α−i, ρ′ ).
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Proof. To economize on notation, we suppress the dependence of aBR
i (·; α−i, ρ′

i ) on
α−i. For any signal realization si ∈ Si, the first-order conditions imply that∫

�×S−i

[
uiai

(
θ, α−i(s−i ), aBR

i

(
si; ρ

′′)) − uiai
(
θ, α−i(s−i ), aBR

i

(
si; ρ

′))]dG(
θ, s−i|si; ρ′′)

+
∫
�×S−i

uiai
(
θ, α−i(s−i ), aBR

i

(
si; ρ

′))[dG(
θ, s−i|si; ρ′′) − dG(

θ, s−i|si; ρ′)] = 0.

As � ∈ �H , uiai(θ, a) is convex in ai for all (θ, a−i ) ∈�×A−i. Thus,

uiai
(
θ, α−i(s−i ), aBR

i

(
si; ρ

′′)) − uiai
(
θ, α−i(s−i ), aBR

i

(
si; ρ

′))
≥ uiaiai

(
θ, α−i(s−i ), aBR

i

(
si; ρ

′))(aBR
i

(
si; ρ

′′) − aBR
i

(
si; ρ

′)),

and for each t ∈ [0, 1],∫ 1

t

(
aBR
i

(
si; ρ

′) − aBR
i

(
si; ρ

′′))dsi
≤

∫ 1

t
B(si )

∫
�×S−i

uiai
(
θ, α−i(s−i ), aBR

i

(
si; ρ

′))[dG(
θ, s−i|si; ρ′) − dG(

θ, s−i|si; ρ′′)]dsi
=

∫
�j×Sj

∫
�−j×S−j

1[si≥t]B(si )u
i
ai

(
θ, α−i(s−i ), aBR

i

(
si; ρ

′))dG(θ−j , s−j|θj ; ρ−j )︸ ︷︷ ︸
�ψ(θj ,sj ;t )

× [
dG

(
θj , sj ; ρ

′
j

) − dG(
θj , sj ; ρ

′′
j

)]
,

where the last equality follows from Assumption 4, and

B(si ) =
(

−
∫
�×S−i

uiaiai
(
θ, α−i(s−i ), aBR

i

(
si; ρ

′))dG(
θ, s−i|si, ρ′′))−1

.

Note that B(si ) > 0 by the concavity of ui in ai. Additionally, it is an increasing
function because −uiai has decreasing differences in (θ, a−i; ai ), is concave in ai, and

G(θ̃, s̃−i|si; ρ′′ ) is increasing in FOSD as si increases by Assumption 1, Assumption 3, and
Assumption 4.

First, we consider the case when i= j. For any s′′i > s
′
i, we have

ψ
(
θi, s

′′
i ; t

) −ψ(
θi, s

′
i; t

)
= (

1[s′′i ≥t]B
(
s′′i

) − 1[s′i≥t]B
(
s′i

)) ∫
�−i×S−i

uiai
(
θ, α−i(s−i ), aBR

i

(
s′′i ; ρ′))dG(θ−i, s−i|θi; ρ−i )

+ 1[s′i≥t]B
(
s′i

) ∫
�−i×S−i

[
uiai

(
θ, α−i(s−i ), aBR

i

(
s′′i ; ρ′))

− uiai
(
θ, α−i(s−i ), aBR

i

(
s′i; ρ

′))]dG(θ−i, s−i|θi; ρ−i ),
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which is an increasing function of θi. To see why, notice that (i) strategies are monotone
in signal realizations, (ii) 1[si≥t]B(si ) ≥ 0 and increasing in si, (iii) the first integrand is
increasing in (θ, s−i ) since ui has increasing differences in (θ, a−i; ai ), (iv) the second
integrand is increasing in (θ, s−i ) since uiai has increasing differences in (θ, a−i; ai ), and

(v)G(θ̃−i, s̃−i|θi, ρ−i ) is increasing in FOSD as θi increases.
Next, we consider the case when i �= j. For any s′′j > s

′
j , we have

ψ
(
θj , s

′′
j ; t

) −ψ(
θj , s

′
j ; t

)
=

∫
�−j×S−j

1[si≥t]B(si )
[
uiai

(
θ, α−i

(
s′′−i

)
, aBR
i

(
si; ρ

′))
− uiai

(
θ, α−i

(
s′−i

)
, aBR
i

(
si; ρ

′))]dG(θ−j , s−j|θj ; ρ−j ),

with α−i(s−i ) = (α−i,j(s−i,j ), αj(sj )). The difference is increasing in θj because (i) strate-
gies are monotone in signal realizations, (ii) 1[si≥t]B(si ) ≥ 0 and increasing in si, (iii) the
term in the square brackets is nonnegative since ui has increasing differences in (aj ; ai ),
(iv) the term in the square brackets is increasing in (θ, s−j ) since uiai has increasing dif-

ferences in (θ, a−j ; aj ), and (v)G(θ̃−j , s̃−j|θj , ρ−j ) is increasing in FOSD as θj increases.
In both cases, we have just shown thatψ(θj , sj ; t ) has increasing differences in (sj ; θj )

for all t ∈ [0, 1]. We can therefore conclude that for each t ∈ [0, 1],∫ 1

t

(
aBR
i

(
si; ρ

′) − aBR
i

(
si; ρ

′′))dsi ≤ ∫
�j×Sj

ψ(θj , sj ; t )
[
dG

(
θj , sj ; ρ

′
j

) − dG(
θj , sj ; ρ

′′
j

)] ≤ 0,

where the last inequality follows from Lemma A.2. Thus, aBR
i (·; α−i, ρ′′ ) 	H aBR

i (·;
α−i, ρ′ ).

Lemma B.2. Fix i, j ∈ N with j �= i, a monotone strategy α−i,j ∈ A−i,j , and information
structures �ρ. For α′′

j , α′
j ∈ Aj such that α′′

j 	H α′
j , a

BR
i (·; α′′

−i, ρ) 	H aBR
i (·; α′

−i, ρ).

Proof. We suppress the dependence on �ρ as it is held fixed. For any t ∈ [0, 1], we use
the first-order conditions argument to get the expression∫ 1

t

(
aBR
i

(
si; α

′
−i

) − aBR
i

(
si; α

′′
−i

))
dsi

≤
∫
�×S

1[si≥t]B̃i(si )
[
uiai

(
θ, α′

−i(s−i ), aBR
i

(
si; α

′
−i

))
− uiai

(
θ, α′′

−i(s−i ), aBR
i

(
si; α

′
−i

))]
dG(θ, s),

where

B̃(si ) =
(

−
∫
�×S−i

uiaiai
(
θ, α′′

−i(s−i ), aBR
i

(
si; α

′
−i

))
dG(θ, s−i|si )

)−1

.

Note that B̃(si ) has the same properties as B(si ) in Lemma B.1 for the same reasons, that
is, B̃(si )> 0 and increasing in si.
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By convexity of uiai in aj ,

uiai
(
θ, α′

−i(s−i ), aBR
i

(
si; α

′
−i

)) − uiai
(
θ, α′′

−i(s−i ), aBR
i

(
si; α

′
−i

))
≤ uiaiaj

(
θ, α′

−i(s−i ), aBR
i

(
si; α

′
−i

))(
α′
j(sj ) − α′′

j (sj )
)
.

Thus,∫ 1

t

(
aBR
i

(
si; α

′
−i

) − aBR
i

(
si; α

′′
−i

))
dsi

≤
∫
Sj

(
α′
j(sj ) − α′′

j (sj )
) ∫
�×S−j

1[si≥t]B̃(si )u
i
aiaj

(
θ, α′

−i(s−i ), aBR
i

(
si; α

′
−i

))
dG(θ, s−j|sj )dsj .

As α′′
j , α′

j ∈ Aj , α′′
j 	H α′

j if and only if

∫ 1

t

(
α′
j(sj ) − α′′

j (sj )
)
dsj ≤ 0, ∀t ∈ [0, 1].

Furthermore, ∫
�×S−j

1[si≥t]B̃(si )u
i
aiaj

(
θ, α′

−i(s−i ), aBR
i

(
si; α

′
−i

))
dG(θ, s−j|sj )

is an increasing function of sj because (i) strategies are monotone in signal realizations,
(ii) 1[si≥t]B̃(si ) ≥ 0 and increasing in si, (iii) uiaiaj (θ, α′

−i(s−i ), aBR
i (si; α′

−i )) ≥ 0 since ui has

increasing differences in (aj ; ai ), (iv) uiaiaj (θ, α′
−i(s−i ), aBR

i (si; α′
−i )) is increasing in (θ, s)

since uiai has increasing differences in (θ, a−j ; aj ) and is convex in aj , and (v) G(θ̃, s̃−j|sj )
is increasing in FOSD as sj increases by Assumption 1, Assumption 3, and Assumption 4.

Applying Lemma A.3, we have∫ 1

t

(
aBR
i

(
si; α

′
−i

) − aBR
i

(
si; α

′′
−i

))
dsi

≤
∫
Sj

(
α′
j(sj ) − α′′

j (sj )
)∫
�×S−j

1[si≥t]B̃(si )u
i
aiaj

(
θ, α′

−i(s−i ), aBR
i

(
si; α

′
−i

))
dG(θ, s−j|sj )dsj

≤
∫
Sj

(
α′
j(sj ) − α′′

j (sj )
)
dsj︸ ︷︷ ︸

≤0

×
∫
�×S−j

1[si≥t]B̃(si )u
i
aiaj

(
θ, α′

−i(s−i ), aBR
i

(
si; α

′
−i

))
︸ ︷︷ ︸

≥0

dG(θ, s−j|sj = 0)

≤ 0

for each t ∈ [0, 1]. Thus, aBR
i (·; α′′

−i, ρ) 	H aBR
i (·; α′

−i, ρ).

We now tackle the last step in the “if” part of the proof: comparative statics of the
BNEs. We apply the comparative statics of fixed points from Villas-Boas (1997). To do
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so, we will need the following definitions. Let BV([0, 1], R) be the space of functions
of bounded variation from [0, 1] to R. Given a function g ∈ BV([0, 1], R), the bounded
variation norm is given by

‖g‖BV =
∫ 1

0

∣∣g(s)
∣∣ds+ sup

p∈P

np−1∑
i=0

∣∣g(xi+1 ) − g(xi )
∣∣,

where P is the set of all partitions p= {x0, x1, � � � , xnp } on [0, 1]. The space BV([0, 1], R)
equipped with the ‖ · ‖BV norm is a Banach space.

Definition B.1 (Contractible Space). A topological space X is contractible if there ex-
ists some x∗ ∈X and a map � :X × [0, 1] →X such that:

(i) �(·, λ) is continuous in λ, and

(ii) For all x ∈X , �(x, 0) = x and �(x, 1) = x∗.

Intuitively, X is a contractible space if it can be continuously shrunk into a point
inside itself.

Theorem B.1 (Theorems 6 and 7 of Villas-Boas (1997)). Let X be a compact subset of a
Banach space. Consider a transitive and reflexive order 	 on X such that, for all x ∈X ,
the upper sets U(x) = {x′ ∈X : x′ 	 x} and lower sets L(x) = {x′ ∈X : x	 x′} are compact
and contractible. Let T1 :X →X and T2 :X →X be two continuous mappings.

A. Suppose x′ 	 x⇒ T1(x′ ) 	 T1(x), and suppose T1(x) 	 T2(x) for all x ∈X . Then for
every fixed point x
2 of T2, there is a fixed point x
1 of T1 such that x
1 	 x
2.

B. Suppose x′ 	 x⇒ T2(x′ ) 	 T2(x), and suppose T1(x) 	 T2(x) for all x ∈X . Then for
every fixed point x
1 of T1, there is a fixed point x
2 of T2 such that x
1 	 x
2.

The remaining few steps prove that our setting satisfies the assumptions needed to
apply the Villas–Boas result.

Lemma B.3. For each i ∈N , Ai is a compact subset of (BV([0, 1], R), ‖ · ‖BV ).

Proof. Any αi ∈ Ai is of bounded variation as it is an increasing function. Therefore,
Ai is a subset of BV([0, 1], R). To show that Ai is a compact subset BV([0, 1], R), take
a sequence {α̃i,k}∞k=1 ∈ Ai. The sequence is uniformly bounded as the image of each
αi,k is a subset of the compact interval Ai. By Helly’s selection theorem, the sequence
converges to an increasing function α̃i ∈ BV([0, 1], R).

Furthermore, as ai ≤ α̃i,k(0) for all k, the limit also satisfies ai ≤ α̃i(0). Similarly, as
āi ≥ α̃i,k(1) for all k, the limit also satisfies āi ≥ α̃i(1). Finally, the pointwise limit of
measurable functions is measurable (Corollary 8.9, measure, integrals, and martingales,
Schilling (2005)). As α̃i is a monotone and measurable function that maps from [0, 1] to
Ai, ãi ∈ Ai. Thus, Ai is sequentially compact for each i ∈N .
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Let U(αi ) = {α′
i ∈ Ai : α′

i 	H αi} and L(αi ) = {α′
i ∈ Ai : αi 	H α′

i} be the upper and
lower sets of Ai respectively.

Lemma B.4. For each i ∈N and for any αi ∈ Ai, U(αi ) and L(αi ) are compact and con-
tractible.

Proof. For a given αi ∈ Ai, U(αi ) and L(αi ) are closed subsets of Ai (follows from the
dominated convergence theorem). Hence, they are compact. Let αui : [0, 1] → Ai be
a constant function with αui (si ) = āi for all si ∈ [0, 1]. Note that αui ∈ Ai. Furthermore,
αui (si ) ≥ αi(si ), ∀si ∈ [0, 1], which implies αui 	H αi ⇒ αui ∈ U(αi ).

For each αi ∈ Ai, define the mapping �u : U(αi ) × [0, 1] → U(αi ) such that

�u
(
α′
i, λ

) = (1 − λ)α′
i + λαui .

As λ increases from 0 to 1,�u continuously deforms any strategy in U(αi ) to the constant
strategy αui , which is itself in U(αi ). Therefore, U(αi ) is contractible.

Similarly, let α�i : [0, 1] →Ai be a constant function with α�i (si ) = ai for all si ∈ [0, 1].
Again, α�i ∈ Ai. Furthermore, α�i (si ) ≤ αi(si ), ∀si ∈ [0, 1], which implies αi 	H α�i ⇒ α�i ∈
L(αi ). Then for each αi ∈ Ai, define the mapping �� : L(αi ) × [0, 1] → L(αi ) such that

��
(
α′
i, λ

) = (1 − λ)α′
i + λα�i .

As λ increases from 0 to 1,�� continuously deforms any strategy in L(αi ) to the constant
strategy α�i , which is itself in L(αi ). Therefore, L(αi ) is contractible.

Thus far, we have an order 	H on Ai that generates compact and contractible upper
and lower sets. We extend these properties to A = Ś

i∈N Ai by the product order: given
α′′, α′ ∈ A, α′′ 	H α′ if and only if α′′

i 	H α′
i for each i ∈N . Along with the product topol-

ogy, 	H is a partial order on A that generates compact and contractible upper and lower
sets.4

For a Bayesian game Gρ = (�ρ1 , � � � , �ρn , �), define an operator Tρ : A → A with

Tρ(α) = (
aBR

1 (·; α−1, ρ), � � � , aBR
n (·; α−n, ρ)

)
.

Tρ is continuous in α as utility functions are continuous in actions. A monotone BNE of
Gρ, a
(ρ), is a fixed point of Tρ. We know such a fixed point exists (Van Zandt and Vives
(2007)).

Consider two different games, Gρ′′ = (�ρ′′ , �) and Gρ′ = (�ρ′ , �), with ρ′′ 	spm ρ′. For
all α ∈A,

ρ′′ 	spm ρ
′ ⇒︸︷︷︸

by Lemma B.1

aBR
i

(
α−i, ρ′′) 	H aBR

i

(
α−i, ρ′), ∀i⇔ Tρ′′(α) 	H Tρ′(α).

4A is a subset of a Banach space equipped with the metric d(α′, α) = ∑
i ‖α′

i − αi‖BV.
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Furthermore,

α′′ 	H α′ ⇒︸︷︷︸
by Lemma B.2

aBR
i

(
α′′

−i, ρ
) 	H aBR

i

(
α′

−i, ρ
)
, ∀i⇔ Tρ

(
α′′) 	H Tρ

(
α′).

We can now directly apply Theorem B.1 to conclude that, for every fixed point a
(ρ′ ) of
Tρ′ , there is a fixed point a
(ρ′′ ) of Tρ′′ such that a
(ρ′′ ) 	H a
(ρ′ ), and for every fixed
point a
(ρ′′ ) of Tρ′′ , there is a fixed point a
(ρ′ ) of Tρ′ such that a
(ρ′′ ) 	H a
(ρ′ ). Hence,
players are more responsive with a higher mean under �ρ′′ than under �ρ′ . A symmetric
argument establishes the analogous result for � ∈ �L.

(⇐=) Given two profiles of information structures �ρ′′ and �ρ′ , ρ′′ �spm ρ′ if there
exists a player i∗ ∈N such that ρ′′

i∗ �spm ρ
′
i∗ . From Lemma A.2, ρ′′

i∗ �spm ρ
′
i∗ implies there

exist a (θ∗
i∗ , s∗i∗ ) ∈�i∗ × Si∗ such that

G
(
θ∗
i∗ , s∗i∗ ; ρ′′

i∗
)
<G

(
θ∗
i∗ , s∗i∗ ; ρ′

i∗
)
.

Consider a basic game �= 〈{Ai, ui}i∈N , F〉 such that ui :�×A→ R is given by

ui(θ, a) = −1
2

(
āi − 1[θi≤θ∗

i ](āi − ai ) − ai
)2

for all i ∈ N . Each player i’s payoff depends only on her own action and whether her
state is above or below some cutoff θ∗

i . Thus, each player acts as a single decision maker.
For all i ∈ N , ui(θ, a) satisfies Assumption 2: It is continuous, twice differentiable,

and strictly concave in ai. It has increasing differences in (θ, a−i; ai ). For each (θ, a−i ) ∈
�×A−i, the optimal action under complete information is ai if θi ≤ θ∗

i and āi otherwise.
Furthermore, the marginal utility uiai(θ, a) = āi − 1[θi≤θ∗

i ](āi − ai ) − ai is

(i) linear in aj , and

(ii) has constant differences in (θ, a−j ; aj ).

Therefore, � ∈ �H ∩ �L. As each player acts as a single-decision maker, there is a unique
BNE which is just a profile of each player’s optimal choice. For any given �ρ,

a
i (si; ρ) = āi − (āi − ai )G
(
θ∗
i |si; ρi

)
.

Now consider player i∗; Given �ρ′ and �ρ′′ ,

∫ s∗
i∗

0

(
a
i∗

(
si∗ ; ρ′′) − a
i∗

(
si∗ ; ρ′))dGSi∗ (si∗ )

= (āi∗ − ai∗ )
(
G

(
θ∗
i∗ , s∗i∗ ; ρ′

i∗
) −G(

θ∗
i∗ , s∗i∗ ; ρ′′

i∗
))
> 0,

which implies a
i∗(ρ′′ ) �L a
i∗(ρ′ ) (by Lemma A.1). By definition, the players are therefore
not more responsive with a lower mean under �ρ′′ than �ρ′ . Notice that for any �ρ,

E
[
a
i∗(ρ)

] = āi∗ − (āi∗ − ai∗ )
∫
Si∗
G

(
θ∗
i∗|si; ρi

)
dGSi∗ (si∗ ) = āi∗ − (āi∗ − ai∗ )F�i∗

(
θ∗
i∗
)
,



242 Mekonnen and Vizcaíno Theoretical Economics 17 (2022)

which is independent of ρ. Thus,∫ 1

s∗
i∗

(
a
i∗

(
si∗ ; ρ′′) − a
(si∗ ; ρ′))dGSi∗ (si∗ )

=
∫
Si∗

(
a
i∗

(
si∗ ; ρ′′) − a
i∗

(
si∗ ; ρ′))dGSi∗ (si∗ )︸ ︷︷ ︸

=E[a
i∗ (ρ′′ )]−E[a
i∗ (ρ′ )]
=0

−
(∫ s∗

i∗

0

(
a
i∗

(
si∗ ; ρ′′) − a
i∗

(
s; ρ′))dGSi∗ (si∗ )︸ ︷︷ ︸

>0

)

< 0,

which implies a
i∗(ρ′′ ) �H a
i∗(ρ′ ) (by Lemma A.1). By definition, the players are therefore
not more responsive with a higher mean under �ρ′′ than �ρ′ .

Proof of Theorem 2. We prove the case for � ∈ �H ; the other case is analogous. As
n= 1, we suppress the indices for players.

Let μ ∈ �(�) be a probability measure representing an arbitrary belief that the single
agent may hold. Define

a∗(μ) = arg max
a∈A

U(μ, a) =
∫
�
u(θ, a)μ(dθ).

Since u(θ, a) has increasing differences in (θ; a), we know that a∗(·) is an increasing
function in the sense that a∗(μ2 ) ≥ a∗(μ1 ) whenever μ2 	FOSD μ1 (Athey (2002)).

Lemma B.5. Let {λk}Kk=1 ∈ [0, 1]K be a sequence of weights with
∑K
k=1 λk = 1 and let

{μk}Kk=1 ∈ �(�) be a finite sequence of beliefs with μK 	FOSD μK−1 	FOSD � � � 	FOSD μ1.
If � ∈ �H ,

a∗
(
K∑
k=1

λkμk

)
≤

K∑
k=1

λka
∗(μk ).

If � ∈ �L, the opposite inequality holds.

Proof. Consider a basic game � ∈ �H . Suppose first that K = 2. (The case for K = 1 is
clearly trivial). Let a∗

k = a∗(μk ) for k = 1, 2, aλ = λa∗
1 + (1 − λ)a∗

2, and μλ = λμ1 + (1 −
λ)μ2. By the first-order condition, we have that Ua(μk, a∗

k ) = 0:

Ua(μλ, aλ ) ≤ λ2Ua
(
μ1, a∗

1

) + (1 − λ)2Ua
(
μ2, a∗

2

) + λ(1 − λ)
(
Ua

(
μ2, a∗

1

) +Ua
(
μ1, a∗

2

))
= λ(1 − λ)

∫
�

[
ua

(
θ, a∗

1
) − ua

(
θ, a∗

2
)](
μ2(dθ) −μ1(dθ)

)
≤ 0,

where the first inequality follows from the convexity of ua in a. Increasing differences
of the utility u(θ, a) in (θ; a) along with μ2 	FOSD μ1 implies a2 ≥ a1. By increasing dif-
ferences of the marginal utility ua in (θ; a), we have ua(θ, a1 ) − ua(θ, a2 ) is a decreas-
ing function of θ. The last inequality then follows from the definition of first-order
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stochastic dominance. Since the marginal value of aλ is nonpositive at μλ, we must
have a∗(μλ ) ≤ aλ.

Next, suppose thatK > 2. Since

K∑
k=2

λk
1 − λ1

μk 	FOSD μ1,

by the argument above, we have

a∗
(
λ1μ1 + (1 − λ1 )

K∑
k=2

λk
1 − λ1

μk

)
≤ λ1a

∗(μ1 ) + (1 − λ1 )a∗
(
K∑
k=2

λk
1 − λ1

μk

)
.

By induction,

a∗
(
K∑
k=1

λkμk

)
≤

K∑
k=1

λka
∗(μk ).

A symmetric argument establishes the analogous result for � ∈ �L.

Consider any information structure �ρ that satisfies Assumption 3. In particular,
suppose �ρ induces posteriors {μk}Kk=1 ∈ �(�) with corresponding probabilities {τρk}Kk=1
such that μk 	FOSD μk′ whenever k > k′. Let �ρ′ be another information structure that

induces posteriors {νm}Mm=1 with corresponding probabilities {τρ
′
m }Mm=1. Note that �ρ′

does not have to satisfy Assumption 3(b)–(d).5 If �ρ′ is a garbling of �ρ, then there exist
weights {{λmk }Kk=1}Mm=1 ∈ [0, 1]K×M such that:

(i)
∑K
k=1 λ

m
k = 1 for eachm= 1, � � � ,M ,

(ii) νm = ∑K
k=1 λ

m
k μk for eachm= 1, � � � ,M , and

(iii) τρk = ∑M
m=1 λ

m
k τ

ρ′
m for each k= 1, � � � ,K.

To show that the agent is more responsive with a higher mean under �ρ than �ρ′ ,
take any increasing and convex function ψ : R→ R. Then

∫
ψ(z)dH

(
z; ρ′) =

M∑
m=1

ψ
(
a∗(νm )

)
τ
ρ′
m

=
M∑
m=1

ψ

(
a∗

(
K∑
k=1

λmk μk

))
τ
ρ′
m

≤
K∑
k=1

M∑
m=1

λmk ψ
(
a∗(μk )

)
τ
ρ′
m

5All information structures have to satisfy Assumption 3(a) by Bayes plausibility.
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=
K∑
k=1

ψ
(
a∗(μk )

)
τ
ρ
k

=
∫
ψ(z)dH(z; ρ),

where the inequality follows from Lemma B.5 and the convexity of ψ. By definition of
increasing convex order, the agent is more responsive with a higher mean under �ρ than
�ρ′ . The above argument can be extended to the case of infinite posteriors following the
methods in Khan, Yu and Zhang (2020).

Proof of Proposition 1. We prove the case for � ∈ �H ; a symmetric argument proves
the case for � ∈ �L. Define aλ = λa1 + (1 − λ)a2 and μλ = λμ1 + (1 − λ)μ2. By convexity
of Ua in a,

Ua(μλ, aλ ) ≤ λ2Ua(μ1, a1 ) + (1 − λ)2Ua(μ2, a2 ) + λ(1 − λ)
(
Ua(μ1, a2 ) +Ua(μ2, a1 )

)
.

There are two cases to consider:

(i) a1 ≤ a2. Since ua has increasing differences in (θ; a), so does Ua. As μ2 	FOSD μ1,
we have

Ua(μλ, aλ ) ≤ λ2Ua(μ1, a1 ) + (1 − λ)2Ua(μ2, a2 )

+ λ(1 − λ)
(
Ua(μ1, a2 ) +Ua(μ2, a1 )

)
≤ λUa(μ1, a1 ) + (1 − λ)Ua(μ2, a2 )

≤ max
{
Ua(μ1, a1 ),Ua(μ2, a2 )

}
,

where the first equality follows from Ua(μ1, a2 ) + Ua(μ2, a1 ) ≤ Ua(μ1, a1 ) +
Ua(μ2, a2 ).

(ii) a1 > a2. Since u is concave in a, so is U . Therefore, Ua(μ, a1 ) ≤ Ua(μ, a2 )
for any μ ∈ �(�). Additionally, since u has increasing differences in (θ; a), so
does U . As μ2 	FOSD μ1, we have Ua(μ1, a2 ) ≤ Ua(μ2, a2 ). In other words,
max{Ua(μ1, a1 ),Ua(μ2, a2 )} =Ua(μ2, a2 ). We can then conclude that

Ua(μλ, aλ ) ≤ λ2Ua(μ1, a1 ) + (1 − λ)2Ua(μ2, a2 )

+ λ(1 − λ)
(
Ua(μ1, a2 ) +Ua(μ2, a1 )

)
.

≤Ua(μ2, a2 ).

In both cases, we get the desired quasiconvexity condition.

Proof of Proposition 2. We prove the case for when v(θ, a) is componentwise con-
vex in a and has increasing differences in (θ, a−i; ai ) for all i ∈N . The proof extends to
the respective componentwise concave and decreasing differences case by setting the
sender’s payoff to −v(θ, a).
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Take two information structures �ρ, �ρ′ such that without loss of generality, ρ1 	spm

ρ′
1 and ρi = ρ′

i for all i �= 1. The sender’s ex ante payoff difference is given by

V (ρ) − V (
ρ′)

=
∫
�×S

v
(
θ, a
1(s1; ρ), a
−1(s−1; ρ)

)[
dG(θ, s; ρ) − dG(

θ, s; ρ′)]
+

∫
�×S

[
v
(
θ, a
1(s1; ρ), a
−1(s−1; ρ)

)
− v(θ, a
1

(
s1; ρ′), a
−1

(
s−1; ρ′))]dG(

θ, s; ρ′). (1)

We consider each of these integral terms separately and show that they are both non-
negative.

Using Assumption 4, we can rewrite the first integral term in (1) as∫
�1×S1

∫
�−1×S−1

v
(
θ, a
1(s1; ρ), a
−1(s−1; ρ)

)
dG(θ−1, s−1|θ1; ρ−1 )︸ ︷︷ ︸

�ψ(θ1,s1 )

× [
dG(θ1, s1; ρ1 ) − dG(

θ1, s1; ρ′
1

)]
.

ψ(θ1, s1 ) has increasing differences in (θ1; s1 ) because (i) the receivers’ strategies are
monotone in signal realizations, (ii) v(θ, a) has increasing differences in (θ, a−1; a1 ), and
(iii) G(θ̃−1, s̃−1|θ1; ρ−1 ) is increasing in FOSD as θ1 increases. Thus, by definition of the
supermodular stochastic order, the first integral term of (1) is nonnegative.

When v(θ, a) is differentiable6 and componentwise convex in a, the second integral
term of (1) satisfies∫
�×S

[
v
(
θ, a
1(s1; ρ), a
−1(s−1; ρ)

) − v(θ, a
1
(
s1; ρ′), a
−1

(
s−1; ρ′))]dG(

θ, s; ρ′)

≥
n∑
i=1

∫ 1

0

(
a
i (si; ρ) − a
i

(
si; ρ

′))∫
�×S−i

vai
(
θ, a
i

(
si; ρ

′), a
−i
(
s−i; ρ′))dG(

θ, s−i|si; ρ′)
︸ ︷︷ ︸

�ϕi(si )

dsi.

ϕi(si ) is an increasing function of si for all i ∈N because, for all i ∈N , (i) strategies
are monotone in signal realizations, (ii) v(θ, a) has increasing differences in (θ, a−i; ai ),
(iii) v(θ, a) is convex in ai, and (iv) G(θ̃, s̃−i|si; ρ′ ) is increasing in FOSD as si increases by
Assumption 1, Assumption 3, and Assumption 4. We have three cases to consider.

Case I: v(θ, a) is increasing in a and � ∈ �H .
From Theorem 1 and Lemma A.1, � ∈ �H implies that for each i ∈N ,

∫ 1

t

[
a
i (si; ρ) − a
i

(
si; ρ

′)]dsi ≥ 0, ∀t ∈ [0, 1].

6If v(θ, a) is not differentiable in a, we can uniformly approximate it by a convex analytic function.
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From Lemma A.3 and v(θ, a) increasing in a,

∫ 1

0

[
a
(si; ρ) − a
i

(
s; ρ′)]ϕi(si )dsi

≥ ϕi(0)︸ ︷︷ ︸
≥0

∫ 1

0

[
a
i (si; ρ) − a
i

(
si; ρ

′)]dsi︸ ︷︷ ︸
≥0

≥ 0.

Hence, the second integral term in (1) is also nonnegative. In other words, V (ρ) ≥ V (ρ′ ).
Case II: v(θ, a) is decreasing in a and � ∈ �L.
From Theorem 1 and Lemma A.1, � ∈ �L implies that for each i ∈N ,

∫ t

0

[
a
i (si; ρ) − a
i

(
si; ρ

′)]dsi ≤ 0, ∀t ∈ [0, 1].

From Lemma A.3 and v(θ, a) decreasing in a,

∫ 1

0

[
a
(si; ρ) − a
i

(
s; ρ′)]ϕi(si )dsi

≥ ϕi(1)︸ ︷︷ ︸
≤0

∫ 1

0

[
a
i (si; ρ) − a
i

(
si; ρ

′)]dsi︸ ︷︷ ︸
≤0

≥ 0.

Hence, the second integral term in (1) is also nonnegative. In other words, V (ρ) ≥ V (ρ′ ).
Case III: � ∈ �H ∩ �L.
From Theorem 1 and Lemma A.1, � ∈ �H ∩ �L implies that for each i ∈N ,

∫ 1

t

[
a
i (si; ρ) − a
i

(
si; ρ

′)]dsi ≥ 0, ∀t ∈ [0, 1].

with equality at t = 0. From Lemma A.3,

∫ 1

0

[
a
(si; ρ) − a
i

(
s; ρ′)]ϕi(si )dsi

≥ ϕi(0)︸ ︷︷ ︸
≥0

∫ 1

0

[
a
i (si; ρ) − a
i

(
si; ρ

′)]dsi︸ ︷︷ ︸
=0

= 0.

Hence, V (ρ) ≥ V (ρ′ ).

Proof of Theorem 3. Each information structure �ρ induces a distribution τρ ∈
�(�(�)) such that the sender’s ex ante payoff is

V (ρ) =
∫
�(�)

v(μ)τρ(dμ),
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where v : �(�) →R is the sender’s interim value function given by

v(μ) =
∫
�
v
(
θ, a∗(μ)

)
μ(dθ).

Take any two beliefs μ1, μ2 ∈ �(�) such that μ2 	FOSD μ1. Let a∗
i = a∗(μi ) for i= 1, 2.

Since u(θ, a) has increasing differences in (θ; a), a∗
2 ≥ a∗

1. For any weight λ ∈ [0, 1], let

μλ = λμ1 +(1−λ)μ2. Consider the first case: � ∈ �H , and v(θ, a) is increasing and convex

in a and satisfies increasing differences in (θ; a). We then have

v(μλ ) ≤ λ2v(μ1 ) + (1 − λ)2v(μ2 ) + λ(1 − λ)

[∫
�
v
(
θ, a∗

1
)
μ2(dθ) +

∫
�
v
(
θ, a∗

2
)
μ1(dθ)

]

= λv(μ1 ) + (1 − λ)v(μ2 ) + λ(1 − λ)

[∫
�

(
v
(
θ, a∗

1

) − v(θ, a∗
2

))(
μ2(dθ) −μ1(dθ)

)]
≤ λv(μ1 ) + (1 − λ)v(μ2 ),

where the first inequality follows because a∗(μλ ) ≤ λa∗
1 + (1 − λ)a∗

2 by Lemma B.5 and

v(θ, a) is increasing and convex in a. The second inequality follows from

∫
�

(
v
(
θ, a∗

1

) − v(θ, a∗
2

))(
μ2(dθ) −μ1(dθ)

) ≤ 0

since v(θ, a) satisfies increasing differences in (θ; a), a∗
2 ≥ a∗

1, and μ2 	FOSD μ1. By a

similar induction argument as Lemma B.5, this convexity property of v can be extended

to any finite sequence of beliefs {μk}Kk=1 ∈ �(�) with μK 	FOSD μK−1 	FOSD · · · 	FOSD μ1

and any weights {λk}Kk=1 with
∑K
k=1 λk = 1, so that

v

(
K∑
k=1

λkμk

)
≤

K∑
k=1

λkv(μk ).

Consider any information structure �ρ that satisfies Assumption 3. In particu-

lar, suppose �ρ induces posteriors {μk}Kk=1 ∈ �(�) with corresponding probabilities

{τρk}Kk=1 such that μk′′ 	FOSD μk′ whenever k′′ > k′. Let �ρ′ be a garbling of �ρ that in-

duces posteriors {νm}Mm=1 with corresponding probabilities {τρ
′
m }Mm=1. Again, �ρ′ does not

have to satisfy Assumption 3(b)–(d). Since �ρ′ is a garbling of �ρ, there exist weights

{{λmk }Kk=1}Mm=1 ∈ [0, 1]K×M such that:

(i)
∑K
k=1 λ

m
k = 1 for eachm= 1, � � � ,M ,

(ii) νm = ∑K
k=1 λ

m
k μk for eachm= 1, � � � ,M , and

(iii) τρk = ∑M
m=1 λ

m
k τ

ρ′
m for each k= 1, � � � ,K.
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Thus,

V
(
ρ′) =

M∑
m=1

v(νm )τρ
′
m

=
M∑
m=1

v

(
K∑
k=1

λmk μk

)
τ
ρ′
m

≤
K∑
k=1

M∑
m=1

λmk v(μk )τρ
′
m

=
K∑
k=1

v(μk )τρk

= V (ρ).

The above argument can further be extended to the case of infinite posteriors following
the methods in Khan, Yu and Zhang (2020).

Therefore, if �ρ dominates �ρ′ in the Blackwell order and �ρ satisfies Assumption 3,
V (ρ) ≥ V (ρ′ ). As�⊂R is a totally ordered set when n= 1, the full information structure
always satisfies Assumption 3 and always Blackwell dominates any other information
structure, which concludes the proof. The remaining cases are analogous.

Appendix C: When responsiveness fails

In this section, we explore why a higher quality of information may not lead to more
dispersed optimal actions in a single-agent setting when an agent’s optimal action a∗(μ)
is neither convex nor concave as in Lemma B.5, which necessarily implies � /∈ �H ∪ �L.
We even assume that a∗(μ) is monotone over beliefs ordered by FOSD (so the agent’s
utility function may satisfy Assumption 2).

Consider a simple binary-states setting in which the agent’s prior places mass on
only two points {θ, θ̄} ⊂ � with θ̄ > θ. Let μ = P(θ̃ = θ̄) ∈ [0, 1] represent some poste-
rior belief the agent holds. For some δ ∈ (0, 1/5), let the prior be μo = 3δ and consider
beliefs {μn}n=1,2,4,5 such that μn = nδ. Beliefs are ordered by first-order stochastic dom-
inance with μ5 	FOSD μ4 	FOSD μo 	FOSD μ2 	FOSD μ1. Finally, let a∗(μ) be monotone
but neither convex nor concave as in Figure 1(a).

Let �ρ′ induce posteriors {μ1, μ2, μ4, μ5} with probability {1/6, 1/3, 1/3, 1/6}. Let
�ρ′′ be an information structure that induces three posteriors {μ1, μo, μ5} with probabil-
ities {1/3, 1/3, 1/3} Notice that �ρ′ is a equivalent to getting information from �ρ′′ with
probability 0.5 and no information with probability 0.5. Thus, �ρ′′ is Blackwell more
informative than �ρ′ , which implies ρ′′ 	spm ρ

′.
Assume that the average action under �ρ′′ and �ρ′ equal a∗(μo ). In Figure 1(a), this

corresponds to the point of intersection of the dashed line and the solid curved line at
μo. Figure 1(b) maps the distribution over optimal actions: �ρ′′ induces the dashed line
while �ρ′ induces the solid line.
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Figure 1. Nonconvexity/concavity and nonresponsiveness.

If we start integrating from the right, then
∫ ∞
x H(z; ρ′′ ) −H(z; ρ′ )dz ≤ 0 for all x > a∗

4
but the sign changes at some point x∗ ∈ (a∗

o, a∗
4 ). Thus, the agent is not more responsive

with a higher mean under �ρ′′ . If we instead integrate from the left, then
∫ x
−∞H(z; ρ′′ ) −

H(z; ρ′ )dz ≥ 0 for all x < a∗
2 but the sign changes at some point x∗∗ ∈ (a∗

2, ao ). Thus, the
agent is not more responsive with a lower mean under �ρ′′ .

In fact, as the average action under �ρ′′ equals the average action under �ρ′ , we
can conclude that the distributions of actions H(ρ′′ ) and H(ρ′ ) cannot be ordered
by most univariate stochastic variability orders such as second-order stochastic dom-
inance, mean-preserving spreads, Lorenz order, dilation order, and dispersive order.7
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