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Pseudo-Bayesian updating
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Faculty of Business and Economics, The University of Hong Kong

I propose an axiomatic framework for belief revision when new information is
qualitative, of the form “event A is at least as likely as event B.” My decision maker
need not have beliefs about the joint distribution of the signal she will receive and
the payoff-relevant states. I propose three axioms, Exchangeability, Stationarity,
and Reduction, to characterize the class of pseudo-Bayesian updating rules. The
key axiom, Exchangeability, requires that the order in which the information ar-
rives does not matter if the different pieces of information neither reinforce nor
contradict each other. I show that adding one more axiom, Conservatism, which
requires that the decision maker adjust her beliefs just enough to embrace new
information, yields Kullback–Leibler minimization: The decision maker selects
the posterior closest to her prior in terms of Kullback–Leibler divergence from
the probability measures consistent with newly received information. I show that
pseudo-Bayesian agents are susceptible to recency bias, which may be mitigated
by repetitive learning.

Keywords. Non-Bayesian updating, qualitative information, Kullback–Leibler
divergence.
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1. Introduction

Throughout the development of economic theory, the Bayesian framework has played
a vital role in modeling how economic agents incorporate new information into their
decision making. Central to the Bayesian framework is the assumption that the decision
maker has prior beliefs about how the payoff-relevant states and the set of signals are
jointly distributed: Such a joint prior enables the decision maker to interpret each signal
realization and extract its information content.

In many situations, however, the assumption of a well-defined joint prior seems to
impose too much informational and computational demand on the decision maker. Be-
fore receiving a signal, a Bayesian decision maker must be able to think about all possi-
ble signal realizations and form beliefs about their conditional distribution given each
payoff-relevant state. This is certainly not possible when the information is unexpected.
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Even when the information is expected, decision makers may not have enough prior
information to form beliefs about the signal-generating process. For example, a patient
who expects to read a research paper about her condition may not be able to think about
any possible results or methodologies of the study; a Go player who expects to receive
a recommendation from AlphaGo may not have any idea how the recommendation is
generated.

In this paper, I propose a framework for belief revision that does not require a well-
defined joint prior. My decision maker has a prior over the payoff-relevant states, but
need not have beliefs about the signal-generating process; she need not know the full
set of possible signal realizations or their conditional distribution. As a result, whether
the information is expected or a surprise does not matter. In my model, the information
content of a signal is not embedded in the joint prior, but is intrinsically given by the
form of the realizations. In particular, each signal realization is a qualitative probability
statement about the payoff-relevant states, of the form “event A1 is at least as likely as
event A2.”

I interpret the qualitative probability statement as the decision maker’s understand-
ing based on some new information; that is, although the decision maker does not have
a joint prior to interpret the new information within the Bayesian framework, she is able
to obtain some qualitative understanding from it. This type of qualitative understanding
naturally comes up when the decision maker sees an informed party taking an action or
a bet. In addition, due to its intuitiveness and pragmatism, the concept of qualitative
probability has been the main building block in the theory of subjective probability.1

Therefore, it seems natural to focus on qualitative probability statements in situations
in which sophisticated probabilistic reasoning regarding the signal-generating process
may not be realistic.

To motivate the model, consider the following example: Alice lives in a city in which
there is a recent virus outbreak. She firmly believes that, as the local government claims,
the current virus is less contagious than SARS. To her surprise, she observes that her
neighbor, a respected doctor, is taking preventive measures that are similar to, if not
stronger than, those in the SARS era. Alice is not an expert, but she fully understands that
this observation is contrary to her previous position. Since the news is unexpected, Alice
does not have a well-defined joint prior to interpret her neighbor’s action. In that case,
how will/should she revise her assessment of the current epidemic? How will/should
she revise her beliefs about other related events?

Below, I present an axiomatic model of belief revision relevant to the kind of situa-
tion depicted in the example. My decision maker updates her beliefs by directly moving
probability mass from the event “one gets SARS if exposed” to the event “one gets the
new virus if exposed.” In other words, she now believes that the new virus is more con-
tagious than she used to think, and that SARS is less contagious than she used to think.

1See, for example, de Finetti (1937), Villegas (1964), and Fishburn (1986). This literature takes qualitative
statements as primitives and imposes axioms to characterize when they are consistent with a probability
measure. By contrast, I treat these statements as signals that prompt the decision maker to update her
probabilistic beliefs.
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Moreover, she will move probability mass in proportion to her prior beliefs. For exam-
ple, she does not adjust her assessment of the case fatality risk—that is, the probability
of death from infection—of both viruses.

Consider a decision maker who has a subjective prior μ over the set of payoff-
relevant states. Suppose the decision maker learns some qualitative statement α =
(A1, A2 ) that means “event A1 is at least as likely as event A2,” which may or may not
be consistent with the decision maker’s prior ranking of A1 and A2. An updating rule
associates, with every μ and each qualitative statement α, a posterior μα that is consis-
tent with α. A decision maker equipped with an updating rule can process any finite
string of qualitative statements sequentially: Each time the decision maker learns a new
qualitative statement, she applies the updating rule to her current beliefs.

I impose three axioms on the updating rule to characterize the class of pseudo-
Bayesian updating rules: First, Exchangeability, which requires that the order in which
the information arrives does not matter if the different pieces of information neither re-
inforce nor contradict each other. Second, Stationarity, which requires that the decision
maker not change her beliefs when she hears something she already believes, that is,
μα = μ whenever μ(A1 ) ≥ μ(A2 ). Third, Reduction, which requires that the decision
maker treat “A1 is at least as likely as A2” and “A1\A2 is at least as likely as A2\A1” as
equivalent statements.

Equipped with a pseudo-Bayesian updating rule, the decision maker derives her
posterior μα as follows: If μ(A1 ) ≥ μ(A2 ), since α = (A1, A2 ) is consistent with her prior
μ, the decision maker will simply keep her prior, and thus set μα = μ. If 0 < μ(A1 ) <
μ(A2 ), then the decision maker will move probability mass from A2\A1 to A1\A2 so
that A1 becomes at least as likely as A2. In the meantime, she does not touch the proba-
bility distribution over A1 ∩A2 and outside A1 ∪A2, and maintains the likelihood ratios
between subsets of A1\A2 and between subsets of A2\A1. Finally, if 0 = μ(A1 ) <μ(A2 ),
upon receiving α, the decision maker will remove the probability mass of A2 altogether
and redistribute the mass proportionately among the states in the complement, as if she
were conditioning on the event “A2 does not happen” according to Bayes’ rule.

The last case above illustrates an important connection between pseudo-Bayesian
and Bayesian updating: A pseudo-Bayesian decision maker is able to update on events
in the state space according to Bayes’ rule, since she has a prior over the payoff-relevant
states. By reinterpreting the occurrence of event A as “Ø is at least as likely as the com-
plement of A,” pseudo-Bayesian updating yields the Bayesian posterior, as if the deci-
sion maker were conditioning on A. In this sense, a pseudo-Bayesian decision maker
will always apply Bayes’ rule if it is applicable given her prior; that is, if she receives
degenerate statements of the form (Ø, ·).

On top of Exchangeability, Stationarity, and Reduction, I introduce Conservatism,
which posits that upon receiving a statement that contradicts her prior, the decision
maker moves probability mass conservatively, by just enough to equate the likelihood
of the events concerned. Among the class of pseudo-Bayesian updating rules, Con-
servatism characterizes the conservative rule: If 0 < μ(A1 ) < μ(A2 ), then A1\A2 and
A2\A1 share the probability mass μ(A1 ∪A2 ) −μ(A1 ∩A2 ) equally in the posterior.
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I find that the conservative rule is equivalent to Kullback–Leibler minimization.
That is, the decision maker selects her posterior by minimizing the Kullback–Leibler
divergence—a standard distance measure between probability distributions in statis-
tics, subject to the constraint that the posterior should be consistent with the newly
received statement. Thus, the decision maker is adjusting her beliefs minimally to ac-
commodate new information.

In Section 2, I show that Exchangeability, Stationarity, and Reduction character-
ize the class of pseudo-Bayesian updating rules, and that adding Conservatism yields
Kullback–Leibler minimization. In Section 3, I discuss the related literature. In Sec-
tion 4, I show that pseudo-Bayesian agents are susceptible to recency bias, which may
be mitigated by repetitive learning. Section 5 concludes.

2. Model

I present my main characterization results in this section. First, I describe the primitives
of the model and introduce the orthogonality concept that plays a key role in my main
axiom, Exchangeability. Then I show that Exchangeability, together with two other ax-
ioms, Stationarity and Reduction, characterize the class of pseudo-Bayesian updating
procedures. Finally, I introduce Conservatism and show that it uniquely identifies the
procedure of minimizing Kullback–Leibler divergence within the class.

Let � be a σ-algebra defined on state space S. I will use capital letters A, B, and C to
denote generic elements of �. The decision maker (DM) has a nonatomic probabilistic
prior, denoted as μ, on (S, �); that is, according to μ, any nonnull event can be further
divided into nonnull subevents.2

The DM encounters a qualitative statement (A, B): “A is at least as likely as B.” The
statement is interpreted as the DM’s understanding based on some new information.
In the leading example, Alice understands from observing her doctor neighbor’s action
that “the probability of her getting the new virus is at least as large as that of her getting
SARS.” Note that this qualitative setting nests the occurrences of events as a special case:
If Ø is at least as likely as A’s complement, then event A must have occurred, and vice
versa.

I will use Greek letters α and β to denote generic statements. To ease exposition, I
will let α = (A1, A2 ) and β= (B1, B2 ) throughout the paper.

Given prior μ, a statement α = (A1, A2 ) is said to be μ-noncredible if μ(A1 ) = 0
and μ(A2 ) = 1; α is said to be μ-credible if it is not μ-noncredible. The DM, like her
Bayesian counterpart, cannot assign a positive posterior probability to an event that has
zero prior probability; there is no coherent way to distribute probability mass within the
previously null event. Therefore, no posterior could embrace a noncredible α: Doing so
would require increasing the probability of either A1 or S\(A1 ∪A2 ), both of which are
previously null. Hence, I assume that the DM ignores noncredible statements.

2The existence of a nonatomic probability measure requires that the state space S be uncountably infi-
nite. If the state space is finite or countable, our axioms cannot identify a unique posterior.
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Let �(S, �) be the set of nonatomic probability measures on (S, �). The DM’s infor-
mation set before updating is an element of

I(S, �) := {
(μ, α)|μ ∈ �(S, �) and α is μ-credible

}
.

The primitive of my model is an updating rule that associates a posterior with every
(μ, α) ∈ I(S, �). I focus on the class of updating rules such that the DM successfully
incorporates the new understanding α, which means “A1 is at least as likely as A2,” into
her beliefs.3

Definition. A function π : I(S, �) → �(S, �) is an updating rule if π(μ, α)(A1 ) ≥
π(μ, α)(A2 ) for any (μ, α) ∈ I(S, �).

Hereafter, given an updating rule π, I will use μα to denote the posterior π(μ, α).
My model permits multiple stages of learning. A decision maker equipped with an

updating rule can process any finite string of statements sequentially: Each time the
DM learns a new qualitative statement, she applies it to her current beliefs according
to the updating rule. Let μα1α2···αn denote the DM’s posterior, if it is well-defined, after
processing statements α1, α2, � � � , αn sequentially. Then μα1α2···αn = μn, in which μ0 = μ

and μk = μ
αk
k−1 for k≥ 1.

Note that by construction, the DM’s information set does not contain a joint prior
over the state space and the set of possible statements. As a result, Bayesian updat-
ing is not a well-defined updating rule over I(S, �). This setting reflects the assump-
tion that the DM does not have enough prior information to incorporate the qualitative
statements within the Bayesian framework. In fact, given a prior over the state space
(S, �), Bayesian updating is only defined on degenerate statements that specify the oc-
currences of events. The following example provides an illustration.

Example (Dice). Let S = {1, 2, 3, 4, 5, 6} and � = 2S .4 Suppose the DM initially believes
that the dice is fair and does not expect any information that implies otherwise. Con-
sider α = ({1}, {3, 4, 5}) and β = (Ø, {3, 4, 5}). Since α does not correspond to any event
in �, Bayesian updating is not defined for α. In contrast, by interpreting β as “{1, 2, 6}
must occur,” Bayesian updating entails the posterior (1/3, 1/3, 0, 0, 0, 1/3). ♦

Now, I introduce two updating rules that will be crucial in the analysis. I will use the
dice example to illustrate how the updating rules behave and leave the formal defini-
tions to Section 2.2.

The conservative rule. The DM adjusts her beliefs in proportion to her prior just
enough to embrace the new understanding. In the dice example, upon receiving α, she

3The model permits reliability considerations regarding the information source if the state space is rich
enough. For example, suppose S = {T , F } ×	, where T means that the information source is reliable and F

means otherwise. For A1, A2 ⊆ 	, statement ({T } ×A1, {T } ×A2 ) can be interpreted as “if the information
is reliable, A1 is at least as likely as A2.” After the DM successfully incorporates this statement, the marginal
probability of A1 may still be lower than that of A2.

4Although S is discrete, it can be viewed as a partition of a continuum on which nonatomic probability
measures exist.
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moves probability mass from {3, 4, 5} to {1} just enough to equate the likelihood of the
two events, while keeping {3}, {4}, {5} equiprobable, and does not touch {2, 6}. Under
the conservative rule, μα = (1/3, 1/6, 1/9, 1/9, 1/9, 1/6).

The radical rule. The DM radically adjusts her beliefs such that the newly incorpo-
rated understanding will not be violated upon receiving any statements thereafter. In
the dice example, upon receiving α, she moves all probability mass from {3, 4, 5} to {1}.
Under the radical rule, μα = (2/3, 1/6, 0, 0, 0, 1/6).

2.1 Orthogonality

My main axiom, Exchangeability, asserts that if two qualitative statements are orthogo-
nal—that is, if they neither reinforce nor contradict each other—then the order in which
the DM receives these qualitative statements does not affect her posterior. In this sub-
section, I provide a formal definition and discuss this orthogonality notion.

A statement α is said to be standard if A1 ∩ A2 = Ø; μ-degenerate if 0 = μ(A1 ) <
μ(A2 ). For any standard statement α, let

Dμ
α :=

{
S, if α is μ-degenerate,

A1 ∪A2, otherwise

be the μ-domain of α, which represents the set of states that are relevant to statement
α. I assume that when α is degenerate, it is no different from (Ø, A2 ), which urges
the DM to remove all of the probability mass from A2 and redistribute it to the com-
plement. Therefore, in this case, all states are forced to be relevant. For any α, let

α := {A1, A2, S\(A1 ∪A2 )}. If α is standard, 
α is a partition of S.

My orthogonality concept identifies pairs of standard qualitative statements that
neither contradict nor reinforce each other. To understand what this means, consider
Figure 1(a). Qualitative statement β = (B1, B2 ) demands that the probability of B2 be
decreased; α = (A1, A2 ), by contrast, requires that the probability of A1 (and thus B2)
be increased. In this sense, Figure 1(a) depicts a situation in which α and β are in con-
flict, and hence are not orthogonal. By contrast, in Figure 1(b), β compares two events
outside the domain of α. In this case, α does not affect the relative likelihood of any state
in B1 versus any state in B2, and thus α and β are orthogonal. Similarly, in Figure 1(b), α
and γ = (C1, C2 ) are orthogonal, since α has no bite on how C1 and C2 should compare,
and thus should affect C1 and C2 equally.

The preceding observations motivate the following definition of orthogonality for
two pieces of information.

Definition. Let α and β be standard and μ-credible. Then α and β are said to be μ-
orthogonal if Dμ

α ⊆ P ∈
β or Dμ
β ⊆ P ∈
α for some P .

2.2 Pseudo-Bayesian updating

Now, I state my axioms and the main characterization theorems. I begin with my main
axiom, Exchangeability.
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Axiom 1 (Exchangeability). For any (μ, α), (μ, β) ∈ I(S, �), if α and β are μ-orthogonal,
then μαβ = μβα.

Exchangeability asserts that if qualitative statements α and β are orthogonal, then
the sequence in which the DM updates does not matter. This concept of exchangeability
closely resembles the standard exchangeability notion in statistics, as examined by de
Finetti: A sequence of random variables are exchangeable if the order of the sequence
does not affect the joint probability distribution. In contrast to the standard notion, the
one here only considers situations in which the qualitative statements are orthogonal; I
allow the updating rule to be nonexchangeable otherwise.

Majumdar (2004) focuses on the standard Bayesian type of information—that is, the
occurrence of some event—and axiomatizes Bayes’ rule by assuming that exchangeabil-
ity holds in general. Perea (2009) considers the same notion of exchangeability as Ma-
jumdar (2004), and proposes a model in which the decision maker’s posterior minimizes
the change of a linear objective function under the Euclidean metric. By contrast, my
notion of Exchangeability applies to orthogonal qualitative statements.

Next, I introduce Stationarity and Reduction. Recall that α = (A1, A2 ).

Axiom 2 (Stationarity). μα = μ for all (μ, α) ∈ I(S, �) such that μ(A1 ) ≥ μ(A2 ).

Stationarity posits that if the statement does not contradict the DM’s prior, she will
keep her beliefs unchanged. Recall that the DM has no prior belief over the qualitative
statements she might receive. Thus, she interprets a statement that conforms to her
prior simply as a confirmation of her prior beliefs and leaves them unchanged.

Axiom 3 (Reduction). μα = μ(A1\A2,A2\A1 ) for all (μ, α) ∈ I(S, �).

Reduction posits that the DM treats “A1 is at least as likely as A2” and “A1\A2 is
at least as likely as A2\A1” equivalently. The DM has well-defined probabilistic beliefs

Figure 1. Orthogonality.
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before and after updating, and thus understands that no matter which of the two state-
ments she updates on, the other statement must also be consistent with her posterior.
Hence, without any prior beliefs over the statements, the DM has no reason to treat them
differently. Note that Reduction does not impose any restriction on how the DM updates
on standard statements: α and (A1\A2, A2\A1 ) are identical if A1 ∩A2 = Ø. Thus, with-
out Reduction, all of the results in the paper still hold for standard statements.

Hereafter, an updating rule is said to be pseudo-Bayesian if it satisfies Exchange-
ability, Stationarity, and Reduction. Next, we characterize the properties of pseudo-
Bayesian updating rules.

Given an updating rule and a standard statement α = (A1, A2 ), a probability mea-
sure ν ∈ �(S, �) is said to be α-connected to μ ∈ �(S, �) if there exists a statement β such
that α and β are μ-orthogonal, and μβ(C )/μβ(Ai ) = ν(C )/ν(Ai ) for any C ⊆ Ai and
i = 1, 2. In other words, ν is α-connected to μ if the conditional distributions on A1 and
on A2 for μ can be transformed into the respective conditional distributions for ν by a
statement that is orthogonal to α.

Example (Dice continued). Let S = {1, 2, 3, 4, 5, 6} and � = 2S . Consider the conser-
vative rule as an example. Again let μ be uniform and α = ({1}, {3, 4, 5}). Then any
ν ∈ �(S, �) of the form (a, b, 2c, c, c, d) with a, c > 0 is α-connected to μ. To see that,
let β = ({3}, {4, 5}). It is clear that α and β are μ-orthogonal. According to the conserva-
tive rule, μβ = (1/6, 1/6, 1/4, 1/8, 1/8, 1/6). Thus, μβ and ν have the same conditional
distribution on both {1} and {3, 4, 5}. ♦

To understand the role of α-connectedness in pseudo-Bayesian updating, consider
standard statements α, β, and let ν be α-connected to μ via β. The fact that μβ and ν

have the same conditional distributions on A1 and A2 imposes a consistency restriction
on μβα and vα. Then Exchangeability, through the requirement that μβα = μαβ, chan-
nels the restriction to μα and να. See (iic) in Theorem 1 for the exact statement of this
restriction.

I now state the first theorem. Given any statement α = (A1, A2 ), it will be conve-
nient to let Lα = A1\A2, Rα = A2\A1, and Cα = S\(Lα ∪ Rα ), in which L, R, and C

stand for “left-hand side,” “right-hand side,” and “complement,” respectively. Clearly,
{Lα, Rα, Cα} forms a partition of S, and α is standard if and only if α = (Lα, Rα ). To ease
exposition of Theorem 1, I adopt the convention that 0/0 = 0.

Theorem 1. An updating rule satisfies Exchangeability, Stationarity, and Reduction if
and only if the following conditions are met for any (μ, α) ∈ I(S, �):

(i) if μ(Lα ) ≥ μ(Rα ),

μα = μ;

(ii) if 0 <μ(Lα ) <μ(Rα ),

(iia) for any E ∈ �,

μα(E) = μ(E ∩Lα )
μ(Lα )

μα(Lα ) + μ(E ∩Rα )
μ(Rα )

μα(Rα ) + μ(E ∩Cα )
μ(Cα )

μα(Cα );
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(iib) μα(Cα ) = μ(Cα );

(iic) for ν ∈ �(S, �) that is (Lα, Rα )-connected to μ,

μ(Rα )
μ(Lα )

= ν(Rα )
ν(Lα )

⇒ μα(Rα )
μα(Lα )

= να(Rα )
να(Lα )

.

(iii) if 0 = μ(Lα ) <μ(Rα ), for any E ∈ �,

μα(E) = μ(E\Rα )
μ(S\Rα )

.

Proof. For a proof, see Appendix A.

Equipped with a pseudo-Bayesian updating rule, upon receiving statement α, the
DM will first cancel the intersection from A1 and A2 and reduce α to (Lα, Rα ). When
μ(Lα ) ≥ μ(Rα ), Stationarity directly requires that the DM not change her beliefs.

The salient case is when 0 <μ(Lα ) <μ(Rα ). In this case, pseudo-Bayesian updating
rules share the following properties: First, the probability distribution over each element
of {Lα, Rα, Cα} is updated in proportion to the prior. Consider E ⊆ Lα, for example.
Condition (iia) requires that

μα(E) = μ(E)
μ(Lα )

·μα(Lα ),

which implies that the likelihood ratio between any subevents of Lα remains un-
changed. Second, the probability mass assigned to Cα is unchanged, which combined
with the first property, implies that the DM only moves probability mass from Rα to
Lα, and does not touch the probability distribution over Cα. Third, within each class
of priors that are (Lα, Rα )-connected, the posterior likelihood ratio between Rα and Lα

depends only on their prior likelihood ratio. Note that each (Lα, Rα )-connected class
contains a large variety of priors: ν being (Lα, Rα )-connected to μ imposes no restric-
tion on how ν is distributed over Cα.

The last case illustrates an important connection between pseudo-Bayesian and
Bayesian updating. When 0 = μ(Lα ) < μ(Rα ), the DM will remove all of the probabil-
ity mass from Rα and redistribute it proportionately to its complement. Thus, the DM
behaves as if she were conditioning on “Rα does not occur” according to Bayes’ rule.
The next corollary is an immediate consequence.

Corollary 1. Given any pseudo-Bayesian updating rule, for any A ∈ � and μ ∈ �(S, �)
with μ(A) > 0, μ(Ø,S\A) is the Bayesian posterior of μ conditioning on A.

Corollary 1 implies that a pseudo-Bayesian decision maker is able to update on
events in the state space according to Bayes’ rule. By reinterpreting the occurrence of
event A as “Ø is at least as likely as the complement of A,” pseudo-Bayesian updat-
ing yields the Bayesian posterior, as if the DM were conditioning on A. In this sense, a
pseudo-Bayesian decision maker will always apply Bayes’ rule if it is applicable; that is,
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if she receives degenerate statements of the form (Ø, ·). Beyond degenerate statements,
the DM will have to rely on pseudo-Bayesian updating rules, since she only has a prior
over the payoff-relevant states.

Hence, pseudo-Bayesian updating affords the DM greater flexibility to process new
information. Note that such extra flexibility does not imply that pseudo-Bayesian up-
dating is more cognitively demanding than Bayesian updating. On the contrary, the
essence of pseudo-Bayesian updating is using simple qualitative logic to replace proba-
bilistic calculations when the DM is cognitively constrained: Pseudo-Bayesian updating
rules are relevant precisely when the decision maker does not have a prior sophisticated
enough to process new information according to Bayes’ rule.

Next, I revisit the dice example to illustrate how pseudo-Bayesian updating works.

Example (Dice revisited). Let S = {1, 2, 3, 4, 5, 6} and � = 2S . Again let μ be uniform,
α = ({1}, {3, 4, 5}), and β = (Ø, {3, 4, 5}). Under any pseudo-Bayesian updating rule,
upon receiving α, the DM will keep her beliefs over {2, 6} unchanged. In addition, she
will move probability mass from {3, 4, 5} to {1} to incorporate the statement, while keep-
ing {3}, {4}, and {5} equiprobable. If the DM receives β instead, her posterior becomes
(1/3, 1/3, 0, 0, 0, 1/3). ♦

The dice example demonstrates that for each statement, pseudo-Bayesian updating
leaves at most one degree of freedom to the posterior—if μα({1}) = p, then μα must be
(p, 1/6, 2/9 − p/3, 2/9 − p/3, 2/9 − p/3, 1/6). There are many possible ways to deplete
the remaining degree of freedom; below are some examples.

The conservative rule. The DM adjusts her beliefs just enough to embrace the
new understanding. That is, she sets μα(Lα ) = μα(Rα ) for any (μ, α) ∈ I(S, �) such
that μ(Lα ) < μ(Rα ). In the dice example, the conservative rule implies that μα =
(1/3, 1/6, 1/9, 1/9, 1/9, 1/6).

The radical rule. The DM radically adjusts her beliefs such that the new understand-
ing will never be violated in the future; that is, she sets μα(Rα ) = 0 for any (μ, α) ∈ I(S, �)
such that μ(Lα ) <μ(Rα ). As the DM’s posterior has to be absolutely continuous with re-
spect to her prior, Rα will remain null ever after, and thus α will always be consistent with
the DM’s beliefs despite the arrival of new information.5 In the dice example, the radical
rule requires that μα = (2/3, 1/6, 0, 0, 0, 1/6).

The neutral rule.6 The DM picks the middle ground between conservatism and rad-
icalism; that is, she sets μα(Lα ) = 2μα(Rα ) for any (μ, α) ∈ I(S, �) such that μ(Lα ) <
μ(Rα ). The neutral rule reflects the principle of insufficient reason—if any distri-
bution with Lα being at least as likely as Rα is equally likely, then on average Lα

is twice as likely as Rα. In the dice example, the neutral rule implies that μα =
(4/9, 1/6, 2/27, 2/27, 2/27, 1/6).

The common theme of these examples is that the posterior likelihood ratio between
Rα and Lα is constant across all priors inconsistent with α, which need not be the case

5By conditions (i), (iia), and (iii) of Theorem 1, μα has to be absolutely continuous with respect to μ for
any (μ, α) ∈ I(S, �).

6I thank Jacob Sagi for suggesting this example.
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for general pseudo-Bayesian updating rules. Although these examples are highly non-
generic, they serve as benchmarks in the analysis of the DM’s belief dynamics. More-
over, the conservative rule is highly related to the minimization of Kullback–Leibler di-
vergence.

2.3 Conservatism and Kullback–Leibler minimization

Formally, the following axiom characterizes the conservative rule.

Axiom 4 (Conservatism). μα(A1 ) = μα(A2 ) for all (μ, α) ∈ I(S, �) such that μ(A1 ) <
μ(A2 ).

Conservatism posits that the DM adjusts her beliefs just enough to accommodate
statements that are contradictory to her prior. It restricts the relative likelihood between
A1 and A2, but is silent on the DM’s beliefs about any other event.

The idea of having minimal changes in belief revision is not new. In the belief re-
vision literature in philosophy, this idea is referred to as the criterion of informational
economy, which asserts that when revising the set of propositions we believe, we want
to avoid unnecessary loss of information by retaining our old propositions as much as
possible.7 Imagine that the DM’s prior is summarized by (the deductive closure of) the
set of all qualitative probability statements she believes. Believing that A1 is strictly less
likely than A2 amounts to believing (A2, A1 ) but not (A1, A2 ). When the DM receives
α = (A1, A2 ), the criterion of informational economy suggests that she keep (A2, A1 ),
since (A2, A1 ) and (A1, A2 ) are not contradictory. If the DM believes in both (A2, A1 )
and (A1, A2 ), she will have to set A1 and A2 to be equally as likely. Further discussion
of how my model is related to the belief revision literature in philosophy is provided in
Section 3.

By Theorem 1, among the class of pseudo-Bayesian updating rules, Conservatism
characterizes the following updating rule, which I call the conservative rule:

μα(E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(E), if μ(Lα ) ≥ μ(Rα )

μ(E ∩Cα ) +
(
μ(E ∩Lα )
μ(Lα )

+ μ(E ∩Rα )
μ(Rα )

)
μ(Lα ) +μ(Rα )

2
, if 0 <μ(Lα ) <μ(Rα )

μ(E\Rα )
μ(S\Rα )

, if 0 = μ(Lα ) <μ(Rα )

for any E ∈ � and (μ, α) ∈ I(S, �). In addition to the properties given by Theorem 1, the
conservative rule requires that if 0 < μ(Lα ) < μ(Rα ), then in the posterior, Lα and Rα

each shares half of their original, combined probability mass.

Example (Uniform prior). Let S = [0, 1]. Suppose the DM, who has a uniform prior, en-
counters the statement ([0, 0.2], [0.6, 1]). Given the conservative rule, the density of her

7See Gärdenfors (1984), Alchourrón et al. (1985) and Rott (2000).
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Figure 2. Uniform prior and α = ([0, 0.2], [0.6, 1]).

posterior is shown in Figure 2. The density at states in (0.2, 0.6) will remain unchanged
and the density will be shifted proportionately from the interval [0.6, 1] to the interval
[0, 0.2] just enough to equate the probabilities of [0, 0.2] and [0.6, 1]. ♦

Perhaps surprisingly, the conservative rule is closely related to the minimization of
Kullback–Leibler divergence (hereafter K-L divergence), which is widely used in statis-
tics as a measure of distance between probability distributions. For μ, ν ∈ �(S, �), write
ν 	 μ if ν is absolutely continuous with respect to μ. For μ, ν such that ν 	 μ, the
Radon–Nikodym derivative of ν with respect to μ, denoted as dν/dμ, is defined as the
measurable function f : S → [0, ∞) such that ν(A) = ∫

A f dμ for all A ∈ �.8

Definition. For μ, ν ∈ �(S, �) such that ν 	 μ, the K-L divergence of ν from μ is given
by

d(μ‖ν) = −
∫
S

ln
(
dν

dμ

)
dμ.

It is well known that d(μ‖ν) is strictly convex in ν, and that d(μ‖ν) ≥ 0 with equality
if and only if μ = ν μ-almost surely. Now we are ready for the next theorem.

Theorem 2. The following statements are equivalent regarding a given updating rule:

(i) the updating rule satisfies Exchangeability, Stationarity, Reduction, and Conser-
vatism;

(ii) the updating rule is the conservative rule;

(iii) for any (μ, α) ∈ I(S, �),

μα = arg min
ν	μ

d(μ‖ν) (P)

subject to ν(A1 ) ≥ ν(A2 ).

Proof. For a proof, see Appendix B.

8By the Radon–Nikodym theorem, such f always exists and is unique up to a zero μ-measure set.
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Thus, equipped with the conservative rule, the DM selects the posterior closest to
her prior in terms of K-L divergence, subject to the constraint that the posterior is con-
sistent with the newly received statement. In information theory, constrained optimiza-
tion (P) is sometimes called the method of maximum relative entropy (hereafter MrE),
since −d(μ‖ν) is the relative entropy of ν with respect to μ.

K-L minimization plays an important role in the literature in statistics on estimation
with a misspecified prior. A strand of this literature aims to characterize the asymptotic
behavior of Bayes estimators under the assumption that the model may be misspeci-
fied; that is, the support of the prior used may not contain the true parameter value.
Berk (1966, 1970), Bunke and Milhaud (1998) consider a Bayesian agent with a misspec-
ified (second-order) prior receiving i.i.d. data and shows that under certain regularity
conditions, her (second-order) posterior will asymptotically concentrate on the distri-
butions in the support of her (second-order) prior that minimizes K-L divergence from
the true distribution. To illustrate the connection of Theorem 2 with this literature, sup-
pose the DM has prior μ and let �α be the set of all probability distributions consistent
with α = (A1, A2 ) and absolutely continuous with respect to μ. Thus, equipped with
the conservative rule, the DM has μα = arg minν∈�α d(μ‖ν). If the Bayesian agent in Berk
(1966) has a (second-order) prior with support �α and the true model is μ, then her pos-
terior converges to μα as she receives more data. In other words, a conservative pseudo-
Bayesian decision maker with information set (μ, α) will have the asymptotic beliefs of
a Bayesian who thinks the true distribution is in �α but it in fact is μ. In a certain sense,
our DM behaves as if she thinks her prior μ is true but is forced to reason within �α,
which matches the general perception of a conservative person.

3. Related literature

The earliest version of K-L minimization is proposed by Kullback (1959) as the princi-
ple of minimum discrimination information: Given new facts, the posterior distribution
should be the one that is hardest to discriminate from the prior, in the sense of Kullback–
Leibler divergence.9 This principle is further developed in the literature of information
theory on maximum entropy methods. This literature aims to find universally applica-
ble algorithms for probablistic inference when new information imposes constraints on
the probability distribution. Papers in this literature posit a well-parameterized class of
constrained optimization models. In particular, the statistician is assumed to be able to
use standard Lagrangian arguments to optimize his posterior subject to the constraints.
In contrast, I consider a choice-theoretic state space and start from a general mapping
that assigns a posterior to each piece of information given a prior. Furthermore, the class
of updating rules I characterize is beyond the scope of constrained optimization mod-
els. In fact, a pseudo-Bayesian updating rule that violates Conservatism cannot be ra-
tionalized by any constrained optimization model. Within this literature, Caticha (2004)

9When first introduced by Kullback and Leibler (1951), the K-L divergence between probability measures
μ and ν is symmetric, defined as d(μ‖ν) + d(ν‖μ). It is designed to measure how difficult it is for a statis-
tician to discriminate between distributions with the best test. In Kullback (1959), the directed version,
d(ν‖μ), is used, where μ represents the prior and ν represents the posterior.
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axiomatizes the minimization of d(μ‖·) with conditions that require, for example, in-
variance to coordinates changes. In a similar vein, Shore and Johnson (1980), Skilling
(1988), Caticha (2004), and Caticha and Giffin (2006) propose to minimize d(·‖μ) in-
stead of d(μ‖·). When μ is uniform, minimizing d(·‖μ) reduces to the original maximum
entropy method proposed by Jaynes (1957), which appears in Spiegler (2017, 2020) in
economic contexts.

A strand of papers in decision theory considers a decision maker who knows that
the objective probability lies in some set and models how she forms her subjective prior
by selecting from the set; see, for example, Chambers and Hayashi (2010) and Damiano
(2006). The structure of information in these papers nests my qualitative setting; how-
ever, the belief selection rules they consider takes the set of possible objective probabil-
ities as the only argument. In other words, the decision maker in these studies does not
have a prior to begin with before knowing the probability-possibility set. Probability-
possibility sets also appear in Ahn (2008) and Gajdos et al. (2008), among others, as a
mechanism to generate ambiguity.

Models of non-Bayesian updating in economics typically consider a setting in which
Bayes’ rule is applicable but the DM deviates from it due to a bias, bounded rationality,
or temptation. By contrast, I assume that the agent uses Bayes’ rule when it is applica-
ble, but extends updating to situations in which Bayes’ rule does not apply. In particu-
lar, given a prior over the state space (S, �), Bayes’ rule only applies to information of
the form “A ∈ � has occurred.” While nesting such information as (Ø, S\A), my qual-
itative setting also permits statements that are not events in the state space. For be-
havioral models of non-Bayesian updating, see, for example, Rabin and Schrag (1999),
Rabin (2002), Mullainathan et al. (2008), and Gennaioli and Shleifer (2010). In the de-
cision theory literature, Zhao (2020) formally links the concept of similarity with belief
updating to explain a wide class of non-Bayesian fallacies. Ortoleva (2012) proposes a
hypothesis-testing model in which agents reject their prior when a rare event occurs.
Epstein (2006) and Epstein et al. (2008) build on Gul and Pesendorfer’s temptation the-
ory and show that the DM might be tempted to use a posterior that differs from the
Bayesian update.

In philosophy, belief revision refers to the process of revising a theory (a set of de-
ductively closed propositions) to accommodate an inconsistent proposition. In this lit-
erature, the AGM model (Alchourrón et al. (1985)) is the dominant theory.10

 Bonanno
(2009) and Basu (2019) apply the AGM model to probabilistic belief updating by treat-
ing events as propositions. In their models, the AGM postulates are used to regulate
the support of the decision maker’s posterior given that some event occurs. In con-
trast, I consider qualitative statements, which prompt a more general propositional
language than the algebra of events. Furthermore, compared with the AGM setting,
my decision maker’s prior beliefs have more structure than a deductively closed set of
propositions—that is, the set of qualitative statements the DM believes to be true before
revision uniquely define a probability measure.11

10See Costa and Pedersen (2011) and Fermé and Hansson (2011) for surveys of the literature.
11This is because the DM’s prior is nonatomic. See Villegas (1964), Section 4, Theorem 3, for a proof.
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4. Belief dynamics of pseudo-Bayesian agents

In this section, I explore the belief dynamics of pseudo-Bayesian agents. I show that
pseudo-Bayesian agents are in general susceptible to persistent recency bias, but repet-
itive learning may mitigate the bias.

4.1 Recency bias and repetitive learning

The DM employs a sequential updating procedure and views each piece of new infor-
mation as a constraint. Suppose the DM learns α then β. Recall that Exchangeability
requires that if α and β are orthogonal, the order in which they arrive does not mat-
ter. It follows that the DM’s posterior, μαβ, must be consistent with both statements.
However, if α and β are in conflict, μαβ must be consistent with β but need not be con-
sistent with α. When the arrival of a second statement prompts, the DM to “forget” the
first statement she has already learned, recency bias has been induced. Formally, an or-
dered pair of statements (α, β) is said to induce recency bias on μ if μ(A1 ) <μ(A2 ) and
μαβ(A1 ) <μαβ(A2 ).

Example (Recency bias). Let S = {1, 2, 3}. Suppose the DM with prior beliefs μ =
(0.2, 0.3, 0.5) receives α = ({2}, {3}) then β = ({1}, {2}). The neutral rule, for example,
requires that μα = (0.2, 0.533, 0.267) and μαβ = (0.489, 0.244, 0.267). Notice that now
state 2 has a lower probability than state 3—statement α becomes contradictory to the
DM’s beliefs again after she learns β. ♦

Moreover, (α, β) is said to induce persistent recency bias on μ if μ(αβ)kα(B1 ) <

μ(αβ)kα(B2 ) for k = 0, 1, 2, � � � , in which μ(αβ)kα denotes the DM’s posterior after she
learns α, β repeatedly for k times and then one more α. Thus, when persistent recency
bias is present, if the DM learns α and β alternately, whenever she processes α, state-
ment β is no longer consistent with her beliefs, and vice versa.12

Example (Persistent recency bias). Let S = {1, 2, 3}. Suppose the DM with prior beliefs
μ = (0.2, 0.3, 0.5) receives α = ({2}, {3}) then β = ({1}, {2}). The conservative rule, for
example, requires μα = (0.2, 0.4, 0.4) and μαβ = (0.3, 0.3, 0.4). Notice that now α is vi-
olated. Moreover, μαβα = (0.3, 0.35, 0.35), and thus β is no longer consistent with the
DM’s beliefs. As the DM learns α and β alternately, her beliefs will keep oscillating. ♦

An updating rule is said to be susceptible to (persistent) recency bias if there exists
μ ∈ �(S, �) and statements α, β such that (α, β) induces (persistent) recency bias on μ.
Clearly, the radical rule is not susceptible to any recency bias because the DM’s poste-
rior has to be absolutely continuous with respect to her prior. A pseudo-Bayesian up-
dating rule is said to be never-radical if μα(Rα ) > 0 for any (μ, α) ∈ I(S, �) such that
0 < μ(Lα ) < μ(Rα ). Thus, a pseudo-Bayesian updating rule is never-radical if the DM
creates new null events only upon encountering statements with a degenerate reduc-
tion.

12By Stationarity, once the DM’s beliefs are consistent with α after processing β, her beliefs will remain
consistent with both statements ever after, and thus, persistent recency bias cannot have been induced.
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Proposition 1. A pseudo-Bayesian updating rule is susceptible to recency bias if and
only if it is not the radical rule. Moreover, any never-radical pseudo-Bayesian updating
rule is susceptible to persistent recency bias.

Proof. For a proof, see the Appendix C.

In fact, given a never-radical pseudo-Bayesian updating rule, for any prior μ, there
always exists a pair of statements such that the DM cannot accommodate both at the
same time with finite stages of alternate learning. In the limit, however, it is possible
that the DM’s beliefs converge to a probability distribution that is consistent with both
statements. In particular, if the DM adopts the conservative rule, this kind of repetitive
learning is always effective in the limit. Consider the following example.

Example (Limiting beliefs). Let S = {1, 2, 3}. Suppose the DM with prior beliefs μ =
(0.2, 0.3, 0.5) receives α = ({2}, {3}) then β = ({1}, {2}). The conservative rule implies
that limk→∞ μ(αβ)k = limk→∞ μ(αβ)kα = (1/3, 1/3, 1/3). Thus, both statements are ac-
commodated in the limit. ♦

It follows that repetition plays an important role in learning for pseudo-Bayesian
agents. Without the joint prior over states and signals, the only information the DM can
store after learning a statement is her posterior beliefs over the states. By contrast, once
a Bayesian decision maker forms a joint prior, she has already thought about not only
the possibilities of the new signal and how they interact with the payoff-relevant states,
but also all the past signals she has received or might have received. Thus, hearing an
old piece of information again does nothing to a Bayesian decison maker’s beliefs.

DeMarzo et al. (2003) consider a setting in which agents treat any information they
receive as new and independent information. Since the agents do not adjust properly
for repetition, repeated exposure to an opinion has a cumulative effect on their beliefs.
In my model, however, repetition plays a role only in the presence of contradictory infor-
mation and, in particular, when recency bias occurs. If the DM learns a single statement
repeatedly, she will simply stop revising her beliefs after the first time—my DM does not
have the joint beliefs needed to treat these repetitive occurrences differently.

More generally, let αi = (Ai1, Ai2 ). A finite set of statements {αi}ni=1 is said to be μ-
compatible if there exists ν 	 μ such that ν(Ai1 ) ≥ ν(Ai2 ) for all i. Such ν is called a
μ-solution to {αi}ni=1. Put differently, {αi}ni=1 is μ-compatible if all of the statements are
sampled from a probability measure ν that is absolutely continuous with respect to μ.

Given n statements, a learning sequence is a sequence of elements in {1, 2, � � � , n} that
represents the order of the indices in which the DM learns the statements. A learning
sequence {ik}∞k=1 is said to be comprehensive if there is N ∈ N such that {1, 2, � � � , n} ⊆⋃N

j=1 imN+j for m ∈ N. In other words, within each block of N steps, the DM learns each
statement at least once.

Theorem 3 (Qualitative law of large numbers). Suppose the DM adopts the conservative
rule and let {αi}ni=1 be μ-compatible. If {ik}∞k=1 is a comprehensive learning sequence, then
μαi1αi2 ···αik converges in total variation to a μ-solution to {αi}ni=1 as k → ∞.
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Proof. For a proof, see Appendix D.

Thus, the conservative rule allows the DM to digest any finite collection of objec-
tively true qualitative statements with repetitive learning, provided she has not ne-
glected the possibility of any truly probable event. By learning a statement with the
conservative rule, the DM essentially projects her beliefs onto the closed and convex set
of probabilities that are consistent with the statement. Bregman (1967) proves that if the
notion of distance is well behaved, cyclically projecting onto a finite collection of closed
and convex sets converges to a point in the intersection. Although optimization (P) in
Theorem 2 is not exactly Bregman’s type, the proof is similar in spirit to Bregman’s.

It is worth emphasizing that the radical rule and the neutral rule do not have this
convergence property: For example, let A ∈ � be such that 0 < μ(A) < 1/2. Consider
statements α = (A, S\A) and β = (S\A, A). The radical rule implies that after learn-
ing α, statement β becomes noncredible, and vice versa. It follows that the DM can
never accommodate both statements at the same time. The neutral rule implies that
μ(αβ)k(A) = 1/3 and μ(αβ)kα(A) = 2/3 for any k ≥ 1, which means that the DM’s beliefs
do not converge and are never consistent with both statements.

5. Final remarks

In this paper, I consider a situation in which the decision maker receives qualitative in-
formation. Three simple axioms, Exchangeability, Stationarity, and Reduction, deliver
the class of pseudo-Bayesian updating rules. With the addition of Conservatism, the
pseudo-Bayesian posterior turns out to be the closest probability measure to the deci-
sion maker’s prior that is consistent with the newly received information. I show that
the DM is susceptible to recency bias and that repetition may enable her to overcome it.

The primitive of my model is an updating rule that associates a posterior with every
credible prior-statement pair. Thus, to verify the axioms (in particular, Exchangeability),
the analyst must be able to observe the DM’s posterior for every such prior-statement
pair, which is admittedly difficult without involving a population of agents. However,
if the analyst can observe the belief path of a single agent as she receives information
sequentially, all four axioms in my model are falsifiable. In particular, if the agent ex-
hibits recency bias upon receiving orthogonal statements, then Exchangeability must
be violated.

Several extensions of the model can be pursued. First, with a slight modification of
Exchangeability, noncredible statements can be incorporated. In the model, I assume
that the decision maker ignores noncredible statements, since the interaction between
Exchangeability and Stationarity requires that the DM’s posterior be absolutely contin-
uous with respect to her prior. However, this absolute continuity assumption can be
relaxed: If we allow α and β to be nonexchangeable when A1 is null and B1, B2 ⊆ A1,
then A1 does not have to remain null when the decision maker updates on α. In that
case, all we need is another axiom to regulate how the posterior should be distributed
over previously null events.
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Second, pseudo-Bayesian updating can easily be extended to quantitative state-
ments of the form “A is x times as likely as B” where A ∩ B = Ø. If we extend our def-
initions of updating rules and orthogonality in the obvious way, Exchangeability on its
own yields the following updating rule: The decision maker sets A to be x times as likely
as B by moving probability mass between A and B in proportion to her prior, and again
does not touch the probability distribution outside A ∪ B. It is easy to see that here the
DM again selects her posterior using Kullback–Leibler minimization.

Appendix A: Proof of Theorem 1

Proof. Since μ is nonatomic and countably additive, it is also convex-ranged; that is,
for any a ∈ (0, 1) and A such that μ(A) > 0, there is B ⊆A such that μ(B) = aμ(A). This
property is exploited from time to time throughout the proof. Also, for any μ ∈ �(S, �)
and any A ∈ � such that μ(A) > 0, it will be convenient to define μA ∈ �(S, �) to be such
that

μA(E) = μ(E ∩A)
μ(A)

for any E ∈ �; that is, μA is the Bayesian posterior of μ conditioning on A. To ease
exposition, I will maintain the convention that 0/0 = 0 throughout the proof.

I will first prove the “only if” part. By Reduction, it suffices to focus on standard
statements. Recall that when α is standard, Lα = A1, Rα = A2, and Cα = S\(A1 ∪ A2 ).
By Stationarity, condition (i) of Theorem 1 is trivial. The proofs of (ii) and (iii) are broken
into a series of lemmas. Recall that α= (A1, A2 ) and β = (B1, B2 ).

Lemma 1. If an updating rule satisfies Stationarity and Exchangeability, then

μ(B1 ) ≥ μ(B2 ) ⇒ μα(B1 ) ≥ μα(B2 )

for standard, μ-credible statements α, β that are μ-orthogonal.

Proof. By way of contradiction, suppose μ(B1 ) ≥ μ(B2 ) but μα(B1 ) <μα(B2 ). Station-
arity and μ(B1 ) ≥ μ(B2 ) together imply μβ = μ, and thus μβα = μα. Hence, μβα(B1 ) <
μβα(B2 ). However, by definition of an updating rule, since μαβ = (μα )β, we have
μαβ(B1 ) ≥ μαβ(B2 ). It follows that we cannot have μαβ = μβα, a contradiction to Ex-
changeability.

Lemma 2. If an updating rule satisfies Stationarity and Exchangeability, then for any
(μ, α) ∈ I(S, �) such that α is standard,

μα(E) = μ(E ∩A1 )
μ(A1 )

μα(A1 ) + μ(E ∩A2 )
μ(A2 )

μα(A2 ) + μ
(
E\(A1 ∪A2 )

)
μ

(
S\(A1 ∪A2 )

)μα
(
S\(A1 ∪A2 )

)

for any E ∈ �.
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Proof. Recall that for any standard statement α, 
α = {A1, A2, S\(A1 ∪A2 )}. Pick any
partition element P ∈
α. Note that for any B1, B2 ⊆ P such that B1 ∩B2 = Ø and μ(B1 ) ≥
μ(B2 ), we always have μα(B1 ) ≥ μα(B2 ). This is because, since μ(B1 ) ≥ μ(B2 ), β is μ-
credible and not μ-degenerate. Therefore, Dμ

β = B1 ∪ B2 ⊆ P ∈ 
α, which implies α and
β are μ-orthogonal. Then, by Lemma 1, μα(B1 ) ≥ μα(B2 ). It then follows that for any
B1, B2 ⊆ P such that B1 ∩B2 = Ø and μ(B1 ) = μ(B2 ), we always have μα(B1 ) = μα(B2 ).

Now we are ready to prove the lemma. By μα(E) = ∑
P∈
α

μα(E ∩P ) for any E ∈ �, it
suffices to show

μα(E ∩ P ) = μ(E ∩ P )
μ(P )

μα(P )

for any E ∈ � and P ∈
α. There are three cases:
Case 1: μ(P ) = 0. As μ(Ø) = μ(P ) = 0, we have μα(Ø) = μα(P ), which means

μα(P ) = 0. In this case, for any E ∈ �, we have

μα(E ∩ P ) = 0 = μ(E ∩ P )
μ(P )

μα(P ),

under the convention that 0/0 = 0.
Case 2: μ(P ) > 0 and μα(P ) = 0. In this case, we always have

μα(E ∩ P ) = 0 = μ(E ∩ P )
μ(P )

μα(P ),

for any E ∈ �, since μα(E ∩ P ) = μα(P ) = 0.
Case 3: μ(P ) > 0 and μα(P ) > 0. For any B1, B2 ⊆ P such that B1 ∩ B2 = Ø and

μ(B1 ) = μ(B2 ), we have μα(B1 ) = μα(B2 ). Since μ is nonatomic (and thus convex-
ranged), for any n ∈N, there exists a partition of P , denoted as {Cn

i }ni=1, such that μ(Cn
i ) =

μ(P )/n for any i. Call such {Cn
i }ni=1 an n-fold μ-equipartition of P . By μ(Cn

i ) = μ(Cn
j ) for

any i, j, it follows that μα(Cn
i ) = μα(Cn

j ) for any i, j, which implies μα(Cn
i ) = μα(P )/n.

Therefore, any n-fold μ-equipartition of P is also an n-fold μα-equipartition of P . Thus,
for any n-fold μ-equipartition {Cn

i }ni=1 and any i,

μ
(
Cn
i

)
μ(P )

= μα
(
Cn
i

)
μα(P )

.

It then follows that for any C ⊆ P such that μ(C )/μ(P ) = m/n for some m, n ∈ N with
m≤ n and n > 0, we always have

μ(C )
μ(P )

= μα(C )
μα(P )

= m

n
.

To see why, note that by the convex-rangedness of μ, any such C can be expressed as
the union of m distinct elements of some n-fold μ-equipartition of P . As any n-fold
μ-equipartition of P is also an n-fold μα-equipartition of P , the additivity of μα yields
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μα(C ) = (m/n) ·μα(P ). Since any nonnegative real number can be expressed as a count-
able sum of nonnegative rational numbers, the convex-rangedness of μ and the count-
able additivity of μ and μα together yield

μ(C )
μ(P )

= μα(C )
μα(P )

for any C ⊆ P . Hence, if μ(P ) > 0 and μα(P ) > 0, then

μα(E ∩ P ) = μ(E ∩ P )
μ(P )

μα(P ).

for any E ∈ �.

Note that Lemma 2 completes the proof of condition (iii) in Theorem 1. To see that,
let α be a standard statement such that 0 = μ(A1 ) <μ(A2 ). By Lemma 2, it is clear that
μα(A1 ) = 0 (note the convention that 0/0 = 0). The definition of updating rules requires
that μα(A1 ) ≥ μα(A2 ), which implies μα(A2 ) = 0. Thus, by Lemma 2

μα(E) = μ
(
E\(A1 ∪A2 )

)
μ

(
S\(A1 ∪A2 )

)μα
(
S\(A1 ∪A2 )

)

for any E ∈ �. Then μ(A1 ) = μα(A1 ) = μα(A2 ) = 0 implies that

μα(E) = μ(E\A2 )
μ(S\A2 )

μα(S) = μ(E\A2 )
μ(S\A2 )

for any E ∈ �. Thus, the DM behaves as if she is conditioning on S\A2 according to
Bayes’ rule. Condition (iii) in Theorem 1 is established.

I now turn to condition (ii). Note that (iia) is directly implied by Lemma 2. Thus, it
suffices to show (iib) and (iic).

To show condition (iib), it suffices to show that for any (μ, α) ∈ I(S, �) such that α is
standard and 0 < μ(A1 ) < μ(A2 ), we have μ(A1 ∪ A2 ) = μα(A1 ∪ A2 ). If μ(A1 ∪ A2 ) =
1, then μ(S\(A1 ∪ A2 )) = 0. Then by Lemma 2, μα(S\(A1 ∪ A2 )) = 0, which implies
μα(A1 ∪A2 ) = 1 = μ(A1 ∪A2 ).

Hereafter, I will maintain the assumption that α is a standard statement with 0 <

μ(A1 ) <μ(A2 ) < 1−μ(A1 ). Consider statement β = (Ø, B2 ), in which B2 ⊆ S\(A1 ∪A2 )
and 0 < μ(B2 ) < 1 − μ(A1 ∪ A2 ). Such B2 exists, since μ is nonatomic. Clearly, β is μ-
credible and standard. Furthermore, by D

μ
α = A1 ∪ A2 ⊆ S\B2 ∈ 
β, we know that α

and β are μ-orthogonal. Hence, Exchangeability requires that μαβ = μβα, which implies
μαβ(A1 ∪A2 ) = μβα(A1 ∪A2 ).

If μα(B2 ) > 0, β belongs to condition (iii) (which we have established) if the DM has
prior μα. In this case, updating on β is equivalent to conditioning on S\B2 according to
Bayes’s rule. If μα(B2 ) = 0, then by Stationarity, μαβ = μα. In both cases, since A1 ∪A2 ⊆
S\B2,

μαβ(A1 ∪A2 ) = μα(A1 ∪A2 )
1 −μα(B2 )

.
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Moreover, by Lemma 2, since B2 ⊆ S\(A1 ∪A2 ),

μα(B2 ) = μ(B2 )
1 −μ(A1 ∪A2 )

(
1 −μα(A1 ∪A2 )

)
.

Combining the preceding equations yields

μαβ(A1 ∪A2 ) = μα(A1 ∪A2 )

1 − 1 −μα(A1 ∪A2 )
1 −μ(A1 ∪A2 )

μ(B2 )
. (A.1)

We also know that

μβ = μS\B2 ,

in which μS\B2 denotes the Bayesian conditional distribution given S\B2 for μ. Hence,
the requirement that μαβ(A1 ∪A2 ) = μβα(A1 ∪A2 ) reduces to

μα(A1 ∪A2 )

1 − 1 −μα(A1 ∪A2 )
1 −μ(A1 ∪A2 )

μ(B2 )
= (μS\B2 )α(A1 ∪A2 ). (A.2)

Note that equation (A.2) is true for any (μ, α) ∈ I(S, �) and B2 ⊆ S\(A1 ∪A2 ) such that α
is standard, 0 <μ(A1 ) <μ(A2 ) < 1 −μ(A1 ), and 0 <μ(B2 ) < 1 −μ(A1 ∪A2 ).

The next lemma will turn equation (A.2) into a functional equation. It states that the
posterior probability of A1 ∪A2 upon receiving a standard statement α only depends on
how the prior behaves over A1 ∪A2.

Lemma 3. Let (μ, α) ∈ I(S, �) be such that α is standard and 0 < μ(A1 ) < μ(A2 ) < 1 −
μ(A1 ). If the updating rule satisfies Stationarity and Exchangeability, then μα(A1 ∪A2 ) =
να(A1 ∪A2 ) for any ν ∈ �(S, �) such that ν(E) = μ(E) for any E ⊆A1 ∪A2.

Proof. Let α be a standard statement such that 0 < μ(A1 ) < μ(A2 ) < 1 − μ(A1 ).
Clearly, α is μ-credible. Pick A such that A ⊆ S\(A1 ∪ A2 ) and 0 < μ(A) < 1 − μ(A1 ∪
A2 ). Such A exists since μ is nonatomic and μ(A1 ∪A2 ) < 1. Let B = S\(A ∪A1 ∪A2 ).
Write γ = (Ø, A). The rest of the proof is broken into three steps.

Step 1: If μ(E) = ν(E) for any E ⊆ S\A, then μα(A1 ∪A2 ) = να(A1 ∪A2 ).
This claim basically states that μα(A1 ∪A2 ), as a function of μ, does not depend on

how μ behaves over A. First, note that A2 ⊆ S\A implies that ν(A2 ) = μ(A2 ) < 1, and
thus α is ν-credible.

Second, note that since μ(A) < 1, γ = (Ø, A) is a standard, μ-credible statement.
Since μ(S\A) = ν(S\A), we have ν(A) = μ(A) < 1, which implies that γ = (Ø, A) is
also ν-credible. Observe that Dμ

α = A1 ∪ A2 ⊆ S\A ∈ 
γ , implying that α and γ are μ-
orthogonal. Furthermore, by A1 ⊆ S\A, we have ν(A1 ) = μ(A1 ) > 0, which implies that
α is not ν-degenerate. It follows that Dν

α = A1 ∪ A2 ⊆ S\A ∈ 
γ , implying that α and γ

are ν-orthogonal. By Exchangeability, we have both μαγ = μγα and ναγ = νγα.
Third, note that since μ(E) = ν(E) for any E ⊆ S\A, by condition (iii) (which we

have established), μγ = μS\A = νS\A = νγ . It follows that μγα = νγα. Thus, μαγ = μγα =



274 Chen Zhao Theoretical Economics 17 (2022)

νγα = ναγ . In particular, we have μαγ(A1 ∪A2 ) = ναγ(A1 ∪A2 ). By the same logic in the
derivation of equation (A.1), μαγ(A1 ∪A2 ) = ναγ(A1 ∪A2 ) implies that

μα(A1 ∪A2 )

1 − 1 −μα(A1 ∪A2 )
1 −μ(A1 ∪A2 )

·μ(A)
= να(A1 ∪A2 )

1 − 1 − να(A1 ∪A2 )
1 − ν(A1 ∪A2 )

· ν(A)
. (A.3)

Since A1 ∪ A2, S\A ⊆ S\A, we have ν(A1 ∪ A2 ) = μ(A1 ∪ A2 ) < 1 and ν(A) = μ(A) <
1 −μ(A1 ∪A2 ). Thus, (A.3) reduces to μα(A1 ∪A2 ) = να(A1 ∪A2 ).

Step 2: If μ(A) = ν(A) and μ(E) = ν(E) for any E ⊆ A1 ∪ A2, then μα(A1 ∪ A2 ) =
να(A1 ∪A2 ).

The claim in Step 2 is stronger than the claim in Step 1, in that now μ and ν only need
to agree on A and any event within A1 ∪A2.

To prove the claim, let μ̂ be given by

μ̂= μS\A ·μ(S\A) + νA ·μ(A),

in which μS\A is the Bayesian conditional distribution given S\A for μ, and νA is
the Bayesian conditional distribution given A for ν. Observe that μ̂ is a well-defined
nonatomic probability measure. Moreover, for any E ⊆ S\A, μ(E) = μ̂(E); by μ(A) =
ν(A), for any E ⊆ A, ν(E) = μ̂(E). In other words, μ̂ agrees with μ within S\A and
agrees with ν within A.

The fact that μ̂ agrees with μ within S\A, by Step 1, implies that μα(A1 ∪ A2 ) =
μ̂α(A1 ∪A2 ). Since ν and μ agree within A1 ∪A2, and A1 ∪A2 ⊆ S\A, we have μ̂ agrees
with ν within A1 ∪ A2. Combined with the fact that μ̂ agrees with ν within A, we con-
clude that μ̂ agrees with ν within A ∪ A1 ∪ A2. Recall that we let B = S\(A ∪ A1 ∪ A2 ).
Thus, μ̂ agrees with ν within S\B. Then, applying Step 1 with A replaced by B and μ re-
placed by μ̂ yields να(A1 ∪A2 ) = μ̂α(A1 ∪A2 ), by which we conclude that μα(A1 ∪A2 ) =
να(A1 ∪A2 ).13

Step 3: If μ(E) = ν(E) for any E ⊆A1 ∪A2, then μα(A1 ∪A2 ) = να(A1 ∪A2 ).
The claim in Step 3 is even stronger. Now μ and ν only need to agree within A1 ∪A2.
Suppose ν(A) = 0 or ν(B) = 0. WLOG, assume that ν(B) = 0. Then it is clear that

ν(A) = 1 − ν(A1 ∪A2 ) = 1 −μ(A1 ∪A2 ) > 0. Let μ̂ be defined in the same way as in Step
2. Since μ̂ and μ agree within S\A, by Step 1, μα(A1 ∪A2 ) = μ̂α(A1 ∪A2 ).

Pick A′ ⊆ A such that ν(A′ ) = ν(A)/2 and B′ ⊆ B such that μ(B′ ) = μ(B)/2. Such A′
and B′ exist because μ, ν are both convex-ranged. Then

ν
(
A′ ∪B′) = ν

(
A′) = 1 − ν(A1 ∪A2 )

2
= 1 −μ(A1 ∪A2 )

2
= μ̂

(
A′ ∪B′),

in which the last equality follows from the following facts: μ̂A = νA, which implies that
μ̂(A′ ) = μ̂(A)/2; μ̂ agrees with μ within S\A, which implies that μ̂(B′ ) = μ̂(B)/2 and
μ̂(A1 ∪A2 ) = μ(A1 ∪A2 ); and A∪B = S\(A1 ∪A2 ). Note that by construction, μ̂ and μ

agree within A1 ∪A2, which together with the assumption of Step 3, implies that μ̂ and

13The fact that μ̂ agrees with μ within S\A implies that 0 < μ̂(A1 ) < μ̂(A2 ) < 1 − μ̂(A1 ), and 0 < μ̂(B) <
1 − μ̂(A1 ∪A2 ), which together ensure that the claim in Step 1 is applicable.
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ν agree within A1 ∪A2. Then, applying Step 2 with A replaced by A′ ∪B′ and μ replaced
by μ̂ yields να(A1 ∪A2 ) = μ̂α(A1 ∪A2 ) = μα(A1 ∪A2 ).

Now suppose ν(A) > 0 and ν(B) > 0. Construct ν̂ as follows:

ν̂ = μA1∪A2 ·μ(A1 ∪A2 ) + νA ·μ(A) + νB ·μ(B).

Observe that ν̂ ∈ �(S, �), and ν̂ agrees with μ (and thus ν) within A1 ∪ A2. By Step 2,
since ν̂ agrees with μ within A1 ∪ A2, and ν̂(A) = μ(A), it is clear that μα(A1 ∪ A2 ) =
ν̂α(A1 ∪A2 ).

Pick A′ ⊆ A such that ν(A′ ) = ν(A)/2 and B′ ⊆ B such that ν(B′ ) = ν(B)/2. Such A′
and B′ exist because ν is convex-ranged. Then

ν
(
A′ ∪B′) = 1 − ν(A1 ∪A2 )

2
= 1 −μ(A1 ∪A2 )

2
= ν̂

(
A′ ∪B′),

in which the last equality follows from the following facts: ν̂A = νA, which implies that
ν̂(A′ ) = ν̂(A)/2; ν̂B = νB, which implies that ν̂(B′ ) = ν̂(B)/2; ν̂ agrees with μ within A1 ∪
A2, which implies that ν̂(A1 ∪A2 ) = μ(A1 ∪A2 ); and A∪B = S\(A1 ∪A2 ). Then, since ν̂

agrees with ν within A1 ∪A2, and ν(A′ ∪B′ ) = ν̂(A′ ∪B′ ), applying Step 2 with A replaced
by A′ ∪B′ and μ replaced by ν̂ finishes the proof.

Next, I apply Lemma 3 to turn equation (A.2) into a functional equation.
Fix some (μ, α) ∈ I(S, �) such that α is standard, and 0 < μ(A1 ) < μ(A2 ) < 1 −

μ(A1 ). Define g : (0, 1) → [0, 1] as the following mapping:

ν(A1 ∪A2 ) �→ να(A1 ∪A2 )

for any ν ∈ �(S, �) such that νA1∪A2 = μA1∪A2 .
To see why g is well-defined, note that for any ν ∈ �(S, �) such that ν(A1 ∪ A2 ) ∈

(0, 1), by ν(A2 ) < ν(A1 ∪ A2 ), α is ν-credible. Furthermore, for any ν, ν̃ ∈ �(S, �) such
that νA1∪A2 = ν̃A1∪A2 = μA1∪A2 and ν(A1 ∪ A2 ) = ν̃(A1 ∪ A2 ) ∈ (0, 1), by Lemma 3,
να(A1 ∪A2 ) = ν̃α(A1 ∪A2 ). Here, Lemma 3 is applicable because νA1∪A2 = μA1∪A2 and
ν(A1 ∪A2 ) < 1 together imply that 0 < ν(A1 ) < ν(A2 ) < 1 − ν(A1 ).

Given function g, equation (A.2) is equivalent to

g
(
μ(A1 ∪A2 )

)
1 − 1 − g

(
μ(A1 ∪A2 )

)
1 −μ(A1 ∪A2 )

·μ(B2 )

= g

(
μ(A1 ∪A2 )
1 −μ(B2 )

)
,

in which we have used the facts that μA1∪A2 = (μS\B2 )A1∪A2 and μS\B2 (A1 ∪ A2 ) =
μ(A1 ∪A2 )/(1 −μ(B2 )). Verify that since μ(B2 ) < 1 − μ(A1 ∪ A2 ), the RHS is well-
defined.

Recall that equation (A.2) is true for any (μ, α) ∈ I(S, �) and B2 ⊆ S\(A1 ∪ A2 ) such
that α is standard, 0 < μ(A1 ) < μ(A2 ) < 1 − μ(A1 ), and 0 < μ(B2 ) < 1 − μ(A1 ∪ A2 ).
Fixing α, we can always vary μ(A1 ∪ A2 ) within (0, 1) and μ(B2 ) within (0, 1 − μ(A1 ∪
A2 )) continuously without affecting the conditional distribution over A1 ∪ A2. In the
process, since the statement α and the conditional distribution over A1 ∪ A2 are both
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fixed, the same g applies. Thus, by letting μ(B2 ) = b and μ(A1 ∪ A2 ) = x, the equation
above reads

g(x)

1 − 1 − g(x)
1 − x

· b
= g

(
x

1 − b

)
, (A.4)

which holds for 0 < x< 1 and 0 < b< 1 − x.

Lemma 4. The solutions to functional equation (A.4) are of the form

g(x) = a

2a− 1 + 1 − a

x

, (A.5)

where a ∈ [0, 1].

Proof. Let g(1/2) = a ∈ [0, 1]. For any 0 < x < 1/2, substituting b = 1 − 2x into (A.4)
yields

a = g

(
1
2

)
= g(x)

1 − 1 − g(x)
1 − x

· (1 − 2x)
,

which implies equation (A.5). For 1/2 < y < 1, substituting x = 1/2 and b = 1 − 1/(2y )
into (A.4) yields

g

(
1
2

)

1 − 2
(

1 − g

(
1
2

))
·
(

1 − 1
2y

) = g(y ),

which reads

g(y ) = a

2a− 1 + 1 − a

y

.

Clearly, there are no other solutions to the functional equation, since g(1/2) uniquely
defines g(x) on (0, 1/2) and (1/2, 1).

The final step to establish condition (iib) is to show that a = 1/2, so that g(x) = x.
Recall that in the definition of g we have fixed μ to be such that 0 < μ(A1 ) < μ(A2 ) <
1 −μ(A1 ). Construct ν ∈ �(S, �) as follows:

ν = 1
2
μA1∪A2 + 1

2
μS\(A1∪A2 ).

Observe that ν is well-defined, νA1∪A2 = μA1∪A2 , and ν(A1 ∪A2 ) = ν(S\(A1 ∪A2 )) = 1/2.
Suppose a > 1/2. Then we have να(A1 ∪ A2 ) = g(ν(A1 ∪ A2 )) = g(1/2) = a > 1/2 =

ν(A1 ∪A2 ). By να(A1 ∪A2 ) > ν(A1 ∪A2 ), we have

να
(
S\(A1 ∪A2 )

)
< ν

(
S\(A1 ∪A2 )

)
.
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It follows that να(S\(A1 ∪ A2 )) < να(A1 ∪ A2 ). Consider the standard statement γ =
(S\(A1 ∪A2 ), A1 ∪A2 ). By ν(S\(A1 ∪A2 )) = ν(A1 ∪A2 ), γ is ν-credible. Then, by Sta-
tionarity, νγ = ν, and thus νγα = να. Moreover, since Dν

α = A1 ∪ A2 ∈ 
γ , α and γ are ν-
orthogonal. Thus, by Exchangeability, ναγ = νγα = να. It follows that ναγ(S\(A1 ∪A2 )) <
ναγ(A1 ∪ A2 ), a contradiction to the definition of updating rules. Note that the case
a = 1 is, in fact, directly ruled out by Exchangeability: If a = 1, then να(A1 ∪ A2 ) = 1
and να(S\(A1 ∪ A2 )) = 0, which implies that γ is να-noncredible and thus ναγ is not
well-defined, contradicting Exchangeability.

Suppose a < 1/2. Then we have να(A1 ∪ A2 ) = g(ν(A1 ∪ A2 )) = g(1/2) = a < 1/2 =
ν(A1 ∪A2 ). By να(A1 ∪A2 ) < ν(A1 ∪A2 ), we have

να
(
S\(A1 ∪A2 )

)
> ν

(
S\(A1 ∪A2 )

)
.

It follows that να(S\(A1 ∪ A2 )) > να(A1 ∪ A2 ). Consider the standard statement δ =
(A1 ∪A2, S\(A1 ∪A2 )). By ν(S\(A1 ∪A2 )) = ν(A1 ∪A2 ), δ is ν-credible. Then, by Sta-
tionarity, νδ = ν. It then follows that νδα = να. Moreover, since Dν

α = A1 ∪ A2 ∈ 
δ,
α and δ are ν-orthogonal. Thus, by Exchangeability, ναδ = νδα = να. It follows that
ναδ(S\(A1 ∪ A2 )) > ναδ(A1 ∪ A2 ), a contradiction to the definition of updating rules.
Note that the case a = 0 is, in fact, directly ruled out by Exchangeability: If a = 0, then
να(A1 ∪ A2 ) = 0 and να(S\(A1 ∪ A2 )) = 1, which implies that δ is να-noncredible, and
thus ναδ is not well-defined, contradicting Exchangeability.

Therefore, we must have a = 1/2, and thus g(x) = x for all x ∈ (0, 1). Note that al-
though g depends on the pair (μ, α) that we have fixed in its definition, the preceding
arguments show that for any (μ, α) such that α is standard, and 0 < μ(A1 ) < μ(A2 ) <
1 − μ(A1 ), the corresponding g always satisfies g(x) = x for all x ∈ (0, 1), establishing
condition (iib) in Theorem 1.

To complete the “only if” part, I now turn to condition (iic). It suffices to show that
for any (μ, α) ∈ I(S, �) such that α is standard and 0 < μ(A1 ) < μ(A2 ), and for any ν ∈
�(S, �) that is α-connected to μ,

μ(A2 )
μ(A1 )

= ν(A2 )
ν(A1 )

⇒ μα(A2 )
μα(A1 )

= να(A2 )
να(A1 )

.

First, consider the following lemma, which states that the Bayesian conditional dis-
tribution given A1 ∪A2 for the posterior only depends on the Bayesian conditional dis-
tribution given A1 ∪A2 for the prior.

Lemma 5. Let (μ, α) ∈ I(S, �) be such that α is standard and 0 < μ(A1 ) < μ(A2 ). If an
updating rule satisfies Exchangeability and Stationarity, then for ν ∈ �(S, �) such that
νA1∪A2 = μA1∪A2 , we have (

μα
)
A1∪A2

= (
να

)
A1∪A2

.

Proof. First, verify that α is ν-credible, since νA1∪A2 = μA1∪A2 implies that

ν(A1 )
ν(A2 )

= μ(A1 )
μ(A2 )

> 0.



278 Chen Zhao Theoretical Economics 17 (2022)

Now, consider γ = (Ø, S\(A1 ∪A2 )). Since μA1∪A2 and νA1∪A2 are well-defined, γ is
both μ-credible and ν-credible. Observe that Dμ

α = Dν
α = A1 ∪ A2 ∈ 
γ , which implies

that α and γ are both μ-orthogonal and ν-orthogonal. Exchangeability then requires
that μγα = μαγ , and νγα = ναγ . Moreover, by Lemma 2, it is clear that μγ = μA1∪A2 =
νA1∪A2 = νγ , and thus μγα = νγα. It follows that μαγ = ναγ , which by Lemma 2, implies
that (μα )A1∪A2 = (να )A1∪A2 . Note that by condition (iib) (which we have established),
μα(A1 ∪ A2 ) = μ(A1 ∪ A2 ) > 0, and να(A1 ∪ A2 ) = ν(A1 ∪ A2 ) > 0, which implies that
(μα )A1∪A2 and (να )A1∪A2 are well-defined.

Now we are ready to prove condition (iic). Let (μ, α) ∈ I(S, �) be such that α is stan-
dard and 0 < μ(A1 ) < μ(A2 ), and ν ∈ �(S, �) be α-connected to μ with μ(A2 )/μ(A1 ) =
ν(A2 )/ν(A1 ). Suppose that ν is α-connected to μ via some standard statement β =
(B1, B2 ). In other words, α and β are μ-orthogonal, and for i = 1, 2,(

μβ
)
Ai

= νAi
. (A.6)

First, I show that

μβ(A2 )

μβ(A1 )
= μ(A2 )

μ(A1 )
. (A.7)

If μ(B1 ) ≥ μ(B2 ), by Stationarity, there is nothing to prove. Thus, I focus on the case in
which μ(B1 ) <μ(B2 ). Since α and β are μ-orthogonal, we have the following two cases:

Case 1: Dμ
α = A1 ∪A2 ⊆ P for some P ∈ 
β. Since (μβ )Ai

is well-defined for i = 1, 2,
it is clear that μβ(P ) ≥ μβ(A1 ∪A2 ) > 0. Then by Lemma 2, we have

μβ(A1 )

μβ(P )
= μ(A1 )

μ(P )
and

μβ(A2 )

μβ(P )
= μ(A2 )

μ(P )
,

which implies that μβ(A2 )/μβ(A1 ) = μ(A2 )/μ(A1 ).
Case 2: Dμ

β ⊆ P ′ for some P ′ ∈
α. For this to be true, β cannot be μ-degenerate, and

thus D
μ
β = B1 ∪ B2. By μ(B1 ) < μ(B2 ), we have 0 < μ(B1 ) < μ(B2 ). By condition (iib)

in Theorem 1 (which we have already established), we have μβ(B1 ∪ B2 ) = μ(B1 ∪ B2 ).
Then Lemma 2 implies that μβ(E) = μ(E) for any E ⊆ S\(B1 ∪ B2 ). In other words, μ
and μβ agree within S\(B1 ∪B2 ). Thus,

μβ
(
P ′) = μβ(B1 ∪B2 ) +μβ

(
P ′\(B1 ∪B2 )

)
= μ(B1 ∪B2 ) +μ

(
P ′\(B1 ∪B2 )

)
= μ

(
P ′).

Furthermore, any other P ′′ ∈ 
α satisfies P ′′ ⊆ S\(B1 ∪ B2 ), which implies μβ(P ′′ ) =
μ(P ′′ ). Thus, we always have μβ(Ai ) = μ(Ai ) for i = 1, 2, establishing (A.7).

Observe that since μ(A2 )/μ(A1 ) = ν(A2 )/ν(A1 ), by (A.6) and (A.7), we have
(μβ )A1∪A2 = νA1∪A2 . Applying Lemma 5 with μ replaced by μβ yields (μβα )A1∪A2 =
(να )A1∪A2 , which implies

μβα(A2 )

μβα(A1 )
= να(A2 )

να(A1 )
.
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Note that by the definition of an updating rule, we have μβα(A1 ) ≥ μβα(A2 ) and
να(A1 ) ≥ να(A2 ). Thus, even if να(A1 ) = 0 or μβα(A1 ) = 0, the ratios are still well-
defined due to the convention 0/0 = 0. Applying Exchangeability yields

μαβ(A2 )

μαβ(A1 )
= να(A2 )

να(A1 )
. (A.8)

The last step is to show

μαβ(A2 )

μαβ(A1 )
= μα(A2 )

μα(A1 )
. (A.9)

The argument is similar to that for (A.7). If μα(B1 ) ≥ μα(B2 ), by Stationarity, there is
nothing to prove. If μ(B1 ) ≥ μ(B2 ), by Stationarity and Exchangeability, μαβ = μβα = μα

and we are done. Henceforth, I will assume μ(B1 ) <μ(B2 ) and μα(B1 ) <μα(B2 ). Again,
we need to consider two cases.

Case 1: Dμ
α = A1 ∪A2 ⊆ P for some P ∈ 
β. Since (μβ )Ai

is well-defined for i = 1, 2,
it is clear that μβ(P ) ≥ μβ(A1 ∪ A2 ) > 0. By Lemma 2, μP = (μβ )P , which implies that
μA1∪A2 = (μβ )A1∪A2 . It follows that 0 < μβ(A1 ) < μβ(A2 ). Applying condition (iib) in
Theorem 1 (which we have established) yields μβα(A1 ∪ A2 ) = μβ(A1 ∪ A2 ) > 0. Thus,
μαβ(P ) = μβα(P ) ≥ μβα(A1 ∪A2 ) > 0. By Lemma 2,

μαβ(A1 ) = μα(A1 )
μα(P )

μαβ(P ) and μαβ(A2 ) = μα(A2 )
μα(P )

μαβ(P ).

If μα(P ) = 0, then Lemma 2 implies that μαβ(P ) = 0, a contradiction. Hence, μα(P ) > 0.
Combining the two equations above, μα(P ) > 0, and μαβ(P ) > 0 yields (A.9).

Case 2: Dμ
β ⊆ P ′ for some P ′ ∈
α. For this to be true, β cannot be μ-degenerate, and

thus D
μ
β = B1 ∪ B2. By μ(B1 ) < μ(B2 ), it then follows that 0 < μ(B1 ) < μ(B2 ). Further-

more, since μα(B1 ) <μα(B2 ), it must be the case that μα(P ′ ) > 0. Then by Lemma 2,

μα(B1 )
μα(B2 )

= μ(B1 )
μ(B2 )

,

which implies that 0 < μα(B1 ) < μα(B2 ). Applying condition (iib) in Theorem 1 (which
we have established) yields μαβ(B1 ∪ B2 ) = μα(B1 ∪ B2 ). Then, Lemma 2 implies that
μαβ(E) = μα(E) for any E ⊆ S\(B1 ∪B2 ). In other words, μαβ andμα agree within S\(B1 ∪
B2 ). Thus,

μαβ
(
P ′) = μαβ(B1 ∪B2 ) +μαβ

(
P ′\(B1 ∪B2 )

)
= μα(B1 ∪B2 ) +μα

(
P ′\(B1 ∪B2 )

)
= μα

(
P ′).

Furthermore, any other P ′′ ∈ 
α satisfies P ′′ ⊆ S\(B1 ∪ B2 ), which implies μαβ(P ′′ ) =
μα(P ′′ ). Thus, we always have μαβ(Ai ) = μα(Ai ) for i = 1, 2, establishing (A.9).
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Combining (A.8) and (A.9), we have proved that for any (μ, α) ∈ I(S, �) such that α is
standard and 0 <μ(A1 ) <μ(A2 ), and ν ∈ �(S, �) be α-connected to μ, we have

μ(A2 )
μ(A1 )

= ν(A2 )
ν(A1 )

⇒ μα(A2 )
μα(A1 )

= να(A2 )
να(A1 )

,

which concludes the proof of the “only if” part of Theorem 1.
Next, I show the “if” part. Clearly, condition (i) implies Stationarity. In addition,

since Lα = L(Lα,Rα ), Rα = R(Lα,Rα ), and Cα = C(Lα,Rα ), Reduction holds. It suffices to
show Exchangeability.

Let (μ, α), (μ, β) ∈ I(S, �) be such that α and β are μ-orthogonal. We want to show
that μαβ = μβα. WLOG, assume that Dμ

α ⊆ P for some P ∈
β. There are three cases:
Case 1: α is μ-degenerate. Then D

μ
α = S ∈ 
β. Therefore, β must be (Ø, Ø) or (S, Ø),

since (Ø, S) is μ-noncredible (and thus α and (Ø, S) cannot be μ-orthogonal). Whether
β = (Ø, Ø) or β = (S, Ø), condition (i) in Theorem 1 implies μαβ = μβα.

Case 2: α is not μ-degenerate but β is μ-degenerate. Thus, Dμ
α = A1 ∪ A2, and 0 =

μ(B1 ) <μ(B2 ). For α and β to be μ-orthogonal, both statements need to be μ-credible,
which implies μ(B2 ) < 1. By condition (iii), we have μβ = μS\B2 .

If P = B1, then μ(A1 ) = μ(A2 ) = μ(B1 ) = 0. By condition (i), μα = μ. Thus, since β

is μ-credible, it is also μα-credible. It follows that μαβ = μβ. Since 0 = μ(B1 ) <μ(B2 ), by
condition (iii), we have μβ(B1 ) = 0, which implies that μβ(A1 ) = μβ(A2 ) = 0, and thus
α is μβ-credible. Again by condition (i), we have μβα = μβ = μαβ.

If P = B2, then by μβ = μS\B2 , μβ(A1 ) = μβ(A2 ) = μβ(B2 ) = 0, which implies that α
is μβ-credible. By condition (i), μβα = μβ = μS\B2 . Since α is not μ-degenerate, either
μ(A1 ) ≥ μ(A2 ) or 0 <μ(A1 ) <μ(A2 ). If μ(A1 ) ≥ μ(A2 ), by condition (i), μα = μ. Since
β is μ-credible, it is also μα-credible. Thus, μαβ = μβ = μβα and we are done. Now
suppose 0 < μ(A1 ) < μ(A2 ). By condition (iib), we always have μα(A1 ∪ A2 ) = μ(A1 ∪
A2 ). Then condition (iia) implies that μα(E) = μ(E) for any E ⊆ S\(A1 ∪A2 ). Hence,

μα(B2 ) = μα(A1 ∪A2 ) +μα
(
B2\(A1 ∪A2 )

)
= μ(A1 ∪A2 ) +μ

(
B2\(A1 ∪A2 )

)
= μ(B2 ) ∈ (0, 1), (A.10)

which implies that β is μα-credible. Furthermore, by B1 ⊆ S\(A1 ∪ A2 ), μα(B1 ) =
μ(B1 ) = 0. Then, by condition (iii), μαβ = (μα )S\B2 . Then since S\B2 ⊆ S\(A1 ∪ A2 ),
we have (μα )S\B2 = μS\B2 , which implies that μαβ = μS\B2 = μβα.

If P = S\(B1 ∪B2 ), since α is not μ-degenerate, either μ(A1 ) ≥ μ(A2 ) or 0 <μ(A1 ) <
μ(A2 ). If μ(A1 ) ≥ μ(A2 ), then by condition (i), μα = μ. It follows that β is μα-credible
and μαβ = (μα )S\B2 = μS\B2 . By the properties of Bayes’ rule, since A1 ∪A2 ⊆ P ⊆ S\B2,
we have μS\B2 (A1 ) ≥ μS\B2 (A2 ), which implies that μβ(A1 ) ≥ μβ(A2 ). By condition (i),
it follows that α is μβ-credible, and μβα = μβ = μS\B2 = μαβ.

Now suppose 0 <μ(A1 ) <μ(A2 ). Clearly, μβ is α-connected to μ (via β). Moreover,
by the properties of Bayes’ rule, (μβ )A1∪A2 = (μS\B2 )A1∪A2 = μA1∪A2 , which implies that
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μβ(A2 )/μβ(A1 ) = μ(A2 )/μ(A1 ) > 1 (and thus α is μβ-credible). Thus, by condition
(iic),

μβα(A2 )

μβα(A1 )
= μα(A2 )

μα(A1 )
.

Since μβ(A2 )/μβ(A1 ) > 1, by condition (iib), μβα(A1 ∪A2 ) = μβ(A1 ∪A2 ).
By conditions (iia) and (iib), we have μα(A1 ∪ A2 ) = μ(A1 ∪ A2 ) and μα(E) = μ(E)

for any E ⊆ S\(A1 ∪ A2 ). It follows that μα(Bi ) = μ(Bi ) for i = 1, 2, and thus β is μα-
credible. By condition (iii), μαβ = (μα )S\B2 . Hence,

μβα(A2 )

μβα(A1 )
= μα(A2 )

μα(A1 )
= μαβ(A2 )

μαβ(A1 )
.

Note that

μβα(A1 ∪A2 ) = μβ(A1 ∪A2 ) = μ(A1 ∪A2 )
1 −μ(B2 )

= μα(A1 ∪A2 )
1 −μα(B2 )

= μαβ(A1 ∪A2 ).

Combining the two display equations above yields μβα(Ai ) = μαβ(Ai ) for i = 1, 2. Since
μβ(B1 ) = μβ(B2 ) = 0, by condition (iia), μβα(B1 ) = μβα(B2 ) = 0. In addition, since
μα(Bi ) = μ(Bi ) for i = 1, 2, and μαβ = (μα )S\B2 , we have μαβ(B1 ) = μαβ(B2 ) = 0. Thus,
μβα(Bi ) = μαβ(Bi ) for i = 1, 2. Then, by conditions (iib) and (iii), the probability distri-
bution over each element of {A1, A2, B1, B2, S\(A1 ∪ A2 ∪ B1 ∪ B2 )} is updated in pro-
portion to the prior upon receiving α or β. Thus, we conclude that μαβ = μβα.

Case 3: Neither α nor β is μ-degenerate. Suppose μ(B1 ) ≥ μ(B2 ). Condition (i) im-
plies that μβ = μ, and thus α is μβ-credible and μβα = μα. If μ(A1 ) ≥ μ(A2 ), condition
(i) ensures that β is μα-credible, and μαβ = μβα = μ. If 0 <μ(A1 ) <μ(A2 ), by condition
(iia) and (iib), μα(A1 ∪A2 ) = μ(A1 ∪A2 ) and μα(E) = μ(E) for any E ⊆ S\(A1 ∪A2 ). Us-
ing the argument along the lines of (A.10), it follows that if A1 ∪A2 ⊆ P for some P ∈
β,
then μα(B1 ) = μ(B1 ) and μα(B2 ) = μ(B2 ). Thus, β is μα-credible and, by condition (i),
μαβ = μα = μβα.

Suppose 0 < μ(B1 ) < μ(B2 ). If μ(A1 ) ≥ μ(A2 ), then condition (i) implies μα = μ,
and thus β is μα-credible and μαβ = μβ. For any P ∈
β, A1 ∪A2 ⊆ P implies, by condi-
tion (iia), that

μβ(A1 ) = μ(A1 )
μ(P )

μβ(P ) and μβ(A2 ) = μ(A2 )
μ(P )

μβ(P ).

If μβ(P ) = 0, then μβ(A1 ) = μβ(A2 ) = 0. If μβ(P ) > 0 (which implies μ(P ) > 0), then
μ(A1 ) ≥ μ(A2 ) implies μβ(A1 ) ≥ μβ(A2 ). In both cases, α is μβ-credible. Moreover, in
both cases, condition (i) implies μβα = μβ.

The final remaining case is when 0 < μ(B1 ) < μ(B2 ) and 0 < μ(A1 ) < μ(A2 ). Recall
that A1 ∪ A2 ⊆ P ∈ 
β. By conditions (iia) and (iib), we have μβ(B1 ∪ B2 ) = μ(B1 ∪ B2 )
and μβ(E) = μ(E) for any E ⊆ S\(B1 ∪B2 ); μα(A1 ∪A2 ) = μ(A1 ∪A2 ) and μα(F ) = μ(F )
for any F ⊆ S\(A1 ∪A2 ).
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First, I show that μαβ(B1 ) = μβα(B1 ) and μαβ(B2 ) = μβα(B2 ). Observe that regard-
less of which element P is, we always have μα(B1 ) = μ(B1 ) and μα(B2 ) = μ(B2 ), which
implies that β is μα-credible, and, by condition (iib),

μαβ(B1 ∪B2 ) = μα(B1 ∪B2 ) = μ(B1 ∪B2 ). (A.11)

Note that μα is β-connected to μ (via α), and μα(B2 )/μα(B1 ) = μ(B2 )/μ(B1 ). Then it
follows from condition (iic) that

μαβ(B2 )

μαβ(B1 )
= μβ(B2 )

μβ(B1 )
. (A.12)

To characterize the relation between μβα and μβ, note that if μβ(P ) = 0, then
μβ(A1 ) = μβ(A2 ) = 0. It follows that α is μβ-credible and by condition (i), μβα = μβ.
If μβ(P ) > 0, then by condition (iia), 0 < μβ(A1 ) < μβ(A2 ), which implies that α is μβ-
credible. In addition, by conditions (iia) and (iib), we have μβα(A1 ∪A2 ) = μβ(A1 ∪A2 ),
and μβα(E) = μβ(E) for any E ⊆ S\(A1 ∪A2 ). Regardless of which element P is, we al-
ways have μβα(B1 ) = μβ(B1 ) and μβα(B2 ) = μβ(B2 ). Therefore, whether μβ(P ) > 0 or
not, we have

μβα(B1 ∪B2 ) = μβ(B1 ∪B2 ) = μ(B1 ∪B2 ) (A.13)

and

μβ(B2 )

μβ(B1 )
= μβα(B2 )

μβα(B1 )
. (A.14)

Combining (A.11), (A.12), (A.13), and (A.14), we have μαβ(B1 ) = μβα(B1 ) and μαβ(B2 ) =
μβα(B2 ).

Now I show that μαβ(A1 ) = μβα(A1 ) and μαβ(A2 ) = μβα(A2 ). If μβ(P ) = 0, then it
must be the case that P = Bi for some i ∈ {1, 2}, since μ(P ) > 0 and μβ(B1 ∪B2 ) = μ(B1 ∪
B2 ). Then (A.12) implies that μαβ(P ) = 0, and thus μαβ(A1 ) = μαβ(A2 ) = 0. Moreover,
since μβ(P ) = 0 and A1 ∪A2 ⊆ P together imply μβ(A1 ) = μβ(A2 ) = 0, by condition (i),
μβα = μβ. Therefore, μαβ(A1 ) = μαβ(A2 ) = μβα(A1 ) = μβα(A2 ) = 0 and we are done.

If μβ(P ) > 0, then by condition (iia), we have μβ(A2 )/μβ(A1 ) = μ(A2 )/μ(A1 ). It
follows from condition (iib) that

μβα(A1 ∪A2 ) = μβ(A1 ∪A2 ). (A.15)

Furthermore, μβ is α-connected to μ (via β). Then by condition (iic),

μβα(A2 )

μβα(A1 )
= μα(A2 )

μα(A1 )
. (A.16)

To characterize how μαβ is related to μβ and μα, we first show μαβ(P ) > 0. By way
of contradiction, assume μαβ(P ) = 0. Clearly, P cannot be B1 or B2: If so, then (A.12)
implies that μβ(P ) = 0, a contradiction. If P = S\(B1 ∪ B2 ), then by condition (iib), it
must be that μα(P ) = 0 (recall that μα(Bi ) = μ(Bi ) for i = 1, 2). Then μα(A1 ∪ A2 ) ≤
μα(P ) = 0, a contradiction.
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Since μαβ(P ) and μα(P ) are both positive, by condition (iia), we have

μαβ(A2 )

μαβ(A1 )
= μα(A2 )

μα(A1 )
. (A.17)

Furthermore,

μαβ(A1 ∪A2 ) = μα(A1 ∪A2 )
μα(P )

μαβ(P ) = μ(A1 ∪A2 )
μα(P )

μαβ(P ).

Note that

μα(P ) = μα(A1 ∪A2 ) +μα
(
P\(A1 ∪A2 )

) = μ(A1 ∪A2 ) +μ
(
P\(A1 ∪A2 )

) = μ(P ).

In addition,

μαβ(P ) = μβα(P ) = μβ(P ),

in which the first equality is due to the fact that μαβ(Bi ) = μβα(Bi ) for i = 1, 2, and the
second equality is because μβα(A1 ∪ A2 ) = μβ(A1 ∪ A2 ) and μβα(E) = μβ(E) for any
E ⊆ S\(A1 ∪A2 ). Thus,

μαβ(A1 ∪A2 ) = μ(A1 ∪A2 )
μ(P )

μβ(P ) = μβ(A1 ∪A2 ). (A.18)

Combining (A.15), (A.16), (A.17), and (A.18) yields the desired result: μαβ(A1 ) = μβα(A1 )
and μαβ(A2 ) = μβα(A2 ).

Finally, let �′ be the smallest σ-algebra that contains A1, A2, B1, B2. It is clear that by
conditions (iia) and (iii), each element of �′ is updated in proportion to the prior as the
DM receives α or β. Thus, since μαβ(Bi ) = μβα(Bi ) and μαβ(Ai ) = μβα(Ai ) for i = 1, 2,
we have μαβ = μβα.

Appendix B: Proof of Theorem 2

Proof. By Theorem 1, it is clear that (i) and (ii) are equivalent. Hence, it suffices to
prove that optimization (P) in Theorem 2 has the conservative rule as the unique solu-
tion. Recall optimization (P):

min
ν	μ

−
∫
S

ln
(
dν

dμ

)
dμ

subject to ν(A1 ) ≥ ν(A2 ).

First of all, note that since ν 	 μ, the Radon–Nikodym derivative is well-defined. Thus,
the constraint optimization problem is equivalent to the following problem:

max
f :S→[0,∞) measurable

∫
S

ln f dμ (P∗)

subject to
∫
A1

f dμ≥
∫
A2

f dμ,
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S
f dμ= 1.

The next lemma reduces (P∗) to a finite dimensional problem.

Lemma 6. Let μ(C ) > 0 and p ∈ [0, 1]. The following optimization problem has solution
f ∗ := p/μ(C ) and the solution is unique up to μ-almost everywhere equality:

max
f :C→[0,∞) measurable

∫
C

ln f dμ

subject to
∫
C
f dμ= p.

Proof. Let ν be such that ν(A) = μ(A∩C )/μ(C ) for all A ∈ �. For any measurable f ,∫
C

ln f dμ= μ(C )Eν[ln f ] ≤ μ(C ) lnEν[f ] = μ(C ) ln
p

μ(C )
=

∫
C

ln f ∗ dμ

by Jensen’s inequality. Equality is attained if and only if f is a constant μ-almost every-
where. Then the constraint demands that f = p/μ(C )μ-almost everywhere.

With Lemma 6, (P∗) is reduced to a finite-dimensional optimization problem. Let
μ(A1\A2 ) = p1, μ(A2\A1 ) = p2, and p3 = 1 − p1 − p2. Consider the following opti-
mization problem:

max
qi≥0

3∑
i=1

pi ln
qi
pi

(P∗∗)

subject to q1 ≥ q2

qi = 0 if pi = 0

q1 + q2 + q3 = 1.

Suppose p1 > 0 and ignore the absolute continuity constraint for the time being.
Since our objective function is strictly concave, Kuhn–Tucker conditions are necessary
and sufficient. It is easy to verify that the Kuhn–Tucker conditions imply q3 = p3. More-
over, if p2 >p1, then q1 = q2 = (p1 +p2 )/2; if p1 ≥ p2, then qi = pi for all i. Clearly, in all
circumstances the absolute continuity constraint is not violated.

Suppose p1 = 0. By absolute continuity q1 = 0 and then the inequality constraint
demands q2 = 0, which implies that q3 = 1.

Let the solution to (P∗∗) be (q∗
1, q∗

2, q∗
3 ). Let h : [0, 1] → R be such that h(0) = 0 and

h(x) = 1/x if x > 0. By Lemma 6 and the analysis of (P∗∗), (P∗) has a solution f that is
unique up to μ-everywhere equality, given by

f (s) =

⎧⎪⎪⎨
⎪⎪⎩
q∗

1 · h(p1 ), if s ∈A1,

q∗
2 · h(p2 ), if s ∈A2,

q∗
3 · h(p3 ), otherwise.
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Since d(μ‖ν) is strictly convex in ν, the solution to (P) (and thus (P∗)) is unique. It is easy
to verify that the solution above characterizes exactly the conservative rule.

Appendix C: Proof of Proposition 1

Proof. The “only if” direction of the first statement is trivially implied by the absolute
continuity property of pseudo-Bayesian updating implied by conditions (i), (iia), and
(iii) of Theorem 1. I now show the “if” direction. Consider a pseudo-Bayesian updat-
ing rule that is not the radical rule. Then by definition, there exists (μ, α) ∈ I(S, �) with
A1 ∩ A2 = Ø such that μ(A1 ) < μ(A2 ) and μα(A2 ) > 0. By Theorem 1, we know that
it must be the case that μ(A1 ) > 0. Let B2 = A1 and B1 ⊆ A2 with μ(B1 ) = μ(A2 )/2.
Such B1 exists, since μ is nonatomic. By Theorem 1, we have μα(B1 ) < μα(A2 ) ≤
μα(A1 ) = μα(B2 ). Then it follows that μαβ(A1 ) = μαβ(B2 ) ≤ μαβ(B1 ) < μαβ(A2 ), in
which the last inequality follows from the fact that A2\B1 ⊆ S\(B1 ∪ B2 ), and thus
μαβ(A2\B1 ) = μα(A2\B1 ) > 0.

Next, I prove the second statement. Consider a never-radical pseudo-Bayesian up-
dating rule. For any μ, pick standard statements α, β such that 0 < μ(A1 ) < μ(A2 ),
B2 = A1, B1 ⊆ A2, and μ(B1 ) = μ(A2 )/2. A decision maker equipped with a never-
radical pseudo-Bayesian updating rule creates new null events only upon encountering
statements with a degenerate reduction. Therefore, as she learns α and β alternately,
both statements remain nondegenerate along the path of her beliefs. Hence, A2\B1 will
remain nonnull along the path. It follows that whenever the DM learns α so that A1 is at
least as likely as A2, B2 = A1 will be strictly more likely than B1; whenever the DM inco-
porates β so that B1 is at least as likely as B2, A2 will be strictly more likely than B2 =A1.
Thus, (α, β) induces persistent recency bias on μ.

Appendix D: Proof of Theorem 3

Proof. Let αi = (Ai1, Ai2 ) for all i. WLOG assume that each αi is standard. Let 
 be
the coarsest common refinement of 
α1 , � � � , 
αn . Let ν be a μ-solution to {αi}ni=1 such
that ν(C ∩ P )/ν(P ) = μ(C ∩ P )/μ(P ) for any C ∈ � and P ∈ 
 such that ν(P ) > 0. Since
{αi}ni=1 is μ-compatible, such ν always exists.

Without loss of generality, assume that αi is not μ-degenerate for any i. If αi is μ-
degenerate, since the posterior has to be absolutely continuous with respect to the prior,
αi will remain degenerate before it is learned the first time, and once αi is learned the
first time, Ai1, Ai2 will remain null ever after. Since ν is a solution to {αi}ni=1, it must be
the case that ν(Ai1 ) = ν(Ai2 ) = 0. Hence, it suffices to show Theorem 3 for statements
that are not μ-degenerate.

Now, for each k, let μk = μαi1αi2 ···αik . First, we show that

d(μk+1‖μk ) · min
i

ν
(
Dμk

αi

) ≤ d(ν‖μk ) − d(ν‖μk+1 ). (D.1)

Since the conservative rule is never-radical, it is clear that ν 	 μ 	 μk 	 μk+1 for all k.
Therefore, the KL-divergences in (D.1) are all finite. Letαik+1 = α, μk(A1 ) = p1, μk(A2 ) =
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p2, ν(A1 ) = q1, and ν(A2 ) = q2. If p1 ≥ p2 there is nothing to prove, since μk = μk+1.
Hereafter, we assume p1 <p2. With the conservative rule, inequality (D.1) reads

(
p1 +p2

2
ln

2p1

p1 +p2
+ p1 +p2

2
ln

2p2

p1 +p2

)
· min

i
ν
(
Dμk

αi

)

≥ q1 ln
2p1

p1 +p2
+ q2 ln

2p2

p1 +p2
.

Since 0 ≤ (p1 + p2 ) · mini ν(Dμk
αi ) ≤ ν(Dμk

α ) = q1 + q2 and d(μk+1‖μk ) ≥ 0, to show (D.1)
it suffices to prove that

q1 + q2

2
ln

2p1

p1 +p2
+ q1 + q2

2
ln

2p2

p1 +p2
≥ q1 ln

2p1

p1 +p2
+ q2 ln

2p2

p1 +p2
,

which reads
q1 − q2

2
ln

p2

p1
≥ 0,

which clearly holds, since p1 <p2 and q1 ≥ q2.
Thus, by inequality (D.1), 0 ≤ d(ν‖μk+1 ) ≤ d(ν‖μk ), and thus limk→∞ d(ν‖μk ) exists

and limk→∞ d(μk+1‖μk ) = 0.
Let dTV denote the total variation distance, that is,

dTV
(
ρ, ρ′) = sup

A∈�

∣∣ρ(A) − ρ′(A)
∣∣

for any ρ, ρ′ ∈ �(S, �). By Pinsker’s inequality,

√
d(μk+1‖μk )

2
≥ dTV(μk+1, μk ).

See Tsybakov (2009), page 88, for a formal proof of Pinsker’s inequalilty.
Therefore, by limk→∞ d(μk+1‖μk ) = 0, dTV(μk+1, μk ) also converges to 0. Therefore,

max1≤j,l≤N dTV(μkN+j , μkN+l ) converges to 0 as k→ ∞, in which N is the constant given
in the definition of comprehensiveness. Since all μk’s share the same Bayesian condi-
tional distribution given each element in 
, it is easy to see that {μk} has a least one
limit point, denoted as μ∗, under dTV. Since the learning sequence is comprehensive,
μ∗ of {μk} must be consistent with αj for all j. Note that since μk 	 μ, it must be
the case that μ∗ 	 μ, so μ∗ is indeed a μ-solution to {αi}ni=1. Moreover, it is clear that
μ∗(C ∩ P )/μ∗(P ) = μ(C ∩ P )/μ(P ) for any C ∈ � and P ∈
 such that μ∗(P ) > 0.

Setting ν = μ∗, we have that limk→∞ d(μ∗‖μk ) exists. Take a subsequence {μkj } that
converges to μ∗. By continuity,

lim
k→∞

d
(
μ∗‖μk

) = lim
j→∞

d
(
μ∗‖μkj

) = d
(
μ∗‖μ∗) = 0.

Then Pinsker’s inequality finishes our proof.
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