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This paper shows that belief-driven economic fluctuations are a general feature of
many determinate macroeconomic models. In environments with hidden state
variables, forecast-model misspecification can break the link between indetermi-
nacy and sunspots by establishing the existence of “statistical sunspots” in mod-
els that have a unique rational expectations equilibrium. To form expectations,
agents regress on a set of observables that can include serially correlated nonfun-
damental factors (e.g., sunspots, judgment, expectations shocks, etc.). In equilib-
rium, agents attribute, in a self-fulfilling way, some of the serial correlation ob-
served in data to extrinsic noise, i.e., statistical sunspots. This leads to sunspot
equilibria in models with a unique rational expectations equilibrium. Unlike
many rational sunspots, these equilibria are found to be generically stable un-
der learning. Applications are developed in the context of a New Keynesian and
an asset-pricing model.
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1. Introduction

There is a long and venerable history in macroeconomics of proposing theories of ex-
ogenous movements in expectations as an independent driving force amid multiple
equilibria.1 For example, many forward-looking macroeconomic models can generate

William A. Branch: wbranch@uci.edu
Bruce McGough: bmcgough@uoregon.edu
Mei Zhu: zhu.mei@mail.shufe.edu.cn
We thank the referees for helpful comments and suggestions. This paper has benefited from discussions
with John Duffy, Stefano Eusepi, Cars Hommes, Blake LeBaron, Guillaume Rocheteau, and John Williams.
We also thank seminar participants at U.C. Irvine, the 2017 Workshop on Expectations in Dynamic Macroe-
conomics at the St. Louis Fed, the 2017 Society of Computational Economics Meetings, and the Institute
of Mathematical Behavioral Science. Mei Zhu acknowledges financial support from NSFC funding (Grant
11401365, 71850002) and China Scholarship Council (file 201506485009).

1For instance, Blanchard (2011) writes, “. . . the world economy is pregnant with multiple equilibria—
self-fulfilling outcomes of pessimism or optimism, with major macroeconomic implications.”

© 2022 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at https://econtheory.org. https://doi.org/10.3982/TE3752

https://econtheory.org/
mailto:wbranch@uci.edu
mailto:bmcgough@uoregon.edu
mailto:zhu.mei@mail.shufe.edu.cn
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://econtheory.org
https://doi.org/10.3982/TE3752


292 Branch, McGough, and Zhu Theoretical Economics 17 (2022)

endogenous volatility through sunspot equilibria that exhibit self-fulfilling dependence
on extrinsic variables, i.e., “animal spirits.” Yet, most research directs its focus to models
that exhibit determinacy, that is, (local) uniqueness of equilibrium. Even with indeter-
minate models, sunspot equilibria are generally not stable when rational expectations
are replaced with reasonable adaptive learning rules. As a result, according to a wide lit-
erature that argues in favor of stability under learning as an important consistency and
equilibrium selection mechanism, sunspot equilibria are of limited interest to applied
economists.2 This paper’s contribution is to introduce a novel equilibrium phenomenon
that we call statistical sunspots. Statistical sunspots are endogenous fluctuations that
arise in equilibrium even in models that feature a unique rational expectations equilib-
rium. What is more, they are often stable under adaptive learning.

We consider economic environments where some exogenous variables are hidden
or unobserved, following a line of research that begins with Marcet and Sargent (1989).
Unobservable shocks are a staple of any economy whose equilibrium path is driven by
many exogenous forces, only a subset of which is measured and observable by agents.
Examples that we have in mind include “natural rate” shocks to output and interest
rates, monetary policy shocks, noise traders, and asset float in asset markets, among
others. We adopt a restricted perceptions viewpoint that unobserved exogenous vari-
ables may lead agents to use misspecified forecasting models, though we will impose
a consistency to this misspecification.3 Specifically, in a restricted perceptions equilib-
rium, beliefs coincide with the projection of the endogenous state vector onto the indi-
viduals’ restricted set of observables, which results in a set of cross-equation restrictions
analogous to those that feature prominently in rational expectations models.4

The insight of this paper is that this set of observables can include serially correlated
extrinsic shocks, statistical sunspots, which can be interpreted as judgment, sentiment,
expectations shocks, sunspots, etc. Because agents do not observe the full state vector,
they attribute, in a self-fulfilling way, some of the serial correlation observed in the data
to these extrinsic factors. Because the existence of statistical sunspots does not hinge on
indeterminacy, statistical sunspot equilibria are often stable under adaptive learning, a
sharp contrast from rational sunspots.

To make our results applicable across a broad range of economic environments, we
adopt as our laboratory a general linear, univariate, forward-looking model that depends
on a serially correlated exogenous process, unobservable to agents. Even though the
fundamental shock is hidden, if the agents were able to estimate an econometric fore-
casting model using an infinitely long history of the endogenous variable, then the econ-
omy would replicate the full-information rational expectations equilibrium. However,
there is a long tradition for forecasters, who often face data limitations and/or degrees-
of-freedom limitations, to formulate and estimate parsimonious, vector autoregressive
(VAR) models with a finite set of variables. In a restricted perceptions equilibrium (RPE),

2See, for instance, Sargent (1993, 2008), Evans and Honkapohja (2001), and Woodford (2013).
3The introduction to White (1994) states explicitly, “...an economic or probability model is...a crude ap-

proximation to...the ‘true’ relationships.... Consequently, it is necessary to view models as misspecified.”
4Piazzesi (2016): “Cross-equation restrictions constrain the parameters associated with agents’ expecta-

tions to be consistent with the parameters from the equilibrium probability distribution.”
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though, these misspecified beliefs are optimal in the sense that the forecasting model
coefficients reflect the least-squares projection of the true data generating process onto
the space spanned by the limited number of regressors. We show existence of a fun-
damentals RPE where the endogenous state variable is driven only by the fundamen-
tal exogenous shock. More interestingly, we also provide necessary and sufficient con-
ditions for the existence of multiple RPE that depend on a serially correlated extrinsic
variable—a statistical sunspot. These equilibria exist even though we restrict attention
to models that have a unique rational expectations equilibrium. Rather than a contin-
uum of sunspot equilibria, we show that at most three RPE exist: the fundamental RPE
and two symmetric RPEs that are driven by sunspots. The existence of these sunspot
RPEs depends on the strength of expectational feedback, the serial correlation of the
hidden fundamental shock, the serial correlation of the sunspot shock, and the signal to
noise ratio of the shocks’ innovations.

A particularly striking feature of sunspot RPE is their potential to be stable under
adaptive learning. When the model’s expectational feedback is not too strong, the fun-
damentals RPE is the model’s unique RPE, and it is stable under adaptive learning. How-
ever, when sunspot RPE do exist they often are stable under learning while the funda-
mentals RPE is unstable. A common finding in models of adaptive learning is that de-
terminacy implies stability under learning.5 It is, therefore, not completely surprising to
find a similar arrangement for statistical sunspots. As the expectational feedback in the
model strengthens, the learning dynamics appear to bifurcate, destabilizing the funda-
mentals RPE and transferring stability to the newly emerged sunspot RPE.

We show that statistical sunspots introduce excess volatility to an economy. The eco-
nomic volatility of sunspot RPE are bounded below by rational expectations and above
by the fundamentals RPE. We use these results to illustrate the practical and empirical
relevance of the theoretical results via two applications. The first explores the empirical
implications of statistical sunspots for the excess volatility puzzle in stock prices. We
use a calibrated asset-pricing model to explore the empirical implications of statistical
sunspots by identifying the RPE sunspot process that can generate the excess volatil-
ity observed in data. The second application reconsiders a theme from studies into the
design of monetary policy rules that, under learning, policymakers face an improved
stabilization trade-off via a systematic, aggressive response whenever inflation deviates
from its target rate.6 We specify an optimal monetary policy problem in a New Keyne-
sian environment with unobserved exogenous factors. We show that an optimal policy
instrument rule responds less aggressively to inflation innovations than under perfect
information. In a related matter, optimal monetary policy will coordinate the economy
on a (learnable) sunspot RPE.

The paper proceeds as follows. Section 2 develops the theory in a simple environ-
ment. Section 3 presents the main results. Section 4 examines robustness of the main
results. Section 5 presents the applications, while Section 6 concludes. All proofs are
contained in the Appendix.

5Although common, there are counterexamples to the tight relationship between determinacy and ex-
pectational stability.

6See, for example, Eusepi and Preston (forthcoming).
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1.1 Related literature

While this paper takes a bounded rationality perspective, there is an existing literature
that identifies sunspot-like fluctuations that emerge within a unique rational expecta-
tions equilibrium. Angeletos and La’O (2013) introduce random matching frictions into
a Lucas islands framework: firms have an incentive to trade with the other islands but
make production decisions before being randomly matched with another firm, which
may have firm-specific productivity and beliefs. Higher-order beliefs emerge from a
timing protocol where each firm forecasts the terms of trade before the identity of their
trading partner or the beliefs of other firms is revealed. This structure formalizes imper-
fect communication as (heterogeneous) beliefs are not observed until firms physically
meet. An extension of their model shows how an information cascade can converge to
the sentiment equilibrium as information is exchanged when firms trade bilaterally.

Similarly, Benhabib, Wang, and Wen (2015) show the existence of rational expecta-
tions equilibria driven by (potentially) serially correlated sentiment shocks. In their cen-
tralized environment, firms make decisions based on expected demand while house-
holds base decisions on expected income, which depend in part on sentiments about
aggregate income. While households observe sentiments, firms receive a noisy signal
about their demand. These firms are rational and solve their signal-extraction problem.
When firms cannot distinguish between idiosyncratic demand shocks and aggregate
sentiment shocks a strategic complementarity can arise so that there is a rational expec-
tations equilibrium that features dependence on stochastic sentiment shocks, with the
variance of those shocks also pinned down by the equilibrium. There is, however, also
a rational expectations equilibrium that exists without dependence on the sentiment
shock. While the model structure is essentially static, Benhabib et al. (2015) develop an
adaptive learning formulation where the agents learn the sentiment-shock variance in
real time and find that the sentiment-shock equilibrium is stable.

In contrast, our paper takes a bounded rationality perspective. The presence of
hidden random variables and econometric considerations motivate agents to formu-
late expectations by fitting finite-order autoregressive models used to forecast payoff-
relevant aggregate variables. Given those beliefs, the agents satisfy their respective op-
timization conditions and (temporary) market equilibrium prevails. Like Angeletos and
La’O (2013), the statistical sunspot equilibrium arises in economies that are determi-
nate. And, similar to Benhabib et al. (2015), it is the statistical sunspot equilibrium, and
not the fundamental one, that is stable under learning. One potential advantage to our
restricted perceptions approach is simplicity. By taking a bounded rationality perspec-
tive, statistical sunspot equilibria arise via the parsimony in their forecasting equations,
a simple and intuitive structure for expectation formation. In fact, by developing our
results within the context of a general expectational difference equation, robust sta-
tistical sunspots are easily incorporated across a range of economic environments. In
particular, we develop applications in an overlapping generations with money econ-
omy, an asset-pricing model, and a New Keynesian model. The way in which statistical
sunspots introduce additional volatility into the economy is another distinguishing fea-
ture from previous studies. In Angeletos and La’O (2013) and Benhabib et al. (2015), the
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sentiment-driven equilibria are more volatile than the fundamental equilibrium. Sta-
tistical sunspot equilibria, while more volatile than what would occur under rational
expectations, are less volatile than the fundamental equilibrium. We explore the pol-
icy implications of this result and show that a central bank may wish to coordinate the
economy on the sunspot equilibrium, with economic volatility that is lower than the
fundamental equilibrium.

This paper is also related to a literature that studies the equilibrium implications of
econometric model misspecification. Marcet and Sargent (1989) first introduce the idea
that in an environment with private information, an adaptive learning process will con-
verge to a limited information rational expectations equilibrium. Subsequently, Sargent
(1999) and Evans and Honkapohja (2001) extend the idea to where the misspecifica-
tion never vanishes. Sargent (1999) introduces the self-confirming equilibrium (SCE)
concept into macroeconomic models. In an SCE, the coefficients of an agents’ forecast-
ing model satisfy a least-squares orthogonality condition, as in a restricted perceptions
equilibrium, but in equilibrium these coefficients take the same values as if it were a ra-
tional expectations equilibrium: beliefs are correct along the equilibrium path and mis-
specified along paths that are never reached. An SCE is a refinement of a restricted per-
ceptions equilibrium. Branch and Evans (2006) illustrate how the misspecification can
arise endogenously. Cho and Kasa (forthcoming) provide a justification for restricted
perceptions as a sort of Gresham’s law of Bayesian model averaging that leads to cor-
rectly specified models being driven out of the agents’ forecast model set. We are very
much in the spirit of Sargent’s (2008) essay on small deviations from the rational expec-
tations hypothesis that preserve beliefs being pinned down by cross-equation restric-
tions and, yet, deliver an independent role for beliefs in economic fluctuations.

The results here also relate to a very large literature on sunspot equilibria in rational
expectations models, e.g., Shell (1977), Cass and Shell (1983), Azariadis (1981), Azariadis
and Guesnerie (1986), Guesnerie (1986), and Guesnerie and Woodford (1992). In the
same spirit as this paper, Eusepi (2009) studies the connection between expectations-
driven fluctuations and indeterminacy in one- and two-sector business cycle models.
Woodford (1990) is the first to show that sunspot equilibria could be stable under learn-
ing in overlapping generations models. Evans and McGough (2005a) and Duffy and Xiao
(2007) show that sunspot equilibria in applied business cycle models like Benhabib and
Farmer (1994) and Farmer and Guo (1994) are unstable under learning. Evans and Mc-
Gough (2005b) show that an alternative representation of sunspot equilibria can be sta-
ble in a New Keynesian model with an expectations-based interest rate rule.

Finally, this paper is most closely related to Sargent (1991) and Bullard, Evans, and
Honkapohja (2008). We discuss our model in the context of Sargent (1991) throughout,
and devote the end of Section 4 to an extensive discussion of the connection between
the theory here and Bullard et al. (2008).

2. Restricted perceptions equilibria

A restricted perceptions equilibrium (RPE) is a solution concept that relaxes the rational
expectations hypothesis while preserving its salient features of optimality and internal
consistency. This section formalizes the concept of an RPE, developing the results within



296 Branch, McGough, and Zhu Theoretical Economics 17 (2022)

a simple univariate model with unobserved first-order autoregressive (AR(1)) shocks,
and introduces the statistical sunspots concept.

2.1 The laboratory model

We take, as our laboratory, an ad hoc univariate model given by the pair of equations

yt = αÊtyt+1 + γzt , (1)

zt = ρzt−1 + εt . (2)

Equation (1) is the expectational difference equation that determines the endogenous
variable yt as a linear function of expectations of yt+1 and a serially correlated funda-
mental shock zt . Our view is that underlying the ad hoc model (1) is a carefully specified
general equilibrium (GE) model, with Êtyt+1 capturing the agents’ homogeneous time-t
subjective forecast of yt+1: see Section 2.2 for an example of an economy giving rise to
our laboratory model. With this interpretation, (1) determines the (temporary) equilib-
rium value for aggregate yt derived from an environment where individuals solve their
respective optimization problem by as given their subjective expectations over payoff-
relevant variables whose determination is treated as exogenous by each of the agents.
We assume 0 < ρ < 1 and that εt is white noise with variance σ2

ε . Throughout, assume
that 0 < α < 1 so that, under rationality, the model is determinate and features positive
expectational feedback.

The focus of our paper is the equilibrium interaction between subjective expecta-
tions and forecast-model misspecification. We assume agents are identical in their ex-
pectations formation, and we adopt the following behavioral primitives.

B.1. Agents form expectations using linear forecasting models.

B.2. Agents do not condition their forecasting models on current or lagged values of
the fundamental shock.

B.3. Agents do not condition their expectations on current values of the endogenous
variable.

B.4. Agents form subjective expectations over payoff-relevant aggregate variables by
conditioning on aggregate variables.

We discuss each of these assumptions in turn.
Assumption B.1 is natural since the underlying model is linear.7 Assumption B.2 cap-

tures that zt is “unobserved”: we assume that agents do not condition their forecasts on
z at any lag. Two separate, but related, scenarios motivate Assumption B.2. Most obvi-
ously, if agents are simply unaware of its existence then they would not include it in their
forecasting equation. More broadly, we have in mind a bounded rationality environ-
ment where zt is unobserved and agents, while possibly aware of its potential impact, do

7Though in the adaptive learning literature it is standard to assume agents use linear forecasting models
even when the underlying economy is nonlinear.
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not have the data or sophistication to solve the associated signal extraction problem. In
practice, degree-of-freedom limitations may lead agents to favor parsimonious models.
The details of any particular justification for Assumption B.2 will depend on the precise
modeling environment, and could include, for example, drifts in a central bank’s infla-
tion target, aggregate markup shocks, natural rate shocks, the presence of noise traders,
or asset float. In Section 2.2, we develop an application where agent-specific productiv-
ity is driven by idiosyncratic fundamentals and an unobservable aggregate productivity
shock. Section 5.1 is an application to asset-pricing that does feature homogeneous
agents and unobservable variations in the outside supply of a risky asset.8

Assumption B.3 is, within models of adaptive learning, the conventional timing pro-
tocol. It predicates that the agent cannot condition current expectations on current real-
izations of endogenous variables. This assumption is standard, though not ubiquitous,
in the learning literature; see Evans and Honkapohja (2001), Chapter 8). Assumption
B.3 has the advantage of avoiding the simultaneous determination of expectations and
contemporaneous endogenous variables. The existence of statistical sunspots is robust
to the alternative contemporaneous timing assumption. However, we gain tractability in
the stability analysis by imposing Assumption B.3.

Finally, Assumption B.4 represents the behavioral assumption behind how individu-
als take actions when they hold subjective (nonrational) beliefs (e.g., Woodford (2013)).
Agents make decisions given their subjective expectations over aggregate variables that
are treated as exogenous by the individual agent. Assumption B.4 maintains that when
forecasting those aggregate variables, agents only incorporate aggregate variables into
their predictions. Boundedly rational agents will incorporate those aggregate variables
that are observable and correlated with the payoff-relevant variables that they seek to
forecast. Statistical sunspots can matter precisely because of expectational feedback.

The theory of expectation formation proposed in this paper is based on the “cog-
nitive consistency” principle. Even though our agents are boundedly rational, they will
forecast like a good economist who specifies and estimates an econometric model for
the aggregate payoff-relevant variables. To fix ideas, we respect attention to a prespec-
ified collection of forecasting models of the AR(p) form that also conditions on some
other extrinsic (sunspot) process. In this environment, the natural equilibrium concept
is a restricted perceptions equilibrium where the forecast model used by agents is opti-
mal among those under consideration, where the objective minimized is mean-square
error.

The consequences of Assumptions B.1–B.4 for individual behavior are best under-
stood in the context of a particular model, which is the subject of the next section.

8Some readers may question whether any variable is truly hidden as opposed to being obscured by an
observable a noisy signal. We exploit the noisy signal interpretation in our example environment in the next
section, where agents’ productivity is driven by an unobservable aggregate shock and idiosyncratic shocks.
While the idea that a large economy, or market, might be driven by hidden and unmeasured forces should
be uncontroversial, we briefly remark that statistical sunspots can still arise in a more general environment
with noisy signals. In a companion paper, we demonstrate that if the noisy signal, and the shock zt , are
sufficiently correlated then there exist multiple equilibria, including sunspot RPE’s. We focus on the case
of an unobservable zt because we find it a compelling description of many environments and it delivers
precise results that illustrate our main ideas.
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2.2 An overlapping generations model with unobserved shocks

There is a continuum of agents born at each time t, indexed by ωt ∈�.9 Each agent lives
for two periods, and the population is constant and normalized to 1. Agents are yeo-
man farmers, each owning a production technology that is linear in labor and produces
a common consumption good. Production is subject to a shock that has both aggregate
and idiosyncratic components. The young work and the old consume. There is no stor-
age technology other than fiat currency. Workers trade goods for money in competitive
markets and then, when old, they trade their money for goods.

Each young agent chooses their labor supply nt(ωt ) and money-holdings Mt(ωt )
to maximize their objective u(cet+1(ωt )) − ν(nt ), subject to the budget constraints
zt(ωt )nt(ωt ) = qtMt(ωt ) and ct+1(ωt ) = qt+1Mt(ωt ). Let u(c) be constant relative risk
aversion (CRRA), with risk aversion σ and let v′(n) = 1. Here, qt is the goods price of
money and ct+1(ωt ) is consumption when old, with the superscript e referencing an
expectation. For simplicity, we impose that agents use point expectations and form ex-
pectations of future consumption based on expectations of future prices: cet+1(ωt ) =
qet+1(ωt )Mt(ωt ). Finally, the variable zt(ωt ) captures the multiplicative productivity
shock so that zt(ωt )nt(ωt ) is the amount of goods produced by agent ωt .

Agent ωt ’s money demand is

Mt(ωt ) = zt(ωt )
1
σ q

− 1
σ

t

(
qet+1(ωt )

) 1−σ
σ .

Market-clearing requires that
∫
�Mt(ωt )dωt = 1. Equilibrium price is determined as

q
1/σ
t = ∫

� zt(ωt )
1/σ (qet+1(ωt ))1−σ/σ dωt . Given subjective beliefs about payoff-relevant ag-

gregate prices, each agent ωt formulates optimal money demand, markets clear, and
equilibrium price is a function of (aggregate) expected prices.

Now assume zt(ωt ) includes both an idiosyncratic and an aggregate component ac-
cording to

log
(
zt(ωt )

) = log(zt ) + log
(
ζt(ωt )

)
and log(zt ) = ρ log(zt−1 ) + εt ,

where the log(ζt(ωt )) are independent and identically distributed (iid) mean zero and
independent across agents, εt is iid zero mean with small support, and log(ζt(ωt )) and
εt are independent processes.

Having surveyed the economic environment we discuss the connection to the be-
havioral assumptions in the preceding section.

• B.1. By restricting attention to linear forecast models, it is natural to assume that
agents make decisions using their point forecasts.

• B.2. Imposing this behavioral primitive, we assume that agents only observe their
own productivity, zt(ωt ). If they were fully rational agents, and aware of aggregate
zt and its impact on their own productivity, then they would also understand that

9The overlapping generations (OLG) model discussed here was developed in, and borrows heavily from,
Evans and McGough (2018).
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their optimal forecasts of aggregate prices depend on aggregate productivity. These
rational agents would use signal extraction—say, via a regression on an infinite his-
tory of prices—to acquire the information about zt available in zt(ωt ) and use it to
forecast zt+1. However, we assume that the agents are not fully rational. We as-
sume they either are not aware of the aggregate component to productivity, or they
find it too costly or econometrically infeasible, to consider forecast methods that
incorporate zt(ωt ).

• B.3. We assume agents do not use period-t price to forecast qt+1. The timing of
events is as follows: at the beginning of the period agents update their beliefs and
then make optimal decisions conditional on those beliefs. This timing structure
builds on a tradition where forecasting is a statistical decision separate from the
economic decision.

• B.4. Operationally, each agent forecasts aggregate prices using only data on aggre-
gate prices (and possibly sunspot processes). In a related matter, the agents do not
observe, or forecast with, the expectations of the other agents. Without common
knowledge of beliefs, an individual agent would not be able to estimate the hidden
shock as the residual between the aggregate state and expectations.

With homogeneous expectations the (temporary) equilibrium price is qt =
ϑzt(qet+1 )1−σ , with ϑ

1
σ = ∫

� ζt(ωt )
1
σ dωt . Taking logs and centering at the nonstochastic

steady state yields the linear reduced-form system q̂t = (1 −σ )q̂et+1 + ẑt , where �̂ is log(�)
in deviation from steady-state form, for � ∈ {q, z}. Thus the model’s equilibrium dynam-
ics take the form of our generic model (1)–(2), in which agents’ subjective expectations
satisfy B.1–B.4.

2.3 Rational expectations equilibria

It is useful to review the rational expectations case. A process yt is a rational expecta-
tions equilibrium (REE) of the model (1)–(2) if it is uniformly bounded a.s. and satisfies
(1) when Êt is replaced with Et , i.e., the conditional expectations operator. Of course,
this loose definition neglects to specify the information upon which the rational agent
conditions. We consider several cases.

If zt is observable at time t, then the model has a unique rational expectations equi-
librium of the form yt = (1 − αρ)−1γzt . Now suppose yt is assumed observable at time
t, but zt , as in Assumption B.2, is assumed “unobservable” (the reason for the quotes
will become apparent). We may posit an REE of the form yt = byt−1 + noiset . Then
Etyt+1 = bEtyt = byt . Using (1) we find

yt = αbyt + γzt =⇒ yt = γ

1 − αb
(1 − ρL)−1εt =⇒ yt = ρyt−1 + γ

1 − αb
εt . (3)

When b = ρ, the process generated by (3) is an REE and the same process as when zt
is observed. Provided that yt is observable to rational agents, the full information REE
obtains.
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What happens when rational agents cannot condition on yt and zt is assumed
unobserved, i.e., Assumptions B.2 and B.3? First write the rational model as yt =
αEt−1yt+1 + γzt to emphasize the timing protocol B.3. The equilibrium in this case is
an AR(∞), as any finite-order autoregression fit to the data will be underparameter-
ized. To see this point, first made by Marcet and Sargent (1989), suppose agents use
a forecasting model, also called a perceived law of motion (PLM), of the AR(p) form
yt = b1yt−1 + · · · + bpyt−p + εt . We may compute

Et−1yt+1 = b1Et−1yt + b2yt−1 + · · · + bpyt−p+1

= b1(b1yt−1 + · · · + bpyt−p ) + b2yt−1 + · · · + bpyt−p+1.

Given the perceived law of motion, the corresponding data generating process, called
the actual law of motion (ALM), can be found by plugging expectations into the model
and rearranging,

(1 − ρL)

(
1 − α

p∑
j=1

(b1bj + bj+1 )Lj

)
yt = γεt ,

where bp+1 is set to zero. If the agents use an AR(p) perceived law of motion, then the
actual law of motion is an AR(p + 1). A rational expectations equilibrium, however,
requires the consistency of the perceived and actual laws of motion. The only possible
PLM consistent with the implied ALM is an AR(∞). In this case, recovering the hidden
shocks requires an infinitely long history of the endogenous variables.

2.4 Restricted perceptions equilibria

Incorporating all of the behavioral primitives B.1–B.4, we now make our key bounded
rationality assumption: agents’ forecast models include only a finite number of regres-
sors. We view this final assumption as reasonable: in practice, forecasters have finite
data, face degree-of-freedom limitations, and generally favor parsimonious models. To
fix ideas, we focus on the case of PLMs that include only one lag of the endogenous
variable, as well an extrinsic process, that is, an AR(1) plus sunspot. The contribution
of this paper is to show that these restricted perceptions give scope for equilibrium de-
pendence on this process, i.e., on statistical sunspots, and further, to show that these
sunspot RPE are often stable under adaptive learning.

For most of the remainder of the paper, agents will form forecasts while using the
PLM

yt = byt−1 + dηt + εt

ηt =φηt−1 + νt

}
⇒ Êtyt+1 = b2yt−1 + d(b+φ)ηt , (4)

where ηt is the extrinsic noise term, i.e., the statistical sunspot, and 0 <φ< 1. Note that,
consistent with our expectations timing protocol, agents do observe and condition on
the exogenous process ηt when forming forecasts.
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For simplicity, we assume that ηt is orthogonal to the fundamentals shocks: νt and
εs are independent for all t, s.10 The extrinsic noise, ηt , can be thought of as a statisti-
cal sunspot variable that proxies for waves of optimism/pessimism, sentiment shocks,
judgment or add factors, political shocks, etc. We call them statistical sunspots to dis-
tinguish them from rational sunspots that are typically martingale difference sequences.
A statistical sunspot, alternatively, is a generically serially correlated exogenous process
that will impact agent beliefs only if there is a statistical relationship between the state y

and η. Importantly, whether and when agents use η in their forecast model will arise as
an equilibrium property: d is pinned down via cross-equation restrictions.

Hommes and Zhu (2014), working in a similar framework, assign to agents an AR(1)
perceived law of motion,

yt = byt−1 + εt ⇒ Êtyt+1 = b2yt−1, (5)

where εt is a (perceived) white noise process.11 In the AR(1) perceived law of motion,
the coefficient b corresponds to the first-order autocorrelation coefficient. Hommes and
Zhu (2014) define a behavioral learning equilibrium as a stochastic process for yt satis-
fying (1), given that expectations are formed from (5), and with b equal to the first-order
autocorrelation coefficient of yt . The novelty in this paper is to expand the agents’ set of
observable variables to include extrinsic random variables.

Is it reasonable that individuals would be able to observe ηt and not fundamental
variables such as zt? In our view, the answer is yes. The process ηt could be any collec-
tion of information that agents think is informative about the state of the market or the
economy that does not have a direct, payoff-relevant effect except through agents’ be-
liefs. The motivation for models with restricted perceptions is that agents do not know
the structural model that generates data. A good econometrician would include all ob-
servable variables that help predict the state. The restricted perceptions, or bounded
rationality, assumption is that individuals formulate models with only a finite number
of lags. We show that when RPE exist that include dependence on ηt , these equilibria are
stable under learning so that eventually agents would come to believe that these non-
fundamental variables drive, in part, the endogenous state variable yt . Thus, these are
self-fulfilling equilibria. Surprisingly, RPE with dependence on ηt arise across a broad
spectrum of determinate economic models, are stable under learning, and do not re-
quire heterogeneous information or beliefs.

Given the perceived law of motion (4), the ALM is

yt = αb2yt−1 + αd(b+φ)ηt + γzt . (6)

10Relaxing this restriction leads, more generally, to stable sunspot equilibria.
11In Hommes and Zhu (2014), the PLM model in fact also includes a constant term. Since the analysis

of the mean is relatively trivial and is not the main point of this work, here we assume that the means
are zero and known, without loss of generality. We also assume that the agents know the stochastic process
determining ηt . This does not impact the learning stability analysis since η is exogenous, with a sufficiently
long history of ηs, the agents would precisely estimate φ and σν . Unlike η, y is determined via a self-
referential system.
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Importantly, the PLM is underparameterized: the ALM (6) depends on yt−1, ηt , and zt ,
while the PLM depends only on yt−1 and ηt .12

The economy is in a restricted perceptions equilibrium when agents’ forecast model
is optimal among those under consideration. For the model at hand, this means that the
agents’ beliefs, as summarized by the coefficients (b, d), coincide with the coefficients
obtained by projecting the ALM onto the span of yt−1 and ηt . That is, beliefs satisfy the
least-squares orthogonality condition

EXt
(
yt −X ′

t�
) = 0, (7)

where X ′
t = (yt−1, ηt ), �′

t = (b, d), and where the expectation is taken with respect to
the asymptotic distribution implied by the ALM under beliefs �. In an RPE, agents are
unable to detect their misspecification within the context of their forecasting model. A
sufficiently long history of data will reveal the misspecification to agents, so an RPE is ap-
propriate for settings where data are slow to reflect the serial correlation in the residuals
of the regression equations.

The set of restricted perceptions equilibria is characterized by studying the T-map,
which captures the projection of the ALM onto the span of yt−1 and ηt , and for given
beliefs �, is written T (�) = (EXtX

′
t )−1EXtyt . An RPE is a fixed point of the T -map.

Straightforward calculations produce

T (�) =
⎛
⎜⎝1 −dφ

ση

σy

0 (1 − bφ)
σy

ση

⎞
⎟⎠

(
corr(yt−1, yt )
corr(yt , ηt )

)
, (8)

where corr(x, w) is the correlation coefficient between the variables x and w. The equi-
librium coefficients, (b, d), depend on the correlation between the endogenous state
variable yt and the lag variable yt−1 as well as between yt and the sunspot ηt . These
correlation coefficients, in turn, depend on the belief coefficients (b, d). It is this self-
referential feature of the model that makes the set of RPE interesting to characterize.

2.5 Stability under adaptive learning

The equilibrium selection mechanism in this paper is stability under adaptive learning.
Here, we provide a brief outline of the methods that we use to conduct stability analysis.

Adaptive learning agents update their forecasting model coefficients each period by
using recursive least squares (RLS) or other closely related econometric procedures. De-
note by �t the estimated coefficients of the PLM based on data {Xs }ts=0. The RLS algo-
rithm can be written

Rt =Rt−1 + κt
(
XtX

′
t −Rt−1

)
,

�t =�t−1 + κtR
−1
t Xt

(
yt −�′

t−1Xt
)
,

(9)

12Alternatively, one can write (6) as

yt = (
αb2 + ρ

)
yt−1 − αb2ρyt−2 + αd(b+φ)(1 − ρL)ηt + γεt .

It is straightforward to see that if the forecast model was extended to be an AR(p), then the actual law of
motion is AR(p+ 1).
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where yt is determined via the ALM (6) using beliefs �t−1, and Rt is the estimated
second-moment matrix of the regressors. The gain, κt , measures how much weight new
data receives. If κt = t−1, then RLS reproduces ordinary least squares; another com-
mon choice is constant gain, κt = κ > 0 (typically small), which results in a version of
discounted least squares with the geometric discounting of past data at rate 1 − κ.

A restricted perceptions equilibrium is characterized by a beliefs vector �∗. If the
algorithm (9) results in convergence to �∗, when initialized near it, then the RPE is said
to be stable under adaptive learning. It is well established that, in a broad class of mod-
els, stability under reasonable learning algorithms, such as RLS, is governed by the E-
stability principle, which holds that the stability of �∗ under adaptive learning is implied
by its Lyapunov stability under the following system of ordinary differential equations,
referred to as the E-stability ode:13

�̇= T (�) −�. (10)

A restricted perceptions equilibrium, �∗, is E-stable if it is a Lyapunov stable rest point
to (10).

That the E-stability principle governs stability of an equilibrium is intuitive since
(10) dictates that the estimated coefficients � are adjusted in the direction of the best
linear projection of the data generated by the estimated coefficients onto the class of
statistical models defined by the PLM (4). Stability of (10) thus answers the question of
whether following a perturbation to the perceived coefficients, � will tend to return to
the restricted perceptions equilibrium value.

A final comment is warranted. The equilibrium and stability concepts identified in
this section are not specific to the regressors Xt = (yt−1, ηt )′. Indeed, the set of regres-
sors could be expanded to include any finite number of lags of y, as well as current and
lagged values of other stationary extrinsic processes.

3. Existence and stability of RPE

In this section we present results on existence and stability of restricted perceptions
equilibria. When agents restrict their regressors to include only fundamentals, then
there is a unique RPE and it is always E-stable. When agents also include the sunspot
ηt among their regressors, then the existence and stability results for RPE are parameter
dependent.

3.1 Existence

A fundamentals restricted perceptions equilibrium is an RPE in which b �= 0, d = 0, since
there is no dependence on the extrinsic variable. Conversely, if b, d �= 0, then the equi-
librium is a sunspot RPE that features endogenous fluctuations, i.e., a statistical sunspot
equilibrium. This section establishes existence and characterizes the set of RPE.

13Evans and Honkapohja (2001) present a number of theorems that cover “stability” under learning.
Most often employed are theorems on convergence to an equilibrium with probability 1, with initial condi-
tions in a suitable neighborhood of the equilibrium. However, there are also theorems that cover local con-
vergence in probability and global convergence, as well as weak convergence. The E-stability conditions
typically play an important role across all stability concepts.
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The T -map for the fundamentals RPE results from setting d = 0 in (8):

b → αb2 + ρ

1 + αb2ρ
. (11)

A fundamentals RPE is a fixed point, b̂, of (11), and, it should be noted, is equivalent to
the behavioral learning equilibrium in Hommes and Zhu (2014).

The component of the T -map corresponding to d is given by

d → dα(b+φ)(1 − bφ)

1 − αb2φ
. (12)

Evidently, d = 0 is a fixed point of this mapping, corresponding to the fundamentals
RPE. When d∗ �= 0 is a fixed point, we see from (12) that b∗ = (α(1 − φ2 ))−1(1 − αφ).14

Given that value of b = b∗, the remainder of the T -map can be solved for d,

(
d∗)2 = ξ

(
b∗, α, ρ, φ

)(σ2
ε

σ2
ν

)
, (13)

where

ξ(b, α, ρ, φ) = γ2{ρ− b
[
1 − αb(1 − bρ)

]}(
1 − αb2φ

)(
1 −φ2)

α
(
1 − αb2ρ

)(
1 − ρ2)(b+φ)φ(1 − αφ)

.

Note that, by (13), sunspot RPE, when they exist, come in pairs. The following result
establishes existence of fundamental and sunspot RPE.

Theorem 1 (Existence of RPE). Let φ ∈ (0, 1) be fixed. Then the following statements
hold:

(i) There exists a unique fundamentals RPE (b, d) = (b̂, 0), where b̂ is a fixed point to
(11).

(ii) There exists 0 < ρ̃(α, φ) < 1 so that sunspot RPE (b, d) = (b∗, ±d∗ ) exists if and only
if α̃≡ (1 +φ(1 −φ))−1 <α< 1 and ρ̃(α, φ) < ρ< 1.

Corollary 1. If 4/5 <α< 1, then sunspot RPE exist for sufficiently large ρ.

Theorem 1 provides necessary and sufficient conditions under which a given
sunspot, parameterized by φ, is supported as a restricted perceptions equilibrium.
Corollary 1 shows that for a given structural parameter α > 4/5, there will exist sunspot
RPE provided the serial correlation of the fundamental shock is sufficiently strong. The
existence of statistical sunspot equilibria requires that α is sufficiently large, i.e., there is
strong expectational feedback in the model.

14In fact, relaxing Assumption B.3 delivers the same value for b∗. It is easy to verify that relaxing B.3,
Etyt+1 = byt +dφηt and the Td component is d → dαφ(1 − bφ)/(1 − bα), which yields the same fixed point
b∗ with d∗ �= 0.
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Figure 1 illustrates Theorem 1 by plotting the fixed points of the T -map.15 The four
panels comprise comparative static experiments discussed in the next paragraph. For
the descriptive purposes of this paragraph, focus attention on the dashed (as opposed
to solid or dotted) lines and curves in Figure 1(a), as well as the solid line d = 0, which
is common to all panels. The fixed points of the T -map’s b component has a parabolic
shape . The fixed points of the T -map’s d component comprise the horizontal line at
d = 0 and the vertical line at b = b∗. The intersection of these contours are restricted
perceptions equilibria, as identified by the large (black) dots.

Figure 1 also illustrates comparative statics. Consider again Figure 1(a), which illus-
trates the comparative static effect from increasing α: solid curves and lines correspond
to α = 0.85, dashed to α = 0.90, and dotted to α = 0.93. For α = 0.85 we see that b∗ > 1,
indicating that no sunspot RPE exist. As α increases, b∗ falls and the parabolic con-
tour shifts to the right. Already for α = 0.90, both fundamentals and sunspot RPE exist.
Panels 1(b) and 1(d) show the comparative statics from variation in φ and σ2

v , and, as a
consequence, do not change the fundamental RPE.16

The 1(a) panel anticipates the stability results to come in the next subsection. As α

increases, the vertical b = b∗ line shifts to the left and the fundamentals RPE b̂ shifts
to the right. When b∗ = b̂, the system appears to undergo a “pitchfork-like” bifur-
cation, resulting in the genesis of two new fixed points—the sunspot RPE—that in-
herit the stability of the fundamentals RPE (which hence destabilizes). Unfortunately,
the algebraic complexity of the T -map precludes conducting formal bifurcation analy-
sis.

Notice in Figure 1 that the autoregressive coefficient b in the fundamentals RPE is
greater than the same coefficient in the sunspot RPE. In fact, this result can be made
formal.

Proposition 1. If ρ > ρ̃ and α> α̃, then b∗ < b̂.

The intuition is as follows: when d �= 0, the agents’ model tracks the serial correlation
in the model—arising from the hidden shock z and the self-fulfilling serial correlation
from agents’ beliefs—through both the lagged endogenous variable and the extrinsic
noise.

This proposition has a somewhat unexpected consequence: it is not at all obvious
whether agents coordinating on the statistical sunspot equilibria will make the resulting
process for yt more or less volatile than the equilibrium where they condition on lagged
y alone. Results on this question are presented below.

3.2 Expectational stability

We now turn to the assessment of stability under adaptive learning. As an aside, note
that the stability of the fundamentals RPE may depend on whether the agents include

15In our simulations for the general model, we assume γ = 1 without loss of generality.
16The comparative statics for σ2

ε is qualitatively the same as for σ2
ν .
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Figure 1. Existence and comparative statics.

sunspots among their regressors. Unless otherwise stated, we assume that agents always
regress on sunspots.17

Theorem 2 (Stability of RPE). Let φ ∈ (0, 1) be fixed, and let ρ̃ and α̃ be as in Theorem 1.

(i) If agents do not regress on the sunspot process, the fundamentals RPE is E-stable.

17There are notions of weak and strong stability that can be applied to address these nuances, but are
ultimately distracting from the primary analysis.
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Figure 2. E-stability dynamics.

(ii) If 0 <α< α̃ or if 0 < ρ< ρ̃, then the fundamentals RPE is E-stable.

(iii) There exists ρ̃ < ρ̆ < 1 so that if α̃ < α < 1 and ρ̆ < ρ < 1, then the fundamentals
RPE is not E-stable and the two sunspot RPE are E-stable.

Item (iii) of this theorem is particularly striking: for a region of parameter space only
the sunspot RPE are E-stable. This point will be examined numerically in Section 3.3.

As an illustration, consider Figure 2, which plots the vector field of the E-stability ode
for two calibrations of the model. The left panel provides an example with α < α̃: there
is a unique fixed point to the T -map and, as in part (ii) of the theorem, the vector field
indicates stability. In the right panel, α> α̃ and sunspot RPE exist. The vector field indi-
cates both the stability of the sunspot RPE and the instability of the fundamentals RPE.
Though it is a bit hard to see in the figure, if d is restricted to be 0, then the vector field
also indicates stability of the fundamentals RPE, corresponding to part (i) of Theorem 2.

Figure 3 provides a graphical illustration of the existence and stability conditions es-
tablished by Theorem 2. In the figure are the sets of (α, φ) such that sunspot RPE exist
(shaded regions) and are E-stable (cross-hatched regions) for various values of ρ. The
relationships between parameters and existence/stability are subtle. For mid-values of
ρ and high values of expectational feedback α, sunspot RPE exist for almost all φ and
they are always stable. Lower values of ρ tend to preclude existence of sunspot RPE, and
higher values of ρ introduce the possibility of unstable sunspot RPE. The broad con-
clusion: the existence of E-stable sunspot equilibria depends, nonlinearly, on the serial
correlation properties of the omitted variable and the sunspot as well as the strength of
expectational feedback in the model.
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Figure 3. E-stability regions.

3.3 Basins of attraction and mean dynamics

The E-stability dynamics are suggestive of robust stability under adaptive learning.
However, the formal connection between E-stability and stability under real-time adap-
tive learning via RLS is typically local in nature: we cannot infer the basins of attraction
of the RLS algorithm from Figures 2 and 3. Alternatively, these basins can be exam-
ined via simulation and through analysis of the RLS algorithm’s mean dynamics. In this
section, we first discuss the concept of mean dynamics and then use it to assess the
robustness of our sunspot RPE’s stability to variation in initial conditions.

Recursive least squares, as well as other related learning rules, fit under a class of
stochastic recursive algorithms (SRAs)

�t = �t−1 + κtH(�t−1, Wt ),

Wt+1 = A(�t )Wt +B(�t )ζt+1.
(14)
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Think of �t as the estimate that is being updated as new data Wt arrive. In this light, H is
the correction to the previous estimate, usually determined by some measure of forecast
error, and κt is the gain, which, as we discussed earlier, measures how much weight to
place on the correction. See Evans and Honkapohja (2001) for a complete discussion.

Now fix a value of � and define h(�) = limt→∞EH(�, Wt ), where the expectation is
taken against the distribution of Wt implied by the fixed value of �. The theory of SRAs
tells us that the behavior of the algorithm (14) is closely related to the behavior of the ode
�̇ = h(�). If, for example, γt = t−1 and �∗ is a Lyapunov stable fixed point of the ode,
then the algorithm (14) will induce convergence to �∗ when appropriately initialized.
Indeed, this result is the basis of the E-stability principle.

The ode �̇ = h(�) also speaks to the behavior of (14) under small constant gain
γt ≡ γ > 0: the trajectory of the ode associated with a given initial condition provides
a good approximation to the expected path of the learning algorithm (14), i.e., the mean
dynamics. In this way, the mean dynamics provide useful information about the transi-
tional learning dynamics even far away from an equilibrium.

Turning to the case at hand, recall the notation X ′
t = (yt−1, ηt ) and �′

t = (bt , dt ). Let
�(�) = limt→∞EH(XtX

′
t ), where the expectation is taken against the distribution of Xt

induced by the fixed beliefs � and the ALM (6). The mean dynamics ode is computed to
be

�̇ =R−1�(�)
(
T (�) −�

)
,

Ṙ =�(�) −R.
(15)

Here R is a 2 × 2 matrix corresponding to the second-moment matrix of the learning
model’s regressors. Note the important role played by R: its evolution distinguishes the
mean dynamics from those induced by the E-stability ode.

Figure 4 provides results from numerical assessment of the system (15) using the
indicated parameterization. Panel 4(a) provides the mean dynamics time paths of the
sunspot coefficient d for various initial conditions d0, as represented by the dots rising
vertically above t = 0. The horizontal dashed lines identify the upper and lower sunspot
RPE values of d. For each time path, b0 = b̂, that is, we start the agent off with beliefs
coinciding with the fundamentals RPE.18 In each case, agents learn to believe in the
sunspot RPE and which of the two symmetric sunspot RPEs depends on their initial
beliefs.

Note that the full phase space, including the variables � and R, is six dimensional.
Panel 4(b) provides the projection on the b-d plane of trajectories corresponding to dif-
ferent initial conditions, which now are on a lattice over the b-d plane. The larger dots
locate the RPE sunspots, and the dashed curve and the solid lines are the same as in
Figure 2. Again, we observe convergence to the sunspot RPE regardless of initial beliefs.
For smaller values of b0, some trajectories converge to the upper sunspot even though
d0 < 0.19 This type of behavior is not predicted by the E-stability dynamics.

18For all trajectories in both panels the matrix R was initialized at �(�).
19No such behavior is evident in panel 4(a) because b0 = b̂ and b̂ has a relatively large value.
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Figure 4. Mean dynamics.

Theorem 2 and Figure 3 show the possibility of unstable sunspot RPE. What hap-

pens to the learning dynamics in this case? Numerical examinations indicate that as the

sunspot RPE destabilize, a limit cycle emerges, and further, this limit cycle appears to be

quite robust. Figure 5 gives an example where the mean dynamics predict a stable limit

cycle local to a sunspot RPE (large dot) even when beliefs are initialized (smaller dots)

far away.

Figure 5. Limit cycle.
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Figure 6. Volatility in a sunspot RPE.

3.4 Endogenous fluctuations and economic volatility

Conventional models of sunspot equilibria are viewed as inefficient since they introduce
serial correlation and volatility that would not exist without coordination on the self-
fulfilling equilibria. Do the endogenous fluctuations that arise in a sunspot restricted
perceptions equilibrium lead to more or less economic volatility? We establish two
results. First, the statistical sunspot process, under fairly general conditions, exhibits
greater volatility than the equilibrium process under rational expectations. Second, the
sunspot RPE exhibits lower volatility than the fundamentals RPE. Excess volatility intro-
duced by sunspots is bounded below by the rational expectations equilibrium and above
by the fundamentals RPE.

This section explores these issues, first, by establishing the following result on the
additional volatility introduced into a determinate economy by sunspot RPE.

Proposition 2. Let α > α̃ and ρ > ρ̃ so that multiple restricted perceptions equilibria
exist. There exists a ρ̂(α, φ) such that var(yt| sunspot RPE ) > var(yt| REE ) for all ρ̃ < ρ <

ρ̂.

A graphical illustration of the necessary and sufficient conditions is provided in Fig-
ure 6(a) for the numerical example α = 0.9, ρ = 0.7, and φ = 0.4. The statistical sunspot
RPE brings additional volatility into the economy above and beyond rational expecta-
tions, for any sunspot innovation process, provided that the serial correlation of the
fundamental shock zt is within an interval with an upper bound. When might a rational
expectations equilibrium be more volatile than the statistical sunspot? In the extreme
cases of α close to the indeterminacy region and ρ close to 1.

The next proposition presents the surprising and yet intuitive result that the funda-
mentals RPE is more volatile than statistical sunspots—and rational expectations equi-
libria.

Proposition 3. Let α > α̃ and ρ > ρ̃ so that multiple restricted perceptions equilibria
exist. For ρ sufficiently large, the fundamentals RPE is more volatile than the sunspot
RPE.
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Numerical analysis suggests that the result holds for a broad set of parameters. The
intuition for the finding is as follows. Imagine an increase in φ, i.e., making the statisti-
cal sunspot more volatile. This has offsetting effects for relatively large φ.20 On the one
hand, it increases b∗, which tends to lift the variance of the sunspot RPE. On the other
hand, d∗ decreases and less weight is placed on the extrinsic shock η whose serial cor-
relation properties no longer track the fundamental shock z as well. This, in turn, tends
to push down the sunspot RPE’s variance. As ρ becomes large enough, the weight on the
sunspot is sufficiently small so that the fundamentals RPE is more volatile. In general,
the relative variances of the RPE depend on the elasticities of the RPE coefficients b and
d. Numerical explorations suggest that the effect of a lower self-fulfilling serial correla-
tion via the b coefficient outweighs the impact on the d coefficient, as seen in Figure 6(b).
This figure plots the excess volatility of the two RPEs, i.e., the ratio of the RPE variance
to the variance in the rational expectations equilibrium, as a function of φ.21 The fig-
ure clearly demonstrates the non-monotonic effect of φ on the variance of the sunspot
RPE. From a relatively high value of φ, the comparative static effect of decreasing φ is
to decrease b∗ and increase d∗, as the sunspot better tracks the serial correlation in the
model. However, for some lower value of φ, the comparative static effect of decreasing φ

then increases b∗ and decreases d∗ as the RPE becomes closer to the fundamental RPE.
In between these critical values there is a non-monotonic effect from φ on economic
volatility in the nonfundamentals RPE.

The results presented in this section have important empirical implications that we
address in Section 5.

4. Robustness and discussion

Because the fundamental shock z is hidden, and the forecasting model used by agents
within a restricted perceptions equilibrium is misspecified, it is reasonable to question
the robustness of statistical sunspots as an equilibrium concept. There are, however,
several ways in which the sunspot RPE may be robust despite this misspecification.

(i) Robustness of sunspot RPE to AR(p) perceived laws of motion.The focus, so far,
has been on the case where the PLM is an AR(1) plus sunspot. This is the sim-
plest case that facilitates precise statements on existence and E-stability. How-
ever, Section 2.3 showed that if the agents hold an AR(∞) perceived law of mo-
tion, without a sunspot term, then the agent could recover the full information
rational expectations equilibrium. A natural question, then, is do sunspot RPE
exist for AR(p) plus sunspot PLMs and p > 1? General results are not available
so we continue with our numerical example: α = 0.90, ρ = 0.75, φ = 0.8, and
σε = σv = 1. Now assume a perceived law of motion of the form

yt = b1yt−1 + · · · + bpyt−p + dηt .

Figure 7 illustrates the existence of sunspot RPE and compares the autocorrela-
tion properties of the RPE to the REE.

20In fact, the effect of φ on the b∗ is first decreasing and then increasing.
21The parameter values here are α = 0.95, ρ= 0.6, γ = 1, and σ2

ε = σ2
ν = 1.
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Figure 7. AR(p) statistical sunspots.

Figure 7(b) plots the RPE value for the sunspot coefficient d as a function of the
lag length p in the PLM. For this parameterization, a sunspot RPE exists for PLMs
with lag lengths up to at least 50. For PLMs with p = 10 or more, there is a very
modest comparative static effect on d from lengthening the lags in the forecasting
equation. Figure 7(a) plots the autocovariogram for the REE and the RPE across
p = 1, 9, 21. The solid line corresponds to the full information REE or what would
arise if agents were to forecast with an AR(∞) and not condition on a sunspot.
The sunspot RPE are more autocorrelated than the REE, though as the lag length
p increases, the RPE covariograms reflect a similar autocorrelation structure as
the REE, especially for lower-order autocorrelations.

From Figure 7 one can see how sunspot RPE could be robust to global (mis-)
specification tests. In most real-world settings, forecasters face data and/or
degrees-of-freedom limitations that lead them to forecast with parsimonious, in
p, models. That AR(p) model, though, is misspecified, and as more and more
data accumulate, the agent may detect the misspecification and consider an al-
ternative lag length based on an econometric procedure like the Akaike informa-
tion criterion (AIC). Figure 7 shows that, at least for some parameterizations of
the model, a sunspot RPE continues to exist under the alternative PLM specifi-
cation. A specification-testing process like this could continue until the agent
arrives at the AR(∞) forecasting equation. It is not obvious whether sunspot RPE
would continue to exist for all p, but Figure 7(b) suggests the possibility.22 Re-
gardless, over the medium-term, sunspot RPE would remain robust to this par-
ticular form of global misspecification testing.

(ii) The sunspot RPE appear to be robustly learnable and the fundamental RPE is not.
The E-stability results showed that, for a region of the parameter space where
sunspot RPE exist, the statistical sunspot equilibrium is the only E-stable RPE.
Through numerical analysis of the mean dynamics, it was indicated that if agents

22In ongoing research, we explore the stability of statistical sunspots where the PLM also nests the REE
by letting p→ ∞ or relaxing B.3.
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place even the smallest prior on the sunspot, i.e., d ≈ 0, then they will learn to be-
lieve in sunspots and the economy will converge to the statistical sunspot equi-
librium. Even outside that region of the parameter space, Figure 5 provided an
example where the sunspot RPE is not E-stable and the learning dynamics con-
verge to a limit cycle that depends explicitly on the statistical sunspot with time-
varying estimates for (b, d). In this sense, statistical sunspots are robust to adap-
tive learning.

(iii) The sunspot RPE is robust to local econometric (mis-)specification tests. A local
econometric (mis-)specification test would recursively apply, for instance, a like-
lihood ratio test against the null that their AR(p) econometric model of the econ-
omy is a good descriptor of the data. Employing that idea in the present envi-
ronment, the equilibrium itself is defined so that if agents within the statistical
sunspot RPE were to test their model against a (local) alternative, they would
fail to reject the null. This is because the likelihood ratio test statistics are con-
structed based on sample estimates of the least-squares “orthogonality” term
Xt(yt − X ′

t�), which is equal to zero, on average, within the RPE with a fixed �

at its RPE value. It would be an interesting exercise for future research to study
whether learning can “escape” from a sunspot RPE by employing the methodol-
ogy developed by Cho and Kasa (2015).

(iv) Incentives to deviate from a sunspot RPE. We now ask whether individual agents
face an incentive to deviate from a sunspot RPE. Without loss of generality, as-
sume that the choice of forecasting model is a statistical one and agents as-
sess their forecasting success based on mean-squared forecast errors. Within a
sunspot RPE, each agent can calculate his/her mean-square forecast error (MSE)
with the RPE as

MSE1 = E
(
yt+1 −E1

t yt+1
)2

.

Now imagine that a single agent with zero mass were able to costlessly recover the
full-information REE and now contemplates forecasting with the fundamentals
model

E2
t yt+1 = cρzt ,

where c = Eytzt/Ez
2
t .23 This forecast model produces mean forecast errors

MSE2 = E
(
yt+1 −E2

t yt+1
)2

.

We will say that a sunspot RPE is robust if MSE1 < MSE2. We have the following
result on whether a sunspot RPE is robust, given that it exists.

Proposition 4. Let α̃ < α < 1 and ρ̃ < ρ < 1, so that multiple RPE exist. The
sunspot RPE are robust.

23We also found robustness if the zero-mass agent were to set c equal to its rational expectations equi-
librium value.
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Figure 8. Incentive to deviate to rational expectations. Each isocost line represents, given α,
the C̄ such that a sunspot RPE is robust for any C ≥ C̄. Cost is normalized by var(yt ).

Proposition 4 shows that, within a sunspot RPE, an individual agent would not
have an incentive to deviate to a PLM that depends only on the hidden shock.
This result is not surprising because when the other agents forecast with the AR(1)
plus sunspot model, then the zero-mass agent’s model is also misspecified since
it does not include the sunspot shock.

Assume instead that the zero-mass agent is able to recover the actual law of mo-
tion, via rational expectations, though possibly at some cost C. That is, suppose
that an individual agent holds the PLM,

yt = δ0yt−1 + δ1ηt + δ2zt ,

where δ0 = αb2, δ1 = αd(b + φ), and δ2 = γ. The mean-squared forecast error
in this case is δ2

1σ
2
v + δ2

2σ
2
ε . If recovering the actual law of motion is costless,

then agents will obviously have an incentive to use the alternative model and the
sunspot RPE is not robust to rational expectations. We now ask, “What would
the cost to acquiring rational expectations have to be for the sunspot RPE to be
robust to rational expectations?”

Figure 8 illustrates the critical cost threshold C̄(α, ρ, φ) such that the sunspot
RPE are robust to rational expectations for all C ≥ C̄. The figure plots two slices
of the plane holding the feedback parameter α at its smallest and largest values
required for sunspot RPE to exist. We have normalized C̄ by the equilibrium vari-
ance of yt . Thus, a C̄ = 0.02 carries the interpretation that the sunspot RPE are
robust against rational expectations as long as the cost of acquiring rational ex-
pectations is 2 percent or greater of the equilibrium variance. The isocost curves
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in Figure 8 show that a cost of 5% or greater will lead to a robust sunspot RPE
across all alternative parameterizations of α, ρ, and φ. The cost can be as low as
1% if the sunspot is sufficiently serially correlated.

This sense in which the sunspot RPE are robust if a single agent with zero mass contem-
plated deviating from the equilibrium is similar to a condition required within the “exu-
berance equilibrium” identified by Bullard et al. (2008). The “near-rational” expectations
developed by Bullard et al. (2008) assume that the agents in the economy form expecta-
tions by first fitting an autoregressive moving average (ARMA) model to historical data
and then adjusting their econometric forecasts by incorporating judgment, modeled as
a purely extrinsic shock like what we explore in this paper. An exuberance equilibrium
arises when the ARMA model used by agents is the best-fitting model, in a least-squares
sense, and a zero-mass agent would prefer to incorporate the judgment/sunspot given
that all other agents are incorporating it. Finally, an exuberance equilibrium must also
lead to ARMA coefficients that would be recoverable using a least-squares learning pro-
cedure. The robustness contemplated by Bullard et al. concerns whether including the
judgment variable in the PLM is a best response. In this section, we considered robust-
ness in the sense that a zero-mass agent would prefer a different PLM.

There are, evidently, many similarities behind the ideas in this paper and those de-
veloped in Bullard et al. (2008). We close this section by briefly comparing the two ap-
proaches. In short, the Bullard et al. paper has a distinct motivation and interpretation
of the sunspot variable, whereas we have a sharper equilibrium selection and we are
able to demonstrate a stronger robustness.

The exuberance equilibrium is motivated by a setting where a decisionmaker turns
over forecasting to two distinct agents, one who generates a purely statistical forecast
from an ARMA model and the other who adjusts the statistical forecast with qualitative
judgments, modeled as a purely extrinsic noise term; hence, the similarity. The exuber-
ance equilibrium requires that (1) the autocovariance generating function of the ARMA
model matches the same object in the true data generating process, (2) that those ARMA
coefficients are recoverable from a reasonable learning algorithm, and (3) that includ-
ing the qualitative judgment is robust in the sense that a zero-mass agent would want to
incorporate the judgment given that everyone else is. There are several differences from
our equilibrium. First, our agents obey the “cognitive consistency” principle by formu-
lating a purely econometric model to generate forecasts of aggregate variables beyond
their control. We simply allow them to place a prior that the sunspot variable—which
is purely extrinsic and potentially serially correlated—improves their forecasts. Sec-
ond, we show that when the sunspot equilibrium exists and the agents condition on the
sunspot in their PLM, the sunspot equilibrium is stable under learning and the funda-
mental equilibrium is not stable. The exuberance equilibrium is stable with or without
the judgment in their New Keynesian application. Thus, we have a strong equilibrium
selection result. Third, Bullard, Evans, and Honkapohja (2008) point out that the exu-
berance equilibrium would not be robust to a decision-maker who optimally weights
the purely statistical forecast relative to the judgment component. The weight on the
statistical sunspot in the restricted perceptions equilibrium, alternatively, does reflect
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this optimal weighting as its coefficient in the forecast rule comes from the projection of
the observable variable onto the sunspot.

The existence of statistical sunspots is self-fulfilling in the sense that the agents’
econometric model is capturing, in part, the serial correlation observed in the data that
would not exist if the agents did not believe it was there. That is, by forecasting with
the AR(1) plus sunspot model the agents are introducing additional serial correlation
into the model that is self-confirming due to the self-referential properties of the model.
This is the intuition for why a large feedback effect is required to establish existence. As
we show in the next section, the restrictions that the equilibrium places on the statistical
sunspot process lead to distinct policy implications since the fundamental equilibrium
is more volatile than the sunspot RPE. These distinctions do not diminish the contribu-
tion made by Bullard, Evans, and Honkapohja. The two approaches are clearly related
and their papers were highly influential on the development of our theory.

5. Applications

We turn now to two economic applications that illustrate the practical and empirical rel-
evance of statistical sunspots. The first application addresses the excess volatility puzzle
in rational expectations models of stock prices (Shiller (1981)). The second application is
a New Keynesian model where the central bank commits to an optimal instrument rule
and revisits the proposition that nonrational expectations imply a more “hawkish” mon-
etary policy rule (cf. Orphanides and Williams (2005a) and Eusepi and Preston (forth-
coming)). We show that across a broad range of potential policymaker preferences for
relative price stability, the optimal rule is consistent with the existence of a sunspot re-
stricted perceptions equilibrium. We also show that the optimal rule within the class
considered is less aggressive against inflation than it would be in a perfect information
environment.

5.1 Excess volatility in asset prices

Shiller (1981) estimates that stock prices are roughly five times more volatile than one
would expect if prices reflected the expected present value of future dividends, i.e., un-
der rational expectations. The previous section established that in environments with
hidden variables, a statistical sunspot equilibrium exhibits volatility bounded below by
rational expectations and above by the fundamental restricted perceptions equilibrium.
Here we adopt the calibrated asset-pricing model in Branch and Evans (2010) and pin
down the serial correlation in the sunspot process to generate excess price volatility in
line with Shiller’s estimate.

The environment is a mean–variance linear asset-pricing model similar to De Long,
Shleifer, Summers, and Waldmann (1990). Investors are mean–variance maximizers
who allocate wealth across two assets.24 There is a risk-free asset that pays a gross rate

24Branch and Evans (2011) derive the mean–variance asset-pricing equations from an OLG model with
a stochastically fluctuating population of young agents. Given beliefs about next period’s price and divi-
dend, young agents solve a portfolio optimization problem with CARA preferences. Market equilibrium is
perturbed by fluctuations in the per capita outside supply of the asset, an unobservable variable. We refer
the reader to Branch and Evans (2011) for details.
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of return R = β−1 > 1, where β is the discount factor, and a risky asset that yields a
(stochastic) dividend stream {qt } and trades at ex dividend price pt . In this framework,
demand for the risky asset is

zdt = Êt(pt+1 + qt+1 ) −β−1pt

aσ2 ,

where Êt(pt+1 + qt+1 ) is the subjective expectation of the one-period-ahead payoff, a
is the coefficient of risk aversion, and σ2 is the variance of excess returns pt+1 + qt+1 −
β−1pt . The equilibrium price pt is determined by market-clearing, i.e., zdt = zt , where
zt is the (stochastic) supply of the risky asset. The term zt captures fluctuations in out-
side share supply, also called asset float, and proxies for variations in the availability of
publicly tradable shares. There is empirical evidence that fluctuations in asset float can
be an important determinant of asset prices (see Baker and Wurgler (2000)). Here we
assume that dividends, qt , are observable and asset float, zt , is unobserved by traders.

The equilibrium price equation is

pt = Êt(pt+1 + qt+1 ) − aσ2zt ,

which takes the same form as (1), extended to include two exogenous shocks. We as-
sume that dividends and share supply are determined by a pair of (uncorrelated) sta-
tionary AR(1) processes

qt = δqt−1 + ut ,

zt = ρzt−1 + εt .

After imposing the behavioral primitives, traders’ beliefs will come from a linear
forecasting rule for stock prices that depends on the observables, lagged stock prices,
dividends, and any other information in the form of the statistical sunspot η. The per-
ceived law of motion, therefore, is

pt = bpt−1 + cqt + dηt ⇒ Êtpt+1 = b2pt−1 + c(b+ δ)qt + d(b+ ρ)ηt .

As before, the statistical sunspot follows:

ηt = φηt−1 + vt .

The values for the coefficients (b, c, d) are pinned down in a restricted perceptions equi-
librium, following the same steps from earlier in the paper.25

We now show that the model can capture the magnitude of excess stock price volatil-
ity estimated by Shiller (1981). We begin by adopting the calibration in Branch and Evans
(2010). For this exercise, the key parameters are the autoregressive parameters and in-
novation variances for the dividend and share supply processes. Data on real dividends
are provided by Shiller and the share supply series is from Baker and Wurgler (2000). Our

25The presence of multiple fundamental shocks raises the possibility of multiple fundamental RPE. In
the calibration, though, there is a unique fundamental RPE.
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Figure 9. Excess price volatility in calibrated asset-pricing model.

resulting estimates lead us to set δ = 0.95, ρ = 0.8837, σu = 0.0022, and σε = 1.7. We set
β = 0.9975, based on the one-month risk-free rate, and the risk parameter, σ2 = 0.1233,
is based on the excess return volatilities in Guidolin and Timmermann (2007). Finally,
we set the coefficient of risk aversion a = 2.

Figure 9 presents the results from the quantitative exercise. Figure 9(a) plots stock
price volatility in a restricted perceptions equilibrium, relative to volatility in the ratio-
nal expectations equilibrium, as a function of φ, the autoregressive coefficient in the
statistical sunspot variable. That is, the plot measures excess volatility. The figure sets
σ2
v = 0.1 and focuses on the empirically relevant range for φ. A more serially correlated

sunspot increases excess volatility. The dashed line is the Shiller target for excess volatil-
ity. A value of φ ≈ 0.98 delivers an excess volatility in equilibrium consistent with the
data.26

Panel 9(b) gives further insight into the excess volatility by plotting the E-stable RPE
values for b, d as a function of φ. As the sunspot becomes more serially correlated, the
equilibrium weight, d, placed on the sunspot in the forecasting equation decreases and
the autoregressive coefficient b increases. As the sunspot approaches a driftless random
walk, the sunspot equilibrium no longer exists and the fundamental RPE exhibits an
excess volatility several times larger than what is observed in the data.

5.2 Optimal monetary policy

A seminal result by Orphanides and Williams (2005a) is that for economies with nonra-
tional agents who update their forecasting models using an adaptive learning rule, the
optimal monetary policy rule involves a more aggressive response to inflation deviations
from target.27 The intuition behind this well known result is that with nonrational ex-
pectations, the central bank seeks to minimize inflation volatility in order to help anchor

26In this exercise, the identified value of φ depends on the normalized value of σv . A precise value for φ
would require another moment to match, which is beyond the scope of this application.

27For a general discussion of this robust finding, see the excellent survey by Eusepi and Preston (forth-
coming), in particular, Result 5a. See, also, Stiglitz (2019).



320 Branch, McGough, and Zhu Theoretical Economics 17 (2022)

private-sector expectations. This section revisits Orphanides and Williams (2005a) with
our theory of restricted perceptions and endogenous volatility. We find that in a New
Keynesian economy, with hidden variables and homogeneous expectations, a statistical
sunspot equilibrium will exist under optimal policy (within the class of rules consid-
ered) and the optimal policy response to inflation innovations is less aggressive under
restricted perceptions than rational expectations.

5.2.1 A new Keynesian model with hidden variables We adapt Orphanides and
Williams (2005a) to the present environment,

πt = βÊtπt+1 + κyt + ut , (16)

yt = xt + zt , (17)

where πt is the inflation rate, yt is the output gap, and ut and zt are aggregate supply
and aggregate demand shocks, respectively. Equation (16) is a standard New Keynesian
Phillips curve that comes from the aggregate supply block. Without loss of generality,
assume that σ2

u → 0. Equation (17) is the aggregate demand equation and it relates the
output gap to the central bank’s policy variable, xt , up to noise zt . As before, we assume
that zt = ρzt−1 + εt . The central bank is able to perfectly control aggregate demand up
to a serially correlated exogenous noise. The central bank treats zt as exogenous to their
policy. We assume that this control error is unobservable to private-sector agents.

The central bank has an optimal instrument rule of the form

xt = −θ(πt − π̄ ), θ ≥ 0,

where π̄ is the long-run inflation target, which we set to π̄ = 0. The form of this policy
rule is what Orphanides and Williams (2005b) refer to as an “outcome-based” rule that
adjusts the output gap (aggregate demand) whenever inflation deviates from target. The
central bank chooses the coefficient in its policy rule in order to minimize a quadratic
loss function

L = (1 − λ)Ĕy2
t + λĔπ2

t ,

where Ĕ is the central bank’s unconditional expectations operator.
Given that zt is unobservable, the agents in the economy formulate their expecta-

tions from the forecasting rule

πt = bπt−1 + dηt ⇒ Êtπt+1 = b2πt−1 + d(b+φ)ηt ,

where, again, ηt = φηt−1 + vt . Plugging expectations, the policy rule, and the aggregate
demand equation into (16) produces the actual law of motion for inflation,

πt = βb2

1 + κθ
πt−1 + βd(b+φ)

1 + κθ
ηt + κ

1 + κθ
zt ,

which is the same form as (6) with α = β/(1 + κθ) and γ = κ/(1 + κθ). Notice that there
is a unique rational expectations equilibrium for all θ. Given a value for θ, the belief
coefficients (b, d) are pinned down in a restricted perceptions equilibrium. We denote
the RPE inflation process as πt(θ).
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5.2.2 Optimal policy Under optimal policy, there is a symmetric Nash equilibrium
where the central bank’s policy rule and the beliefs of agents are determined simulta-
neously. Then the optimal policy rule is determined according to

θ∗(λ) = arg min
θ

[
(1 − λ)θ2 + λ

]
E

[
πt(θ)

]2 + t.i.p.

and E[πt(θ)]2 = a1Ez
2
t + a2Eη

2
t , where a1 and a2 are complicated expressions of the

model parameters θ, β, κ, ρ, and φ, and E is now the unconditional mathematical ex-
pectation taken with respect to the distributions of zt and ηt .28 The resulting optimal
monetary policy is, therefore, also a complicated function of these parameters and a
closed-form solution is unavailable.

We also compute the equilibrium outcomes when the policy rule is derived under
perfect information, that is, rational expectations with zt observable to agents. This al-
ternative scenario facilitates a comparison of the optimal θ under restricted perceptions
to rational expectations and also allows us to consider an experiment where the central
bank mistakenly assumes that the private sector has perfect information about aggre-
gate demand. Under perfect-information rational expectations, the optimal policy rule
solves

θR(λ) = arg min
θ

[
(1 − λ)θ2 + λ

]( κ

1 + κθ−βρ

)2 σ2
ε

1 − ρ2 .

From the associated first-order condition, it is straightforward to show that

θR(λ) = κλ

(1 − λ)(1 −βρ)

and the optimal inflation response is increasing in λ.29

Since θ∗(λ) does not have a closed-form solution, we proceed numerically. We set
β = 0.99 and κ = 0.10, both within the empirically relevant range. As a benchmark, we
set ρ = 0.5, φ= 0.75, and σε = σv = 1, and focus on how λ impacts the existence of statis-
tical sunspot RPE and the optimal policy rule under restricted perceptions and rational
expectations. Figure 10 plots the T -maps for λ= 0.5, 0.9.

Figure 10 provides examples of how sunspot RPE might emerge in a New Keyne-
sian model where monetary policy is set according to a rule that guarantees existence
of a unique rational expectations equilibrium. In each panel, the solid (dashed) lines
correspond to λ = 0.5 (λ = 0.9), the relative weight on inflation stabilization in the poli-
cymaker’s loss function. Panel 10(a) plots the T -maps associated to two different values

28We make the assumption on the central bank’s beliefs, under Ĕ, that the policymaker treats the control

error as exogenous to his/her policy instrument so that Ĕ(xtzt ) = 0. This assumption does not impact
the qualitative finding regarding optimal policy under restricted perceptions. Instead, the assumption is
necessary for the optimal policy under the rational expectations problem to have a bounded solution in
order to facilitate a comparison to Orphanides–Williams. Relaxing this restriction so that Ĕ(xtzt ) �= 0 leads
to a finite θ under restricted perceptions but not rational expectations.

29This optimal value θR is the direct effect of z on π, in an REE, times the central bank’s preference for
inflation stabilization relative to output gap stabilization.
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Figure 10. T -maps for policy rules θR and θ∗, and λ= 0.5, 0.9.

for λ when policy is set according to the rule with θR, the policy rule that is optimal
under rational expectations, but private-sector agents have restricted perceptions. For
λ = 0.5 (more generally, for λ not too large), the optimal policy rule delivers a restricted
perceptions equilibrium driven by statistical sunspots. If the policymaker places a high
weight on inflation stabilization (dashed line in Figure 10(a)), then there is a unique fun-
damentals RPE. Panel 10(b) plots the T -maps for the same values of λ, but where policy
optimally responds to minimize the loss in a restricted perceptions equilibrium. In these
cases, optimal policy is consistent with a sunspot RPE. Notice that as λ increases, b̂, d∗
decreases and b∗ increases.

To provide more general results for the optimal policy θ∗, we are able to establish the
following analytic result.

Proposition 5. Let β → 1. If λ is sufficiently small, then sunspot RPE exist in the New
Keynesian model with optimal policy and restricted perceptions.

To gain greater insights into these existence results and the policy implications, Fig-
ure 11 plots θR and θ∗ as a function of λ. Both policy rules exhibit optimal reaction co-
efficients that are increasing in the relative preference for inflation stabilization: more
hawkish preferences lead to more aggressive policy reactions to inflation innovations.
However, it is apparent that the optimal policy under restricted perceptions features
less active policy than what is optimal under rational expectations. This result is sur-
prising in light of the findings in Orphanides–Williams and a large number of other pa-
pers that nonrational expectations implies monetary policy should react more strongly
in response to inflation deviations from target.

Figure 12 provides some insight into optimal policy under statistical sunspots, and
the intuition underlying Figure 11. Panels 12(a) and 12(b) plot the sunspot RPE pol-
icymaker losses and inflation variance as a function of the policy coefficient θ. The
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Figure 11. Optimal policy rules: θR versus θ∗.

dashed line corresponds to the sunspot RPE and the dotted line is the fundamental
RPE. For θ large enough the sunspot RPE will not exist: this is equivalent to the low
α case in Section 3. For smaller values of α, though, inflation variance is lower in the
sunspot RPE than the fundamentals RPE, as we saw earlier. This translates, as well, into
lower losses. Thus the optimal policy will choose a lower policy coefficient and, through
the learning stability, the economy will converge to the lower volatility sunspot equi-
librium. Figure 12(c) confirms the intuition that the sunspot RPE leads to a lower per-
ceived autocorrelation and, consequently, a lower economic volatility. Figure 12(d) plots
the impulse response to a positive shock to the hidden fundamental variable z. With the
much higher perceived autocorrelation, the fundamental RPE impulse response delivers
a strong and persistent impact on inflation. Conversely, the sunspot RPE displays a geo-
metric decay and very little persistence. Of course, in the sunspot RPE, the policymaker
has to balance that stronger response from the fundamental shock against the sunspot
shock. However, we have shown that there is less economic volatility in a sunspot versus
fundamental RPE.

6. Conclusion

The results in this paper show that sunspot equilibria can exist in models with a unique
rational expectations equilibrium. When some state variables are unobserved by or hid-
den from agents who have restricted perceptions, they specify optimal parsimonious
forecast models. The insight in this paper is that while certain fundamental, i.e., pay-
off relevant, variables may be hidden from agents, they may end up coordinating on
an equilibrium that depends, in a self-fulfilling manner, on extrinsic variables that we
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Figure 12. Further intuition.

call statistical sunspots. These statistical sunspots overcome two limitations of sunspot
theories based on rational expectations: they exist in the empirically relevant range of
models, i.e., within the determinacy region, and the sunspot equilibria are often stable
under learning.

This paper focuses on the theoretical properties of statistical sunspots with appli-
cations to excess volatility in stock prices and optimal monetary policy. The theory of
statistical sunspots, though, has broad practical interest for dynamic stochastic general
equilibrium (DSGE) models. Under appropriate conditions, statistical sunspots exist in
standard formulations of real business cycle models; that is, sunspot equilibria can exist
without relying on nonconvexities. Statistical sunspots can also exist in New Keyne-
sian models with optimal monetary policy or Taylor-type rules that respect the “Taylor
principle.” In particular, policy advice to rule out expectations-driven cycles, i.e., unan-
chored expectations, is more subtle than what one would conclude under strict rational
expectations.

Appendix

Proof of Theorem 1. The fundamental RPE solves b = (αb2 + ρ)(1 + αb2ρ)−1 ≡ g(b)
with |b| < 1. A fundamentals RPE exists since g(b) is continuous with g(0) > 0, g(1) < 1.
Uniqueness is established in Appendix D of Hommes and Zhu (2014).
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A sunspot RPE exists if and only if |b∗| < 1 and d∗2 > 0. It is straightforward to see
that |b∗| < 1 ⇔ α> 1/(1 +φ−φ2 ). Similarly, d∗2 > 0 ⇔ ρ > ρ̃, where

ρ̃= α2φ− αφ2 − α3φ2 + αφ4 + α3φ4 − α2φ5

α2 + α3φ3 + 3α2φ4 − 6α2φ2 − α2φ6 − 1 + 3αφ
.

With the aid of a computer algebra system, we find that α> α̃ =⇒ ρ̃ < 1.30

Proof of Proposition 1. We can prove this result by showing that b∗ < g(b∗ ) ≡
Tb(b∗, 0), which holds given α̃ < α < 1 and ρ̃ < ρ < 1. We have already shown that ∃
unique b̂ such that b̂ = g(b̂), g(0) > 0, g(1) < 1. If b∗ > b̂, then there would exist another
fixed point in the interval (b∗, 1)—a contradiction. Therefore, b∗ < b̂.

Proof of Theorem 2. Items are addressed in order.

(i) In case agents do not regress on the sunspot, the E-stability ode is given by

ḃ= αb2 + ρ

1 + αb2ρ
− b.

As shown in Hommes and Zhu (2014), the resting point b̂ is Lyapunov stable.

(ii) If agents do regress on the sunspot, then the eigenvalues of DT evaluated at d = 0
are given by

2bα
(
1 − ρ2)(

1 + b2αρ
)2 and

α(b+φ)(1 − bφ)

1 − b2αφ
.

The first eigenvalue is real and less than 1, a result that follows from Hommes and
Zhu (2014). It can be shown that the second eigenvalue is less than 1 when b̂ < b∗,
which is equivalent to the conditions identified in statement 2 of the theorem.

(iii) Computer algebra shows that the determinant and trace of DT evaluated at
(b∗, d∗ ) is independent of σ2

ε and σ2
ν . Further, fixing φ and taking the limit as

ρ → 1 reveals that the determinant is positive and the trace is negative. The exis-
tence of the critical value ρ̆ follows from continuity.

Proof of Propositions 2 and 3. Defining d̃ ≡ (d∗ )2σ2
v /(σ2

εγ
2 ) and ξ1(b) ≡ αb2,

var(yt|sunspot RPE) = γ2(1 + ρξ1
(
b∗))σ2

ε(
1 − ρξ1

(
b∗))(1 − ξ2

1
(
b∗))(1 − ρ2)

+ γ2α2(b∗ +φ
)2
d̃
(
1 +φξ1

(
b∗))σ2

ε(
1 −φξ1

(
b∗))(1 − ξ2

1(b)
)(

1 −φ2) ,

30For this and other proofs, as well as for some of the formulae found in the body, we used the symbolic
methods available in Mathematica. The code is available by request.
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var(yt|REE) = γ2σ2
ε

(1 − αρ)2(1 − ρ2) ,

var(yt|fund RPE) = γ2(1 + ρξ1(b̂)
)
σ2
ε(

1 − ρξ1(b̂)
)(

1 − ξ2
1(b̂)

)(
1 − ρ2) .

The ratio depends on α, ρ, and φ, and var(yt |sunspot RPE)
var(yt |REE) > 1 follows from computer alge-

bra.
Also, since b̂ > b∗, if ρ sufficiently large, we have

1 + ρξ1(b̂)(
1 − ρξ1(b̂)

)(
1 − ξ2

1(b̂)
) >

α2(b∗ +φ
)2
d̃
(
1 +φξ1

(
b∗))(

1 −φξ1
(
b∗))(1 − ξ2

1
(
b∗))

(
1 − ρ2)(
1 −φ2)

+ 1 + ρξ1
(
b∗)(

1 − ρξ1
(
b∗))(1 − ξ2

1

(
b∗)) . (18)

Proof of Proposition 4. The relative forecast accuracy of the sunspot to the model
conditioning on zt is

F(ρ) = γ2P3(ρ)

α2(1 − ρ2)φ(1 − αφ)
(
1 −φ2)2[(

1 −φ2)2 − ρ(1 − αφ)2]2 σ
2
ε ,

where P3(ρ) is a cubic polynomial with P3(1) > 0, P3(0) < 0, P3(ρ̃) > 0 whenever α > α̃.
Furthermore, the symmetric axis of the differential P ′

3(ρ) > 1. It follows that F(ρ) > 0 for
all ρ ∈ (ρ̃, 1).

Proof of Proposition 5. We know from Theorem 1 that when a sunspot RPE exists,
the value for θ∗ will not be too large. A sufficient condition for this in the optimal policy
solving the fixed point problem is λ → 0 ⇒ θ∗

λ → 0. Then we have (1+φ(1−φ))−1 ≤ β<

1 ensures that |b∗| < 1. Straightforward algebra establishes that(d∗ )2 > 0 when b = b∗
and θ = θ∗ in the symmetric equilibrium.
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