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The paper provides theoretical foundations for models of strategic interdepen-
dence under uncertainty that have a continuum of agents and a decomposition
of uncertainty into a macro component and an agent-specific micro component,
with a law of large numbers for the latter. This macro–micro decomposition of un-
certainty is implied by a condition of exchangeability of agents’ types, which holds
at the level of the prior if and only if it also holds at the level of agents’ beliefs, i.e.,
posteriors. Under an additional condition of anonymity in payoffs, agents’ be-
haviors are fully determined by their beliefs about the cross-section distribution
of types and other macro variables, and by their beliefs about the cross-section
distribution of other agents’ strategies. Any probability distribution over cross-
section distributions of types and other macro variables is compatible with a fully
specified belief system, but not every function from types to such probability dis-
tributions is compatible with a common prior. The paper gives necessary and
sufficient conditions for compatibility of such a function with a common prior.
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1. Introduction

This paper develops theoretical foundations for the study of incomplete-information
games with the following properties:

• The payoff to any one agent depends only on an unknown exogenous parameter
that affects all agents, on the agent’s own characteristics and actions, and on the
cross-section distribution of actions in the population.1
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• There are many agents, and each agent considers the effect of his own actions on
the cross-section distribution of actions to be negligible.

• Uncertainty about types can be decomposed into a macro component and a mi-
cro component, where the micro component is idiosyncratic, is agent-specific, and
satisfies a conditional law of large numbers.

Such games are not covered by the standard approach to studying strategic inter-
dependence with incomplete information, which considers games with finitely many
participants, where each participant forms beliefs about every other participant’s char-
acteristics and actions. This approach foregoes the simplifications that are available if
agents care only about the cross-section distribution of the other agents’ actions and
any one agent is too insignificant to affect the cross-section distribution of actions in
the population.

Examples

Currency attacks and bank runs. In models of currency attacks and bank runs, the payoff
to an agent’s choice to attack or to run depends on the fundamentals and on how many
agents are also choosing to attack or to run. Any one agent is, therefore, concerned about
the fraction of people in the population who have received bad signals and are likely to
speculate against the currency or run on the bank.2

Insider trading and market microstructure. Strategic behavior in markets with asym-
metric information depends on agents’ expectations about the relative importance of
information trading and liquidity trading. In organized markets in which the identities
of traders are not revealed, these expectations concern the distribution of characteristics
among the potential traders as well as the fundamentals.3

Electoral competition and voting. In voting, the identities of individuals are irrele-
vant. Only the fractions of the population that vote for or against the given alternatives
matter. In models of strategic voting, people form expectations about the distribution
of other people’s votes. This distribution depends on the distribution of other people’s
characteristics, i.e., preference parameters or realizations of information variables, and
on how these characteristics affect their votes.4

Public-good provision and taxation. Models of income taxation usually assume a
continuum of agents, with private information about individual productivity and with a
law of large numbers for the cross-section productivity distribution.5 Models of public-
good provision usually assume a finite number of agents, with private information about
preference parameters; public-good provision levels depend on aggregates of the prefer-
ence parameters, e.g., the aggregate marginal benefit of an additional unit of the public

2On bank runs, see Bryant (1980), Diamond and Dybvig (1983), Postlewaite and Vives (1987), Chari and
Jagannathan (1988), Rochet and Vives (2004), and Goldstein and Pauzner (2005); on currency attacks, see
Morris and Shin (1998) and Re C. Hellwig (2002).

3See, e.g., Kyle (1985, 1989).
4See, e.g., Lindbeck and Weibull (1987) and Alesina and Tabellini (1990).
5Mirrlees (1971).
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good. The analysis of public-good provision and income taxation can be integrated in
a model with a large population in which aggregate outcomes depend only on cross-
section distributions of individual productivity levels and of preference parameters. In
a large economy, these distributions are independent of any one agent’s characteris-
tics, and in a mechanism design approach, the distribution of reported characteristics
is independent of any one agent’s report.6

The literature dealing with these examples contains models with private values as
well as models with common values. In models with private values, an agent’s informa-
tion about other agents matters only because it provides information about the other
agents’ behaviors and about the implications of the agent’s own choices for equilibrium
outcomes. In models with common values, an agent’s information about other agents
also matters because this information has a direct effect on the agent’s own assessment
about the payoff implications of different choices that he or she can make. For exam-
ple, the bank run model of Diamond and Dybvig (1983) involves purely private values:
Each agent is only concerned with his or her own liquidity needs; this is true even in the
version of the model with aggregate risk. With randomness in aggregate liquidity needs,
each agent is concerned that if too many of the other agents need to make early with-
drawals, the bank may fail, but this is not a concern about whether the other agents have
an information advantage. In contrast, the bank run models of Chari and Jagannathan
(1988), Rochet and Vives (2004), and Goldstein and Pauzner (2005) involve common val-
ues:7 Each agent fears that the bank may become insolvent because of poor returns on
its assets, and each agent fears that, with better information about the bank’s returns on
assets, other agents may be ahead in the line for withdrawals.8 The formalism developed
in this paper can deal with both private value and common value specifications.

Issues

The notion that any one agent is too insignificant to affect aggregate outcomes is most
often formalized by assuming that there is a continuum of agents. Uncertainty is de-
composed into an aggregate component and an agent-specific component, and a law of
large numbers is assumed for the latter.

This procedure raises several questions. First, what is the relation between these
models and the standard Harsanyi–Mertens–Zamir model of strategic interdependence
under incomplete information? Second, should we think of the decomposition of un-
certainty into macro (aggregate) and micro (agent-specific) components as being intro-
duced ad hoc or can this decomposition itself be derived from some deeper properties

6See Bierbrauer (2009, 2014) and Bierbrauer and Hellwig (2015).
7The bank run model of Postlewaite and Vives (1987) is a hybrid, as each individual agent has private

information about the other agents’ liquidity needs.
8Since Morris and Shin (1998), the literature on currency attacks and bank runs has assumed that each

agent privately observes a noisy signal of the fundamental. Given the observation of this signal, the agent
forms expectations about the value of the fundamental and about the population share of the set of people
who will choose to participate in a currency attack or a bank run. If the chances are good that this pop-
ulation share is high enough for the attack to be successful, the agent will also choose to participate. In
addition to Morris and Shin (1998), see C. Hellwig (2002) and Angeletos and Werning (2006).
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of the models? Third, how should we deal with the mathematical difficulties inherent in
the notion of a continuum of agents with agent-specific uncertainty?

The standard model of incomplete information relies on the notion of types that was
introduced by Harsanyi (1967/1968) and formalized by Mertens and Zamir (1985). If A
is the set of agents, then, for each a ∈A, there is a set Ta of possible types of agent a and,
for each type ta ∈ Ta, a belief ba(·|ta ) of agent a with the type ta. The belief ba(·|ta ) is a
probability distribution over vectors (ta′ )a′ �=a of types of the other agents. Heuristically,
we may think of agents using the information provided by the observation of their own
types to form probabilistic beliefs about the other agents’ types.

In one version of this approach, which was promoted by Harsanyi himself, agents’
beliefs are treated as conditional probabilities under a common prior. Agents’ types
are determined by a move of nature, whose “strategy” is embodied in some commonly
known prior probability distribution over type constellations. The game of incomplete
information is thus treated as a game of imperfect information in which agents know the
strategy, but not the actual choices of nature.

The common-prior approach to modelling incomplete information has the advan-
tage that it provides a unified framework for modelling uncertainty, information and
beliefs. Therefore, in most of this paper, I assume that there is a common prior. In the
concluding section, however, I argue that the condition of anonymity in beliefs can be
applied to the belief ba(·|ta ) even if this belief is not derived from a common prior.9

Anonymity

The main contribution of the analysis is to show that, in models with a continuum of
agents, the properties listed above are implied by conditions of anonymity, which ensure
that agents’ names play no role. Most importantly, a condition of anonymity in beliefs
ensures that each agent a with type ta and probabilistic belief ba(·|ta ) thinks about the
types ta′ of agents a′ �= a as the realizations of essentially pairwise exchangeable random
variables so that, for almost all a′ and a′′ �= a′, the joint distribution of their types under
the belief ba(·|ta ) is unchanged if their names are interchanged.

A second condition, anonymity in payoffs, postulates that an agent’s payoff from any
action depends on the other agents’ actions only through the cross-section distribution
of these actions. Which of the other agents is taking which action makes no difference
as long as the cross-section distribution of actions is the same.

If both anonymity conditions hold, in payoffs and in beliefs, the agent’s expected
payoff from any action depends on his or her expectations about other agents only
through the agent’s probabilistic expectations about the cross-section distributions of
the other agents’ types that are induced by the belief ba(·|ta ) and through the cross-
section distribution of the other agents’ strategy functions that map their types into ac-
tions.

Anonymity in beliefs has the important implication that, from the perspective of
agent awith belief ba(·|ta ), the other agents’ types are essentially conditionally indepen-
dent and identically distributed random variables. The conditioning variable, relative

9For the controversy about the common-prior approach, see Gul (1998) and Aumann (1998).
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to which the other agents’ types are conditionally independent, can be identified with
the cross-section distribution of types. Moreover, with a continuum of agents, an exact
law of large numbers implies that the cross-section distribution of types and the con-
ditional probability distribution of any one agent’s type coincide.10 The decomposition
of uncertainty into an aggregate component and an agent-specific component is an au-
tomatic by-product of exchangeability: I refer to the former as the macro component of
uncertainty and to the latter as the micro component of uncertainty. The macro compo-
nent concerns the cross-section distribution of types; the micro component concerns
the type of any one agent.

From a game theoretic perspective, the property of anonymity in beliefs, i.e., ex-
changeability at the level of conditional distributions, is particularly important because
choices depend on beliefs. However, if beliefs are derived from a common prior, ex-
changeability at the level of beliefs implies exchangeability at the level of the prior. In
this case, exchangeability can also be seen as a property of the common prior or of the
real world that the model tries to capture.

The mathematical conundrum

With a continuum of agents, the formalization of the space of agents, of the underly-
ing probability space, and of the random variables that determine agents’ types requires
care. With finitely many agents, the vectors (ta′ )a′∈A of types of all agents and (ta′ )a′∈A\{a}

of types of agents other than a (about which agent a forms beliefs) can simply be treated
as elements of the finite-dimensional product spaces

∏
a′∈ATa′ and

∏
a′∈A\{a} Ta′ . With

a continuum of agents, the product spaces
∏
a′∈ATa′ and

∏
a′∈A\{a} Ta′ are unsuitable

because, for any given element {ta′ } of such a space, the mapping a′ �→ ta′ may be non-
measurable so that the cross-section distributions of types is not well defined. In par-
ticular, if A is the Lebesgue unit interval and the types ta′ of different agents are as-
sumed to be the realizations of (conditionally) independent random variables with non-
trivial individual uncertainty, the functions a′ �→ ta′ are nonmeasurable with probabil-
ity 1.11

To deal with this conundrum, Sun (2006) proposed to make the families of measur-
able sets so large that cross-section distributions are always well defined. If we think
of the type ta′ of agent a′ as the realization of a random variable t̃a′(·) that is defined
on some probability space, the idea is to assume that the family of measurable sets on
A×�, the product of the space of agents and the underlying probability space, is large
enough so that, for any bounded measurable function f on A × �, integration of the
function

(
a′,ω

) �→ f
(
a′, t̃a′(ω)

)
10The insight that exchangeability is equivalent to conditional independence relative to some underlying

σ-algebra is known as de Finetti’s theorem; see de Finetti (1931, 1970/1974).
11This problem was first identified by Doob (1937, 1953). For early accounts in economics, see Judd

(1985) and Feldman and Gilles (1985).
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with respect to agents’ names and with respect to states of the world is well defined;
moreover, the integrals have the Fubini property that the order of integration does not
make a difference to the result.12

Given this formalism, Sun showed that a continuum of essentially pairwise indepen-
dent and identically distributed random variables satisfies an exact law of large num-
bers; moreover, if the specified family of measurable sets is sufficiently rich, there is no
restriction on the probability distribution of the random variables in question. Qiao
et al. (2016) prove the analogous results for families of conditionally independent ran-
dom variables. Hammond and Sun (2003, 2008) study conditional independence in
what they call a Monte Carlo approach, considering the limiting behavior of distribu-
tions obtained from sequences of conditionally independent random variables. Ham-
mond and Sun (2003, 2008) also established the equivalence between essential pairwise
exchangeability and essential pairwise conditional independence with identical condi-
tional probability distributions. Qiao et al. (2016) show in addition that in a framework
with a Fubini extension, the exact conditional law of large numbers implies that the
identical conditional probability distributions are equal to the sample cross-section dis-
tributions.

Exchangeability and conditional exchangeability

In this paper, the results of Hammond and Sun (2003, 2008) and Qiao et al. (2016) cannot
be directly applied because they refer to a single underlying probability space. They
can be applied to the common prior, but then the question is what that implies for the
different agents’ beliefs at different types. This question is unimportant if agents are
taken to behave as price takers and their thinking about others is limited to the question
of what inferences can be drawn from the observation of market prices as well as their
own types.

The question is important, however, in more general fully specified models of strate-
gic behavior, where agents must form beliefs about the types (including the informa-
tion) of other agents. In this case, a proper treatment of anonymity requires a notion
of exchangeability at the level of beliefs. If beliefs are treated as conditional probability
distributions, the question is what exchangeability at the level of beliefs means for the
level of the prior. If beliefs are taken to be unrelated to a prior, the question is whether
there are ways to glue together the different probability spaces that correspond to the
different beliefs.

For a common-prior setting, with beliefs interpreted as conditional distributions,
this paper shows that the property of anonymity in beliefs is actually equivalent to the
property of exchangeability at the level of the prior. More precisely, essential pairwise ex-
changeability of different agents’ types at the level of the prior holds if and only if, under

12Subsequent work refines this approach. See, in particular, Sun and Zhang (2009), Podczeck (2010), and
Qiao et al. (2016). Hammond and Sun (2003, 2008) develop a related approach that involves the limits of
arbitrarily large finite samples from the given measure space of agents.
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almost every agent’s beliefs, the other agents’ types are essentially pairwise exchange-
able, i.e., satisfy anonymity in beliefs with probability 1. I refer to the latter condition as
essential conditional pairwise exchangeability.13

The macro–micro distinction

At both levels—the level of the prior as well as the level of the beliefs of a given agent
with a given type—the results of Hammond and Sun (2003, 2008) and Qiao et al. (2016)
can be used to show that if essential (conditional) pairwise exchangeability holds, then
(other) agents’ types are essentially pairwise conditionally independent and a condi-
tional exact law of large numbers holds. These results provide a link between exchange-
ability (anonymity) and the decomposition of uncertainty into a macro component, the
cross-section distribution of types, and a micro component, each agent’s individual type,
which is idiosyncratic, conditional on the macro component. Further results of Ham-
mond and Sun (2006) imply that in common-value models, where macro uncertainty
also concerns shocks to underlying fundamentals that all agents care about, the macro
component may be taken to comprise the fundamentals as well as the cross-section
distributions of agents’ types.

The macro–micro distinction should not be confused with the distinction between
common priors and individual agents’ beliefs. Although the common prior refers to the
system as a whole and the beliefs refer to individual agents, with exchangeability, both
the common prior and the individual beliefs conceptualize uncertainty about (other)
agents’ types as a matter of first considering probability distributions over macro vari-
ables (including the cross-section distribution of types) and then considering condi-
tional probability distributions over (other) agents’ types given the macro variables and
given the property of conditional independence given the macro variables.

If types are exchangeable under a common prior, the results of Hammond and Sun
(2003, 2008) and Qiao et al. (2016) imply that a macro–micro decomposition of uncer-
tainty is obtained at the level of the prior. For beliefs that are treated as conditional
distributions under the prior, the results of this paper show that the same macro–micro
decomposition of uncertainty is also obtained at the level of individual beliefs.

In most applied work, the macro–micro decomposition is imposed at the level of
the prior, taken as a representation of “objective” uncertainty. The analysis of strate-
gic behavior, however, needs this decomposition at the level of beliefs. The link is pro-
vided through the equivalence of exchangeability and conditional exchangeability. It
should be noted, however, that in the absence of a common prior, one can still show
that anonymity in beliefs induces a decomposition of uncertainty into a macro and a
micro component at the level of beliefs.

13The word “essential” here takes a wider meaning. The term “essential pairwise exchangeability” indi-
cates that exchangeability holds for almost all pairs of agents. “Essential conditional pairwise exchange-
ability” indicates that, for almost every agent, under the agent’s conditional distribution over other agents’
types given the agent’s own type, essential pairwise exchangeability of other agents’ types holds almost
surely.
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Macro uncertainty and macro beliefs

Anonymity in beliefs implies that the probabilistic belief ba(·|ta ) of agent a with type ta
about the other agents’ types is fully determined by what I call the agent’s macro belief
b∗
a(·|ta ) about the cross-section distribution of the other agents’ types and about any

other macro variable. Given the macro belief b∗
a(·|ta ), the underlying belief ba(·|ta ) about

the overall constellation of other agents’ types can be recovered by observing that the
agent considers the other agents’ types to be conditionally independent and identically
distributed with a common conditional probability distribution that coincides with the
cross-section distribution of other agents’ types.

Similarly, at the level of the prior, with a decomposition of uncertainty into a macro
component and a micro component, the macro component is summarized in the joint
probability distribution over cross-section distributions of types and other macro vari-
ables that is induced by the common prior. From this probability distribution, the com-
mon prior itself can be recovered by using the fact that, conditional on the cross-section
distribution of types and other macro variables, the types of different agents are essen-
tially pairwise independent with a common conditional probability distribution equal
to the cross-section distribution.

Given that this exercise can always be carried out, the requirement that a probability
distribution on cross-section distributions of types can generate a common-prior model
of incomplete information imposes no restriction on the scope of admissible macro un-
certainty. Any probability distribution on cross-section distributions of types and other
macro variables can be used as a basis for such a model.

Not every macro belief function, however, is compatible with a common prior.
Whereas every probability distribution over cross-section distributions of types can
be used to specify a common prior with associated belief and macro belief functions,
not every macro belief function, and therefore not every belief function that satisfies
anonymity in beliefs, is compatible with the existence of a common prior. If the values
of the macro belief function, i.e., the probability distributions over cross-section type
distributions that are induced by different observations of one’s own type are mutually
absolutely continuous, I show that the macro belief function admits the existence of a
common prior if and only if it satisfies a version of Harsanyi’s (1967/1968) consistency
condition for the existence of a common prior in a certain two-player game of incom-
plete information.

Plan of the paper

The paper is structured as follows. , Section 2 develops the game theoretic formalism;
Section 3 studies the scope for macro uncertainty and macro belief functions. Sec-
tion 2.1 begins with a general formulation of a strategic game with an atomless contin-
uum of players whose types are the realizations of random variables on a complete prob-
ability space. An assumption of anonymity in payoffs specializes the analysis to games
in which agents care only about the distribution of other agents’ actions, not about who
does what. The formalism of a Fubini extension (of the product of the space of agents
and the probability space) ensures that such distributions are well defined.



Theoretical Economics 17 (2022) Incomplete-information games 469

Section 2.2 introduces the properties of anonymity in beliefs and exchangeability of
types, and proves the equivalence result mentioned above. Section 2.3 shows that both
properties are also equivalent to properties of conditional independence with identical
conditional distributions and give rise to a macro–micro decomposition of uncertainty.
Section 2.4 extends the results of Section 2.3 to allow for conditioning on other macro
variables as well as the cross-section distribution of types. Given the macro–micro de-
composition of uncertainty that is thereby obtained, Section 2.3 shows that all strategi-
cally relevant aspects of agents’ beliefs are contained in their macro beliefs. The distri-
bution of agents’ strategies is then shown to be the key variable for studying strategic
interdependence and equilibrium.

Section 3.1 shows that if the Fubini extension is sufficiently rich, then, from an ex
ante perspective, the formalism imposes no restriction on the scope of macro uncer-
tainty, i.e., for any probability distribution over cross-section distributions of types and
other macro variables, there exists a specification of the different agents’ types as essen-
tially pairwise exchangeable random variables that generates the specified probability
distribution over cross-section type distributions and other macro variables. Section 3.2
gives necessary and sufficient conditions under which a given macro belief function,
i.e., a given function from an agent’s own type to the agent’s probabilistic beliefs about
the cross-section distribution of types, is compatible with a common prior.

The concluding section discusses open issues.
All proofs are given in Appendix A. Appendix B gives a self-contained treatment of

essential conditional pairwise exchangeability and the equivalence with essential pair-
wise exchangeability under a prior.

2. Incomplete-information games with a continuum of agents

2.1 Agents, types, and anonymity in payoffs

Let (A, A, α) be a complete atomless measure space of agents with α(A) = 1. Given
this space of agents, consider imperfect-information games with the following structure.
First, nature chooses an exogenous parameter θ from some set � and, for each agent a,
a type ta from a set Ta. Then each agent a observes his or her own type ta and chooses
an action sa from a set Sa. Given the exogenous parameter θ, the type ta, the action sa,
and the actions sa′ of the other agents, a′ ∈ A−a := A\{a}, agent a receives the payoff
ua(θ, ta, sa, {sa′ }a′∈A−a ). The properties of the function ua are discussed later.

Because the agent observes ta before choosing an action, the action sa is likely to
depend on ta. A strategy for the agent is a function σ(·, a) from Ta to Sa that indicates
how the chosen action depends on ta.

To model the moves of nature, I assume that there is a complete probability space
(�, F , P ), a �-valued random variable θ̃(·), and, for each a′ ∈ A, a random variable
τ(·, a′ ), both on (�, F , P ), such that θ is the realization of the random variable θ̃(·) and,
for each a′ ∈ A, the type of agent a′ is the realization of the random variable τ(·, a′ ).
Given this stochastic specification, a strategy σ(·, a) of agent a is a best response to the
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strategies σ(·, a′ ) of agents a′ ∈A−a if
∫
�
ua

(
θ̃(ω), τ(ω, a), σ

(
τ(ω, a), a

)
,
{
σ

(
τ
(
ω, a′), a′)}

a′∈A−a
)
dP(ω)

≥
∫
�
ua

(
θ̃(ω), τ(ω, a), σ̂

(
τ(ω, a), a

)
,
{
σ

(
τ
(
ω, a′), a′)}

a′∈A−a
)
dP(ω) (2.1)

for all strategies σ̂(·, a) that agent a might choose. A non-cooperative equilibrium is a
strategy constellation {σ ·, a′}a′∈A such that, for (almost) all a ∈ A, σ(·, a) is a best re-
sponse to {σ(·, a′ )}a′∈A\{a}.

To understand this specification, consider the example of a bank run. In the private-
values specification of Bryant (1980) or Diamond and Dybvig (1983), there is no macro
variable θ̃(·) that plays a role. Each agent observes his or her own type τ(ω, a), to be
interpreted as the agent’s degree of patience. The agent’s action sa = σ(τ(ω, a), a), with-
drawing funds from the bank or not, can be made to depend on τ(ω, a); it also depends
on the agent’s expectations about the other agents’ behaviors, as indicated by the term
{σ(τ(ω, a′ ), a′ )}a′∈A−a . In the absence of any other information about the other agents,
this effect is implicit in the dependence of the action σ(τ(ω, a), a) on τ(ω, a) and on
the information that is contained in the observation that the agent’s own type takes the
value τ(ω, a).

In the common-value specifications of Rochet and Vives (2004) and Goldstein and
Pauzner (2005), there is a macro variable θ̃(·) that plays a role, namely the underly-
ing fundamental that determines the bank’s solvency, e.g., the quality of the bank’s as-
sets. In these models, the fundamental itself is not observed, but each agent’s type
includes a possibly noisy signal about the fundamental as well as (or instead of) the
agent’s degree of patience or any other preference parameter. The dependence of the
choice σ(τ(ω, a), a) on the type τ(ω, a) reflects not only the information about the other
agents’ preference parameters, but also the information about the other agents’ signals
about the fundamental that is contained in the observation that the agent’s own type
takes the value τ(ω, a).

Without loss of generality, I assume that the type space Ta and the action space Sa
are the same for all agents, i.e., for some T and S, Ta = T and Sa = S for all a ∈ A.14

I also assume that the parameter space �, the type space T , and the action space S are
complete separable metric spaces; they are endowed with the Borel σ-algebras B(�),
B(T ), and B(S), and the spaces M(�), M(T ), and M(S) of probability measures on �,
T , and S are endowed with the topology of weak convergence and the associated Borel
σ-algebras B(M(�)), B(M(T )), and B(M(S)).

The best-response condition (2.1) depends on the other agents’ names. In the de-
pendence of the payoff ua on {sa′ }a′∈A−a , it can make a difference whether action s′ ∈ S
is taken by agent a′ and action s′′ is taken by agent a′′ or the other way around. The
following assumption eliminates this possibility.

14If different agents had different type spaces or action spaces, one could always replace them by the
union of type spaces and the union of action spaces, with suitable assumptions about τ and ua, a ∈ A,
ensuring that the “added” types and actions are irrelevant.
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Anonymity in Payoffs. There exists a continuous function u∗
a :�×T ×S×M(S) such

that

ua
(
θ, ta, sa, {sa′ }a′∈A−a

) = u∗
a

(
θ, ta, sa,D

(
{sa′ }a′∈A−a

))
(2.2)

for all a ∈A, for all θ ∈�, ta ∈ Ta, sa ∈ Sa, and all constellations {sa′ }a′∈A−a of actions
of agents a′ ∈ A−a for which the cross-section distribution D({sa′ }a′∈A−a ) is well
defined.

Anonymity in payoffs implies that agent a’s payoff depends on the other agents’ ac-
tions only through the cross-section distribution D({sa′ }a′∈A−a ). This property implies,
in particular, that the agent’s payoff is unchanged under any permutation of the other
agents’ names.15

The cross-section distribution D({sa′ }a′∈A−a ) is a measure on S such that, for any set
B ∈ B(S),

D
(
{sa′ }a′∈A−a

)
(B) = α−a

({
a′ ∈A−a|sa′ ∈ B})

.

For this measure to be well defined, the map a′ �→ sa′ must be measurable. For

{sa′ }a′∈A−a = {
σ

(
τ
(
ω, a′), a′)}

a′∈A−a ,

this requirement is satisfied if the mappings a′ �→ τ(ω, a′ ) and (t, a′ ) �→ σ(t, a′ ) are mea-
surable.

Since τ is part of the exogenous data, measurability of τ is imposed by assumption.
Following Sun (2006) and Qiao et al. (2016), I assume that τ is measurable with respect
to a Fubini extension of the product σ-algebra F ⊗A. To make this assumption precise,
I first define the concept of a Fubini extension.

Fubini Extension. Given two complete probability spaces (�, F , P ) and (I, I , λ),
the probability space (� × I, W ,Q) is a Fubini extension of the product space
(� × I, F ⊗ I , P ⊗ λ) if F ⊗ I ⊂ W , Q|F ⊗ I =P ⊗ λ, and, for any real-valued Q-
integrable function f on (� × I, W ), (i) the sections f (·, i) and f (ω, ·) are inte-
grable, respectively, on (�, F , P ) for λ almost all i ∈ I and on (I, I , λ) for P-almost
all ω ∈�, and (ii) the functions

i �→
∫
�
f (ω, i)dP(ω) and ω �→

∫
I
f (ω, i)dλ(i) (2.3)

15If the measure space (A, A, α) is homogeneous, for example, if (A, A, α) is a hyperfinite Loeb
space, invariance to measurable permutations of agents’ names is in fact equivalent to the require-
ment that the other agents’ actions affect the agent’s payoff only through their cross-section distribu-
tion; see Khan et al. (1999, Section 4). Notice that the Lebesgue unit interval is not homogeneous,
so the requirement that the other agents’ actions affect the agent’s payoff only through their cross-
section distribution is actually stronger than the requirement of invariance to measurable permuta-
tions of agents’ names. The reason is that the Lebesgue σ-algebra is based on neighborhood struc-
tures and, therefore, the set of measurable permutations of names is smaller than required for equiva-
lence.



472 Martin F. Hellwig Theoretical Economics 17 (2022)

are integrable, respectively, on (I, I , λ) and (�, F , P ) with
∫
�×I

f (ω, i)dQ =
∫
�

[∫
I
f (ω, i)dλ(i)

]
dP(ω)

=
∫
I

[∫
�
f (ω, i)dP(ω)

]
dλ(i). (2.4)

Remark 1. Given two complete probability spaces (�, F , P ) and (I, I , λ), and a Fu-
bini extension (� × I, W ,Q) of the product space (� × I, F ⊗ I , P ⊗ λ), let f be a W-
measurable function from � × I to a complete separable metric space X , with Borel
σ-algebra B(X ). Then, for P-almost all ω ∈�, the cross-section distribution

D
({
f (ω, i)

}
i∈I

)
:= λ ◦ f (ω, ·)−1 (2.5)

is well defined and the mapping

ω �→D
({
f (ω, i)

}
i∈I

)
(2.6)

from (�, F ) into the space M(X ) of probability measures on X is measurable, where
M(X ) is endowed with the Borel σ-algebra B(M(X )) that is induced by the topology of
weak convergence on M(X ).

To reflect the fact that a given Fubini extension (� × I, W ,Q) of the product (� ×
I, F ⊗ I , P ⊗ λ) has (�, F , P ) and (I, I , λ) as its marginal spaces, I write W = F � I and
Q= P�λ, so the notation (�×I, F � I , P�λ) refers to a Fubini extension of the product
(�× I, F ⊗ I , P ⊗ λ).

As a matter of notation, I will sometimes identify the space (I, I , λ) in the definition
of a Fubini extension with the space (A, A, α) of all agents and sometimes with the space
(A−a, A−a, α−a ) of all agents other than a, where A−a is the σ-algebra of sets in A that
do not contain a and α−a := α|A−a is the restriction of the measure α to A−a. One easily
checks that if (� ×A, F � A, P � α) is a Fubini extension of the product (� ×A, F ⊗
A, P ⊗ α), then, for any a ∈A, (�×A−a, F �A−a, P � α−a ) is a Fubini extension of the
product (�×A−a, F ⊗A−a, P ⊗ α−a ), where F �A−a is the family of setsX ⊂�×A−a
such that X = Y\(� × {a}) for some Y ∈ F � A for some X = Y\(� × {a}) for some
Y ∈F �A and P � α−a is the restriction of P � α to F �A−a.

The product (�× I, F ⊗ I , P ⊗ λ) typically admits many Fubini extensions; indeed,
(�×I, F ⊗ I , P⊗λ) is a Fubini extension of itself. I take one Fubini (�×A, F�A, P�α)
of (� ×A, F � A, P � α) as given throughout the paper. In Section 3, I introduce the
requirement that the chosen Fubini extension be rich, a condition that Sun (2006) intro-
duced as a basis for proving an exact law of large numbers for a continuum of nonde-
generate random variables. Richness precludes the product space (�× I, F ⊗ I , P ⊗λ).

For the given Fubini extension, I impose the following measurability assumption.

Measurability of Types. The function τ is a measurable mapping from the Fubini ex-
tension (�×A, F�A, P�α) of the product probability space (�×A, F⊗A, P⊗α)
to the type space T .
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From Remark 1, one immediately obtains two further measurability properties.16

Remark 2. For P-almost allω ∈� and any a ∈A, the cross-section distribution of types
of agents other than a,D({τ(ω, a′ )}a′∈A−a ) = α−a ◦τ(ω, ·)−1, is well defined and the func-
tion

ω �→D
({
τ
(
ω, a′)}

a′∈A
)

is a measurable mapping from (�, F ) into M(T ).

Remark 3. Assume that the mapping (t, a′ ) �→ σ(t, a′ ) from T ×A−a into S is measur-
able. Then for P-almost allω ∈� and any a ∈A, the cross-section distribution of actions
of agents other than a,

D(
{
σ

(
τ
(
ω, a′), a′}

a′∈A−a
) = α−a ◦ σ(

τ(ω, ·), ·)−1
,

is well defined and the function

ω �→D
({
σ

(
τ
(
ω, a′), a′)}

a′∈A−a
)

is a measurable mapping from (�, F ) into M(S).

Given the assumption of anonymity in payoffs, Remark 3 implies that if the mapping
(t, a′ ) �→ σ(t, a′ ) is measurable, the best-response condition (2.1) can be rewritten in the
form ∫

�
u∗
a

(
θ̃(ω), τ(ω, a), σ

(
τ(ω, a), a

)
,D

({
σ

(
τ
(
ω, a′), a′)}

a′∈A−a
))
dP(ω)

≥
∫
�
u∗
a

(
θ̃(ω), τ(ω, a), σ̂

(
τ(ω, a), a

)
,D

({
σ

(
τ
(
ω, a′), a′)}

a′∈A−a
))
dP(ω). (2.7)

In this formulation, agents’ names still matter. To be sure, agent a cares only about
the distribution D({σ(τ(ω, a′ ), a′ )}a′∈A−a ) of the other agents’ actions, but this distribu-
tion depends on the interplay between the type constellation {ta′ }a′∈A−a and the strategy
constellations {σ(·, a′ )}a′∈A−a of the other agents.

If the other agents all use the same (measurable) strategy σ∗ : T �→ S, this interplay
takes a very simple form and one has

D
({
σ

(
τ
(
ω, a′), a′)}

a′∈A−a
) =D({

τ
(
ω, a′)}

a′∈A−a
) ◦ (

σ∗)−1
, (2.8)

so that the agent is only concerned about the cross-section distribution of the other
agents’ types and does not care about which agent has which type. However, the as-
sumption that all other agents use the same strategy is problematic because strategy
choices are endogenous. With enough symmetry in the exogenous data, equilibrium
strategy choices may in fact be symmetric, but that would be very special. Even if the
payoff function u∗

a is the same for all a, the assumptions that I have imposed so far are
not sufficient for this conclusion.

16Here and elsewhere in the paper, it is useful to recall that, ifQ is a measure on a spaceX and f is a mea-
surable function fromX to some other space Y , thenQ ◦ f−1, a measure on Y , indicates the distribution of
f (x) that is induced when x is distributed asQ.
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2.2 Anonymity in beliefs and exchangeability of types

If the other agents choose different strategies, asymmetries in the beliefs that agent
a has about the types ta′ and ta′′ of agents a′ and a′′ may affect the agent’s behavior.
To see the role of beliefs, note that if a regular conditional distribution ba(·|τ(·, a)) for
(θ, {τ(·, a′ )}a′∈A−a ) given τ(·, a) exists, one can rewrite (2.7) in the form

∫
�

∫
�×Ra

u∗
a

(
θ, τ(ω, a), σ

(
τ(ω, a), a

)
,

D
({
σ

(
ta′ , a′)}

a′∈A−a
))
dba

(
θ, {ta′ }a′∈A−a|τ(ω, a)

)
dP(ω)

≥
∫
�

∫
�×Ra

u∗
a

(
θ, τ(ω, a), σ̂

(
τ(ω, a), a

)
,

D
({
σ

(
ta′ , a′)}

a′∈A−a
))
dba

(
θ, {ta′ }a′∈A−a|τ(ω, a)

)
dP(ω); (2.9)

here ba(·|ta ) is a measure on the product (� × Ra, B(�) ⊗ Ra ), where Ra is the range
of the mapping ω �→ τa(ω) := {τ(ω, a′ )}a′∈A−a , and Ra is the coarsest σ-algebra on Ra
under which the mapping ω �→ τa(ω) from (�, F ) to Ra is measurable.

Trivially, the strategy σ(·, a) satisfies the best-response condition (2.9) if and only if,
for P-almost all ω ∈�, the action σ(τ(ω, a), a) maximizes the conditional expectation

∫
�

∫
�×Ra

u∗
a

(
θ, τ(ω, a), sa,D

({
σ

(
ta′ , a′)}

a′∈A−a
))
dba

(
θ, {ta′ }a′∈A−a|τ(ω, a)

)
(2.10)

over the set S. Maximization of (2.10) however, depends on the belief ba(·|τ(ω, a)). If
this belief treats the types ta′ and ta′′ of agents a′ and a′′ asymmetrically, the agent’s best
response to the other agents’ strategies will reflect this asymmetry.

To eliminate the impact of the other agents’ names on agent a’s beliefs, I use a ver-
sion of de Finetti’s notion of exchangeability. The basic idea is that agent a regards the
random variables τ(·, a′ ), a′ ∈ A, as being symmetric in the sense that their joint dis-
tribution is unchanged by a permutation of the agents’ names. Whereas de Finetti as-
sumed mutual exchangeability, Hammond and Sun (2006, 2008) and Qiao et al. (2016)
showed that, with a large family of random variables, mutual exchangeability is essen-
tially equivalent to pairwise exchangeability. The word “essential” refers to the fact that
the properties hold for all but a negligible set of random variables in the family.

Exchangeability. Given two complete probability spaces (�, F , P ) and (I, I , λ), and
a family f (·, i), i ∈ I, of F-measurable functions from � to a complete separable
metric space X with Borel σ-algebra B(X ), the random variables f (·, i), i ∈ I, are
essentially pairwise exchangeable if there exists a Borel probability measure π on
(X ×X , B(X ) × B(X )) such that, λ-almost all i1 ∈ I,

P
(
f (·, i1 )−1(B1 ) ∩ f (·, i2 )−1(B2 )

) = π(B1 ×B2 )

for λ-almost all i2 ∈ I and for all B1, B2 ∈ B(X ).
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In the present context, there are two ways to think about exchangeability. First, given
the role of beliefs in the objective function (2.10), one can think about exchangeability
as a property of beliefs. Second, in a common-prior model, one can also think about ex-
changeability as a property of the initial move of nature. In the first case, exchangeability
is a property of the other agents’ type random variables under the beliefs of a given agent
with a given type. In the second case, exchangeability is a property of all agents’ types
under the common prior. From the perspective of game theory, it is more interesting to
consider exchangeability as a property of beliefs, because beliefs matter for individual
choices, and the mapping from types to beliefs is crucial for the relation between infor-
mation as embodied in beliefs and strategic behavior. In contrast, from the perspective
of applied economics, exchangeability appears as a property of a common prior, which
models the overall environment one wants to study.

Fortunately, there is no need to choose between the two approaches because they
turn out to be equivalent, at least in those cases where a common prior exists. I there-
fore treat both of them in parallel. To avoid confusion, I use the term “exchangeability
of types” for the property at the level of the mapping τ and the term “anonymity in be-
liefs” for the property at the level of the belief ba(·|ta ) of agent a with type τ(·, a) = ta.
The latter can be interpreted as conditional exchangeability; I nevertheless use the term
“anonymity in beliefs” because it emphasizes the parallel to anonymity in payoffs and
because anonymity in beliefs does not require beliefs to be interpreted as conditional
distributions.17

Anonymity in Beliefs. For given a ∈ A and ta ∈ T , the measure ba(·|ta ) on (� ×
Ra, B(�) ⊗ Ra ) satisfies anonymity in beliefs if, under this measure, the types ta′
of agents a′ �= a are essentially pairwise exchangeable.

Exchangeability of Types. Given the measurable mapping τ from the Fubini exten-
sion (�×A, F �A) of the product space (�×A, F ⊗A) to the type space T , the
random variables τ(·, a), a ∈A, are essentially pairwise exchangeable.

If we think about beliefs as conditional distributions and about anonymity in be-
liefs as a property that holds almost surely, rather than just for some type ta, then, from
an ex ante perspective, anonymity in beliefs is a form of conditional exchangeability of
the random variables τ(·, a′ ), a′ ∈A−a. The following result shows that this conditional
exchangeability is in fact equivalent to exchangeability.

Proposition 4. Given a measurable mapping τ from the Fubini extension (�×A, F �
A, P�α) of the product probability space (�×A, F ⊗A, P⊗α) to the type space T and a
function ba from T ×A to the space of probability measures on (Ra, Ra ) such that, for α-
almost all a ∈A, ba(·|τ(·, a)) is a regular conditional distribution for {τ(·, a′ )}a′∈A−a given
τ(·, a), the following statements are equivalent:

(a) For α-almost every a ∈ A, for P-almost all ω ∈ �, the probability measure
ba(·|τ(ω, a)) satisfies anonymity in beliefs.

(b) The random variables τ(·, a), a ∈A, are essentially pairwise exchangeable.

17This is important if one follows Gul (1998).
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2.3 The macro–micro decomposition of uncertainty

Anonymity in beliefs and exchangeability of types have two important implications:
First, they ensure that agents’ best responses to the other agents’ strategies do not de-
pend on the other agents’ names in the sense of who is doing what. Second, they provide
for a decomposition of uncertainty into a macro and a micro component, with a law of
large numbers holding for the latter.

As mentioned in the Introduction, the macro–micro distinction should not be con-
fused with the distinction between the common prior and the belief of any individual
with a given type. Proposition 4 ensures that if the macro–micro decomposition is ob-
tained at the level of the prior, then, for almost every agent, it is also almost surely ob-
tained at the level of beliefs of that agent: either the macro–micro decomposition is
obtained at both levels or it is obtained at neither.

For models with a continuum of random variables, Hammond and Sun (2003, 2008)
show that the property of essential pairwise exchangeability is equivalent to the property
of essential pairwise conditional independence relative to some countably generated
σ-algebra, with identical conditional distributions. Moreover, Qiao et al. (2016) show
that, with measurability relative to a Fubini extension, the conditioning σ-algebra can
be identified with the algebra generated by the cross-section distributions of the ran-
dom variables in question, and by a conditional law of large numbers, the conditional
probability distribution of any one of the random variables and the cross-section sam-
ple distribution coincide. The following definition and propositions adapt their analysis
to the present setting.

Essential Pairwise Conditional Independence. Given two complete probability spa-
ces (�, F , P ) and (I, I , λ), a countably generated sub-σ-algebra C of F , and a fam-
ily f (·, i), i ∈ I, of F-measurable functions from � to a complete separable met-
ric space X with Borel σ-algebra B(X ), the random variables f (·, i), i ∈ I, are es-
sentially pairwise conditionally independent given C if, for λ-almost all i1 ∈ I, the
random variables f (·, i1 ) and f (·, i2 ) are conditionally independent given C, for λ-
almost all i2 ∈ I.

Proposition 5. Given the �-valued random variable θ̃ on (�, F , P ) and given a mea-
surable mapping τ from the Fubini extension (�×A, F �A, P�α) of the product proba-
bility space (�×A, F ⊗A, P ⊗α) to the type space T , the following statements are equiv-
alent:

(a) The random variables τ(·, a), a ∈A, are essentially pairwise exchangeable.

(b) The random variables τ(·, a), a ∈A, are essentially pairwise conditionally indepen-
dent given the sub-σ-algebra D of F that is generated by the mapping

ω �→D
({
τ(ω, a)

}
a∈A

)
, (2.11)

and, moreover, for α-almost every a ∈A, the mapping (2.11) is a regular conditional dis-
tribution for τ(·, a) given D.
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Proposition 6. Given the �-valued random variable θ̃ on (�, F , P ) and given a mea-
surable mapping τ from the Fubini extension (�×A, F �A, P � α) of the product prob-
ability space (�×A, F ⊗A, P⊗α) to the type space T and a function b from T ×A to the
space of probability measures on (�× Ra, B(�) × Ra ) such that, for a-almost all a ∈A,
b(·|τ(·, a), a) is a regular conditional distribution for (θ̃(·), {τ(·, a′ )}a′∈A−a ) given τ(·, a),
the following statements are equivalent:

(a) For α-almost every a ∈ A, for P-almost all ω ∈ �, the probability measure
ba(·|τ(ω, a)) satisfies anonymity in beliefs.

(b) For α-almost every a ∈ A, for P-almost all ω ∈ �, under the probability measure
ba(·|τ(ω, a)), the types ta′ of agents a′ �= a are essentially pairwise conditionally in-
dependent given the sub-σ-algebra D̂ of Ra that is generated by the mapping

{ta′ }a′∈A−a �→D
(
{ta′ }a′∈A−a

)
, (2.12)

and, moreover, for α−a-almost every a′ ∈A−a, the mapping (2.12) is a regular conditional
distribution for ta′ given D̂.

Propositions 5 and 6 have two components. One component asserts the equivalence
of exchangeability of types or anonymity in beliefs with essential pairwise conditional
independence (with identical conditional distributions). The other component asserts
a conditional law of large numbers whereby the cross-section distribution of types is
almost surely equal to the common conditional distribution of types given the σ-algebra
that is generated by the cross-section distributions.

Conditional independence and the validity of the exact law of large numbers over
the continuum of agents provide for a decomposition of uncertainty into macro and
micro components. The macro component concerns the cross-section distribution of
types; the micro component concerns the type of each individual agent. Conditional in-
dependence and the law of large numbers ensure that, conditional on the cross-section
distribution of types, each agent’s individual type has a probability distribution that is
equal to the cross-section distribution.

These considerations apply at the level of individual beliefs as well as the prior.
Whereas the macro–micro decomposition at the level of the prior can be given a sort
of “objective” interpretation, at the level of beliefs, the same decomposition enters the
thinking of agent a about the types of agents a′ �= a. The link between the two formula-
tions is provided by Proposition 4.

The formulation of Proposition 6, which relies on the specification of beliefs in terms
of regular conditional distributions under a common prior, may create an impression
that anonymity in beliefs and the macro–micro decomposition should really be treated
as properties of the common prior. Such an impression would, however, be mistaken.
The following result provides an analogue to Proposition 6 that does not refer to a com-
mon prior.

Proposition 7. For any a ∈A and ta ∈ T , the measure ba(·|ta ) satisfies anonymity in be-
liefs if and only if there exists a countably generated sub-σ-algebra Ca ⊂ B(�) ×Ra and a
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Ca-measurable mapping μ from�×Ra to the space of measures on (�×Ra, B(�) ×Ra )
such that, under the measure ba(·|ta ), the types ta′ of agents a′ �= a are essentially pairwise
conditionally independent and identically distributed with the common regular condi-
tional distribution μ(·). If the measure ba(·|ta ) ◦ τa(·) on (�, F ) is absolutely continuous
with respect to P , the sub-σ-algebra Ca coincides with the σ-algebra D̂ of Ra that is gen-
erated by the mapping

{ta′ }a′∈A−a �→D
(
{ta′ }a′∈A−a

)
, (2.13)

and the regular conditional distribution μ(·) coincides with the mapping (2.13).

The first half of Proposition 7 relies on Hammond and Sun (2008); the second half
relies on Qiao et al. (2016). In the second statement, the requirement that ba(·|ta ) ◦ τa(·)
on (�, F ) be absolutely continuous with respect to P ensures that the projection map-
ping ({ta′ }a′∈A−a , â) �→ tâ is measurable with respect to a Fubini extension of the product
σ-algebra (B(�) ×Ra ) ⊗A−a, as required for the exact law of large numbers. The space
(�×Ra, B(�) ×Ra, ba(·|ta )) can then take the place of the measurable space (�, F , P ).

2.4 Allowing for additional macro uncertainty

The preceding analysis makes no reference to the random variable θ̃(·), which concerns
all agents alike and may, therefore, be thought of as a “macro” variable. For example, in
Proposition 6, the belief ba(·|τ(ω, a)) of agent a with type τ(ω, a) concerns the random
variable θ̃(·) as well as the constellation {τ(·, a′ )}a′∈A−a of other agents’ types, but the
definition of anonymity in beliefs and the conditional-independence characterization
in statement (b) of the proposition make no reference to θ̃(·). In these statements, the
uncertainty about θ̃(·) is effectively integrated out.

This omission, however, is a matter of exposition rather than substance. An impor-
tant result in Hammond and Sun (2006) implies that if the random variables τ(·, a),
a ∈ A, are essentially pairwise conditionally independent given a sub-σ-algebra D of
F , then these random variables are also essentially pairwise conditionally independent
given any sub-σ-algebra C of F such that D ⊂ C. Given this result, one easily obtains the
following strengthenings of Propositions 5 and 6.

Proposition 8. Given the �-valued random variable θ̃ on (�, F , P ) and given a mea-
surable mapping τ from the Fubini extension (�×A, F �A, P�α) of the product proba-
bility space (�×A, F ⊗A, P ⊗α) to the type space T , the following statements are equiv-
alent:

(a) The random variables τ(·, a), a ∈A, are essentially pairwise exchangeable.

(b*) The random variables τ(·, a), a ∈ A, are essentially pairwise conditionally inde-
pendent given the sub-σ-algebra D∗ of F that is generated by the mapping

ω �→ (
θ̃(ω),D

({
τ(ω, a)

}
a∈A

))
, (2.14)
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and, moreover, for α-almost every a ∈A, the mapping (2.11) is a regular conditional dis-
tribution for τ(·, a) given D∗.

Proposition 9. Given the �-valued random variable θ̃ on (�, F , P ) and given a mea-
surable mapping τ from the Fubini extension (�×A, F �A, P � α) of the product prob-
ability space (�×A, F ⊗A, P⊗α) to the type space T and a function b from T ×A to the
space of probability measures on (�× Ra, B(�) ⊗ Ra ) such that, for a-almost all a ∈A,
ba(·|τ(·, a)) is a regular conditional distribution for (θ(·), {τ(·, a′ )}a′∈A−a given τ(·, a), the
following statements are equivalent:

(a) For α-almost every a ∈ A, for P-almost all ω ∈ �, the probability measure
ba(·|τ(ω, a)) satisfies anonymity in beliefs.

(b*) For α-almost every a ∈A, for P-almost all ω ∈ �, under the probability measure
ba(·|τ(ω, a)), the types ta′ of agents a′ �= a are essentially pairwise conditionally
independent given the sub-σ-algebra D̂∗ of B(�) ⊗ Ra that is generated by the
mapping

(
θ, {ta′ }a′∈A−a

) �→ (
θ,D

(
{ta′ }a′∈A−a

))
, (2.15)

and, moreover, for α−a-almost every a′ ∈A−a, the mapping

(
θ, {ta′ }a′∈A−a

) �→D
(
{ta′ }a′∈A−a

)

is a regular conditional distribution for ta′ given D̂∗.

To appreciate the difference between Propositions 8 and 9 on the one hand and
Propositions 5 and 6 on the other hand, it is useful to go back to the distinction between
models with private values and models with common values that was made in the Intro-
duction. For a standard model of liquidity provision and bank runs, Propositions 5 and
6 capture the essence of the private-values model of Diamond and Dybvig (1983), where
agents think about other agents’ types only as these types. For a model of information-
based runs, as in Rochet and Vives (2004) or Goldstein and Pauzner (2005), Propositions
8 and 9 provide the basis for dealing with the common-value aspects involved in agents’
being concerned about the fundamental θ̃(·), knowing that their own type provides a
noisy signal of θ̃(·) and that θ̃(·) in turn determines the signals received by others.

In thinking about the other agents’ types, the agent appreciates that, conditional on
θ̃(·) and on the cross-section distribution of types, the other agents’ types are essentially
pairwise independent and an exact law of large numbers holds. Therefore, he or she
will form beliefs about the joint distribution of θ and D({ta′ }a′∈A−a ), while realizing that
the (value of the regular conditional) probability distribution for any one other agent’s
type is D({ta′ }a′∈A−a ). Any effect of the agent’s beliefs about θ on his or her beliefs about
D({ta′ }a′∈A−a ) will be contained in the joint distribution of these two variables or, equiv-
alently, the conditional probability distribution of δ(·) given the observation of θ.
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2.5 Macro beliefs and strategic behavior

The fact that the macro–micro decomposition of uncertainty is obtained at the level of
beliefs as well as the common prior is important because strategic behavior depends on
beliefs. From (2.9) and (2.10) above, we know that, with anonymity in payoffs, an agent’s
strategic behavior depends on the agent’s probabilistic beliefs about the cross-section
distribution of the other agents’ actions. The following result, which encompasses the
situations treated in both Propositions 6 and 7, shows that this cross-section distribution
of the other agents’ actions can be expressed in terms of the cross-section distribution of
the other agents’ types and the cross-section distribution of the other agents’ strategies.

Proposition 10. Given a ∈ A and ta ∈ T , assume that, under the measure ba(·|ta ) on
(�× Ra, B(�) ⊗ Ra ), the types ta′ of agents a′ �= a are essentially pairwise conditionally
independent given the sub-σ-algebra D̂ of B(�) ⊗Ra that is generated by the mapping

{ta′ }a′∈A−a �→D
(
{ta′ }a′∈A−a

)
. (2.16)

Assume also that, for α−a-almost every a′ ∈A−a, the mapping (2.16) is a regular condi-
tional distribution for ta′ given D̂. If the mapping (t, a′ ) �→ σ(t, a′ ) from T ×A−a into S is
measurable, then

D
({
σ

(
ta′ , a′)}

a′∈A−a
) =

∫
â∈A−a

D
(
{ta′ }a′∈A−a

) ◦ σ(·, â)−1 dα(â) (2.17)

for ba(·|ta )-almost all {ta′ }a′∈A−a ∈Ra.

Thus, with anonymity in beliefs, the cross-section distribution of actions of agents
other than a depends only on the cross-section distribution of types and the constel-
lation {σ(·, â)}â∈A−a of the other agents’ strategies. In fact, (2.17) shows that the strate-
giesσ(·, â), â ∈A−a, affect the distributionD({σ(ta′ , a′ )}a′∈A−a ) only through their cross-
section distribution �a :=D({σ(·, a′ )}a′∈A−a ). Therefore, one can write

D
({
σ

(
ta′ , a′)}

a′∈A−a
) =

∫
ST
D

(
{ta′ }a′∈A−a

) ◦ (
σ∗)−1

d�a
(
σ∗), (2.18)

which is unchanged under any permutation of the other agents’ names. In (2.18), �a is
a measure on the space of measurable functions from T to S, and σ∗, the variable of
integration, is a generic element of this function space.

With anonymity in beliefs as well as payoffs, expression (2.10) for agent a’s condi-
tionally expected payoff from action sa with type τ(ω, a) and belief ba(·|τ(ω, a)) can then
be written as∫

�×Ra
u∗
a(θ, τ(ω, a), sa,

∫
ST
D

(
{ta′ }a′∈A−a

) ◦ (
σ∗)−1

d�a
(
σ∗))dba

(
θ, {ta′ }a′∈A−a|τ(ω, a)

)
. (2.19)
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In this expression, the agent’s belief ba(·|τ(ω, a)) concerns only the cross-section type
distributionD({ta′ }a′∈A−a ). One can, therefore, rewrite (2.19) in the form

∫
�×M(T )

u∗
a(θ, τ(ω, a), sa,

∫
ST
δ ◦ (

σ∗)−1
d�

(
σ∗))db∗

a

(
θ, δ|τ(ω, a)

)
, (2.20)

where, for any ta ∈ T ,

b∗
a(·|ta ) := ba(·|ta ) ◦ (

π�(·),D(·))−1
(2.21)

is the probability distribution for (θ,D({ta′ }a′∈A−a )) that is induced by ba(·|ta ). In (2.21),
π� is the projection from �×Ra to �.

I refer to b∗
a(·|ta ) as the macro belief of agent a with type ta. Because the measure α

assigns zero weight to the individual agent a, we also have

D
(
{ta′ }a′∈A−a

) =D(
{ta′ }a′∈A

)

for all {ta′ }a′∈A and all a. Under exchangeability of types, therefore, for α-almost all a ∈A
and P-almost all ω ∈�, the macro belief b∗

a(τ(ω, a)) depends on a only through τ(ω, a)
and can be written as b∗(τ(ω, a)). The fact that the measure α assigns zero weight to the
individual agent a also implies that the distribution�a :=D({σ(·, a′ )}a′∈A−a ) of strategies
pursued by agents other than a is the same for all a.

Thus, for a ∈A and P-almost all ω ∈�, one can rewrite (2.20) in the form∫
�×M(T )

u∗
a

(
θ, τ(ω, a), sa, 
(δ, �)

)
db∗(θ, δ|τ(ω, a)

)
, (2.22)

where


(δ, �) :=
∫
ST
δ ◦ (

σ∗)−1
d�

(
σ∗)) (2.23)

is the cross-section distribution of actions that is induced by the cross-section distribu-
tion of types δ and the cross-section distribution of strategies �.

Anonymity in payoffs and anonymity in beliefs have thus been used to transform the
objective function in (2.1), where agents rely on beliefs and expectations about the types
and actions of every single other agent, into a form were agents rely only on beliefs and
expectations about cross-section distributions of types and cross-section distributions
of strategies of the other agents. Whereas the other agents’ names play a substantive role
in (2.10), and even more so in (2.1), they do not even appear in (2.20) or (2.22).

Expression (2.22) also indicates that, with exchangeability of types, the cross-section
distribution of strategies is the key endogenous variable in any analysis of strategic be-
havior and strategic interdependence. In this formulation, it is natural to think about
(Bayes–Nash) equilibrium in terms of distributions.

Equilibrium Strategy Distribution. A measure � on the space of measurable func-
tions σ∗ : T → S is an equilibrium strategy distribution if, for a ∈ A, there exist
strategies t �−→ σ (t, a) from T to S such that (i) � =D({σ(·, a′ )}a′∈A−a ) and (ii) for
α-almost every a ∈A and P-almost every ω ∈�, the action sa = σ (τ(ω, a), a) max-
imizes the objective (2.22) over S.
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I will not discuss under what conditions an equilibrium strategy distribution exists.
Some of the issues that arise are routine, e.g., in addition to continuity of u∗

a, one needs
a compactness condition on S or a boundary condition on u∗

a to ensure that, for any
τ(ω, a) ∈ T and 
 ∈ M(S), there exists sa ∈ S that maximizes (2.22). One also needs
an additional measurability condition on u∗

a to ensure that the action σ (τ(ω, a)) that
maximizes (2.22) over S can be taken to be measurable in τ(ω, a) and a.

One issue is not routine, however: Because an equilibrium strategy distribution is a
measure on a space of functions, the topology on this space and the structural properties
of utility functions and of the macro belief function must be specified in such a way
that the continuity and compactness conditions for a fixed-point argument are satisfied.
Milgrom and Weber (1985) provide such conditions for models with finitely many agents
(without anonymity). I conjecture that their arguments can be applied in the present as
well.18

3. The scope of macro uncertainty

3.1 Cross-section type distributions and other macro variables

I now turn to the question of whether anonymity in beliefs and exchangeability of types
impose any additional implicit restrictions on the mapping τ. The answer to this ques-
tion depends on the specification of the Fubini extension F�A of the product σ-algebra
F ⊗ A. For example, if F � A is equal to the product σ-algebra F ⊗ A itself, then, as
was shown by Sun (2006) and Hammond and Sun (2008), exchangeability and (condi-
tional) independence are incompatible with the measurability assumption on τ except
for the case where τ(ω, a) is the same for α-almost all a, for P-almost all ω. In this case,
the type distribution D({τ(ω, a)}a∈A ) would almost surely be degenerate, macro uncer-
tainty would only concern the value of the type, which is common to (almost) all agents,
and, conditional on the common value of the type, there would be no further individual
uncertainty.19

As discussed by Sun (2006) and Qiao et al. (2016), this degeneracy is avoided if the Fu-
bini extension F �A of the product σ-algebra F ⊗A is rich. This requirement excludes
the product σ-algebra F ⊗ I .

Richness of the Fubini Extension. A Fubini extension (�× I, F �I , P�λ) of a prod-
uct probability space (�× I, F ⊗I , P⊗λ) is said to be rich if there exists a measur-
able function h from (�× I, F � I , P � λ) to the unit interval such that (i) the ran-
dom variables h(·, i), i ∈ I, are essentially pairwise independent, i.e., for λ-almost
all i1 ∈ I, the random variables h(·, i1 ) and h(·, i2 ) are independent for λ-almost all

18I also conjecture that with an atomless measure space of agents, there is no need to allow for (mixed)
behavior strategies rather than pure strategies.

19Proposition 2.1 of Sun (2006) shows that if h is a measurable function from the product space
(� × I, F ⊗ I, P ⊗ λ) to the unit interval and if the random variables h(·, i), i ∈ I, are essentially pairwise
independent, the random variables h(·, i), i ∈ I, must be essentially trivial, i.e., for λ-almost all i ∈ I, h(·, i)
must be constant. Proposition 4 in Hammond and Sun (2008) provides a version of this result with essential
pairwise conditional independence.
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i2 ∈ I, and, moreover, (ii) for λ-almost every i ∈ I, the random variable h(·, i) has a
uniform distribution.

Conditions for the existence of a rich Fubini extension are given in Sun (2006), Sun
and Zhang (2009), and Podczeck (2010). In particular, Sun (2006) shows that a rich
Fubini extension exists if (I, I , λ) is a hyperfinite Loeb space. Sun and Zhang (2009)
show that, whereas a rich Fubini extension fails to exist if I is the unit interval with the
Lebesgue σ-algebra, an extended Lebesgue unit interval, with a larger σ-algebra, does
permit the construction of a rich Fubini extension of the product (�× I, F ⊗ I , P ⊗ λ).

The following proposition shows that if the Fubini extension F �A is rich, there is
no restriction on macro uncertainty, i.e., uncertainty about cross-section type distribu-
tions, and the only restriction on micro uncertainty comes from the principle that, for a
given cross-section distribution of types, the conditional probability distribution of the
random variable τ(·, a) is equal to the cross-section distribution of types.

Proposition 11. Let δ̃ be any M(T )-valued random variable on (�, F , P ) and let D be
the sub-σ-algebra of F that is generated by δ̃. If the Fubini extension (�×A, F �A, P �
α) is rich, there exists an F � A-measurable mapping τ from � ×A to T such that the
following statements hold:

(a) Exchangeability of types holds, i.e., the random variables τ(·, a′ ), a′ ∈A, are essen-
tially pairwise exchangeable.

(b) Conditional on D, the random variables τ(·, a′ ), a′ ∈ A, are essentially pairwise
independent and, for α-almost every a′ ∈ A, the mapping ω �→ δ̃(ω) is a regular
conditional distribution for τ(·, a′ ) given D.

(c) For P-almost all ω ∈�,

δ̃(ω) =D({
τ
(
ω, a′)}

a′∈A
)
, (3.1)

i.e., conditional on D, an exact law of large numbers holds.

(d) For α-almost every a ∈ A, there exists a function ba from T to the space of mea-
sures on (Ra, Ra ) such that ba(·|τ(·, a)) is a regular conditional distribution for
{τ(·, a′ )}a′∈A−a given τ(·, a) and, moreover, for P-almost every ω ∈ �, ba(·|τ(·, a))
satisfies anonymity in beliefs.

(e) The belief functions ba in statement (d) take the form

ba(·|ta ) =
∫
M(T )

b̂a(·|δ)dβ∗(δ|ta ), (3.2)

where b̂a(·|δ̃(·)) is a regular conditional distribution for {τ(·, a′ )}a′∈A−a given δ̃ and
β∗(·|τ(·, a)) is a regular conditional distribution for δ̃ given τ(·, a).

In addition to pulling together the findings of Propositions 4–6, Proposition 11 shows
that the objects of those propositions, namely the families τ(·, a), ba(·|τ(·, a)), a ∈ A,
of random types and of belief functions can always be well defined. Moreover, for any
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specification of the macro random variable δ̃, they can be chosen so that δ̃-almost surely
coincides with the cross-section distribution of τ(·, a), a ∈A, as well as the conditional
probability distribution given δ̃ of τ(·, a′ ), for α-almost all a′ ∈ A. Given that, for any
� ∈ M(M(T )), there is a random variable δ̃ on (�, F , P ) whose probability distribution
is �, it follows that if the Fubini extension (�× I, F � I , P � λ) is rich, any probability
distribution over cross-section distributions is admissible.

The existence result in statement (d) is nontrivial because the σ-algebra Ra is not,
in general, countably generated. The result follows from the law of iterated expecta-
tions as spelled out in (3.2). Existence of a regular conditional distribution ba(·|δ̃(·)) for
{τ(·, a′ )}a′∈A−a given δ̃ is obtained from the very construction of the random variables
τ(·, a′ ), a′ ∈ A−a. Existence of a regular conditional distribution β(τ(·, a)) for δ̃ given
τ(·, a) is obtained by standard arguments from the fact that T and M(T ) are complete
separable metric spaces, and that the σ-algebras B(T ) and B(M(T )) are countably gen-
erated.

Proposition 11 says nothing about other macro variables. However, the argument is
easily extended to allow for such variables. For any probability � on �× M(T ), there
exists a pair of random variables θ̃, δ̃ whose joint distribution is �. Given this pair, one
can use Proposition 11 to specify the type random variables τ(·, a′ ), a′ ∈A. Statement
(a) in Proposition 11 and Proposition 8 together imply that statements (b) and (c) in
Proposition 11 remain valid if conditioning on D is replaced by conditioning on D∗, the
σ-algebra that is generated by the random pair (θ̃, δ̃). Statements (d) and (e) can be
similarly extended.

3.2 Macro belief functions

Whereas Proposition 11 implies that every probability distribution over cross-section
distributions is admissible, the same cannot be said for macro belief functions. Not
every measurable function β from T to M(M(T )) is compatible with a common prior.

As is well known, in models with finitely many agents, with arbitrary belief functions,
the existence of a common prior cannot be taken for granted.20 In such models, the
conditions under which a given set of belief functions is compatible with a common
prior are very restrictive, the more so, the more agents there are. In the present setting,
with a continuum of agents and belief functions required to satisfy anonymity in beliefs,
conditions for compatibility with a common prior are less restrictive than the size of the
population might suggest, but even so, there is a problem.

Compatibility with a Common Prior. A macro belief functionβ : T → M(M(T )) ad-
mits a common prior if there exists a mapping τ : � ×A→ T that is measurable
with respect to a rich Fubini extension F �A of the product σ-algebra F ⊗A, and
for α-almost every a ∈A, there exists a regular conditional distribution ba(·|τ(·, a))
for {τ(·, a′}a′∈A−a given τ(·, a) such that for P-almost every ω ∈�, ba(·|τ(ω, a)) sat-
isfies anonymity in beliefs and the associated macro belief b∗

a(τ(ω, a)) coincides
with β(τ(ω, a)).

20Harsanyi (1967/1968), Samet (1998a,b), Feinberg (2000), Rodrigues-Neto (2009), Hellman and Samet
(2012), and Hellwig (2013).
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Proposition 12. A measurable function β : T → M(M(T )) admits a common prior if
and only if there exist measures� ∈ M(T )),� ∈ M(M(T )), and� ∈ M(T ×M(T )) such
that

�(B1 ×B2 ) =
∫
B1

β(B2|t )d�(t ) (3.3)

and

�(B1 ×B2 ) =
∫
B2

δ(B1 )d�(δ) (3.4)

for all B1 ∈ B(T ) and B2 ∈ B(M(T )).

To understand this proposition, let τ(·, a′ ), a′ ∈ A, be the family of random types
for which β is supposed to be the macro belief function. Let δ̃= δ({τ(·, a′ )}a′∈A ) be the
random variable indicating the cross-section distribution of types, and let a ∈A be such
that, conditional on δ̃(·), τ(·, a) is distributed as δ̃(·). Let � be the joint distribution of
the pair (τ(·, a), δ̃(·)), and let� and � be the marginal distributions of τ(·, a) and δ̃(·).

There are two ways to think about �. First, using the fact that β(τ(·, a)) is a regular
conditional distribution for δ̃(·) given τ(·, a), one can think about � as being derived
from the marginal distribution� of the type τ(·, a) of agent a and the macro belief func-
tion β. Second, one can think about � as being derived from the marginal distribution
� of δ̃(·) in combination with the fact that the marginal distributions of τ(·, a) and δ̃(·)
are given by� and �. The first approach yields (3.3); the second yields (3.4).

Consistency of (3.3) and (3.4) requires that

∫
B2

δ(B1 )d�(δ) =
∫
B1

β(B2|t )d�(t ) (3.5)

for all B1 ∈ B(T ) and B2 ∈ B(M(T )). To understand what this means, it is useful to note
that this condition is formally equivalent to the condition for the existence of a common
prior in a two-player model in which the type space of player 1 is T , the type space of
player 2 is M(T ), the belief function of player 1 is β, and the belief function of player
2 is the identity mapping δ �→ δ. In this two-player model, a common prior � exists if
and only if there exist agent-specific priors � for the type of player 1 and � for the type
of player 2 such that (3.5) holds for all B1 ∈ B(T ) and B2 ∈ B(M(T )), in which case � is
given by (3.3) and (3.4).

Therefore, I use arguments from the analysis of two-player games to spell out the
meaning of the consistency condition (3.5). The aim is to obtain conditions that refer
only to the macro belief function β and not also to the measures � and �, which are
endogenous. I begin with a result showing that Proposition 12 can be restated in terms
of density functions.21

21This restatement reflects the insight of Samet (1998a) that if a common prior exists, then the marginal
distributions of the types of the different participants can be represented as the invariant distributions of
Markov processes, with kernels given by compositions of the belief functions. As discussed, e.g., in Doob
(1953), Markov kernels are absolutely continuous with respect to the invariant distributions.
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Proposition 13. A measurable function β : T → M(M(T )) admits a common prior if
and only if there exist measures� ∈ M(T )),� ∈ M(M(T )), and� ∈ M(T ×M(T )) such
that the following statements are true.

(a) For �-almost every measure δ ∈ M(T ) there exists a density function g� such that

δ(B1 ) =
∫
B1

g�(t|δ)d�(t ) (3.6)

for all B1 ∈ B(T ); thus �-almost every measure δ ∈ M(T ) there exists is absolutely
continuous with respect to�.

(b) For�-almost every t ∈ T , the measure β(t ) has a density function f� such that

β(B2|t ) =
∫
B2

f�(δ|t )d�(δ) (3.7)

for all B2 ∈ B(M(T )); thus β(t ) is absolutely continuous with respect to �.

(c) The measure � is absolutely continuous with respect to the product measure�×�
and has a density function π such that

�(B1 ×B2 ) =
∫
B1

∫
B2

π(t, δ)d�(δ)d�(t ); (3.8)

moreover,

π(t, δ) = f�(δ|t ) = g�(t|δ) (3.9)

for�×�-almost all (t, δ) ∈ T ×M(T ).

The consistency condition (3.9) provides the basis for the following result.

Proposition 14. Let β be a measurable function from T to M(M(T )) and assume that
the measuresβ(t ), t ∈ T , are mutually absolutely continuous. Ifβ admits a common prior,
then the following statements hold:

(i) There exists a set D ∈ M(T ) such that β(D|t ) = 1 for all t and, moreover, the mea-
sures δ ∈D are mutually absolutely continuous.

(ii) For any t0 ∈ T , for β(t0 )-almost all δ1 ∈D and δ1-almost all t1 ∈ T , there exist den-
sity functions f1(·|t ) of the measures β(t ), t ∈ T , with respect to β(t1 ), and density
functions g1(·|δ) of the measures δ ∈Dwith respect to δ1 so that the condition

f1(δ2|t2 )
f1(δ1|t2 )

= g1(t2|δ2 )
g1(t1|δ2 )

> 0 (3.10)

holds for β(t1 )-almost all δ2 ∈ M(T ) and δ1-almost all t2 ∈ T .
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Conversely, ifβ satisfies (i) and (ii), thenβ admits a common prior. The common prior
is unique. The measures�,�, and� take the form

�(B1 ×B2 ) = λ(t1, δ1 )
∫
B1

∫
B2

f1(δ|t )
f1(δ1|t )

dβ(δ|t0 )dδ0(t )

= λ(t1, δ1 )
∫
B2

∫
B1

g1(t|δ)
g1(t1|δ)

dδ0(t )dβ(δ|t0 ) (3.11)

�(B1 ) = λ(t1, δ1 )
∫
B1

1
f1(δ0|t )

dδ0(t ) (3.12)

�(B2 ) = λ(t1, δ1 )
∫
B2

1
g1(t0|δ)

dβ(δ|t0 ) (3.13)

for B1 ∈ B(T ) and B2 ∈ M(T ), where λ(t1, δ1 )> 0 is a scaling factor ensuring that �(T ×
M(T )) = 1.

In this proposition, condition (3.10) takes the place of the consistency condition (3.9)
in Proposition 13. Both conditions are variants of Harsanyi’s (1967/1968) well known
necessary condition for the existence of a common prior for a given belief system.

Indeed the underlying argument is the same: If β admits a common prior, there are
two ways to evaluate the ratio π(t2,δ2 )

π(t1,δ1 ) of the joint distribution � of an agent’s type and
the cross-section distribution of types. One can write

π(t2, δ2 )
π(t1, δ1 )

= π(t2, δ1 )
π(t1, δ1 )

· π(t2, δ2 )
π(t2, δ1 )

= g�(t2|δ1 )
g�(t1|δ1 )

· f�(δ2|t2 )
f�(δ1|t2 )

(3.14)

as well as

π(t2, δ2 )
π(t1, δ1 )

= π(t1, δ2 )
π(t1, δ1 )

· π(t2, δ2 )
π(t1, δ2 )

= f�(δ2|t1 )
f�(δ1|t1 )

· g�(t2|δ2 )
g�(t1|δ2 )

, (3.15)

where in each case the second equation is based on (3.9). For these evaluations of the
ratio π(t2,δ2 )

π(t1,δ1 ) to be compatible with each other, one must have

g�(t2|δ1 )
g�(t1|δ1 )

· f�(δ2|t2 )
f�(δ1|t2 )

= f�(δ2|t1 )
f�(δ1|t1 )

· g�(t2|δ2 )
g�(t1|δ2 )

. (3.16)

Whereas (3.16) involves densities with respect to� and�, the mutual absolute continu-
ity of� and the measures δ ∈D, and the mutual absolute continuity� and the measures
β(t ), t ∈ T , imply that (3.16) can be rewritten as

g0(t2|δ1 )
g0(t1|δ1 )

· f0(δ2|t2 )
f0(δ1|t2 )

= f0(δ2|t1 )
f0(δ1|t1 )

· g0(t2|δ2 )
g0(t1|δ2 )

, (3.17)

where g0(t2|δ1 ), f0(δ2|t2 ), etc. are the corresponding densities with respect to some
δ0 ∈ D and β(t0 ) ∈ M(T ). Equation (3.17) is exactly Harsanyi’s (1967/1968) condition,
albeit applied to densities in a model with (possibly) a continuum of states, rather than
probabilities in a model with a finite number of states. To get from this equation to
(3.10), it suffices to set δ0 = δ1 and t0 = t1, and to note that g1(t2|δ1 ) = g1(t1|δ1 ) = 1 and
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f1(δ2|t1 ) = f1(δ2|t1 ) = 1 because the density of a measure with respect to itself is identi-
cally equal to 1.

Whereas Harsanyi’s condition is usually discussed as a necessary condition for the
existence of a common prior, Proposition 14 shows that under the given conditions, it
is also sufficient. This finding hinges on the strict positivity of the densities f0(δ|t ) and
g0(t|δ) on the relevant parts of their domains, which in turn is derived from the assump-
tion that the macro beliefs β(t ), t ∈ T , are mutually absolutely continuous.

The sufficiency part of Proposition 14 parallels the finding of Hellwig (2013) that,
in an n-player game in which any element of any player’s information partition inter-
sects any element of any other player’s information partition, for a strictly positive be-
lief system, a common prior exists if (and only if) the Harsanyi condition holds for all
quadruples that can be obtained from pairs of types for pairs of players (keeping the
other players’ types fixed). I conjecture that without the mutual-absolute-continuity as-
sumption, necessary and sufficient conditions could still be obtained along the lines of
Rodrigues-Neto (2009) or Hellman and Samet (2012) .

4. Further considerations

Anonymity in beliefs in the absence of a common prior

To conclude the paper, I briefly discuss some further issues. First, as mentioned in the
Introduction, the interpretation of belief functions as regular conditional distributions
is controversial. One may, therefore, ask what becomes of the results of this paper when
there is no common prior.

In the absence of a common prior, the belief ba(ta ) of agent a with type ta must be
taken as a given, without any relation to a prior, common or not. One can still impose
the property of anonymity in beliefs and, by the result of Hammond and Sun (2008),
one still finds that if ba(ta ) has this property, then, under this belief, relative to some
countably generated σ-algebra, the types ta′ , a′ ∈ A−a, are conditionally independent
and identically distributed. To go further and assert a conditional law of large numbers,
one needs the formalism of the Fubini extension.

In a previous version of this paper, Hellwig (2019), I actually started from the be-
liefs ba(ta ), ta ∈ T , a ∈A, with an assumption that, for some complete probability space
(�a(ta ), Fa(ta ), Pa(ta )), the belief ba(ta ) is given as

ba(ta ) = Pa(ta ) ◦ τa(·|ta )−1,

where

τa(·|ta ) = {
τa

(·, a′|ta
)}
a′∈A−a

and τa(·, ·|ta ) is a mapping from �a(ta ) ×A−a to T that is measurable with respect to a
rich Fubini extension of the product space (�a(ta ) ×A−a, Fa(ta ) ⊗ A−a, Pa(ta ) ⊗ α−a ).
With this formalism, a version of Proposition 7 is immediately available to provide for a
macro–micro decomposition of uncertainty, with an exact conditional law of large num-
bers, from the perspective of the belief ba(ta ).
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In this approach, however, where each belief is treated in isolation, with a dis-
tinct probability space (�a(ta ), Fa(ta ), Pa(ta )) supporting the Fubini formalism, it is
difficult to think about a belief function, at least if the functions τa(·|ta ), ta ∈ T ,
have different ranges. The Fubini formalism requires that the probability spaces
(�a(ta ), Fa(ta ), Pa(ta )) be complete, so even if �a(ta ) was taken to be the same for all
ta, the completions Fa(ta ) and Pa(ta ) of the σ-algebras ba(ta ) ◦ τa(·|ta ) need not be.
As shown in Hellwig (2019), the difficulty is resolved if one assumes that the measures
ba(ta ), ta ∈ T , are mutually absolutely continuous; in this case, one can replace any one
of the spaces �a(ta ) with the union of the ranges of the functions τa(·|ta ). Proposition 7
then applies to all the beliefs ba(ta ), ta ∈ T .

What about payoff-relevant aspects of names?

A referee asked how the formalism would accommodate labels that may be strategically
relevant even though they are parts of agents’ names. The example given by the referee
is location, but one can also think of profession, gender, ethnicity, and age. Indeed, as
shown by Bertrand and Mullainathan (2004), even proper names can be payoff relevant
if they are treated as signals of gender, ethnicity, or race.

In addressing the referee’s question, one must be careful about the semantics of the
word “name.” If we think about names as abstract identifiers like IP numbers, which
in and of themselves are strategically unimportant, then, by definition, labels must be
treated as parts of agents’ types, rather than their names. Paradoxical though it may
seem, in this interpretation of the word “name,” whether a person is called Marianne or
Sendhil, would be an aspect of the person’s type.

Does it make a difference? If we think of labels as being parts of agents’ names, the
space of agents takes the form A= Â×L, where Â is a space of strategically irrelevant
identifiers and L is the space of labels. For any agent a ∈ A, the value of the label for
this agent is given by the projection from A to L, �(a) = projL a. If instead we treat the
label � as a part of the agent’s type, we must replace the type τ(ω, a) of this paper by an
extended type (τ(ω, a), �(ω, a)). The latter formulation has certain advantages.

If labels are treated as parts of agents’ names, it may be appropriate to replace the as-
sumption of anonymity in beliefs or exchangeability of types by conditioning on labels,
e.g., assuming that for α ◦ �−1-almost all � ∈ L, the types τ(·, â, �), â ∈ Â, are essentially
pairwise exchangeable.

If labels are treated as parts of agents’ types, it suffices to apply the exchangeabil-
ity assumptions of this paper to the extended types τ∗(·, a) = (τ(·, a), �(·, a)), rather
than just τ(·, a), a ∈ A. This assumption would actually encompass the conditional-
exchangeability assumption that, for α ◦ �−1-almost all � ∈ L, the types τ(·, â, �), â ∈ Â,
are essentially pairwise exchangeable.

To see this, notice that with exchangeability of extended types, the pairs (τ(·, a),
�(·, a)) are essentially pairwise conditionally independent and identically distributed,
with conditioning on the σ-algebra generated by the sample cross-section distribu-
tions D({(τ(·, a′ ), �(·, a′ ))}a′∈A ). I claim that, moreover, conditional on the σ-algebra
generated by the cross-section distributions D({(τ(·, a′ ), �(·, a′ ))}a′∈A ) and the labels
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�(·, a′ ), a′ ∈ A∗, the (narrow) types τ(·, a), a ∈ A, must be essentially conditionally
independent and identically distributed, where A∗, with α(A∗ ) = 1, is the set of
agents, such that, conditional on D({(τ(·, a′′ ), �(·, a′′ ))}a′′∈A ), the pairs (τ(·, a′ ), �(·, a′ ))
are conditionally independent and identically distributed. Because, conditional on
D({(τ(·, a′′ ), �(·, a′′ ))}a′′∈A ), the σ-algebras generated by (τ(·, a), �(·, a)) and by (τ(·, a′ ),
�(·, a′ )), a′ ∈ A∗\{a}, are independent, the conditional distribution for τ(·, a) given
D({(τ(·, a′′ ), �(·, a′′ ))}a′′∈A ) and �(·, a′ ), a′ ∈ A∗, is the same as the conditional distri-
bution for τ(·, a) givenD({(τ(·, a′′ ), �(·, a′′ ))}a′′∈A ) and �(·, a). Thus, if

D
({(
τ
(·, a′′), �

(·, a′′))}
a′′∈A

) = δ and �(·, a) = �,

the conditional distribution of τ(·, a) is θ(�, δ), where θ(·, δ) is a regular conditional dis-
tribution for t given � when the pair (t, �) has the joint distribution δ. For the relation
between labels and types in the narrow sense, one thus gets the same structure as in the
case where labels are treated as parts of names and exchangeability is conditioned on
labels, but, in addition, one can accommodate macro uncertainty about labels.

Turning to strategic behavior, I first note that any effects of agents’ labels on their
own behaviors are accommodated by a simple reinterpretation of the notation. In the
formalism of this paper, the behavior of agent a depends on payoff function ua, the type
ta, and the belief ba(ta ), as well as the agent’s expectations about the strategies chosen
by the other agents. To accommodate the effects of a label �(a) or �(ω, a), it suffices
to reinterpret the triple ua, ta, and ba(ta ) in terms of an extended name a= (â(a), �(a))
and/or an extended type τ∗(ω, a) = (τ(ω, a), �(ω, a)).

Effects of agents’ labels on other agents’ behaviors presume that labels are observ-
able and that they enter the other agents’ payoff functions. For example, the payoff func-
tion of agent a in (2.1) and (2.2) might be replaced by

ua
(
θ, ta, sa,

{
(sa′ , �a′ )

}
a′∈A−a

)
, (4.1)

so that the label �a′ of agent a′ �= a affects the payoff of agent a directly as well as in-
directly, through its effect on the action sa′ = σ(τ∗(ω, a′ ), a′ ) of agent a′. In this for-
mulation, the condition of anonymity in payoffs might be reformulated so that (4.1) is
replaced by

u∗
a

(
θ, ta, sa,D

({
(sa′ , �a′ )

}
a′∈A−a

))
, (4.2)

where D({(sa′ , �a′ )}a′∈A−a ) is now the cross-section distribution of the pairs (sa′ , �a′ ) of
actions and labels of the other agents.

If we think about labels as parts of agents’ extended types, the specifications (4.1)
and (4.2) beg the question of why the payoff of agent should not also depend on ta′ , the
part of the extended type of agent a′ that is not part of the label �a′ . A straightforward
answer would be that agent a cannot observe ta′ . From this perspective, the important
distinction attached to the notion of a label is not so much between payoff-irrelevant
and payoff-relevant aspects of names as it is between observable and unobservable as-
pects of types.
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Appendix A: Proofs

Before turning to the proofs as such, I recall a few basic facts. For a reference, see, e.g.,
Billingsley (1995), in particular, p. 41ff.

• Since T is a complete separable metric space, there exists a countable family P =
{Bk}∞k=1 of sets in B(T ) that generates B(T ).

• Without loss of generality, the family P ={Bk}∞k=1 may be taken to be a π system,
i.e., a family of sets that is closed under finite intersections.

• A family Q of subsets of T is said to be a λ system if it satisfies (i) T ∈ Q, (ii) if B ∈ Q,
then T\B ∈ Q, and (iii) ifB1, B2, � � � are pairwise disjoint sets in Q, then

⋃∞
n=1Bn ∈ Q.

• Dynkin’s π − λ theorem: If P is a π system and Q is a λ system, then P ⊂ Q implies
σ(P ) ⊂ Q.

Proof of Remark 1. For any B ∈ B(T ), let χB : T → [0, 1] be the indicator function of
the set B, i.e., let χB(t ) = 1 for t ∈ B and χB(t ) = 0 for t /∈ B. Since f : � × I → T is
measurable with respect to the Fubini extension F � I of the product σ-algebra F ⊗ I ,
the composition χB ◦ f is also measurable with respect to F � I .

Let P ={Bk}∞k=1 be a countable family of subsets of T that is closed under finite inter-
sections and suppose that {Bk}∞k=1 generates B(T ). For any k, let �k be the set of ω ∈�
for which the section χB ◦ f (ω, ·) of the function is χB ◦ f -integrable on (I, I , λ). By the
Fubini property, P(�k ) = 1. Because the family {Bk}∞k=1 is countable, P(

⋂∞
k=1�k ) = 1.

Thus, for P-almost every ω ∈�, for all k, the section χBk ◦ f (ω, ·) of the function χBk ◦ f
is integrable on (I, I , λ).

Let Q be the family of subsets of T such that, for any B ∈ Q and anyω ∈ ⋂∞
k=1�k, the

section χB ◦ f (ω, ·) of the function is χB ◦ f -integrable on (I, I , λ). One easily verifies
that Q is a λ system. By the argument just given, every set in the π system P ={Bk}∞k=1
is also contained in Q. Because P generates B(T ), Dynkin’s π − λ theorem implies that
every set in P is also contained in Q. Thus, for P-almost every ω ∈ �, for all B ∈ B(T ),
the section χB ◦ f (ω, ·) of the function χBk ◦ f is integrable on (I, I , λ). Moreover, the
Fubini property implies that the functions

ω �→
∫
I
χB ◦ f (ω, i)dλ(i) (A.1)

from (�, F , P ) into [0, 1] are measurable.
For any ω ∈ ⋂∞

k=1�k and any B ∈ B(T ), we have
∫
I
χB ◦ f (ω, i)dλ(i) = λ ◦ f (ω, ·)−1(B). (A.2)

By Lemma 1 in Hammond and Sun (2003), it follows that the measurability of the func-
tion (A.1) for any B ∈ B(T ) implies the measurability of the function

ω �→ λ ◦ f (ω, ·)−1

from (�, F ) into (M(T ), B(M(T )). The remark follows immediately.
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Remark 2 is a special case of Remark 1, with (�×I, W ,Q) = (�×A, F�A, P�α) and
f = τ. Remark 3 is also a special case of Remark 1, with (�× I, W ,Q) = (�×A−a, F �
A−a, P � α−a ) and f equal to the function (ω, a′ ) �→ σ(τ(ω, a′ ), a′ ).

Proof of Proposition 4. By Proposition 17 in Appendix B, it suffices to prove that
statement (a) is equivalent to the following statement.

(a*) For α-almost all a ∈A, the random variables τ(·, a′ ), a′ ∈A−a, are essentially con-
ditionally pairwise exchangeable given C(a), where C(a) is the sub-σ-algebra of
F that is generated by τ(·, a).

For this purpose recall that, for any a ∈A and any ta ∈ T , b(ta, a) is a probability mea-
sure on (Ra, Ra ), where Ra is the range of the function ω �→ τa(ω) := {τ(ω, a′ )}a′∈A−a
and Ra is the coarsest σ-algebra under which the mapping ω �→ τa(ω) from (�, F ) to
Ra is measurable. For any a′ ∈ A−a, trivially, the mapping t �→ϕa′(t) = ta′ = proja′(t),
from (Ra, Ra ) to (T , B(T )), is measurable, and so is the mapping t �→(ϕa′(t), ϕa′′(t)) =
(ta′ , ta′′ ), for any a′, a′′ ∈A−a, from (Ra, Ra ) to (T , B(T )) × (T , B(T )). By the definition
of the mapping ω �→ b(τ(ω, a), a) as a regular conditional distribution for τa(·) given
the sub-σ-algebra C(a) ⊂ F that is generated by τ(·, a), it follows that, for any a′ and
a′′ ∈A−a, the mapping ω �→ ba(τ(ω, a)) ◦ (ϕa′(·), ϕa′′(·))−1 is a regular conditional dis-
tribution for (τ(·, a′ ), τ(·, a′′ )) given a′, a′′ ∈A−a. The equivalence of statement (a) in the
proposition and statement (a*) above follows immediately.

Proposition 5 follows directly from Proposition 3 in Qiao et al. (2016). Proposition 6
follows from Proposition 3 in Qiao et al. (2016) and the argument in the proof of Propo-
sition 17 in Appendix B.

Proof of Proposition 7. Given the definition of ba(ta ), the first statement follows
from Proposition 7 of Hammond and Sun (2008).

To prove the second statement, define a measureQ on (�, F ) by settingQ= ba(ta ) ◦
(τa )−1. If ba(ta ) ◦ (τa )−1 is absolutely continuous with respect to P , then, by the Radon–
Nikodym theorem, there exists a density function q on (�, F ) such that, for any F ∈ F ,
Q(F ) = ∫

F q(ω)dP(ω). Consider the random variables τ(·, a′ ), a′ ∈A−a, on the proba-
bility space (�, F ,Q). Because the density q ofQwith respect to P is measurable and the
random variables τ(·, a′ ), a′ ∈A−a, have the Fubini property on (�×A, F �A, P � α),
one easily verifies that they also have the Fubini property on (�×A, F �A,Q� α).

If ba(ta ) satisfies anonymity in beliefs, i.e., if, under this measure, the types ta′ of
agents a′ ∈ A−a are essentially pairwise exchangeable, one also verifies easily that the
random variables τ(·, a′ ), a′ ∈ A−a, on the probability space (�, F ,Q) are essentially
pairwise exchangeable. By Proposition 3 of Qiao et al. (2016), it follows that these are
essentially pairwise conditionally independent given the sub-σ-algebra D of F that is
generated by the mapping

ω �→D
({
τ
(
ω, a′)}

a′∈A−a
)
, (A.3)

and, moreover, for α-almost every a′ ∈A−a, the mapping (A.3) is a regular conditional
distribution for τ(·, a) given D. The second statement of Proposition 7 follows upon



Theoretical Economics 17 (2022) Incomplete-information games 493

translating this statement back into a statement about the random variables ta′ , a′ ∈
A−a, on the probability space (Ra, Ra, ba(ta )).

Proof of Proposition 8. Suppose first that the random variables τ(·, a) are essen-
tially pairwise exchangeable. Then, by Proposition 5, they are also essentially pairwise
conditionally independent and identically distributed given the sub-σ-algebra D ⊂ F .
By Proposition 3 of Hammond and Sun (2006), it follows that the random variables τ(·, a)
are also essentially pairwise conditionally independent given the sub-σ-algebra D∗ ⊂ F
that is generated by the mapping ω �→ (θ̃(ω),D({τ(ω, a)}a∈A )).

Proposition 5 also implies that, for α-almost every a ∈A, the mapping

ω �→D
({
τ(ω, a)

}
a∈A

)
(A.4)

is a regular conditional distribution for τ(·, a) given D. Because D ⊂ D∗, the mapping
(A.4) is obviously measurable with respect to D∗. By the arguments given in the proof
of Proposition 3 of Hammond and Sun (2006), it follows that, for α-almost every a ∈A,
the mapping (A.4) is also a regular conditional distribution for τ(·, a) given D∗. This
completes the proof of the implication (a) =⇒ (b*).

The reverse implication, (b*) =⇒ (a), follows from the reverse implication, (b) =⇒
(a) in Proposition 5 and the argument in the proof of Proposition 17 in Appendix B.

The proof of Proposition 9 follows the same line of argument and is left to the reader.

Proof of Proposition 10. By the definition of a regular conditional distribution, one
obtains that, for α-almost all â ∈A−a, D({ta′ }a′∈A−a ) ◦ σ(·, â)−1 is a regular conditional
distribution of σ(·, â) given D. By Theorem 1 of Qiao et al. (2016), it follows that

D
({
σ

(
ta′ , a′)}

a′∈A−a
) =

∫
â∈A−a

D
(
{ta′ }a′∈A−a

) ◦ σ(·, â)−1 dα(â)

for ba(ta )-almost all {ta′ }a′∈A−a ∈Rτa .22

Proof of Proposition 11.
Statements (a)–(c)
The proof proceeds along similar lines as the proof of Proposition 5.3 of Sun (2006).

By Lemma A.5 in Sun (2006), there exists a measurable function f from M(T ) × [0, 1]
into T such that for any δ ∈M(T ),

� ◦ f (δ, ·)−1 = δ, (A.5)

where � is the uniform distribution on [0, 1]. Given this function f and the random vari-
able δ̃, define the mapping τ :�×A→ T such that, for any ω ∈� and a′ ∈A,

τ
(
ω, a′) = f (δ̃(ω), h

(
ω, a′)), (A.6)

22I thank a referee for suggesting this very elegant proof, which is much simpler than what I had before.
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where h is the function given by the richness of the Fubini extension (�×A, F �A, P �
α).

I claim that τ is measurable with respect to F �A. In fact, τ is the composition of the
measurable function f : M(T ) × [0, 1] → T with the functionH :�×A→ M(T ) × [0, 1]
that is given by setting

H
(
ω, a′) = (

δ̃(ω), h
(
ω, a′))

for any ω ∈ � and a′ ∈A. Because the map ω �→ δ̃(ω) is measurable with respect to F
and the map (ω, a′ ) �→ h(ω, a′ ) is measurable with respect to F �A, the map (ω, a′ ) �→
H(ω, a′ ) is measurable with respect to F � A, and so is the map (ω, a′ ) �→ τ(ω, a′ ) =
f (H(ω, a′ )).

Because T is a complete separable metric space, M(T ) is also a complete separable
metric space, and the σ-algebra D is countably generated. Because the random vari-
ables h(·, a′ ), a′ ∈A, are essentially pairwise independent, Proposition 3 in Hammond
and Sun (2006) implies that they are also essentially pairwise conditionally independent
given D. As in Remark 1 of Hammond and Sun (2008), it follows that the random pairs
(δ̃(·), h(·, a′ )), a′ ∈A, are also essentially pairwise conditionally independent given D,
and so are the random variables τ(·, a′ ) = f (δ̃(·), h(·, a′ )), a′ ∈A.

Moreover, because, for α-almost every a′ ∈ A, the random variable h(·, a′ ) has the
uniform distribution �, (A.5) and (A.6) imply that, for α-almost every a′ ∈A, conditional
on the event δ̃(·) = δ, the probability distribution of τ(·, a′ ) is almost surely equal to δ.
For α-almost every a′ ∈A, therefore, the function δ̃(·) is a regular conditional distribu-
tion for τ(·, a′ ) given the σ-algebra D that is generated by δ̃. Statement (b) has thus been
proved.

Statement (c) follows by Corollary 2 of Qiao et al. (2016) and the fact that, condi-
tional on D, the random variables τ(·, a′ ), a′ ∈A, are essentially pairwise independent.
Statement (a) follows by Proposition 5.

Statements (d) and (e)
For any δ ∈ M(T ), define a mapping τδ : � ×A→ T such that, for any ω ∈ � and

a′ ∈A,

τδ
(
ω, a′) = f (δ, h

(
ω, a′)), (A.7)

where, as before, f : M(T )×[0, 1] → T is the function given by Lemma A.5 in Sun (2006),
satisfying

� ◦ f (δ, ·)−1 = δ, (A.8)

with � equal to Lebesgue measure on [0, 1] and where h is the function given by the
richness of the Fubini extension (�×A, F �A, P � α). For any a ∈A, set

τaδ := {
τδ

(
ω, a′)}

a′∈A−a (A.9)

and

b̂a(·|δ) := P ◦ (
τaδ

)−1
. (A.10)
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Then, given the random variable δ̃, for α-almost every a ∈A, b̂a(·|δ̃(·)) is a regular con-
ditional distribution for {τ(·, a′ )}a′∈A−a = {f (δ̃(·), h(·, a′ ))}a′∈A−a given δ̃.

Because T and M(T ) are complete separable metric spaces, there also exist func-
tions βa : T → M(T ), a ∈A, such that βa(·|τ(·, a)) is a regular conditional distribution
for δ̃ given τ(·, a). By statement (a) of the proposition, the functionsβa, a ∈A, are essen-
tially identical, i.e., there exists a functionβ∗ : T → M(T ) such thatβa = β∗ for α-almost
all a ∈A. Equation (3.2) follows by the law of iterated expectations. Statement (e) has
thus been proved.

Statement (d) follows from statements (e) and (a) and Proposition 4.

Proof of Proposition 12. The “only if” part of the proposition follows from the argu-
ment sketched in the text. To prove the “if” part of the proposition, let �, �, and � be
such that, for the given β(·), (3.3) and (3.4) hold for all B1 ∈ B(T ) and all B2 ∈ B(M(T )).

Let (�, F , P ) be a complete probability space, and let (�×A, F �A, P�α) be a rich
Fubini extension of the product space (�×A, F ⊗A, P ⊗α). Let δ̃ :�→ M(T ) be such
that�= P ◦ δ̃−1, so that the distribution of δ̃ is�. Let τ :�×A→ T be the mapping that
is given by Proposition 11. Let β∗ be the associated macro belief function, and let �∗,
�∗, and �∗ be the associated measures that are given by the “if” part of the proposition
(for the macro belief function β∗).

By construction, �∗ = �. By the “if” part of the proposition (for the macro belief
function β∗), it follows that

�∗(B1 × T ) =�∗(B1 ) (A.11)

and

�∗(B1 ×B2 ) =
∫
B2

δ(B1 )d�(δ) (A.12)

for all B1 ∈ B(T ) and all B2 ∈ B(M(T )). From (A.12) and the fact that � and � satisfy
(3.4), one infers that �∗ = �. With �∗ = �, (A.11) and the fact that � and � satisfy
(3.4) for β imply �∗ =�. Thus, � and � satisfy (3.4) for both β and β∗. It follows that
β∗(τ(·, a)) = β(τ(·, a)), P-almost surely and, therefore, that β is a macro belief function
for the family τ(·, a), a ∈A, of random types.

Proof of Proposition 13. I show that the condition of Proposition 12 is equivalent to
�,�, and � satisfying statements (a), (b), and (c).

(a) Statement (a) asserts that, �-almost every measure δ ∈ M(T ) is absolutely con-
tinuous with respect to �, i.e., for any B1 ∈ B(T ), �(B1 ) = 0 implies δ(B1 ) = 0. Because
(3.3) with B2 = M(T ) yields �(B1 ×M(T )) =�(B1 ), (3.4) implies

�(B1 ) =�(
B1 ×M(T )

) =
∫
M(T )

δ(B1 )d�(δ) (A.13)

for all B1 ∈ B(T ). For any B1 ∈ B(T ), therefore, the assertion that �(B1 ) = 0 implies
δ(B1 ) = 0 is true for �-almost all δ. It remains to be shown that the null set of distribu-
tions δ for which the implication is not true can be chosen independently of B1.



496 Martin F. Hellwig Theoretical Economics 17 (2022)

For this purpose, I use Dynkin’s π − λ theorem, as in the proof of Remark 2.1. Let
P ={Bk}∞k=1 be a countable family of subsets of T that is closed under finite intersec-
tions and suppose that {Bk}∞k=1 generates B(T ). For any k, let 
k be the set of δ ∈ M(T )
for which �(Bk ) = 0 implies δ(Bk ) = 0. By (A.13), �(
k ) = 1. Because the family
P ={Bk}∞k=1 is countable, it follows that �(

⋂∞
k=1
k ) = 1.

Let Q be the family of subsets of T such that, for any B ∈ Q and any δ ∈ ⋂∞
k=1
k,

�(B) = 0 implies δ(B) = 0. One easily verifies that Q is a λ system. By the argument just
given, every set in the π system P ={Bk}∞k=1 is also contained in Q. Because P generates
B(T ), Dynkin’s π − λ theorem implies that every set in P is also contained in Q. Thus,
for �-almost every δ ∈ M(T ), �(B) = 0 implies δ(B1 ) = 0 for all B1 ∈ B(T ). For such δ,
the existence of the density function g� satisfying (3.6) follows by the Radon–Nikodym
theorem.

(b) The proof of statement (b) is similar. The statement asserts that, for �-almost
every t ∈ T , the measure β(t ) is absolutely continuous with respect to �, i.e., for every
B2 ∈ B(M(T )), �(B2 ) = 0 implies β(B2|t ) = 0. Because (3.4) with B1 = T yields �(T ×
B2 ) =�, (3.3) implies

�(B2 ) =�(T ×B2 ) =
∫
T
β(B2|t )d�(t ) (A.14)

for all B2 ∈ B(M(T )). For any B2 ∈ B(M(T )), therefore, the assertion that �(B2 ) = 0
implies β(B2|t ) = 0 is true for�-almost all t.

Moreover, by the same argument as in the proof of statement (a), using Dynkin’s
π − λ theorem, the null set of t for which the implication is not true can be chosen
independently of B2. For �-almost all t ∈ T , therefore, �(B2 ) = 0 implies β(B2|t ) = 0.
For any such t, the existence of the density function f� follows by the Radon–Nikodym
theorem.

(c) By statements (a) and (b), (3.3) and (3.4) can be written as

�(B1 ×B2 ) =
∫
B2

∫
B1

g�(t|δ)d�(t )d�(δ) (A.15)

and

�(B1 ×B2 ) =
∫
B1

∫
B2

f�(δ|t )d�(δ)d�(t ). (A.16)

Statement (c) follows by Fubini’s theorem and the Radon–Nikodym theorem.

Proof of Proposition 14. To prove the first claim of the proposition, let β be as
stated and suppose that β admits a common prior. Let �, �, and � be the measures
given by Proposition 13 and let f�, g�, and π be the associated density functions, as
specified in Proposition 13. I first claim that, for any t0 ∈ T , � is absolutely continuous
with respect to β(t0 ). To prove this claim, I note that, because the measures β(t ), t ∈ T ,
are absolutely continuous with respect to β(t0 ), there exist density functions f0(·|t ),
t ∈ T , for β(t ) with respect to β(t0 ), such that, for any t ∈ T and any B2 ∈ B(M(T )),

β(B2|t ) =
∫
B2

f0(δ|t )dβ(δ|t0 ).
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By (A.14), it follows that

�(B2 ) =
∫
T

∫
B2

f0(δ|t )dβ(δ|t0 )d�(t )

=
∫
B2

∫
T
f0(δ|t )d�(t )dβ(δ|t0 ) (A.17)

for any B2 ∈ B(M(T )). Absolute continuity of � with respect to β(t0 ) follows immedi-
ately. A density function ϕ0 for � with respect to β(t0 ) is given by setting

ϕ0(δ) =
∫
T
f0(δ|t )d�(t ) (A.18)

for �-almost any δ. Since β(t0 ) is also absolutely continuous with respect to �, the
density ϕ0(δ) is strictly positive for�-almost all δ and is in fact the inverse of the density
f�(δ|t0 ) of β(t0 ) with respect to�.

I next show that, for �⊗�-almost every pair (t, δ), the value f�(δ|t ) of the density
function f�(·|t ) is strictly positive. For all t ∈ T , the density functions f�(·|t ) and f�(·|t0 )
are related by the equations

f0(δ|t ) = f�(δ|t ) ·ϕ0(δ) and 1 = f�(δ|t0 ) ·ϕ0(δ), (A.19)

holding for�-almost all δ. By the mutual absolute continuity ofβ(t ) andβ(t0 ), the value
f0(δ|t ) of the density f0(·|t ) is strictly positive for �-almost all δ. Hence, f�(δ|t )> 0 for
all t, for �-almost all δ in the set


0 := {
δ ∈ M(T )|f�(δ|t0 )> 0

}
.

The definition of 
0 implies that
∫
M(T )\
0

f�(δ|t0 )d�(δ) = 0 and, therefore,
β(M(T )\
0|t0 ) = 0. By the absolute continuity of � with respect to β(t0 ), it follows
that �(M(T )\
0 ) = 0 and, therefore, �(
0 ) = 1. Thus, f�(δ|t0 ) > 0 for �-almost all δ
and, therefore, f�(δ|t )> 0 for�⊗�-almost all (t, δ).

Given this result, statement (c) in Proposition 13 implies that g�(t|δ)> 0 for �⊗�-
almost all (t, δ). By elementary set theory, it follows that, for �-almost all δ, g�(t|δ)> 0
for�-almost all t. For


 := {
δ ∈ 
0|�

({
t ∈ T |g�(t|δ)> 0

}) = 1
}

,

one, thus, has �(
) =�(
0 ) = 1. For any δ ∈ 
, statement (a) in Proposition 13 implies
that, for any B1 ∈ B(T ), δ(B1 ) = 0 implies�(B1 ) = 0, so� is absolutely continuous with
respect to δ. Thus,� and any one of the measures in 
 are mutually absolutely continu-
ous. Hence, the measures in 
 are also mutually absolutely continuous. This completes
the proof that β satisfies statement (i) in the proposition.

Turning to statement (ii), I note that statement (c) in Proposition 13 implies

f�(δ1|t2 ) · g�(t2|δ2 ) · f�(δ2|t1 ) · g�(t1|δ1 )

= g�(t2|δ1 ) · f�(δ2|t2 ) · g�(t1|δ2 ) · f�(δ1|t1 )> 0 (A.20)
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for�-almost all t1, t2 in T and�-almost all δ1, δ2 in M(T ). Using (A.19) with t0 replaced
by t1, I find that, for any t ∈ T , the formula

f1(δ|t ) = f�(δ|t ) ·ϕ1(δ) (A.21)

defines a density function forβ(t ) with respect toβ(t1 ). By the same argument, based on
the mutual absolute continuity of the measures� and δ ∈ 
, for any δ ∈ 
, the formula

g1(t|δ) = g�(t|δ) ·ψ1(t ) (A.22)

defines a density function for δ with respect to δ1, where ψ1 is the density of � with
respect to δ1. Upon using (A.20) and (A.21) to substitute for the densities f� and g� in
(A.20), one finds that the terms ϕ1(δ1 ), ϕ1(δ2 ), ψ1(t1 ), and ψ1(t2 ) cancel out, and one is
left with the equation

f1(δ1|t2 ) · g1(t2|δ2 ) · f1(δ2|t1 ) · g1(t1|δ1 ) = g1(t2|δ1 ) · f1(δ2|t2 ) · g1(t1|δ2 ) · f1(δ1|t1 ).

Equation (3.10) follows because the density functions f1(·|t1 ) and g1(·|δ1 ) for β(t1 ) and
δ1 with respect to themselves have the constant value 1, leaving the equation

f1(δ1|t2 ) · g1(t2|δ2 ) = f1(δ2|t2 ) · g1(t1|δ2 ),

which must hold for �-almost all t1, t2 and �-almost all δ1, δ2, or, equivalently, in view
of the mutual-absolute-continuity properties of the different families of measures, for
β(t0 )-almost all δ1, δ2 in M(T ) and δ1-almost all t1, t2 in T . This completes the proof
that β satisfies statement (ii) in the proposition.

To prove the second claim in the proposition, let β be as stated in the proposition
and suppose that statements (i) and (ii) hold. By statement (ii), there exist t1 ∈ T and
δ1 ∈ 
 such that (3.10) holds for β(t1 )-almost all δ2 ∈ M(T ) and δ1-almost all t2 ∈ T .
Thus, one can define

π1(t, δ) := λ1 · f1(δ|t )
f1(δ1|t )

if f1(δ1|t )> 0

π1(t, δ) := 0 if f1(δ1|t ) = 0,

(A.23)

with

λ1 :=
[∫
T

∫
M(T )

f1(δ|t )
f1(δ1|t )

dβ(δ|t1 )dδ1(t )

]−1

and

�(B1 ×B2 ) =
∫
B1

∫
B2

π1(t, δ)dβ(δ|t1 )dδ1(t ) (A.24)

for any B1 ∈ B(T ) and B2 ∈ B(M(T )). From (A.23) and (A.24), one computes

�(B1 ) =�(
B1 ×M(T )

)

=
∫
B1

∫
M(T )

λ1 · f1(δ|t )
f1(δ1|t )

dβ(δ|t1 )dδ1(t )
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=
∫
B1

∫
M(T )

λ1 · 1
f1(δ1|t )

dβ(δ|t )dδ1(t )

=
∫
B1

λ1 · 1
f1(δ1|t )

dδ1(t ) (A.25)

for any B1 ∈ B(T ). By (3.10), we also have

π1(t, δ) = λ1 · g1(t|δ)
g1(t1|δ)

if g1(t1|δ)> 0

π1(t, δ) = 0 if g1(t1|δ) = 0,

so (A.24) also yields

�(B2 ) = �(T ×B2 )

=
∫
T

∫
B2

λ1 · g1(t|δ)
g1(t1|δ)

dβ(δ|t1 )dδ1(t )

=
∫
B2

∫
T
λ1 · 1

g1(t1|δ)
dδ(t )dβ(δ|t1 )

=
∫
B2

λ1 · 1
g1(t1|δ)

dβ(δ|t1 ). (A.26)

From (A.25) and (A.26), one sees that � and δ1 as well as � and β(t1 ) are mutually
absolutely continuous. Because δ1 and any other δ ∈ 
 are mutually absolutely contin-
uous, it follows that � satisfies statement (a) in Proposition 13. Because β(t1 ) and any
other measure β(t ), t ∈ T , are mutually absolutely continuous, it follows that � satisfies
statement (b) in Proposition 13. By inspection of (A.25) and (A.26), the densities of �
with respect to δ1 and of � with respect to β(t1 ) are given as

ψ(t ) = λ1 · 1
f1(δ1|t )

and ϕ(δ) = λ1 · 1
g1(t1|δ)

. (A.27)

For any t and δ, the densities of β(t ) with respect to � and of δ with respect to� can be
computed from (A.27) and from the densities of β(t ) with respect to β(t1 ) and of δ with
respect to δ1. This yields

f�(δ|t ) = f1(δ|t )
ϕ(δ)

= 1
λ1

· g1(t1|δ) · f1(δ|t )

and

g�(t|δ) = g1(t|δ)
ψ(t )

= 1
λ1

· f1(δ1|t ) · g1(t|δ),

so (3.10) implies the validity of (3.9). By Proposition 13, it follows that β admits a com-
mon prior, with �,�, and � as specified in the proposition.

To see that the common prior is unique, let �∗, �∗, �∗ be any triple of distributions
associated with a common prior for β. Using Proposition 13, let π∗ be the density of �∗
with respect to �∗ ⊗�∗. By the argument given above, �∗ and the measures δ ∈ 
 are
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mutually absolutely continuous, and so are �∗ and the measures β(t ), t ∈ T . Given a
pair (t0, δ0 ), let ψ0 and ϕ0 be the density functions for �∗ with respect to δ0 and for �∗
with respect to β(t0 ). Then �∗ has a density π0 = π∗ ·ψ0 · ϕ0 with respect to δ0 ⊗β(t0 ).
Using (3.14) in the text, one finds that

π∗
0 (t2, δ2 )
π∗

0 (t1, δ1 )
= π∗(t2, δ2 ) ·ψ0(t2 ) ·ϕ0(δ2 )
π∗(t1, δ1 ) ·ψ0(t1 ) ·ϕ0(δ1 )

= π∗(t2, δ1 ) ·ψ0(t2 )
π∗(t1, δ1 ) ·ψ0(t1 )

· π
∗(t2, δ2 ) ·ϕ0(δ2 )

π∗(t2, δ1 ) ·ϕ0(δ1 )

= g�(t2|δ1 ) ·ψ0(t2 )
g�(t1|δ1 ) ·ψ0(t1 )

· f�(δ2|t2 ) ·ϕ0(δ2 )
f�(δ1|t2 ) ·ϕ0(δ1 )

= g0(t2|δ1 )
g0(t1|δ1 )

· f0(δ2|t2 )
f0(δ1|t2 )

(A.28)

for�∗-almost all t1, t2 and�∗-almost all δ1, δ2. Up to modifications on sets of δ0 ⊗β(t0 )-

measure zero, the ratio
π∗

0 (t2,δ2 )
π∗

0 (t1,δ1 ) is, thus, uniquely determined by the density functions

f0(·|t ), g0(·|δ), t ∈ T , δ ∈ 
. Because �∗(T ×M(T )) = 1, it follows that, up to modifi-
cations on sets of δ0 ⊗ β(t0 )-measure zero, the density π∗ itself is uniquely determined
by these density functions. Therefore,�∗ is uniquely determined by these density func-
tions.

Appendix B: Exchangeability and conditional exchangeability

In this appendix, I introduce the property of conditional exchangeability and discuss
its relation to the property of exchangeability. Two random variables x̃1 and x̃2 that are
defined on a probability space (�, F , P ) and that take values in a complete separable
metric space T are exchangeable if there exists a probability measure π on T 2 such that

P
({
ω ∈�|x̃1(ω) ∈ B1

} ∩ {ω ∈�|x̃2
) ∈ B2}) = π(B1 ×B2 ) = π(B2 ×B1 ) (B.1)

for all B1, B2 in B(T ). Given a countably generated sub-σ-algebra C of F , the random
variables x̃1 and x̃2 are conditionally exchangeable given C if there exists a C-measurable
function ω �→ πω from � to M(T 2 ) such that, for P-almost all ω ∈�,

μ(B1 ×B2|C )(ω) = πω(B1 ×B2 ) = πω(B2 ×B1 ), (B.2)

where μ(·|C ) is a regular conditional distribution for the pair (x̃1, x̃2 ) given C.

Lemma 15. Assume that there exists a sub-σ-algebra D of F such that, conditional on
D, the random variables x̃1 and x̃2 are independent and identically distributed. Let
C be any countably generated sub-σ-algebra of F , let A(D, C ) ⊂ F be the smallest σ-
algebra that contains C as well as D, and assume that the regular conditional distribu-
tions μ(·|A(D, C )) for (x̃1, x̃2 ) given A(D, C ) and μ(·|D) for (x̃1, x̃2 ) given D satisfy

μ
(·|A(D, C )

) = μ(·|D) (B.3)
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almost surely. Then the random variables x̃1 and x̃2 are conditionally exchangeable
given C. In particular, x̃1 and x̃2 are exchangeable.

Proof. By assumption, there exists a D-measurable function ω �→ δω from � to M(T )
such that, for P-almost all ω ∈�,

μ(B1 ×B2|D) = δω(B1 ) · δω(B2 ) (B.4)

for all B1, B2 in B(T ). For C satisfying (B.3), it follows that, for P-almost all ω ∈�,

μ
(
B1 ×B2|A(D, C )

) = δω(B1 ) · δω(B2 ) (B.5)

for all B1, B2 in B(T ). By the law of iterated conditional expectations, we also have

μ(B1 ×B2|C ) =E[
μ

(
B1 ×B2|A(D, C )

)
|C

]
and, therefore, by (B.5),

μ(B1 ×B2|C ) =
∫
M(T )

δ(B1 ) · δ(B2 )db(δ|C )

for all B1, B2 in B(T ), where b(·|C ) is a regular conditional distribution for δω given C.
The function ω �→ πω that is defined by setting

πω(B1 ×B2 ) =
∫
M(T )

δ(B1 ) · δ(B2 )db(δ|C )(ω)

for all B1, B2 in B(T ) obviously satisfies (B.2). Therefore, x̃1 and x̃2 are conditionally
exchangeable given C. The last statement follows because C may be taken to be the
trivial algebra {∅,�}.

Next, let (�, F , P ) and (I, I , λ) be complete atomless probability spaces. Let (� ×
I, F � I , P � λ) be a Fubini extension of the product (� × I, F ⊗ I , P ⊗ λ) and let f :
�× I → T be a process that is measurable with respect to F � I and that takes values in
a complete separable metric space T . The random variables f (·, i), i ∈ I, are essentially
pairwise exchangeable if there exists a probability measure π on T 2 such that, for λ-
almost all i1 ∈ I, one has

P
({
ω ∈�|f (ω, i1 ) ∈ B1

} ∩ {
ω ∈�|f (ω, i2 ) ∈ B2

}) = π(B1 ×B2 ) = π(B2 ×B1 ) (B.6)

for λ-almost all i2 ∈ I and all B1, B2 in B(T ). Given a countably generated sub-σ-algebra
C of F , the random variables, f (·, i), i ∈ I, are essentially pairwise conditionally ex-
changeable given C if there exists a C-measurable function ω �→ πω from � to M(T 2 )
such that, for P-almost all ω ∈� and λ-almost all i1 ∈ I,

μi1,i2 (B1 ×B2|C )(ω) = πω(B1 ×B2 ) = πω(B2 ×B1 ) (B.7)

for λ-almost all i2 ∈ I and all B1, B2 in B(T ), where μi1,i2 (·|C ) is a regular conditional
distribution for (f (·, i1 ), f (·, i2 )) given C. In the following discussion, I study the rela-
tion between essential pairwise exchangeability and essential pairwise conditional ex-
changeability.
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Proposition 16. Assume that the random variables f (·, i), i ∈ I, are essentially pair-
wise exchangeable. For any a ∈ I, let C(a) be the sub-σ-algebra of F that is generated by
f (·, a). Then, for λ-almost every a ∈ I, the random variables f (·, i), i ∈ I, are essentially
conditionally pairwise exchangeable given C(a).

Proof. By the Fubini property, for P-almost everyω ∈�, the cross-section distribution
of f (ω, ·) is well defined. Denote this cross-section distribution as δ(ω) and let D ⊂ F
be the σ-algebra that is generated by the mapping

ω �→ δω

from� to M(T ). By Proposition 3 of Qiao et al. (2016), the random variables f (·, i), i ∈ I,
are essentially pairwise conditionally independent and identically distributed given D,
and a conditional exact law of large numbers holds, so that, for P-almost allω ∈�, for λ
almost all i1 ∈ I,

μi1,i2 (·|D) = (δω × δω ) (B.8)

for λ-almost all i2 ∈ I, where μi1,i2 (·|D) is a regular conditional distribution for (f (·, i1 ),
f (·, i2 )) given D.

I claim that, for λ-almost all a ∈ I, for λ-almost all i1 ∈ I, the equation

μi1,i2 (·|A(
D, C(a)

) = μi1,i2 (·|D) (B.9)

holds for λ-almost all i2 ∈ I. By Proposition 3 of Hammond and Sun (2006), the fact that
the random variables f (·, i), i ∈ I, are essentially pairwise conditionally independent
given D implies that, λ-almost all a ∈ I, the random variables f (·, i),m i ∈ I, are also es-
sentially pairwise conditionally independent given A(D, C(a)). Moreover, for λ-almost
all a ∈ I, conditional on D, the random variables f (·, a) and f (·, i), i ∈ I, are indepen-
dent, for λ-almost all i ∈ I. The claim that, for λ-almost all a ∈ I, for λ-almost all i1 ∈ I,
(B.9) holds for λ-almost all i2 ∈ I now follows from Corollary 4 of Hammond and Sun
(2006).

The proposition now follows from Lemma 15.

The converse of Proposition 16 is also true.

Proposition 17. Assume that, for λ-almost every a ∈ I, the random variables f (·, i),
i ∈ I, are essentially conditionally pairwise exchangeable given C(a). Then the random
variables f (·, i), i ∈ I, are essentially pairwise exchangeable.

Proof. Let a ∈ I be such that the random variables f (·, i), i ∈ I, are essentially condi-
tionally pairwise exchangeable given C(a). Thus, for P-almost all ω ∈ �, for λ-almost
all i1 ∈ I, under the measure μC(a),i1,i2 (·|ω), the random variables f (·, i1 ) and f (·, i2 ) are
exchangeable for λ-almost all i2 ∈ I. By Proposition 3 of Qiao et al. (2016), it follows
that, for P-almost all ω ∈ �, for λ-almost all i1 ∈ I, under the measure μC(a),i1,i2 (·,ω),
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conditional on the σ-algebra D that is generated by the cross-section distribution map-
ping δ(·), the random variables f (·, i1 ) and f (·, i2 ) are independent and identically dis-
tributed for λ-almost all i2 ∈ I. Now the proposition follows from the last statement of
Lemma 15.

Upon combining Propositions 16 and 17, one obtains the following proposition.

Proposition 18. The random variables f (·, i), i ∈ I, are essentially pairwise exchange-
able if and only if, for λ-almost every a ∈ I, the random variables f (·, i), i ∈ I, are essen-
tially conditionally pairwise exchangeable given C(a), where C(a) is the sub-σ-algebra of
F that is generated by f (·, a).
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