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Indifference, indecisiveness, experimentation,
and stochastic choice
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Among the reasons behind the choice behavior of an individual taking a stochastic
form are her potential indifference or indecisiveness between certain alternatives,
and/or her willingness to experiment in the sense of occasionally deviating from
choosing a best alternative to give a try to other options. We introduce methods of
identifying if and when a stochastic choice model may be thought of as arising due
to any one of these three reasons. Each of these methods furnishes a natural way
of making deterministic welfare comparisons within any model that is “rational-
ized” as such. In turn, we apply these methods, and characterize the associated
welfare orderings, in the case of several well-known classes of stochastic choice
models.
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tation, the general Luce model, random utility, additive perturbed utility, individ-
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1. Introduction

Individuals often make different choices in apparently identical situations, even when
the interval between the successive choices is very short (cf. Tversky (1969), Ballinger
and Wilcox (1997), Hey (2001), and Agranov and Ortoleva (2017).) At the outset, one can
imagine a few “simple” reasons for this phenomenon. Perhaps the simplest of all is that
a person may be indifferent across some alternatives which she deems best in a menu S,
and each time she needs to make a choice from S, she chooses one of these items ran-
domly; or she may be able to readily eliminate some alternatives in S from contention,
but may find the remaining options difficult to compare—that is, she may be indecisive
among those alternatives—whence, again, she resorts to randomization. Or perhaps,
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she knows what she likes best in S, but nevertheless gives a “try” to some options oc-
casionally by way of experimentation. There are, of course, other explanations such as
randomly fluctuating tastes, being prone to making mistakes, having random attention
spans, or being deliberately stochastic, etc.; we do not study these alternate sources of
randomization in this paper.

Apart from their simplicity, what makes the first three “explanations” interesting is
that they accord exceptionally well with the traditional way of modeling a “rational de-
cision maker” as one who maximizes her preference relation over feasible alternatives.
In the first case, the individual is entirely standard. Her preferences are complete and
transitive, and she randomizes only when she is indifferent between the options that
maximize her preferences in a given feasible menu. Her random choice behavior is thus
only a consequence of her indifference across some alternatives. The second case is
only slightly less orthodox. In that case too the subject has well-behaved preferences,
except these are now allowed to be incomplete. This person identifies all maximal op-
tions in a menu relative to her preferences, and randomizes only over those. Thus, her
stochastic choice behavior originates exclusively from her lack of strict preference across
these options. The third case is less standard, but also consistent with the decisions of
the agent being guided by a deterministic preference relation. We can think of such a
person as making her most frequent choices by maximizing her preferences, and less
frequent ones by some form of experimentation where she “checks out” suboptimal op-
tions in a menu every now and again. To give more content to the surmise that she is
ultimately guided by her deterministic preferences, we may also require that the lower
ranked options in a menu are “tried out” less frequently. In other words, for such a de-
cision maker, the order of choice probabilities of alternatives in a menu is determined
entirely by her preferential ranking of these items.

These three potential motives behind one’s random choice behavior are neither ex-
clusive nor exhaustive. One may randomize both due to lack of strict preference and
experimentation, and as we have noted above, there are other potential explanations
for one’s choices to have a stochastic form. However, these three motives can be for-
mally applied to any random choice model, thereby providing economically interesting
ways of classifying, whence comparing, the inner structure of such models. In addition,
the very structure of these motives necessitates a well-defined, and essentially unique,
deterministic preference relation. Consequently, any stochastic choice model that is
compatible with any one of these motives is naturally furnished with a deterministic
welfare ordering across all alternatives. This is an advantage because it is in general
quite difficult to make unambiguous welfare comparisons in the context of stochastic
choice theory. It also starkly distinguishes the three potential motives behind making
randomized choices from other explanations such as being prone to making mistakes,
having randomly changing preferences, or having random attention spans.

In this paper, we introduce a method of identifying if, and when, a stochastic choice
model is induced by a deterministic (possibly incomplete) preference relation for each
of the above three motivations. We then apply these three methods, and characterize
the associated welfare orderings, in the case of several well-known classes of stochastic
choice models.
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In Section 3, we introduce necessary criteria for random choices to arise due to indif-
ference, or more generally, due to lack of strict preference. This is quite straightforward
in the case of indifference, but some care is needed in the second case to distinguish be-
tween when an agent is indifferent between two alternatives and when she is indecisive
instead. Once this is done (using a method that was introduced by Eliaz and Ok (2006)),
we obtain simple axiomatic characterizations of such models, and in each case, deduce
a unique preference relation relative to which the model is induced by indifference or
by lack of strict preference. This relation is complete in the case of indifference and
potentially incomplete in the case of lack of strict preference, and it is explicitly char-
acterized in terms of the given stochastic choice rule. As noted above, it provides one
with a natural method of making welfare comparisons (across models that are induced
by indifference or lack of strict preference). In fact, this relation is a close reflection
of the “unambiguously chosen over” relation of Bernheim and Rangel (2007, 2009). In
addition, in quite a few models, it possesses the structure of a threshold preorder that
was introduced by Luce (1956) to capture choice behavior that is subject to imperfect
discrimination.

In Section 3, we also explore the third motive suggested above, and formally de-
fine what it means for one’s random choices to be compatible with experimentation.
In general, there may be more than one preference relation that “rationalizes” a given
stochastic choice function as such. However, under certain conditions that are satisfied
by many models, this preference too is unique, and again provides a crisp method of
making individual welfare comparisons. In addition, we characterize compatibility with
experimentation explicitly, and deduce that this concept is distinct from being induced
by lack of strict preference, while, of course, every model that is induced by indifference
is induced by lack of strict preference.

The remaining sections of the paper study if, and when, certain well-known models
of stochastic choice can be viewed “as if” they are induced by indifference, lack of strict
preference, and/or experimentation. Leaving the precise definitions of these models
(and the credits/citations concerning them) to the main body of the paper, the following
list provides a sample of our findings:

• In Section 4, we study Luce-type models. We find that the Luce model is induced
by indifference (trivially) and is compatible with experimentation. More generally,
the general Luce model may or may not be induced by indifference and/or lack of
strict preference, and it may or may not be compatible with experimentation. In
Section 4, we identify exactly when any one of these cases holds. (As a corollary, we
find that any 2-stage Luce model is induced by lack of strict preference, but it need
not be compatible with experimentation; every threshold Luce model is compatible
with experimentation.)

• A random utility model may or may not be induced by lack of strict preference; we
characterize exactly when this holds in Section 5. In particular, we find that Tver-
sky’s model of elimination-by-aspects, as well as the additive random utility model
(ARUM), is induced by lack of strict preference. When the error terms are indepen-
dent and identically distributed (i.i.d.), ARUM is compatible with experimentation
as well.
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• A weak additive perturbed utility model may or may not be induced by lack of strict
preference as we show in Section 6. By contrast, we find that every weak additive
perturbed utility model is compatible with experimentation.

• The positive results cited above are accompanied by the full characterization of the
unique preference relation that “rationalizes” the model in the way the result indi-
cates.

Some of these results are fairly straightforward, but a few of them highlight cer-
tain inapparent aspects of these models. We show that threshold Luce model, Tver-
sky’s model, and additive random utility model are consistent with maximization of in-
complete preference relation (i.e., lack of strict preference). Hence, one can view these
models as three different ways to resolve incomparability between alternatives. More-
over, the corresponding incomplete relations are Luce threshold preorders in the first
two models. Hence, our concept of being induced by lack of strict preference catches
a commonality between these seemingly very different models. It is also worth noting
that any weak additive perturbed utility model is compatible with experimentation. This
sits squarely with the common interpretation of this model, and, in essence, provides a
formal justification for that reading.

2. Preliminaries

Throughout this paper, X stands for an arbitrary finite set with |X| ≥ 2, and X for the
collection of all nonempty subsets of X . Any one member of X is thought of as a feasible
menu of mutually exclusive choice alternatives.

Binary Relations By a binary relation on X , we mean any subset R of X ×X , but often
write x R y instead of (x, y ) ∈ R. For any S ⊆ X , by x R S, we mean x R y for every
y ∈ S; the expression S R x is similarly understood. When either x R y or y R x, we say
that x and y are R-comparable. If any two x, y ∈ X are R-comparable, we say that R is
complete. The properties of reflexivity, antisymmetry, and transitivity of R are defined
in the usual way. If R is reflexive and transitive, we refer to it as a preorder, or as a
preference relation, on X , and if, in addition, it is antisymmetric, we call it a partial
order on X . Moreover, a complete partial order is referred to as a linear order. Finally,
for any binary relation R on X , tran(R) stands for the transitive closure of R.

The asymmetric (or strict) part of a preorder � on X is the binary relation � on X

defined by x � y if, and only if x� y but not y � x. In turn, � \ � is the symmetric part of
�, and is denoted by ∼. For any S ⊆ X and x ∈ S, we say that x is a �-maximum in S if
x� S, and that it is �-maximal in S if there is no y ∈ S with y � x. We denote the set of all
�-maximum and �-maximal elements in S by max(S, �) and MAX(S, �), respectively.
It is plain to see that max(S, �) ⊆ MAX(S, �), but this inequality may hold strictly.

Weak Axiom of Revealed Preference A choice correspondence on X is any self-map C

on X such that C(S) ⊆ S for each S ∈ X. For any x, y ∈ X , we say that x is C-preferred to
y if there is a T ∈ X such that x ∈ C(T ) and y ∈ T . In turn, C is said to satisfy the weak
axiom of revealed preference (WARP) if for every S ∈ X and x ∈ S, we have x ∈ C(S)
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provided that x is C-preferred to y for some y ∈ C(S). This is the same thing as saying
that C(T ) ∩ S = C(S) for every S, T ∈X with S ⊆ T and C(T ) ∩ S �= ∅.

The Luce Threshold Preorder Let U : X → R be any function, which we interpret as a
utility function of an individual, and take any δ ∈ [0, ∞]. We define the Luce threshold
preorder �U ,δ on X (induced by U and δ) as x �U ,δ y if and only if U(x) −U(y ) > δ, and
x∼U ,δ y if and only if

[∣∣U(x) −U(z)
∣∣≤ δ if and only if

∣∣U(y ) −U(z)
∣∣≤ δ

]
for every z ∈X .

In words, x �U ,δ y means that the utility of x is larger than that of y beyond a given mag-
nitude of noticeable difference (i.e., δ), and x ∼U ,δ y means that (i) the utility difference
between x and y is not noticeable; and (ii) the utilities of x and y are so close that when-
ever the utility difference between x and any other alternative is not noticeable, neither
is the utility difference between y and that alternative.

The Luce threshold preorder will play an important role in this paper. We note that
close relatives of this preorder were considered widely in the literature on decision the-
ory to capture the idea of imperfect discrimination; see, for instance, Luce (1956) and
Beja and Gilboa (1992). (The asymmetric part of �U ,δ, which is a semiorder on X , is
identical to that of those considered in the literature, but its symmetric part is more de-
manding.) Obviously, �U ,0 is the complete preorder on X that is represented by U , and
�U ,∞=X ×X .

3. Origins of stochastic choice

3.1 Stochastic choice functions

By a stochastic choice function on X, we mean a function P : X ×X→ [0, 1] such that

∑
x∈S

P(x, S) = 1 and P(y, S) = 0

for every S ∈X and y ∈X\S. The set of all such functions is denoted as scf(X ).
From the individualistic perspective, there are two ways of interpreting P(·, S). First,

we can imagine that an agent has been observed to make choices from the feasible menu
S multiple times, and P(x, S) is simply the relative frequency of the times that she has
chosen x from S. This is a rather empirical interpretation of P, and is in line with the clas-
sical revealed preference theory. Alternatively, one can imagine that the choice behavior
of the individual is intrinsically probabilistic (a viewpoint favored by psychologists), or
that the choice behavior of the agent is deterministic over S, but the modeler has only
partial information about it. This viewpoint is pioneered by Manski (1977), and is fa-
vored by many economists. As such, P(x, S) is considered as the actual probability of
the agent choosing x in S. This is a rather theoretical interpretation of P.
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3.2 Stochastic choice induced by indifference

One of the reasons why we may perceive the choice behavior of an individual as random
is due to potential indifferences. Indeed, a rational person (who maximizes a complete
preference relation) would choose x from {x, y} some of the times, and y from {x, y} at
others, if she is truly indifferent between the options x and y. This sits well with the
empirical interpretation of a stochastic choice rule as well as Manski’s interpretation of
it, and, at the abstract, it prompts the following definition.

Definition. A stochastic choice function P on X is said to be induced by indifference
if there exists a complete preorder � on X such that for every S ∈X,

P(x, S) > 0 if and only if x ∈ max(S, �). (1)

Thus, a stochastic choice function P on X that is induced by indifference can be
thought of as modeling the behavior of a rational individual. It is “as if” this individual
has a standard preference relation on X . She may indeed make different choices from
the same menu at different times, but this is only because (again in the “as if” sense) she
is indifferent between the best options in that menu.

Example 3.1. Let � be a complete preorder on X , and define P ∈ scf(X ) by

P(x, S) :=

⎧⎪⎨
⎪⎩

1∣∣max(S, �)
∣∣ if x ∈ max(S, �)

0, otherwise.

Then P is induced by indifference; it models an individual who always chooses a best
alternative in a menu (with respect to �), and when there are more than one best alter-
natives, randomizes among these uniformly. More generally, for any S ∈ X, let μS,� be a
probability distribution on max(S, �) with full support. Then, setting P(x, S) := μS,�{x}
for each x ∈ max(S, �) and S ∈X yields a stochastic choice function on X, that is induced
by indifference. ♦

It is worth mentioning that the complete preorder � in the definition of being in-
duced by indifference (if it exists) is unique, and it is readily characterized by looking at
the choice behavior of the individual over pairwise choice situations. In particular, the
strict part of this relation is found as

x� y if and only if P
(
x, {x, y}

)= 1, (2)

and hence its symmetric part is found as x ∼ y if and only if 0 < P(x, {x, y}) < 1. Com-
bining these, we see that

x� y if and only if P
(
x, {x, y}

)
> 0. (3)

It makes sense to use this relation to make welfare assessments for the subject indi-
vidual. After all, if P is induced by indifference, “x � y” simply means “whenever x and
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y are available, y is never chosen,” and “x� y” means “whenever x and y are both avail-
able, y is not chosen unless x is as well.” Thus, � and � coincide with the “strictly unam-
biguously chosen over” and “weakly unambiguously chosen over” relations of Bernheim
and Rangel (2007, 2009), respectively. But note that � is a meaningful ordering of wel-
fare only when P is induced by indifference. In this sense, unlike that of Bernheim and
Rangel, our approach to measuring welfare by using � is not model-free; it applies only
to a class of models. In this sense, at least conceptually, this outlook is more in line with
the model-based approach of Rubinstein and Salant (2012), but it nevertheless allows us
to look at large classes of models rather than specific ones.

In passing, we would like to emphasize that the notion of “being induced by indif-
ference” provides an admittedly crude evaluation of a stochastic choice function, for it
ignores the actual probabilities of being chosen in a menu, and concentrates only on
whether or not those probabilities are positive. As such, it should best be thought of as
the first test of checking whether or not a person randomizes “only” because she is indif-
ferent between some alternatives. (So, perhaps, “being possibly induced by indifference”
would be a more appropriate term to use here.) If one’s choice behavior does not pass
this test, we can be sure that there are other motives behind her random choice behavior.
If her behavior passes this test, however, we cannot be certain that her randomizations
are only across alternatives that she is indifferent between. After all, a positive stochastic
choice function is, trivially, induced by indifference, but it would obviously be a reach to
say that every such function models the same type of behavior. The following examples
aims to illustrate this point.

Example 3.2. In the following examples, we take X := {x, y, z}.

(a) Let P ∈ scf(X ) satisfy P(x, {x, y}) = 1
2 = P(x, {x, y, z}) = P(y, {x, y, z}) and P(x,

{x, z}) = 1 = P(y, {y, z}). This stochastic choice function is induced by indiffer-
ence, and this conclusion seems entirely intuitive. Its description corresponds to
a rational person who is indifferent between x and y, but surely prefers either of
these options to z.

(b) Let P ∈ scf(X ) satisfy P(x, {x, y}) = 0.99 = P(x, {x, y, z}), P(y, {x, y, z}) = 0.01, and
P(x, {x, z}) = 1 = P(y, {y, z}). This stochastic choice function is also induced by
indifference, but it is difficult in this case to imagine that the agent is indifferent
between x and y. True, it is possible that x is chosen over y 99 percent of the
time because the agent’s tie-breaking procedure heavily favors x over y. However,
intuitively speaking, it seems more plausible to imagine that the agent prefers x

over y strictly, and the seldom times that y is chosen over x is due to mistakes or
changing moods.

(c) Let P ∈ scf(X ) satisfy P(x, {x, y}) = 1
2 = P(x, {x, z}) = P(x, {x, y, z}) = P(y, {x, y, z})

and P(y, {y, z}) = 1. This stochastic choice function is not induced by indifference.
We can thus be sure that P does not correspond to the choice behavior of a ratio-
nal person with a complete preference relation who only randomizes between the
best alternatives in a menu. Indeed, any such relation must declare x and z, as
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well as x and y, indifferent, while ranking y strictly above z, violating transitivity. It
is much more reasonable in this instance to presume that the person is indecisive
about the comparative appeal of x and z, as well as x and y, but she is certain that
y is better than z. (This interpretation will be formalized in Section 3.3.) ♦

We conclude that one should really consider the notion of “being induced by in-
difference” as a necessary, but not sufficient, condition to qualify one’s random choice
behavior as arising only due to potential indifferences. A similar caveat applies to the
other two motives for randomization that we consider in Sections 3.3 and 3.4.

Characterization It is quite easy to provide an axiomatic characterization of stochastic
choice functions that are induced by indifference. To this end, we consider the following.

Stochastic Chernoff Axiom. For every S, T ∈X with S ⊆ T , and x ∈ S,

P(x, T ) > 0 implies P(x, S) > 0.

This property is a substantial weakening of the classical regularity axiom (which re-
quires that the probability of choosing an alternative in a menu does not decrease as
the menu contracts), and is a straightforward adaptation of the classical Chernoff axiom
(also known as Sen’s property α). Its empirical interpretation is straightforward. Its justi-
fication from the theoretical viewpoint à la Manski is also clear: If the modeler is certain
that the agent views x “choosable” in a menu T , and she thinks the agent is rational, she
must assign positive probability to the event that the agent chooses x in a submenu of S.

The next property we consider is also familiar.

Stochastic β-Axiom. For every S ∈ X and x ∈ S, if P(x, {x, y}) > 0 for some y ∈ S with
P(y, S) > 0, then P(x, S) > 0.

In words, this property says that if the agent has deemed an alternative x in a menu
S choosable against some potential choice y in S—a “potential choice in S” being any
alternative whose choice probability in S is positive, or empirically speaking, has been
chosen from S at least once—then she would deem x itself choosable from S.

These two properties characterize stochastic choice functions induced by indiffer-
ence.1

Theorem 3.1. A stochastic choice function P on X is induced by indifference if, and only
if, it satisfies the Stochastic Chernoff Axiom and Stochastic β-Axiom.

Proof. The “only if” assertion is readily verified. Conversely, take any P ∈ scf(X ), and
define C : X →X by C(S) := {x ∈ S : P(x, S) > 0}. If P satisfies the Stochastic Chernoff
Axiom and Stochastic β-Axiom, then C satisfies WARP, so the fundamental theorem of
revealed preference entails that C = max(·, �) for some complete preorder � on X .

1While motivated by different objectives, Theorem 1 of Fishburn (1978) provides an alternative charac-
terization of stochastic choice functions that are induced by indifference.
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3.3 Stochastic choice induced by indecisiveness

A decision maker may choose between two alternatives in a random manner also when
she finds it difficult to compare these items. This may be because she lacks information
about the alternatives or about her own tastes, or because the alternatives have multiple
attributes which makes their comparison a difficult problem. In economics alone, nu-
merous authors have argued that there is no reason for a rational person’s preferences to
be complete, and suggested ways to analyze such preferences from a decision-theoretic
perspective. (See, among many others, Aumann (1962), Bewley (1986), Ok (2002), and
Eliaz and Ok (2006).) Furthermore, the recent experimental literature documents ev-
idence for incompleteness of preferences (see, for instance, Danan and Ziegelmeyer
(2006), Sautua (2017), Costa-Gomes et al. (2020), Cettolin and Riedl (2019)). In fact,
in their experimental work, Agranov and Ortoleva (2020) suggest explicitly that random-
ization between two or more alternatives may be a consequence of the inability of an
individual to render a crisp comparison between those alternatives.

This discussion suggests concentrating on stochastic choice functions P on X for
which there exists a preorder � on X such that

P(x, S) > 0 if and only if x ∈ MAX(S, �) (4)

for every S ∈ X. However, unlike (1), there may be multiple preference relations that
satisfy (4) for every S ∈ X, which, in turn, causes difficulties for making welfare compar-
isons.

To address this issue, let us first note that the strict part of � is uniquely identified
when (4) holds for every S ∈ X; it is again characterized by (2). The trouble is that when
neither x � y nor y � x hold, there is a certain arbitrariness in the way we choose to de-
clare x and y indifferent or incomparable. Put differently, (4) alone does not distinguish
between the “indifference” and “incomparability” parts of �.

Fortunately, the literature on incomplete preferences (more specifically, Eliaz and
Ok (2006)) suggests a way of sorting this out. Let us take a (possibly incomplete, but
transitive) preference relation � on X , and ask when two alternatives x and y are ren-
dered indifferent by �. (Please note that when � is not complete, the notion of “indif-
ference” has no formal meaning; what we are trying to do here is precisely to search for
the proper definition for this concept.) Obviously, if we were to view x and y as indiffer-
ent, there should not be any strict preference between them; that is, neither x � y nor
y � x may hold. But more should be true. If a person whose preferences are modeled
by � is truly indifferent between x and y, then one would expect that she would think of
these as equivalent objects insofar as her preferences are concerned. In particular, she
would assign the same preferential standing to these alternatives relative to any other
alternative. More formally, indifference of x and y with respect to � should entail that
x � z if and only if y � z, as well as z � x if and only if z � y, for any z ∈ X . This suggests
a way of extracting what may be called the “indifference part” of the preference relation
�, which we denote as ind(�). Put precisely, ind(�) is the binary relation on X defined
by (x, y ) ∈ ind(�) if and only if

x � z if and only if y � z and z � x if and only if z � y
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for every z ∈ X . It is immediate from this definition that ind(�) is an equivalence re-
lation on X , and ∼⊆ ind(�). If � is complete, then this holds as an equality, but in
general, it may well hold properly.2 Those preorders whose symmetric parts match their
indifference parts exactly are thus of immediate interest.

Definition. A preorder � on X is said to be regular if ∼= ind(�).3

A regular preorder on X thus distinguishes between the behavioral notions of in-
difference and indecisiveness. When x ∼ y, and only then, we understand that the
associated individual is indifferent between x and y (in the sense that these items are
treated identically when compared to any other alternative). When x and y are not �-
comparable, we understand that the agent is indecisive about the appeal of x and y (so
it is possible that another item (such as x plus ε dollars) be strictly preferred to x but not
to y).

This discussion culminates in the following definition.

Definition. A stochastic choice function P on X is said to be induced by lack of strict
preference if there exists a regular preorder � on X such that for every S ∈X,

P(x, S) > 0 if and only if x ∈ MAX(S, �).

This property is a relaxation of what we considered in Section 3.2: If P is induced by
indifference, then it is induced by lack of strict preference. (The regularity requirement
is automatically satisfied in the definition of being induced by indifference, because ev-
ery complete preorder is regular.) Moreover, the regular preorder � in the definition
above (if it exists) is unique. This is one of the main advantages of working with regular
preorders.

Lemma 3.2. Let �1 and �2 be two regular preorders on X such that MAX(S, �1 ) =
MAX(S, �2 ) for every doubleton S ∈X. Then �1=�2.

Proof. For any distinct x and y in X , we have x �i y if and only if {x} = MAX({x, y}, �i )
for i = 1, 2. By hypothesis, therefore, �1=�2. But then, by definition of ind(·), we have
ind(�1 ) = ind(�2 ) as well. Since both �1 and �2 are regular, it follows that ∼1=∼2.

Corollary 3.3. For any P ∈ scf(X ) that is induced by lack of strict preference, there is a
unique regular preorder � on X that satisfies (4) for every S ∈X.

We can again determine the preorder � in this result by looking at choices over dou-
bleton menus. In particular, the asymmetric part of � satisfies x � y if and only if P(x,

2An example. Let X consist of the 2-vectors x = (0, 5), y = (5, 0), and z = (6, 1), and let � be the coor-
dinatewise ordering on X . Then ind(�) contains all elements of X × X except (y, z) and (z, y ), while ∼
consists only of (x, x), (y, y ), and (z, z).

3This definition is equivalent to the one given in Eliaz and Ok (2006). See Ribeiro and Riella (2017) for an
excellent analysis of regular preorders and their role in choice theory.
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{x, y}) = 1, while its symmetric part is given as x∼ y if and only if 0 < P(x, {x, y}) < 1 and
for every z ∈X\{x, y},

P
(
x, {x, z}

)=
{

1

0
if and only if P

(
y, {y, z}

)=
{

1

0.

We will later find that for a variety of stochastic choice models, this preorder is actually
a particular type of Luce threshold preorder.

Once again, we may use � to draw intrapersonal welfare comparisons for the subject
individual. Indeed, using (4), we see that � is none other than the “strictly unambigu-
ously chosen over” relation of Bernheim and Rangel (2007, 2009). In this case, � is a
subrelation of the “weakly unambiguously chosen over” ordering, but not conversely.

By way of caution, we emphasize again that the preorder � is meaningful only when
P ∈ scf(X ) is induced by lack of strict preference. In this sense, while it applies to a
fairly large class of stochastic choice functions, our approach to welfare measurement is
certainly not model-free (unlike that of Bernheim and Rangel).

Characterization To characterize stochastic choice functions that are induced by lack
of strict preference, it is enough to relax the Stochastic β-Axiom to the following property
which says that if the agent has deemed an alternative x in a menu S choosable against
every potential choice y in S, then she would deem x itself choosable from S.

Stochastic Condorcet Axiom. For every S ∈ X and x ∈ S, if P(x, {x, y}) > 0 for every
y ∈ S with P(y, S) > 0, then P(x, S) > 0.

To streamline the proof of the following characterization theorem, we note that a
self-map C on X with C(S) ⊆ S for every S ∈ X is said to satisfy the weak axiom of
revealed noninferiority (WARNI) if for every S ∈ X and x ∈ S, we have x ∈ C(S) pro-
vided that x is C-preferred to y (i.e., if there is a T ∈ X with x ∈ C(T ) and y ∈ T ) for all
y ∈ C(S). This property was introduced by Eliaz and Ok (2006) to characterize determin-
istic choice correspondences that arise from the maximization of a regular preorder.

Theorem 3.4. A stochastic choice function P on X is induced by lack of strict preference
if, and only if, it satisfies the Stochastic Chernoff Axiom and Stochastic Condorcet Axiom.

Proof. The proof of the “only if” part is routine. Conversely, take any P ∈ scf(X ) that
satisfies the Stochastic Chernoff Axiom and Stochastic Condorcet Axiom. Define the
map C : X→ X by C(S) := {x ∈ S : P(x, S) > 0}, and note that these two axioms jointly
entail that C satisfies the Stochastic Chernoff Axiom and in the following: For every S ∈ X

and x ∈ S, if x ∈ C{x, y} for every y ∈ C(S), then x ∈ C(S). It is an easy exercise to show
that these two properties imply WARNI. By Theorem 1 and Proposition 2 of Eliaz and Ok
(2006), then there exists a regular preorder � on X with C = MAX(·, �).

Theorems 3.1 and 3.4 are straightforward translations of standard results of deter-
ministic choice theory to the stochastic choice framework. As we shall see below, how-
ever, when these results are applied to specific stochastic choice models, deriving char-
acterizing conditions in terms of model parameters is not a trivial exercise (with the
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exception of Proposition 4.1). Besides, applications of these simple results reveal inap-
parent aspects of well-known stochastic choice models such as the random utility model
(see Theorem 5.1 and Propositions 5.3 and 5.5 below).

3.4 Stochastic choice and experimentation

One other reason for a rational individual to exhibit stochastic choice behavior is ex-
perimentation. A person who makes her choices by maximizing a complete preference
relation � may sometimes “try out” some options in a menu S even though these are not
among the best choices in S according to �. There is no obvious way to pin down such
choice behavior in exact terms, but it seems intuitively clear that the most frequently
chosen alternatives by this person in S would correspond to the �-maximal members
of S, while less frequently chosen ones may come about due to experimentation. More
generally, the lower the ranking of an item in S with respect to �, we would expect the
less is the probability that this person would indeed give that item a “try.” This prompts
the following definition.

Definition. A stochastic choice function P on X is said to be compatible with experi-
mentation if there exists a complete preorder � on X such that

• arg maxz∈S P(z, S) ⊆ max(S, �) for every S ∈X

• if x� y, then P(x, S) ≥ P(y, S) for every S ∈X with x, y ∈ S

• if P(x, S) > P(y, S) for every S ∈X with x, y ∈ S and P(y, S) > 0, then x � y.

If P ∈ scf(X ) is compatible with experimentation, it corresponds to the behavior of a
rational individual who gives a try to some of the items in a menu S every now and again.
Her most frequently chosen items in S are the best elements in that menu according to
her preference relation �. Moreover, her preferences guide her in experimentations as
well, for her “trial” probabilities of each item in S is increasing in the ranking of those
items relative to �. And if an option x is consistently chosen more frequently than an-
other option y in the sense that P(x, S) > P(y, S) for every menu S that contains x and
y—x is “tried out” more often than y in every possible situation—then x must be ranked
higher than y by the agent. (We actually allow P(x, S) = P(y, S) in this conclusion as long
as these probabilities vanish. This is because it may be that there is an option in S that
dominates both x and y, so even though x � y (whence P(x, {x, y}) > P(y, {x, y})), x and
y are chosen from S with the same probability, namely, 0.)

The complete preorder � in the definition above is, in general, not unique. Nonethe-
less, any such preorder relates closely to the behavior of P on pairwise choice situations.
Indeed, if we set S := {x, y} in the first condition of the definition, we see that x � y

implies arg maxz∈S P(z, S) = {x}. Thus, x � y implies P(x, {x, y}) > 1
2 . Consequently, if

P(x, {x, y}) = 1
2 , neither x � y nor y � x may hold, which means x ∼ y (as � is com-

plete). Thus, any complete preorder � on X that “rationalizes” P as compatible with
experimentation satisfies

x � y implies P
(
x, {x, y}

)
>

1
2

and P
(
x, {x, y}

)= 1
2

implies x ∼ y
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for every x, y ∈X . The converses to these implications do not hold. (For example, where
X = {x, y, z}, if P ∈ scf(X ) satisfies P(x, {x, y}) = 2

3 , P(x, {x, z}) = P(y, {y, z}) = P(x, X ) =
0, and P(y, X ) = 1

4 , then it is compatible with experimentation, but the rationalizing
preorder � on X for this conclusion satisfies z � x∼ y.)

Uniqueness of the Rationalizing Welfare Ordering The above mentioned nonunique-
ness issue does not often arise in practice. Indeed, every model that we consider in this
paper that is compatible with experimentation satisfies the following:

P
(
x, {x, y}

)
>

1
2

and P(x, S) ≥ P(y, S) > 0 imply P(x, S) > P(y, S) (5)

for all S ∈ X and x, y ∈ S. If P satisfies this condition, it may or may not be compati-
ble with experimentation, but if it is, then there is a unique complete preorder � on X

that rationalizes P as such: x � y if and only if P(x, {x, y}) ≥ 1
2 . (Note that, without (5),

this preorder need not be transitive. For example, the stochastic choice function P on
X = {x, y, z} with P(x, {x, y}) = P(y, {y, z}) = 1

2 and P(x, {x, z}) = P(y, X ) = P(z, X ) = 1
3

is compatible with experimentation, but the previous preorder is not transitive.)

Experimentation versus Lack of Strict Preference The following examples demonstrate
that the notion of being compatible with experimentation is logically distinct from that
of being induced by lack of strict preference.

Example 3.3. Let � be a linear order on X . Take any 1
2 > p > 0, and define P ∈ scf(X )

as

P(x, S) =

⎧⎪⎪⎨
⎪⎪⎩

(1 −p), if {x} = max(S, �)

p, if {x} = max
(
S\max(S), �

)
0, otherwise.

In words, this is the stochastic choice function of an individual who mainly behaves
according to the preferences �, but occasionally (with probability p), she “tries out” the
second best alternative in a menu relative to �. As long as |X| ≥ 3, this choice function
is not induced by lack of strict preference, but it is compatible with experimentation. ♦

Example 3.4. Let X := {x, y, z}, and take any positive P ∈ scf(X ) with P(x, {x, y}) = 1
2 =

P(x, {x, z}), P(y, {y, z}) > 1
2 and P(y, X ) > P(z, X ). Then P is induced by indifference

(and hence by lack of strict preference) simply because P is positive. However, if P were
to be compatible with experimentation, the first two equalities would entail x ∼ y and
x ∼ z for the associated complete preorder � on X . We would then have x ∼ y, while
the latter two inequalities entail y � z, contradicting the transitivity of �. Thus, P is not
compatible with experimentation. ♦

Characterization For any P ∈ scf(X ), let us first define the binary relation RP on X by
x RP y if and only if there exists an S ∈X such that x, y ∈ S and either P(x, S) > P(y, S) or
P(x, S) = maxz∈S P(z, S). Next, we consider the strict partial order �P on X where x�P y

if and only if P(x, S) > P(y, S) for every S ∈X with x, y ∈ S and P(y, S) > 0. The following



664 Ok and Tserenjigmid Theoretical Economics 17 (2022)

result utilizes these two relations to characterize all stochastic choice functions that are
compatible with experimentation.

Theorem 3.5. A stochastic choice function P on X is compatible with experimentation if,
and only if,

x tran(RP ) y implies not y �P x. (6)

Proof. Suppose P is compatible with experimentation. Let � be a complete preorder
on X such that the three requirements of compatibility of P with experimentation are
satisfied. Take any x, y ∈ X with x tran(RP ) y. Then there exist a positive integer k and
x0, � � � , xk ∈X with x= x0 RP x1 RP · · ·RP xk = y. By definition of RP, therefore, for each
i ∈ {1, � � � , k} there is an Si ∈ X such that xi−1, xi ∈ S and either P(xi−1, Si ) > P(xi, Si )
(whence xi−1 � xi by the second requirement and completeness of �) or P(xi−1, Si ) =
maxz∈Si P(z, Si ) (whence xi−1 � xi by the first requirement). It follows that x0 � · · · � xk,
and thus x � y, by transitivity of �. Since the third requirement implies that �P⊆�,
we conclude that y �P x cannot hold. Conversely, assume (6). Put �:= tran(RP ) which
is a preorder (as RP is reflexive). It is also complete because P(x, {x, y}) ≥ 1

2 implies x

RP y for any x, y ∈ X . Verifying that the three requirements of compatibility of P with
experimentation hold with respect to � is then a routine exercise.

Checking for the Experimentation Motive While Theorem 3.5 provides a complete char-
acterization, checking the condition (6) is not always easy. Fortunately, we can use this
theorem to obtain easy-to-check sufficient conditions for compatibility with experimen-
tation. The following is particularly useful in this regard.

Ordinal Independence of Irrelevant Alternatives. For every S, T ∈X with S ⊆ T ,
and every x, y ∈ S with P(x, T ) > 0,

P(x, T ) ≥ P(y, T ) implies P(x, S) ≥ P(y, S).

This property, which we henceforth refer to as Ordinal IIA, is a substantial relaxation
of Luce’s choice axiom.4 It merely asks the ordering of the choice probabilities of any two
alternatives in a menu T remain unchanged in any submenu of T that contains those
two alternatives (provided that at least one of these alternatives is chosen with positive
probability in T ), but it does not put any restriction on how the relative magnitude of
these probabilities change across submenus.

We recall that P ∈ scf(X ) is said to be weakly stochastically transitive if P(x, {x, y}) ≥
1
2 and P(y, {y, z}) ≥ 1

2 imply P(x, {x, z}) ≥ 1
2 for every x, y, z ∈ X . We next show that Or-

dinal IIA implies compatibility with experimentation for weakly stochastically transitive
stochastic choice models.

Corollary 3.6. Every weakly stochastically transitive P ∈ scf(X ) that satisfies Ordinal
IIA is compatible with experimentation.

4Fudenberg, Iijima, and Strzalecki (2015) use the term “ordinal IIA” for a much more demanding condi-
tion that also weakens Luce’s choice axiom.
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Proof. Take any weakly stochastically transitive P ∈ scf(X ) that satisfies Ordinal IIA,
and define the binary relation � on X by x � y if and only if P(x, {x, y}) ≥ 1

2 . If x RP y,
there is an S ∈ X with x, y ∈ S and P(x, S) ≥ P(y, S) and P(x, S) > 0, so, by Ordinal IIA,
P(x, {x, y}) ≥ 1

2 , that is, x � y. Thus, RP ⊆�. As � is transitive (because P is weakly
stochastically transitive), this implies tran(RP ) ⊆�, and (6) follows from this fact. Apply
Theorem 3.5.

3.5 Discussion

We reiterate that each of the three motives considered above uses limited parts of the
information provided by a stochastic choice function P. As such, none of them can, or
is expected to, uncover the behavioral origins of P entirely. Instead, they are primed to
provide partial, but potentially useful, information about the overall P, not unlike how
summary statistics (such as the mean, variance, etc.) of a probability distribution pro-
vide partial information about that distribution. The notions of being induced by indif-
ference and lack of strict preference concern only the support of P(·, S) for any menu S.
It would thus be a mistake to consider these notions as one-all even for the particular
behaviors that they are after. As we have argued earlier, it is best to consider these prop-
erties as necessary, but not sufficient, conditions for the behavioral origins that they in-
tend to capture. The case of compatibility with experimentation is also similar, but note
that this notion uses the stochastic choice function more fully than the previous two.
In particular, it pays attention to all choice probabilities (as opposed to only positive or
maximum probabilities), at least in the ordinal sense. While it is a bit more complicated
than the previous two, this gives an advantage to this property.

In the following sections, we apply the randomization motives introduced in this
section to three well-known classes of stochastic choice models. We show that thresh-
old Luce model, Tversky’s model, and additive random utility model are induced by lack
of strict preference. We may thus think of behavior that abides by any of these models
“as if” it arises from the maximization of an incomplete preference relation; the models
differ from each other in the way they stipulate how the individual resolves the incom-
parability between alternatives consistently. This points to a subtle connection between
incompleteness of preferences and stochastic choice behavior.

We also show below that threshold Luce model, additive random utility model with
i.i.d. errors, and weak additive perturbed utility model are compatible with experimen-
tation. One may thus interpret the behavior that corresponds to these models “as if”
it arises from the maximization of a complete preference relation along with an exper-
imentation procedure; the models are distinguished from each other in the procedure
they stipulate. In all of the above cases, the individual will have a unique preference rela-
tion that may serve as an unambiguous welfare criterion. In some cases, the preference
relation is Luce’s threshold preorder, revealing some commonality between seemingly
unrelated models.

4. Origins of Luce-type models

Throughout this section, unless stated otherwise, u : X → (0, ∞) is an arbitrary function
and � : X→X is any function with �(S) ⊆ S for every S ∈X.
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4.1 The general Luce model

The general Luce model with (u, �) is the stochastic choice function P on X such that

P(x, S) := u(x)∑
ω∈�(S)

u(ω)
for any x ∈ �(S),

and P(x, S) := 0 for any x ∈ X\�(S); this model was introduced, independently, by Ahu-
mada and Ulku (2018) and Echenique and Saito (2019). We may think of �(S) as the set
of alternatives that survive a preliminary stage of elimination, or as the set of all alter-
natives in a feasible menu S to which the agent somehow limits her attention. The first
interpretation, favored by Echenique and Saito (2019), is in line with two-stage choice
procedures (as in Masatlioglu and Ok (2005) and Manzini and Mariotti (2007)), whereas
the second is more in line with the revealed attention model of Masatlioglu et al. (2012).
Whichever interpretation one adopts, the choice probability of any alternative outside
�(S) is zero. The choice probability of an alternative x in �(S) is, alternatively, positive,
and found as the ratio of u(x) to the sum of utilities of all elements in �(S).

Let P be the general Luce model with (u, �). Then P(x, S) > 0 if and only if x ∈
�(S) for any S ∈ X, so P satisfies the Stochastic Chernoff Axiom and Stochastic β-
Axiom if and only if � satisfies WARP, and it satisfies the Stochastic Chernoff Axiom and
Stochastic Condorcet Axiom if and only if � satisfies WARNI. By Theorems 3.1 and 3.4,
therefore, we get the following result.

Proposition 4.1. The general Luce model with (u, �) is induced by indifference (resp.,
lack of strict preference) if, and only if, � satisfies WARP (resp., WARNI).

Interestingly, we can also think of a person whose choice behavior is represented by
a general Luce model with a consideration correspondence that satisfies WARP “as if”
her random choice behavior arises from experimentation.

Proposition 4.2. The general Luce model with (u, �) is compatible with experimenta-
tion, provided that � satisfies WARP.

Proof. Take any (u, �) such that � satisfies WARP, and denote by P the general Luce
model with (u, �). By the fundamental theorem of revealed preference, there exists a
complete preorder �∗ on X such that � = max(·, �∗ ). As X is finite, there is a map
f : X → R such that x �∗ y if and only if f (x) ≥ f (y ), so we have �(S) = arg maxz∈S f (z)
for every S ∈ X. We define the binary relation � on X by x � y if and only if either
f (x) > f (y ), or f (x) = f (y ) and u(x) ≥ u(y ). As it is the lexicographic sum of two com-
plete preorders on X , � is a complete preorder on X . Moreover, it is plain from this
description that arg maxz∈S P(z, S) ⊆ max(S, �) for any S ∈X.

Now take any x, y ∈ X . Suppose first that x � y, that is, either f (x) > f (y ), or
f (x) = f (y ) and u(x) > u(y ). For any S ∈ X with x, y ∈ S, if f (x) > f (y ), then y does
not belong to �(S), so we trivially have P(x, S) ≥ 0 = P(y, S), while if f (x) = f (y ) and
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u(x) > u(y ), then y may or may not belong to �(S), but if it does, so does x as well (be-
cause f (x) = f (y )), and hence P(x, S) > P(y, S). This verifies the second condition of be-
ing compatible with experimentation. To verify the third, suppose P(x, S) > P(y, S) for
every S ∈X with x, y ∈ S and P(y, S) > 0. Choosing S := {x, y} here, we find P(x, {x, y}) >
P(y, {x, y}). This can happen if and only if either {x} = �{x, y}, or {x, y} = �{x, y} and
u(x) > u(y ), that is, if and only if either f (x) > f (y ), or f (x) = f (y ) and u(x) > u(y ), that
is, if and only if x� y. This concludes the proof.

The Luce Model The two axioms that Luce (1959) imposed on a P ∈ scf(X ) are positivity
(i.e., supp(P(·, S)) = S for each S ∈ X), and what is now known as Luce’s choice axiom
(i.e., P(x, T ) = P(x, S)P(S, T ) for every x ∈ X and S, T ∈X with x ∈ S ⊆ T ). These axioms
entail that P is a general Luce model with (u, �) where �(S) = S for all S ∈ X.

Positivity of the Luce model trivially renders this model as induced by indifference.
As positivity is only a simplifying assumption—Horan (2021), for instance, classifies any
P ∈ scf(X ) that satisfies Luce’s choice axiom as a Luce model—it is of interest to see
if Luce’s choice axiom alone would ensure the same conclusion. It turns out that this is
indeed the case. For example, Cerreia-Vioglio et al. (2021) have recently showed that any
P ∈ scf(X ) that satisfies Luce’s choice axiom is a general Luce model with some (u, �)
where � satisfies WARP. Combining this result with Propositions 4.1 and 4.2, we may
thus conclude that, even when nonpositive, any Luce model is induced by indifference,
and is compatible with experimentation.

Rationalization of the General Luce Model Let P be a general Luce model with (u, �).
If � satisfies WARP, then this model is induced by indifference (Proposition 4.1), and the
complete preorder � on X that “rationalizes” this conclusion is found simply as

x� y if and only if x ∈ �{x, y}.

In this case, the model is also compatible with experimentation (Proposition 4.2), and
the complete preorder � on X that “rationalizes” this conclusion is given as

x� y if and only if either �{x, y} = {x}, or �{x, y} = {x, y} and u(x) ≥ u(y ).

Finally, if � satisfies WARNI, then P is induced by lack of strict preference (Proposi-
tion 4.1), and the preorder � on X that “rationalizes” this conclusion is given as x � y

if and only if {x} = �{x, y}, and x ∼ y if and only if (i) {x, y} = �{x, y}; and (ii) {x, z} =
�{x, z} if and only if {y, z} = �{y, z}, for any z ∈X\{x, y}.

4.2 The 2-stage Luce model

For any partial order � on X , the general Luce model with (u, �), where

�(S) = MAX(S, �) for every S ∈X,

is said to be a 2-stage Luce model with (u, �). This is a particularly interesting general
Luce model, which presumes that the agent has a certain type of dominance relation �
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in her mind, and she does not pay any attention to those alternatives in a menu that are
dominated in terms of this relation. Instead, she first contracts the menu by eliminat-
ing the dominated alternatives, and then chooses in accordance with the Luce model
from the resulting set. 2-stage Luce models are thus more in line with two-stage rational
choice procedures (as opposed to limited attention models).

Given that X is finite, the self-map S �→ MAX(S, �) on X satisfies WARNI as long as
� is a partial order on X . Thus, by Proposition 4.1, we have the following result.

Proposition 4.3. Every 2-stage Luce model is induced by lack of strict preference.

The following examples illustrate that a 2-stage Luce model need not be induced by
indifference nor be compatible with experimentation.

Example 4.1. Define the map u on X := {x, y, z} by u(x) := 2, u(y ) := 3, and u(z) := 4.
Let P be the 2-stage Luce model with (u, �), where a � b if and only if a = b or u(a) >
3
2u(b). This model is induced by lack of strict preference, but not by indifference. ♦

Example 4.2. Take any map u on X := {x1, � � � , x5} with u(x1 ) > · · · > u(x5 ). Let � be a
partial order whose asymmetric part is given as x1 � x3 � x5 and x2 � x4. Let P stand for
the 2-stage Luce model with (u, �). To derive a contradiction, suppose P is compatible
with experimentation, and take any complete preorder � that rationalizes P as such.
Since

P
(
x3, {x3, x4}

)
> P

(
x4, {x3, x4}

)
and P

(
x3, {x1, x3, x4}

)= 0 < P
(
x4, {x1, x3, x4}

)
,

neither x3 � x4 nor x4 � x3 may hold. Thus, x3 ∼ x4. Alternatively,

P
(
x4, {x4, x5}

)
> P

(
x5, {x4, x5}

)
and P

(
x4, {x2, x4, x5}

)= 0 < P
(
x5, {x2, x4, x5}

)
,

so x4 ∼ x5. But since x3 � x5, there is no S ∈ X with x3, x5 ∈ S and P(x5, S) > 0. It thus
follows from the second part of the definition of being compatible with experimentation
that x3 � x5. This contradicts transitivity of �. ♦

Rationalization of the 2-Stage Luce Model Let P be a 2-stage Luce model with (u, �).
Proposition 4.3 says that this model can be thought of as arising from the maximiza-
tion of a preference relation �, with randomization in a menu S arising only when there
are multiple �-maximal elements in S. This relation is given as (i) �=�, and (ii) x ∼ y

if and only if the strict upper and lower contour sets of x and y (with respect to �) co-
incide. Moreover, if � is complete, then �=� while x ∼ y if and only if either x = y or x
and y are not �-comparable. It follows that P cannot be induced by indifference, unless
the incomparable part of the dominance relation � is a linear order, which is an extreme
requirement.
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4.3 The threshold Luce model

For any α> 0, the general Luce model with (u, �), where

�(S) :=
{
x ∈ S : u(x) ≥ maxu(S)

1 + α

}
,

is said to be a threshold Luce model with (u, α). (This model was also characterized by
Echenique and Saito (2019).) On one hand, this is a 2-stage Luce model, whence it is
induced by lack of strict preference. On the other hand, unlike an arbitrary 2-stage Luce
model, and even though � does not satisfy WARP (so Proposition 4.2 does not apply),
any threshold Luce model is compatible with experimentation.

Proposition 4.4. Every threshold Luce model is compatible with experimentation.

Proof. It is an easy exercise to verify that every threshold Luce model is weakly stochas-
tically transitive and satisfies Ordinal IIA. The claim thus follows from Corollary 3.6.

The main results of this section are summarized in Figure 1.

Rationalization of the Threshold Luce Model Let P be a threshold Luce model with
(u, α). Being a 2-stage Luce model, P is induced by lack of strict preference (Proposi-
tion 4.3). Only a bit of computation shows that the “rationalizing” preorder � of this rep-
resentation is quite intuitive: it is the Luce threshold preorder �U ,δ on X where U := logu
and δ := log(1 + α) (Section 2). This welfare ordering seems particularly appealing as it
fits to the interpretation of the threshold Luce model perfectly. (A similar connection
between the threshold Luce model and the threshold Luce preorder was found also by
Horan (2021).)

By Proposition 4.4, P is also compatible with experimentation, while it is readily
checked that P satisfies (5) for all S ∈ X and x, y ∈ S. Thus, as we have noted in Sec-
tion 3.4, this model’s compatibility by experimentation is “rationalized” by a unique

Figure 1. General Luce model, lack of strict preference, and experimentation.



670 Ok and Tserenjigmid Theoretical Economics 17 (2022)

complete preorder � on X . This preorder is given simply as x � y if and only if u(x) ≥
u(y ).

5. Origins of random utility models

Throughout this section, U stands for a nonempty collection of bijections from X onto
{1, � � � , |X|}, and μ for a probability measure on 2U with μ(u) > 0 for each u ∈ U .

5.1 The general random utility model

The random utility model (RUM) with (U , μ) is the P ∈ scf(X ) with

P(x, S) :=
∑
u∈U

μ(u)1arg maxu(S)(x). (7)

Most stochastic choice functions that are used in econometric models of discrete choice
are of this form. The class of RUMs, which was characterized first by Falmagne (1978),
intersects that of general Luce models, but neither is nested in the other. However, it was
shown by Block and Marschak (1960) that the Luce model is, in fact, a RUM.

Our first question is, “Can we think of any RUM as modeling the choice behavior
of a rational individual who makes her choices from a menu by maximizing a (possibly
incomplete) preference relation, and who only randomizes among the maximal options
in that menu?” In other words, can we think of any RUM as induced by lack of strict
preference? The short answer is no. The long answer requires determining exactly which
sort of RUMs can be thought of as such. This is done in the next result.

Theorem 5.1. The random utility model P with (U , μ) is induced by lack of strict prefer-
ence if, and only if,

min
u∈U

max
z∈S

(
u(z) − u(x)

)
> 0 implies max

z∈S
min
u∈U

(
u(z) − u(x)

)
> 0 (8)

for any S ∈X and x ∈ S.

Proof. Being regular (in the sense of Luce), any RUM satisfies the Stochastic Chernoff
Axiom. By Theorem 3.4, therefore, we only need to show that P satisfies the Stochastic
Condorcet Axiom if and only if (8) holds for any S ∈ X and x ∈ S. Assume first that P

satisfies the Stochastic Condorcet Axiom. Take any S ∈X and x ∈ S with

min
u∈U

max
z∈S

(
u(z) − u(x)

)
> 0, (9)

but suppose (8) fails. Then, for every y ∈ S\{x}, there is a u ∈ U with u(x) > u(y ). It
follows that P(x, {x, y}) > 0 for every y ∈ S, and hence, by the Stochastic Condorcet Ax-
iom, P(x, S) > 0, but this contradicts (9). Conversely, take any S ∈ X and x ∈ S with
P(x, {x, y}) > 0 for each y ∈ S. To derive a contradiction, suppose P(x, S) = 0, which
means that for every u ∈ U , there is a y ∈ S (that depends on u) with u(y ) > u(x). It fol-
lows that (9) holds, and hence, if (8) is valid, there exists a y∗ ∈ S with u(y∗ ) > u(x) for
every u ∈ U . But this means P(x, {x, y∗}) = 0, a contradiction.
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Theorem 5.1 is useful for determining whether or not a particular RUM is induced by
lack of strict preference. A major example of this will be encountered in the next section.
For the moment, we use it to give concrete examples that show that the notions of being
induced by lack of strict indifference and being compatible with experimentation are
logically distinct even within the class of RUMs.

Example 5.1. Define the real maps u and v on X := {x, y, z} by (u(x), u(y ), u(z)) :=
(2, 3, 1) and (v(x), v(y ), v(z)) := (2, 1, 3). Then, for any nondegenerate μ ∈ 	({u, v}), an
easy application of Theorem 5.1 shows that the random utility model P with (U , μ) is
not induced by lack of strict preference. However, it is readily checked that this model is
compatible with experimentation (for any μ). ♦

Example 5.2. Define the real maps u, v, and w on X := {x, y, z} by (u(x), u(y ), u(z)) :=
(3, 2, 1), (v(x), v(y ), v(z)) := (2, 1, 3), and (w(x), w(y ), w(z)) := (1, 3, 2). Then, for any
nondegenerate μ ∈ 	({u, v, w}), we can use Theorem 5.1 to show readily that the random
utility model P with (U , μ) is induced by lack of strict preference. However, when μ(u) =
4
9 and μ(v) = 3

9 , it is not compatible with experimentation. ♦

The following result shows that a RUM may be induced by indifference only under
special circumstances.

Proposition 5.2. The random utility model P with (U , μ) is induced by indifference if,
and only if, there is a partition {X1, � � � , Xn} of X such that Xi ⊆⋃

u∈U arg maxu(Xi ) for
each i, and minu∈U (u(x) − u(y )) > 0 for each (x, y ) ∈Xi ×Xj with i < j.

Proof. Suppose there exists a complete preorder � on X such that (1) holds. Then
u(x) = maxu(S) for some u ∈ U if and only if x ∈ max(S, �) for every S ∈ X. In partic-
ular, x � y if and only if minu∈U (u(x) − u(y )) > 0. Enumerate the quotient set X/∼ as
{X1, � � � , Xn} where x� y for each (x, y ) ∈Xi×Xj with i < j, and note that xi ∈ max(Xi, �
), whence xi ∈⋃u∈U arg maxu(Xi ) for any xi ∈ Xi and i = 1, � � � , n. Conversely, suppose
there is a partition {X1, � � � , Xn} of X with the said two properties. Consider the binary
relation �:=⋃

(Xi × Xj ) where the union is taken over all (i, j) pairs with i ≤ j. (Note
that, by the second property, x� y implies u(x) > u(y ) for all u ∈ U .) Now take any S ∈ X

and x ∈ S, and suppose x ∈ Xi. If there is a y ∈ S with y � x, then u(y ) > u(x) for all
u ∈ U , whence u(x) < maxu(S) for all u ∈ U . Conversely, if x� S, then S ⊆ Xi ∪ · · · ∪ Xn.
If y ∈ S ∩Xj with i < j, then x � y, so u(x) > u(y ) for all u ∈ U . If instead y ∈ S ∩Xi, then
u(x) ≥ u(y ) for some u ∈ U (because x ∈ Xi ⊆⋃

u∈U arg maxu(Xi )). Thus, x ∈ max(S, �)
if and only if u(x) = maxu(S) for some u ∈ U (i.e., P(x, S) > 0).

A RUM may or may not be compatible with experimentation (Example 5.2), and we
are not aware of a general result about when it is. As we shall see below, this problem
may be better dealt with in the context of the particular RUMs that one is interested in.
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Rationalization of a RUM Let P be a RUM with (U , μ). Suppose (8) holds for any S ∈ X

and x ∈ S so that, by Theorem 5.1, P is induced by lack of strict preference. To identify
the “rationalizing” preorder � of this representation clearly, let us introduce the map

U : X × X → R with 
U (x, y ) := minu∈U (u(x) − u(y )). (Notice that 
U (x, y ) �= 0 for
any distinct x and y.) Then the asymmetric part of � is characterized simply as x �
y if and only if 
U (x, y ) > 0. Alternatively, we have x ∼ y if and only if (i) 
U (x, y ) < 0
and 
U (y, x) < 0, and (ii) 
U (x, z)
U (y, z) > 0 and 
U (z, x)
U (z, y ) > 0 for every z ∈
X\{x, y}.

The rationale behind viewing � as a welfare ordering was abstractly discussed in
Section 3.3. In the special case of RUMs, we see that � enjoys an additional interpreta-
tion. Indeed, here x � y means simply that every utility in U ranks x strictly above y; it
is unexceptionable that we indeed conclude in this case that the individual is better off
with x than with y. The case x ∼ y is a bit more subtle. In this case, at least one utility of
this person says x is better than y, and at least one other says the opposite. In addition,
the standing of x and y relative to any other alternative z is the same in the sense that if
x dominates (or is dominated by) z, this happens for y as well, and vice versa.

5.2 Tversky’s model of elimination by aspects

An important generalization of the Luce model is the model of elimination by aspects
of Tversky (1972a, 1972b). This model takes as primitives a nonempty finite set A, a
map v : A → (0, ∞), and a set-valued function Att : X ⇒A that maps each alternative
to a nonempty subset of A. We interpret A as the set of attributes (aspects) that an
alternative in X may or may not possess, v describes the utility scales of the attributes,
and Att(x) stands for the set of all attributes that an alternative x possesses. For any
S ∈X and a ∈A, we define

Att(S) :=
⋃
x∈S

Att(x) and Sa := {
x ∈ S : a ∈ Att(x)

}
.

That is, Att(S) is the set of all attributes that are possessed by at least one member of S,
and Sa is the set of all alternatives in S, if any, that possess the attribute a.

The model is described as follows. For any feasible menu S, we select the attribute
a ∈ Att(S) with probability v(a)/

∑
b∈Att(S) v(b), and eliminate all alternatives in S that

do not possess a. The choice problem then becomes Sa. If Att(Sa ) = Att(x) for every
x ∈ Sa, that is, if every x in Sa possesses the same attributes, then the process stops,
and all alternatives in Sa are chosen with probability 1/|Sa|. Otherwise, with probability
v(b)/

∑
c∈Att(Sa )\{a} v(c), we select the attribute b ∈ Att(Sa )\{a}, and eliminate all alterna-

tives in Sa that do not possess b. This process is then continued inductively until it stops.
Put formally, we recursively define P : X ×X→ [0, 1] as

P(x, S) :=
∑

a∈Att(S)

(
v(a)∑

b∈Att(S)

v(b)

)
P(x, Sa ) (10)

if x ∈ S, and P(x, S) := 0 otherwise. Not only is P a stochastic choice function on X, but
it is a RUM. In what follows, we refer to it as the Tversky model with (A, v, Att).
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The Tversky model has a procedural flavor, and as such, one may not expect it to
be tied to an individual who ultimately maximizes a deterministic (albeit, incomplete)
preference relation. The following result may thus come as a bit of a surprise.

Proposition 5.3. Every Tversky model is induced by lack of strict preference.

Proof. Let P be the Tversky model with (A, v, Att). Then, being a RUM, P satisfies the
Stochastic Chernoff Axiom. By Theorem 3.4, therefore, we only need to show that P

satisfies the Stochastic Condorcet Axiom. We first prove the following two claims.

Claim 1. For any S ∈ X and x ∈ S, P(x, S) = 0 if and only if Att(x) ⊂ Att(y ) for some y ∈
S\{x}.

Proof. Suppose there is a y ∈ S\{x} with Att(x) ⊂ Att(y ). Then, obviously, P(x, {x, y}) =
0. It is also plain that, according to any Tversky model, the probability of choosing an
alternative in a menu cannot decrease as the menu shrinks. (That is, any such model
satisfies Luce’s regularity axiom.) It follows that P(x, {x, y}) ≥ P(x, S), whence P(x, S) =
0. Conversely, suppose Att(x) ⊂ Att(y ) is false for every y ∈ S. We proceed by induction
on the size of S. At the base step, suppose |S| = 2, so S = {x, y} for some y ∈ X\{x}.
By hypothesis, there is an attribute that x possesses but y does not, so if elimination
starts with this attribute (which happens with positive probability), y is eliminated, but
x is not; we thus have P(x, S) > 0 in this case. (If |X| = 2, we are done, so we assume
henceforth that |X| ≥ 3.) Now take any integer k ∈ {2, � � � , |X| − 1}, and suppose that our
assertion holds whenever |S| ≤ k. Finally, suppose |S| = k+ 1 and Att(x) ⊂ Att(y ) is false
for every y ∈ S. If there is no a ∈ A with |Sa| ≤ k, then Sa = S for every a ∈ Att(S), which
would entail that the process stops, and P(x, S) = 1/|S| > 0. Otherwise, that is, there is
an attribute a ∈ A with |Sa| ≤ k, we apply our induction hypothesis to get P(x, Sa ) > 0.
By (10), then P(x, S) > 0, as we sought.

Claim 2. For any S ∈ X and x ∈ S, P(x, S) = 0 if and only if Att(x) ⊂ Att(y ) for some y ∈
S\{x} with P(y, S) > 0.

Proof. Suppose P(x, S) = 0. Then, by Claim 1, there is a y1 ∈ S with Att(x) ⊂ Att(y1 ). If
P(y1, S) > 0, we are done. Otherwise, apply Claim 1 again (this time y1 playing the role
of x) to find a z1 ∈ S with Att(y1 ) ⊂ Att(z1 ). Thus, Att(x) ⊂ Att(z1 ). If P(z1, S) > 0, we are
done; otherwise, continue inductively. Since S is finite, this process yields a z ∈ S such
that Att(x) ⊂ Att(z) and Att(z) is not a proper subset of Att(y ) for any y ∈ S\{z}. So, by
Claim 1 (applied to z), we have P(z, S) > 0, and we are done.

Now, suppose P(x, {x, y}) > 0 for every y ∈ S with P(y, S) > 0. Then, applying Claim 1
to the set S = {x, y}, we see that Att(x) is not a proper subset of Att(y ) for any y ∈ S\{x}
with P(y, S) > 0. It then follows from Claim 2 that P(x, S) > 0. This proves that P obeys
the Stochastic Condorcet Axiom.
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The Tversky model is built on procedural elements, so it is surprising that it can, in
fact, be written as a random utility model (Tversky (1972a)). Proposition 5.3 in a sense
further enforces the idea that there is quite a bit of “rationality” underlying this model.
Apparently, we can think of an agent whose choice behavior is modeled by a Tversky
model as a rational person who maximizes her (possibly incomplete) preferences on
every menu, and randomizes in a certain way when there is more than one maximal
element in a given menu.

A Tversky model is, in general, not induced by indifference, unless it satisfies a de-
manding partition requirement.

Proposition 5.4. The Tversky model P with (A, v, Att) is induced by indifference if, and
only if, there is a partition {X1, � � � , Xn} of X such that{

Att(x) ⊃ Att(y ), if i < j

Att(x) and Att(y ) are not properly nested, if i = j

for any distinct x, y ∈X with (x, y ) ∈Xi ×Xj , i, j = 1, � � � , n.

Proof. Recall that any Tversky model is a RUM; let P be a RUM with (U , u). By
Proposition 5.2, P is induced by indifference if and only if there is a there is a partition
{X1, � � � , Xn} of X such that (i) Xi ⊆⋃

u∈U arg maxu(Xi ) for each i, and (ii) minu∈U (u(x)−
u(y )) > 0 for each (x, y ) ∈Xi ×Xj with i < j. But (i) means for every i and x ∈ Xi, there is
a u ∈ U with u(x) = maxu(Xi ). Thus, (i) holds if and only if P(x, Xi ) > 0 for each x ∈ Xi,
i = 1, � � � , n, while, by Claim 1 above, the latter statement holds if and only if Att(x) and
Att(y ) are not properly nested for any distinct x, y ∈ Xi, i = 1, � � � , n. Alternatively, (ii)
holds if and only if P(x, {x, y}) = 1 for every (x, y ) ∈ Xi × Xj with i < j, and by Claim 2,
this is the same thing as saying that Att(x) ⊃ Att(y ) for every (x, y ) ∈ Xi × Xj with
i < j.

In contrast to Proposition 5.3, there is no reason for a Tversky model to be compati-
ble with experimentation.

Example 5.3. Let X := {x1, � � � , x5}, A := {a, b, c, d, e}, and take any map v on A such
that v(a) < v(d) < v(a) + v(b). Let Att(x1 ) := {a, b, c}, Att(x2 ) := {e, d}, Att(x3 ) := {a, b},
Att(x4 ) := {d}, and Att(x5 ) := {a}. (Note that Att(x1 ) ⊃ Att(x3 ) ⊃ Att(x5 ) and Att(x2 ) ⊃
Att(x4 ).) Then the argument we gave in Example 4.2 applies verbatim to establish that
the Tversky model with (A, v, Att) is not compatible with experimentation. ♦

Rationalization of a Tversky Model Let P be a Tversky model with (A, v, Att). By Propo-
sition 5.3, this model is induced by lack of strict preference. Using Claim 1 of the proof
of Proposition 5.3, we can compute the preference relation � on X that rationalizes P as
such in the following way: x � y if and only if Att(y ) ⊂ Att(x), and x ∼ y if and only if for
every z ∈ X , Att(x) and Att(z) are not properly nested whenever Att(y ) and Att(z) are
not properly nested. When P is induced by indifference, this characterization simplifies.
In that case, x � y if and only if Att(y ) ⊂ Att(x), and x ∼ y if and only if Att(x) and Att(y )
are not properly nested.
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5.3 Additive random utility models

ARUMs Let v be an injection from X into R, which is interpreted as the part of the
utility function of the individual that is known to the modeler. (As usual, the injectivity
of v is imposed to remove potential ties in the ranking of the alternatives.) The actual
utility function of the individual, however, may differ from v, but the modeler knows
this discrepancy only up to a probability. To model this situation, let us take a nonempty
finite subset I of real numbers such that v(x) + s �= v(y ) + t for every s, t ∈ I and every
distinct x, y ∈ X . In turn, let {εx}x∈X be a collection of I-valued random variables (on
some fixed probability space) such that Prob{εx = t} > 0 for every t ∈ I and x ∈ X . (As
usual, we think of εx as the modeler’s “error” of the identification of the agent’s utility
scale of the alternative x.) Our choice of the discrete interval I guarantees that v + s

is a real-valued injection on X , and thus ranks the alternatives in X strictly, for every
map s : X → I. Consequently, for each s ∈ IX , there is a unique bijection us from X

onto {1, � � � , |X|} such that the rankings of the alternatives in X by the maps us and v+ s

are the same. Finally, put U := {us : s ∈ IX }, and let μ be the probability measure on 2U

with μ(us ) := Prob{εx = s(x) for each x ∈ X}. We call the RUM with this (U , μ) as the
additive random utility model (ARUM) with (v, {εx}x∈X ). (The origins of this model go
back to the path-breaking work of Thurstone (1945) in psychophysics, and hence, it is
often referred to as the Thurstone model in the psychology literature.) Where P stands
for this model, and S is any feasible menu, we have

P(x, S) = Prob
{
v(x) + εx = max

z∈S
(
v(z) + εz

)}

if x ∈ S, and P(x, S) := 0 otherwise. Thus, the likelihood of choosing x in S is the proba-
bility that the (random) utility of x is the largest among all achievable (random) utilities
in S.5

ARUMs are the workhorses of discrete choice theory, and are often studied under
special assumptions on the distributions of the εxs. And since they are built around
the random perturbations of a complete preference relation (represented by a utility
function), one might expect that they may correspond to the behavior of an agent who
never chooses items that are dominated relative to an incomplete preference relation.
Indeed, even without invoking any distributional assumption, we can use Theorem 5.1
to show that any ARUM is induced by lack of strict preference.

Proposition 5.5. Every ARUM is induced by lack of strict preference.

Proof. Let v, I, and {εx}x∈X be as specified above, and let P stand for the ARUM with
(v, {εx}x∈X ). To show (8) for U := {us : s ∈ IX }, take any S ∈ X and x ∈ S, and suppose
that for every s ∈ IX , there is an alternative ys ∈ S\{x} such that v(ys ) + s(ys ) > v(x) +

5We should emphasize that this model departs slightly from the usual formulation of ARUMs in that it
assumes that the space of shocks is the same for each alternative and that every combination of shocks has
positive probability.
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s(x). Now consider the map t : X → I defined by t(z) := max I if z = x, and t(z) := min I

otherwise. Clearly, for every s ∈ IX ,

v(yt ) + s(yt ) ≥ v(yt ) + min I = v(yt ) + t(yt ) > v(x) + t(x) = v(x) + max I ≥ v(x) + s(x).

This yields (8) for U := {us : s ∈ IX }, so, by Theorem 5.1, P is induced by lack of strict
preference.

Example 5.4. An ARUM need not be induced by indifference. To see this, let X :=
{x1, x2, x3}, define v : X → R by v(xi ) := i, and let εxi , i = 1, 2, 3, be independently
and uniformly distributed random variables with values −0.7 and 0.7. Then, accord-
ing to the associated ARUM P, we have P(x1, {x1, x2}) > 0 and P(x2, {x2, x3}) > 0, but
P(x1, {x1, x3}) = 0. It follows that P fails the Stochastic β-Axiom, so it cannot be induced
by indifference. ♦

ARUMs with i.i.d. Errors Consider the ARUM with (v, {εx}x∈X ), where v : X → R is an
injection, and for each x ∈ X , εx is an I-valued random variable on a probability space
with Prob{εx = t} > 0 for every t ∈ I and x ∈ X . Widely used instances of this model pre-
suppose that εxs are identically and independently distributed. (In this case, we refer to
the model as an ARUM with i.i.d. errors.) Proposition 5.5 does not require this assump-
tion. But, interestingly, the i.i.d. hypothesis buys compatibility with experimentation.

Proposition 5.6. Every ARUM with i.i.d. errors is compatible with experimentation.

Proof. Let v, I, and {εx}x∈X be as specified above, with εxs being i.i.d., and let P stand
for the ARUM with (v, {εx}x∈X ). It is well known that P is weakly stochastically transitive.
Let us show that P satisfies Ordinal IIA as well. Take any S ∈ X and x, y ∈ S, and assume
v(x) ≥ v(y ). In what follows, we denote the common distribution of εzs by p (which is a
probability measure on I with full support). Note that

P(x, S) = Prob
{
v(z) + εz < v(x) + εx for each z ∈ S\{x}

}
=
∑
s∈I

∏
z∈S\{x}

Prob
{
εz < v(x) − v(z) + s

}

=
∑
s∈I

∏
z∈S\{x,y}

p
{
t < v(x) − v(z) + s

}
p
{
t < v(x) − v(y ) + s

}

≥
∑
s∈I

∏
z∈S\{x,y}

p
{
t < v(y ) − v(z) + s

}
p
{
t < v(y ) − v(x) + s

}

=
∑
s∈I

∏
z∈S\{y}

Prob
{
εz < v(y ) − v(z) + s

}

= P(y, S),

where we use independence to get the second and fourth equalities, and the identical
distribution hypothesis, along with v(x) ≥ v(y ), to get the inequality. Conclusion: v(x) ≥
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v(y ) implies P(x, S) ≥ P(y, S) for every S ∈X and x, y ∈ S. Next, notice that the argument
above can be modified in the obvious way to show that v(x) > v(y ) implies P(x, S) >
P(y, S) for every S ∈ X and x, y ∈ S, provided that P(x, S) > 0. We have thus proved that
v(x) ≥ v(y ) if and only if P(x, S) ≥ P(y, S) for every S ∈ X and x, y ∈ S with P(x, S) > 0.
It follows from this observation that P satisfies Ordinal IIA, and applying Corollary 3.6
completes the proof.

An ARUM with i.i.d. errors (e.g., the Luce model, independent probit, the general
Luce model with (u, �) where � satisfies WARP) is thus quite special in that it can be
“rationalized” in a variety of ways. It is not only consistent with the choice behavior of
a person who maximizes a preference relation (albeit an incomplete one), and random-
izes only over the maximal elements in feasible menus, but it is also compatible with
experimentation. As such there are multiple welfare orderings that one may utilize in
the context of such models.

Example 5.5. Proposition 5.6 is not valid when εxs are merely independently dis-
tributed. To see this, let X := {x1, x2, x3} and define v : X → R by v(xi ) := i. Consider
the following stochastic matrix:

[pij ] :=
⎡
⎢⎣0.1 0.1 0.7 0.1

0.1 0.5 0.1 0.3
0.2 0.1 0.1 0.6

⎤
⎥⎦ .

Now put I := {t1, � � � , t4}, where t1 = 10, t2 = 5, t3 = 0, and t4 = −5, and let εxi , i = 1, 2, 3,
be independent I-valued random variables such that Prob{εxi = tj } = pij for each i and j.
Then, where P is the ARUM with (v, {εxi }i=1,2,3 ), one calculates that P(x1, {x1, x3}) > 1

2 ,
P(x3, {x2, x3}) > 1

2 , while P(x2, X ) > P(x3, X ) > P(x1, X ) > 0. To derive a contradiction,
suppose there is a complete preorder � on X relative to which P is compatible with
experimentation. Then x1 ∼ x3 ∼ x2 by the second condition of compatibility by ex-
perimentation. And yet P(x1, {x1, x2}) = 0.34 < 1

2 , so x1 ∼ x2 cannot hold by the third
condition of compatibility by experimentation. This contradicts transitivity of �. ♦

The main results of this section are summarized in Figure 2.

Rationalization of ARUMs Let P be the ARUM with (v, {εx}x∈X ). Proposition 5.5 says
that P is induced by lack of strict preference. The unique preference relation � on X with
respect to which this happens is precisely the Luce threshold preorder �v,δ on X where
δ := max I − min I. So, just as in the case of any threshold Luce model, in any ARUM as
well, we arrive at a method of making deterministic (and unambiguous) welfare judge-
ments in the form of a Luce threshold preorder.

Proposition 5.6 shows that if {εx}x∈X is i.i.d., then P is compatible with experimen-
tation. As this model satisfies (5) for all S ∈ X and x, y ∈ S, there is a unique complete
preference relation � on X that “rationalizes” this conclusion; this relation is given sim-
ply as x� y if and only if v(x) ≥ v(y ). We note that this relation is distinct from the Luce
threshold preorder �v,δ. We have �v,δ⊆� and ∼⊆∼v,δ, but these containments may well
hold strictly.
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Figure 2. RUM, lack of strict preference, and experimentation.

6. Origins of additive perturbed utility models

In this section, for any S ∈ X, we denote the set of all probability measures on X whose
supports are contained in S by 	S(X ), but write 	(X ) for 	X(X ).

The Additive Perturbed Utility Model Following Fudenberg, Iijima, and Strzalecki
(2015), we say that a function c : [0, 1] → (−∞, ∞] is a weak cost function if it is
strictly convex and c|(0,1) is a continuously differentiable real function. If, in addition,
c′+(0) = −∞, we say that c is a cost function.

In the remaining part of this section, u stands for an arbitrarily given real map on
X , and c a weak cost function. For any p ∈ 	(X ) and S ∈ X, and any u : X → R, we
write E(u, p) for

∑
z∈S p(z)u(z) and CS(p) for

∑
z∈S c(p(z)). (For p ∈ 	S(X ), we inter-

pret CS(p) as the total cost of randomizing according to p in S.) A stochastic choice
function P on X is called a (weak) additive perturbed utility (APU) model with (u, c)
where u is a real map on X , c is a (weak) cost function, and{

P(·, S)
}= arg max

p∈	S(X )
E(u, p) −CS(p) for every S ∈X.

This model was introduced to the literature by Fudenberg, Iijima, and Strzalecki (2015).
It belongs to the family of deliberately stochastic choice models which was studied by
Machina (1985) and Cerreia-Vioglio et al. (2019), among others. We note that c′+(0) =
−∞ implies that any APU model is positive, and hence, it is, trivially, induced by indif-
ference. As the compatibility with experimentation properties of APU and weak APU
models coincide, we will thus work only with weak APU models below. The following
observation describes the binary choice probabilities in this context.

Lemma 6.1. Let P be the weak APU model with (u, c). Then, for any x, y ∈X ,

P
(
x, {x, y}

)= 1 if and only if u(x) − u(y ) ≥ c′−(1) − c′+(0), (11)

while P(x, {x, y}) ≥ 1
2 if and only if u(x) ≥ u(y ).
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Let P be a weak APU model with (u, c), and assume that it is induced by lack of
strict preference. Then Lemma 6.1 tells us that the (unique) preorder � that rational-
izes P as such is simply the Luce threshold preorder �u,δ where δ := c′−(1) − c′+(0). (If
either c′−(1) = ∞ or c′+(0) = −∞, this preorder equals X ×X (declaring all options in X

indifferent), which is only natural as P is then positive.)
Taking stock, we find that the preference relation that “rationalizes” a stochastic

choice function P on X as induced by lack of strict preference is invariably a Luce thresh-
old preorder as long as P is a threshold Luce model, an ARUM, or a weak APU model (that
happens to be induced as such). This points to a somewhat unexpected commonality
between these models which appear quite distinct from each other.

Lack of Strict Preference and the APU Model The applicability of �u,δ as an individual
welfare ordering depends on whether or not the weak APU model at hand is induced by
lack of strict preference. The following example illustrates the fact that a weak APU may
exhibit all possible cases in terms of lack of strict preference.

Example 6.1. For any positive real number η, define the real map cη on [0, 1] by
cη(p) := ηp2, and let Pη stand for the weak APU model with (u, cη ). (This specifica-
tion was adopted by Rosenthal (1989).) Then Pη is induced by lack of strict preference
if and only if ∑

y∈X
0<u(y )−u(x)<2η

(
u(y ) − u(x)

)
< 2η for every x ∈X .

For instance, let X := {x, y, z} and (u(x), u(y ), u(z)) := (3, 2, 1). Then the above charac-
terization shows that Pη is induced by lack of strict preference when 1

2 < η ≤ 1 and not
induced as such when 1 <η ≤ 3

2 . One can also check that Pη is induced by indifference
for all η outside the interval ( 1

2 , 3
2 ]. ♦

In the Appendix, Proposition A.2 provides a characterization of weak APU models
that are induced by lack of strict preference. The claims in Example 6.1 directly follow
from that result.

Experimentation and the APU Model Compatibility of weak APU models with experi-
mentation is striking.

Proposition 6.2. Every weak APU model is compatible with experimentation.

Not only is any weak APU model P compatible with experimentation, but it also sat-
isfies (5) for every S ∈ X and every x, y ∈ S. Thus, the complete preorder � on X that
rationalizes P as such is uniquely defined as x � y if and only if P(x, {x, y}) ≥ 1

2 (Sec-
tion 3.4). In view of Lemma 6.1, this preorder is precisely the one that is represented
by u. Thus, an individual whose choice behavior is modeled by means of a weak APU
model P can be thought of as one who maximizes u in the sense that the most frequently
chosen alternatives by this person in any menu S are among the “best” elements in S
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Figure 3. Weak APU, lack of strict preference, and experimentation.

with respect to �. In fact, in this instance, we have arg maxz∈S P(z, S) = max(S, �), that
is,

arg max
z∈S

P(z, S) = arg max
z∈S

u(z).

In other words, the most frequently chosen alternatives in any menu correspond pre-
cisely to the deterministic choices of a utility-maximizing decision maker. Alternatively,
this person also gives a chance to some alternatives that are not best in S relative to the
utility function u. That is, she “experiments” now and then, but the lower the utility
ranking of an item in a menu S, the less is this chance.

The main results of this section are summarized in Figure 3.

Appendix

This Appendix contains the proofs of the results that were omitted in Section 6 and a
characterization of weak APU models that are induced by lack of strict preference.

Lemma A.1. Let P be the weak APU model with (u, c). For any S ∈ X and x, y ∈ S,

u(x) ≥ u(y ) implies P(x, S) ≥ P(y, S),

and if P(x, S) > 0,

u(x) > u(y ) implies P(x, S) > P(y, S).

Proof. Take any S ∈ X and x, y ∈ S with u(x) ≥ u(y ). Let p := P(·, S) and note that, by
definition,

E(u, p) −CS(p) ≥ E(u, q) −CS(q) for every q ∈ 	S(X ). (12)

Assume first that p(x) = 0. We wish to show that p(y ) = 0. To derive a contradiction,
suppose p(y ) > 0. Put t := p(y )/2, and define q ∈ 	S(X ) by q(z) := t if z ∈ {x, y}, and



Theoretical Economics 17 (2022) Indecisiveness and stochastic choice 681

q(z) := p(z) otherwise. Then (12) entails

p(y )u(y ) − c(0) − c
(
p(y )

)≥ tu(x) + tu(y ) − 2c(t ).

Since c(t ) is a real number, this inequality cannot hold when c(0) = ∞. If c(0) <∞, then

0 ≥ u(y ) − u(x) ≥ c(2t ) − c(t )
t

− c(t ) − c(0)
t

,

but this contradicts the strict convexity of c.
Let us now consider the case where p(x) > 0. To avoid the trivial cases, we assume

1 > p(x) and p(y ) > 0. Take any ε in the interval (0, min{p(x), 1 − p(y )}), and consider
the lottery q ∈ 	S(X ) with q(x) := p(x) − ε, q(y ) := p(y ) + ε, and q(z) := p(z) for every
∈X\{x, y}. By (12),

p(x)u(x) +p(y )u(y ) − c
(
p(x)

)− c
(
p(y )

)
≥ (

p(x) + ε
)
u(x) + (

p(y ) − ε
)
u(y ) − c

(
p(x) + ε

)− c
(
p(y ) − ε

)
,

and hence,

u(y ) − u(x) ≥ 1
ε

(
c
(
p(y )

)− c
(
p(y ) − ε

))− 1
ε

(
c
(
p(x) + ε

)− c
(
p(x)

))
.

Since c is differentiable on (0, 1), letting ε ↓ 0 then yields u(y ) − u(x) ≥ c′(p(y )) −
c′(p(x)). Since c is strictly convex, c′ is strictly increasing, and hence, u(x) ≥ u(y ) im-
plies p(x) ≥ p(y ) and u(x) > u(y ) implies p(x) >p(y ).

Proof of Lemma 6.1. By convexity of c, we have

c′−(1) ≥ c(1) − c(λ)
1 − λ

and c′+(0) ≤ c(0) − c(1 − λ)
1 − λ

for every λ ∈ [0, 1). Consequently, for any x, y ∈ X , the right-hand side of (11) implies
that

u(x) − u(y ) ≥ c(1) − c(λ) − c(0) + c(1 − λ)
1 − λ

, (13)

which means

u(x) − c(1) − c(0) ≥ λu(x) + (1 − λ)u(y ) − c(λ) − c(1 − λ)

for every λ ∈ [0, 1), that is, δx is a maximizer of the map p �→ E(u, p) − C{x,y}(p) on
p ∈ 	{x,y}(X ). Since there is a unique such maximizer, we conclude that P(x, {x, y}) = 1.
Conversely, P(x, {x, y}) = 1 implies (13), and letting λ ↑ 1 yields the right-hand side of
(11). The second assertion of Lemma 6.1 follows from applying Lemma A.1 to doubleton
sets.

Our next result provides a characterization of weak APU models that are induced by
lack of strict preference.
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Proposition A.2. Let P be the weak APU model with (u, c). Then P is induced by lack of
strict preference if, and only if, for every x ∈X ,∑

y∈A(x)

(
c′)−1(

u(y ) − u(x) + c′+(0)
)
< 1,

where A(x) := {y ∈X : 0 < u(y ) − u(x) < c′−(1) − c′+(0)}.6

Proof of Proposition A.2. It is readily checked that every weak APU model satisfies
the Stochastic Chernoff Axiom. Thus, by Theorem 3.4, P is induced by lack of strict
preference if and only if it satisfies the Stochastic Condorcet Axiom. Consequently, it is
enough to prove that P satisfies the Stochastic Condorcet Axiom if and only if∑

y∈A(x)

(
c′)−1(

u(y ) − u(x) + c′+(0)
)
< 1 (14)

for every x ∈X .
Before we begin the demonstration of this, let us note that (14) is a well-defined

statement. Indeed, c′ is a strictly increasing and continuous function on [0, 1] by hy-
pothesis, and hence, it is invertible on the set c′([0, 1]). Consequently, (c′ )−1 is a strictly
increasing function on the interval [c′+(0), c′−(1)] with (c′ )−1(c′+(0)) = 0. But for any
x ∈X and y ∈ A(x), we have c′−(1) > u(y ) − u(x) + c′+(0) > c′+(0), so u(y ) − u(x) + c′+(0)
belongs to the domain of (c′ )−1. Moreover, since (c′ )−1 is strictly increasing, we have

(
c′)−1(

u(y ) − u(x) + c′+(0)
)
> 0 (15)

for any x ∈ X and y ∈ A(x).
Now, assume first that P satisfies the Stochastic Condorcet Axiom, and take any x ∈

X . By Lemma 6.1, P(x, {x, y}) > 0 for every y ∈ A(x), so, by the Stochastic Condorcet
Axiom, P(x, A(x) ∪ x) > 0. Enumerate A(x) as {y1, � � � , ym}, and put p∗

i := P(yi, A(x) ∪ x)
for each i = 1, � � � , m, and let p∗

m+1 := P(x, A(x)∪x). Since all these numbers are positive,
we see that (p∗

1, � � � , p∗
m+1 ) is an interior solution to the smooth optimization problem

Maximize
m∑
i=1

piu(yi ) +pm+1u(x) −
m∑
i=1

c(pi ) − c(pm+1 )

such that (p1, � � � , pm+1 ) is a probability distribution. It follows that u(yi ) − c′(p∗
i ) = 0,

i = 1, � � � , m, and u(x) − c′(p∗
m+1 ) = 0, whence

u(yi ) − u(x) − c′(p∗
i

)+ c′(p∗
m+1

)= 0 for each i = 1, � � � , m.

Since c′ is strictly increasing, therefore, c′(p∗
i ) = u(yi ) −u(x) + c′(p∗

m+1 ) > u(yi ) −u(x) +
c′+(0), whence

p∗
i >

(
c′)−1(

u(yi ) − u(x) + c′+(0)
)

for each i = 1, � � � , m.

6By convention, summation over the empty set is understood as 0.
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Summing these inequalities verifies (14):

1 > 1 −p∗
m+1 =

m∑
i=1

p∗
i >

m∑
i=1

(
c′)−1(

u(yi ) − u(x) + c′+(0)
)
.

Conversely, assume now that (14) holds for every x ∈ X . Take any S ∈ X and x ∈ S

such that P(x, {x, y}) > 0 for every y ∈ S\{x} with P(y, S) > 0. (We wish to show that
P(x, S) > 0.)

Claim 1. For every y ∈ S\{x}, P(x, {x, y}) > 0.

Proof. Take any z ∈ X with P(z, S) = 0, and to derive a contradiction, suppose
P(z, {x, z}) = 1. Then, by Lemma 6.1, u(z) − u(x) ≥ c′−(1) − c′+(0). Pick any y ∈ S with
P(y, S) > 0. Then, by the choice of x, P(x, {x, y}) > 0, so, by Lemma 6.1, u(y ) − u(x) <
c′−(1) − c′+(0). Moreover, by Lemma A.1, we have u(y ) > u(z). Thus, c′−(1) − c′+(0) >
u(y ) − u(x) > u(z) − u(x) ≥ c′−(1) − c′+(0), a contradiction.

By Claim 1 and Lemma 6.1, we have u(y ) − u(x) < c′−(1) − c′+(0) for every y ∈ S\{x}.
So, by (15),

1 >
∑

y∈A(x)

(
c′)−1(

u(y ) − u(x) + c′+(0)
)

≥
∑

y∈A(x)∩S

(
c′)−1(

u(y ) − u(x) + c′+(0)
)=

∑
y∈S

u(y )>u(x)

(
c′)−1(

u(y ) − u(x) + c′+(0)
)
.

To derive a contradiction, we suppose P(x, S) = 0. Let us enumerate S as {y1, � � � , yk, x,
z1, � � � , zl} such that u(y1 ) ≥ · · · ≥ u(yk ) ≥ u(x) ≥ u(z1 ) ≥ · · · ≥ u(zl ). Note that, by
Lemma A.1, we have P(zi, S) = 0 for each i = 1, � � � , l. Now put p∗

i := P(yi, S), i = 1, � � � , k.
Clearly, (p∗

1, � � � , p∗
k ) is a solution to the smooth optimization problem

Maximize
k∑

i=1

piu(yi ) +
(

1 −
k∑

i=1

pi

)
u(x) −

k∑
i=1

c(pi ) − c

(
1 −

k∑
i=1

pi

)

such that p1, � � � , pk ≥ 0 and p1 +· · ·+pk ≤ 1. So, by the Karush–Kuhn–Tucker theorem,
there exist a nonnegative (k+ 1)-vector (μ1, � � � , μk, λ) such that

u(yi ) − u(x) − c′(p∗
i

)+ c′
(

1 −
k∑

i=1

p∗
i

)
+μi − λ = 0 and μip

∗
i = 0

for each i = 1, � � � , k, and λ(1 − p∗
1 − · · · − p∗

k ) = 0. Moreover, by Lemma A.1, we have
p∗

1 ≥ · · · ≥ p∗
k. Here not all p∗

i s may vanish, for otherwise P(x, S) = 1, a contradiction.
Define k∗ := max{i ∈ {1, � � � , k} : p∗

i > 0}, and note that 1 < k∗ ≤ k. We also know that
p∗

1 + · · · + p∗
k = 1 (because P(x, S) = 0), so the equations above yield c′(p∗

i ) = u(yi ) −
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u(x) + c′+(0) − λ = 0 for each i = 1, � � � , k∗. But then, since (c′ )−1 is a strictly increasing
function,

1 =
k∑

i=1

p∗
i =

k∗∑
i=1

p∗
i =

k∗∑
i=1

(
c′)−1(

u(yi )−u(x)+c′+(0)−λ
)≤

k∗∑
i=1

(
c′)−1(

u(yi )−u(x)+c′+(0)
)
,

that is, 1 ≥ ∑
y∈A(x)(c

′ )−1(u(y ) − u(x) + c′+(0)), contradicting (14). Thus, P(x, S) > 0,
as we sought. Given the arbitrary choice of x and S, we conclude that P satisfies the
Stochastic Condorcet Axiom.

Proof of Proposition 6.2. Let P be the weak APU model induced by (u, c). It is
well known that P is weakly stochastically transitive. We now show that it also satis-
fies Ordinal IIA. To this end, take any S, T ∈ X with S ⊆ T and x, y ∈ S, and suppose
P(x, T ) ≥ P(y, T ) and P(x, T ) > 0. If P(y, T ) = 0, we then have P(x, T ) > P(y, T ), so
Lemma A.1 entails that u(x) > u(y ). If P(y, T ) > 0, then u(x) ≥ u(y ) must hold, be-
cause, otherwise, Lemma A.1 would entail P(y, T ) > P(x, T ). Thus, in any contingency,
u(x) ≥ u(y ), and applying Lemma A.1 one more time yields P(x, S) ≥ P(y, S). Conclu-
sion: P satisfies Ordinal IIA. We may thus apply Corollary 3.6 to complete the proof.
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