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Dynamically stable matching

Laura Doval
Economics Division, Columbia Business School, Columbia University

I introduce a stability notion, dynamic stability, for two-sided dynamic matching
markets where (i) matching opportunities arrive over time, (ii) matching is one-
to-one, and (iii) matching is irreversible. The definition addresses two conceptual
issues. First, since not all agents are available to match at the same time, one
must establish which agents are allowed to form blocking pairs. Second, dynamic
matching markets exhibit a form of externality that is not present in static markets:
an agent’s payoff from remaining unmatched cannot be defined independently of
other contemporaneous agents’ outcomes. Dynamically stable matchings always
exist. Dynamic stability is a necessary condition to ensure timely participation in
the economy by ensuring that agents do not strategically delay the time at which
they are available to match.

Keywords. Dynamic stability, dynamic matching, stable matching, nontransfer-
able utility, externalities, credibility, market design, dynamic arrivals, aftermar-
kets, sequential assignment.
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1. Introduction

I formulate a stability notion, denoted dynamic stability, for two-sided dynamic match-
ing markets where (i) matching opportunities arrive over time, (ii) matching is one-to-
one, and (iii) matching is irreversible. Stability notions provide an analyst with a set
of predictions for the self-enforcing outcomes of decentralized matching markets that
depend only on the primitive payoff structure. While stability notions are extensively
used in the study of static matching markets, they have not been systematically studied
for dynamic matching markets, even though the latter are ubiquitous and cover many
important applications, such as labor markets and child adoption.

Defining stability in a dynamic matching market brings forth two new challenges
that arise when taking into account agents’ intertemporal incentives. First, since not all
agents are available to match at the same time, it is natural to ask which pairs of agents
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can object to a proposed matching. Dynamic stability assumes that only agents who
are available to match at the same time can form a blocking pair. Second, whether an
agent finds their matching partner acceptable depends on what their value of remain-
ing unmatched is. In turn, this value depends on what matching the agent conjectures
would ensue upon their decision to remain unmatched. Given a conjectured contin-
uation matching, one could define an agent’s acceptable partners to be those who are
preferred to the continuation matching. This, together with a specification of the set
of blocking pairs, is enough to determine whether a matching is stable in the dynamic
economy: it should have no blocking pairs and agents should always be matched to
acceptable partners.

The missing step is then to determine what matching the agent conjectures would
result following their decision to remain unmatched. The first difficulty is that the set
of agents available to match from tomorrow onward depends on both the arrivals into
the economy and who remains unmatched from previous periods. In other words, to-
day’s matching together with tomorrow’s arrivals define the set of feasible continuation
matchings. When contemplating remaining unmatched, the agent then needs to con-
jecture both who else remains unmatched today and tomorrow’s continuation match-
ing. Thus, as in the literature on the core with externalities (see, for instance, Shap-
ley and Shubik (1969), Rosenthal (1971), Richter (1974), Sasaki and Toda (1996), Pycia
and Yenmez (2017), Rostek and Yoder (2017)), an agent’s payoff from remaining un-
matched cannot be defined independently of other contemporaneous agents’ match-
ing outcomes. This externality sets apart dynamic matching markets from their static
counterparts.

Given a conjecture about who else remains unmatched today, not all continuation
matchings are equally reasonable. Indeed, the agent should correctly anticipate that
the continuation matching should be itself self-enforcing. Thus, for a given conjecture
about today’s matching outcome, the agent rules out those continuation matchings that
are not self-enforcing. This is still not enough to pin down a unique continuation match-
ing and, thus, the value of remaining unmatched. For a given conjecture about who
else remains unmatched today, there can be many self-enforcing matchings. Moreover,
there can be many conjectures about who else remains unmatched today. Thus, the last
step in determining whether the agent finds their matching partner acceptable is an as-
sumption on how the agent selects among the reasonable conjectures. Following Sasaki
and Toda (1996), I assume that the agent prefers their matching partner to remaining
unmatched if the agent prefers their matching partner to one of the conjectured con-
tinuation matchings. Unlike Sasaki and Toda (1996), the agent does not entertain all
continuation matchings but only those that are self-enforcing in the continuation econ-
omy.

Dynamic stability (Definition 6) is a recursive definition that builds on the elements
previously described. A matching for the dynamic economy is dynamically stable if
(i) there is no pair of agents who are available to match at the same time who prefer to
match together and (ii) there is no agent who is matched to someone who is unaccept-
able. Similar to the static notion of stability, dynamic stability is defined by the absence
of pairwise blocks and the requirement that each agent is matched to an acceptable
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partner. In contrast to static notions of stability, the set of acceptable partners today is
defined using the set of dynamically stable matchings from tomorrow onward. Dynami-
cally stable matchings always exist in any finite horizon economy (Theorem 1); I discuss
their properties in Section 4. As I explain in Section 4, the proof of Theorem 1 builds
on the insights in Sasaki and Toda (1996) that an agent’s most pessimistic conjecture
can be used to define an artificial economy without externalities in which (static) stable
matchings are known to exist.

Dynamic matching markets pose new challenges for market design, two of which are
analyzed in Section 5. First, in a dynamic matching market, agents choose whether and
when to participate. Proposition 2 shows that dynamic stability is a necessary condi-
tion for timely participation in the market: whenever a matching fails to be dynamically
stable, market participants have an incentive to delay the time at which they are avail-
able to match.1 This echoes the observation in static matching markets that stability is
a necessary condition for participation (Roth (1984)). Second, in applications such as
school choice, college admissions, and teacher assignment, assignments are performed
sequentially because not all agents are available to match at the same time (e.g., West-
kamp (2013), Andersson et al. (2018), Dur and Kesten (2019)). The centralized markets
that perform these assignments operate via spot mechanisms, that output a matching
as a function of the current set of available agents and their reported preferences, but do
not condition on future matching possibilities. Unsurprisingly, spot mechanisms do not
necessarily induce dynamically stable matchings (Example 4). This raises the question
of what outcomes may arise when employing spot mechanisms to perform assignments
in a dynamic economy. Theorem 2 shows that only dynamically stable matchings can
arise as outcomes of subgame perfect Nash equilibrium of the noncooperative game
induced by a sequence of spot mechanisms. Thus, agents’ forward-looking behavior
is enough to overcome the mechanisms’ inability to condition on all parameters of the
economy. However, achieving dynamically stable matchings may be at odds with truth-
ful behavior: even if the spot mechanism is strategy-proof for a static economy, in the
dynamic economy agents have an incentive to truncate their preferences above and be-
yond what they would do in a static economy (Roth and Vande Vate (1991)) to ensure
that their assignment reflects what they could have instead obtained by waiting to be
matched.

Related literature Outside of the literature on the core with externalities, this paper re-
lates to five other strands of literature. The first strand is the literature on market design,
which studies dynamic matching markets such as those in this paper, but from the point
of view of optimality instead of stability (Ünver (2010), Anderson, Ashlagi, Gamarnik,
and Kanoria (2015), Leshno (2017), Schummer (2015), Bloch and Cantala (2017), Ashlagi,
Burq, Jaillet, and Manshadi (2018), Thakral (2019), Akbarpour, Li, and Gharan (2020),
Arnosti and Shi (2020), Baccara, Lee, and Yariv (2020)). An exception is Altinok (2019)
who studies stability in dynamic many-to-one matching markets. The present study of

1The mechanism design literature on revenue management has studied the problem of strategic partic-
ipation (see, for instance, Gershkov, Moldovanu, and Strack (2015), Garrett (2016), Bergemann and Strack
(2019)).
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stability is important because stability is considered a key property for the success of
algorithms (Roth (1991)) and because it highlights the potential issues in applying the
static notions of stability to dynamic environments.

The second strand is the literature on matching with frictions, which studies dy-
namic matching markets, such as those in this paper, in a noncooperative framework
(see Burdett and Coles (1997), Eeckhout (1999), Adachi (2003), Lauermann and Nöldeke
(2014) for nontransferable utility, and Shimer and Smith (2000) for transferable utility).
As in this strand of the literature, an agent’s value of remaining unmatched (their con-
tinuation value) is determined endogenously by the remaining agents in the market and
the future matching opportunities.

The third strand studies stability notions for markets in which matching opportu-
nities are fixed and pairings can be revised over time (e.g., Damiano and Lam (2005),
Kurino (2009), Kadam and Kotowski (2018), Liu (2018), Kotowski (2019)). The contribu-
tion relative to this strand is to provide stability notions for markets in which match-
ing opportunities arrive over time and matching is irreversible. As discussed in the
Introduction, that matching opportunities arrive over time and that matching is irre-
versible introduces a primitive externality that is absent from these papers and must be
addressed when defining what stability means. In particular, while this paper shares
with Liu (2018) and Kotowski (2019) the perfection requirement (see also Doval (2015))
and with Kotowski (2019) the use of the approach pioneered by Sasaki and Toda (1996),
the motivation for using this approach is different. Since in my paper the set of feasible
continuation matchings cannot be defined independently of other contemporaneous
agents’ matching outcomes, the externality is an intrinsic feature of the environment
that must be addressed by the stability notion. Instead, in Kotowski (2019), the set of
feasible continuation matchings does not depend on other contemporaneous agents’
matching outcomes, but the set of equilibrium continuation matchings may because
of the perfection requirement in the stability notion, together with the assumption of
nonseparable payoffs.

The fourth strand studies sequential assignment problems (e.g., Westkamp (2013),
Dogan and Yenmez (2018), Andersson et al. (2018), Dur and Kesten (2019), Haeringer
and Iehlé (2019), Mai and Vazirani (2019), Feigenbaum, Kanoria, Lo, and Sethuraman
(2020)). Of these, only Westkamp (2013), Andersson et al. (2018), Dur and Kesten (2019),
and Mai and Vazirani (2019) study models in which not all agents are available to be
matched at the same time. However, their focus is on the properties of the matching
implemented by the mechanism from the point of view of stability in a static market.
Theorem 2 echoes observations in Westkamp (2013), Andersson et al. (2018), and Dur
and Kesten (2019) that sequential assignment may be at odds with stability or truthful
behavior. Theorem 2 complements these results by identifying dynamic stability as the
solution concept for sequential assignment problems. Since stability notions are often-
times used for preference identification, Theorem 2 can inform the empirical study of
sequential assignment problems as in Narita (2018) and Neilson, Kapor, and Karnani
(2020).

The fifth strand is the literature on the farsighted stable set (e.g., Harsanyi (1974),
Chwe (1994), Mauleon, Vannetelbosch, and Vergote (2011), Ray and Vohra (2015)),
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which is used to model externalities in coalition formation games (e.g., Acemoglu,
Egorov, and Sonin (2012) apply farsightedness to a dynamic noncooperative coalitional
game). As in this literature, agents in my model understand the terminal consequences
of their moves. While farsighted stability focuses on the credibility of coalitional blocks,
dynamic stability focuses on the credibility of the continuation matchings used to dis-
suade agents from blocking. Relatedly, Ray and Vohra (1997) provide a recursive defini-
tion of binding agreements in a static model in which a blocking coalition anticipates,
among other things, that the agents outside the coalition form a binding agreement
among themselves.

Organization The rest of the paper is organized as follows. Section 2 describes the
model and Section 3 defines dynamic stability. Section 4 shows that dynamically sta-
ble matchings exist and discusses their properties. Section 5 studies participation and
incentives in dynamic matching markets. All proofs are in the Appendices.

2. Model

The economy lasts for T < ∞ periods. There are two sides, A and B. Agents on side A

are labeled a ∈ A , while agents on side B are labeled b ∈ B, where A , B are finite sets.
An economy of length T is defined by two sequences (A1, � � � , AT ) and (B1, � � � , BT )

of subsets of A and B, respectively, that satisfy that As ∩Ar = ∅ and Bs ∩Br = ∅, when-
ever s �= r. I denote it by ET = (A1, B1, � � � , AT , BT ). For any t ≤ T , let At = ⋃t

s=1 As de-
note the implied arrivals on side A through period t; similarly, let Bt = ⋃t

s=1 Bs denote
the implied arrivals on side B through period t.

Definitions 1 and 2 define the set of feasible allocations for ET .

Definition 1. A period-t matching for economy ET is a mapping

mt : At ∪Bt 	→ At ∪Bt

such that:

(i) For all a ∈At , mt(a) ∈ {a} ∪Bt ,

(ii) For all b ∈ Bt , mt(b) ∈At ∪ {b},

(iii) For all k ∈ At ∪Bt , mt(mt(k)) = k.

Definition 2. A matching m for economy ET is a tuple (m1, � � � , mT ) such that:

(i) For all t ∈ {1, � � � , T }, mt is a period-t matching,

(ii) For all t ∈ {1, � � � , T }, for all a ∈ At , if mt(a) �= a, then ms(a) = mt(a) for all s ≥ t.

Part 2 of Definition 2 incorporates the idea that matchings in the economy are ir-
reversible. Let MT denote the set of matchings for economy ET . Given a matching m

and a period t, let MT (mt−1 ) denote the set of matchings in MT that coincide with m

through period t − 1.
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Fix a matching m, and suppose that agents have matched according to m through
period t − 1. Then the set of agents who can match in period t is determined by the
unmatched agents in period t − 1 and the new arrivals in period t, (At , Bt ). Formally,

A
(
mt−1) = {

a ∈ At−1 : mt−1(a) = a
} ∪At ,

B
(
mt−1) = {

b ∈ Bt−1 : mt−1(b) = b
} ∪Bt ,

where mt−1 denotes the tuple (m1, � � � , mt−1 ), with m0 = {∅}. A matching m also defines
a continuation economy of length T − t, denoted by ET

t+1(mt ), with side-A arrivals given
by (A(mt ), � � � , AT ) and side-B arrivals given by (B(mt ), � � � , BT ).

I close the model by defining agents’ preferences. Each a ∈ A defines a discount
factor δa ∈ [0, 1] and a Bernoulli utility, u(a, ·) : B∪{a} 	→R. Similarly, each b ∈ B defines
a discount factor δb ∈ [0, 1] and a Bernoulli utility, v(·, b) : A ∪ {b} 	→ R. I assume that for
all a ∈ A and all b ∈ B, u(a, a) = v(b, b) = 0.

Fix a matching m and a period t. For every a ∈ A(mt−1 ), let tm(a) denote the first
date at which a is matched under m. That is, tm(a) is the smallest index s such that t ≤ s

and ms(a) �= a; otherwise, let tm(a) = T . Then let

Ut(a, m) = δtm(a)−t
a u

(
a, mT (a)

)
,

denote a’s payoff from matching m at date t. Similarly, for b ∈ B(mt−1 ), let

Vt(b, m) = δtm(b)−t
b v

(
mT (b), b

)
,

denote b’s payoff from matching m at date t.
For future reference, I record two properties that matchings m may satisfy: individ-

ual rationality (Definition 3) and stability for static markets (Definition 4).

Definition 3. The matching m for economy ET is individually rational if for all a ∈ AT ,
u(a, mT (a)) ≥ 0 and for all b ∈ BT , v(mT (b), b) ≥ 0.

That is, matching m is individually rational if each agent prefers their matching part-
ner to remaining unmatched through period T .

Definition 4 (Gale and Shapley (1962)). Suppose T = 1. The matching m for economy
E1 = (A1, B1 ) is stable if the following hold:

(S1) For all a ∈A1, U1(a, m) ≥ 0,

(S2) For all b ∈ B1, V1(b, m) ≥ 0,

(S3) There is no pair (a, b) ∈ A1 × B1 such that u(a, b) > U1(a, m) and v(a, b) >

V1(b, m).

Let S(E1 ) denote the set of stable matchings for E1.
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In a one-period economy, matching m is stable if each agent is matched to an ac-
ceptable matching partner, that is, a partner who is preferred to remaining unmatched,
and there is no pair of agents who prefer each other to the partners assigned by m. Im-
portantly, the value of remaining unmatched can be determined using the model prim-
itives.

Throughout, I use the following example to illustrate the concepts in the paper.

Example 1. The economy lasts for two periods, that is, T = 2. In t = 1, Jordan, LeBron,
and Shaquille arrive on side A, while Bulls and Heat arrive on side B. In t = 2, there are
no arrivals on side A, and Lakers and Cavaliers arrive on side B. That is,

A1 = {Jordan, LeBron, Shaquille}, B1 = {Bulls, Heat},

A2 = {∅}, B2 = {Lakers, Cavaliers}.

Below, I list the agents’ preferences. If (Lakers, 1) (resp., (Cavaliers, 1)) appears before
(Heat, 0) in an agent’s ranking, then they prefer to wait 1 period to match with Lakers
(resp., Cavaliers) over matching immediately with Heat. That is, the 0s and 1s are the
exponents of the discount factors, and the list provides the ranking of the discounted
utilities, {δt−1· u(·, b) : a ∈ A1}. For side B, the list represents the ranking of utilities,
{v(a, ·) : b ∈ B1 ∪B2}.

Jordan : (Lakers, 1) (Bulls, 0) (Cavaliers, 0)
LeBron : (Lakers, 1) (Cavaliers, 0) (Heat, 0) (Cavaliers, 1)
Shaquille : (Heat, 0) (Lakers, 1)

Bulls : Jordan
Heat : LeBron Shaquille
Lakers : Shaquille Jordan LeBron
Cavaliers : LeBron Jordan

Consider the following three matchings illustrated in Figure 1 below (in what fol-
lows, a horizontal line separates matchings that occur in different periods). Figure 1
illustrates for each matching only the pairings that happen within each period. For in-
stance, note that mL

1 specifies that Jordan matches with Bulls and Shaquille matches
with Heat, but also that LeBron is single. That is, mL

1 (LeBron) = LeBron. Similarly,
mL

2 specifies that LeBron matches with Lakers and also records the period-1 matching,
mL

2 (Jordan) = Bulls, mL
2 (Shaquille) = Heat.

The three matchings in Figure 1 satisfy Definition 3: each agent’s matching partner
is preferred to remaining single though period 2. However, only the period-2 matchings
mL

2 and mR
2 satisfy Definition 4. To see this, consider mC . If agents match according to

mC
1 in t = 1, this induces a one-period economy in t = 2, with agents on side A, A(mC

1 ) =
{LeBron, Shaquille}, and agents on side B, B(mC

1 ) = {Heat, Lakers, Cavaliers}. Note that
mC

2 does not satisfy Definition 4 for this one-period economy: LeBron and Cavaliers
form a block. Instead, it is immediate to verify that mL

2 and mR
2 do satisfy Definition 4

for the one-period economies E2
2(mL

1 ) and E2
2(mR

1 ), respectively. ♦



694 Laura Doval Theoretical Economics 17 (2022)

mL =

⎛
⎜⎜⎜⎝

Jordan _ Bulls
Shaquille _ Heat

LeBron _ Lakers
∅ _ Cavaliers

⎞
⎟⎟⎟⎠ mC =

⎛
⎜⎜⎜⎝

Jordan _ Bulls

LeBron _ Heat
Shaquille _ Lakers
∅ _ Cavaliers

⎞
⎟⎟⎟⎠

mR =

⎛
⎜⎜⎜⎝

Shaquille _ Heat

Jordan _ Lakers
LeBron _ Cavaliers
∅ _ Bulls

⎞
⎟⎟⎟⎠

Figure 1. Three matchings for the economy in Example 1.

Remark 1 highlights three assumptions that simplify notation, but are otherwise un-
necessary for the results.

Remark 1. First, while the model presumes that agents can perfectly foresee when each
agent arrives in the economy, all of the results extend to the case in which arrivals are
stochastic. In this case, an economy of length T is defined as a distribution GT over
sequences ET . Second, I assume that no two agents with the same characteristic arrive
within or across periods. Both of these extensions can be found in Doval (2021). Third,
while the model is written in terms of time-discounted preferences, all that matters for
the results is that time preferences are dynamically consistent.

3. Dynamic stability

Section 3 defines dynamic stability (Definition 6). Similar to the static notion of stability,
dynamic stability is defined by the absence of pairwise blocks and the requirement that
each agent is matched to an acceptable partner; that is, someone that is preferred to
remaining unmatched. Unlike the static notion of stability, the value of remaining un-
matched is determined endogenously (see equation (1) below). In what follows, I first
introduce the definition, using Example 1 to illustrate its components. I then discuss in
detail the different elements in the definition.

Given a matching m, the goal is to determine whether the agents will follow the pre-
scription of m in every period t ∈ {1, � � � , T }. Fix a period t and suppose that the agents
have matched according to m through period t − 1. Thus, the set of agents who can
match in period t is A(mt−1 ) ∪ B(mt−1 ).

There are two reasons the agents who can match in period t, A(mt−1 ) ∪ B(mt−1 ),
may prefer not to follow the prescription of m in period t. First, there could be a pair
of agents who prefer to match together over matching according to m. Second, there
could be a single agent who prefers not to match according to m. The latter could be
either because m dictates that the agent matches in period t, but the agent could do
better by remaining unmatched, or because m dictates that the agent is unmatched in
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period t, but the continuation matching, (ms )Ts=t+1, is not self-enforcing. In either case,
I say that the agent prefers to be unavailable to match in period t. Note that an agent
who is unavailable to match in period t automatically remains unmatched in period t,
but an agent who is available to match in period t could remain unmatched at the end
of period t.2

An agent can determine whether they prefer to match according to m in period t or
with a contemporaneous partner on the other side by comparing their payoff under m
with their payoff from matching with the new partner. Instead, the matching m, together
with the model primitives do not provide enough information to determine whether an
agent should be available to match in period t. To see this, recall the three matchings
in Figure 1. Note that mC and mR can be ruled out as predictions for the economy in
Example 1 using the information contained in the matching alone. First, as argued in
Section 2, mC

2 is not stable in t = 2. Thus, even if agents match according to mC
1 in t = 1,

mC
2 cannot be enforced in t = 2. Second, mR can also be ruled out as a prediction for the

economy: LeBron and Heat prefer each other to their outcome under mR. Thus, they
would match together in t = 1 if they anticipate that mR is the suggested outcome for
the economy.

Instead, mL cannot be ruled out using the information contained in the matching
alone. In this matching, there is only one pair who prefers to match together over their
outcome under mL: Jordan and Lakers. However, under mL, Jordan and Lakers never
meet: Jordan is supposed to match with Bulls and exit before the Lakers arrive. Thus,
for Jordan to match with Lakers, Jordan must prefer to wait for Lakers to arrive over
matching with Bulls. Deciding whether waiting for Lakers is preferred to matching with
Bulls in t = 1 depends on what Jordan expects the matching would be should he remain
unmatched in t = 1. However, mL says nothing about what would happen if Jordan
chooses to be unavailable to match in t = 1. Hence, he cannot decide whether he prefers
matching with Bulls to remaining unmatched in t = 1.

In the dynamic economy, together with the matching m one should at least prescribe
for each period t and for each agent who can match in period t, the matching that would
ensue if the agent chose to be unavailable to match in period t. This is the role of what I
dub the agent’s conjectures, to which I turn next.

Consider an agent k who can match in period t under matching m and, instead, con-
templates being unavailable to match in period t. A conjecture for agent k is a matching
m such that mt(k) = k. Since k cannot alter the matchings through period t − 1, m must
be an element of MT (mt−1 ). Note that the conjecture defines both who matches in pe-
riod t, mt , and the continuation matching (ms )Ts=t+1. The reason is that to determine the
set of feasible matchings from period t + 1 onward when k is not available to match in
period t, one needs to determine who else remains unmatched in period t. After all, the
unmatched agents in period t together with the new arrivals define the set of agents who
can match from period t + 1 onward.

2As I explain after stating Definition 6, it is enough to consider in each period t, blocks by agents who
are matched under m in period t. Considering both types of blocks allows me to introduce a property of
dynamically stable matchings that is key in the proof of Theorem 1 (see Remark 2).
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Having determined the set of feasible conjectures for k, I identify in two steps the
matchings that k can exclude from consideration.

First, note that each (mt−1, mt ) determines a continuation economy ET
t+1(mt−1, mt ).

Because the remaining unmatched agents and the new entrants can (and will) object to
any matching that is not self-enforcing, k should exclude from consideration any such
matching. Recall that dynamic stability is a recursive definition and let Dt denote the
correspondence that maps economies of length t, Et , to the set of dynamically stable
matchings for Et . Then k can exclude from consideration any continuation matching
(ms )Ts=t+1 that is not an element of DT−t(ET

t+1(mt−1, mt )).3

Second, one needs to determine the period-t matchings (if any) that k can exclude
from consideration. The minimal restriction on the set of period-t matchings that k

should entertain is that the matching formed by the agents who match in period t forms
a (static) stable matching. Thus, k never conjectures that the agents who exit the econ-
omy in period t could have found a better matching among themselves. Formally, we
have the following.

Definition 5. Fix a matching, m. The period-t matching, mt , is stable among those
who match in period t if mt ∈ S(Am

t , Bm
t ) where Am

t = {a ∈ A(mt−1 ) : mt(a) �= a}, and
similarly, Bm

t = {b ∈ B(mt−1 ) : mt(b) �= b}.

Given these restrictions, one can define the set of matchings that k conjectures
may ensue if k decides to be unavailable to match in period t. I denote this set by
MD(k, mt−1 ). Formally,

MD
(
k, mt−1) =

⎧⎪⎨
⎪⎩
m ∈ MT

(
mt−1

)
: (i) mt(k) = k,

(ii) (ms )Ts=t+1 ∈ DT−t

(
ET
t+1

(
mt

))
,

(iii) mt satisfies Definition 5

⎫⎪⎬
⎪⎭

. (1)

Example 1 (continued). I now illustrate the set MD(k, mt−1 ) for the case in which
k = Jordan and m = mL. Consider the four matchings illustrated below in Figure 2. In
Figure 2, only mJ1, mJ2 are valid conjectures for Jordan. As will be clear after the state-
ment of Definition 6, dynamic stability reduces to the static notion of stability in one-
period economies. Since mJ3 does not prescribe a stable matching in t = 2 (Jordan and
Lakers are a block), then it fails to satisfy condition (ii) in equation (1). Instead, mJ4 is
not a valid conjecture for Jordan because the period-1 matching does not satisfy condi-
tion (iii) in equation (1). Under mJ4, LeBron and Heat are supposed to match in t = 1,
but prefer to match with each other over matching with their matching partners in mJ4,
so that the period-1 matching does not satisfy Definition 5. ♦

Definition 6 defines dynamic stability. Together with prescribing how to use the con-
jectures to define an agent’s value of remaining unmatched, it also prescribes the pairs
of agents that can object to a given matching:

3There is a slight abuse of notation. Whereas DT−t (ET
t+1(mt−1, mt )) defines a matching only for the

agents who can match from t+1 onward, m also specifies the outcome for those who have matched through
period t. Thus, this should be read as “(ms )Ts=t+1 coincides with an element of DT−t for the agents who are
yet to be matched at the end of period t.”
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mJ1 =

⎛
⎜⎜⎜⎝

Shaquille _ Heat

LeBron _ Cavaliers
Jordan _ Lakers
∅ _ Bulls

⎞
⎟⎟⎟⎠ mJ2 =

⎛
⎜⎜⎜⎝

LeBron _ Heat

Shaquille _ Lakers
Jordan _ Bulls
∅ _ Cavaliers

⎞
⎟⎟⎟⎠

mJ3 =

⎛
⎜⎜⎜⎝

Shaquille _ Heat

LeBron _ Lakers
Jordan _ Bulls
∅ _ Cavaliers

⎞
⎟⎟⎟⎠ mJ4 =

⎛
⎜⎜⎜⎝

Shaquille _ Heat
LeBron _ Bulls

Jordan _ Lakers
∅ _ Cavaliers

⎞
⎟⎟⎟⎠

Figure 2. Four conjectures for Jordan, only mJ1 and mJ2 are valid.

Definition 6. Given the correspondences (Dt )t≤T−1, matching m is dynamically stable
for ET if for all t ∈ {1, � � � , T } the following hold:

(D1) For all a ∈ A(mt−1 ), there exists m ∈MD(a, mt−1 ) such that Ut(a, m) ≥Ut(a, m),

(D2) For all b ∈ B(mt−1 ), there exists m ∈MD(b, mt−1 ) such that Vt(b, m) ≥ Vt(b, m),

(D3) There is no pair (a, b) ∈ A(mt−1 ) ∪ B(mt−1 ) such that u(a, b) > Ut(a, m) and
v(a, b) > Vt(b, m).

Let DT (ET ) denote the set of dynamically stable matchings for ET .

In words, a matching m is dynamically stable if the following hold. First, for each
period t and each agent k who can match in period t under m, there exists a matching
mk ∈MD(k, mt−1 ), such that k’s payoff under m is at least the payoff that k would obtain
by remaining unmatched in period t when the matching is mk. Second, there is no pair
of agents who can match in the same period and prefer matching together to matching
according to m. Since A(mt−1 ) ∪ B(mt−1 ) may contain agents who arrive before period
t, condition (D3) does not rule out all blocks involving agents who arrive in different
periods. Instead, it requires that both agents are present when they block, since only
then they can evaluate whether they want to carry out the block.

When T = 1, the definition of dynamic stability coincides with the static notion of
stability. Indeed, fix a one-period economy E1 = (A1, B1 ) and a matching m for E1. Fix
a in A1 and note that all matchings m in the set MD(a, m0 ) satisfy that m1(a) = a (part
(ii) in the definition of MD is vacuous). Thus, condition (D1) simply states that a prefers
m to remaining single. Condition (D3) in Definition 6 states that the matching m has
no pairwise blocks. Thus, when T = 1, Definition 6 reduces to Definition 4, so that the
correspondence D1 coincides with S .

Whereas the comparison of Definitions 4 and 6 suggests that in the dynamic econ-
omy, the value of waiting to be matched replaces the value of being single, this anal-
ogy is potentially incomplete. In a static economy, an agent who is single under a sta-
ble matching receives exactly the value they can guarantee by being single. Instead,



698 Laura Doval Theoretical Economics 17 (2022)

Definition 6 suggests that for an agent who is unmatched in period t, there may be a
gap between the utility of matching m and the utility of the conjectured matching m,
which represents the value that the agent can guarantee by choosing to be unavailable
to match. This gap is only superficial since dynamically stable matchings satisfy the
following property, which I record for future reference.

Remark 2. Let m be a dynamically stable matching for ET . For all t ≥ 1, for all k ∈
A(mt−1 ) ∪ B(mt−1 ) such that mt(k) = k, then m ∈MD(k, mt−1 ).

Thus, for those agents who are unmatched under m in a given period, the conjec-
tured matching, m, can be picked to exactly coincide with the matching m. That is, if m
is dynamically stable, an agent who can match in period t, but remains unmatched in
period t under m, is indifferent between being available to match in period t and being
unavailable to match in period t. It follows that if a matching m satisfies condition (D3)
and for each period t, conditions (D1) and (D2) for agents k such that mt(k) �= k, then m

is dynamically stable.
I now illustrate Definition 6 for the case in which T = 2 using Example 1.

Example 1 (continued). There are two dynamically stable matchings illustrated in Fig-
ure 3.

To check that mL is dynamically stable, it only remains to verify that Jordan cannot
improve on his matching outcome by waiting to be matched. Since mJ2 in Figure 2 is a
reasonable conjecture for Jordan, it follows that by being unavailable to match in t = 1,
he can at most guarantee his payoff from matching with Bulls in t = 2. Therefore, Jordan
prefers to match with Bulls in t = 1 rather than to wait for Lakers to arrive. Note how the
requirement that Jordan’s conjectured matching induces a stable matching in period 2
“prevents” Jordan and Lakers from blocking mL. Under the conjectured matching mJ2,
Lakers match with Shaquille, who is preferred to Jordan. Indeed, this is the only stable
matching in t = 2. Thus, when Jordan and Lakers cannot agree in advance that they will
match together in t = 2, there are instances in which Lakers are not willing to match with
Jordan, once Jordan waits for Lakers to arrive. Anticipating this, Jordan prefers to match
with Bulls in t = 1.

The matching mL is also dynamically stable. Indeed, the matching mJ1 in Figure 2
is a valid conjecture for LeBron when he considers being unavailable to match in t = 1.
Since LeBron prefers to match with the Heat in t = 1 overmatching with Cavaliers in
t = 2, LeBron cannot object to mL in t = 1. ♦

mL =

⎛
⎜⎜⎜⎝

Jordan _ Bulls
Shaquille _ Heat

LeBron _ Lakers
∅ _ Cavaliers

⎞
⎟⎟⎟⎠ mL =

⎛
⎜⎜⎜⎝

Jordan _ Bulls
LeBron _ Heat

Shaquille _ Lakers
∅ _ Cavaliers

⎞
⎟⎟⎟⎠

Figure 3. Dynamically stable matchings in Example 1.
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Discussion Having introduced the definition of dynamic stability, I now discuss the
role of its different components, starting with the set of conjectures, MD(k, mt−1 ).

Two assumptions about the timing of an agent’s decision to match in period t ac-
cording to matching m underlie the definition of the set of conjectures, MD(k, mt−1 ).

First, this decision is made before agents are matched according to the prescribed
matching in period t. To see this, note that k does not necessarily assume that the re-
maining agents, except perhaps for k’s matching partner, match according to mt . As
an illustration, consider Example 1. When considering whether Jordan could block mL,
both mJ1 and mJ2 in Figure 2 are valid conjectures under dynamic stability. However,
only mJ1 respects that Shaquille’s assignment is the same as in mL. It is well known in
static matching models with externalities that if agents make decisions to block only
after agents are matched according to mt , stable matchings may not exist (Chowdhury
and Roy (2004)). Doval (2015) shows that this observation extends to dynamic matching
markets.

Second, all agents who can match in period t under m, that is, the remaining un-
matched agents together with the new arrivals, decide simultaneously whether to be
available to match in period t (and also whether to form blocking pairs). That is,
when agent k contemplates being unavailable to match in period t, two things are true:
(i) agent k is not yet unavailable to match, and (ii) no one else has yet made this decision.

To understand the role of the second assumption in equation (1), note the follow-
ing. The requirement that a conjectured matching m satisfies Definition 5 in period t

and that it induces a dynamically stable matching from period t + 1 onward says noth-
ing about (a) the existence of blocking pairs in period t involving at least one agent who
remains unmatched in period t, or (b) whether agents who match in period t under m
prefer to remain unmatched. Both decisions depend on the agents other than k under-
standing what the new continuation matching is, that is, (ms )Ts=t+1, and making deci-
sions optimally relative to this. The optimality of these decisions depends on the match-
ing that they conjecture would ensue if they did not follow the prescription of m. This,
in turn, requires knowing the set of agents who remain available to match in period t,
which presumably does not include k. In this case, it is as if the agents other than k learn
that k is unavailable to match in period t before making the same decision themselves.
This contradicts the assumption that these decisions are made simultaneously.

Since agents make their decisions to match simultaneously, the set of conjectures
does not describe how k expects the remaining agents (and the continuation economy)
to react to k’s decision to be unavailable to match in period t. Instead, it describes that
even if k chooses to object to m in period t, some matching, mt , will happen in period t.
Since dynamic stability describes the set of predictions in the continuation economy,
it is possible to pin down the properties of the matching that would ensue in the con-
tinuation economy. Regardless of the period-t matching mt , the continuation matching
will be dynamically stable for ET

t+1(mt−1, mt ). However, it is not immediate to prescribe
exactly what the period-t matching mt should be. On the one hand, agents other than
k could also decide to be unavailable to match or form blocking pairs. On the other
hand, even if k is the only one to find fault with the proposed matching, the remaining
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period-t agents evaluate their decisions to be available to match and/or form block-
ing pairs using m as the prescribed outcome and under the assumption that all agents
who can match in period t, including k, are indeed available to match in period t. It is
natural to assume that mt at the very least satisfies Definition 5: when making their de-
cisions to match in period t, no agent should exit with a partner worse than remaining
single forever, and no two agents who are exiting should have preferred to exit with each
other.

The previous discussion offers two takeaways. First, the discussion highlights the
externality that sets aside dynamic matching markets from their static counterparts. Al-
though one should describe the final outcome when there is a block in a static matching
market, doing so is not needed to define the payoffs for the blocking agents. Instead,
the dynamic economy forces the analyst to explicitly describe the outcome in period t,
even if there is a block. Otherwise, it is not even possible to define the set of feasible
continuation matchings. Second, a potential avenue for further research is to consider
refinements of dynamic stability by strengthening Definition 5. For instance, one could
require that the conjectured period-t matching mt satisfies that no agent exits with a
partner worse than the value of remaining unmatched in period t, as described by the
set MD(k, mt−1 ). For instance, if mt specifies that mt(a) �= a, then a prefers mt(a) to the
worst element of MD(a, ·). This would be consistent with the idea that agents in period t

make their matching decisions using their set of conjectures. The appropriate strength-
ening of Definition 5 may depend on the application at hand. The analysis in Section 5.2
identifies dynamic stability as the solution concept for sequential assignment problems,
highlighting how the set of conjectures and, in particular, Definition 5 arise in a particu-
lar application.

Together with the set of conjectures, two other elements of Definition 6 are worth
noting.

First, Definition 6 implies that in order to prevent an agent from blocking matching
m, it suffices to find a conjectured matching that is worse than m. As I explain after
the statement of Theorem 1, the ability to select conjectures to dissuade agents from
objecting to a matching is important for the existence result. Alternatively, one could
require that in order to prevent an agent from blocking matching m, all conjectured
matchings must be worse than m. Under this alternative definition, there are economies
for which no matching is self-enforcing. To illustrate, consider Example 1. Under the
alternative definition, Jordan blocks mL since mJ1 is a valid conjecture for Jordan, and
Jordan prefers mJ1 to mL Similarly, under the alternative definition, LeBron blocks mL:
a valid conjecture for LeBron involves Jordan and Bulls matching in t = 1, in which case,
the only stable matching in t = 2 matches LeBron with Lakers. Thus, in the economy in
Example 1, there is no dynamically stable matching under the alternative definition of
blocking.

The existing literature offers no general prescription between the two notions of
blocking previously described (see Ray and Vohra (1997) for a similar discussion). How-
ever, considering the alternative notion of blocking might require changing other as-
sumptions in the model, in particular, the timing of decisions in each period. To see
this, consider an agent k who chooses to be unavailable to match in period t. A typical
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argument in favor of the alternative notion of blocking uses forward induction: when
the agents in period t + 1 observe that k deviated from the prescribed matching m, they
should infer that this only makes sense if there is a continuation matching that k pre-
ferred to matching m. However, to select k’s most preferred conjecture, the forward in-
duction reasoning should apply to both the period-t matching and the continuation
matching. That is, the remaining period-t agents should be able to react in period t to
k’s decision to block. This is inconsistent with the assumption that agents in period t

make decisions simultaneously.
Second, Definition 6 does not require that agents hold “common beliefs” about the

matching that would ensue when they decide to be unavailable to match in period t.
That is, suppose two agents k and k′ anticipate that the matchings mk and mk′ would
ensue when they choose to be unavailable to match in period t. Then mk and mk′ need
not coincide for the agents other than k and k′ in period t. Furthermore, even if mk

and mk′ coincide in period t, they need not coincide in the continuation economy. This
property is shared with the model of Sasaki and Toda (1996) and with the models of
Ambrus (2006) and Liu, Mailath, Postlewaite, and Samuelson (2014), where the solution
concepts are akin to rationalizability. Note, however, that this lack of commonality only
applies to those agents who match in period t and for whom remaining unmatched in
period t is an off-path event. Indeed, the property in Remark 2 implies that in a dynami-
cally stable matching m, the agents who remain unmatched in period t under m all share
the same conjecture: even if they chose to object to m in period t, they all agree that m
would still be the outcome from period t onward.

4. Properties

Theorem 1 presents the main result of the paper: the set of dynamically stable matchings
is nonempty.

Theorem 1. For all T ∈N, the correspondence DT is nonempty valued.

See Appendix A for the proof, which shows how to find a matching (labeled m� in
the proof) that is dynamically stable. Because of the recursive nature of dynamic stabil-
ity, the proof needs to simultaneously determine the conjectures, MD(k, m�t−1

), and the
matching, m�, that is dynamically stable given these conjectures.

To determine the conjectures, the proof proceeds by induction on T ≥ 1: to show
that dynamic stability is well-defined for T , one must show that it is well-defined for
T ′ < T . This is the step that uses the assumption that T < ∞. As argued in Section 3,
dynamic stability coincides with the static notion of stability when T = 1. It follows from
Gale and Shapley (1962) that D1(·) is nonempty for all one-period economies.

Given the set of conjectures, I adapt the proof technique in Sasaki and Toda (1996)
to find a matching that is dynamically stable. Sasaki and Toda (1996) show how to use
a set of conjectures to construct an economy without externalities. Building on their
insights, I use the agents’ conjectures to construct a “static” economy in period t as fol-
lows. To be concrete, consider the case in which T = 2. For each agent k ∈ A1 ∪ B1, I
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calculate k’s continuation value to be the payoff from the worst matching in MD(k, ·).
Given these continuation values, I truncate k’s preferences so that k is only willing to
match with period-1 agents that are preferred to k’s continuation value. I choose the
period-1 matching, m�

1, to be a stable matching for the one-period economy with the
truncated preferences. This, in turn, determines the set of unmatched agents at the end
of t = 1. I then choose the period-2 matching, m�

2, to be a stable matching among the
newly arriving agents and the remaining ones from period 1.

By construction, m� satisfies conditions (D1) and (D2) of Definition 6. In particular,
for agents who do not match in t = 1 under m�, I show that m� is a valid conjecture (recall
Remark 2). It only remains to check that m� satisfies condition (D3) in Definition 6.
Suppose there is a pair (a, b) of agents in period 1, who prefer matching together over
m�. By construction of m�, it must be that at least one of the members of the pair is
unmatched in t = 1. For concreteness, say it is a. It then follows that a truncated their
preferences “too much:” m� is worse than the worst matching in MD(a, ·). However, this
contradicts that m� is an element of MD(a, ·).

Both the ability to select conjectures to dissuade agents from blocking a matching to-
gether with the property in Remark 2 are key to show that dynamically stable matchings
exist. To see the role of the former, suppose instead that the existence of a conjecture
m that is preferred to m was enough for an agent to block matching m. Then one could
modify the construction in the proof as follows. Instead of truncating each agent’s pref-
erences using the worst element in MD(·), one would truncate each agent’s preferences
using the best element in that set. The same construction would again lead to a match-
ing that satisfies the property in Remark 2 for those agents who remain unmatched in
t = 1. However, this is not enough to argue that the unmatched agents would not form
a blocking pair with another agent in t = 1. After all, the constructed matching need
not be the best conjecture for all the unmatched agents. Similarly, without the property
in Remark 2, the ability to select conjectures is not enough for the result in Theorem 1.
The ability to promise a blocking agent the worst element in MD(·) maximally dissuades
agents who match in period t from being unavailable to match. However, there may
be agents for whom remaining unmatched in period t is the best they can do given this
promise. The property in Remark 2 implies that one can effectively deliver this promise
simultaneously to all of the agents who remain unmatched in period t when choosing
a dynamically stable matching from period t + 1 onward.4 The reason is that all agents
agree that (i) (static) stability is a minimal requirement of the outcome for the agents
who match in period t and (ii) continuation matchings are dynamically stable for the
continuation economy.

Algorithms. Even though it is not constructive, the proof of Theorem 1 suggests an
algorithm to find dynamically stable matchings for economies of length 2. To see this,
fix an economy, E2 = (A1, B1, A2, B2 ). The algorithm consists of three steps:

4The lack of commonality in the conjectures could have hindered existence by making it difficult to find
one continuation matching that “works” for all agents who remain unmatched in period t.
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(a) Conjectures: For each k ∈ A1 ∪ B1 and for each C ⊆ (A1 ∪ B1 ) \ {k}, define the
set M(k, C ) as follows. Any matching m in M(k, C ) is such that (i) m1(k′ ) = k′ if
k′ /∈ C, (ii) the restriction of m1 to C coincides with side-A deferred acceptance on
C, and (iii) m2 is a stable matching for A(m1 ) ∪B(m1 ). Let M(k) denote the union
of M(k, C ) over the (possibly empty) subsets C ⊆ (A1 ∪B1 ) \ {k}.

(b) Period-1 matching: As in the proof of Theorem 1, for each agent k ∈A1 ∪B1, trun-
cate k’s preferences using the set M(k). Let m�

1 denote the outcome of side-A
deferred acceptance on A1 ∪B1 using the truncated preferences.

(c) Period-2 matching: The period-2 matching, m�
2, is obtained by running side-A

deferred acceptance on A(m�
1 ) ∪ B(m�

1 ).

Two comments are in order. First, step (a) does not recover the entire set of conjec-
tures, MD(k, ·): In order to do so, one should repeat step (a) for each subset C and each
(static) stable matching among the agents in C. However, k’s payoff from remaining
unmatched in period 1 depends on the period-1 matching among the agents in C only
through the set of unmatched agents that it induces. By the Lone Wolf theorem (McVitie
and Wilson (1970)), the latter set is independent of the stable matching one selects for C.
Second, by changing side-A deferred acceptance in steps (b) and (c) to other (static) sta-
ble matchings, the algorithm retrieves different dynamically stable matchings.

Whether an algorithm to find dynamically stable matchings for economies of length
T ≥ 3 exists is still an open question. The key difficulty in designing an algorithm for an
economy of length T is to find an algorithm that recovers an agent’s worst dynamically
stable matching for an economy of length T − 1. After all, step (b) only uses each agent’s
worst conjectured matching to truncate their preferences. As an example in Section A.1
illustrates, the algorithm described above for T = 2 does not recover every agent’s worst
dynamically stable matching. In this example, there are two dynamically stable match-
ings, labeled mA and mB. The algorithm only recovers mA, whereas there are agents
who are worse off under mB. Therefore, the algorithm for T = 2 cannot be extended to
economies of length T ≥ 3.

However, when agents do not discount the future, one can find dynamically stable
matchings using the algorithms for the static notion of stability. To see this, let mT be a
(static) stable matching for (AT , BT ), that is, an element of S(AT , BT ). When the agents
do not discount the future, it is immediate to verify that the matching m that leaves
all agents unmatched until period T and matches them according to mT in period T

is dynamically stable. Nevertheless, this construction retrieves some, but not all, dy-
namically stable matchings. There are two reasons for this. First, the ability to select
conjectures can be used to dissuade agents from waiting to be matched and instead,
accept matching partners not consistent with the static notion of stability. Second, as
Example 2 illustrates, even if agents do not discount the future, the dynamic and static
notions of stability allow for different pairwise blocks.

Example 2. Consider the following variant of Example 1. Jordan and Bulls arrive at
t = 1. The remaining agents arrive at t = 2, except for Cavaliers, who no longer arrives,
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that is, A1 = {Jordan}, B1 = {Bulls}, A2 = {LeBron, Shaquille}, and B2 = {Heat, Lakers}.
The agents do not discount the future. Their rankings are as follows:

Jordan : Lakers Bulls
LeBron : Lakers Heat
Shaquille : Heat Lakers

Bulls : Jordan
Heat : LeBron Shaquille
Lakers : Shaquille Jordan LeBron

The following two matchings are dynamically stable:

mS =

⎛
⎜⎜⎜⎝

∅
Jordan _ Bulls
LeBron _ Heat
Shaquille _ Lakers

⎞
⎟⎟⎟⎠ mD =

⎛
⎜⎝

Jordan _ Bulls

LeBron _ Lakers
Shaquille _ Heat

⎞
⎟⎠ .

The matching mS is the unique matching obtained by the construction described above:
no one matches in t = 1 and a (static) stable matching is chosen for t = 2. Instead,
matching mD is dynamically stable, but cannot be obtained as a (static) stable matching
when everyone waits to be matched until t = 2. To see this, note that if this matching
were to happen in t = 2, then Jordan and Lakers would form a (static) block. However,
under dynamic stability, when Jordan considers remaining unmatched in t = 1, there is
a unique valid conjecture and it corresponds to matching mS . Under this conjecture,
Jordan matches with Bulls, whereas Lakers matches with Shaquille, whom they prefer
to Jordan. Thus, when applied to the dynamic environment, the static notion of stability
may rule out matchings by allowing for pairwise blocks that are not credible: Anticipat-
ing that Lakers will not form a block with Jordan once Jordan waits for Lakers to arrive,
Jordan prefers not to wait for Lakers in the first place. ♦

Further properties In static matching markets, the Lone Wolf theorem (McVitie and
Wilson (1970)) and the lattice property are important structural properties. However,
the set of dynamically stable matchings inherits neither.

Proposition 1. There exist economies for which the set DT (ET ) does not satisfy the Lone
Wolf theorem. Furthermore, the set DT (ET ) does not form a lattice.

Proposition 1 follows from an example in Section A.1. Despite the differences be-
tween the dynamic and static notions of stability, there are also important similarities.
Similar to stability in static matching markets, dynamic stability of a matching is a nec-
essary condition for voluntary participation. This is the topic of Section 5.

5. Participation, timing, and incentives in dynamic matching markets

In static matching markets, mechanisms that output stable matchings simultaneously
address two problems. First, as observed by Roth (1984), stability is a necessary con-
dition for voluntary participation in the mechanism. This identifies mechanisms that
output stable matchings for the reported preferences as the only candidates to induce
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participation. Second, conditional on participating, the mechanism must be such that
participants have an incentive to truthfully report their preferences. It is well known
that no stable mechanism exists that makes it optimal for both sides of the market to
truthfully reveal their preferences. Instead, if the mechanism outputs, say, the matching
obtained by side A-proposing deferred acceptance (henceforth, DA), then it is a domi-
nant strategy for agents on side A to truthfully report their preferences. Thus, in settings
in which side B is nonstrategic, side A-proposing DA is used to simultaneously address
the problems of participation and incentives.

This section analyzes the issues of participation and incentives in the context of dy-
namic matching markets. Proposition 2 in Section 5.1 shows that dynamic stability is a
necessary condition for timely participation in the matching market. Furthermore, an
extension of DA to the dynamic economy is shown to give agents on the proposing side
the correct incentives to participate as soon as they arrive. Section 5.2 studies the issues
of participation and incentives in the context of sequential assignment problems. The
main result in Section 5.2, Theorem 2, shows that only dynamically stable matchings
can arise as subgame perfect equilibrium outcomes of the preference revelation game
induced by a sequence of stable mechanisms.

5.1 Voluntary and timely participation

Roth and Sotomayor (1992, pp. 22–23) argue that stability is a necessary condition for
voluntary participation in a static economy as follows. Suppose a matchmaker can
recommend a matching for the economy but cannot compel the agents to accept the
matching. Instead, the agents are free to form pairs among themselves or choose to
remain unmatched. Then the agents follow the matchmaker’s recommended match-
ing only if it is a stable matching. Proposition 2 shows that dynamic stability plays the
same role in the dynamic economy: the agents follow the matchmaker’s recommended
matching only if it is dynamically stable.

Consider a matchmaker who recommends a matching for the agents in ET and
whose objective is that the agents follow her recommendation. In each period t, agents
arrive in the economy according to ET . Each of the newly arriving agents, together with
the remaining unmatched agents from previous periods, announce simultaneously ei-
ther that they want to follow the matchmaker’s recommendation or the name of an agent
they wish to match with (including themselves). The matchmaker’s recommendation is
implemented only if all the agents agree to follow it. Instead, any agents k and k′ who
announce that they wish to match with each other are matched, while the remaining
agents remain unmatched. Agents who match exit. The remaining unmatched agents
join the newly arriving agents in period t + 1.

In the dynamic economy, the matchmaker has to recommend not only a matching
for economy ET (the one that would ensue if all the agents follow her recommendation),
but also a continuation matching in the event that some agent chooses not to follow her
recommendation. The matchmaker could potentially condition her recommendation
for period t on (i) the matching that has ensued through period t − 1, m̂t−1, and (ii) on
when and which agents in A(m̂t−1 ) ∪ B(m̂t−1 ) chose not to follow her recommenda-
tion. Because it does not affect the conclusion of Proposition 2, I make the simplifying
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assumption that the matchmaker’s recommendation in period t only depends on (i).
I denote this recommendation by μt(m̂t−1 ), where μt(m̂t−1 ) is a period-t matching that
respects the matchings that have happened through period t−1. That is, for all a ∈ At−1,
m̂t−1(a) �= a implies that μt(m̂t−1 )(a) = m̂t−1(a).

I focus on situations where following the matchmaker’s recommendation is a sub-
game perfect Nash equilibrium (henceforth, SPNE) such that there is no pair of con-
temporaneous agents who have a joint deviation.5 This refinement is standard in the
literature that studies the noncooperative implementation of stable matchings (see, for
instance, Ma (1995), Shin and Suh (1996), and Sönmez (1997)); I refer to this as a pairwise
SPNE. Subgame perfection implies that the agents should find it optimal to follow the
matchmaker’s recommendation even after (other) agents in previous periods have cho-
sen not to follow the matchmaker’s recommendation. Allowing for joint deviations by
pairs of contemporaneous agents allows us to recover the result in Roth and Sotomayor
(1992): when T = 1, following the matchmaker’s recommendation is an equilibrium only
if the suggested matching is stable.

Under such an equilibrium, the matchmaker’s plan describes both the matching that
would ensue if everyone follows her recommendation and the matching that would en-
sue if some agent chooses not to follow her recommendation (but from then on, every-
one chooses to follow her recommendation). This addresses two potential difficulties.
First, it identifies the recommendations the agents would find optimal to follow, and
hence, which matchings the matchmaker can “credibly” recommend. Second, it does
away with having to specify the particular protocol by which agents form matchings
when they do not follow the matchmaker’s recommendations. To see this, note that the
matching plan in period t can depend on whether the matching through period t − 1
coincides with the matchmaker’s recommendation. For instance, it could specify that
everyone remains unmatched whenever the agents do not follow the matchmaker’s rec-
ommendation. However, if the agents are free to form matchings among themselves,
it is not clear that the agents would follow such a recommendation. In this case, the
final outcome would be determined by a combination of the matchmaker’s plan to-
gether with the agents’ decisions to form matchings. This could require making fur-
ther assumptions about how the agents form matchings when they do not follow the
matchmaker’s recommendations. Requiring that the agents find it optimal to follow the
matchmaker’s recommendation on and off the path of play circumvents these difficul-
ties.

To state Proposition 2, I introduce one final piece of notation. For any matching
through period t, m̂t−1, let mμ(m̂t−1 ) denote the matching for ET

t (m̂t−1 ) that arises when
after m̂t−1, the remaining agents and the new entrants follow the matchmaker’s recom-
mendation. Formally, mμ(m̂t−1 ) = (μt(m̂t−1 ), μt+1(m̂t−1, μt(m̂t−1 )), � � � ). In particular,
mμ ≡ mμ(∅) ∈ MT denotes the matching that is implemented if everyone follows the
matchmaker’s recommendation.

5At the cost of more notation, I could assume that in each period the agents announce one at a time
either that they want to follow the recommendation or an agent on the other side (or themselves) they want
to match with and use SPNE as the solution concept (see Lagunoff (1994)).
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Proposition 2. Suppose that following the matchmaker’s recommendation is a pair-
wise SPNE. Then, for all t ≥ 1 and m̂t−1, mμ(m̂t−1 ) is dynamically stable for ET

t (m̂t−1 ). In
particular, mμ is dynamically stable for ET .

Proposition 2 echoes the observations in Roth (1984) and Roth and Sotomayor (1992)
that stability is a necessary condition for voluntary participation. It is immediate to see
that the ability of the agents to remain single or form blocking pairs implies that the
matching mμ(m̂t−1 ) must be individually rational (Definition 3) and satisfy condition
(D3). Proposition 2 implies that this is not enough to guarantee that the agents will
follow the matchmaker’s recommendation: mμ(m̂t−1 ) must be dynamically stable. Un-
derlying this observation is that from period t + 1 onward, the agents follow the match-
maker’s recommendation only if it leads to a dynamically stable matching. In turn, this
limits the set of matchings that an agent can expect when they consider not following
the matchmaker’s recommendation in period t.

Similar to the literature on strategic participation in mechanism design (e.g., Ger-
shkov, Moldovanu, and Strack (2015), Garrett (2016), and Bergemann and Strack (2019)),
Proposition 2 highlights that in a dynamic economy voluntary participation involves not
only the decision of whether to participate, but also when. Indeed, since in the final pe-
riod the matchmaker’s recommendation is followed only if the matching satisfies the
static notion of stability, the result in Roth and Sotomayor (1992) implies that any agent
who has not yet participated in the matchmaker’s plan will participate then. Dynamic
stability of the matchmaker’s recommended matching guarantees that agents are willing
to participate as soon as they arrive.

Remark 3. An alternative description of the game would have the matchmaker pro-
vide a recommendation as a function of the set of agents who agree to follow her
recommendation. That is, μt depends on both the matching through period t − 1,
m̂t−1, and the set of agents who follow the matchmaker’s recommendation in period
t, Ât ∪ B̂t ⊆ A(m̂t−1 ) ∪B(m̂t−1 ). Then, in each period t, the agents who choose to follow
the matchmaker’s recommendation are matched according to μt , whereas the remain-
ing agents either remain unmatched or form matching pairs.

This alternative specification of the game raises the question of what properties the
matching should have whenever the set of agents who follow the matchmaker’s recom-
mendation differs from the set of agents who follow her recommendation on the path
of play. For concreteness, suppose that in equilibrium agents in Ât ∪ B̂t are supposed to
follow the matchmaker’s recommendation. As in Proposition 2, this will identify proper-
ties, such as individual rationality, that the matching starting from period t must satisfy
when Ât ∪ B̂t follows the matchmaker’s recommendation. Otherwise, it would not be
part of an equilibrium. Consider now an agent k ∈ Ât ∪ B̂t who contemplates not fol-
lowing the matchmaker’s plan in period t. Then agent k anticipates that in period t,
the matchmaker’s plan for (Ât ∪ B̂t ) \ {k} would be implemented. Because this is an off
the path event, equilibrium play does not even guarantee that this period-t matching
is stable for the agents in (Ât ∪ B̂t ) \ {k}, let alone individually rational. This, in turn,
implies that the matchmaker can threaten k with period-t matchings that the agents
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in Ât ∪ B̂t \ {k} would not follow on the path of play. The ability to implement off the
path of play period-t matchings that fail to even satisfy Definition 5 runs counter to the
matchmaker’s inability to compel the agents to accept such a matching on the path of
play.6 In turn, the matchmaker’s ability to implement these types of matchings off the
path of play may limit what the agents themselves can achieve on the path of play. This
again runs counter to the matchmaker’s inability to compel the agents to accept any
given matching.

The game considered in Proposition 2 has the advantage that there is no conflict be-
tween what the matchmaker can achieve on and off the path of play. However, the result
in Proposition 2 would go through in the alternative specification of the game if one re-
quires that for each period t, each matching m̂t−1 through period t − 1, and each subset
of agents who follows the recommendation in period t, Ât ∪ B̂t ⊆ A(m̂t−1 )∪B(m̂t−1 ), the
matchmaker’s plan, μt(m̂t−1, Ât , B̂t ), satisfies Definition 5. Indeed, the following holds.7

Proposition 2∗ . Suppose that for all t ≥ 1, m̂t−1 and Ât ∪ B̂t ⊆ A(m̂t−1 ) ∪ B(m̂t−1 ),
μt(m̂t−1, Ât , B̂t ) satisfies Definition 5. Then, following the matchmaker’s recommenda-
tion is a pairwise SPNE only if for all t ≥ 1, m̂t−1, mμ(m̂t−1 ) is dynamically stable for
ET
t (m̂t−1 ).

I omit the proof because it follows the same steps as that of Proposition 2.

Proposition 3 and Example 3 below further illustrate that, even if preferences are
known, the option to delay the time at which an agent is available to match creates an
incentive problem in dynamic matching markets. While in static matching markets DA
provides the agents on the proposing side with the correct incentives to report their pref-
erences, Proposition 3 shows that when T = 2, a natural extension of DA to the dynamic
economy provides the agents on the proposing side with the correct incentives to par-
ticipate as soon as they arrive.

To state Proposition 3, let mA-DA denote the matching obtained by running the fol-
lowing dynamic version of DA: the DA algorithm is run with agents in A1 ∪ A2 making
proposals (using their intertemporal preferences) to agents in B1 ∪ B2 (who choose be-
tween proposals using their intertemporal preferences). The following holds.

Proposition 3. Let T = 2. Then, for all a ∈A1, there exists m ∈MD(a, ·) such that

U1
(
a, mA-DA) ≥U1(a, m).

Proposition 3 states that in a two-period economy, agents in A1 cannot improve on
the outcome of mA-DA by delaying the time at which they are available to match. To see
this, fix an agent a ∈A1. Consider the matching mA-DA obtained by running the dynamic
version of side-A DA in the economy (A1 \ {a}, B1, A2 ∪ {a}, B2 ). That is, agent a makes

6Indeed, as Proposition 2 shows, the matchmaker can only implement individually rational matchings
that satisfy condition (D3), which implies that the period-t matching satisfies Definition 5.

7Note that in this case the matching mμ(m̂t−1 ) denotes (μt (m̂t−1, A(m̂t−1 ), B(m̂t−1 )), μt+1(μt (·), ·), � � � ).
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mB-DA =
⎛
⎜⎝

LeBron _ Heat

Shaquille _ Lakers
Jordan _ Cavaliers

⎞
⎟⎠ mA-DA =

⎛
⎜⎝

Shaquille _ Heat

LeBron _ Lakers
Jordan _ Cavaliers

⎞
⎟⎠

Figure 4. Matchings obtained by running the dynamic version of DA.

proposals as if a arrived in t = 2, and agents b ∈ B1 evaluate the payoff from matching
with agent a as if a arrived in t = 2. I show that mA-DA is an element of MD(a, ·). If
a could improve on mA-DA by waiting to be matched, then a strictly prefers mA-DA to
mA-DA. The same lemma used to prove that DA is strategy-proof for the proposing side
in static matching markets implies that a prefers mA-DA to mA-DA. Thus, mA-DA can be
chosen as the matching a expects would arise if a blocked matching mA-DA in t = 1.

Proposition 3 provides a way to construct a matching plan to support mA-DA that
satisfies the properties in Proposition 2∗ and such that all agents on side A would follow
it in t = 1. This follows from three observations. First, mA-DA induces a stable match-
ing in t = 2, so that if agents match according to mA-DA in t = 1, then it is optimal for
the agents in E2

2(mA-DA
1 ) to follow the matchmaker’s recommendation. Second, by con-

struction, no pair of agents in t = 1 can improve on mA-DA by matching together. Third,
the matchmaker can credibly promise each a ∈ A1, that mA-DA is the outcome if they
choose not to follow the recommendation in t = 1. When a objects in t = 1, the match-
maker implements the period-1 matching mA-DA

1 , which by construction satisfies Def-
inition 5. Since mA-DA

2 is stable for (A(mA-DA
1 ), B(mA-DA

1 )), agents will participate and
follow the matchmaker’s recommendation in t = 2.

However, the matchmaker may not be able to convince the agents in B1 to partici-
pate when the matching is mA-DA. As Example 3 illustrates, the matching obtained by
running the dynamic version of DA with side B proposing may be improved on by agents
on side A waiting to be matched.

Example 3. Consider the following variant of Example 1. LeBron and Shaquille con-
tinue to arrive at t = 1, whereas Jordan now arrives at t = 2. Arrivals on side B are
as before, except that now Bulls no longer arrive. That is, A1 = {LeBron, Shaquille},
B1 = {Heat}, A2 = {Jordan} and B2 = {Lakers, Cavaliers}. Preferences are given by:

Jordan : Cavaliers
LeBron : (Lakers, 1) (Cavaliers, 0) (Heat, 0) (Cavaliers, 1)
Shaquille : (Heat, 0) (Lakers, 1)

Heat : LeBron Shaquille
Lakers : Shaquille LeBron
Cavaliers : LeBron Jordan

Figure 4 illustrates the matchings obtained by running the dynamic version of DA
with sides B and A proposing, respectively.
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The matching mB-DA is not dynamically stable: LeBron can guarantee to be matched
with Lakers by remaining unmatched in t = 1. To see this, note that Shaquille also needs
to match in t = 2 for LeBron not to match with Lakers in t = 2. Hence, LeBron needs to
conjecture that everyone matches in t = 2 when he waits to be matched. However, when
this is the case, all stable matchings match LeBron with the Lakers. Thus, if the match-
maker suggests mB-DA, LeBron does not follow the matchmaker’s recommendation in
t = 1. ♦

Proposition 3 and Example 3 echo the static matching markets’ results that side A-
proposing DA is strategy-proof for agents on side A, whereas side B-proposing DA is
not. Indeed, as previously explained, the proof of Proposition 3 is intimately related to
the strategy-proofness of DA for the proposing side. However, the analogy between the
result in Proposition 3 and the strategy-proofness of DA for the proposing side is incom-
plete. Whereas the latter refers to agents’ incentives to truthfully report their preferences
conditional on participating in the mechanism, the former refers to agents’ incentives
to timely participate in the mechanism when their preferences are commonly known.
In other words, in a dynamic matching market, agents can strategically decide when to
participate and what preferences to report. This is the focus of Section 5.2.

5.2 Sequential assignment problems

Section 5.2 studies the issues of timely participation and preference manipulation in
dynamic matching markets within the context of sequential assignment problems. In
sequential assignment, matchings are performed in multiple stages via a sequence of
spot mechanisms that output a matching as a function of the current set of available
agents and their reported preferences, but do not condition on future matching oppor-
tunities.

Sequential assignment covers important applications such as school choice and col-
lege admissions, in which both students and school seats become available over time. In
school choice, admissions to public, charter, and private schools often occur at different
times, and through different mechanisms, schools update the number of seats available
as the beginning of the school year approaches, and new students join the public school
system during the summer as families move across district and/or state boundaries (An-
dersson et al. (2018) provide an excellent description of different school districts and
their sequential algorithms). In many districts in the United States, this leads to after-
markets (see Pathak (2016)): Public school districts run their matching algorithms sev-
eral times to accommodate newly incoming students, newly available seats, and also
the timing of private and charter schools’ decisions. While in the United States private
schools do not participate in the centralized matching procedure, they do in Turkey and
some localities in Sweden. For instance, seats in public and private schools are assigned
via a two-stage procedure in Turkey. Since 2015, this two-stage procedure operates as
follows. In the first stage, students are assigned based on test scores via serial dictator-
ship to private schools. In the second stage, unmatched students from the first stage
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are assigned based on test scores via serial dictatorship to public schools.8 Another ex-
ample is college admissions in Germany (Westkamp (2013)). In the first stage, students
with high grades and/or high wait times are assigned through the Boston mechanism to
a subset of the available seats. In the second stage, the remaining students and seats are
matched through college-proposing DA.

The use of spot mechanisms presents a well-known problem in dynamic environ-
ments: implementing an allocation that has good dynamic properties may require using
information beyond that which is available in the current period (Parkes (2007)). Propo-
sition 2 identifies dynamically stable matchings as those that induce the right incentives
to participate. As Example 4 illustrates, spot mechanisms do not necessarily implement
dynamically stable matchings:

Example 4. Consider again the economy in Example 3. I reproduce below the match-
ings obtained using the dynamic version of DA (Figure 5).

Suppose instead that one runs DA (with either side proposing) among the agents
in t = 1, and then one runs DA among the remaining unmatched agents and the new
arrivals in t = 2. In this example, the resulting matching would be mB-DA. Furthermore,
in this example, mB-DA would also be the outcome of running the Boston mechanism
in t = 1, followed by side-B DA in t = 2, as in German college admissions. Since mB-DA

is not dynamically stable, it follows that neither of these sequences of spot mechanisms
can produce a dynamically stable matching for this economy.

Instead, the analysis in Example 3 implies that the matching mA-DA is dynamically
stable and can be achieved via the dynamic version of side-A DA. To understand why
mA-DA cannot be achieved using either sequence of spot mechanisms in the previous
paragraph, note the following. The period-1 matching under mA-DA matches Shaquille
with the Heat, leaving LeBron unmatched. This poses no challenges to stability in the
dynamic economy: LeBron prefers to remain unmatched in t = 1 to match with the
Lakers in t = 2. However, this matching is not stable in t = 1 relative to the agents’ true
preferences: The Heat prefers LeBron over Shaquille, and LeBron prefers the Heat over
remaining unmatched.

The results in Section 5.1 imply that if mB-DA is the matching that is to be imple-
mented by the sequence of spot mechanisms, LeBron will not find it optimal to partic-
ipate in t = 1. In sequential assignment problems, LeBron not only chooses when to
participate, but also what preferences to report. In this case, instead of not participating

mB-DA =
⎛
⎜⎝

LeBron _ Heat

Shaquille _ Lakers
Jordan _ Cavaliers

⎞
⎟⎠ mA-DA =

⎛
⎜⎝

Shaquille _ Heat

LeBron _ Lakers
Jordan _ Cavaliers

⎞
⎟⎠

Figure 5. The matchings in Figure 4.

8Before 2015, public school seats were assigned first and even if they received a match in the first round,
students could participate in the second round, where private school seats were assigned.
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in the first stage, LeBron could submit a ranking that only lists Lakers in t = 1. Doing
so guarantees that he will remain unmatched in t = 1, and be matched with the Lakers
in t = 2. That is, even if the period-1 matching is determined by side-A DA, LeBron is
better off by misreporting his preferences.

LeBron’s deviation in the previous paragraph is consistent with the recommendation
received by German students in the college admissions procedure: they should truncate
their preferences in the first round if they want to be considered for the next round (see
Westkamp (2013)). Indeed, Braun, Dwenger, and Kübler (2010) report that students with
high grades truncate their preferences substantially since, given their grades, they have
good chances during the second stage, where there are more options to choose from. As
the example illustrates, agents may benefit from truncating their preferences even if a
stable and strategy-proof mechanism is used. ♦

Two lessons follow from Example 4. First, existing mechanisms used in sequential
assignment problems fail to deliver dynamically stable matchings. Second, whenever
this is the case, agents’ incentives to either participate or truthfully report their prefer-
ences might be hindered.

Theorem 2 shows that agents’ forward-looking behavior is enough to overcome the
inability of spot mechanisms to produce dynamically stable matchings. Indeed, Theo-
rem 2 shows that only dynamically stable matchings can arise as the outcomes of pure
strategy SPNE of the game induced by a sequence of spot mechanisms that implement
stable matchings. However, as the proof of Theorem 2 and Example 4 above illustrate,
achieving dynamically stable matchings maybe at odds with truthful behavior: agents
may truncate their preferences to avoid being matched to a matching partner that is
worse than what they would obtain by waiting to be matched.

To state Theorem 2, I formally define a spot stable mechanism and, given a sequence
of such mechanisms, the noncooperative game induced by the sequence.

A spot stable mechanism, denoted in what follows by ν, is a mapping that takes
two sets of agents, one on each side, and their reported preferences and outputs a
matching that is stable given the reported preferences. Formally, for an agent a a rank-
ordered list (henceforth, ROL) is a ranking over B ∪ {a}. Similarly, for an agent b a ROL
is a ranking over A ∪ {b}. Let �k denote agent k’s ROL. Thus, a spot mechanism, ν,
takes a tuple (Â, B̂, �) and outputs ν(Â, B̂, �) ∈ S(Â, B̂, �), where Â ⊆ A , B̂ ⊆ B, and
� = (�k )k∈Â∪B̂ is a profile of ROLs. Note that, in a slight abuse of notation, I index the
set of stable matchings, S , both by the set of agents and their reported preferences.

A sequence of spot mechanisms, {νt }Tt=1, induces the following extensive-form game.
In each period t, the remaining unmatched agents and the new arriving agents observe
who has matched through period t − 1. They decide simultaneously whether to partic-
ipate in the mechanism and, if they do, the ROLs to submit. The decision to partici-
pate and the submitted ROLs are not observable. Given the set of participants and their
ROLs, the spot mechanism νt outputs a matching. Matched agents and their partners
exit.9 The game proceeds to period t + 1.

9Thus, the game mimics how the mechanisms in the National Resident Matching Program, college ad-
missions in Germany, school choice in Turkey, and in some localities in Sweden operate: only unmatched
agents participate in the upcoming rounds.
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Theorem 2 considers two versions of this game. In the first version, denoted by �1,
the spot mechanisms coincide with side-A DA. Moreover, the agents on side B are non-
strategic: they automatically participate and submit their true rankings. Theorem 2
studies the matchings that can result as the outcome of SPNE. They satisfy a property
denoted side-A dynamic stability: the matching satisfies (D3) and no single agent on
side A finds it optimal to wait to be matched. Formally, side-A dynamic stability is the
solution concept defined recursively by conditions (D1) and (D3) in Definition 6. In par-
ticular, when agents on side A consider waiting to be matched, they anticipate that the
continuation matching is side A-dynamically stable.

In the second version, denoted by �2, the spot mechanisms can be any stable match-
ing mechanism and both sides are strategic. Theorem 2 studies the matchings that can
result as the outcome of pairwise SPNE (see Definition 8).

We are now ready to state Theorem 2.

Theorem 2. Only side-A dynamically stable matchings for ET can be the outcome of
pure strategy SPNE in �1. Similarly, only dynamically stable matchings for ET can be the
outcome of pure strategy pairwise SPNE in �2.

The proof is in Section B.1. I highlight here the main insights that follow from the
proof and, in particular, how the different components of Definition 6 arise in the appli-
cation.

First, building on the results in Roth and Vande Vate (1991), I show that it is with-
out loss of generality to focus on equilibrium strategies in which agents’ ROLs are ei-
ther truncations of the rankings induced by their Bernoulli utility functions or only list
themselves, that is, an empty ROL. Agents may need to submit empty ROLs if their most
preferred matching partner is not available in a given round to avoid being matched to
someone that is worse than waiting to be matched. (Alternatively, agents can always list
their most preferred matching partner, even if they are not available in a given round.)
It follows that when agents are allowed to submit different ROLs in each stage (as in the
applications described so far), unmatched agents can always participate in the mecha-
nism.

Second, I show that for all periods t and for all matchings that may have ensued
through period t, the outcome of equilibrium play starting from period t is a dynami-
cally stable matching. The properties of deferred acceptance in �1 and the possibility
of joint deviations in �2 imply that the matching satisfies condition (D3). To show that
no agent benefits from remaining unmatched in a given period, I show that the match-
ing that would result when an agent deviates and submits a ROL that leaves them un-
matched is a valid conjecture. Therefore, if the matching is not dynamically stable, the
agent would have a deviation. To see why such a deviation induces a matching that is a
valid conjecture, fix a period t and an agent k who can match in period t. Suppose one
has already shown that equilibrium play from stage t + 1 onward leads to a dynamically
stable matching. Therefore, conditional on remaining unmatched in period t, k expects
that the matching starting from period t + 1 satisfies condition (ii) in equation (1). Be-
cause agents may not report their true preferences, the period-t matching that results
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when k deviates is not necessarily stable with respect to the true preferences. However,
the period-t matching induced by k’s deviation always satisfies Definition 5: among the
agents that do match in period t, the presence of a blocking pair contradicts that agents
submit truncations of their true preference ranking.

Theorem 2 complements the results in Westkamp (2013) and Dur and Kesten (2019).
Westkamp (2013) shows that the mechanism used in German college admissions fails
to produce (static) stable matchings and proposes a one-shot mechanism that respects
the priority of those students with either high grades and high-waiting times. In a two-
period model, Dur and Kesten (2019) show that sequential assignment may be at odds
with (static) stability and/or truthful behavior even when using stable and strategy-proof
mechanisms in each round. They also characterize the spot mechanisms for which the
outcome of pure strategy Nash equilibria is a stable matching.

Theorem 2 contributes to their analysis by identifying the stability property satis-
fied by the outcomes of equilibrium play regardless of the sequence of stable mecha-
nisms used in each round. Furthermore, it illustrates the form that manipulations take
in dynamic environments. Even if the spot mechanism is strategy-proof for one side,
agents should be expected to truncate their preferences to ensure their assignments re-
flect the payoff that the agents expect to be able to guarantee should they stay for an
extra round. These two observations can inform applied researchers that study sequen-
tial assignment problems (e.g., Narita (2018), Neilson, Kapor, and Karnani (2020)). First,
Theorem 2 warns against the use of the reported preferences as the true preferences,
even if a strategy-proof mechanism is used. This complements the works of Shorrer and
Sóvágó (2018) and Hassidim, Romm, and Shorrer (2020) who document that, even in
static settings, agents misreport their preferences in strategy-proof mechanisms. Sec-
ond, stability notions are oftentimes used for preference identification and Theorem 2
identifies dynamic stability as the solution concept for these applications.

Whereas Theorem 2 identifies dynamic stability as the property satisfied by match-
ings that arise from equilibrium behavior in sequential assignment problems, it should
not be interpreted as an implementation result for dynamically stable matchings.10 In-
deed, a given sequence of spot mechanisms may not implement all dynamically stable
matchings in a given economy. Moreover, Theorem 2 does not assert that a pure strategy
SPNE exists. Instead, Theorem 2 should be interpreted as stating that dynamic stability
is a necessary condition: whenever the matching that results from sequential assign-
ment is not dynamically stable, either a pair of agents would prefer to match outside the
algorithm, or an agent will find it optimal to delay the time at which they are available
to match.

6. Further directions

Although stability is a key property in the analysis of static matching markets, the anal-
ysis of dynamic matching markets has been confined to either equilibrium models or

10Instead, the game in Lagunoff (1994) can be used to provide an implementation of dynamically stable
matchings.
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done through the lens of static notions of stability. This paper fills this gap by formulat-
ing a stability notion for dynamic matching markets. As such, this paper opens several
avenues for further research. First, as the discussion at the end of Section 3 suggests,
one could consider refinements of dynamic stability by strengthening condition (iii) in
equation (1). Indeed, one such refinement is proposed in that section. Second, develop-
ing an algorithm that implements dynamically stable matchings is definitely of interest.
As discussed in Section 4, whether an algorithm to find dynamically stable matchings
exists for T ≥ 3 is an open question. Finally, the analysis in Section 5.2 identifies dy-
namic stability as the solution concept in sequential assignment problems. Since many
sequential assignment applications involve many-to-one matching markets, extending
Definition 6 to many-to-one markets is natural. Altinok (2019) is a step in this direction.

Appendix A: Proof of Theorem 1

To prove Theorem 1, I consider the following (equivalent) version of Definition 6.

Definition 7. Given the correspondences (Dt )t≤T−1, matching m is dynamically stable
for ET if the following hold:

(i) For all a ∈A1, there exists m ∈MD(a, m0 ) such that U1(a, m) ≥U1(a, m),

(ii) For all b ∈ B1, there exists m ∈MD(b, m0 ) such that V1(a, m) ≥ V1(a, m),

(iii) There is no pair (a, b) ∈ A1 × B1 such that u(a, b) > U1(a, m) and v(a, b) >

V1(b, m),

(iv) (ms )Ts=2 ∈ DT−1(ET
2 (m1 )).

Let P(T ) denote the following inductive statement:
P(T ): For all economies of length T , the correspondence DT is nonempty.
As I argued in Section 3, that P(T )(1) = 1 follows from Gale and Shapley (1962). To

show the inductive step, assume that P(T ′ ) = 1 for all T ′ < T . I show that P(T ) = 1.
Fix an economy ET . For each agent k ∈ A1 ∪ B1 the set MD(k, ∅) is nonempty. To

see this, suppose k = a and consider the following matching, ma. Let ma
1 coincide with

an element of S(A1 \ {a}, B1 ) for k′ �= a and set ma
1(a) = a. Furthermore, let (ma

s )s≥2 ∈
DT−1(ma

1 ), which is nonempty by the inductive hypothesis. It is immediate to show that
ma ∈MD(a, ∅). Similarly, for all b ∈ B1, MD(b, ∅) �= ∅.

Let m� denote the following matching in MT . The period-1 matching, m�
1 is a stable

matching in the following one-period economy.11 First, the agents are A1 ∪B1. Second,
for each k ∈ A1 ∪ B1, let m̂k denote k’s least preferred element in MD(k, ∅) and define
k’s preferences �k as follows. For a ∈ A1, b �a a only if u(a, b) ≥ U1(a, m̂a ). Moreover,
b �a b

′ only if u(a, b) ≥ u(a, b′ ). Define �b similarly for b ∈ B1. The matching starting
from period 2 onward, (m�

s )Ts=2, is an element of DT−1(ET
2 (m�

1 )). The latter exists by the
inductive hypothesis. By construction, m� ∈ MD(k, ∅) whenever m�

1(k) = k, since m�
1

11If there are ties, fix a tie-breaking procedure.
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was chosen to be a stable matching for the agents who match in t = 1. Moreover, m�

satisfies condition (iv) in Definition 7.
By construction, m� satisfies conditions (i)–(ii) in Definition 7: for any agent k such

that m�
1(k) = k, m can be taken to be m�. Furthermore, for any agent k such that

m�
1(k) �= k, m can be taken to be m̂k; by definition of m�

1, k is matched to someone
who is preferred to m̂k. Finally, suppose that there exists (a, b) ∈ A1 × B1 such that
u(a, b) > U1(a, m� ) and v(a, b) > V1(b, m� ). It must be that at least one of a or b are
unmatched; without loss of generality, assume that m�

1(b) = b. Furthermore, it must
be that b prefers mb to matching with a; otherwise, this would lead to a contradiction
to the definition of m�

1. It then follows that V1(b, m̂b ) ≥ v(a, b) > V1(b, m� ). However,
m� ∈ MD(b, ∅), so that this contradicts the definition of m̂b. Thus, m� is dynamically
stable for ET . This concludes the proof of the inductive step.

A.1 Failure of the Lone Wolf theorem

The result in Proposition 1 is based on the following example.

Example 5. Let T = 2. Arrivals are as follows: A1 = {a11, a12}, A2 = {a21, a22}, B1 = {b11},
B2 = {b21, b22}. Preferences are given by

a11 : (b21, 1) (b22, 0) (b11, 0) (b22, 1)
a12 : (b11, 0)
a21 : (b21, 0)
a22 : (b22, 0) (b21, 0)

b11 : (a11, 0) (a12, 0)
b21 : (a22, 0) (a11, 0) (a21, 0)
b22 : (a11, 0) (a22, 0)

The following two matchings are dynamically stable:

mA =

⎛
⎜⎜⎜⎝

a11 _ b11

a21 _ b21

a22 _ b22

a12 _ ∅

⎞
⎟⎟⎟⎠ mB =

⎛
⎜⎜⎜⎝

a12 _ b11

a11 _ b21

a22 _ b22

a21 _ ∅

⎞
⎟⎟⎟⎠ ,

Agent a12 is unmatched under mA, while agent a21 is unmatched under mB, so that
both the Lone Wolf theorem and the lattice property fail in this economy. Note that both
matchings satisfy condition (D3). In particular, b11 prefers a11 to a12 so that a12 has no
possibility of being matched under mA, while b21 prefers a11 to a21, so that a21 has no
possibility of matching under mB. Below, mA (resp., mB) denotes the conjecture that
dissuades a11 (resp., b11) from blocking mA (resp., mB) in t = 1:

mA =

⎛
⎜⎜⎜⎝

a12 _ b11

a11 _ b22

a22 _ b21

a21 _ ∅

⎞
⎟⎟⎟⎠ mB =

⎛
⎜⎜⎜⎜⎜⎝

∅
a11 _ b21

a22 _ b22

a12 _ b11

a21 _ ∅

⎞
⎟⎟⎟⎟⎟⎠

.

It follows that neither a11 may block mA by remaining unmatched, nor can b11 block mB

by remaining unmatched. ♦
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Appendix B: Proofs of Section 5

Proof of Proposition 2. Suppose it is a pairwise SPNE for the agents in ET to follow
the matchmaker’s recommendation for all t, m̂t−1. Since an agent can always guaran-
tee the payoff from being single through period T by always rejecting the matchmaker’s
recommendation, mμ(m̂t−1 ) must be individually rational. Furthermore, mμ(m̂t−1 ) sat-
isfies condition (D3) for ET

t (m̂t−1 ); otherwise, there is a pair of agents who can match in
the same period and can jointly deviate and match together, improving on the match-
maker’s recommendation. It follows that for all m̂T−1, μT (m̂T−1 ) satisfies the static no-
tion of stability (Definition 4) for ET

T (m̂T−1 ).
Toward a contradiction assume that there exists t, m̂t−1, such that mμ(m̂t−1 ) is not

dynamically stable. Let t ≤ T − 1 denote the largest s ≤ T − 1 such that there exists m̂s−1

such that mμ(m̂s−1 ) fails either (D1) or (D2) in Definition 6. Thus, there exists m̂t−1 and
k ∈ A(m̂t−1 ) ∪B(m̂t−1 ) such that k prefers all elements of MD(k, m̂t−1 ) to their outcome
under mμ(m̂t−1 ). By assumption, all agents in A(m̂t−1 ) ∪ B(m̂t−1 ) \ {k} are following
the matchmaker’s recommendation. Thus, if k were to deviate and choose to remain
single when the matchmaker recommends μt(m̂t−1 ), and then follow the equilibrium
strategy, everyone remains unmatched this period (denote this matching by m∅

t ) and
from tomorrow onward the matching mμ(m̂t−1, m∅

t ) would ensue. By definition of t,
m̂t−1, mμ(mt−1, m∅

t ) ∈ DT−t(ET
t+1(m̂t−1, m∅

t )). Thus,
(m̂t−1, m∅

t , mμ(m̂t−1, m∅
t )) ∈ MD(k, m̂t−1 ). Then k has a one-shot deviation to reject the

matchmaker’s recommendation, contradicting the definition of SPNE.

Proof of Proposition 3. Let E2 and mA-DA be as in the statement of Proposition 3.
Let a ∈ A1 be such that mA-DA

1 (a) �= a. Construct a matching m as follows. Run deferred
acceptance as if the economy was given by (A1 \ {a}, B1, A2 ∪ {a}, B2 ), that is:

(a) a makes proposals as if a arrived in t = 2 That is, a proposes to b ∈ B2 before b′ ∈ B2

if and only if u(a, b) > u(a, , b′ ).

(b) b ∈ B1 accepts a’s offer over a′ ∈ A1 only if δbv(a, b) > v(a′, b).

Note that m ∈ MD(a, mA-DA ). Toward a contradiction, suppose that U1(a, m) >

U1(a, mA-DA ). Let A+ denote the set of agents on side A who prefer m to mA-DA.
According to a lemma by J. S. Hwang (see Gale and Sotomayor (1985) for a proof),
there exists a′ /∈ A+ and b ∈ m2(A+ ) such that δ1[b∈B2,a′∈A1]

a′ u(a′, b) > U·(a′, m) and

δ1[b∈B1,a′∈A2]
b v(a′, b) > V·(b, m). This contradicts the definition of m. Thus, it cannot

be that a strictly prefers m to mA-DA.

B.1 Proof of Theorem 2

I introduce notation to define the agents’ strategies and the solution concept. A public
history at the beginning of period t, ht , is a matching through period t − 1, m̂t−1.

Let s ≥ 1 and let k ∈ As ∪ Bs. For any period t ≥ s, agent k would have observed a
public history m̂t−1, together with their decision to participate and their reported pref-
erences. While agent k can condition their period t strategy both on ht and their past
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actions, it will be clear from the proof that it is without loss of generality to focus on
strategies that condition on the public history alone. Thus, to keep notation simple, I
define agent k’s behavioral strategy in period t as a mapping σk,t , that takes a public
history ht such that k is unmatched in period t and outputs k’s decision to participate
and a ROL, �k,t . Let σk = (σk,t )t≥s denote k’s strategy profile.

A pure strategy profile σ = (σk )k∈AT∪BT
determines a terminal history hT+1

σ =
(m̂σ

1 , � � � , m̂σ
T ), where letting Âσ

t ∪ B̂σ
t denote the set of agents who participate in the spot

mechanism in period t under σ we have that

m̂σ
t |

Âσ
t ∪B̂σ

t
= νt

(
Âσ

t , B̂σ
t ,

(
σk

(
ht
σ

))
k∈Âσ

t ∪B̂σ
t

)
.

Also, m̂σ
t (k) = k for all k ∈ A(m̂σ ,t−1 ) ∪ B(m̂σ ,t−1 ) \ (Âσ

t ∪ B̂σ
t ). Finally, m̂σ

t (k) = m̂σ
t−1(k)

for k ∈ (At ∪ Bt ) \ (A(m̂σ ,t−1 ) ∪ B(m̂σ ,t−1 )). Similarly, a pure strategy profile σ to-
gether with a public history ht = m̂t−1 determine a continuation matching mσ (m̂t−1 ).
An agent’s payoff from strategy profile σ at public history m̂t−1 is determined by the
payoff from the matching it induces. That is, letting a ∈ A(m̂t−1 ),

U
(
a, σ|m̂t−1) = Ut

(
a, m̂t−1, m̂σ

(
m̂t−1)),

and similarly for b ∈ B(m̂t−1 ).

Definition 8. A pure strategy profile σ = (σk )k∈AT∪BT
is a pairwise SPNE of �2 if

it is a SPNE of �2 and the following holds: There is no period t ≥ 1, public history
ht = m̂t−1, and pair (a, b) ∈ A(m̂t−1 ) ∪ B(m̂t−1 ) such that there exists σ ′

a, σ ′
b such that

U(a, (σ−(a,b), σ ′
a, σ ′

b )|ht ) >U(a, σ|ht ) and V (b, (σ−(a,b), σ ′
a, σ ′

b )|ht ) > V (b, σ|ht ).

In what follows, I assume that preferences over matchings are strict.12

Lemma 1. In both games, it is without loss of generality to focus on strategy profiles where
the agents participate in the mechanism whenever they are unmatched.

This follows from noting that (i) participating is not observable, and (ii) agents who
participate can submit a ROL that only includes themselves, that is, an empty ROL.

Lemma 2. In both games, without loss of generality, agents either submit an empty ROL
or a truncation of the ranking induced by their Bernoulli utility function.

Proof. Fix a history ht = m̂t−1 and an agent k ∈ A(m̂t−1 ) ∪ B(m̂t−1 ). There are two
cases to consider. First, assume that given the equilibrium strategies at ht , k is matched
at the end of period t. Then the result in Roth and Vande Vate (1991) implies that k

can do weakly better by submitting a truncation. Second, suppose instead that given
the equilibrium strategy at ht , k remains unmatched at the end of period t. Then it
is a property of stable mechanisms that the set of agents other than k who are un-
matched is independent of the ROL submitted by k, as long as k is unmatched. To

12This is relevant in the proof of Lemma 3 for �1.
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see this, let � denote the submitted ROLs under σ at ht . Furthermore, let �′ coin-
cide with � for k′ ∈ A(m̂t−1 ) ∪ B(m̂t−1 ) \ {k}. Let mt = νt(A(m̂t−1 ), B(m̂t−1 ), �) and
mt = νt(A(m̂t−1 ), B(m̂t−1 ), �′ ). Assume that mt(k) = mt(k) = k. Toward a contradic-
tion, suppose there exists a ∈ A(m̂t−1 ) such that mt(a) �= a = mt(a). Let A− = {a′ ∈
A(m̂t−1 ) : mt(a′ ) �′

a′ mt(a′ )} and B+ = {b ∈ B(m̂t−1 ) : mt(b) �′
b mt(b)}. The decompo-

sition lemma (Roth and Sotomayor (1992)) implies that mt(A− ) = mt(A− ) = B+, a con-
tradiction. Thus, without loss of generality, k can submit an empty list in that case.
Since the ROL that k submits at ht is unobserved, in both cases one can then change k’s
strategy at ht without affecting the equilibrium.

Lemma 3. In both games, for all t and public history m̂t−1, the continuation matching
mσ (m̂t−1 ) is individually rational and satisfies condition (D3) in ET

t (m̂t−1 ).

Proof. Individual rationality follows from the ability of the agents to remain single
through period T by always submitting empty ROLs. In �2, condition (D3) follows from
the possibility of joint deviations: otherwise, there would be a period s ≥ t and a pair
(a, b) ∈ A(m̂t−1, (mσ

r (·))r∈{t, ���,s−1} ) ∪ B(·) that can deviate by submitting lists that only
list each other. Any stable mechanism matches (a, b) together. In �1, condition (D3) fol-
lows from the properties of deferred acceptance. Suppose there is a period s ≥ t and
a pair (a, b) ∈ A(m̂t−1, (mσ

r (·))r∈{t, ���,s−1} ) ∪ B(·) that prefer to match with each other
over their outcome under (m̂t−1, mσ (m̂t−1 )). If mσ

s (m̂t−1 )(a) �= a, then this contradicts
either that a submitted a truncation of their true ranking or the stability of the de-
ferred acceptance algorithm with respect to the reported preferences. Suppose then that
mσ

s (m̂t−1 )(a) = a. The stability of the outcome of DA with respect to the reported prefer-
ences implies that a did not include b in their ROL. Consider the following strategy for a:
a submits �̃a listing all b′ ∈ B that are preferred to a’s outcome under mσ (m̂t−1 ). Under
this ROL, which includes b, it cannot be that a is unmatched in period s. Otherwise, b
would still be matched to mσ

s (m̂t−1 )(b), a contradiction (recall the proof of Lemma 2).
Then a is matched at the end of period s, so that a has a profitable deviation, contradict-
ing the definition of SPNE.

A corollary of this is that mσ (m̂T−1 ) satisfies Definition 4 for A(m̂T−1 ) ∪ B(m̂T−1 ).

Lemma 4. In �1, for any period t and public history m̂t−1, the matching mσ (m̂t−1 ) cannot
be improved upon by agents on side A waiting to be matched. Similarly, in �2, for any
period t and public history m̂t−1, the matching mσ (m̂t−1 ) ∈ DT−(t−1)(ET

t (m̂t−1 )).

Proof. The proof is similar for both games so I focus on �2. Let t ≤ T − 1 denote
the largest s ≤ T − 1 such that there exists m̂s−1 such that mσ (m̂s−1 ) fails either (D1)
or (D2) in Definition 6. Let k ∈ A(m̂t−1 ) ∪ B(m̂t−1 ) be such that k prefers all match-
ings in MD(k, m̂t−1 ) over (m̂t−1, mσ (m̂t−1 )). Consider the matching (m̂t−1, mt , � � � , mT )
that arises when k deviates and submits an empty ROL and then continues to play the
equilibrium strategy. By definition of t, (ms )s≥t+1 ∈ DT−t(ET

t+1(m̂t−1, mt )). (Note that
mσ (m̂t−1, mt ) = (ms )s≥t+1.) It remains to show that mt satisfies Definition 5. Toward a
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contradiction, suppose there exists a pair (a, b) such that mt(a) �= a and mt(b) �= b, but
u(a, b) > u(a, mt(a)) and v(a, b) > v(mt(b), b). Then it must be that the ROLs (�a, �b )
satisfy that either mt(a) �a b or mt(b) �b a. This contradicts Lemma 2: under trunca-
tions, the agents do not switch the order of agents on the other side relative to their true
preferences. It follows that mt satisfies Definition 5, and hence, (m̂t−1, mt , � � � , mT ) ∈
MD(k, m̂t−1 ). Thus, k has a deviation at public history m̂t−1, contradicting the definition
of SPNE.
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