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A common-value auction with state-dependent participation
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This paper analyzes a common-value, first-price auction with state-dependent
participation. The number of bidders, which is unobservable to them, depends
on the true value. For participation patterns with many bidders in each state, the
bidding equilibrium may be of a “pooling” type—with high probability, the win-
ning bid is the same across states and is below the ex ante expected value—or of
a “partially revealing” type—with no significant atoms in the winning bid distri-
bution and an expected winning bid increasing in the true value. Which of these
forms will arise is determined by the likelihood ratio at the top of the signal distri-
bution and the participation across states. We fully characterize this relation and
show how the participation pattern determines the extent of information aggre-
gation by the price.
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1. Introduction

In various auctions and similar trading scenarios, participation is state-dependent—its
extent may be correlated with information relevant for the bidding. This might be the
case when the decisions on the costly recruitment of participants are made by an in-
formed seller or when the participants are induced to participate by the value of corre-
lated outside options. Strategic participants take this dependence into account and it
affects their behavior. A situation of this sort arises, for example, when a privately in-
formed borrower chooses how many lenders to contact to obtain a loan. The main ob-
jective of this paper is to shed light on how such state-dependent participation affects
prices and the aggregation of information by the market.

Price formation with state-dependent participation can take different forms. This
paper explores it by studying auctions in which the number of bidders varies across
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states and bidders can learn about the state from their own participation. We view the
auction model as a convenient abstraction of a free-form price-formation process in a
decentralized market environment rather than a formal mechanism. The specific auc-
tion format and some of the other features are selected to facilitate the clear exposition
of the insights concerning the strategic effects of state-dependent participation rather
than tailored to fit a specific application.

Specifically, we analyze a first-price auction for a single good with two value-states,
� and h, such that the common value of the good, vω, ω = �, h, satisfies vh > v�. In
state ω, there are nω bidders. Bidders do not observe ω or nω but get private, condition-
ally independent signals that are drawn from a distribution Gω with support [x, x̄] and
density gω. The likelihood ratio gh(x)

g�(x) is increasing, so higher signals are relatively more

likely in state h.1 In this world, bidders know that different states may be associated
with different participation, and they draw some inference about the overall participa-
tion from their own presence at the auction. This augments their private signal infor-
mation, and the compound posterior likelihood ratio of the states depends both on the
signal likelihood ratio gh(x)

g�(x) (as it would in a standard auction environment) and on the

participation ratio nh
n�

. The objective of this paper is to explore the implications of this
feature.

Our main characterization result (Theorem 1) concerns the forms of the bidding
equilibria when n� and nh are large. Specifically, the key magnitude is the “compound”
posterior likelihood ratio, gh(x̄)

g�(x̄)
nh
n�

, and the form of the equilibrium varies dramatically
according to whether this ratio is below or above 1. If this compound ratio is below 1,
then any bidding equilibrium is necessarily of a pooling type: there is some bid b be-
low the ex ante expected value such that, with probability close to 1, the winning bid is
equal to b in both states. In fact, in this case, any bid b from an interval below the ex ante
expected value can be supported as the outcome of such a pooling equilibrium. If this
compound ratio is above 1, then any bidding equilibrium is of a partially revealing type:
there are no significant atoms in the winning bid distribution, and the expected winning
bid is higher in state h than in state �. In being partially revealing, the equilibrium in this
case resembles the equilibrium of an ordinary common-value auction. However, we will
see that the degree of revelation is affected by the state-dependent participation, which
may either dampen or enhance separation, depending on nh

n�
.

These results regarding the two basic types of equilibria are explained by the form
of the “winner’s inference,” that is, Pr(all other bids ≤b|h)

Pr(all other bids ≤b|�) , given a common bidding strat-
egy β. When there are many bidders, for a strictly increasing bidding strategy β to be
an equilibrium, the expected value conditional on winning must be increasing in the
bid. But this is the case only if this winner’s inference is increasing in b. The analy-
sis will show that, given a common, strictly increasing bidding strategy β, and large n�
and nh, the relationship between the ratio gh(x̄)

g�(x̄)
nh
n�

and 1 determines whether the win-
ner’s inference of the relevant bidders (those with x near x̄) is increasing or decreasing
in x.

1This is the same basic model as in Lauermann and Wolinsky (2017), discussed below.
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The extent of information aggregation by the price can be thought of casually as
reflected by the closeness of the price to the true value and, more formally, as how infor-
mative the price is as a signal of the true state. It depends on the form of the equilibrium
and on the ratio gh(x̄)

g�(x̄)
nh
n�

. The price aggregates no information in the pooling equilibrium
and aggregates some information in the partially revealing equilibria (the distribution
of the winning bid in state h stochastically dominates that of state �). The extent of in-
formation aggregation in the partially revealing equilibria increases in gh(x̄)

g�(x̄)
nh
n�

; that is,
the expected price is closer to the true value, and, more generally, the price is a more
informative signal of the state.2

Our discussion of information aggregation continues the discussion of this question
by Milgrom (1979) and Wilson (1977) in the context of an ordinary common-value auc-
tion. Translated to the two-state model considered here, Milgrom’s (1979) result is that
the winning bid in an ordinary common-value auction approaches the true value as the
number of bidders grows if and only if the likelihood ratio of the two states is unbounded
over the support of the signal distribution. Our analysis recognizes the additional infor-
mation due to the state-dependent participation and points out that this may dampen
or enhance information revelation. Specifically, in an ordinary large common-value
auction without state-dependent participation, the price aggregates only the bidders’
information, and the extent of information aggregation depends on the informative-
ness of the private signals as captured by gh(x̄)

g�(x̄) . With state-dependent participation, ad-

ditional information can be injected into the price via nh
n�

. For a given value of gh(x̄)
g�(x̄) , the

larger nh
n�

is, the more information is incorporated into the price. In particular, the price
aggregates information better than it does in a large ordinary auction with the same sig-
nal structure whenever nh

n�
is larger than 1, and it is worse at aggregating the information

when nh
n�

is smaller than 1.
In our model, the participation is deterministic conditional on the state. We sketch

an extension to random participation in Section 5.2. There, we also discuss some related
contributions on auctions with uncertain bidder numbers.

State-dependent participation may arise for a variety of reasons. In Lauermann and
Wolinsky (2017), it arises via the recruitment decision of a seller. The seller knows ω

and solicits nω bidders at a constant cost per bidder. The subsequent interaction is the
same as in the model of the current paper. Their main result is that, with binary signals,
there exists an equilibrium in which the endogenous participation pattern gives rise to
an atom in the bid distribution. Lauermann and Wolinsky (2021) show that an equi-
librium of the partially revealing type always exists and the solicitation uniquely pins
down the ratio nh

n�
in such an equilibrium (when the solicitation cost is small). These re-

sults regarding the equilibrium solicitation build on the characterization of the bidding
behavior in the present paper.

State-dependent participation in a common-value setting may also arise from bid-
ders’ entry decisions, especially when the entry costs are correlated with the state (but
not only in that case). We discuss bidder entry in Section 5.3.2, where we also discuss

2More precisely, the limit price distribution for large nh and n� is equivalent to a distribution over poste-

riors. This distribution is Blackwell more informative about the state as the limit of gh(x̄)
g�(x̄)

nh
n�

increases.
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related work on entry into interdependent value auctions by Murto and Välimäki (2019)
and Atakan and Ekmekci (2020).

Our analysis may add insights to many scenarios in which auctions are used to study
informal price competition in markets. For example, consider the competition among
incompletely informed banks over the business of a potential borrower. Broecker (1990)
and Riordan (1993) model this scenario as an ordinary common-value auction—the bor-
rower contacts all of a fixed number of banks for quotes. This and our companion pa-
pers recognize that such competition may be significantly affected when the borrower
chooses how many banks to contact based on its private information. For example,
the inevitability of atoms established in the present paper implies that certain state-
dependent contact patterns of a broad class will result in banks pooling on a unique
quote, which resembles a collusive outcome.

Finally, information aggregation problems with state-dependent participation have
been considered in other settings as well. In Lauermann and Wolinsky (2016), an in-
formed seller contacts buyers sequentially in a random search model. The expected
number of contacted bidders depends on the state via the sampling behavior. It is
shown that the equilibrium outcome is necessarily pooling when signals are boundedly
informative and the search costs are small. The fact that partially separating equilib-
ria do not exist is related to the absence of price competition in the sequential search
setting.

There is also some relationship between information aggregation in auctions and
elections; see Feddersen and Pesendorfer (1997). Ekmekci and Lauermann (2020, 2021)
consider the effects of a potentially state-dependent number of voters on information
aggregation in elections, showing that information aggregation can fail when the num-
ber of voters is correlated with the state.

2. Setup and preliminary characterization

Basics

This is a single-good, common-value, first-price auction environment with two under-
lying states, h and �. There are N potential bidders (buyers). The common values
of the good for all potential bidders in the two states are v� and vh, respectively, with
0 ≤ v� < vh.

Nature draws a state ω ∈ {�, h} with prior probabilities ρ� > 0 and ρh > 0, ρ� +ρh = 1,
and in state ω randomly draws nω bidders from the pool, 1 ≤ nω ≤ N . A bold n denotes
the vector (n�, nh ).3

Each of the nω bidders observes a private signal x ∈ [x, x̄]. Conditional on the state
ω ∈ {�, h}, signals are independently and identically distributed according to a cumula-
tive distribution function (c.d.f.) Gω. A bidder does not observe ω or nω, but she believes
that her probability of being invited to the auction in state ω is nω

N .

3The participation is exogenous here, but, as mentioned before, it can be endogenized in several ways.
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The set of feasible bids, P�, is a grid with step size �≥ 0

P� �
{

[0, v�] ∪ {v� +�, v� + 2�, � � � , vh −�, vh} for �> 0,

[0, vh] for �= 0.

Notice that even for the case of � > 0, the set P� contains the continuum of prices on
[0, v�].4 The grid is introduced to deal with later existence issues.

The nω bidders simultaneously submit bids b ∈ P�. The highest bid wins, and ties
are broken randomly with equal probabilities. If the winning bid is p in state ω ∈ {h, �},
then the payoffs are vω −p for the winning bidder and 0 for all others.

We call this the “bidding game” and denote it by �0(n, N , �). The ordinary common-
value auction is a special case with n� = nh.

The signal

The signal distributions Gω, ω ∈ {�, h}, have no atoms and strictly positive densities gω
on an identical support, [x, x̄]. The likelihood ratio gh(x)

g�(x) is nondecreasing and right con-

tinuous, with gh(x̄)
g�(x̄) = limx→x̄

gh(x)
g�(x) . This is the (weak) monotone likelihood ratio property

(MLRP): larger values of x indicate a (weakly) higher likelihood of the higher state. The
signals are nontrivial and boundedly informative, that is,

0 <
gh(x)
g�(x)

< 1 <
gh(x̄)
g�(x̄)

< ∞.

A bidder’s posterior probability of ω, conditional on being solicited and receiving
signal x, is

Pr[ω|x, sol; n] �
ρωgω(x)

nω

N

ρ�g�(x)
n�

N
+ ρhgh(x)

nh
N

,

where ρω, gω(x), and nω
N , respectively, reflect the information contained in the prior

belief, in the signal x, and in the bidder being invited. We use “sol” to denote the event
that the bidder was solicited. Notice that N cancels out, and hence, it does not play any
role in the analysis.

Bidding

A bidding strategy β prescribes a bid as a function of the signal realization,

β : [x, x̄] → P�.

We study strategies that are symmetric and pure.
Given a bidding strategy β employed by n other bidders, the probability of winning

with a bid b in state ω is πω(b; β, n). From here on, (β, n) and (β, n) will typically be

4This avoids some irrelevant distinctions between the case in which the bottom equilibrium bid is v� and
the case in which it is v� −�.
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suppressed from the arguments, and we write expressions such as Pr[ω|x, sol] and πω(b)
with the understanding that they depend on a specific profile (β, n).

Expected payoff

Given the bidding strategy β and the participation n =(n�, nh ), the interim expected pay-
off to a bidder who bids b, conditional on participating and observing the signal x, is

U(b|x, sol) = Pr[win at b|x, sol]
(
E[v|x, sol, win at b] − b

)
, (1)

where

Pr[win at b|x,sol] = ρ�g�(x)n�π�(b) + ρhgh(x)nhπh(b)
ρ�g�(x)n� + ρhgh(x)nh

, (2)

and

E[v|x,sol,win at b] = ρ�g�(x)n�π�(b)v� + ρhgh(x)nhπh(b)vh
ρ�g�(x)n�π�(b) + ρhgh(x)nhπh(b)

, (3)

where (β, n) is suppressed from the arguments ofE[v| � � �] and Pr[win at b| � � �], according
to the convention adopted above.

Bidding equilibrium

A bidding equilibrium of �0(n, N , �) is a bidding strategy β such that b = β(x) maxi-
mizes U(·|x, sol) for all x.

3. Equilibrium monotonicity

With state-dependent participation, monotonicity is not immediate because the signals
also inform bidders about the number of competitors rather than just about the value. If
fewer bidders are solicited when ω = h, a higher signal implies both, a higher value and
less competition. The following example illustrates this consideration.

Example of a nonmonotone bidding equilibrium

Let [x, x̄] = [0, 1], with gh(x) = 2x and g�(x) = 2 − 2x. Therefore, the signal likelihood
ratios are ∞ at x = 1 and 0 at x = 0, and so these signals reveal the state to be h and
�, respectively.5 Further, suppose that v� > 0, nh = 1, and n� = 100. It follows that
πh(b; β, 1) = 1 for all b≥ 0 in state h because there is no competition. Hence, given that
x = 1 reveals that the state is h, in every bidding equilibrium it must be that β(1) = 0.
So, if β were weakly increasing, then β(x) = 0 for all x. However, this strategy cannot
be an equilibrium. At x = 0, the expected payoff from bidding b = 0 is 1

100v�, whereas
the expected payoff from bidding b′ = ε is v� − ε. Because v� > 0, a deviation to b′ is

5The example violates the bounded likelihood-ratio assumption. This simplifies the argument but is not
essential.
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profitable for small ε. Therefore, in this example, there is no weakly increasing bidding
equilibrium.

However, when either at least two bidders participate in the auction in both states
or v� = 0 (unlike in the example), a bidding equilibrium strategy β is monotonic in the
sense that, for any bidding equilibrium there is an equivalent monotone bidding equi-
librium. A bidding equilibrium β̃ is said to be equivalent to a bidding equilibrium β if
the implied joint distributions over bids and states are identical.

Proposition 1 (Monotonicity of bidding equilibrium). Suppose that either v� = 0 or
nω ≥ 2, ω= �, h and β is a bidding equilibrium.

(i) If x′ > x, then U(β(x′ )|x′, sol) ≥ U(β(x)|x, sol). The inequality is strict if and only
if gh(x′ )

g�(x′ ) >
gh(x)
g�(x) .

(ii) There exists an equivalent bidding equilibrium β̃, such that β̃ is nondecreasing on
[x, x̄] and coincides with β over intervals over which gh

g�
is strictly increasing.

Therefore, if the likelihood ratio gh
g�

is strictly increasing everywhere, then a bidding

equilibrium β is necessarily monotonic; if gh
g�

is constant over some interval, then β need
not be monotonic over it, since all those signals contain the same information. However,
in this case, there is an equivalent monotone bidding equilibrium that is obtained by
reordering the bids over such intervals.6

This proposition is not proved separately since it is a special case of a more general
version, called Proposition 4, which will be stated and proved in Appendix A.3.2.

The main observation in the proof is that, for b ≥ v�, U(b|x, sol; β, n) satisfies single
crossing with respect to b and x for any β (monotone or not). Therefore, above v�, best
responses are monotone, and so are equilibrium bids.

The two conditions in the proposition ensure that equilibrium bids are necessarily
above v�. First, if v� = 0, then this simply follows from the restriction of bids to be pos-
itive. Second, if there are at least two bidders, then a “Bertrand” argument implies that
bids must be at least v�. For an intuition, note that it is common knowledge that the
value is at least v�. As in the standard Bertrand game with complete information, 2 bid-
ders are already sufficient. The assumption that [0, v�] ⊂ P� is used in this part of the
proof.7

The single-crossing property implies that the proof does not have to distinguish be-
tween the cases of � > 0 and � = 0 above vl. Moreover, the single-crossing property
implies that our restriction to pure strategies is without loss of generality.

In light of Proposition 1, from now on, whenever nω ≥ 2, ω = �, h, attention is con-
fined to nondecreasing bidding equilibria.

6Although strict MLRP evidently simplifies the argument, we chose to require only weak MLRP beause
this admits discrete signals as a special case, which is useful for some examples and results.

7Murto and Välimäki (2019) also show that nonmonotone bidding may occur in a common-value auc-
tion with random participation when there is a chance that there is only a single bidder.
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4. Bidding equilibria with many bidders

This section characterizes bidding equilibria when there are many bidders in each state.
From a substantive point of view, the many bidders case is the relevant case for the ques-
tions of competitiveness and information aggregation in markets. From an analytical
point of view, this case makes it easier to get clean characterization results and to iden-
tify the underlying economic mechanism.

4.1 Preliminaries

We look at a sequence of bidding games �0(nk, Nk, �k ) such that �k ≥ 0, lim�k = 0,

lim
k→∞

nkω = ∞ for ω= �, h,

and

lim
k→∞

nkh

nk�
= r ∈ [0, ∞],

and at a corresponding sequence of bidding equilibria βk. We are interested in the limits
of equilibrium magnitudes as k → ∞.8

With many bidders, only bids associated with signals that are sufficiently close to x̄

have a significant probability of winning. Therefore, the object of interest is the equilib-
rium distribution of the winning bid in state ω, namely,

Fω(p|β, n) �
(
Gω

({
x : β(x) ≤ p

}))n
,

and its pointwise limit, rather than the distribution of all the bids.
The notation’s density is reduced as follows. First, when we discuss a fixed sequence

{(βk, nk )}∞k=1, then magnitudes induced by (βk, nk ) are typically written as Uk(b|x, sol),
Fk
ω(p), etc. (rather than as U(b|x, sol; βk, nk ), Fω(p|βk, nkω ), etc.). Second, since nearly

all limits are with respect to k, we generally omit the delimiter k→ ∞. Finally, we some-
times use the abbreviations

ḡ� gh(x̄)
g�(x̄)

and ρ� ρh
ρ�

.

4.2 Winning bid distribution: Pooling versus partially revealing

Our main characterization result shows that, for large k, the form of Fk
ω(p) is determined

by gh(x̄)
g�(x̄) lim

nkh
nk�

= ḡr. It exhibits a large atom at the top if ḡr < 1, and it is essentially free of

atoms if the reverse inequality holds.
Let E[v] denote the expected ex-ante value of the good, E[v] = ρ�v� + ρhvh, and let

E[v|x̄, sol] � limE
k[v|x̄, sol] ≡ v� + ρgrvh

1 + ρgr
, (4)

8By assumption, Nk ≥ nkω for ω= �, h, and so Nk → ∞.
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be the limit posterior conditional on the highest signal x̄ and being solicited. Note that
E[v|x̄, sol] > E[v] if ḡr > 1 and E[v|x̄, sol] < E[v] if ḡr < 1. Thus, if ḡr < 1, then just being
included in the auction already involves a “participation curse” that depresses the value
estimate held by any bidder below the prior.

Intuitively, ḡr ≷ 1 determines whether the expected number of relevant bidders
(those with signals close to x̄) is higher in state h or �. This is because the expected
number of bidders having signals in an ε-neighborhood of x̄ is nkω(1 − Gω(x̄ − ε)) ≈
nkωgω(x̄)ε.

Theorem 1. For every sequence of bidding games �0(nk, Nk, �k ) with �k > 0 for all k,

�k → 0, min{nk� , nkh} → ∞, and lim
nkh
nk�

= r, there exists a sequence of bidding equilibria

βk.

(i) If gr > 1, then for any such sequence,

limFk
ω(p) =�ω(p|r ),

where �ω(·|r ) is an atomless distribution that is uniquely determined by r with
support [v�, E[v|x̄, sol]].

(ii) If gr < 1, then

(a) for any such sequence, there is a sequence of bids b̂k such that

lim
[
Fk
ω

(
b̂k +�k

) − Fk
ω

(
b̂k −�k

)] = 1,

with E[v|x̄, sol] ≤ lim inf b̂k and lim sup b̂k ≤ E[v].

(b) for any b̂ with E[v|x̄, sol] < b̂ < E[v], there is a sequence of equilibria βk such
that

lim
[
Fk
ω(b̂) − Fk

ω

(
b̂−�k

)] = 1.

(iii) If ḡr = 1, then for any such sequence, limFk
ω(p) has mass 1 on E[v].

Note that the theorem speaks about the (limit of the) distribution of the winning bid
rather than the distribution of the submitted bids. Thus, Part 2 does not mean that, for
large k, most equilibrium bids are b̂k or b̂k + �k but rather that the winning bid is very
likely to be either b̂k or b̂k +�k.

The proof shows that the distributions �ω mentioned in Part 1 are

��(p|r ) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if p ≥ E[v|x̄, sol](

1
ρgr

p− v�

vh −p

) 1
gr−1

if v� < p ≤ E[v|x̄, sol]

0 if p ≤ v�

(5)
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and

�h(·|r ) �
(
��(·|r )

)gr
, (6)

and thus are uniquely determined by r, as claimed.
For the special case of n� = nh = n (i.e., r = 1), the explicit characterization of the

winning bid distribution is essentially implied by the analysis of Murto and Välimäki
(2015).

Part 3 of the theorem implies that the limit equilibrium outcome is continuous in ḡr

at ḡr = 1. As ḡr → 1 from above, the distributions �ω converge to a mass point at E[v],
and, as ḡr → 1 from below, E[v|x̄, sol] converges to E[v], and so the interval of outcomes
in Part 2 collapses.

The assumption that �k > 0 along the sequence is only used to show the existence of
equilibrium.9 The characterization results concerning the forms of the equilibria hold
with �= 0 as well.

Proposition 2. Consider any sequence of bidding games �0(ηk, Nk, �) with �= 0, such

that min{nk� , nkh} → ∞ and lim
nkh
nk�

= r. Then the characterization results of Theorem 1 (i.e.,

items 1, 2a, and 3) hold for any corresponding sequence of bidding equilibria βk.

The proof in Appendix A.1 shows Proposition 2 first, before allowing for a grid and
proving Theorem 1.

4.3 Key ideas from the proof of Theorem 1

The following two observations highlight the key intuition of the theorem. First, if bid-
ders with signals close to x̄ are tied at a common bid, it must be that ḡr < 1. Second, if
bidders with signals close to x̄ use a strictly increasing bidding strategy, it must be that
ḡr > 1.

Pooling on a common bid Suppose the equilibrium bidding strategies βk are such that
bidders with signals close to the top are tied at a common bid, that is, for all large k and
some b̂ and xk,

βk(x) = b̂ for all x ∈ [
xk, x̄

]
, (7)

and suppose that the winning bid is equal to b̂ with probability 1 in the limit,

lim
[
Gh

(
xk

)]nkh−1 = lim
[
G�

(
xk

)]nk�−1 = 0,

that is, xk is not too close to x̄.
Since the auction ends with a winning bid of b̂ in both states when k is large, the

bidders’ ex ante rationality requires

E[v] ≥ b̂.

9Existence without a grid is discussed in Section 5.1.
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When bidding b̂, the winning probability, and hence, the expected payoffs vanish to
zero. A bidder who ε-overbids b̂, however, wins with probability 1 in both states, and the
expected value conditional on winning is E[v|x̄, sol] in the limit (since winning contains
no further information). Therefore, for a bidder with a signal x̄ not to overbid b̂, it must
be that

b̂ ≥ E[v|x̄, sol].

For both of the above inequalities to hold simultaneously, it must be that E[v|x̄, sol] ≤
E[v], which holds if and only if ḡr ≤ 1; see (4). Therefore, ḡr ≤ 1 is necessary for an atom
of the form (7).

Strictly increasing bids Suppose the bidding strategy βk is strictly increasing near the
top, in the following sense: for some c ∈ (0, 1), one can choose xk such that, for each k,
the strategy βk is strictly increasing on [xk, x̄] and

[
G�

(
xk

)]nk�−1 = c;

so, the winning probability at βk(xk ) in state � is constant at c for all k. Of course, xk → x̄

as k→ ∞.
Since there is an increasingly large number of bidders, the bidders’ expected equilib-

rium profits are zero in the limit. However, given our construction, bidders with signals
xk and x̄ win with a strictly positive, nonvanishing probability at βk(xk ) and βk(x̄), re-
spectively, even for k → ∞ (the bid βk(x̄) wins with probability 1). For their profits to go
to zero, it must therefore be that

βk(x̄) ≈ E
k
[
v|x̄, sol, win at βk(x̄)

]
,

and

βk
(
xk

) ≈ E
k
[
v|xk, sol,win at βk

(
xk

)]
. (8)

Given βk(x̄) >βk(xk ), it must be that

limE
k
[
v|x̄, sol, win at βk(x̄)

] ≥ limE
k
[
v|xk, sol, win at βk

(
xk

)]
. (9)

Since xk → x̄, whether inequality (9) holds depends on the “winner’s inference” from
winning at βk(x̄) versus βk(xk ). In the following, we show that (9) requires ḡr ≥ 1.

Obviously, the probability of winning is 1 in both states at βk(x̄), and so the winner’s
inference is

πk
(
βk(x̄)|h

)
πk

(
βk(x̄)|�

) = 1,

for all k. At βk(xk ), we have

πk
(
βk

(
xk

)
|h

)
πk

(
βk

(
xk

)
|�

) =
[
Gh

(
xk

)]nkh−1[
G�

(
xk

)]nk�−1
.
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Simple algebra shows that, when lim[G�(xk )]n
k
� −1 = q ∈ (0, 1), then lim[Gh(xk )]n

k
h−1 =

qḡr .10 Therefore,

lim
πk

(
βk

(
xk

)
|h

)
πk

(
βk

(
xk

)
|�

) = qḡr−1.

The expected value conditional on winning is

limE
k
[
v|xk, sol, win at βk

(
xk

)] =
v� + ρ lim

gh
(
xk

)
g�

(
xk

) πk
(
βk

(
xk

)
|h

)
πk

(
βk

(
xk

)
|�

) vh
1 + ρ lim

gh
(
xk

)
g�

(
xk

) πk
(
βk

(
xk

)
|h

)
πk

(
βk

(
xk

)
|�

) ,

and using the above we have

limE
k
[
v|xk, sol, win at βk

(
xk

)] = v� + ρgrqḡr−1vh

1 + ρgrqḡr−1 . (10)

So, for (9) to hold it must be that (10) is increasing in q, which is the case if and only
if ḡr ≥ 1; thus, ḡr ≥ 1 is necessary for βk to be strictly increasing at the top.11

4.4 Revenue and information aggregation in large auctions

Theorem 1 has implications for how the parameters ḡ(≡ gh(x̄)
g�(x̄) ) and r(≡ lim

nkh
nk�

) affect the

expected equilibrium revenue and the extent of information aggregation in the limit and
for large k.

The interim expected revenue is E
k[p|ω] � E[p|ω; βk, nkω]. In the partially revealing

case of ḡr > 1, the revenue converges to a unique limit, E[p|ω] = limE
k[p|ω], the ex

ante revenue ρ�E[p|�] + ρhE[p|h] is equal to the ex ante value E[v], and E[p|h] > E[v] >
E[p|�].

In the pooling case of ḡr < 1, the revenue is approximately equal to the atom for
large k, Ek[p|ω] ≈ b̂k, and so it is independent of the state (i.e., lim[Ek[p|h] −E

k[p|�]] =
0). The atom, and hence, the revenue may vary along the sequence but is bounded,
lim supEk[p|ω] ≤ E[v], with a strict inequality for some sequences of equilibria.

Corollary 1. Consider a sequence of bidding games �0(nk, Nk, �k ) such that �k ≥ 0,

�k → 0, min{nk� , nkh} → ∞ and lim
nkh
nk�

= r, and a corresponding sequence of bidding equi-

libria βk, with E[p|ω] = limE
k[p|ω] (when it exists).

10With Q� ≡ − limnk� (1 − G�(xk )), we have lim[G�(xk )]n
k
� −1 = eQ� = q. By l’Hospital’s rule, Qh ≡

− limnkh(1 − Gh(xk )) = ḡrQ�, and so lim[Gh(xk )]n
k
h−1 = eQh = eQ�ḡr = qḡr . Intuitively, the number of bid-

ders with signals ≥ xk is approximately Poisson distributed with means nk� (1−G�(xk )) and nkh(1−Gh(xk )),
respectively.

11The explicit solution in (10) and βk(xk ) ≈ E[v|xk, sol, win at βk(xk )] are used in the proof to derive the
closed form of �ω (the winning bid distribution in the limit).
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(i) If ḡr > 1, then

E[p|�] < E[v] < E[p|h], (11)

and

ρ�E[p|�] + ρhE[p|h] = E[v]. (12)

(ii) If ḡr < 1, then

lim
[
E
k[p|h] −E

k[p|�]
] = 0,

and lim supEk[p|ω] ≤ E[v].

Proof. The equality in Part 2 of the result is immediately implied by Part 2 of Theo-
rem 1.

For Part 1, (12) follows from direct calculation using the explicit form of the winning
bid distribution �ω given by (5).12 Then (11) follows from (12) and the fact that �h first-
order stochastically dominates ��.

Recall from Theorem 1 that Part 2 of the corollary applies not only to E
k[p|ω] but

also to the realized price.

Information aggregation by the orice We use the term information aggregation to de-
scribe the information conveyed by the price about the state. We will examine how it de-
pends on the parameters ḡ and r first informally and then more formally. When ḡr < 1,
the price fails to aggregate the information since exactly the same price prevails in both
states with high probability.

In the partially revealing case of ḡr > 1, the extent of aggregation can be evaluated
by comparing the limit distributions of the winning bid �ω in the two states. Inspection
of (5)–(6) reveals the following facts. First, when ḡr is near 1, then �h and �� are nearly
identical. Second, when ḡr is large, then �ω is concentrated near vω in both states and
actually approaches a mass point on vω as ḡr → ∞. Thus, a price observation is not a
very informative signal of the state if ḡr is near 1, but it is so if ḡr is very large.

More formally, we claim that ḡr determines the informativeness of the price about
the state in the sense of Blackwell’s criterion. Recall an information structure is a set of
signals S and a conditional distribution H(s|ω) over S, for every state ω ∈ {�, h}. In the
auction environment at hand, S = [x, x̄], s ∈ S is the first-order statistic of the individ-
ual signals of the participating bidders, and hence, H(s|ω) = (Gω(s))nω . For any prior
likelihood ratio ρ, this information structure induces a distribution �ω(ρ) over a set of
posteriors in each state ω. The functions �ω are an equivalent representation of the
underlying information structure. In the case of a monotone bidding equilibrium, the
distributions of the winning bid, viewed as functions of ρ, are equivalent to the �ωs be-
cause there is a one-to-one relationship between the bid and the posterior. In the limit

12The calculation is simplified by changing the integration variable to y = 1
ρgr

p−v�
vh−p in the integral

ρ� limE
k[p|�] + ρh limE

k[p|h] = ρ�
∫
pd��(p) + ρh

∫
pd��(p). Alternatively, it follows from (8) and the

law of iterated expectations.
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of a sequence of equilibria such that lim
nkh
nk�

= r, these �ω’s are equivalent to the limits of

the winning bid distributions �ω(·|ρ, ḡ, r ). As we just said, although the elements in the
support of �ω(·|ρ, ḡ, r ) are expected values, they are in a one-to-one relationship with
the posteriors. Therefore, when we say below that �ω(·|ρ, ḡ, r ), ω = �, h, is more infor-
mative than �ω(·|ρ, ḡ′, r′ ), ω = �, h, the statement is about the underlying information
structure in which the decision maker’s signal is the winning bid. Now, we can inquire
formally how the parameters ḡ and r affect the informativeness of the equilibrium price.

Corollary 2. (i) If ḡr > ḡ′r′ > 1, then �ω(·|ρ, ḡ, r ), ω = �, h, is more informative than
�ω(·|ρ, ḡ′, r′ ) according to Blackwell’s criterion.

(ii) E[p|�] is decreasing in ḡr and E[p|h] is increasing.

(iii) E[p|ω] → vω as ḡr → ∞ ω= �, h.

The proof is in Appendix A.2. Notice the asymmetry between the cases of ḡr > 1
and ḡr < 1. For the case with ḡr > 1, the informativeness of the price varies mono-
tonically with ḡr. For ḡr < 1, recall from Theorem 1 that the limit distribution is state-
independent and contains no information, for all values of ḡr.

Finally, the case of n� = nh (i.e., r = 1) is just the ordinary common value auction.
Milgrom (1979) shows that information aggregation in such a large auction is nearly
perfect—in the sense of the winning bid approaching the true value—iff ḡ = ∞. Adapt-
ing Milgrom’s analysis to the case of finite ḡ, it is intuitive that the winning bid gets closer
to the true value as ḡ grows. The corollary verifies this and also shows that the price be-
comes more informative in the more general sense of Blackwell’s criterion.13

4.5 Failure of affiliation of beliefs

Another way to describe the role of ḡr in determining the equilibrium outcome is in
terms of the affiliation between the value and the highest signal. Let y[n] denote the
highest signal realization given participation n = (n�, nh ). The c.d.f. of y[n] conditional
on ω is (Gω(x))nω−1. Therefore, the likelihood ratio of the states at y[n] = x is

nh
n�

gh(x)
g�(x)

(
Gh(x)

)nh−1(
G�(x)

)n�−1 . (13)

In ordinary auctions with nh = n� = n, this likelihood ratio is increasing in x, which
means that y[n] is affiliated with the value. In contrast, with state-dependent partici-
pation, the likelihood ratio (13) need not be increasing; in fact, it is decreasing for x

sufficiently close to x̄ if nh
n�

gh(x̄)
g�(x̄) < 1. Therefore, y[n] might not be positively affiliated with

the value.

13This seems to be a somewhat novel observation for ordinary common value auctions as well.
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5. Discussion

5.1 Existence without grid

The difficulty in establishing existence directly in the model with a continuum of bids
is due to the possible presence of atoms in the bid distribution. Therefore, the bidders’
equilibrium payoffs might not be continuous in their bids, and this precludes the appli-
cation of “off-the-shelf” existence results. This is why we look instead at the limit of a
sequence of equilibria for a vanishingly small grid (that way, existence is guaranteed by
established results, e.g., Athey (2001)).

One issue with this approach is that such a limit is not necessarily an equilibrium of
the continuum case, as the limit might exhibit atoms that are absent in the sequence.
To see this, consider a sequence of games with grid P�k , with βk(x) = b for x < x̂ and
βk(x) = b + �k for x ≥ x̂. In the limit as �k → 0, limβk(x) = b for all x. Therefore, the
winning probability in the limit is strictly higher than the limit of winning probabilities
for bidders with x < x̂ and it is strictly lower for bidders with x ≥ x̂. Such merging of
atoms may imply that the limit strategy does not need to be an equilibrium of the game
with a continuum of bids, even if the elements of the sequence are.

This issue may be resolved by simply defining equilibrium to be the limit outcome
as the grid’s step goes to zero, or by using the related approach of Jackson et al. (2002).
Roughly speaking, bidders submit two numbers, their actual bid and their “eagerness
to trade”; the winning bidder is selected from among those who are tied for the “most
eager” designation within the group of those who are tied at the highest bid. In the ex-
ample of the previous paragraph, the limit strategy will have all bidders bid b, but those
with x ≥ x̂ (who bid b + �k along the sequence) express eagerness e, while those with
x < x̂ (who bid b along the sequence) express eagerness e < e. In case of a tie at b, the
winner is chosen randomly from among those with e if such exists and otherwise from
those with e (b bidders who announce anything else have even lower priority). With
this approach, the winning probabilities and payoffs with a strategy that is the limit of a
convergent sequence of bidding strategies are the limit of the winning probabilities and
payoffs along the sequence. Therefore, the limit of a convergent sequence of equilib-
rium bidding strategies, for a vanishingly small grid, is an equilibrium of the continuum
limit (of the modified game) itself.14

5.2 Random state-dependent participation

In the model considered so far, participation n = (n�, nh ) is deterministic. In many cases
of interest, however, participation is random. Let η = (η�, ηh ) denote participation dis-
tributions, where ηω(n) is the probability with which n= 1, � � � , N bidders are invited in
state ω. The expected payoff U(b|x; β, η) and the probability of winning πω(b|β, η) are
now functions of η. The bidding game given η = (η�, ηh ) is �0(η,N , �), and a bidding
equilibrium is defined as before.

14For a detailed discussion of these existence problems in a related model with an uncertain number of
bidders, see Lauermann and Speit (2020).
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Appendix A.3.1 presents the explicit expressions of U and πω for this case. It also
presents the proof that any bidding equilibrium is monotone using the single crossing
property of the buyers’ preferences; see Proposition 4. In addition, for certain forms of
random state-dependent participation, the characterization of the bidding equilibria of
large auctions in Theorem 1 holds. In one such form, the support of ηk

ω is contained in
{nkω, � � � , nkω +m} for some fixed integer m> 0.

Proposition 3. Consider any sequence of bidding games �0(ηk, Nk, �k ) such that for
every k the support of ηk

ω is contained in {nkω, � � � , nkω + m} for some fixed integer m > 0

and �k → 0, min{nk� , nkh} → ∞, and lim
nkh
nk�

= r. Then the conclusions of Theorem 1 hold.

This observation is not surprising because in this case the randomness becomes rel-
atively negligible as min{nk� , nkh} → ∞. and nkω → ∞. The proof is in Appendix A.3.3.

If the uncertainty over the number of bidders has full support, the extension is not
straightforward. We know from Murto and Välimäki (2019) and Lauermann and Speit
(2020) that even when the distribution is independent of the state, the equilibrium
strategies might be nonmonotone and existence is not guaranteed.15

Nevertheless, based on the results in Lauermann and Speit (2020), we conjecture
that if the state-dependent participation is Poisson distributed with means given by
μh and μ�, then our characterization results would extend with μh/μ� replacing nh/n�.
However, this would require further analysis.

5.3 Endogenizing state-dependent participation

In the main body of this paper, n = (n�, nh ) is exogenously given. We now discuss ways
to endogenize this feature.

5.3.1 Seller solicitation In Lauermann and Wolinsky (2017, 2021), an informed seller
solicits bidders optimally at a cost s per invited bidder. This analysis builds on the bid-
ding behavior of the present paper and explores the first-stage equilibrium solicitation.
It confirms that the different forms of state-dependent participation considered in the
present paper may arise endogeneously in the equilibria of a larger model. The anal-
ysis focuses on the limit equilibrium outcomes of a sequence of auctions obtained as
the solicitation cost s vanishes. Lauermann and Wolinsky (2021) establishes the exis-
tence of a sequence of equilibria whose limit outcome is of the partially revealing type
and shows that there is a unique such outcome (with respect to the limit ratio nh

n�
and

the bid distributions). There is an accompanying characterization of how this unique
limit ratio nh

n�
varies with the informativeness of the signal, gh(x̄)

g�(x̄) , and the prior belief.
Lauermann and Wolinsky (2017) shows that, for a binary signal, there also exist multiple
(limit) equilibrium outcomes of the pooling type.

15See also Harstad et al. (2008) for the effect of an uncertain number of bidders in the large double-
auction setting of Pesendorfer and Swinkels (1997).
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5.3.2 Costly entry Bidders’ entry decisions are another potential source of state-
dependent participation. Suppose that there is a fixed population N of potential bid-
ders and that each bidder i has to incur a cost ci to enter the auction. The distribution
of these costs depends on the state ω. In equilibrium, bidders will enter if their cost
is lower than their expected payoff of participating. This will result in state-dependent
participation. One can think of ci as being determined by the value of an alternative
option, the availability of which depends on the state. The bidding stage of this inter-
action is provided by our model. The equilibrium participation will be determined by a
condition on the optimality of bidders’ entry decisions.

In a simple binary example of this sort, the costs ci ∈ {c, c} with c < c and only those
with cost c choose to enter. In state ω, there are nω bidders with cost c. If nω is stochastic
(e.g., if bidders’ costs are drawn independently from {c, c} with a state-dependent prob-
ability), this would give rise to a random number of bidders conditional on the state, as
discussed in Section 5.2.

Consider next an alternative scenario in which bidders’ entry decisions are made in
the interim stage after they learned their signal. Suppose that all bidders have a state-
dependent outside option that they would prefer to the participation in the auction if
the state is h with sufficiently high probability. In particular, suppose that there is an
interior x̂ such that bidders enter if and only if x ≤ x̂. This scenario may seem different
from what we consider in this paper since bidders learn only their signal and not the
extra information of being selected into the auction. However, as shown next, it can be
transformed into an equivalent form that is an instance of the stochastic version of our
model.

If the bidders’ signals are independent draws out of Gω, the number of entering bid-
ders in state ω is distributed binomially with N draws and success probability Gω(x̂);
hence, the expected participation is n̄ω =Gω(x̂)N . Then the model with n̄ω and the dis-
tribution Ĝω(x) = Gω(x)

Gω(x̂) is an instance of the stochastic version of our state-dependent
participation model discussed in Section 5.2.

These descriptions are equivalent since the bidders’ information turns out to be the
same in both: In the original scenario, a bidder observes only the signal, x; hence, the
information that it gets beyond the prior is summarized by the likelihood ratio gh(x)

g�(x) . In
the transformed model that fits our framework, a bidder’s information is both the signal
x and being in the auction, which is summarized by the likelihood ratio n̄h

n̄�

ĝh(x̂)
ĝ�(x̂) . Observe

that these two likelihood ratios are indeed equal,

n̄h
n̄�

ĝh(x̂)
ĝ�(x̂)

= Gh(x̂)N
G�(x̂)N

gh(x)
Gh(x̂)
g�(x)
G�(x̂)

= gh(x)
g�(x)

.

Costly entry into common value auctions has been studied in Murto and Välimäki
(2019). They show that the resulting uncertainty about the bidder number may give rise
to nonmonotone bidding strategies and a failure of the linkage principle. Atakan and
Ekmekci (2020) study the bidders’ choice among two competing auctions and the extent
of arbitrage. Their model is quite different from ours. The main relationship to our work
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is in the state-dependent participation that in their model is implied by the endogenous
state-dependent opportunity cost of entry.

Yet another model of state-dependent participation is in the spirit of rational inat-
tention. Bidders become aware of an auction with a probability that depends on the
state, and they may choose optimally the state-dependent probability of becoming
aware of the auction in the ex ante stage.

5.4 Broader class of environments

We analyze large, first-price auctions in a binary state world and, strictly speaking, the
results pertain to that environment. However, this model is just a means to illustrate the
main insights concerning the effects of state-dependent participation that are likely to
be relevant for a broader set of environments. The previous subsection already presents
scenarios to which this analysis applies (random state-dependent participation and en-
dogenous participation). We now discuss further scenarios to illustrate the potential
broader scope.

Other auction formats Although we have not performed the full analysis, it seems that
the qualitative results continue to hold for a second-price auction as well. In this case,
the functional forms of the limit price distribution will be different, but the main insights
would not change.

Two states The qualitative insights of the strategic inference from the state-dependent
participation do not seem to depend on the two-state assumption. We use this assump-
tion to establish the monotonicity of the equilibrium bidding strategy. If monotonicity
can be established for the multiple state case, perhaps by resorting to stronger assump-
tions, then the extension to a world of multiple states would probably be quite straight-
forward.

Unboundedly informative signals It has been assumed throughout that the signals are
boundedly informative, gh(x̄)

g�(x̄) < ∞. While this assumption was used in the analysis,
some of the results extend to a setting with an unboundedly informative signal. In par-
ticular, when the signal is unboundedly informative, gh(x̄)

g�(x̄) = ∞, then the shape of the

equilibrium will depend on the speed of divergence of n�
nh

→ ∞.16 In an extension of
Lauermann and Wolinsky (2017) with seller solicitation, we give an example with un-
boundedly informative signals that shows that a pooling equilibrium may arise.

Large auctions The focus on large auctions is natural for discussing information ag-
gregation. Nevertheless, the strategic effects of state-dependent participation are just
as relevant for trading scenarios with few participants. Still, we focus on large auctions
because the analysis is simpler. For example, in the partially revealing case, large num-
bers guarantee that bids are near the expected values, and thus simplify the argument.
However, such proximity may already hold for fairly low numbers, and perhaps other
arguments utilizing more directly the structure of the equilibrium might be used.

16Specifically, given a sequence (nkh, nk� ) and some q ∈ (0, 1), let xkq solve (1 − Gh(xkq ))n
k
h = q for all k.

Then what will matter is whether limk→∞
(1−Gh(xkq ))

nk
h

(1−G�(xkq ))n
k
�

> 1 for all q.
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Outlook There are a number of open questions left for future research. We already
noted that it may be worth exploring certain entry models more systematically; see Sec-
tion 5.3.2. In addition, exploring equilibrium bidding with a small, state-dependent
bidder number may be interesting, as this may open up further questions such as the
revenue comparison across auction formats, optimal information design, and the infor-
mation acquisition incentives of bidders. For these questions, the results for the pool-
ing equilibria arising here may be different from those implied by the standard equi-
libria. Finally, extending the analysis from the pure common-values case to the gen-
eral interpendent-values case may be worthwhile in order to explore the implications of
pooling for the allocative performance of the auction.

Appendix

Auxiliary result: Winning probability at atoms The following lemma is restated from
Lauermann and Wolinsky (2017). It derives an expression for the winning probability in
the case of a tie. Define

x−(b) � inf
{
x ∈ [x, x̄]|β(x) ≥ b̄

}
and

x+ � sup
{
x ∈ [x, x̄]|β(x) ≤ b̄

}
.

Lemma 1 (Lauermann and Wolinsky (2017)). Suppose β is nondecreasing and, for some
b̄, x− = x−(b̄) < x+(b̄) = x+. Then

πω(b̄) = Gω(x+ )n −Gω(x− )n

n
(
Gω(x+ ) −Gω(x− )

) =
∫ x+

x−

(
Gω(x)

)n−1
gω(x)dx

Gω(x+ ) −Gω(x− )
. (14)

Observe that the last expression is the expected probability of a randomly drawn sig-
nal from [x+, x−] to be the highest. Thus, πω(b̄) “averages” what would be the winning
probabilities of the types in [x+, x−] if β were strictly increasing.

A.1 Proof of Proposition 2 and Theorem 1 (large bidding equilibria)

Here, and in the rest of the Appendix, we often use the abbreviation

λ� g lim
nkh

nk�
.

A.1.1 Preliminary comments The finite grid (�k > 0) is needed only for the existence
claims but not for the characterization results. We therefore proceed as follows. First,
we show the characterization results for the no-grid case of �k = 0 because this case is
less cluttered, proving Proposition 2. Second, we resurrect the finite grid with �k > 0 to
explain the adaptations of the proof that it requires, proving the characterization parts
of Theorem 1. Finally, we establish the existence of equilibria, especially those described
in Part 2 of Theorem 1.

We prepare the proof with a number of auxiliary lemmas that hold for �k ≥ 0.
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A.1.2 Auxiliary lemmas The next lemma formalizes the idea that the number of bid-
ders with signals close to x̄ is Poisson distributed.

Lemma 2 (Poisson-approximation). Consider some sequence (xk, nk ) with min{nk� ,

nkh} → ∞ and lim
nkh
nk�

= r < ∞. If

lim
(
G�

(
xk

))nk� = q

for some q ∈ [0, 1], then

lim
(
Gh

(
xk

))nkh = qḡr .

Proof of Lemma 2. Let Qω � lim(1 −Gω(xk ))nkω ∈ [0, ∞) ∪ ∞. Observe that

lim
(
Gω

(
xk

))nkω = lim
(

1 − 1 −Gω
(
xk

)
nkω

nkω

)nkω
= e−Qω .

The lemma clearly holds with q = 0 if limxk < x̄. So, suppose limxk = x̄. Then

lim 1−Gh(xk )
1−G�(xk )

= ḡ, and so we have Qh =Q�ḡ lim(nkh/n
k
� ). Therefore, q = e−Q� implies

lim
(
Gh

(
xk

))nkh = e−Qh = eQ�ḡ lim(nkh/n
k
� ) = qḡr .

Recall that

U(b|x, sol; β, n)

= ρ�g�(x)n�π�(b; β, n� )(v� − b) + ρhgh(x)nhπh(b; β, nh )(vh − b)
ρ�g�(x)n� + ρhgh(x)nh

. (15)

Lemma 3 (“Zero profit”). For any ε > 0, there is an M(ε) such that, if nω >M(ε), ω= �, h,
then U(β(x)|x, sol; β, n) < ε for all x in every bidding equilibrium β.

Remark. We do not suppress here β, n from the arguments of U since the claim con-
cerns a range of n and all corresponding equilibria β.

Proof of Lemma 3. By (15) and the right continuity of gh
g�

, (U(b|·, sol; β, n))b,β,n is a
family of functions that is uniformly (right) equicontinuous: For every ε > 0 and x, there
is some zε > 0 such that∣∣U(

b|x′, sol; β, n
) −U(b|x, sol; β, n)

∣∣ ≤ ε

2
,

for all b, all (β, n) and all x′ such that 0 ≤ x′ − x ≤ zε; similarly at x̄ for all x′ s.t. x̄− x′ ≤
zε.17

17The monotonicity of U(β(x)|x, sol; β, n) in x, which is established in Lemma 8, implies that it would
be sufficient to argue the result for x̄.
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Suppose U(β(x)|x, sol; β, n) = ε > 0 for some x < x̄ (the case x = x̄ is analogous and
omitted). From β being a bidding equilibrium, for all x′ > x s.t. x′ − x≤ zε,∣∣U(

β(x)|x, sol; β, n
) −U

(
β

(
x′)|x′, sol; β, n

)∣∣ ≤ ε

2
. (16)

Therefore,

U
(
β(x)|x, sol; β, n

) − ε

2

≤ inf
x′∈[x,x+zε]

U
(
β

(
x′)|x′, sol; β, n

)

≤
∑

ω=�,h

ρω

∫ x+zε

x

[
vω −β

(
x′)]πω

(
β

(
x′); β, nω

)
dGω

(
x′)

Gω(x+ zε ) −Gω(x)

≤
∑

ω=�,h

ρω

vω

∫ x̄

x
πω

(
β

(
x′); β, nω

)
dGω

(
x′)

Gω(x+ zε ) −Gω(x)

=
∑

ω=�,h

ρωvω

nω
(
Gω(x+ zε ) −Gω(x)

)
≤ E[v]

min
ω∈{�,h}

(
nω

(
Gω(x+ zε ) −Gω(x)

)) ,

where the first inequality follows from (16), the second follows from the definition of
U , the third owes to increasing the term in the numerator, and the fourth from the fact
that the expected probability of winning over all signals is 1/nω. Now, let M(ε) be large
enough so that, for nω ≥M(ε), the RHS is smaller than ε

2 . Therefore, for any n such that
nω ≥M(ε), U(β(x)|x, sol; β, n) < ε.

Corollary 3. Let (nk )∞k=1 be such that min{nk� , nkh} → ∞ and (βk )∞k=1 be a corresponding
sequence of bidding equilibria.

(i)

lim sup
x∈[x, x̄]

Uk
(
βk(x)|x, sol

) = 0. (17)

(ii) If, for some sequence (bk )∞k=1 of bids and some ω, limπk
ω(bk ) > 0, then for any

sequence (xk )∞k=1,

limE
k
[
v|xk, sol, win at bk

] ≤ limbk. (18)

(iii) If limπk
ω(βk(xk )) > 0 for some ω and sequence (xk )∞k=1, then

limβk
(
xk

) = limE
k
[
v|xk, sol, win at βk

(
xk

)]
. (19)



862 Lauermann and Wolinsky Theoretical Economics 17 (2022)

Proof of Corollary 3. From Lemma 2, limπk
h (βk(xk )) > 0 ⇔ limπk

� (βk(xk )) > 0.
Therefore, limπk

ω(bk ) > 0 for some ω is sufficient for limπk
ω(bk ) > 0 for all ω.

Parts (i) and (ii) follow immediately from Lemma 3 that would be contradicted if
(17) or (18) did not hold. Part (iii) is immediate from (18) and the individual rationality
condition,

βk
(
xk

) ≤ E
k
[
v|xk, sol, win at βk

(
xk

)]
.

Recall that g� gh(x̄)
g�(x̄) .

Lemma 4. Let nk be such that min{nk� , nkh} → ∞ and g lim
nkh
nk�

< 1, and let (βk )∞k=1 be a

corresponding sequence of (nondecreasing) bidding strategies. If (bk )∞k=1 is a sequence of
bids such that bk < βk(x̄) for all k and limπk

� (bk ) ∈ (0, 1), then

limE
k
[
v|x̄, sol, win at bk

]
> limE

k
[
v|x̄, sol, win at βk(x̄)

]
.

Proof of Lemma 4. Divide throughthe numerator and denominator of (3) by
ρ�g�(x)n�π�(b) to express it in terms of the compound likelihood ratio ρh

ρ�

gh(x)
g�(x)

nh
n�

πh(b)
π�(b)

as

E[v|x,sol,win at b] =
v� + ρhgh(x)nhπh(b)

ρ�g�(x)n�π�(b)
vh

1 + ρhgh(x)nhπh(b)
ρ�g�(x)n�π�(b)

. (20)

Hence, we have to show that

lim
πk
h

(
bk

)
πk
�

(
bk

) > lim
πk
h

(
βk(x̄)

)
πk
�

(
βk(x̄)

) . (21)

Let

q̂ � lim
(
G�

(
xk+

(
bk

)))nk�−1
,

q̂− � lim
(
G�

(
xk−

(
bk

)))nk�−1
,

with 1 ≥ q̂ ≥ q̂− > 0 by limπk
� (bk ) ∈ (0, 1). Recall λ� g lim

nkh
nk�

. We first show the following:

lim
πk
h

(
bk

)
πk
�

(
bk

) = q̂λ−1 > 1 if q̂− = q̂ (22)

and

lim
πk
h

(
bk

)
πk
�

(
bk

) = (q̂)λ − (q̂− )λ

λ(q̂− q̂− )
> q̂λ−1 ≥ 1 if q̂− < q̂. (23)
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To derive (22), note that18

(
Gω

(
xk−

))nkω−1 ≤ πω
(
bk|βk, nkω

) ≤ (
Gω

(
xk+

))nkω−1
.

Hence, whenever lim(G�(xk− ))n
k
� −1 = q− = q̂ = lim(G�(xk+ ))n

k
� −1, Lemma 2 implies

lim
πk
h

(
bk

)
πk
�

(
bk

) = q̂λ

q̂
= q̂λ−1.

To derive (23), recall from Lemma 1 that

πk
ω

(
bk

) =
(
Gω

(
xk+

))nkω − (
Gω

(
xk−

))nkω
nkω

[
Gω

(
xk+

) −Gω
(
xk−

)] , (24)

and hence, using Lemma 2,

lim
πk
h

(
bk

)
πk
�

(
bk

) = lim
nk�

nkh

G�
(
xk+

) −G�
(
xk−

)
Gh

(
xk+

) −Gh

(
xk−

) Gh

(
xk+

)nkh −Gh

(
xk−

)nkh
G�

(
xk+

)nk� −G�
(
xk−

)nk� = (q̂)λ − (q̂− )λ

λ(q̂− q̂− )
.

To show the inequality (q̂)λ−(q̂− )λ

λ(q̂−q̂− ) > q̂λ−1, let Q � q̂−
q̂

< 1. Then the inequality is equiva-

lent to Qλ − λQ + λ < 1. Since λ < 1, the LHS is increasing in Q over [0, 1) and is equal
to 1 at Q = 1, so the inequality holds.

Let

x̄k− � xk−
(
βk(x̄)

)
and q� lim

(
G�

(
x̄k−

))nk� .

Since, by the hypothesis, bk < βk(x̄) for all k, we have q ≥ q̂.
Case 1. Suppose that q = 1. Since

πk
ω

(
βk(x̄)

) ≥ (
Gω

(
x̄k−

))nkω−1
,

we have limπk
� (βk(x̄)) = q(= 1). By Lemma 2, lim(Gh(x̄k− ))n

k
h = qλ = 1 as well. So,

lim
πk
h (βk(x̄))

πk
� (βk(x̄))

= 1. This, (22), and (23) imply (21).

Case 2. Suppose that q < 1. So, there is an atom at βk(x̄). First, consider λ ∈ (0, 1).
As before, using Lemmas 2 and 1, we have

lim
πk
h

(
βk(x̄)

)
πk
�

(
βk(x̄)

) = 1 − qλ

λ(1 − q)
< qλ−1, (25)

18This can be verified using Lemma 1. For example, expanding the formula for πω gives

πω
(
bk|βk, nkω

) = 1

nkω

[
Gω

(
xk+

)nkω−1 +Gω
(
xk+

)nkω−2
Gω

(
xk−

) + · · · +Gω
(
xk−

)nkω−1] ≥ nkωGω
(
xk+

)nkω−1

nkω
.
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where the last inequality follows from λ ∈ (0, 1), q ∈ (0, 1), and straightforward algebraic
manipulation.19

Since q ≥ q̂ > 0 and λ < 1, we have q̂λ−1 ≥ qλ−1. Now, this together with (22), (23),
and (25) imply (21).

If λ = 0, by Lemma 2, limGh(xk−(bk ))n
k
h = 1, and hence, limπk

h (βk(x̄)) = 1. Thus, (21)
follows from limπk

� (bk ) < limπk
� (βk(x̄)).

A.1.3 Proof of Proposition 2 (characterization for the case of no grid) We use the fol-
lowing lemma in the proof.

Lemma 5. Suppose �k = 0 for all k. Let nk be such that min{nk� , nkh} → ∞ and

g lim
nkh
nk�

> 1. Let (βk )∞k=1 be a corresponding sequence of equilibrium bidding strategies. If

(βk )∞k=1 contains a sequence of nonvanishing atoms (bk )∞k=1, that is, lim(G�(xk+(bk )))n
k
� >

lim(G�(xk−(bk )))n
k
� , then

lim
k→∞

bk < lim
k→∞

lim
ε→0

E
k
[
v|xk+, sol, win at bk + ε

]
.

Proof of Lemma 5. By bidders’ individual rationality, E
k[v|xk−, sol, win at bk] ≥ bk.

Therefore, the claim will follow from lim limε→0 E
k[v|xk+, sol, win at bk + ε] >

limE
k[v|xk−, sol, win at bk], which in turn will follow from

lim
gh

(
xk−

)
g�

(
xk−

) πk
h

(
bk

)
πk
�

(
bk

) < lim
gh

(
xk+

)
g�

(
xk+

) (
Gh

(
xk+

(
bk

)))nkh(
G�

(
xk+

(
bk

)))nk� . (26)

Let q− = limG�(xk− )n
k
� and q+ = limG�(xk+ )n

k
� . Note that Gω(xk+ )n

k
ω ≈Gω(xk+ )n

k
ω−1 for

large k. By the hypothesis of the lemma, q+ > 0. By Lemma 2, limGh(xk− )n
k
h = (q− )λ and

limGh(xk+ )n
k
h = (q+ )λ. Recall from Lemma 1 that

lim
πk
h

(
bk

)
πk
�

(
bk

) = lim
nk�

nkh

G�
(
xk+

) −G�
(
xk−

)
Gh

(
xk+

) −Gh

(
xk−

) Gh

(
xk+

)nkh −Gh

(
xk−

)nkh
G�

(
xk+

)nk� −G�
(
xk−

)nk� . (27)

Using this and the above observations,

lim
gh

(
xk−

)
g�

(
xk−

) πk
h

(
bk

)
πk
�

(
bk

) = lim
(
gh

(
xk−

)
g�

(
xk−

) G�
(
xk+

) −G�
(
xk−

)
Gh

(
xk+

) −Gh

(
xk−

))
gh(x̄)
g�(x̄)

(q+ )λ − (q− )λ

λ(q+ − q− )
. (28)

Now, lim gh(xk+ )

g�(xk+ )
= gh(x̄)

g�(x̄) and by MLRP

gh
(
xk−

)
g�

(
xk−

) G�
(
xk+

) −G�
(
xk−

)
Gh

(
xk+

) −Gh

(
xk−

) ≤ 1.

19With Q = 1
q , the inequality is equivalent to (Q)λ − λQ + λ < 1. The right-hand side equals 1 if Q = 1

and is increasing in Q on (0, 1) by λ ∈ (0, 1); hence, the inequality holds.
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Therefore, we may establish (26) by showing that

(q+ )λ − (q− )λ

λ(q+ − q− )
< (q+ )λ−1. (29)

Letting Q = q−
q+ < 1, (29) is equivalent to Qλ − λQ + λ > 1. Since λ > 1, the LHS is

decreasing in Q over [0, 1) and is equal to 1 at Q = 1. Therefore, (29) holds and so does
(26).

We now prove proposition 2. By Proposition 1, we may assume that each bidding
strategy βk is monotone.

Case 1: Suppose gr < 1. Given any ε ∈ (0, 1), let (xk ) be such that lim(Gh(xk ))n
k
h = ε

for all k. We show that

lim
(
Gh

(
xk+

(
βk

(
xk

))))nkh = 1,

with xk+(b) = sup{x|βk(x) = b}. This implies

lim
(
Gh

(
xk+

(
bk

)))nkh − (
Gh

(
xk−

(
bk

)))nkh ≥ 1 − ε.

Then by Lemma 2 and ḡr < 1, this inequality holds for ω= � as well. Since we can choose
ε arbitrarily small, this establishes the claim.

Let yk+ ≡ xk+(b), and suppose to the contrary that

lim
(
Gh

(
yk+

))nkh < 1. (30)

Since βk(xk ) <βk(x̄), (30) implies that there exists bk with βk(xk ) < bk < βk(x̄) and

limπk
�

(
bk

) ∈ (0, 1). (31)

Hence, the zero-profit condition (18) from Corollary 3 requires that

limbk ≥ limE
k
[
v|x̄, sol, win at bk

]
. (32)

Given (31) and (32), Lemma 4 implies that

limE
k
[
v|x̄, sol, win at bk

]
> limE

k
[
v|x̄, sol, win at βk(x̄)

]
. (33)

Individual rationality requires that

limE
k
[
v|x̄, sol, win at βk(x̄)

] ≥ limβk(x̄). (34)

Hence, (32)–(34) together imply a contradiction to bk < βk(x̄). Thus, (30) cannot
hold, which proves the claim.

Case 2a: Suppose gr > 1 and r 
= ∞. Let us establish first that there are no
atoms in the limit. Suppose to the contrary that βk(x) = bk for all x ∈ (xk−, xk+ ) and

lim(G�(xk+ ))n
k
� > lim(G�(xk− ))n

k
� ≥ 0. Thus,

lim
k→∞

lim
ε→0

πk
�

(
bk + ε

) = lim
k→∞

(
G�

(
xk+

))nk� > 0. (35)
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This and Lemma 5 implies that

lim
k→∞

lim
ε→0

Uk
(
bk + ε|xk+, sol

)
> 0. (36)

contradicting the zero-profit condition (17). Thus, there can be no atom.
Next, let us derive the functional form. Take any α ∈ (0, 1). Let (xk )∞k=1 be such

that (G�(xk ))n
k
� −1 = α for all k. By the absence of atoms (just established above),

limπk
ω(βk(xk )) = lim(Gω(xk ))n

k
ω−1 = limFk

ω(βk(xk )). By Corollary (3)(iii),

limβk
(
xk

) = limE
k
[
v|xk, sol, win at βk

(
xk

)]
Therefore, expressing E

k[v|xk, sol, win at βk(xk )] in terms of the compound likelihood
ratio as in (20) and using limπk

ω(βk(xk )) = lim(Gω(xk ))n
k
ω−1,

limβk
(
xk

) = lim

v� + ρh
ρ�

gh
(
xk

)
g�

(
xk

) nkh
nk�

πk
h

(
βk

(
xk

))
πk
�

(
βk

(
xk

))vh
1 + ρh

ρ�

gh
(
xk

)
g�

(
xk

) nkh
nk�

πk
h

(
βk

(
xk

))
πk
�

(
βk

(
xk

))

= lim

v� + ρh
ρ�

gh
(
xk

)
g�

(
xk

) nkh
nk�

(
Gh

(
xk

))nkh−1(
G�

(
xk

))nk�−1
vh

1 + ρh
ρ�

gh
(
xk

)
g�

(
xk

) nkh
nk�

(
Gh

(
xk

))nkh−1(
G�

(
xk

))nk�−1

. (37)

From lim(Gω(xk ))n
k
ω−1 > 0, we have xk → x̄. This, Lemma 2, and lim(Gω(xk ))n

k
ω−1 =

limFk
ω(βk(xk )) imply

lim

(
Gh

(
xk

))nkh−1(
G�

(
xk

))nk�−1
= lim

(
Gh

(
xk

))nkh(
G�

(
xk

))nk� = [
lim

(
G�

(
xk

))nk� ]λ−1 = αλ−1,

where, as before, λ = g lim
nkh
nk�

. Using this observation and letting limβk(xk ) = p, we can

rewrite (37) as

p = v� + ρλαλ−1vh

1 + ρλαλ−1 . (38)

Thus, for every α ∈ (0, 1), we can find the unique p such that limFk
� (p) = α. This gives a

function p̂(α) that is continuous and strictly increasing on (0, 1). The limit distribution
��(p) is simply the inverse of p̂, meaning, the α solution of (38) for given p. Finally, from
Lemma 2, limFk

h (p) =�h(p).
Case 2b: Suppose r = ∞. In this case, �ω(·|r ) is degenerate with probability mass 1

on vω. Given bidders’ individual rationality constraint, it is sufficient to show that �h(·|r )
is degenerate with probability mass 1 on vh. But this follows directly from the zero profit
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condition and the observation that, given r = ∞, if limFk
h (p) > 0 for some p < vh, then

limE
k[v|xk, sol, win at p] = vh.

Case 3: Suppose gr = 1. From bidders’ individual rationality,

ρ� limE
k[p|�] + ρh limE

k[p|h] ≤ E[v]. (39)

We show that, for any p< E[v], limFk
ω(p) = 0. This together with (39) implies the propo-

sition, since if limFk
ω(p) < 1 for some p> E[v], (39) would be violated.

Suppose to the contrary that, for some p< E[v], limFk
ω(p) > 0. Therefore, given that

bids are from the continuum, there is p′ < E[v], such that q� limπk
� (p′ ) > 0. Then there

is a sequence (bk )∞k=1 such that βk has no atom at bk for any k, bk ≥ p′, and limbk = p′.

Letting q̂� limπk
� (bk ), Lemma 2 and λ= g lim

nkh
nk�

= 1 imply

lim
πk
h

(
bk

)
πk
�

(
bk

) = q̂λ

q̂
= 1.

Thus, from (3), limE
k[v|x̄, sol, win at bk] = E[v] > limbk. Since also limπk

ω(bk ) > 0 from
bk > p′ and limπk

� (p′ ) > 0, we have

limUk
(
bk|x̄, sol

)
> 0,

contradicting the zero-profit condition (17). Thus, such (bk )∞k=1 cannot exist. Therefore,
limπk

ω(p) = 0 for all p< E[v], as needed.
This shows the characterization results for the no-grid case, proving Proposition 2.

A.1.4 Proving the characterization results of Theorem 1 We now consider the finite grid
(�k > 0). Most of the above proof goes through with no change. We will therefore only
present the arguments that have to be adjusted, rather than reproduce the entire proof.
These are in the instances where a “slight undercutting” argument is used, and the ad-
justed arguments ensure that, for a sufficiently fine grid, the above proof goes through.

Case 1: ḡr < 1 . Given any ε ∈ (0, 1), let xk be such that (Gh(xk ))n
k
h = ε for all k. Let

bk = βk(xk ). As before, the result holds if

lim
(
Gh

(
xk+

(
bk +�k

)))nkh = 1. (40)

Suppose to the contrary that (40) fails and lim(Gh(xk+(bk +�k )))n
k
h < 1. Then

bk +�k < βk(x̄).

Moreover,

limπk
h

(
bk +�k

) ≤ lim
(
Gh

(
xk+

(
bk +�k

)))nkh < 1

and

limπk
h

(
bk +�k

) ≥ lim
(
Gh

(
xk−

(
bk +�k

)))nkh ≥ lim
(
Gh

(
xk

))nkh = ε > 0.
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Hence, the zero-profit condition (17) requires that

lim
(
bk +�k

) ≥ limE
k
[
v|x̄, sol, win at bk +�k

]
.

Now, limπk
h (bk +�k ) ∈ (0, 1) and bk +�k < βk(x̄) for all k implies via Lemma 4 (βks

that have support only on the grid are a special case considered in that lemma) that

limE
k
[
v|x̄, sol, win at bk +�k

]
> limE

k
[
v|x̄, sol, win at βk(x̄)

]
.

The bidders’ individual rationality requires that

limE
k
[
v|x̄, sol, win at βk(x̄)

] ≥ limβk(x̄).

Together, the last three displayed inequalities contradict bk +�k < βk(x̄).
Case 2: ḡr > 1. The critical lemma for this case was Lemma 5, which should be

adapted as follows.

Lemma 6. Suppose �k > 0 for all k. Let nk be such that min{nk� , nkh} → ∞ and

lim
nkh
nk�

gh(x̄)
g�(x̄) > 1. Let (βk )∞k=1 be a corresponding sequence of bidding equilibria. If

(βk )∞k=1 exhibits a sequence of nonvanishing atoms (bk )∞k=1, that is, lim(G�(xk+(bk )))n
k
� >

lim(G�(xk−(bk )))n
k
� , then

limbk < limE
k
[
v|xk+, sol, win at bk +�k

]
.

Proof of Lemma 6. If, in the limit, there is no atom at bk+�k, that is, if lim(G�(xk+(bk+
�k )))n

k
� = lim(G�(xk−(bk + �k )))n

k
� , then the original proof of the lemma works directly.

If in the limit there is an atom at bk +�k, then instead of (26) we have to establish

lim
gh

(
xk−

)
g�

(
xk−

) πk
h

(
bk

)
πk
�

(
bk

) < lim
gh

(
xk+

)
g�

(
xk+

) πk
h

(
bk +�k

)
πk
�

(
bk +�k

) . (41)

Let xk++ = xk+(bk + �k ) and note that xk−(bk + �k ) = xk+(bk ) = xk+. Also, recall q+ =
limG�(xk+ )n

k
� and let q++ = limG�(xk++ )n

k
� . We already know from (26) that

lim
gh

(
xk−

)
g�

(
xk−

) πk
h

(
bk

)
πk
�

(
bk

) < lim
gh

(
xk+

)
g�

(
xk+

) (
Gh

(
xk+

(
bk

)))nkh(
G�

(
xk+

(
bk

)))nk� = lim
gh(x̄)
g�(x̄)

(q+ )λ−1

Analogous calculation to that of (27)–(28) in the proof yields

lim
gh

(
xk+

)
g�

(
xk+

) πk
h

(
bk +�k

)
πk
�

(
bk +�k

) = lim
nk�

nkh

gh
(
xk+

)
g�

(
xk+

) G�
(
xk++

) −G�
(
xk+

)
Gh

(
xk++

) −Gh

(
xk+

) Gh

(
xk++

)nkh −Gh

(
xk+

)nkh
G�

(
xk++

)nk� −G�
(
xk+

)nk�
= gh(x̄)

g�(x̄)
(q++ )λ − (q+ )λ

λ(q++ − q+ )
.
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Finally,

(q+ )λ−1 <
(q++ )λ − (q+ )λ

λ(q++ − q+ )
, (42)

since letting Q = q++
q+ > 1, (42) is equivalent to Qλ − λQ + λ > 1. Since λ > 1, the LHS is

increasing in Q over [1, ∞) and is equal to 1 at Q = 1. Therefore, (42) and so does (41).
This completes the adaptation of Lemma 5 for the case of finite price grid.

We can now adapt the proof from Proposition 2. The proof uses a slight overbidding
argument. The paragraph containing equations (35) and (36) should be modified as
follows:

lim
k→∞

lim
εk→0

πk
�

(
bk +�k

) ≥ lim
k→∞

(
G�

(
xk+

))nk� > 0, (43)

where the first inequality is strict if in the limit there is an atom at bk + �k, that is, if

lim(G�(xk+(bk +�k )))n
k
� < lim(G�(xk−(bk +�k )))n

k
� . This and Lemma 6 implies that

limUk
(
bk +�k|xk+, sol

)
> 0. (44)

Beyond that point, the proof from Proposition 2 continues unchanged.
Case 3: ḡr = 1. The only necessary change required in the original proof of Proposi-

tion 2 is with respect to the choice of the sequence bk. Note that given �k → 0, under the
stated hypothesis, there must still be a sequence bk such that bk ≥ p′, limbk = p′, and
the probability of a tie at bk is vanishing,

lim
πk
ω

(
bk

)
(
Gω

(
xk+

(
bk

)))nkω = 1.

The remainder of the proof from Proposition 2 applies as before.

A.1.5 Proving the existence claims of Theorem 1 Recall that P� = [0, v� ) ∪ {v�, v� +
�, v� + 2�, � � � , vh −�, vh}. Let m=‖ {v�, v� +�, � � � , vh −�, vh} ‖. Using the idea of Athey
(2001), �� is a set of vectors of dimension m+ 1 whose coordinates belong to [x, x],

�� = {
σ = (σ0, σ1, � � � , σm ) ∈ [x, x̄]m+1 | x� σ0 ≤ σ1 ≤ · · · ≤ σm � x̄

}
,

where σ determines a monotone bidding strategy βσ by βσ (x) = v� + i� if x ∈ [σi, σi+1 ),
i = 0, � � � , m− 1. Given ε > 0 and some b̂ ∈ P�, let m(b̂) =‖ {v�, v� +�, � � � , b̂−�, b̂} ‖ and

��(b̂, ε) = {σ ∈ ��|σ
m(b̂)−1 = x̄− ε, σm(b) = x̄};

that is, for σ ∈ ��(b̂, ε), the strategy βσ (x) = b̂ for all x ∈ [x̄− ε, x̄].
Define the correspondence � from ��(b̂, ε) into itself: For any σ ′ ∈ ��(b̂, ε), let

�
(
σ ′) =

{
σ ∈ ��(b̂, ε)|βσ (x) ∈ arg max

b≤b̂

U(b|x, sol; βσ , n) for all x≤ x̄− ε
}

,
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that is, �(σ ′ ) is the best-response correspondence for x ≤ x̄ − ε when bidders are re-
stricted to bid at most b̂. The correspondence � is nonempty, convex valued, and upper
hemicontinuous. That � is nonempty and convex valued follows immediately from the
single-crossing property identified in Lemma 7, shown directly below, just as in Athey
(2001). The upper hemicontinuity follows from the theorem of the maximum. Thus, by
Kakutani’s fixed-point theorem, there exists some σ∗(b̂, ε) such that σ∗ = �(σ∗ ).

General existence claim If we choose ε = 0 and b̂ = vh, then σ∗ =�(σ∗ ) implies that σ∗
is an equilibrium of the original game �0(n, N , �), proving the general existence claim
at the start of Theorem 1.

Now, fix some sequence of bidding games �0(nk, Nk, �k ) such that �k > 0, �k → 0,

min{nk� , nkh} → ∞, and lim
nkh
nk�

= r, with ḡr < 1.

Now, take any q ∈ (0, 1) and let εk be such that (G�(x̄− εk ))n
k
� = q. Given some b̂, let

�k be the correspondence given b̂, εk, �k, nk, and let σk be one of its fixed points.

Claim 1. For every b̂ with E[v|x̄, sol] < b̂ < E[v] and q small enough, the strategy βk =
βσk is a bidding equilibrium of �0(nk, Nk, �k ) for k large enough.

The claim implies the last remaining item from Theorem 1. To prove the claim, it
is sufficient to show that x̄ does not have an incentive to bid higher than b̂ and x̄ − ε

has a strict incentive to bid b̄, shown in Steps 2 and 3 below. This implies that βσk is an
optimal bid for all signals given the single-crossing property from Lemma 7 because the
constraints are slack.

Step 1. For q small enough and every σk ∈ �k(b̂, εk ),

limE
k
[
v|x̄− εk, sol, win at b̂

]
> b̂.

By definition, xk−(b̂) = σk

mk(b̂)−1
. Let q− = lim(G�(σk

mk(b)−1
))n

k
� , and note that q− ≤ q.

From before, with λ = ḡr, lim
πk
h (bk )

πk
� (bk )

= 1−qλ−
λ(1−q− ) and so

lim
nh
n�

gh
(
x̄− εk

)
g�

(
x̄− εk

) πk
h (b̂)

πk
� (b̂)

= 1 − qλ−
1 − q−

,

which is arbitrarily close to 1 for q− small enough. It follows that, for ever δ, there is
some q small enough such that

limE
k
[
v|x̄− εk, sol, win at b̂

] ≥ E[v] − δ.

Since b̂ < E[v], the claim follows.
Step 2. For q small enough and k large enough,

U
(
b̂|x̄, sol; βσk , nk

)
>U

(
b′|x̄, sol; βσk , nk

)
for all b′ > b̂.

From U(b′|x̄, sol; βσk , nk ) = E
k[v|x̄, sol] − b′ and E[v|x̄, sol] < b̂ < b′, we have

U(b′|x̄, sol; βσk , nk ) < 0.
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From Step 1, U(b̂|x̄, sol; βσk , nk ) > 0 for q small enough and k large enough.
Step 3. For q small enough and k large enough,

U
(
b̂|x̄− εk, sol; βσk , nk

)
>U

(
b′|x̄− εk, sol; βσk , nk

)
for all b′ < b̂.

Note that

U
(
b̂|x̄− εk, sol; βσk , nk

)
U

(
b′|x̄− εk, sol; βσk , nk

) =
k

Pr
(
win at b̂|x̄− εk

)
k

Pr
(
win at b′|x̄− εk

)
(
E
k
[
v|x̄− εk, sol,win at b̂

] − b̂
)(

E
k
[
v|x̄− εk, sol, win at b′] − b′) .

Also,

E
k
[
v|x̄− εk, sol, win at b′] − b′ ≥ vh,

and

limE
k
[
v|x̄− εk, sol, win at b̂

] − b̂ > 0.

Therefore, it is sufficient to show that, for every R> 1 there is some q small enough such
that

lim

k
Pr

(
win at b̂|x̄− εk

)
k

Pr
(
win at b′|x̄− εk

) >R.

For this, in turn, it is sufficient to show that, for ω ∈ {�, h},

lim
πk
ω(b̂)

πk
ω

(
b′) >R.

With xk− = σk

mk(b̂)−1
, we have βk(x) < b̂ iff x ≤ xk−. Therefore, πk

ω(b′ ) ≤ (Gω(xk− ))n
k
ω , and

we have

πk
ω(b̂)

πk
ω

(
b′) ≥ 1(

Gω
(
xk−

))nkω 1 − (
Gω

(
xk−

))nkω
nkω

[
1 −Gω

(
xk−

)] .

If (Gω(xk− ))n
k
ω → q− ∈ (0, 1), then

lim
1(

Gω
(
xk−

))nkω 1 − (
Gω

(
xk−

))nkω
nkω

[
1 −Gω

(
xk−

)] = 1 − q−
−q− lnq−

.

Now, the claim follows since q− ≤ q and we can choose q small enough such that 1−q
−q lnq <

R (recall that −q− lnq− → 0 for q− → 0).
If nkω[1 −Gω(xk− )] → ∞, then the claim follows because (Gω(xk− ))n

k
ωnkω[1 −Gω(xk− )]

is increasing in Gω(xk− ) for nkω[1−Gω(xk− )] ≥ 1, and hence, (Gω(xk− ))n
k
ωnkω[1−Gω(xk− )] ≤

−q lnq for q small enough. (To see it is increasing, write the expression as ξnn[1 −ξ] and
note that d

dξ (ξnn[1 − ξ]) = nξn−1n[1 − ξ] − ξnn = nξn−1[n(1 − ξ) − ξ] > 0 for n(1 − ξ) >
1 > ξ.)

This finishes the proof of Step 3. As noted before, Step 2 and Step 3 imply the claim.
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A.2 Proof of Corollary 2

Proof. 1. Observe first that �ω(·|ρ, ḡ, r ), ω = �, h, is more informative in the sense of
Lehman (1988)’s criterion. To see this, consider a probability q of a Type I error (reject-
ing the hypothesis that ω = h when it is true), and let pq and p′

q be the thresholds that
achieve it, q = �h(pq|ρ, ḡ, r ) = �h(p′

q|ρ, ḡ′, r′ ). The corresponding Type II errors satisfy

1 − ��(pq|ρ, ḡ, r ) = 1 − q1/ḡr < 1 − q1/ḡ′r′ = 1 − ��(p′
q|ρ, ḡ′, r′ ), which implies Lehman’s

ranking. Since in this two-state environment Lehman’s ranking is equivalent to Black-
well’s ranking (Jewitt (2007)), �ω(·|ρ, ḡ, r ), ω= �, h, is more informative by that criterion
as well.

2. Consider the following decision problem. A decision maker DM observes the
winning bid p and has to select a value estimate v̂ ∈ [v�, vh]. Its utility function is
u(v̂, ω) = −(v̂ − vω )2. DM’s posterior after observing p is Pr[ω|winning bid = p]. The
optimal v̂ maximizes

U(v̂) = −Pr[�| winning bid = p]E(v̂− v� )2 − Pr[h| winning bid = p]E(v̂ − vh )2,

and hence, it is Pr[�| winning bid = p]v� + Pr[h| winning bid = p]vh = E[v| win at p].
Since, as we observed before, at the (limit) equilibrium p = E[v| win at p], the optimal v̂
is p itself.

Since �ω(·|ρ, ḡ, r ) is Blackwell more informative than �ω(·|ρ, ḡ′, r′ ), it has to yield
higher optimal expected payoff for any payoff function and any prior. In particular, for
any ρ, ∑

ω

ρωE
[
U(p)|ω

] ≥
∑
ω

ρωE
′[U(p)|ω

]
(45)

where E and E
′ are the expectations with respect to �ω(·|ρ, ḡ, r ) and �ω(·|ρ, ḡ′, r′ ), re-

spectively. Now,∑
ω

ρωE
[
U(p)|ω

]
= −

∑
ω

ρωE
[
(p− vω )2|ω

]
= −

∑
ω

ρωE
(
p2|ω

) + 2(vh − v� )ρhE(p|h) + 2v�ρhE(p|h) + 2v�ρ�E(p|�) +C

= −
∑
ω

ρωE
(
p2|ω

) + 2(vh − v� )ρhE(p|h) + 2v�E(v) +C,

where C = −ρlv
2
� − ρhv

2
h and we used E(v) = ρhE(p|h) + ρ�E(p|�) from Claim 1. Analo-

gously, ∑
ω

ρωE
′[U(p)|ω

]
= −

∑
ω

ρωE
′(p2|ω

) + 2(vh − v� )ρhE
′(p|h) + 2v�E(v) +C.
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Therefore, (45) is equivalent to

−
∑
ω

ρωE
(
p2|ω

) + 2(vh − v� )ρhE(p|h) ≥ −
∑
ω

ρωE
′(p2|ω

) + 2(vh − v� )ρhE
′(p|h). (46)

Now, since �ω(·|ρ, ḡ, r ) is Blackwell more informative than �ω(·|ρ, ḡ′, r′ ) and so the pos-
teriors are a mean-preserving spread of the latter, and since p2 is a convex function of
the posterior, ∑

ω

ρωE
[
p2|ω

] ≥
∑
ω

ρωE
′[p2|ω

]
.

Therefore, for (46) to hold we must have

E
[
(p|h

] ≥ E
′[p|h].

Since E[v] = ρhE(p|h) + ρ�E(p|�), the reverse inequality holds for E(p|�).
3. Since �ω(·|ρ, ḡ, r ) converges to a mass point on vω when ḡr → ∞, the result fol-

lows.20

A.3 Bidding equilibrium with random participation

A.3.1 Notation for random participation Given participation distributions η =
(η�, ηh ), let

nω(ηω ) �
N∑
n=1

nηω(n), and πω(b; β, ηω ) �
N∑
n=1

ηω(n)nπω(b; β, n)/nω. (47)

These are the expected number of bidders and the weighted average probability of win-
ning in state ω. To make the expressions less dense, we omit here and later the argument
of nω(ηω ) and write just nω instead. Also, as before, when there is no danger of confu-
sion, we will continue to omit the argument β and η from U , πω, E, etc. The counterpart
of (15)—the expected payoff to a bidder who bids b given η = (η�, ηh )—is

U(b|x, sol) = ρ�g�(x)n�π�(b)(v� − b) + ρhgh(x)nhπh(b)(vh − b)
ρ�g�(x)n� + ρhgh(x)nh

. (48)

Expressions (1)–(2) can also be adapted to mixed strategies, with nω and πω just taking
everywhere the place of nω and πω.

A.3.2 Proof of monotonicity with random participation

Proposition 4. Suppose either v� = 0 or η is such that η�(1) = ηh(1) = 0, and β is a
bidding equilibrium.

(i) If x′ > x, then U(β(x′ )|x′, sol) ≥ U(β(x)|x, sol). The inequality is strict if and only
if gh(x′ )

g�(x′ ) >
gh(x)
g�(x) .

20Recalling that p ∈ [v�, vh], and hence, bounded.
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(ii) There exists an equivalent bidding equilibrium β̃, such that β̃ is nondecreasing on
[x, x̄] and coincides with β over intervals over which gh

g�
is strictly increasing.

The proof of Proposition 4 relies on two lemmas.

Lemma 7 (Single-crossing). Given any bidding strategy β, any distribution η and any
bids b′ > b ≥ v�.

(i) If πω(b′ ) > 0 for some ω ∈ {�, h}, then for all x′ > x,

U
(
b′|x, sol

) ≥U(b|x, sol) ⇒ U
(
b′|x′, sol

) ≥U
(
b|x′, sol

)
;

where the second inequality is strict if gh(x′ )
g�(x′ ) >

gh(x)
g�(x) .

(ii) If πω(b′ ) = 0 for some ω ∈ {�, h}, then πω(b) = 0 for both ω, and U(b′|x, sol) =
U(b|x, sol) = 0 for all x.

Remark. The proof of Lemma 7 relies on the assumption that there are only two states.
If bids are necessarily above v� (as is indeed implied by the next lemma), conditional on
state �, a higher bid is necessarily worse than a lower one. So, if two bids are optimal for
some belief, the higher bid must be better if the state is h—implying that a higher belief
must make the higher bid more attractive. This is the key role of that assumption.

The following lemma collects a number of additional properties of a bidding equi-
librium β. One of them is a straightforward Bertrand property: when there are two or
more bids in both states, then β(x) ≥ v�, for all x.

Lemma 8 (Bertrand and other properties). Suppose either v� = 0 or η�(1) = ηh(1) = 0
and β is a bidding equilibrium.

(i) πω(β(x)) > 0 if gh(x)
g�(x) >

gh(x)
g�(x) .

(ii) β(x) ∈ [v�, vh ) for almost all x.

(iii) U(β(x′ )|x′, sol) ≥ U(β(x)|x, sol) if x′ > x. The inequality is strict if and only if
gh(x′ )
g�(x′ ) >

gh(x)
g�(x) .

The proof of the lemma utilizes that the set of feasible bids is dense below v�. If the
price grid is finite below v� as well, equilibrium may involve bids just below v� —just like
in the usual Bertrand pricing game with price grid—but such equilibria would not add
anything important.

Proof of Lemma 7. b′ > b ≥ v� implies (v� − b′ ) < (v� − b) and π�(b′ ) ≥ π�(b). These
together with the hypothesis π�(b′ ) > 0 and b′ > b ≥ v� imply

π�
(
b′)(v� − b′)<π�(b)(v� − b). (49)
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Hence, U(b′|x, sol) ≥U(b|x, sol) requires

πh

(
b′)(vh − b′)>πh(b)(vh − b). (50)

Rewriting U(b′|x, sol) yields

ρ�g�(x)n̄�
ρ�g�(x)n̄� + ρhgh(x)n̄h

[
π̄�(b)(v� − b) + ρhgh(x)n̄h

ρ�g�(x)n̄�
π̄h(b)(vh − b)

]
. (51)

It follows from U(b′|x, sol) ≥U(b|x, sol) and (49) that

ρhgh(x)nh
ρ�g�(x)n�

[
πh

(
b′)(vh − b′) −πh(b)(vh − b)

]
≥ π�(b)(v� − b) −π�

(
b′)(v� − b′)> 0.

Since x′ > x and gh(x)
g�(x) is nondecreasing,

ρhgh
(
x′)nh

ρ�g�
(
x′)n� [

πh

(
b′)(vh − b′) −πh(b)(vh − b)

]
≥ π�(b)(v� − b) −π�

(
b′)(v� − b′)> 0. (52)

which implies

U
(
b′|x′, sol

)
= ρ�g�

(
x′)n�

ρ�g�
(
x′)n� + ρhgh

(
x′)nh

[
π�

(
b′)(v� − b′) + ρhgh

(
x′)nh

ρ�g�
(
x′)n� πh

(
b′)(vh − b′)]

≥ ρ�g�
(
x′)n�

ρ�g�
(
x′)n� + ρhgh

(
x′)nh

[
π�(b)(v� − b) + ρhgh

(
x′)nh

ρ�g�
(
x′)n� πh(b)(vh − b)

]
=U

(
b|x′, sol

)
. (53)

If gh(x′ )
g�(x′ ) >

gh(x)
g�(x) , then (52) and (53) hold with strict inequalities.

The last part of the lemma is immediate because Gh and G� are mutually absolutely
continuous, so that Gh({x|β(x) ≤ b}) = 0 ⇔G�({x|β(x) ≤ b}) = 0.

Proof of Lemma 8.
Step 0: If πω(b) > 0 for some n ≥ 2 and ω = � or h, then πω(b) > 0 for both ω and

any ηω.

Proof of Step 0. πω(b; β, n) > 0 for some n and ω implies that Gω({x|β(x) ≤ b}) > 0.
Since Gh and G� are mutually absolutely continuous, it follows that Gω′({x|β(x) ≤ b}) >
0 also for ω′ 
= ω. Therefore, πω(b) > 0 for both ω and any ηω.

Step 1. β(x) ≥ v� for almost all x.
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Proof of Step 1. This is immediate if v� = 0. So, suppose η�(1) = ηh(1) = 0.
Let b ≡ inf{b|πω(b) > 0 for some n and ω}. Suppose b < v�. It may not be that β

has an atom at b (i.e.,
∫

{x:β(x)=b} gω(x)dx > 0) since by a standard Bertrand argument
U(b + ε|x, sol) >U(b|x, sol) for sufficiently small ε ∈ (0, v� − b). Therefore, there exists
a sequence of xk such that β(xk ) → b and πω(β(xk )) → 0 (owing to ηω(1) = 0). Hence,
equilibrium payoffs U(β(xk )|xk, sol) → 0. However, by the definition of b and mono-
tonicity of π̄ω, πω(b) is strictly positive for all b ∈ (b, v� ). Thus, for all b ∈ (b, v� ), the
payoff U(b|x, sol) > 0. This contradicts the optimality of β(xk ) for sufficiently large k, a
standard Bertrand argument. Thus, b ≥ v�. Finally, πω(b) = 0 for all b < v� implies that
Gω({x|β(x) ≥ v�}) = 1, proving the step.

Step 2. β(x) < vh for all x.

Proof of Step 2. It clearly cannot be that Gω({x|β(x) > vh}) = 1 for any ω, since this
would imply that bidders have strictly negative payoffs in expectations. Suppose that
β(x′ ) ≥ vh for some x′. From G�({x|β(x) > vh}) < 1, β(x′ ) ≥ vh implies π(β(x′ )) > 0 and
U(β(x′ )|x′, sol) < 0, a contradiction to the optimality of β(x′ ).

Step 3. πω(β(x)) > 0 for almost all x for ω ∈ {�, h}.

Proof of Step 3. Fix ω ∈ {�, h}. Let X = {x|πω(β(x)) = 0}. The probability that in
state ω all bidders are from that set is �nηω(n)[Gω(X )]n. Since in that event some bid-
der has to win, we have �nηω(n)[Gω(X )]n ≤ Pr[{Winning bidder has signal x ∈ X}|ω] ≤
nω

∫
x∈X πω(β(x))g(x)dx = 0. Hence, Gω(X ) = 0.

Step 4. For any x′ > x, U(β(x′ )|x′, sol) ≥U(β(x)|x, sol). The inequality is strict if and
only if gh(x′ )

g�(x′ ) >
gh(x)
g�(x) . Thus, gh(x′ )

g�(x′ ) >
gh(x)
g�(x) implies that U(β(x′ )|x′, sol) is strictly positive.

Proof of Step 4. From (48), it follows (after dividing the numerator and denominator
by g�(x)) that

U(b|x, sol) =
ρ�n�π�(b)(v� − b) + ρh

gh(x)
g�(x)

nhπh(b)(vh − b)

ρ�n� + ρh
gh(x)
g�(x)

nh

. (54)

Therefore, for any x′ > x,

U
(
β

(
x′)|x′, sol

) ≥U
(
β(x)|x′, sol

) ≥U
(
β(x)|x, sol

) ≥ 0, (55)

where the first and last inequalities are equilibrium conditions; the second inequality
owes to gh(x′ )

g�(x′ ) ≥ gh(x)
g�(x) and πh(β(x))(vh −β(x)) ≥ 0 ≥ π�(β(x))(v� −β(x)), which follows

from Steps 1 and 2.
Suppose gh(x′ )

g�(x′ ) > gh(x)
g�(x) . Now, either πω(β(x)) > 0, in which case πh(β(x))(vh −

β(x)) > 0, and it follows from (54) and gh(x′ )
g�(x′ ) > gh(x)

g�(x) that the second inequality in (55)
is strict, or πω(β(x)) = 0, and hence, U(β(x)|x, sol) = 0. In the latter case, by Step 3,
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there is some y ∈ (x, x′ ) such that πω(β(y )) > 0. We can choose y such that gh(x′ )
g�(x′ ) >

gh(y )
g�(y )

(recall that gh(x)
g�(x) = limx→x

gh(x)
g�(x) ). By Step 2, πh(β(y ))(vh −β(y )) > 0. Since gh(x′ )

g�(x′ ) >
gh(y )
g�(y ) ,

it follows from (54) and the fact that β is a bidding equilibrium that

U
(
β

(
x′)|x′, sol

) ≥U
(
β(y )|x′, sol

)
>U

(
β(y )|y, sol

) ≥ 0 =U
(
β(x)|x, sol

)
.

Conversely, gh(x′ )
g�(x′ ) = gh(x)

g�(x) implies

U
(
β

(
x′)|x′, sol

) =U
(
β

(
x′)|x, sol

) ≤U
(
β(x)|x, sol

) = U
(
β(x)|x′, sol

) ≤U
(
β

(
x′)|x′, sol

)
,

where the inequalities are equilibrium conditions while the equalities owe to the fact
that x and x′ contain the same information. Therefore, U(β(x′ )|x′, sol) =U(β(x)|x, sol).

Step 5. The strict positivity of U(β(x)|x, sol) implies immediately that πω(β(x)) > 0
for any x for which gh(x)

g�(x) >
gh(x)
g�(x) . (Step 3 established this only for almost all x). This

proves Part 1 of the lemma.
This completes the proof of the lemma: Part 1 of the lemma is established in Step 5.

Part 2 is established in Steps 1 and 2. Part 3 is established in Step 4.

Proof of Proposition 4. Part 1: Proved by Lemma 8.
Part 2: Suppose that gh(x′ )

g�(x′ ) > gh(x)
g�(x) for some x, x′ ∈ (x, x̄], but β(x′ ) < β(x). Since β

is a bidding equilibrium, U(β(x)|x, sol) ≥ U(β(x′ )|x, sol). By Lemma 8, πω(β(x′ )) > 0
and β(x′ ) ≥ v�. Therefore, by Lemma 7, U(β(x)|x′, sol) >U(β(x′ )|x′, sol), contradicting
the optimality of β(x′ ) for x′. Thus, the supposition β(x′ ) <β(x) is false. Hence, β(x′ ) ≥
β(x) whenever gh(x′ )

g�(x′ ) >
gh(x)
g�(x) .

Next, suppose that gh(x′ )
g�(x′ ) = gh(x)

g�(x) for some x, x′ ∈ (x, x̄], but β(x′ ) <β(x). Then there

is some interval containing x and x′ over which gh(x)
g�(x) is constant, say, C. Let [x−, x+] be

the closure of this interval. By the above argument, β(x′′ ) ≤ β(x) whenever x′′ < x− < x

and β(x) ≤ β(x′′′ ) whenever x < x+ < x′′′. Define β̃1(x) by

β̃1(x) = inf
{
b : Gh(x) ≤Gh

({
t|β(t ) ≤ b

})}
if x ∈ [x−, x+]

Thus, on [x−, x+] the signals are essentially “reordered” to make β̃1(x) monotone. Out-
side [x−, x+], β̃1(x) coincides with β(x). Note that β̃(x′ ) ≤ β̃(x) ≤ β̃(x′′ ) for all x′ < x−
and x+ < x′′. With this definition,

Gh

({
x|β̃1(x) ≤ b

}) = Gh

({
x|β(x) ≤ b

})
,

for all b. That is, the distribution of bids induced by β̃1 is equal to the distribution of bids
induced by β in state h. It is also the same in state � because β̃1 = β outside [x−, x+] and
because the distributions G� and Gh conditional on x ∈ (x−, x+ ) are identical (owing to
the constant gh(x)

g�(x) ).

The equality of the distributions of bids under β̃1 and β implies that, for any x /∈
{x−, x+}, β̃1(x) is optimal: for x /∈ [x−, x+] this follows immediately from β̃1(x) = β(x);
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for x ∈ (x−, x+ ) this follows from β̃1(x) = β(y ) where y is some value of the signal such
that gh(y )

g�(y ) = gh(x)
g�(x) . For x ∈ {x−, x+}, note that we can represent the distribution of sig-

nals by an equivalent pair of densities that is equal to the original densities almost ev-
erywhere, so that the resulting equilibrium still corresponds to the same distributional
strategy. Here, β̃1 can be rationalized at {x−, x+} by changing the densities at the points
x ∈ {x−, x+}. At x−, if β̃1(x− ) = β̃1(x− + ε) for some ε (an atom), β̃1(x− ) is rational-
ized by setting gω(x− ) = limε→0 gω(x− + ε). Otherwise, β̃1(x− ) is rationalized by setting
gω(x− ) = limε→0 gω(x− − ε), similarly for x+. It follows that β̃1 is monotone on [x−, x+]
and that it is equivalent to β.

Repeating this construction for all intervals over which gh(x)
g�(x) is constant, we get a se-

quence of bidding strategies (constructing the sequence by starting with the longest in-
terval of signals on which gh(x)

g�(x) is constant). Let β̃ be the pointwise limit of this sequence

on (x, x̄] and let β̃(x) = limε→0 β(x + ε). Then β̃ is an equivalent bidding equilibrium
that is monotone on [x, x̄], as claimed.

A.3.3 Proof of Proposition 3 for random participation The following lemma shows
that, for the purposes of this proof, ηk may be replaced by nk without loss of gener-
ality. Once this is established, the proof of Theorem 1 applies and need not be repeated.
Recall nω(ηω ) and πω(b; β, ηω ), ω= �, h, from (47). Since we deal here explicitly with η

and n, we do not suppress them in the arguments of π and E[v| � � �].

Lemma 9. Consider a sequence of bidding games �0(Nk, ηk, �k ) such that the sup-
port of ηk

ω is contained in {nkω, � � � , nkω + m} for some fixed integer m > 0 and �k → 0,

min{nk� , nkh} → ∞ and limk→∞
nkh
nk�

= r, and a corresponding sequence of bidding equilibria

βk.

(i)

lim
nkh

nk�
= lim

nkh

nk�
, (56)

(ii) For any (bk ) with lim(Gω(x+(bk )))n
k
ω > 0,

lim
πh

(
bk; βk, ηk

h

)
π�

(
bk; βk, ηk

�

) = lim
πh

(
bk; βk, nkh

)
π�

(
bk; βk, nk�

) .

(iii) For any (bk ) with lim(Gω(x+(bk )))n
k
ω > 0,

limE
[
v|xk, sol, win at bk; βk, ηk

] = limE
[
v|xk, sol, win at bk; βk, nk

]
.

Remark. The condition lim(Gω(x+(bk )))n
k
ω > 0 is needed for part (ii). For any fixed

x < x̄, if βk is strictly increasing, it follows from πω(βk(x); βk, nkω ) = (Gω(x))n
k
ω−1 that

πh

(
βk(x); βk, nkh + 1

)
π�

(
βk(x); βk, nk�

) =Gh(x)
πh

(
βk(x); βk, nkh

)
π�

(
βk(x); βk, nk�

) <
πh

(
βk(x); βk, nkh

)
π�

(
βk(x); βk, nk�

) .
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Therefore, since Gh(x) < 1, the difference between these ratios is not vanishing as
would be required for the result of the lemma to hold for this x. However, when
lim(Gω(x+(bk )))n

k
ω > 0, then x+(bk ) → x̄, and hence, Gω(x+(bk )) → 1. Fortunately,

bids for which lim(Gω(x+(bk )))n
k
ω = 0 can be neglected in the characterization proof

(the winning bid is strictly higher than bk with probability 1).

Proof of Lemma 9. Part (i) is immediate. Part (iii) follows from Parts (i) and (ii). So,
we show Part (ii). For this, it is sufficient to show (shifting the counting integer by 1 to
simplify the expressions below)

lim
πω

(
bk; βk, nkω + 1

)
πω

(
bk; βk, nkω +m+ 1

) = 1.

From Lemma 1,

πω
(
bk; βk, nkω + 1

)
πω

(
bk; βk, nkω +m+ 1

) =

∫ xk+

xk−

(
Gω(x)

)nkωgω(x)dx

∫ xk+

xk−

(
Gω(x)

)nkω+m
gω(x)dx

.

The claim is now immediate if xk− → x̄ since

1

Gω
(
xk+

)m ≤

∫ xk+

xk−

(
Gω(x)

)nkωgω(x)dx

∫ xk+

xk−

(
Gω(x)

)nkω+m
gω(x)dx

≤ 1

Gω
(
xk−

)m , (57)

and Gω(xk+ ) → 1. Otherwise, we can choose some ε > 0 with xk− < x̄−ε for all k. Observe
that

lim

∫ xk+

x̄−ε

(
Gω(x)

)nkωgω(x)dx∫ xk+

xk−

(
Gω(x)

)nkωgω(x)dx

= 1.

The claim now follows using the previous bounds (57) because

lim
πω

(
bk; βk, nkω + 1

)
πω

(
bk; βk, nkω +m+ 1

) = lim

∫ xk+

x̄−ε

(
Gω(x)

)nkωgω(x)dx∫ xk+

x̄−ε

(
Gω(x)

)nkω+m
gω(x)dx

,

and because we can choose ε arbitrarily small such that Gω(x̄− ε) ∼= 1.

Given Lemma 9, the proof of Proposition 3 is identical to the proof of Theorem 1.
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