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Persuasion with unknown beliefs

Svetlana Kosterina
Department of Economics, University of Pittsburgh

A sender designs an information structure to persuade a receiver to take an action.
The sender is ignorant about the receiver’s prior, and evaluates each information
structure using the receiver’s prior that is the worst for the sender. I characterize
the optimal information structures in this environment. I show that there exists
an optimal signal with two realizations, characterize the support of the signal real-
ization recommending approval„ and show that the optimal signal is a hyperbola.
The lack of knowledge of the receiver’s prior causes the sender to hedge her bets:
the optimal signal induces the high action in more states than in the standard
model, albeit with a lower probability. Increasing the sender’s ignorance can hurt
both the sender and the receiver.
Keywords. Bayesian persuasion, robust mechanism design.

JEL classification. D8.

1. Introduction

When trying to persuade someone, one finds it useful to know the beliefs the target of
persuasion holds. Yet often such beliefs are unknown to the persuader. How should
persuasion be designed when knowledge of prior beliefs is limited?

The following example illustrates the problem. The prosecutor decides how to col-
lect evidence to convince a judge or a jury to convict a defendant. Kamenica and
Gentzkow (2011) discuss this application under the assumption that the judge’s prior
belief about the defendant is known to the prosecutor. However, prosecutors may have
to collect evidence and prepare their arguments before knowing which judge will be as-
signed to the case and before knowing the composition of the jury if one is involved. The
identity of the key decision makers in trials is often unknown ex ante: in a variety of cir-
cumstances judges are assigned to cases randomly (see, for example, Depew, Eren, and
Mocan (2017)) and citizens are randomly chosen to appear for the jury duty. Further-
more, even when the identities of these decision makers are revealed, the prosecutor
may still have limited information about their beliefs.
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In this setting, the sender (e.g., a prosecutor) designs an experiment (i.e., a way of
collecting evidence). The receiver (e.g., a judge) can take one of two actions (e.g., convict
or acquit). The sender wishes to convince the receiver to take the high action in all states.
Thus the prosecutor aims to convince the judge to convict the defendant regardless of
whether the defendant is guilty.1 The receiver takes the action desired by the sender only
if the receiver’s expectation of the state given her information is above a threshold and
takes the other action otherwise. We call this threshold a threshold of doubt. In line with
this reasoning, the judge only convicts the defendants she believes to be guilty.

The main economic problem I consider that is illustrated by the example above is
the problem of persuasion when the prior belief of the receiver is unknown to the sender.
My model isolates the impact of the sender’s ignorance about the receiver’s prior by fo-
cusing on a setting where no other entities are ignorant and the sender is not ignorant
about any other elements of the game. That is, the sender and the receiver (believe that
they) know the distribution of the state (though their beliefs may differ) and the informa-
tion structure the sender commits to. For instance, the prosecutor knows how likely the
defendant is to be guilty and everyone involved understands how evidence is obtained.

In the standard Bayesian persuasion model (Kamenica and Gentzkow (2011),
Kolotilin (2015)), the sender and the receiver have a common prior belief about the
state. An optimal signal in that model recommends the high action with probability 1
in all states above a threshold and recommends the low action with probability 1 in all
states below the threshold. We call this threshold a threshold of action. The threshold
of action is below the threshold of doubt, so that the receiver takes the high action on
a greater range of states than he would under complete information. If the sender and
the receiver have commonly known heterogeneous priors (Alonso and Camara (2016a)),
the optimal signal is not necessarily threshold but is still partitional: the high action is
recommended either with probability 1 or with probability 0 given a state. As the results
in this paper will establish, when the receiver’s beliefs are unknown, the optimal signal
is very different.

I model the sender’s ignorance by assuming that the sender believes that the re-
ceiver’s prior is chosen from a set of priors to minimize the sender’s payoff. The sender
has a known prior over the states and designs an experiment to maximize her payoff in
the worst case scenario. This approach is in the spirit of robust mechanism design which
studies mechanisms that are robust to the informed party’s information and indepen-
dent of the higher-order beliefs. One reason why a sender may focus on the worst case
scenario is ambiguity aversion (Ellsberg (1961)), which may be especially relevant when
the process by which uncertainty resolves is unknown or poorly understood. In terms of
the trial example, the kind of uncertainty that a prosecutor faces about the judge’s prior
is a plausible candidate for the kind of uncertainty that is likely to generate ambiguity
aversion.

I focus on the case where the sender knows that the receiver’s prior assigns no less
than a certain probability to each state but is otherwise ignorant about the receiver’s

1We can modify the model to allow the prosecutor to not want to convict the defendants who are com-
pletely innocent and our results would still go through.
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prior. Formally, the set of the receiver’s priors is all priors that put on each state w at
least (1 − a)g(w) for some a ∈ (0, 1) and a density g. This set of priors has the advantage
of allowing me to flexibly model the lack of the sender’s knowledge about the receiver’s
prior. Because the higher a is, the smaller the mass the receiver’s prior has to put on each
state, a measures the sender’s ignorance. If g is higher on one subset of states than on
the other, then the sender has more information about the receiver’s prior on the first
subset.

The main contribution of this paper is a characterization of the optimal informa-
tion structure in a model of persuasion when the receiver’s beliefs are unknown. First,
I show that there exists an optimal information structure with only two signal realiza-
tions. Second, I show that there is an importance index that determines which states are
in the support of the signal realization recommending the high action. Third, I provide
a formula for the probability that the high action is recommended on the support of the
signal, showing that the optimal signal is a hyperbola. Fourth, I analyze comparative
statics on the optimal information structure with respect to the sender’s knowledge of
the receiver’s prior.

I show that a state w is in the support of the signal realization recommending the
high action if the importance index I(w) = fs(w)/(g(w)(w∗ − w)) exceeds a threshold,
where fs is the density of the sender’s prior and w∗ is the threshold of doubt. Thus the
optimal signal is more likely to induce the high action with a strictly positive probability
in a state if the sender’s prior assigns a high probability to the state, the sender is more
ignorant about the probability of this state, and the state is close to the threshold of
doubt.

I provide results showing that full support is a robust property of the signal chosen
by an ignorant sender. In particular, I establish that if either the sender is sufficiently ig-
norant or the sender’s knowledge is detail-free (by which we mean the sender knows that
the receiver’s prior may put probability 0 on any subset of states in which the sender and
the receiver disagree about the optimal action), then the optimal signal recommends the
high action with a strictly positive probability in every state.

I provide comparative statics on the optimal information structure with respect to
the sender’s knowledge of the receiver’s prior. I show that the more ignorant the sender
is, the more she hedges her bets and spreads out on the states the probability with which
the high action is recommended. Formally, if we increase a, thereby decreasing the
weight (1 − a)g(w) that the receiver’s prior has to put on each state w, then the support
of the optimal signal expands, so that the high action is recommended in more states,
but the probability with which the high action is recommended decreases.

The results thus change the way we think about Bayesian persuasion: unlike the
intuition in the standard model, it is not optimal to pool all sufficiently high states to-
gether and give up on persuading the receiver in the lower states. Instead, the sender
must allow persuasion to fail with some probability on some of the high states and is
able to persuade the receiver with a positive probability on the low states. The model
thus makes clear the impact of the sender’s lack of knowledge about the receiver’s prior
on the optimal signal: the lack of knowledge causes her to hedge her bets and spread
out the probability with which the high action is recommended. Oftentimes, if the state
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goes up a little, the sender is able to increase the probability with which the receiver is
persuaded only by a small amount.

I next consider the welfare implications of the sender’s ignorance. I show that the im-
pact of increasing the sender’s ignorance on the receiver’s welfare is ambiguous: it can
either benefit or hurt the receiver. Because greater ignorance always hurts the sender,
this implies that the sender’s ignorance about the receiver’s prior can hurt both the
sender and the receiver. I also show that the receiver strictly prefers to face an igno-
rant sender rather than a sender who is perfectly informed about the receiver’s prior.
Finally, I show that if the optimal signal recommends the high action with a strictly pos-
itive probability in every state, then greater sender ignorance benefits the receiver. Go-
ing back to the trial example, these results may have implications for the assignment
of judges to cases, showing why prosecutors should be given only limited information
about the judge who will be assigned to their case.

My results imply that when the receiver’s beliefs are unknown, especially pernicious
outcomes are possible. For instance, there are parameters under which the judge con-
victs even completely innocent defendants with a strictly positive probability, whereas
if the receiver’s prior is known (and coincides with the sender’s prior), the probability
that completely innocent defendants are convicted is 0. Thus a model of persuasion
with unknown beliefs can rationalize the occurrence of adverse outcomes that cannot
be explained by the standard model.

The final contribution of the paper lies in solving a mechanism design problem to
which the revelation principle does not apply. Solving such problems tends to be chal-
lenging. I show that my model can be solved by using a fixed-point argument to define
the receiver’s prior that is realized after the sender chooses an information structure.
Importantly, the set of possible priors of the receiver has to be sufficiently rich to ad-
mit a belief that would match the information structure chosen by the sender, and my
analysis highlights the correct notion of richness for this problem.

The rest of the paper proceeds as follows. Section 2 reviews the related literature.
Section 3 introduces the model. Section 4 contains examples illustrating the main re-
sults and provides intuition for the results. Section 5 presents the characterization of the
optimal information structure. Section 6 provides a sketch of the proof. Section 7 con-
tains results on the comparative statics of the optimal signal with respect to the sender’s
ignorance and conducts welfare analysis. Section 8 shows that full support is a robust
property of the signal chosen by an ignorant sender.

2. Related literature

The present paper is related to two strands of literature: Bayesian persuasion and ro-
bust mechanism design. Early Bayesian persuasion papers include Brocas and Car-
illo (2007), Ostrovsky and Schwarz (2010), and Rayo and Segal (2010). Kamenica and
Gentzkow (2011) introduce a general model of Bayesian persuasion and characterize
the sender’s value. Alonso and Camara (2016b) and Chan, Seher, Fei, and Yun (2019)
study persuasion of voters. Alonso and Camara (2016a) consider Bayesian persuasion
where the sender and the receiver have heterogeneous priors. In my robust model, if
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the receiver’s prior that is the worst for the sender was independent of the signal cho-
sen by the sender (which, for example, happens if there are two states), then the sender
would effectively face a persuasion problem with heterogeneous priors, which is solved
in Alonso and Camara (2016a). In general, however, there is not a worst prior that is
independent of the signal, so the method of Alonso and Camara (2016a) does not apply.

Kolotilin (2017) and Kolotilin, Tymofiy, Andriy, and Ming (2017), among others, con-
sider models of Bayesian persuasion with an infinite state space. Guo and Shmaya
(2019) also consider persuasion of a privately informed receiver and show that the opti-
mal mechanism takes the form of nested intervals. Perez-Richet (2014) and Hedlund
(2017) consider a Bayesian persuasion model with a privately informed sender. Ely
(2017), among others, studies a dynamic Bayesian persuasion model.

One strand of the Bayesian persuasion literature studies models where the distribu-
tion of the state is endogenous: after observing the information structure chosen by the
sender, the agent can take an action affecting the distribution of the state. Variants of
this problem are examined in Rodina (2017), Rosar (2017), Boleslavsky and Kim (2018),
and Perez-Richet and Skreta (2018). Whereas these papers look at settings where either
the sender or the receiver can manipulate the state (e.g., a student can exert effort in
studying), my paper looks at settings without manipulation (e.g., a judge cannot ma-
nipulate the evidence and the prosecutor cannot present evidence that has not been
obtained legally).

Several papers, written simultaneously with and independently from the present pa-
per, consider models related to ambiguity in Bayesian persuasion. Laclau and Renou
(2017) consider a model of publicly persuading receivers with heterogeneous priors un-
der the unanimity rule. Their model is equivalent to a model of persuading a single re-
ceiver who has multiple priors where, after the sender commits to an information struc-
ture and after a signal is realized, the receiver’s prior is chosen to minimize the sender’s
payoff. In contrast, in the present paper the receiver’s prior is chosen after the sender
commits to an information structure but before a signal is realized. The difference has
several important implications. First, unlike my model, the model of Laclau and Renou
(2017) has a concave closure characterization. Second, my model has the interpretation
of the sender not knowing the receiver’s beliefs, while the model of Laclau and Renou
(2017) does not have this interpretation and is instead suitable for settings where a com-
mittee is voting on an issue and unanimous support of all members is needed.

A paper by Hu and Weng (2018) features a sender persuading a receiver who will see
private information unknown by the sender. The sender believes that the private infor-
mation will be chosen to minimize the sender’s payoff. One difference from the present
paper is that in Hu and Weng (2018), the sender is ignorant about the receiver’s private
information, whereas in my paper she is ignorant about the receiver’s prior. This means
that the applications the papers address are different: my paper addresses applications
where the information environment of the receiver is controlled by the sender (e.g., the
jury cannot consider any information not given to it in the trial), while the paper by Hu
and Weng addresses applications where the receiver can see external information (e.g.,
a consumer can obtain information about a product not just via advertisement, but also
by talking to friends). Moreover, Hu and Weng (2018) solve for the optimal signal in the
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example with two states (and two actions), whereas I characterize the optimal signal
with a continuum of states.2 Dworczak and Pavan (2020), written subsequent to my pa-
per, considers a sender who is ignorant about information that receivers may get, as well
as about the equilibrium the receivers will play, and characterizes properties of robust
solutions.

The literature on robust mechanism design studies the design of optimal mecha-
nisms when the designer does not know the distribution of agents’ types and designs a
mechanism to maximize his utility in the worst case scenario (see, for example, Chas-
sang (2013), Carroll (2015, 2017), and Carrasco, Vitor, Nenad, Matthias, Paulo, and Hum-
berto (2017)). To the best of my knowledge, the present paper is the first one to consider
a model of robust Bayesian persuasion in which the prior belief of the receiver is un-
known to the sender.

3. Model

3.1 Payoffs

The state space is an interval [l, h] such that l > 0.3 The sender’s preferences are state-
independent. The sender gets a utility of u(e) if the receiver’s expected value of the state
given the receiver’s prior and the signal realization is e. The sender’s utility function u is

u(e) =
{

0 if e ∈ [l, w∗ ),

1 if e ∈ [
w∗, h

]
.

The model can be interpreted as one where the receiver can take one of the two
actions, 0 or 1, the payoff to taking action 0 is 0, and the payoff to taking action 1 is
linear in the state. Here the receiver takes action 1 if and only if his expectation of the
state is weakly greater than w∗. I will call w∗ the threshold of doubt.

3.2 Priors

The sender has a known prior over the states, while the receiver has a set of priors. This
is in contrast to the standard model of Bayesian persuasion, where the sender and the
receiver have a known common prior. Let ϕ denote the set of all cumulative distribution
functions (CDFs) of probability measures on [l, h]. The sender’s prior is a probability
measure on [l, h] with a CDF Fs . I assume that Fs admits a density fs that is C1.4 For the
sake of convenience, I also assume that fs has full support.5

2See also Beauchêne, Li, and Li (2019), who consider a model in which the sender and the receiver share
a common prior, the sender can commit to ambiguous information structures, and both the sender and
the receiver are ambiguity averse. Their model cannot be interpreted as one where the sender is ignorant.

3The assumption that l > 0 is without loss of generality and is made for convenience.
4Some of the results in this paper, including the result that there exists an optimal signal with only two

realizations, do not require this assumption.
5All results generalize to the case when the sender’s prior does not have full support.
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The set of receiver’s priors is indexed by a reference prior G and an ignorance index
a ∈ [0, 1]. The reference prior G admits a C1 density g. For convenience, in most of the
paper I also assume that g has full support. The receiver’s set of priors is6

Cag = {
F ∈ ϕ : μF (A) ≥ (1 − a)μG(A) for all A ∈ B

(
[l, h]

)}
.

That is, the receiver’s set of priors is all priors that put on each (measurable) set A a
mass at least as large as the mass the reference prior G puts on A, scaled down by 1 − a.
One way in which we can interpret Cag is that the receiver has access to an estimate
of the distribution of the state but does not fully trust it and believes that the state is
drawn from this distribution with probability 1 − a and from some other distribution
with probability a. Moreover, the sender knows the estimate but not the other distribu-
tion the receiver uses. For a related way to interpret Cag, imagine that a large sample of
realizations of the state has been observed. Proportion 1 −a of the sample was observed
by both the sender and the receiver, and proportion a was observed by the receiver only.

To understand the assumption on the set of priors, consider a version of the model
in which the state space is discrete. Then the receiver’s set of priors consists of all pri-
ors that assign a probability of at least (1 − a)g(w) to each state w. Thus the sender
knows that the receiver believes that the probability of each state w is at least (1−a)g(w),
but does not know what exactly this probability is. The fact that a ∈ (0, 1) implies that∫

[l,h](1 −a)g(w)dw < 1, which ensures that the receiver’s prior is not completely pinned
down by this requirement.

Observe that a = 1 − (1 − a)
∫

[l,h] g(w)dw is the difference between 1 and the mass
put on the state space [l, h] by the measure (1 − a)μG. Thus the ignorance index a mea-
sures the sender’s ignorance: the larger a is, the more ignorant the sender is. In particu-
lar, if a= 0, so that there is no ignorance, then the set of the receiver’s priors collapses to
just one prior—and this is the reference prior G—while if a= 1, so that there is complete
ignorance, then the set of the receiver’s priors includes all priors.

I assume that
∫

[w∗,h] g(w)dw > 0 and (1−a)
∫

[l,h] wg(w)dw+al < w∗. These assump-
tions ensure that the sender’s problem is nontrivial. In particular, the assumption that∫

[w∗,h] g(w)dw > 0 ensures that there exists a feasible information structure that induces
the receiver to take action 1 with a strictly positive probability. The assumption that
(1 − a)

∫
[l,h] g(w)wdw + al < w∗ ensures that if no information is provided, then the re-

ceiver will take action 0.

3.3 Information structures and evaluation of payoffs

The order of moves is as follows. First, the sender commits to an information struc-
ture π.7 Next, the receiver’s prior F ∈ Cag is chosen to minimize the sender’s payoff.

6Here B([l, h]) denotes the Borel sigma algebra on [l, h] and μF denotes the measure corresponding to
the CDF F .

7An information structure is a Markov kernel π. Here π(σ |ω) is the probability of signal realization
σ given that the state is ω. Formally, letting B(M ) and B([l, h]) denote the Borel sigma algebras on the
message space M and the state space [l.h], respectively, a Markov kernel π is defined as a mapping π :
[l, h]×B(M ) → [0, 1] such that for every ω ∈ [l, h], B �→ π(B|ω) is a probability measure on M and for every
B ∈ B(M ), ω �→ π(B|ω) is B([l, h])-measurable. See Pollard (2002) for more details.
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Then the state is realized (from the sender’s perspective, the state is drawn from the dis-
tribution Fs). After this, the signal is realized according to the information structure π.
Then, having seen a signal realization σ , the receiver forms an expectation of the state
given that the receiver’s prior is F and that the information structure is π.8

I restrict my attention to information structures that have a finite number of sig-
nal realizations given each state. I conjecture that my results hold for all information
structures.

If the sender chooses an information structure π and a receiver with a prior F sees
signal realization σ , then the receiver’s expectation of the state is EFπ[ω|σ ]. Then, if
the sender chooses an information structure π and the receiver’s prior is F ∈ Cag, the
sender’s payoff is ∫

[l,h]

∑
σ

1EFπ[ω|σ ]≥w∗π(σ |w)dFs(w).

Recall that the prior of the receiver is chosen from the set Cag to minimize the
sender’s payoff. Thus the sender’s payoff from choosing an information structure π is

U(π ) = min
F∈Cag

∫
[l,h]

∑
σ

1EFπ[ω|σ ]≥w∗π(σ |w)dFs(w)

and the sender’s equilibrium payoff is

sup
π

min
F∈Cag

∫
[l,h]

∑
σ

1EFπ[ω|σ ]≥w∗π(σ |w)dFs(w). (1)

4. Examples and intuition

In this section, I present simple examples that illustrate my general results and provide
some intuition for why the results hold.

4.1 Preliminary examples

First consider two extreme benchmarks: a completely ignorant sender and a sender who
is fully informed. If the sender is completely ignorant, any prior of the receiver is pos-
sible. In particular, priors that put probability 1 on states below the threshold w∗ are
possible. Receivers with such priors will take action 0 no matter what information is pro-
vided, so the sender gets her lowest possible payoff of 0. If the sender is fully informed
(and the prior for the receiver is the same as the sender’s prior), it is known that the solu-
tion to the sender’s problem has a threshold structure: there is an optimal signal p with
two signal realizations, σ1 and σ0, such that p(σ1|w) = 1 for w ∈ [w′, h], p(σ1|w) = 0 for
w ∈ [l, w′ ) for some threshold w′ ∈ [l, w∗ ), and the receiver takes action 1 if and only if
the realized signal is σ1. When a prior common to the sender and the receiver is fixed,

8If g does not have full support, then we need to specify how the receiver updates his beliefs after observ-
ing signal realizations that have zero probability under the receiver’s prior. In this case, reasonable updating
rules such as the receiver not changing his prior belief or putting mass 1 on the lowest state in the support
of the signal realization ensure that the results in the present paper hold.
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recommending action 1 in higher states below the threshold of doubt w∗ yields a strictly
greater benefit to the sender than recommending action 1 in lower states, so the sender
recommends action 1 in all sufficiently high states such that the receiver’s expectation
upon seeing the signal realization σ1 is exactly w∗.

Next consider an example with only two states. Suppose that the two states are 0
and 1, the sender wants the receiver to take action 1 no matter what the state is, and
the receiver only takes action 1 if she believes that the probability that the state is 1 is
higher than some threshold p∗. Because the state space is binary, we can identify a prior
with the probability that the state is 1. Note that the priors can be ranked such that,
given priors p1 and p2 with p1 < p2 and a signal realization from a fixed information
structure, the posterior under p1 is lower than the posterior under p2. Because higher
posterior beliefs yield a higher payoff to the sender, this means that prior p1 is worse for
the sender than prior p2, so the receiver’s priors can be ranked according to their value
to the sender independently of the information structure. Because the lowest prior is
the worst for the sender, the information structure optimal for an ignorant sender is the
one that maximizes the sender’s payoff given the lowest feasible prior of the receiver.
Because this information structure is a solution to the standard Bayesian persuasion
problem with known priors of the sender and the receiver, we know that the solution
has a concave closure characterization.

4.2 Three-state example

Finally, consider an example with three states. Suppose that the states are 0, 1, and 2, the
sender wants the receiver to take action 1 no matter what the state is, and the receiver
only takes action 1 if her expectation is above w∗ = 1.6. Suppose also that there are
two possible prior beliefs for the receiver, assigning the probabilities (0, 1/2, 1/2) and
(1/2, 0, 1/2), respectively, to each state. To see that the receiver’s prior that minimizes
the sender’s payoff depends on the information structure the sender chooses, consider
two information structures. Under the first one, signal σ1 is sent with probability 1 in
states 1 and 2, and signal σ0 is sent with probability 1 in state 0. Under the second one,
σ1 is sent with probability 1 in states 0 and 2, and σ0 is sent with probability 1 in state 1.
Because action 0 must be taken after signal σ0, the receiver’s prior that minimizes the
expected state conditional on signal σ1 minimizes the sender’s payoff. Under the first
information structure, this is the prior that maximizes the probability of state 1, and
under the second one, this is the prior that maximizes the probability of state 0. Thus the
worst prior is (0, 1/2, 1/2) under the first information structure and (1/2, 0, 1/2) under
the second one.

Suppose for now that the sender can only choose information structures with two
realizations such that after the realization σ1 receivers with all possible priors take ac-
tion 1. Then after σ1, both the receiver with prior (0, 1/2, 1/2) and the receiver with prior
(1/2, 0, 1/2) have to take action 1. If the prior is (0, 1/2, 1/2), the receiver’s expectation
after σ1 is (π(σ1|1) + 2)/(π(σ1|1) + 1), and if the prior is (1/2, 0, 1/2), the receiver’s ex-
pectation after σ1 is 2/(π(σ1|0) + 1). Setting both expectations equal to w∗ = 1.6 yields
π(σ1|1) = 2/3 and π(σ1|0) = 1/4.
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We can make several observations about this solution. First, in contrast to the stan-
dard model of Bayesian persuasion, action 1 is induced in states 0 and 1 with a strictly
interior probability. Second, since π(σ1|0) <π(σ1|1), the sender is able to induce action
1 with a lower probability in lower states, where the receiver’s loss from the wrong action
is larger. Third, we can show that the points π(σ1|0) and π(σ1|1) lie on a hyperbola (here
hyperbola refers to the probability of action 1 as a function of the state).

To explore the effects of increasing sender’s ignorance, now suppose that, in addi-
tion to the priors above, receiver’s priors (2/3, 0, 1/3) and (1/4, 1/4, 1/2) are also possi-
ble. Note that if a receiver with prior (2/3, 0, 1/3) takes action 1, then so does a receiver
with prior (1/2, 0, 1/2). Moreover, if receivers with priors (0, 1/2, 1/2) and (1/2, 0, 1/2)
take action 1, then so does a receiver with prior (1/4, 1/4, 1/2). Then we just need
to ensure that the expectation of a receiver with prior (2/3, 0, 1/3) after σ1, which is
2/(2π(σ1|0) + 1), is equal to 1.6. This yields π(σ1|0) = 1/8. We thus see that increasing
sender’s ignorance leads the sender to induce action 1 with lower probability in states
where it was recommended with a positive probability. I refer to this as the probability
effect below.

Suppose next that we decrease sender’s ignorance by removing all receiver’s priors
but (1/4, 1/4, 1/2). To ensure that the receiver takes action 1 after σ1, we need (π(σ1|1)+
4)/(π(σ1|0) + π(σ1|1) + 2) ≥ 1.6, which is π(σ1|0) ≤ 1/2 − 3/8π(σ1|1). If π(σ1|1) = 1,
the constraint is π(σ1|0) ≤ 1/8, while if π(σ1|1) = 0, the constraint is π(σ1|0) ≤ 1/2. The
sender will want to set π(σ1|1) = 0 and π(σ1|0) = 1/2 if the probability that the sender’s
prior assigns to state 0 is high enough. Thus decreasing sender’s ignorance can cause
the sender to induce action 1 in fewer states. I refer to this as the support effect below.

4.3 Intuition for the hyperbola

I next generalize the three-state example I discussed above to provide further intuition
for the hyperbolic functional form of the optimal signal. Suppose that, as in the general
model, the state space is an interval. Suppose also that any receiver’s prior has to put a
mass of at least 1 − a on some state α > w∗, and, subject to this constraint, any prior is
allowed.

Consider an information structure with two realizations, σ1 and σ0, satisfying
π(σ1|α) = 1, and the receiver’s prior that puts a mass of 1 − a on α and a mass of
a on some state ω below the threshold w∗. Then the receiver’s expectation condi-
tional on seeing σ1 is E[w|σ1] = (ωaπ(σ1|ω) + α(1 − a))/(aπ(σ1|ω) + 1 − a). In or-
der for the receiver to take action 1 after seeing σ1, we need E[w|σ1] ≥ w∗, which turns
out to be equivalent to π(σ1|ω) ≤ (1 − a)(α − w∗ )/(a(w∗ − ω)). Note that the bound
(1 − a)(α − w∗ )/(a(w∗ − ω)) is a hyperbola in ω. This reveals that the hyperbolic func-
tional form of the optimal signal arises from the way conditional expectations are cal-
culated.

Note that the receiver’s prior is chosen after the sender chose the information struc-
ture and a prior putting a mass of a on any state ω below the threshold w∗ is possible.
Thus if the probability of σ1 exceeds the bound (1 − a)(α−w∗ )/(a(w∗ −ω)) at any state
below the threshold, then a receiver’s prior putting mass a on this state would ensure
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that the receiver never takes action 1. Therefore, π(σ1|ω) must be below the bound in
all states. On the other hand, the sender’s payoff is increasing in the probability that
action 1 is taken, implying that it is best for the sender to maximize π(σ1|ω) subject to
the constraint that it be below the bound. Thus setting π(σ1|ω) equal to the bound in
all states yields the signal that is optimal (in the class of all signals with two realizations
such that after one realization receivers with all possible priors take action 1).

5. Main result

This section characterizes the optimal signal. I show that there is an optimal signal with
two realizations such that after one of the signal realizations receivers with all possi-
ble priors take action 1. I will use σ1 to denote this signal realization and I will refer
to this signal realization as the realization that recommends approval. Under this sig-
nal, the probability of the signal realization recommending the high action is 1 above
the threshold w∗ and is a hyperbola on the support below w∗. The support of this sig-
nal realization below w∗ is the set of all states such that an importance index exceeds a
threshold t. There is a trade-off between adding more states to the support (by decreas-
ing the threshold t) and recommending the high action with a greater probability (by
increasing the constant c scaling the hyperbola), and the optimal signal balances these
considerations. I start by defining a class of distributions over the receiver’s actions that
have the above form.

Letting I(w) = fs(w)/(g(w)(w∗ −w)) and t = minw∈[l,w∗ ) I(w), I define a class of dis-
tributions Stc over the receiver’s actions as follows: given constants t ≥ t, c ≥ 0, the prob-
ability of action 1 in state ω is given by

Stc(ω) =

⎧⎪⎪⎨
⎪⎪⎩

1 for ω ∈ [
w∗, h

]
,

min
{
c/

(
w∗ −ω

)
, 1

}
for ω ∈�(t ),

0 for ω ∈ [l, w∗ ) \�(t ),

where

�(t ) = {
w ∈ [l, w∗ ) : I(w) ≥ t

}
.

Theorem 1 will show that, given an optimal information structure with two realiza-
tions, the support below the threshold w∗ of the signal realization recommending ap-
proval is �(t ). �(t ) consists of all states w below the threshold w∗ such that the im-
portance index I(w) = fs(w)/(g(w)(w∗ −w)) is greater than some threshold t. Thus the
sender is more likely to induce the receiver to approve in state w if w is more important
to the sender because the sender believes that this state is very likely. The sender is also
more likely to induce approval in w if the conflict of interest between the sender and the
receiver is not too large because the distance w∗ −w between the state and the threshold
of doubt w∗ is small, and if the sender is more ignorant about the probability the receiver
assigns to the state w—because g(w) is small.

To ensure the essential uniqueness of the distribution of the high action induced by
an optimal information structure, I make use of the following assumption.9

9Here μ is the Lebesgue measure.
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Assumption 1. μ({w ∈ [l, w∗ ) : I(w) = c0}) = 0 for all c0 > 0.

Assumption 1 says that the set of states for which the importance index I(w) is equal
to a constant c0 is of measure zero for all constants c0 > 0.10

A signal is said to be optimal if it solves the sender’s problem (1). Theorem 1 de-
scribes an optimal signal and the distribution over the receiver’s actions induced by it.

Theorem 1. There exist unique t ≥ t, c ≥ 0 such that any optimal information structure
induces a distribution s over the receiver’s actions satisfying s = Stc almost everywhere
under μFs .

An optimal information structure inducing the distribution s is given by π(σ1|ω) =
s(ω), π(σ0|ω) = 1 − s(ω) for all ω ∈ [l, h].

Theorem 1 says that the distribution of the receiver’s actions induced by an opti-
mal information structure is unique. Moreover, there is an optimal information struc-
ture with two realizations, σ1 and σ0. The receiver takes action 1 after seeing signal σ1

and action 0 after seeing signal σ0. If the state is in [w∗, h], the receiver takes action
1 with probability 1. If the state is in �(t ), the receiver takes action 1 with probability
min{c/(w∗ − ω), 1} for some constant c. Note that on the support �(t ), the probability
of action 1 follows a hyperbola. Finally, if the state is below w∗ and not in �(t ), then the
receiver takes action 1 with probability 0.

6. Sketch of the proof

In this section. I sketch the proof of Theorem 1. The proof has two parts. The first
part establishes that there exists an optimal signal with only two realizations such that
after one of the realizations, receivers with all possible priors take action 1. I explain
the first part of the proof in several steps. I first present a counterexample showing that
if the set of the receiver’s priors does not satisfy my assumptions, there may not exist
a sender-optimal signal with the property described above. After this, I show via an
example how allowing for a larger set of priors fixes this problem. I then generalize this
example to a setting where the sender is restricted to choosing “simple” signals with
“non-overlapping support” below the threshold w∗ and show that for any signal of this
form there is a feasible receiver’s prior that renders this signal worse than the binary
signal with the property described above. In this setting, I obtain a closed-form solution
for this prior of the receiver. Finally, I show that when the sender can choose arbitrary
signals, there still exists a prior of the receiver that ensures the sender cannot benefit
from complicated signals, only now there may not be a closed-form expression for this
prior. Instead, the prior is given by a fixed point.

The second part of the proof characterizes the optimal signal. There I show that the
optimal signal has a hyperbolic functional form and reduce the problem of characteriz-
ing the optimal signal to the problem of computing two numbers: the threshold t and
the constant of proportionality c(t ) for the hyperbola.

10It can be shown that a sufficient condition for Assumption 1 to be satisfied is that fs and g are real-
analytic functions on [l, h], and the importance index I(w) is not a constant function on [l, w∗ ).
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6.1 Binary optimal signal: Counterexample

I first show that if the set of the receiver’s priors does not satisfy the assumptions I im-
posed on it when I introduced the model, there may not exist a binary sender-optimal
information structure with the property described above. To see this, recall the exam-
ple with three states I introduced earlier. There the states are 0, 1, and 2, and there are
two possible priors for the receiver, assigning probabilities (0, 1/2, 1/2) and (1/2, 0, 1/2),
respectively, to the states. Suppose also that the sender’s prior assigns probabilities
(1/2, 1/2, 0) to each state.

Consider an information structure π′ with two signal realizations, σ ′
1 and σ ′

2, sent
with probabilities (1, 0, 1/2) and (0, 1, 1/2), respectively, in each state. Note that if the
receiver has the prior (0, 1/2, 1/2), then she takes action 1 after σ ′

1, and if the receiver
has the prior (1/2, 0, 1/2), she takes action 1 after σ ′

2. Thus, regardless of which prior
the receiver has, the lowest payoff the sender can get under this information structure is
1/2.

Next consider an information structure π with two signal realizations, σ0 and σ1,
such that after σ1 receivers with both priors take action 1. Then our previous discus-
sion of this example suggests that the probabilities of σ1 in each state are (1/4, 2/3, 1).
The sender’s payoff under this information structure then is 11/24 < 1/2. Therefore, the
binary signal with action 1 taken by all types of receivers after one realization is strictly
worse for the sender than the binary signal where receivers with different priors take
action 1 after different realizations.

6.2 Binary optimal signal: Proof restricted to simple signals

The reason for the above result is that the set of receiver’s priors is not “rich enough,”
that is, it does not contain enough priors of the right kind. To understand this claim,
consider a larger set of priors that contains all convex combinations of the two original
priors (here we take convex combinations of the probability mass functions). Thus a
feasible prior has the form α(1/2, 0, 1/2) + (1 − α)(0, 1/2, 1/2) for some α ∈ [0, 1].

I will show that we can find a feasible prior such that both σ ′
1 and σ ′

2 lead the re-
ceiver to take action 0 (which would imply that π′ is inferior to π). Such a prior needs to
satisfy EF ,π′[w|σ ′

1] <w∗ and EF ,π′[w|σ ′
2] <w∗ for w∗ = 1.6. Consider α = 1/2. Note that

EF ,π′[w|σ ′
1] = 2/(2α+1) = 1 < 1.6 and EF ,π′[w|σ ′

2] = (2(1−α)+2)/(2(1−α)+1) = 1.5 <

1.6. Thus the prior corresponding to α = 1/2 indeed leads the receiver to take action 0
after both signal realizations.

The above example reflects a general principle that tells us how to find a prior mak-
ing π′ inferior to π. Suppose now that the sender is restricted to choosing information
structures with “non-overlapping support” below the threshold w∗. That is, if a signal
realization has positive probability in some state below w∗, no other signal realization
can have positive probability in this state.

Then EF ,π′[w|σ ′
1] = (2P[σ ′

1|2]1/2)/(P[σ ′
1|0]P[0] + P[σ ′

1|2]1/2) and EF ,π′[w|σ ′
2] =

(P[σ ′
2|1]P[1] + 2P[σ ′

2|2]1/2)/(P[σ ′
2|1]P[1] + P[σ ′

2|2]1/2). Compare this to the receiver’s
expectation after σ1 under π given the priors f1 = (1/2, 0, 1/2) and f2 = (0, 1/2, 1/2),
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where EF1,π[w|σ1] = (21/2)/(P[σ1|0]1/2 + 1/2) and EF2,π[w|σ1] = (P[σ1|1]1/2 + 21/2)/
(P[σ1|1]1/2 + 1/2).

Now suppose that P[σ ′
1|0] = P[σ1|0] and P[σ ′

2|1] = P[σ1|1], and let us choose a prior
such that these expectations are equal, i.e., EF1,π[w|σ1] =EF ,π′[w|σ ′

1] and EF2,π[w|σ1] =
EF ,π′[w|σ ′

2]. Setting P[0] = P[σ ′
1|2]1/2 and P[1] = P[σ ′

2|2]1/2 accomplishes this goal.
Observe that we have constructed this prior by redistributing the mass 1/2 that the re-
ceiver’s prior must put on states below w∗ according to the probabilities P[σ ′

1|2] and
P[σ ′

2|2] = 1 − P[σ ′
1|2] with which signal realizations inducing action 1 with support on

states 0 and 1, respectively, are sent in state 2 above w∗. Observe also that this is a feasi-
ble prior with α = P[σ ′

1|2].
The above implies that if the receiver’s expectation is w∗ under π, we can find a fea-

sible prior such that, whenever the sender chooses a signal with P[σ ′
1|0] > P[σ1|0] or

P[σ ′
2|1] > P[σ1|1] (i.e., recommending action 1 with a larger probability in some state),

the receiver with this prior will take action 0. This means that the sender cannot induce
action 1 under π ′ with a larger probability than under π.

6.3 Binary optimal signal: Fixed-point proof

The previous section shows that having receivers with different priors take action 1 after
different signal realizations cannot benefit the sender if she can only choose signals with
“non-overlapping support” below w∗. To complete the proof, we have to show that the
sender cannot benefit even if she can choose arbitrary information structures.

To show this, I use the same logic as in the examples above. In particular, I first ob-
serve that a sender-optimal signal π in the class of signals with two realizations (such
that after one realization receivers with all possible priors take action 1) results in ac-
tion 1 taken with a certain probability in each state ω. We can use p(ω; π ) to denote
this probability. I next show that, for each information structure, there exists a feasible
receiver’s prior such that the probability of approval in each state ω is bounded above
by p(ω; π ). In greater detail, if a signal recommended action 1 with probability greater
than p(ω; π ) in ω, the receiver with this prior would not follow the recommendation
after some signal realizations.

In the example in the previous section, I was able to obtain a closed-form expression
for the receiver’s prior. In general, it is not possible to solve for the receiver’s prior in
closed form. Nevertheless, I show that we can define the receiver’s prior implicitly as
a fixed point. We then know that a receiver’s prior with the required property exists,
because a fixed-point theorem ensures existence.

To simplify the sketch of the proof, suppose that g(ω) = 0 for all ω ≤ w∗, so that the
receiver’s prior can put the mass a on any state below w∗. Suppose also that there is only
one state 2 above w∗.

I show that the following prior works. The prior places a mass of (1 − a)μG on states
[l, h] and, in addition, for each signal realization σi, places a mass of

νiωπ(σi|2)a
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on each state ω < w∗. The weights ν satisfy νiω ∈ [0, 1] and
∑

ω<w∗ νiω = 1. The weights
are defined as a fixed point of the mapping given by

νiw =
π(σi|w)

(
w∗ −w

)[∑
k

νkwπ(σk|2)

]
∑
ω<w∗

π(σi|ω)
(
w∗ −ω

)[∑
k

νkωπ(σk|2)

] .

We can interpret νiw as the proportion of the receiver’s loss from taking the wrong ac-
tion after signal realization σi in state w relative to the receiver’s total loss after σi. This
proportion is larger if the state w is farther below the threshold, if action 1 is recom-
mended in w with a higher probability, and if the prior probability of w is higher.

Intuitively, we need to find a prior that redistributes the maximum probability mass
a that can be put on states below w∗ to make all signal realizations that are sent with
excessively large probability result in action 0. Thus π(σi|2)a identifies the portion of
the mass a that “will be used” to make signal realization σi result in action 0. This mass
π(σi|2)a should be allocated to the states below w∗ in which σi has positive probability.
If there is only one such state for each σi, then νiω = 1 for this state and νiw = 0 for all
other states, so we obtain the simplified case from the previous section. The weights νiω
tell us exactly how the probability mass should be allocated among all states in which σi

has positive probability.
How do we know what the weights ν should be? Analogously to what we did in the

preceding examples, we are choosing ν to ensure that the probability with which action
1 is taken in each state under an arbitrary information structure is no larger than the
probability of action 1 under the optimal information structure described in Theorem 1.
We guess weights ν that accomplish this goal and then verify that they work. Impor-
tantly, even though to specify the prior we only need to specify as many probabilities as
there are states (when the state space is finite), we have to specify the weights for each
signal realization-state pair. This is needed to ensure that we are able to use a fixed-point
theorem to argue that the weights are well defined.

6.4 How do we compute the optimal c and t?

Because there is a sender-optimal signal with two realizations such that after one real-
ization, receivers with all possible priors take action 1 and, as Section 4.3 explains, under
such signal, the probability of action 1 follows a hyperbola, I have reduced the problem
of computing the optimal signal to computing two numbers: the threshold t and the
constant of proportionality c. Next I explain how these two numbers are computed.

Note that decreasing the threshold t or increasing the constant c decreases the ex-
pected state conditional on the approval recommendation. Then for each threshold t,
there exists a maximal constant of proportionality c(t ) such that the receiver is will-
ing to follow the approval recommendation. Next, for every pair (t, c(t )), I compute
the marginal change in the sender’s payoff from expanding the support. This marginal
change must be zero at the unique optimum: if it is positive, then the sender prefers to
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expand the support, while if it is negative, she prefers to shrink the support. Thus we
set the marginal change to zero. Together with the equation providing the formula for
the constant of proportionality c(t ), these two equations allow us to solve for the two
unknowns, t and c(t ).11

7. Comparative statics and welfare

In this section, I ask, “As the sender becomes more ignorant, how does the optimal signal
change and how is the receiver’s welfare affected?” Proposition 1 shows that if we take
two sets of priors such that the sender is more ignorant under the set of priors Cag than
Ca′g, then the support of the optimal signal under Cag contains the support under Ca′g
and the probability of approval on the support is higher for the second set. Figure 1
illustrates the comparative statics described in Proposition 1. Here I let ta denote the
optimal t at the ignorance index a.

Proposition 1. If 0 < a′ < a < 1 and the optimal signal at a does not have full support,
then

�(ta′ ) ⊂�(ta ) μFs-a.e. and c(ta′ ) > c(ta ).

We can interpret Proposition 1 as saying that increasing the sender’s ignorance has
two effects: the support effect and the probability effect. The support effect is that the

Figure 1. Optimal information policy: increasing ignorance.

11See the Appendix for more details.
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range of states on which the sender’s signal induces the receiver to take action 1 with a
positive probability expands, and the probability effect is that the probability with which
the receiver takes action 1 on these states decreases. Thus greater ignorance about the
receiver’s prior makes the sender “hedge her bets” and spread out the probability with
which the high action is recommended on the states below the threshold.

Next, consider two sets of priors, Cag and Ca′g for 0 < a′ < a< 1 so that the sender is
more ignorant under Cag than under Ca′g. Let V (a) denote the equilibrium payoff of the
receiver when the set of priors is Cag. Proposition 2 shows how the receiver’s equilibrium
payoff changes as the sender becomes more ignorant.

Proposition 2. Suppose that the receiver’s prior is F ∈ Ca′g ⊂ Cag for 0 < a′ < a < 1.
Then

(i) If the optimal signal recommends approval in all states with a strictly positive prob-
ability under a and a′, then V (a) ≥ V (a′ ). If, in addition, the reference prior g has
full support, then V (a) > V (a′ ).

(ii) There exist g, Fs such that 0 < V (a) < V (a′ ).

Proposition 2 first considers the case in which the optimal signal recommends the
high action with a strictly positive probability in every state. The proposition shows
that in this case an increase in the sender’s ignorance weakly increases the receiver’s
payoff. Moreover, if the receiver considers all states below the threshold possible, then
the increase in the receiver’s payoff is strict.

The intuition for these results is as follows. An increase in the sender’s ignorance
has two effects: it expands the support of the signal and lowers the probability with
which the high action is recommended on the support. If the signal already has full
support, then only the second effect is present: more ignorant senders recommend the
high action with a lower probability below the threshold. Because the receiver does not
want to take the action anywhere below the threshold, this is unambiguously good for
the receiver.

The second part of Proposition 2 shows that the receiver’s equilibrium payoff can
be strictly lower when the sender is more ignorant. Because ignorance always hurts the
sender, an implication of this is that an increase in sender’s ignorance can hurt both the
sender and the receiver.

The reason that the sender’s ignorance can hurt the receiver is that the sender de-
signs the information structure to make the worst types in the set of priors just indif-
ferent between taking the action and not. If a receiver with some prior strictly prefers
to act upon seeing the signal recommending the action, so that the receiver’s expecta-
tion given the signal is strictly above the threshold of action, the sender’s payoff is not
affected by the distance between the expectation and the threshold. Because of this,
the impact of the change in the information structure due to the greater ignorance of
the sender on the agents with priors that are not the worst in the set of priors that the
sender considers possible can be ambiguous.
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To better understand the intuition for the possible non-monotonicity of the re-
ceiver’s payoff, recall the two comparative statics effects that increasing the sender’s ig-
norance has: the support effect and the probability effect. The support effect is bad for
the receiver because expanding support means that more innocent defendants are con-
victed. The probability effect is good for the receiver because a decreasing probability
of approval on the support means that innocent defendants are convicted with a lower
probability. My analysis shows that the support effect can dominate, causing greater
ignorance of the sender to reduce the receiver’s payoff.

One reason why the support effect can dominate is that the priors of the sender and
the receiver may differ, and the sender makes the decision as to which states to add to
the support based in part on her own prior Fs . Thus if, for example, the sender’s prior
puts a sufficiently high weight on state w, the sender will add this state to the support
no matter how much she has to reduce the probability with which approval is recom-
mended in other states. If adding w to the support reduces the probability of approval
in other states a lot, then the probability effect dominates and the receiver’s payoff in-
creases, while if it reduces the probability of approval only a little bit, then the support
effect dominates and the receiver’s payoff decreases.

The final observation is that complete ignorance of the sender is the best possible
circumstance for the receiver. This is because as the sender’s ignorance a converges
to 1, the sender becomes extremely cautious and recommends that the receiver take
the high action only on the states where the sender and the receiver agree. Thus as
the prosecutor becomes very ignorant about the judge’s prior, she recommends that the
judge convict the defendant if and only if the judge would convict this defendant under
complete information, which is the first-best outcome for the judge.

These results may have implications for the assignment of judges to cases. For ex-
ample, in order to limit the information that a prosecutor has about the judge when
collecting evidence, one may want to delay revealing which judge will be assigned to
the case. Prosecutors may know that the judge will be drawn from a given set but not
exactly which judge from this set will be assigned. Another way to limit prosecutors’ in-
formation may be by matching them with judges with whom they did not work in the
past.

8. Support of the optimal signal

In this section, I show that recommending approval with a strictly positive probability
in every state is a robust property of the signal chosen by an ignorant sender. I also
consider the limits of the optimal information structure as the ignorance of the sender
approaches its maximal and minimal values, respectively.

8.1 Detail-free knowledge and full support

I next introduce a special class of sets of the receiver’s priors. Definition 1 says that the
sender’s knowledge is detail-free if the reference prior G puts zero mass on states below
the receiver’s threshold, where the sender and the receiver disagree about the optimal
action.
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Definition 1. The sender’s knowledge is said to be detail-free if μG([l, w∗ )) = 0.

The reason that a set of priors satisfying the condition in Definition 1 represents
detail-free knowledge is that the reference prior G quantifies the limited knowledge that
the sender has about the receiver’s prior. If g varies on the states where the sender and
the receiver disagree, then the sender knows more about the receiver’s prior on some
such states than on others: in particular, the sender knows more about the prior on the
states where g is high. If, on the other hand, g is 0 on all states below the threshold,
then a given probability mass can be moved freely below the threshold, and the sender
is equally ignorant about the receiver’s prior on all states in which there is a conflict of
interest. Thus the sender only has a vague idea of how pessimistic the receiver can be:
the receiver’s prior can put no more than a certain mass on states below the threshold,
but the sender lacks knowledge of the details of how the receiver’s prior may vary on the
states where there is disagreement.

Proposition 3 shows that the distribution over the receiver’s actions induced by an
optimal information structure is independent of the sender’s prior if and only if the
sender’s knowledge is detail-free. That is, the distribution is independent of the sender’s
prior if and only if the receiver may consider all states on which he disagrees with the
sender with regard to the optimal action impossible.

Proposition 3. An optimal information structure has full support and induces a distri-
bution over the receiver’s actions that is independent of the sender’s prior Fs if and only if
the sender’s knowledge is detail-free.

To understand the intuition, consider a simple set of priors where probability 0.1
has to be put on some state w<w∗ and a mass of no more than 0.5 can be put on states
below w∗. Then there is a benefit to giving up and not recommending approval in state
w: if the sender gives up on w, then a mass of no more than 0.4, rather than 0.5, can be
put on the support below w∗ of the signal realization recommending approval. The cost
of giving up is that the sender would not collect the payoff from approval in state w. The
sender will not want to give up on a state if her prior on that state is high enough and
might want to give up otherwise. On the other hand, if the sender’s knowledge is detail-
free, so that a mass of no more than 0.5 can be put on states below w∗ and there are
no other restrictions, then there is no benefit to giving up on the states. This is because
no matter which states the sender gives up on, a mass of 0.5 can still be put on states
below w∗.

8.2 Maximal ignorance and full support

The next proposition describes how the support of the optimal signal behaves as the
sender becomes very ignorant.

Proposition 4. As the ignorance index a goes to 1, �(t ) converges to [l, w∗ ). Moreover, if
fs is bounded away from zero, then �(t ) = [l, w∗ ) for all a < 1 sufficiently close to 1.
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Proposition 4 shows that, as the ignorance of the sender approaches its maximal
value of 1, in the limit, the support of the optimal signal converges to the set of all states
(at the same time, the probability with which the high action is recommended below w∗
converges to 0). Moreover, if the density of the sender’s prior is bounded away from zero,
then the signal has full support, not just in the limit, but for all sufficiently high levels of
the sender’s ignorance. This clarifies the sense in which recommending the high action
with a strictly positive probability in all states is a robust property of the signal chosen
by an ignorant sender.

The intuition for the result is that as the set of the receiver’s priors converges to the
whole set, the probability with which approval is recommended in the states in which
the sender and the receiver disagree converges to zero. Intuitively, this is because only
very convincing evidence can guard against very pessimistic priors. As the probability of
approval recommendation decreases, a receiver who was willing to approve before now
strictly prefers to approve. Then we can expand the support of the signal realization rec-
ommending approval a little bit, and this receiver is still willing to approve. This explains
why, as the probability of approval recommendation decreases to zero, the support con-
verges to the whole state space.

8.3 Minimal ignorance and continuity

Here I ask how the optimal information structure behaves as the ignorance of the sender
converges to zero. I let π0 denote the sender-optimal information structure when a = 0,
so that the receiver has a commonly known prior. It can be shown that the optimal signal
π0 is partitional, so in each state approval happens with probability 0 or 1. Moreover, the
set of states where approval happens with probability 1 is �(t ) and all states above w∗,
where the threshold t is pinned down by the requirement that the receiver is indifferent
after she sees the recommendation to approve. Proposition 5 establishes a continuity
result as the ignorance of the sender converges to zero.

Proposition 5. As a → 0, the signal that is optimal under an unknown prior converges
to π0.12

Appendix

A.1 Road map

The proofs are structured as follows. Lemmas 1, 2, and 3 prove that there exists a sender-
optimal signal with two realizations such that after one realization, receivers with all
possible priors take action 1. Lemmas 4 and 5 characterize the optimal signal in the
class of signals with this property. The proof of Theorem 1 relies on these lemmas.

In greater detail, Lemma 1 shows that for all signals (satisfying some conditions any
sender-optimal signal would satisfy), there exists a feasible prior such that under this

12Assumption 1 guarantees that the signal π0 is essentially unique.
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prior the probability action 1 is taken in state w <w∗ is below a certain bound and pro-
vides a formula for this bound (see the sketch of the proof of Lemma 3 to understand
where the formula for the bound came from).

Lemma 2 shows that if the receiver’s expectation after a signal realization is greater
than w∗ for all priors that are extreme points of a set of priors, then the receiver’s expec-
tation after the signal realization is greater than w∗ for all priors in this set.

Lemma 3 uses Lemmas 1 and 2 to show that there exists a sender-optimal signal
with two realizations such that after one realization, receivers with all possible priors
take action 1. Specifically, the lemma shows that the probability of action 1 being less
than the bound in Lemma 1 is equivalent to the receiver taking action 1 under the binary
signal with the above property for every prior that is an extreme point of the receiver’s set
of priors. This implies that under the binary signal, action 1 is induced in every state with
probability at least as large as under the arbitrary signal. Then Lemma 2 implies that
under the binary signal, action 1 is induced with probability at least as large as under
the arbitrary signal for every possible receiver’s prior, which concludes the proof.

Lemma 4 shows that under the optimal binary signal, the probability of the signal re-
alization recommending approval is a hyperbola as a function of the state and provides
the formula for the constant of proportionality of the hyperbola. The proof consists in
showing that the receiver’s expectation being equal to the threshold for extreme points
of the set of priors is equivalent to the probability of action 1 being a hyperbola as a
function.

Lemma 5 characterizes the support of the signal realization recommending approval
under the optimal binary signal, showing that the support is �(t ), the set of of all states
on which the importance index exceeds a threshold t. Lemma 5 also provides the for-
mula for the threshold t. The proof proceeds by computing the marginal change in the
sender’s payoff from expanding the support and setting this marginal change to zero to
find the unique optimum.

A.2 Proofs

In the proofs that follow, all statements hold a.e. with respect to the sender’s prior Fs . To
ease the exposition, I will write “for all” in most of the proofs instead.

Let D denote information structures with a finite number of realizations and let D2

denote information structures π with two realizations such that EFπ[w|σ1] ≥ w∗ for all
F ∈ Cag. Without loss of generality, the set of priors is Fag := {F : μF = aμF̃ + (1 −
a)μG, μF̃ ([l, w∗ )) = 1}. Given an information structure π and a prior F ∈ Fag, define
S(F , π ) = {σ : EFπ[w|σ ] ≥ w∗} and S(π ) = {σ : ∀F ∈ Fag, EFπ[w|σ ] ≥ w∗}. S(F , π ) is
the set of signal realizations after which the expectation of the receiver given the sig-
nal structure π and the prior F is above the threshold w∗, and S(π ) is the set of signal
realizations after which the expectation of the receiver given the signal structure π is
above the threshold w∗ for all priors F in the set Fag. Let

p(w; F , π ) =

⎧⎪⎨
⎪⎩

∑
S(F ,π )

π(σ |w) if w<w∗,

1 if w ≥w∗,
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p(w; π ) =

⎧⎪⎨
⎪⎩

∑
S(π )

π(σ |w) if w<w∗,

1 if w ≥w∗.

p(w; F , π ) is the probability that the high action is taken in state ω given the prior F
and the signal structure π. p(w; π ) is the probability that the high action is taken in state
ω given the signal structure π and given that the receiver’s prior is chosen from the set
Fag after the signal realization to minimize the probability of the high action in state ω.

I now provide a road map for the proof of Lemma 1. The lemma shows that, given
an arbitrary information structure, there exists a feasible receiver’s prior such that the
probability of action 1 in each state is below a certain bound (depending on the state
and the information structure).

I split the proof into several steps. Step 1 partitions the support of signal realizations
resulting in action 1 for some prior into a finite number of sets. I then choose a finite set
of states, one from each set in the partition. The goal of Step 1 is to ensure that we can
work with a finite set of states in the subsequent proof. Note that Step 1 is only needed
because we start with a continuum of states; if the state space was finite, we could just
work with the whole state space.

Steps 2–4 define the receiver’s prior. Two objects are important here: a vector of
weights for signal realizations {εσ } and a matrix of weights for states and signal realiza-
tions ν = {νσw}. The weights ε are defined in Step 2. We can interpret εσ as the proportion
of the receiver’s expected loss from taking the wrong action after signal realization σ

relative to the receiver’s expected loss. The weights ν are defined in Step 3 via a fixed-
point formula. We can interpret νσw as the proportion of the receiver’s loss from taking
the wrong action after signal realization σ in state w relative to the receiver’s total loss
after σ . Step 4 puts these two objects together to define the receiver’s prior. Step 5 shows
that the receiver’s prior is well defined: because the weights ν are defined via a fixed-
point formula, a fixed-point theorem ensures existence.

Step 6 establishes that with the prior that we have constructed, the probability ac-
tion 1 is below a certain bound in every state in the finite set of states we have selected.
The proof consists of rearranging the condition EFπ[ω|σ ] ≥ w∗ that must hold for any
signal realization resulting in action 1 to obtain a bound on π(σ |w), the probability that
action 1 is recommended in state w, and then summing these probabilities over all sig-
nal realizations. Step 7 concludes the proof by showing that the probability of action 1 is
below the bound in all states. Note that, as with Step 1, we only need Step 7 because we
have a continuum of states. If the state space was finite, Step 6 would have been enough
to conclude the proof.

Lemma 1 (Bound). For all π ∈ D such that |S(π )| ≥ 1 and for all σ ∈ S(π ), π(σ |ω) > 0
for some ω ∈ [l, w∗ ), there is F ∈ Fag such that for all w ∈ [l, w∗ ),

a
(
w∗ −w

)
p(w; F , π ) ≤ (1 − a)

∫ h

l

(
w′ −w∗)p(

w′; F , π
)
g
(
w′)dw′.
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Proof. Fix π ∈ D. Step 1 defines the set of states that are going to be the support of the
receiver’s prior below the threshold w∗. If the state space was finite, we could have used
all states below w∗ as the support. However, because the state space is an interval, a
more complicated construction is required to obtain finite support.

Step 1 (Partitioning the Set
⋃

S(π ) suppπ(σ |w) ∩ [l, w∗ )). Given A ⊆ S(π ), define

XA = 1 − a

a

(∫
[w∗,h]

(
w −w∗)g(w)dw −

∫
[l,w∗ )

g(w)

(∑
A

π(σ |w)

)(
w∗ −w

)
dw

)
.

For each ω ∈ [l, w∗ ), define C(ω) = {A ⊆ S(π ) :
∑

Aπ(σ |ω) >XA/(w∗ −ω)}. C(ω) is
the set of all subsets of S(π ) such that the probability of signals in each of those subsets
in state ω exceeds XA/(w∗ −ω).

Define a finite number13 of sets Y1, 
 
 
 , YJ such that Yi ⊆ ⋃
S(π ) suppπ(σ |w) ∩ [l, w∗ )

for all i as follows:

(i) ω, ω′ ∈ Yi implies that, for all σ ∈ S(π ), if π(σ |ω) > 0, then π(σ |ω′ ) > 0;

(ii) ω, ω′ ∈ Yi implies that C(ω) = C(ω′ );

(iii) ωi ∈ Yi, ωj ∈ Yj for i 
= j implies that

(a) either there exists σ ∈ S(π ) such that either π(σ |ωi ) > 0, π(σ |ωj ) = 0 or
π(σ |ωj ) > 0 and π(σ |ωi ) = 0

(b) or C(ωi ) 
= C(ωj ).

Next, we choose a finite set of states as follows. From each Yi, i ∈ {1, 
 
 
 , J}, choose
exactly one ωi. Let W denote the set of states {ωi}Ji=1 chosen in this manner.

Step 2 (Defining a Vector of Weights for Signal Realizations). In this step, I define a
collection of weights {εσ }σ∈S(π ) for signal realizations with indices in S(π ) satisfying
εσ ∈ [0, 1] for all σ ∈ S(π ) and

∑
S(π ) εσ = 1. For each σ ∈ S(π ), define a weight εσ as

εσ = EG

[(
w −w∗)π(σ |w)

]
EG

[(
w −w∗)p(w; π )

] .

Note that εσ ≥ 0. The fact that
∑

S(π ) π(σ |w) = 1 for all w ∈ [w∗, h] and fs has full
support implies that

∑
S(π ) εσ = 1.

Step 3 (Defining a Matrix of Weights for States and Signal Realizations). Let T =
×σ∈S(π )�(W ), where �(W ) denotes the simplex over W and × denotes the Cartesian
product. Let ν = {νσw}σ∈S(π ),w∈W . Define a mapping H : T → T by

Hσw(ν) =
π(σ |w)

(
w∗ −w

) ∑
k∈S(π )

νkwεk

∑
w′∈W

π
(
σ |w′)(w∗ −w′) ∑

k∈S(π )

νkw′εk
.

13The number of sets is finite because S(π ) is finite.
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Note that the denominator of Hσw(ν) is strictly positive because for all σ ∈ S(π ),
π(σ |ω) > 0 for some ω ∈ [l, w∗ ).

For each w ∈ W and σ ∈ S(π ), choose νσw such that νσw =Hσw(ν).

Step 4 (Defining the Receiver’s Prior). Consider prior μF that places (1 −a)μG on states
[l, h] and, in addition, for all σ ∈ S(π ), places the mass of νσωεσa on each ω ∈W such that
νσω ∈ [0, 1] for all ω ∈W and

∑
ω∈W νσω = 1.

Note that
∑

σ∈S(π )
∑

ω∈W νσωεσa = ∑
S(π ) εσa = a, where the last equality follows

from the fact that
∑

S(π ) εσ = 1. The mass of a+ (1 −a)
∫

[l,w∗ ) g(w)dw is placed on states
in [l, w∗ ). Observe that μF ∈ Fag, so this prior is feasible.

Step 5 (The Receiver’s Prior is Well Defined). Next, we will show that the collection of
weights {νσw}σ∈S(π ),w∈W is well defined. Observe that

∑
w∈W νσw = 1. We will show that

there exists a collection of weights satisfying the formula in the previous step such that
νσw ∈ [0, 1] for all σ ∈ S(π ) and for all w ∈W .

The weights {νσw}σ∈S(π ),w∈W are defined by the equation ν = H(ν). Observe that
�(W ) is a compact and convex set. Because the Cartesian product of convex sets is
convex and the Cartesian product of compact sets is compact, this implies that T =
×S(π )�(W ) is a compact and convex set. Thus H(·) is a continuous self-map on a com-
pact and convex set T . Then the Brouwer fixed-point theorem implies that H has a fixed
point.

Step 6 (Bound on the Sum of Signal Probabilities
∑

σ∈S(F ,π ) π(σ |ω)). Suppose that the
receiver’s prior is chosen as in Step 4 with weights defined by the fixed-point equation
ν = H(ν). By construction, since EFπ[ω|σ ] ≥ w∗ for all σ ∈ S(F , π ) and w ∈ W , we have∑

σ∈S(F ,π ) π(σ |w) ≤ c/(w∗ −w) for c = 1−a
a

∫ h
l (w′ −w∗ )p(w′; F , π )g(w′ )dw′.

Step 7 (Conclusion of the Proof). Suppose for the sake of contradiction that for some
w ∈ [l, w∗ ), we had

∑
σ∈S(F ,π ) π(σ |w) > c/(w∗ −w). By definition of C(w), this is equiv-

alent to S(F , π ) ∈ C(w). Let Y (w) denote the element Yi of the partition Y1, 
 
 
 , YJ

such that w ∈ Yi. Observe that, because
∑

S(F ,π ) π(σ |w) > c/(w∗ − w), the fact that∑
S(F ,π ) π(σ |w0 ) ≤ c/(w∗ − w0 ) for all w0 ∈ W by Step 6 implies that w /∈ W . Let w1

denote the element of W such that w1 ∈ Y (w). Then, because C(ω) = C(ω′ ) for all
ω, ω′ ∈ Y (w), it must be the case that S(F , π ) ∈ C(w1 ). By definition of C(w1 ), this is
equivalent to

∑
S(F ,π ) π(σ |w1 ) > c/(w∗ − w1 ). However, this contradicts the fact that∑

S(F ,π ) π(σ |w0 ) ≤ c/(w∗ − w0 ) for all w0 ∈ W by Step 6. Therefore,
∑

S(F ,π ) π(σ |w) >
c/(w∗ −w) for all w ∈ [l, w∗ ), as required.

Lemma 2 (Extreme Points). Let Fe
ag be the extreme points of Fag and fix π ∈ D2. If

EFπ[ω|σ ] ≥w∗ for all F ∈ Fe
ag, then EFπ[ω|σ ] ≥w∗ for all F ∈ Fag.

Proof. Fix F ∈ Fag. Because Fe
ag is the set of the extreme points of Fag, we have Fe

ag =
{Fw : μFw = (1 − a)μG + aδw, w ∈ [l, w∗ )}. Then there exists a collection {αw}w∈[l,w∗ ) such
that

∫
w∈[l,w∗ ) αw dw = 1, μF = ∫

w∈[l,w∗ ) αwμFw dw, and αw ∈ [0, 1], μFw = (1 − a)μG + aδw
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for all w ∈ [l, w∗ ). Because EFπ[ω|σ ] ≥w∗ for all Fw ∈ Fe
ag, for all w ∈ [l, w∗ ), we have that∫ h

l wπ(σ |w)dμFω (w)∫ h
l π(σ |w)dμFω (w)

≥w∗. Then
∫ h
l wπ(σ |w)dμF (w)∫ h
l π(σ |w)dμF (w)

≥ minω∈[l,w∗ )

∫ h
l wπ(σ |w)dμFω (w)∫ h
l π(σ |w)dμFω (w)

≥w∗.

Lemma 3 (Binary Optimal Signal). For all π̂ ∈ D such that |S(π̂ )| ≥ 1 and for all σ ∈ S(π̂ ),
π̂(σ |ω) > 0 for some ω ∈ [l, w∗ ), there exists π ∈ D2 such that U(π ) ≥U(π̂ ).

Proof. If π̂ ∈D is such that |S(π̂ )| = 1, then we can obtain π ∈ D2 by merging all signal
realizations inducing action 0 into one signal realization. Thus suppose that |S(π̂ )| > 1.
Then, by Lemma 1, there exists F ∈ Fag such that for all w′ ∈ [l, w∗ ), π̂ satisfies a(w∗ −
w)p(w; F , π ) ≤ (1 − a)

∫ h
l (w′ −w∗ )p(w′; F , π )g(w′ )dw′.

We define π ∈ D2 as follows. We set π(σ1|w) = ∑
S(F ,π̂ ) π̂(σ |w) for all w ∈ [l, w∗ ),

π(σ1|w) = 1 for all w ∈ [w∗, h], and π(σ0|w) = 1 −π(σ1|w) for all w ∈ [l, h].
Observe that a(w∗ − w)p(w; π ) ≤ (1 − a)

∫ h
l (w′ − w∗ )p(w′; π )g(w′ )dw′ for all w′ ∈

[l, w∗ ). This implies that EFwπ[ω|σ1] ≥w∗ for all priors Fw of the form μFw = (1 −a)μG +
aδw for some w ∈ [l, w∗ ). Priors Fw are the extreme points of Fag. Because EFwπ[ω|σ1] ≥
w∗ for all such priors, Lemma 2 implies that EFπ[ω|σ1] ≥w∗ for all F ∈ Fag. This implies
that U(π ) = EFs[π(σ1|w)]. Then U(π ) ≥EFs[

∑
S(F ,π̂ ) π̂(σ |w)].

Observe that U(π̂ ) ≤ minF̃∈Fag
EFs[

∑
S(F̃ ,π̂ ) π̂(σ |w)]. In particular, U(π̂ ) ≤

EFs[
∑

S(F ,π̂ ) π̂(σ |w)].
Then the above implies that U(π̂ ) ≤U(π ), as required.

Note that, given an optimal π ∈ D2, there is exactly one signal realization such that
receivers with all feasible priors take action 1 after it. Henceforth, I will use σ1 to denote
this signal realization.

Lemma 4 (Hyperbola). If π is optimal in D2, then for all w < w∗ such that p(w; π ) > 0,
π(σ1|w) = min{c/(w∗ −w), 1}, where

c = 1 − a

a

∫ h

l

(
w−w∗)p(w; π )g(w)dw.

Proof. Let C := 1−a
a

∫ h
l (w −w∗ )p(w; π )g(w)dw. Given A, B ⊆ [l, w∗ ), define

Y (A, B) =
(1 − a)

∫
A∪[w∗,h]

(
w−w∗)p(w; π )g(w)dw

a+ (1 − a)μG(B)
.

Note that Lemmas 1 and 3 imply that if π is optimal in D2, then for all w < w∗ such
that p(w; π ) > 0, π(σ1|w) ≤ c

w∗−w for c = C.

Claim 4.1. Let (A, B) be the partition of suppπ(σ1|w) ∩ [l, w∗ ) such that π(σ1|w) =
min{ c

w∗−w , 1} for w ∈ A, π(σ1|w) < min{ c
w∗−w , 1} for w ∈ B for c = C. Then c = Y (B ∪

(A∩ [w∗ − c, w∗ )), A∩ [l, w∗ − c)).
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Proof. The formula for c follows from substituting π(σ1|w) = c
w∗−w for w ∈ A into

1−a
a

∫ h
l (w − w∗ )p(w; π )g(w)dw and rearranging the expressions. We next show that

there exists c satisfying the formula in the lemma. Consider a mapping c �→ L(c) given by
L(c) = Y (B∪ (A∩[w∗ −c, w∗ )), A∩[l, w∗ −c)). L(0) ≤ 0 implies that EFπ[w|σ1] <w∗ for
all F ∈ Fag, which contradicts the hypothesis that π is optimal. Therefore, we must have
L(0) > 0. Moreover, L(c) < 0 for c sufficiently large. Then, because L(0) ≥ 0, L(c) < 0,
and c �→ L(c) is continuous, there exists c ∈ [0, c] such that L(c) = 0.

Suppose π is optimal in D2. Since π is optimal in D2, w <w∗ such that p(w; π ) > 0,
we must have π(σ1|w′ ) ≤ C/(w∗ − w). Suppose for the sake of contradiction that there
exists π that is optimal in D2 such that π(σ1|w′ ) < C/(w∗ − w) for some B ⊆ [l, w∗ ) of a
strictly positive measure.

Define A = (suppπ(σ1|w) ∩ [l, w∗ )) \ B. Fix x ∈ B such that for all intervals I sat-
isfying x ∈ int(I ) (where int denotes the interior), we have μ(I ∩ B) > 0. Because, by
the hypothesis, μFs (B) > 0, such x exists. Given ε > 0 sufficiently small, fix an interval
Ix,ε = [x− ε

2 , x+ ε
2 ].

We define π1 ∈ D2 as follows. For all w ∈ Ix,ε ∩ B, we let π1(σ1|w) = π(σ1|w) + η for
some η > 0. We let π1(σ1|w) = π(σ1|w) for all w ∈ B \ Ix,ε. We choose η small enough
such that π1(σ1|w) < 1 and EFwπ1[ω|σ1] > w∗ for all w ∈ B. This is feasible because
π(σ1|w) < 1 for all w ∈ B and because, if π(σ1|w) < C/(w∗ − w), then EFwπ[ω|σ1] > w∗,
which implies that EFwπ[ω|σ1] >w∗ for all w ∈ B.

Let us write π(σ1|w) = min{ c
w∗−w , 1} for all w ∈A and π1(σ1|w) = min{ c1

w∗−w , 1} for all
w ∈ A. To complete the construction of π1, we require that π1(σ1|w) = C/(w∗ − w) for
all w ∈ A. To ensure that π1(σ1|w) = C/(w∗ − w) for all w ∈ A, we choose c1 satisfying
the formula in Claim 4.1.

Let 1c(w) = 1 if w>w∗ − c and 1c(w) = 0 otherwise.

Claim 4.2. limε→0
U(π1 )−U(π )

ηε = I(x) − E[I(w)1w∈A(1−1c(w))]
a

1−a+EG[1w∈A(1−1c(w))]
.

Proof. The proof follows from the formula for c1 in Claim 4.1, approximating the inte-
grals, the fact that g and fs are C1, and the fact that U(π1 ) −U(π ) = η

∫
Ix,ε∩B fs(w)dw −

EFs[
c−c1
w∗−w1w∈A(1 − 1c(w))] −EFs[1w∈A(1c1 (w) − 1c(w))( c1

w∗−w − 1)].

In order for the sender to not have a strictly improving deviation, we need that for
all x ∈ B such that for all intervals I satisfying x ∈ int(I ) we have μ(I ∩ B) > 0, either
limε→0

U(π1 )−U(π )
ηε = 0 or limε→0

U(π1 )−U(π )
ηε > 0 and π(σ1|x) = 1 (note that if π(σ1|x) = 0,

then x /∈ B). Thus, by Claim 4.2, we need I(x) − c0 = 0 for some constant c0 for al-
most all x ∈ B satisfying π(σ1|x) < 1. However, Assumption 1 implies that this fails.
Thus if π(σ1|w) ≤ C/(w∗ − w) holds strictly on a set of a strictly positive measure, then
the sender has a strictly improving deviation, which contradicts the optimality of π.
Therefore, π(σ1|w) ≤ C/(w∗ − w) must be satisfied with equality on suppπ(σ1|w) be-
low w∗.
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Let 1c(w) = 1 if w > w∗ − c and 1c(w) = 0 otherwise. Let 1t(w) = 1 if w ∈ �(t ) and
1t(w) = 0 otherwise. Let 1(w) = 1 if w ∈ [w∗, h] and 1(w) = 0 otherwise. Define also

L(c, t ) = (1 − a)EG

[(
1t(w)1c(w) + 1(w)

)(
w −w∗)]

a+ (1 − a)EG

[
1t(w)

(
1 − 1c(w)

)] .

Let c(t ) denote the unique solution to c = L(c, t ). Define

y(t ) = t
(
a/(1 − a) +EG

[
1t(w)

(
1 − 1c(w)

)]) −EFs

[
1t(w)

(
1 − 1c(w)

)(
1/

(
w∗ −w

))]
.

Lemma 5 (Threshold). If π is optimal in D2, then there exists a unique threshold t ≥ t

such that suppπ(σ1|w) ∩ [l, w∗ ) = �(t ) and either y(t ) = 0 or t = t and y(t ) > 0.

Proof. We first show that a threshold with required properties exists. Define �π = {w ∈
[l, w∗ ) : π(σ ′|w) > 0 for some σ ′ ∈ S(π )}.

Given x ∈ [l, w∗ ) and ε > 0 satisfying x− ε
2 ≥ l, x+ ε

2 <w∗, define Ix,ε = [x− ε
2 , x+ ε

2 ].
Consider π1 ∈ D2 obtained by adding an interval Ix,ε to the support of σ1 below the
threshold w∗. That is, π1 ∈ D2 satisfies �π1 = �π ∪ Ix,ε and μ(Ix,ε ∩ �π ) < ε. Then, by
Lemma 4, there exist constants c and c1 such that π(σ1|w) = min{ c

w∗−w , 1} for all w ∈�π

and π1(σ1|w) = min{ c1
w∗−w , 1} for all w ∈�π1 =�π ∪ Ix,ε.

Claim 5.1. If y(I(x)) > 0, then U(π1 ) >U(π ). If U(π1 ) ≥U(π ), then y(I(x)) ≥ 0.

The proof follows from approximating the integrals.

Claim 5.2. If w1 /∈�π , then w2 /∈�π for all w2 ∈ [l, w∗ ) such that I(w1 ) > I(w2 ).

Proof. If w1 ∈ [l, w∗ ) is such that w1 /∈ �π and π is optimal, then adding Iw1,ε to the
support does not strictly benefit the sender. That is, then U(π1 ) ≤U(π ), where the sup-
port of π1 is obtained by adding Iw1,ε to �π . By Claim 5.1, this implies that y(I(w1 )) > 0.
Then for any w2 ∈ [l, w∗ ) such that I(w1 ) > I(w2 ), we have y(I(w2 )) < 0. By Claim 5.1,
this implies that U(π2 ) < U(π ), where the support of π2 is obtained by adding Iw2,ε to
�π .

Claim 5.2 implies that for w1, w2 ∈ [l, w∗ ), if w2 ∈ �π and I(w1 ) > I(w2 ), then w1 ∈
�π . Therefore, suppπ(σ1|w) ∩ [l, w∗ ) = �(t ), as required.

We next show that the threshold is unique. Note that the proof of Lemma 4 and the
fact that �π =�(t ) imply that c satisfying π(σ1|w) = min{ c

w∗−w , 1} is given by c = c(t ).

Claim 5.3. t �→ c(t ) is a continuous and strictly increasing function for t ≥ t.

Proof. Define a function (c, t ) �→ x(c, t ) as x(c, t ) =EG[(1(w)+1t(w)1c(w))(w−w∗ )]−
c(a/(1 − a) + EG[1t(w)(1 − 1c(w))]). We have x(c + η, t ) − x(c, t ) = O(η2 ) − η(a/(1 −
a) +EG[1t(w)(1 − 1c+η(w))]) because g is C1. Then limη→0

x(c+η,t )−x(c,t )
η < 0.

Assumption 1 and the fact that fs and g are continuous imply that �(t +η) ∩ [l, w∗ −
c) ⊂ �(t ) ∩ [l, w∗ − c) for all t ≥ t and for all η > 0 sufficiently small. Then x(c, t + η) −
x(c, t ) = EG[1c(w)(1t(w) − 1t+η(w))(w∗ −w)] + cEG[(1t(w) − xt+η )(1 − 1c(w))] > 0.
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The fact that limη→0
x(c+η,t )−x(c,t )

η < 0 and x(c, t +η) − x(c, t ) > 0 for all η> 0 by the
arguments above implies that t �→ c(t ) is a strictly increasing function, as required.

(c, t ) �→ x(c, t ) is continuous because of Assumption 1 and the fact that fs and g are
continuous. The continuity of t �→ c(t ) then follows from the fact that (c, t ) �→ x(c, t ) is
continuous.

Because t �→ c(t ) is a strictly increasing function for t ≥ t by Claim 5.3, we have c(t ) <
c(t +η) for all η> 0 sufficiently small.

Define mη(w) = 1t(w)(1c(t+η)(w) − 1c(t )(w)) + (1t(w) − 1t+η(w))(1 − 1c(t )(w)) +
(1t(w) − 1t+η(w))(1c(t+η)(w) − 1c(t )(w)). Observe that 1t+η(w)(1 − 1c(t+η)(w)) =
1t(w)(1 − 1c(t )(w))(1 − mη(w)). Then y(t + η) − y(t ) = η(a/(1 − a) + EG[1t(w)(1 −
1c(t+η)(w))]) − tEG[mη(w)] + E[mη(w)I(w)], where E denotes the expectation with re-
spect to the Lebesgue measure.

We claim that E[mη(w)I(w)] − tEG[mη(w)] ≥ 0 for all η > 0. The definition of
�(t ) implies that for all w ∈ �(t ), we have I(w) ≥ t. Because mη(w) ≤ 1t(w), this im-

plies that for all w such that mη(w)(w) > 0, we have I(w) ≥ t. Then E[mη(w)I(w)]
EG[mη(w)] ≥

infw:mη(w)>0 I(w) ≥ t implies the claim.
Because a/(1 − a) + EG[1t+η(w)(1 − 1c(t+η)(w))] > 0, this implies that y(t + η) −

y(t ) > 0 for all η > 0. Consider a point t∗ such that y(t∗ ) = 0. The fact that y(t + η) −
y(t ) > 0 for all t ≥ t and for all η > 0 implies that the function t �→ y(t ) can intersect the
zero function at t ≥ t at most one point.

Proof of Theorem 1. Observe that for any sender-optimal information structure π

we must have |S(π )| ≥ 1 and, for all σ ∈ S(π ), π(σ |ω) > 0 for some ω ∈ [l, w∗ ). Then
Lemma 3 shows that there exists an optimal signal with two realizations such that af-
ter one realization, receivers with all possible priors take action 1. Lemma 4 shows that
if π is an optimal signal with this property, then for all w < w∗ such that p(w; π ) > 0,
π(σ1|w) = min{c/(w∗ −w), 1} for some constant c. Lemma 5 and the proof of Lemma 4
imply that c = c(t ). Lemma 5 shows that there exists a unique threshold t ≥ t such that
suppπ(σ1|w) ∩ [l, w∗ ) = �(t ). The fact that the distribution over the receiver’s actions
induced by an optimal signal is unique up to the sets of measure zero under the sender’s
prior is then immediate.

Proof of Proposition 1. Let us write ya(t ) = t( a
1−a + EG[1t(w)(1 − 1c(t )(w))]) −

E[1t(w)(1 − 1c(t )(w))I(w)].

Claim 1.1. ya′(t ) − ya(t ) < 0 for all t ≥ t.

Proof. ya′(t ) − ya(t ) = t( a′
1−a′ − a

1−a ) < 0 because t > 0 and a′ < a.

Claim 1.2. ta′ − ta > 0.

Proof. Because μ(�(ta )) < μ([l, w∗ )), we have ta > t. Then, because, by the proof of
Lemma 5, we have y(t + η) > y(t ) for all t ≥ t and for all η, to show that ta′ − ta > 0,
it is enough to show that ya′(t ) − ya(t ) < 0 for all t ≥ t. Claim 4.1 implies that this is
satisfied.
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The fact that ta′ − ta > 0 by Claim 4.2 implies that �(ta′ ) ⊂ �(ta ). Finally, the fact
that c(ta′ ) > c(ta ) follows from the fact that t �→ c(t ) is strictly increasing by Claim 5.3 in
Lemma 5.

Proof of Proposition 2. We will prove the following result.
Suppose that the receiver’s prior is F ∈ Ca′g ⊂ Cag for 0 < a′ < a< 1. Then

(i) If V (a′ ) = 0, then V (a) > 0.

(ii) Suppose that the optimal signal recommends approval in all states with a strictly
positive probability under a and a′. Then V (a) ≥ V (a′ ). Moreover, if the sender’s
knowledge is detail-free, then V (a) = V (a′ ), and if the reference prior g has full
support, then V (a) > V (a′ ).

(iii) There exist g, Fs such that 0 < V (a) < V (a′ ).

Let d ∈ {0, 1} denote the receiver’s actions. Let us write the receiver’s utility function
as u(d, w) = 1d=1(w −w∗ ). Let πa denote the optimal signal with two realizations when
the ignorance index is a. Then the expected payoff of a receiver with prior F is V (a) =
EF [πa(σ1|w)(w −w∗ )].

Observe that V (a) = EF [πa(σ1|w)](EFπa[w|σ1] − w∗ ). This implies that V (a′ ) = 0 if
and only if EFπa[w|σ1] −w∗ = 0. Then, because EF [πa(σ1|w)] > 0, to prove the first part
of the proposition, it is enough to show that if EFπa′ [w|σ1] =w∗, then EFπa[w|σ1] >w∗.

Observe that μF is a convex combination of priors of the form μFw = a′δw + (1 −
a′ )μG. Because EFωπa′ [w|σ1] = w∗ for some ω ∈ [l, h] and a > a′, we have EFωπa[w|σ1] >
w∗ for all ω ∈ [l, h]. Then EFπa[w|σ1] >w∗, as required.

We next consider the case in which the support of πa(σ1|w) and πa′(σ1|w) below
w∗ is [l, w∗ ). Note that V (a) = EF [(w − w∗ )πa(σ1|w)]. Then V (a) − V (a′ ) = EF [(w∗ −
w)(πa′(σ1|w)−πa(σ1|w))]. Observe that πa(σ1|w) = min{ ca

w∗−w , 1} for some constant ca if
w ∈ [l, w∗ ) and πa(σ1|w) = 1 if w ∈ [w∗, h]. Moreover, ca < ca′ . Then we have πa(σ1|w) <
πa′(σ1|w) for w ∈ [l, w∗ −ca] and πa(σ1|w) ≤ πa′(σ1|w) for w ∈ [w∗ −ca, w∗ ). Thus V (a)−
V (a′ ) ≥ 0. Moreover, V (a) − V (a′ ) > 0 if μF ([l, w∗ − ca]) > 0 and V (a) − V (a′ ) = 0 if
μF ([l, w∗ − ca]) = 0. Therefore, if μF ([l, w∗ )) = 0, then V (a) = V (a′ ), while if g has full
support, then V (a) > V (a′ ), as required.

We now provide an example of the parameters under which V (a) < V (a′ ). For sim-
plicity, suppose that μG = (1 − κ)μG0 + κδh for some κ ∈ (0, 1) and μG0 that is uniform
on [w0, w1] for some l < w0 <w1 <w∗.

Claim 2.1. There exist parameters such that �(ta ) = [l, w∗ ) and [w0, w1] ∩�(ta′ ) = ∅.

Proof. First observe that, because μG([l, w0 )) = 0, we have [l, w0 ) ⊆ �(ta ), �(ta′ ).
Fix a′ ∈ (0, 1). Consider Fs such that fs(w) = η for w ∈ [w0, w1] and fs(w) = η0 for
w ∈ [l, h] \ [w0, w1]. Then for η sufficiently small, we have [w0, w1] ∩ �(ta′ ) = ∅. This
is because limη→0 I(w) = 0 for w ∈ [w0, w1] but limη→0 t

∗ > 0 for t∗ satisfying y(t∗ ) = 0
because μ(�(t ) ∩ [l, w0 )) > 0 and fs(w) ≥ η0 for all w ∈ [l, w0 ).
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Observe next that l < w∗ − c(ta ) for a > a′ sufficiently large. This is because
lima→1 c(ta ) = 0 and l < w∗.

The above and that fact that [l, w0 ) ⊆ �(t ) imply that μ(�(ta ) ∩ [l, w∗ − c(t ))) > 0 for
a > a′ sufficiently large. Because lima→1

a
1−a = ∞, the fact that μ(�(t ) ∩ [l, w∗ − c(ta ))) >

0 for a > a′ sufficiently large implies that lima→1 t
∗ = 0 for t∗ satisfying y(t∗ ) = 0. Because

I(w) = η
g(w)(w∗−w) > 0 for w ∈ [w0, w1], this implies that as a→ 1, �(ta ) → [l, w∗ ).

Consider μF = (1 − a)(1 − κ)μG0 + (1 − a)κδh + aδh. Because V (a) = EF [(w∗ −
w)πa(σ1|w)], we have V (a′ ) = ∫

[w∗,h](w − w∗ )dF(w) since [w0, w1] ∩ �(ta′ ) = ∅. Note
that

∫
[l,w∗ )(w

∗ −w)πa(σ1|w)dF(w) > 0 because �(ta ) = [l, w∗ ). This implies that V (a′ ) >
V (a), as required.

Proof of Proposition 3. Suppose that μG([l, w∗ )) = 0. Then �(t ) = [l, w∗ ) for all t <
∞. Thus Theorem 1 implies that an optimal signal induces the probability of action 1 in
state w given by s(w) = 1 for w ∈ [w∗, h] and s(w) = min{ c

w∗−w , 1} for w ∈ [l, w∗ ) for some
constant c. Observe that s is independent of Fs , as required.

Next suppose that an optimal signal with two realizations induces a distribution over
the receiver’s actions that is independent of Fs . Suppose for the sake of contradiction
that μG([l, w∗ )) > 0. Let A ⊆ [l, w∗ ) denote the set satisfying μG(A) = μG([l, w∗ )) (note
that A is unique up to sets of measure zero).

For simplicity, I will provide a proof allowing for arbitrary priors Fs . I first show
that �(t ) = [l, w∗ ). Suppose for the sake of contradiction that �(t ) ⊂ [l, w∗ ). Fix w ∈
[l, w∗ ) \�(t ). Choose μFs = δw. Then any optimal signal must recommend action 1 with
a positive probability in state w, which is a contradiction.

Next, I show that if μG([l, w∗ )) > 0, then �(t ) ⊂ [l, w∗ ). Suppose for the sake of con-
tradiction that �(t ) = [l, w∗ ). Fix w ∈ [l, w∗ ) \ A and choose μFs = δw. Note that the
sender’s payoff is strictly higher when �(t ) ∩A = ∅ than when �(t ) = [l, w∗ ), which is a
contradiction.

Proof of Proposition 4. Let us write the fixed-point equation pinning down the val-
ues of the threshold t > t as y(t∗ ) = 0. Observe that lima→1 t

∗ = 0.
The fact that g is C1 and [l, h] is a compact set implies that g attains a maximum

M on [l, h], which implies that g(w) ≤ M for all w ∈ [l, w∗ ). It follows that if there exists
m> 0 such that fs(w) ≥m for all w ∈ [l, w∗ ), then t = minw∈[l,w∗ ) I(w) > 0.

Thus, because lima→1 t
∗ = 0, there exists a ∈ (0, 1) such that for all a ∈ (a, 1), we have

t∗ < t. Therefore, for all a ∈ (a, 1), the threshold is t = t, so that �(t ) = [l, w∗ ), as required.

Proof of Proposition 5. We first characterize the optimal signal when a = 0. We will
show that it is given by π(σ1|w) = 1 for w ∈ �(t ) ∪ [w∗, h], π(σ1|w) = 0 for w ∈ [l, w∗ ) \
�(t ), where t ≥ 0 is such that EGπ[ω|σ1] =w∗.

Because a = 0, the revelation principle applies. Thus, because the receiver has two
actions, there is an optimal signal with two realizations, σ1 and σ0. Then the sender’s
problem is sup{π(σ1|w)∈[0,1]}w∈[l,h]

∫ h
l fs(w)π(σ1|w)dw subject to EGπ[ω|σ1] ≥ w∗. The
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constraint is equivalent to
∫ h
l (w∗ − w)g(w)π(σ1|w)dw ≤ 0. Observe that the constraint

must bind.
We can write the Lagrangian as

∫ h
l fs(w)π(σ1|w)dw− λ

∫ h
l (w∗ −w)g(w)π(σ1|w)dw.

Equivalently,
∫ h
l (fs(w) − λ(w∗ − w)g(w))π(σ1|w)dw. Then the solution is π(σ1|w) = 1

if fs(w) ≥ λ(w∗ − w) and π(σ1|w) = 0 if fs(w) < λ(w∗ − w), where λ > 0 is such that
EGπ[ω|σ1] = w∗. This implies that π(σ1|w) = 1 for all w ∈ [w∗, h]. Moreover, for w ∈
[l, w∗ ), we have π(σ1|w) = 1 if I(w) ≥ λ and π(σ1|w) = 0 if I(w) ≤ λ, where λ is such that
EGπ[ω|σ1] =w∗.

Next, we prove the convergence result in the proposition. Let πa denote the opti-
mal signal with two realizations when the set of priors is Cag. Without loss of general-

ity, suppose that lima→0
∫ h
l |πa(σ1|w) − π(σ1|w)|dFs(w) and π̃ = lima→0 πa(σ1|w) exist.

Suppose for the sake of contradiction that lima→0
∫ h
l |πa(σ1|w) −π(σ1|w)|dFs(w) 
= 0.

Note that πa is U(πa ) = ∫ h
l πa(σ1|w)dFs(w). Suppose first that lima→0 U(πa ) =

U(π ). Note that we must have EGπa[w|σ1] ≥ w∗ for all a > 0. This implies that
lima→0 EGπa[w|σ1] = EGπ̃[w|σ1] ≥ w∗, so under π̃, the receiver with prior G takes ac-

tion 1 after σ1. Then π̃ is a signal with two realizations such that
∫ h
l |πa(σ1|w) −

π̃(σ1|w)|dFs(w) 
= 0 and U(π̃ ) = U(π ) given that the receiver’s prior is G. This con-
tradicts the fact that π is unique up to sets of measure zero under Fs.

Next, suppose that lima→0 U(πa ) 
= U(π ). Because U(πa ) < U(π ) for all a > 0, this
implies that lima→0 U(πa ) < U(π ). We will show that there exists a sequence of signals
{π̂a} with two realizations such that EFπ̂a[w|σ1] ≥ w∗ for all F ∈ Cag and lima→0 U(π̂a ) =
U(π ). Because lima→0 U(πa ) <U(π ), this would establish that {πa}a∈(0,1) was not a col-
lection of optimal signals, which is a contradiction.

Let π̂a(σ1|w) = π(σ1|w) − εa if π(σ1|w) = 1 and w < w∗, π̂a(σ1|w) = π(σ1|w) = 1
if w ≥ w∗ and π̂a(σ1|w) = 0 if π(σ1|w) = 0. Choose the minimal εa > 0 such that
EFπ̂a[w|σ1] ≥ w∗ for all F ∈ Cag. Note that this is feasible because if εa = 1, then
EFπ̂a[w|σ1] > w∗ for all F ∈ Cag. Observe that lima→0 εa = 0. This implies that
lima→0 U(π̂a ) =U(π ), as required.
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