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Mislearning from censored data: The gambler’s fallacy and other
correlational mistakes in optimal-stopping problems

Kevin He
Department of Economics, University of Pennsylvania

I study endogenous learning dynamics for people who misperceive intertempo-
ral correlations in random sequences. Biased agents face an optimal-stopping
problem. They are uncertain about the underlying distribution and learn its pa-
rameters from predecessors. Agents stop when early draws are “good enough,”
so predecessors’ experiences contain negative streaks but not positive streaks.
When agents wrongly expect systematic reversals (the “gambler’s fallacy”), they
understate the likelihood of consecutive below-average draws, converge to over-
pessimistic beliefs about the distribution’s mean, and stop too early. Agents un-
certain about the distribution’s variance overestimate it to an extent that depends
on predecessors’ stopping thresholds. I also analyze how other misperceptions of
intertemporal correlation interact with endogenous data censoring.

Keywords. Misspecified learning, gambler’s fallacy, Berk–Nash equilibrium, en-
dogenous data censoring, fictitious variation.
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1. Introduction

When a fair coin lands on tails three times in a row, many people wrongly expect
the same coin to have an increased chance of landing on heads on the next toss to
“balance things out.” This mistaken belief stems from a widespread statistical bias
called the gambler’s fallacy, where people expect too much reversal from sequential
realizations of independent random events. Studies have documented the gambler’s
fallacy in settings where it is strictly costly, such as lotteries with parimutuel payouts
(Terrell (1994), Suetens, Galbo-Jørgensen, and Tyran (2016)) and incentivized lab ex-
periments (Benjamin, Moore, and Rabin (2017)). The same bias also affects expe-
rienced decision-makers in high-stakes environments, including immigration judges
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(Chen, Moskowitz, and Shue (2016)) and Masters in Business Administration (MBA) ad-
missions interviewers (Simonsohn and Gino (2013)).

The gambler’s fallacy affects people’s behavior and beliefs in optimal-stopping prob-
lems, an important class of economic environments where agents act on sequential sig-
nal realizations. For instance, Mueller, Spinnewijn, and Topa (2021) use survey data to
document beliefs consistent with the gambler’s fallacy in job search, finding that job
seekers’ perceived probability of becoming employed within the next few months in-
creases over the course of the unemployment spell. In settings like this, how does the
bias affect society’s long-run beliefs about the economic fundamentals (e.g., the la-
bor market conditions) and how does it influence agents’ behavior? These questions
are challenging because the biased agents do not passively observe an exogenous data
stream, but take stopping actions that censor the observation of future signal realiza-
tions. The stopping decisions, in turn, depend on the agents’ (possibly mistaken) beliefs
about the fundamentals.

In this paper, I study novel implications of the gambler’s fallacy and other corre-
lational mistakes in optimal-stopping problems when a society of biased agents learn
about the underlying distributions. Agents take turns playing the same stage game: an
optimal-stopping problem with draws in different periods generated from fixed but un-
known distributions. Agents learn about the means of the distributions from experience,
but start with a dogmatic and wrong belief about the correlation between the draws.
For instance, when the draws are objectively independent but agents expect the draws
to exhibit reversals conditional on the means, they suffer from the gambler’s fallacy.
I show the non-self-confirming steady state of misspecified Bayesian learning in this en-
vironment involves distorted beliefs about the marginal distributions and suboptimal-
stopping behavior, and the directions of these errors depend on details of the corre-
lational mistake. I derive further results about how changes in the stage game affect
long-run learning outcomes and how additional uncertainty about the variance of the
distributions interacts with stopping incentives.

To illustrate the main mechanism behind these results, consider as a running ex-
ample human resources (HR) managers who suffer from the gambler’s fallacy. Each
manager sequentially interviews candidates for a single job opening and exaggerates
how unlikely it is to get consecutive above-average or consecutive below-average appli-
cants (relative to the labor pool mean). This error stems from the same psychology that
leads people to exaggerate how unlikely it is to get consecutive heads or consecutive tails
when tossing a fair coin. Evidence from MBA admissions suggests this bias can have a
sizable effect on sequential interviews: following applicants who are 1 standard devia-
tion worse than usual, interviewers expect the next candidate to exceed average quality
by the equivalent of 2 years of work experience (Simonsohn and Gino (2013)).

Suppose the managers are initially uncertain about the labor pool quality and col-
lectively learn about this fundamental over time. Every manager is responsible for hir-
ing in a different year. Each junior manager consults with senior managers and adopts
their beliefs about the labor pool based on their recruiting experience for similar posi-
tions in the past. The junior manager then implements a stopping strategy for her own
recruiting problem, updates her belief at the end of the hiring season, and shares this



Theoretical Economics 17 (2022) Mislearning from censored data 1271

new belief with her successors.1 How does the gambler’s fallacy influence the managers’
beliefs and behavior in the long run?

In this example, agents tend to stop when early draws are deemed “good enough,”
causing an asymmetric truncation of experience. When a manager discovers a suffi-
ciently strong candidate early in the hiring cycle, she stops her recruitment efforts and
does not observe what additional candidates would have been found for the same job
opening with a longer search. This endogenous censoring effect on histories interacts
with the gambler’s fallacy bias and generates pessimistic inference about the labor pool.
Managers continue searching only when their early candidates are below average. They
misinterpret subsequent above-average candidates as the expected positive reversal af-
ter bad initial outcomes, not as strong signals about the labor pool. On the other hand,
they are surprised by subsequent below-average candidates since their bias leads them
to understate the likelihood of bad streaks, misreading consecutive bad draws as very
strong negative signals about the pool. That is, after bad early draws, managers under-
infer from subsequent good draws but over-infer from subsequent bad draws. On aver-
age, they communicate an overpessimistic impression of the labor pool to future junior
managers. This pessimism informs the junior managers’ stopping strategy, and affects
the kind of censored history they observe and the new beliefs they pass down to their
own successors.

The key mechanism behind my results is the interaction between psychological bias
and data censoring in stopping problems. Neither is dispensable. Agents who do not
suffer from correlational mistakes learn the fundamentals correctly even from censored
histories. Conversely, in an environment without censoring where agents observe ex
post what would have been drawn in each period of the optimal-stopping problem,
even biased agents learn the fundamentals correctly. In particular, the gambler’s fallacy
is a “symmetric” bias; the “asymmetric” learning outcome of over-pessimism only ob-
tains when the bias interacts with an (endogenous) asymmetric censoring mechanism
that tends to produce data containing negative streaks but not positive streaks. More
broadly, the selective censoring of sequential signals represents a natural source of data
endogeneity whose impact on different biases remains understudied.

The misinference mechanism central to this paper implies novel comparative statics
predictions about how the economic environment affects learning outcomes under the
gambler’s fallacy. Returning to Mueller, Spinnewijn, and Topa’s (2021) context of job
seekers, my results suggest that government policies subsidizing longer search, such as
extended unemployment insurance, help mitigate belief distortions for job seekers who
commit the gambler’s fallacy. This is because such policies lead agents to use higher
acceptance thresholds and generate less censored histories, which in turn induce less
pessimistic beliefs for their successors. Comparative statics of this sort are unique to a
setting where biased agents learn from endogenously censored histories: changing the
stage game has no effect on the long-run learning outcomes if data are exogenous or if
agents are correctly specified.

1This environment where managers pass down their beliefs is equivalent to biased managers updating
their beliefs using all past managers’ hiring experience.
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Finally, I extend the analysis for the case of the gambler’s fallacy by considering un-
certainty about both the means and variances of the distributions. In this joint estima-
tion, agents misinfer means by the same amounts as in the baseline model and exagger-
ate variances. The idea is that agents attribute streaks of good or bad draws to “noise.”
The degree of belief in this fictitious variation both depends on the severity of history
censoring (as the amount of noise inferred depends on the kind of data) and influences
the agents’ stopping strategy (as higher variance encourages continuing in search prob-
lems due to option value). To illustrate how this belief in fictitious variation interacts
with endogenous learning, I show that a society where agents are uncertain about the
variances end up with a less distorted long-run belief about the means than another
society where agents know the correct variances. This is despite the fact that agents in
both societies would make the same (mis)inference about the means when given the
same data.

The rest of the paper is organized as follows. Section 2 presents the model and dis-
cusses the modeling assumptions. The model is general enough to capture various mis-
perceptions of intertemporal correlation, with the gambler’s fallacy as a special case.
Section 3 analyzes the steady state of learning and contains the main results of the pa-
per. Section 4 proves the convergence of misspecified learning dynamics to the steady
state. Section 5 discusses related theoretical literature. Section 6 concludes.

2. Model

2.1 The objective environment

The stage game is a two-period optimal-stopping problem. In the first period, the agent
draws x1 ∈ R and decides whether to stop. If she stops, her payoff is u1(x1 ) = x1 and
the stage game ends. If she continues, she incurs a cost κ ∈R, enters the second period,
and then draws x2 ∈ R. (This κ may also be negative, a subsidy for continuing.) There
is probability 0 ≤ q < 1 that the first draw can be recalled in the second period and the
agent can pick the best of the two draws, but with complementary probability the first
draw is no longer available. So the agent’s expected payoff from continuing, conditional
on the draws, is u2(x1, x2 ) = q · max(x1, x2 ) + (1 − q)x2 − κ. Both q and κ are known
parameters.

This stage game fits a number of economic situations:

• Many industries have an annual hiring cycle. Consider a firm in such an industry
and an HR manager who must fill a job opening during this year’s cycle. In the early
phase of the hiring cycle, she finds a candidate with quality x1. She must decide
between hiring this candidate immediately or waiting. Waiting lets her continue
searching in the late phase of the cycle, but carries the risk that the early candidate
accepts an offer from a different firm in the interim.

• A homeowner lists his house for sale and receives an offer in each period. The
homeowner must decide whether to accept the first offer he gets and take his house
off the market or to wait for the second offer, incurring a waiting cost and risking
the first buyer leaving the market.
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• An unemployed worker searches for jobs. While unemployed, she receives a job
offer in each period and decides whether to continue her job search. Once she be-
comes employed, she stops searching and no longer receives further offers.

The draws x1 and x2 are the realizations of two possibly correlated Gaussian random
variables X1 and X2, with unconditional means μ•

1, μ•
2 ∈ R. We have X1 = μ•

1 + ε1 and
X2 = μ•

2 + ε2, where ε1 ∼ N (0, σ2 ) and (ε2 | ε1 ) ∼ N (−rε1, σ2 ) for some fixed value of
r ∈ R. The parameters μ•

1, μ•
2 ∈ R are the true fundamentals that stand for the average

qualities of the two pools in the two periods. (In general we may have μ•
1 �= μ•

2. For
instance, this might happen due to dynamic adverse selection in the labor pool over
time in the example of the HR manager.) The ε1 and ε2 terms represent the idiosyncratic
factors that determine how the agent’s actual draws deviate from the average qualities
of the respective pools, with r the true reversal parameter. When r > 0, the idiosyncratic
factors that lead to an unusually good first draw relative to the early pool quality also
portend a below-average second draw. (Such reversals may happen, for instance, if the
agent is exhausting a small pool.) Note that X1 and X2 are independent when r = 0,
negatively correlated when r > 0, and positively correlated when r < 0.

2.2 Gambler’s fallacy and other correlational mistakes

I introduce a general model of misperceptions of intertemporal correlation, with the
gambler’s fallacy as a special case. Section 3 will both analyze how different kinds of
correlational mistakes interact with endogenous data censoring and present more in-
depth results that focus on the gambler’s fallacy.

Agents are uncertain about both the fundamentals and the reversal parameter. They
believe that if the average qualities of the pools are μ1, μ2 ∈ R, then the draws are gen-
erated by X1 = μ1 + ε1 and X2 = μ2 + ε2 with ε1 ∼ N (0, σ2 ) and (ε2 | ε1 ) ∼ N (−γε1, σ2 )
for some unknown γ ∈ [γl, γh]. If 0 = r < γl, then the agents suffer from the gambler’s
fallacy. This may represent a superstitious belief in an environment where the two draws
are objectively independent that if someone gets lucky on the first draw, then bad luck is
“due” to befall them in the near future. More generally, when r < γl (but r may not be 0),
agents exaggerate the amount of reversal in the idiosyncratic factors across the draws.
On the other hand, we may also have r > γh, in which case agents dogmatically underes-
timate the amount of reversal. This might be called a form of “hot-hand fallacy,” where
following a “lucky” first draw agents systematically overestimate the chance of another
good draw (and symmetrically for bad draws).2

Denote by φ(· | μ) the Gaussian density with mean μ and variance σ2, and let
�(μ1, μ2; γ) refer to the joint distribution X1 = μ1 + ε1 and X2 = μ2 + ε2 with ε1 ∼
φ(· | 0) and (ε2 | ε1 ) ∼ φ(· | −γε1 ). Agents believe the joint distribution of (X1, X2 ) is
described by one of the feasible models, {�(μ1, μ2; γ) : (μ1, μ2 ) ∈ R

2, γ ∈ [γl, γh]}. If
r /∈ [γl, γh], then the set of feasible models excludes the true model, �• := �(μ•

1, μ•
2; r ),

2Rabin and Vayanos (2010) propose a different mechanism for the hot-hand fallacy: agents expect re-
versals (not streaks) conditional on the fundamentals, but misinfer fundamentals. This also leads agents to
predict that streaks will continue.
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so Bayesian updating within the class of feasible models amounts to misspecified learn-
ing. I use misspecification as a tool to represent and study the gambler’s fallacy and
other correlational mistakes.

Throughout, I maintain the assumption that r, γl, γh �= −1. It turns out that for the
model �(μ1, μ2; −1) with any μ1, μ2, all stopping strategies are optimal. So I rule out
this knife-edge case by assuming that neither the true reversal parameter nor one of
the end points of [γl, γh] is exactly equal to −1. I still allow the case that the interval
of subjectively feasible reversal parameters contains −1 in its interior. Finally, denote
γn := arg minγ∈[γl ,γh] |γ − r| as the nearest point in the interval [γl, γh] to r. Note that if
r ∈ [γl, γh], then the nearest point is γn = r itself. Otherwise, γn is one of the end points,
γl or γh.

2.3 The steady state

Suppose a sequence of agents arrive one per round (t = 1, 2, 3, � � �) and take turns playing
the stage game. All agents have the same set of reversal parameters [γl, γh] that they find
plausible. They face the same but unknown objective pool qualities (μ•

1, μ•
2 ) and true

reversal parameter r. At the end of each round t, the tth agent updates her belief about
qualities and about the reversal parameter using her experience, then communicates
her updated belief to her successor. The successor acts based on the inherited belief,
then passes down an updated belief at the end of the round to his own successor, and so
forth. I now define the steady state of this learning system.

Roughly speaking, a steady state of the system consists of a strategy S∞ : R →
{Stop, Continue} that maps the realization of the first draw X1 = x1 into a stopping
decision, and point-mass beliefs about the pool qualities and the reversal parameter,
(μ∞

1 , μ∞
2 , γ∞ ) ∈R

2 × [γl, γh], so that (i) agents find it optimal to follow strategy S∞ given
beliefs (μ∞

1 , μ∞
2 , γ∞ ), and (ii) (μ∞

1 , μ∞
2 , γ∞ ) are the “best-fitting” beliefs about the pool

qualities and the reversal parameter given data generated from the strategy S∞. The
steady state corresponds to Esponda and Pouzo’s (2016) Berk–Nash equilibrium adapted
to the current setting.

To make precise the meaning of “best-fitting” beliefs for misspecified learners, the
history of the stage game is an element h ∈H := R× (R∪ {∅}). If an agent decides to stop
after X1 = x1, her history is (x1, ∅). If an agent continues after X1 = x1 and gets a second
draw X2 = x2, her history is (x1, x2 ). The symbol ∅ is a censoring indicator, emphasizing
if the agent stops, then the counterfactual second draw that she would have found had
she continued remains unobserved.

Consider the strategy S and the parameters (μ1, μ2, γ). The agent’s subjective like-
lihood of the history h = (x1, x2 ) with S(x1 ) = Continue is φ(x1 | μ1 ) · φ(x2 | μ2 −
γ(x1 − μ1 )), while that of the history h = (x1, ∅) with S(x1 ) = Stop is φ(x1 | μ1 ). Let
(μ∗

1(S), μ∗
2(S), γ∗(S)) ∈R

2 × [γl, γh] be the pseudo-true parameters with respect to S that
maximize the expected log likelihood of the agent’s history, with the expectation taken
over the true distribution of histories generated by S. Intuitively speaking, these corre-
spond to the long-run inferences about the fundamentals and the reversal parameter
when a large sample of histories is generated using the stopping strategy S.
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Equivalently, the pseudo-true parameters minimize the KL divergence between the
expected and the objective distributions over histories. Let H(�(μ1, μ2; γ); S) refer to
the distribution of histories when the draws have the joint distribution �(μ1, μ2; γ) and
histories are censored according to the strategy S. The true distribution of histories given
strategy S is H(�(μ•

1, μ•
2; r ); S), which I abbreviate as H•(S). To avoid trivialities, I will

focus on steady states where agents continue with positive probability (otherwise their
beliefs are not disciplined by the observation of any second-period draws), that is to say
strategies S where S(x1 ) = Continue for a positive Lebesgue measure of x1 ∈R. For such
an S, the Kullback–Leibler (KL) divergence from H•(S) to H(�(μ1, μ2; γ); S), denoted by
DKL(H•(S) ‖ H(�(μ1, μ2; γ); S)), is

∫
x1∈S−1(Stop)

φ
(
x1 | μ•

1
) · ln

(
φ

(
x1 | μ•

1

)
φ(x1 | μ1 )

)
dx1

+
∫
x1∈S−1(Cont.)

{∫ ∞

−∞
φ

(
x1 | μ•

1
) ·φ(

x2 | μ•
2 − r(x1 −μ1 )

)

· ln
[
φ

(
x1 | μ•

1
) ·φ(

x2 | μ•
2 − r(x1 −μ1 )

)
φ(x1 | μ1 ) ·φ(

x2 | μ2 − γ(x1 −μ1 )
)]

dx2

}
dx1. (1)

So the KL divergence in (1) is the expected log-likelihood ratio of the history under
the true process versus under the model �(μ1, μ2; γ), where expectation over histories
is taken under the true process. In general, this optimization objective depends on the
stopping strategy S. It is simple to see that the minimizers of KL divergence are the same
as the maximizers of expected log likelihood of the history.

I formalize the definition of a steady state.

Definition 1. A steady state consists of μ∞
1 , μ∞

2 ∈ R, γ∞ ∈ [γl, γh], and a strategy S∞
such that (i) S∞ continues with positive probability and is optimal among all stop-
ping strategies for the model �(μ∞

1 , μ∞
2 ; γ∞ ) and (ii) μ∞

1 = μ∗
1(S∞ ), μ∞

2 = μ∗
2(S∞ ),

γ∞ = γ∗(S∞ ).

The steady state is not a self-confirming equilibrium. There is positive KL diver-
gence between the true data distribution in the steady state and the data distribution
under �(μ∞

1 , μ∞
2 ; γ∞ ), so even the best-fitting beliefs do not perfectly explain the data.

To see this, consider the special case of r = 0, γn > 0. Objectively, the conditional dis-
tribution X2 | (X1 = x1 ) has a mean of μ•

2 for every x1 ∈ R. In the steady state, the bi-
ased agents believe the same conditional distribution has a mean of μ∞

2 − γn(x1 −μ∞
1 ),

which only equals μ•
2 for one value of x1. The histories cannot be fully explained by

�(μ∞
1 , μ∞

2 ; γ∞ ), as the predicted conditional distribution X2 | (X1 = x1 ) does not match
what is in the data for almost all x1 values where the steady-state strategy chooses to
continue.

We may view the steady state as a stand-alone equilibrium concept that captures the
optimality of behavior given beliefs and the constrained optimality of inferences given
behavior, in the sense of minimizing KL divergence. Alternatively, Section 4 provides a
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Bayesian-learning foundation for the steady state, in an environment where agents are
not actually solving the KL divergence minimization problem given in (1) and do not ob-
serve any history of the stage game other than the history they personally experience. In
that setting, (1) is involved in characterizing the steady state when a sequence of agents
each play the stage game once and pass down their updated Bayesian beliefs to their
successors.

2.4 Discussion of behavioral assumptions

In this paper, the agents’ correlational mistake stems from their dogmatic belief in the
interval [γl, γh], which may exclude the true reversal parameter r. One story about how
the agents erroneously think γl, γh > 0 in an environment with r = 0 (that is, suffer
from the gambler’s fallacy) relates to Kahneman and Tversky’s (1972) representative-
ness heuristic in judging the likelihoods of random sequences. Objectively, the idiosyn-
cratic factors εi (e.g., luck) that govern how draws in different periods deviate from their
respective pool averages are sampled independently and identically distributed (i.i.d.)
from a mean-zero distribution. The representativeness heuristic states that people know
certain “essential characteristics” of the parent population generating these idiosyn-
cratic factors (perhaps by observing their luck in other settings where the fundamen-
tals are known), but exaggerate the extent to which small samples typically represent
these characteristics. Agents who expect a sample of size two (ε1, ε2 ) to approximate
the mean-zero property of the parent population of idiosyncratic factors should believe
in a reversal of luck, that is, γl, γh > 0.

This is not a fully detailed and satisfactory microfoundation for the gambler’s fallacy
bias, and unfortunately there is limited work on the origin and persistence of biases
in learning contexts. This literature typically studies the implications of a dogmatically
wrong belief about one parameter on the Bayesian inference about a different parameter
(e.g., Heidhues, Kőszegi, and Strack (2018, 2019)). Better understanding why mistakes
persist is an important next step.

My setup corresponds to the model of the gambler’s fallacy introduced in Rabin and
Vayanos (2010), but applied to a different fundamental process. Rabin and Vayanos
(2010) study a setting where a signal st = θt + εt is generated each period t around

the fundamental θt . Objectively εt
i.i.d.∼ N (0, σ2

ε ), but agents believe εt = ωt − αδεt−1 −
αδ2εt−2 −· · · for ωt

i.i.d.∼ N (0, σ2
ω ) and some α> 0, δ ∈ (0, 1). This specializes to my model

with r = 0 when there are two periods t = 1, 2, the fundamental process is θt = μt for de-
terministic but unknown μ1, μ2, agents know the variance σ2

ω = σ2
ε , and γl = γh = αδ.

For Rabin and Vayanos (2010), the fundamentals (θt ) follow an (autoregressive) AR(1)
process instead of being deterministic, and they study agents who exogenously observe
all signals and estimate the long-run mean and persistence of the fundamental process.
I study a different environment with endogenous data where agents’ stopping decisions
censor the observation of future signals.
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3. Steady-state results

3.1 Inference about parameters from censored data

A cutoff strategy is a strategy S whose stopping region S−1(Stop) is either [c, ∞) for some
c ∈ R ∪ {∞} or (−∞, c] for some c ∈ R ∪ {−∞}. The next proposition provides a closed-
form expression for the pseudo-true parameters as a function of the cutoff threshold c

in a cutoff strategy S. This result can be thought of as a one-sided benchmark of how
biased learners misinfer the fundamentals and the reversal parameter using data cen-
sored at an exogenously given threshold. The subsequent steady-state analysis consid-
ers stopping strategies that best respond to the beliefs they induce. All proofs appear in
the Appendix.

Proposition 1. For any strategy S that continues with positive probability, μ∗
1(S) = μ•

1,
γ∗(S) = γn. If S is a cutoff strategy that stops when x1 ≥ c for some c ∈ R ∪ {∞}, then
μ∗

2(c) = μ•
2 + (r −γn ) · (μ•

1 −E[X1 | X1 ≤ c]). If S is a cutoff strategy that stops when x1 ≤ c

for some c ∈R∪ {−∞}, then μ∗
2(c) = μ•

2 + (r − γn ) · (μ•
1 −E[X1 | X1 ≥ c]).

Proposition 1 shows that the misinference phenomenon requires both data censor-
ing and the correlational mistake. Even biased agents with r /∈ [γl, γh] correctly estimate
the fundamentals in the absence of censoring (i.e., under the strategy S that never stops).
Conversely, agents whose prior belief does not contain a dogmatic correlational mistake
(i.e., when r ∈ [γl, γh]) end up with correct beliefs about the fundamentals for any level
of censoring.

Whether biased agents with r /∈ [γl, γh] will hold overpessimistic or overoptimistic
beliefs about the fundamentals depends on the direction of their correlational mistake
and the direction of data censoring. When r − γn < 0 and the strategy stops for high val-
ues of X1, and when r − γn > 0 and the strategy stops for low values of X1, agents have
overpessimistic beliefs. When r − γn < 0 and the strategy stops for low values of X1,
and when r − γn > 0 and the strategy stops for high values of X1, agents have overop-
timistic beliefs. In all cases, more severe censoring (i.e., a cutoff strategy that stops for
more realizations of X1) exacerbates the belief distortion. Details of the intertemporal
correlation misperception interact with the region of selective censoring to determine
agents’ long-run beliefs.

Turning to our main application, when agents exaggerate reversals r − γn < 0 and
observe data generated from a cutoff rule that stops for high X1 (e.g., stop searching if
and only if the early candidate’s quality is higher than some c), they have overpessimistic
beliefs about μ2 and their beliefs decrease without bound as the stopping threshold c

decreases. I will use this application to explain why directional data censoring leads to
belief distortions for biased learners.

Suppose r = 0 and γn > 0. Under the gambler’s fallacy, the expected realization of X2

depends on two factors: the second-period pool quality μ2 and a reversal effect based on
the realization of X1. The society of biased agents who stop for low values of X1 cannot
end up with a correct or overoptimistic belief about μ2, else they would be systemat-
ically disappointed by the realizations of X2 in their own histories in an environment
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where X1 and X2 are objectively independent. This is because the second draw is only
observed when the first draw’s quality is low enough, a contingency that leads biased
agents to expect positive reversal on average. The long-run beliefs of the agents thus
feature two mistakes partially canceling each other out to better fit the data, as their
pessimism about the quality of the late-phase pool counteracts their false expectation
of positive reversals when the first draw is bad enough to be rejected.

The severity of the biased agents’ pessimism increases with the severity of censor-
ing. The intuition is that the bias leads agents to infer a lower μ∗

2 to better match X2s in
histories that start with bad X1s, but doing so carries the cost of a worse model fit for his-
tories that start with intermediate X1s. More severe censoring—generated by a strategy
that stops not only after the very good early early draws, but also after the intermediate
ones—alleviates this cost, as histories that start with intermediate X1s no longer contain
their associated X2s. The extra censoring thus decreases the optimal inference μ∗

2.
The agents jointly estimate the reversal parameter r and the fundamentals μ•

1 and
μ•

2. Proposition 1 says that agents always end up believing the nearest feasible parame-
ter γn to the true reversal parameter r. To gain some geometric intuition for this result,
view the agents’ inference problem as using a scatter plot of (x1, x2 ) data points to esti-
mate a conditional expectation, E[X2 | X1 = x1]. This conditional expectation is a linear
function in x1 with a slope of −γ and an intercept determined by μ2. The conditional
expectation in the true data-generating process has the slope −r. The agent is free to
infer any intercept, but must pick a slope such that γ ∈ [γl, γh]. Geometrically speaking,
the best-fitting regression line will have the slope −γn. A line with a slope as close as
possible to the data-generating slope and the best-fitting intercept given this slope will
better describe the data points than a line with any other feasible slope and any other
intercept.

Proposition 1 also tells us that the quality of the early pool is always correctly esti-
mated with any stopping strategy. This is because the first draw’s quality X1 is always
observed, and μ∗

1 = μ•
1 provides the best fit for the first-period data. The agents cannot

improve the fit of second-period data by distorting their inference about the early pool:
for any reversal parameter γ, fundamentals (μ′

1, μ2 ) and (μ•
1, μ2 − γ(μ•

1 −μ′
1 )) generate

the same conditional distributions of X2 | (X1 = x1 ) for any realization x1. Any distor-
tion of the inference about early pool from μ•

1 to μ′
1 to better explain X2 data can be

equivalently done by keeping μ∗
1 = μ•

1 and shifting μ∗
2 by −γ(μ•

1 −μ′
1 ). There is no trade-

off between fitting X1 and fitting X2, so the agents correctly infer μ•
1 to provide the best

fit for the early-pool mean.
Mueller, Spinnewijn, and Topa (2021) report in their Figure 3 that very recently un-

employed workers underestimate their probability of finding a job in the next three
months. This is consistent with Proposition 1’s prediction of ex ante pessimistic beliefs
at the start of the search, in a world where people suffer from the gambler’s fallacy and
accept early draws (i.e., job offers) that are sufficiently good.

3.2 Steady-state stopping behavior

In this section, I turn to behavior in the steady state. In the main application of the
gambler’s fallacy (r = 0, γn > 0), we know from Proposition 1 that agents end up with
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overpessimistic beliefs about μ2 if they infer from histories that are censored when X1 ≥
c for any threshold c ∈ R. But this pessimistic belief does not by itself imply that the
misspecified agents must stop too often compared to a rational agent who knows the
true fundamentals and r. Outside of the steady state, there is an intuition that an agent
with the gambler’s fallacy may stop less often than a rational one, even if the biased agent
is overpessimistic about μ2. Consider an environment with r = 0, γn > 0, and suppose
the stopping problem satisfies κ = 0, q = 0, so there is no cost of continuing but also no
probability of recall. Suppose the true fundamentals are μ•

1 � μ•
2. If a biased agent has

the correct beliefs about the fundamentals, she perceives a greater continuation value
after X1 = μ•

2 than a rational agent with the same correct beliefs, since the former holds a
false expectation of positive reversals after a bad (relative to μ•

1) early draw. The rational
stopping cutoff is c• = μ•

2 and the rational agent is willing to stop after X1 = μ•
2, but the

biased agent strictly prefers to continue after such an early draw and has an indifference
threshold strictly above c•. By continuity, the biased agent’s cutoff threshold remains
strictly above c• even under slightly pessimistic beliefs about μ2.

Such ambiguity about behavior disappears in the steady state. The main result
of this section, Proposition 3, compares the steady-state stopping behavior of the bi-
ased learners to the objectively optimal thresholds. Toward this result, I begin with a
lemma that characterizes the optimal behavior for an agent who believes in the model
�(μ1, μ2; γ), and a sufficient condition about the existence and uniqueness of the
steady state.

Lemma 1. Consider the model �(μ1, μ2; γ) for any μ1, μ2, γ ∈ R. When γ �= −1, there
is a unique cutoff C(μ1, μ2; γ) so that the agent is indifferent between continuing and
stopping after X1 = C(μ1, μ2; γ). When γ > −1, the optimal strategy is to stop when
X1 ≥ C(μ1, μ2; γ), and μ2 �→ C(μ1, μ2; γ) is strictly increasing. When γ < −1, the opti-
mal strategy is to stop when X1 ≤ C(μ1, μ2; γ), and μ2 �→ C(μ1, μ2; γ) is strictly decreas-
ing.

Lemma 1 says the optimal behavior under the model �(μ1, μ2; γ) is a cutoff strategy,
and whether the agent stops after high enough or low enough values of X1 depends on
whether γ > −1 or γ < −1. To understand why, note that if the agent thinks X1 and
X2 are independent (γ = 0), then she will choose to stop when the realization of X1 is
so large that the known payoff from stopping exceeds the expectation of the uncertain
payoff from continuing and drawing an independent X2. But if the agent thinks X1 and
X2 are sufficiently positively correlated (γ < −1), then larger realizations of X1 make it
even more attractive to continue. In this case, it is bad realizations of X1 that cause the
agent to stop, for the positive correlation makes the agent pessimistic about X2 after a
bad X1.

Suppose γn > −1, and consider a simplified setting where the agents know μ1 = μ•
1

and always believe in γ = γn. For agents who exaggerate reversals (r − γn < 0), there
is a positive feedback loop between distorted beliefs and distorted strategies: a more
pessimistic belief about the second-period pool leads to a lower stopping cutoff by
Lemma 1, and a lower stopping cutoff leads to more pessimistic beliefs by Proposi-
tion 1. On the other hand, for agents who suffer from the opposite correlational mistake
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(r−γn > 0), there is instead a negative feedback loop: a more pessimistic belief about μ2

still leads to a lower stopping cutoff, but a lower stopping cutoff leads to more optimistic
beliefs by Proposition 1. Heidhues, Kőszegi, and Strack (2018) show that overconfidence
and underconfidence biases in a static effort-choice problem also lead to positive and
negative feedback loops, respectively. In both environments, reversing the direction of
the bias changes the nature of the feedback cycle between distorted actions and dis-
torted beliefs.

The next result gives a sufficient condition for the existence and uniqueness of the
steady state.

Proposition 2. There exists a unique steady state if |(r − γn )/(1 + γn )| < 1.

When r = 0, so the draws are objectively independent, Proposition 2 says a unique
steady state exists under any amount of the gambler’s fallacy (γn > 0), and also under a
moderate amount of the opposite correlational mistake (−1/2 < γn < 0). In general, a
steady state may fail to exist when Proposition 2’s condition is violated, as the following
example shows.

Example 1. Suppose κ = 0 and q = 0 (no cost of continuing and no probability of re-
call), and let γl = γh = 0, r = −2, and μ•

1 = μ•
2 = 0. No steady state exists in this setting.

This is because by Lemma 1, steady-state behavior must involve stopping for X1 ≥ c for
some c ∈ R. In fact, since the agent believes X1 and X2 are independent, she is indiffer-
ent between continuing and stopping if the early draw equals μ2, her belief about the
mean of the second-period draw. Proposition 1 implies her belief μ2 is related to c by
μ∗

2(c) = 2 · E[X1 | X1 ≤ c] < 0. We need to find a c < 0 such that c = 2 · E[X1 | X1 ≤ c],
which is impossible. Intuitively, the feedback cycle between more pessimistic beliefs
and lower cutoff thresholds is expansionary and tends to −∞. ♦

As Example 1 hints at, the condition |(r − γn )/(1 + γn )| < 1 in Proposition 2 ensures
that the feedback between beliefs and behavior is a contraction map.

Under the condition |(r − γn )/(1 + γn )| < 1, the next result compares the (unique)
steady-state cutoff threshold c∞ with the objectively optimal one, c•. Of course, by
Lemma 1, if r and γn are on the opposite sides of −1, then the comparison of thresh-
olds is meaningless as the steady-state behavior will have the “opposite” kind of stop-
ping region relative to the optimal behavior. When they are on the same side of −1,
Proposition 3 shows that whether c∞ < c• or c∞ > c• depends on the direction of the
correlational mistake.

Proposition 3. Suppose |(r − γn )/(1 + γn )| < 1, and suppose either both r, γn > −1 or
both r, γn < −1. Let c∞ be the cutoff where the steady-state strategy switches between
continuing and stopping, and let c• be switching cutoff of the objectively optimal strategy.
If r − γn < 0, then c∞ < c•. If r − γn > 0, then c∞ > c•.

Combined with Proposition 1 and Lemma 1, Proposition 3 gives us the following
conclusions when |(r − γn )/(1 + γn )| < 1: if r, γn >−1 (so that steady-state and optimal
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strategies stop after good first-period draws), then γn > r implies that the agent stops
too often and underestimates μ2, while γn < r implies that the agent stops too rarely and
overestimates μ2. By contrast, if r, γn < −1 (so that steady-state and optimal strategies
stop after bad first-period draws), then the implications of these two biases are reversed.

In particular, when r = 0 and γn > 0, Proposition 3’s early-stopping conclusion
strengthens Proposition 1’s overpessimism result. In the steady state, agents must be
sufficiently pessimistic as to overcome the opposite intuition about late stopping un-
der the gambler’s fallacy discussed earlier. To understand the intuition, note biased
agents believe in different conditional distributions of X2 following different realiza-
tions of X1, with more pessimistic beliefs after higher realizations. In a steady state
((μ∞

1 , μ∞
2 , γn ), c∞ ), the agents’ subjective distribution of X2 following X1 = c∞ must

be a leftward shift of the true distribution φ(· | μ•
2 ). Else, their subjective distributions

of X2 would stochastically dominate the true distribution following all x1 values in the
continuation region, so heuristically they could improve the fit of their model by lower-
ing their belief about μ2. The biased agents’ indifference at c∞ is thus based on an overly
pessimistic belief about the continuation value, so we must have c∞ < c•.

3.3 Gambler’s fallacy with independent draws

In this section, I derive additional steady-state results for the main application of agents
who suffer from the gambler’s fallacy in an environment with independent X1 and X2:
that is, r = 0 and γn > 0.

3.3.1 Comparative statics in the stage game’s parameters How do steady-state beliefs
react to changes in the stage game’s parameters, q and κ? In general, when learners in-
fer from exogenous data, their decision problem does not influence learning outcomes.
This observation holds independently of whether learners are misspecified. On the
other hand, correctly specified learners in my setting always end up with correct beliefs
in the long run, so the game parameters are again irrelevant. With misspecified learn-
ers in an endogenous-data setting, however, changes in the stage game carry long-run
consequences on society’s beliefs about the fundamentals.

Proposition 4. Suppose r = 0 and γn > 0. Let ((μ(q,κ)
1 , μ(q,κ)

2 , γn ), c(q,κ) ) denote the
unique steady-state beliefs and cutoff under parameters q ∈ [0, 1), κ ∈ R. The steady-
state belief μ(q,κ)

2 is strictly increasing in q and strictly decreasing in κ, but always satisfies

μ
(q,κ)
2 < μ•

2. The steady-state cutoff threshold c(q,κ) is strictly increasing in q and strictly
decreasing in κ.

Proposition 4 provides novel predictions about how the economic environment af-
fects biased inference under the gambler’s fallacy. It says when agents are more pa-
tient (i.e., suffer a lower waiting cost or receive a higher subsidy for continuing) or when
they have a higher chance of recalling previous draws, then they will end up with less
distorted beliefs about the pool in the long run. These changes in environmental pa-
rameters partially correct society’s long-run beliefs by incentivizing longer search and
mitigating the censoring effect.
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3.3.2 Fictitious variation and censoring So far, I have assumed agents hold dogmatic
and correct beliefs about the variance of X1 and the conditional variance of X2 | (X1 =
x1 ). Now consider agents who are uncertain about these variances and jointly estimate
them together with the means of the pools. I show that agents end up exaggerating the
variances in a way that depends on the severity of data censoring.

For μ1, μ2 ∈ R, σ2
1 , σ2

2 ≥ 0, and γ ∈ R, let �(μ1, μ2, σ2
1 , σ2

2 ; γ) refer to the joint dis-
tribution X1 = μ1 + ε1, X2 = μ2 + ε2 with ε1 ∼ N (0, σ2

1 ), and (ε2 | ε1 ) ∼ N (−γε1, σ2
2 ).

In this section, “fundamentals” refer to the four parameters μ1, μ2, σ2
1 , and σ2

2 , and I
assume for simplicity γl = γh = γ > 0. Objectively, X1 and X2 are independent Gaus-
sian random variables each with a variance of (σ• )2 > 0, so the true joint distribution of
(X1, X2 ) is �• := �(μ•

1, μ•
2, (σ• )2, (σ• )2; 0).

Following (1), write DKL(H•(c) ‖ H(�(μ1, μ2, σ2
1 , σ2

2 ; γ); c)) to denote the KL diver-
gence between the true distribution of histories with X2 censored whenever X1 > c and
the implied history distribution under the fundamentals μ1, μ2, σ2

1 , and σ2
2 . This diver-

gence is given by

∫ ∞

c
φ

(
x1 | μ•

1,
(
σ•)2) · ln

(
φ

(
x1 | μ•

1,
(
σ•)2)

φ
(
x1 | μ1, σ2

1
) )

dx1

+
∫ c

−∞

{∫ ∞

−∞
φ

(
x1 | μ•

1,
(
σ•)2) ·φ(

x2 | μ•
2,

(
σ•)2)

· ln
[

φ
(
x1 | μ•

1,
(
σ•)2) ·φ(

x2 | μ•
2,

(
σ•)2)

φ
(
x1 | μ1, σ2

2

) ·φ(
x2 | μ2 − γ(x1 −μ1 ), σ2

2

)]
dx2

}
dx1, (2)

where φ(x | μ, σ2 ) is the Gaussian density with mean μ and variance σ2, evaluated at x.
The next proposition gives closed-form expressions for the pseudo-true fundamen-

tals μ∗
1, μ∗

2, (σ∗
1 )2, and (σ∗

2 )2 that minimize (2).

Proposition 5. Suppose r = 0. The solutions of

min
μ1,μ2∈R,σ2

1 ,σ2
2 ≥0

DKL
(
H•(c) ‖ H

(
�

(
μ1, μ2, σ2

1 , σ2
2 ; γ

)
; c

))

are μ∗
1(c) = μ•

1, μ∗
2(c) = μ•

2 − γ(μ•
1 − E[X1 | X1 ≤ c]), (σ∗

1 )2(c) = (σ• )2, and (σ∗
2 )2(c) =

(σ• )2 + γ2 Var[X1 |X1 ≤ c], So (σ∗
2 )2(c) strictly increases in c.

Comparing Proposition 5 with the expressions for μ∗
1(c) and μ∗

2(c) in Proposition 1
(for the special case of r = 0, γn = γ > 0, and a strategy that stops when X1 ≥ c) shows
that agents misinfer the means in the same way regardless of whether they know the
variances. Biased agents correctly estimate the first-period variance, (σ∗

1 )2 = (σ• )2, but
overestimate second-period variance. They exaggerate the variation in quality among
the late-phase draws. This phenomenon relates to findings in Rabin (2002) and Rabin
and Vayanos (2010), who refer to exaggeration of variance under the gambler’s fallacy as
fictitious variation. The key innovation of Proposition 5 is to show, in an endogenous-
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data setting, how the degree of fictitious variation depends on the severity of censoring.
The magnitude of this distortion increases in the severity of the gambler’s fallacy

but decreases with the severity of the censoring, as Var[X1 | X1 ≤ c] increases in c for
X1 Gaussian. Here is the intuition. Whereas the objective conditional distribution of
X2 | (X1 = x1 ) is independent of x1, the biased agents entertain different beliefs about
this distribution for different x1s. The agents’ best-fitting inference about μ2 ensures
their belief about X2 | (X1 = x1 ) fits the data well following “typical” realizations of x1

in the continuation region (−∞, c], but they are still surprised when they experience a
streak of bad draws in their own stage game. Agents who observe such surprising streaks
attribute the unexpectedly low realizations of X2 to “noise,” and thus pass down beliefs
that estimate a higher conditional variance of X2 | (X1 = x1 ). A larger fraction of the
agents attribute their data to “noise” when Var[X1 | X1 ≤ c] is larger, because the fre-
quency of the surprising streaks depends on how much X1 tends to deviate from its
typical value of E[X1 | X1 ≤ c] conditional on the event {X1 ≤ c}.

The next result demonstrates the interplay between fictitious variation and endoge-
nous censoring in the steady state. Consider two societies of agents who have the same
bias, play the same stage game, and face the same true fundamentals. Agents in society
A know the true variances and only infer about (μ1, μ2 ), while those in society B do not
know the variances and infer about (μ1, μ2, σ2

1 , σ2
2 ).

Proposition 6. Suppose r = 0, γl = γh = γ, and the probability of recall is interior, 0 <

q < 1. Let (μA
1 , μA

2 , cA ) and (μB
1 , μB

2 , (σB
1 )2, (σB

2 )2, cB ) be the steady-state beliefs about
the fundamentals and the steady-state cutoffs in the two societies. Then μB

2 > μA
2 and

cB > cA. Also, σB
2 >σ∗

2 (cA ).

The endogenous-data setting leads to two novel implications of fictitious variation
relative to Rabin and Vayanos’s (2010) exogenous-data world. First, even though Propo-
sition 5 implies that the two societies would make the same inferences about the pool
means if they were given the same data, in steady state society B holds more optimistic
(i.e., more correct) beliefs about μ2 and uses a higher cutoff than society A. Allowing un-
certainty on one dimension (variance) ends up affecting society’s long-run inference in
another dimension (mean), because a belief in fictitious variation increases the agents’
perceived option value of continuing and thus changes their behavior and the kind of
data they observe in the steady state. Second, fictitious variation has a “multiplier ef-
fect,” as formalized by the final statement of Proposition 6. Society B’s steady-state be-
lief about σ2 is higher than what it would have been had they simply inferred using
data generated from society A’s steady-state cutoff cA. Allowing for uncertainty about
the pool variances leads to fictitious variation that increases society B’s cutoff above
cA. This is because when the agent can recall the first draw with an interior proba-
bility, the option value of waiting for the second draw is larger when the second labor
pool has a larger variance in quality. This higher cutoff further heightens society B’s be-
lief in fictitious variation, since Proposition 5 implies σ∗

2 (c) is strictly increasing, and so
forth.
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4. Convergence to the steady state

This section shows the steady state defined and studied earlier corresponds to the long-
run learning outcome for a society of biased agents acting one by one.

Time is discrete and partitioned into rounds t = 1, 2, 3, � � � . One short-lived agent ar-
rives per round. For simplicity, in analyzing convergence I focus on learning about the
fundamentals μ1 and μ2, and suppose agents have a degenerate belief about the rever-
sal parameter, γl = γh > −1. Agent 1 starts with a prior belief M0 given by a continuously
differentiable prior density m0 : [μ

1
, μ̄1] × [μ

2
, μ̄2] →R>0, while each agent t ≥ 2 adopts

the final belief M̃t−1 of agent t − 1 as her prior belief. Since all agents commit the same
statistical bias, each agent’s inherited belief aggregates all the information in all prede-
cessors’ histories. The same learning dynamics obtain in an environment where every
agent starts with the common prior belief M0 and observes the stage-game histories of
all predecessors.

In each round t, agent t chooses a cutoff threshold C̃t to maximize her expected
payoff based on her prior belief.3 She observes the outcome of her game and updates
her belief from M̃t−1 to M̃t by applying Bayes’ rule to her stage-game history, H̃t ∈H. She
then passes down M̃t as the prior belief of agent t + 1.

By Proposition 2, there exists a unique steady state ((μ∞
1 , μ∞

2 , γn ), c∞ ) when |(r −
γn )/(1 + γn )| < 1. Proposition 7 shows that almost surely behavior and belief converge
to this steady state for any prior density m0, provided the support [μ

1
, μ̄1] × [μ

2
, μ̄2]

includes the steady-state beliefs (μ∞
1 , μ∞

2 ). To state this convergence result formally, I
need to develop the probability space underlying the learning system.

The sequences (M̃t ), (C̃t ), and (H̃t ) are stochastic processes whose randomness
stems from randomness of the stage-game draws in different rounds. The conver-
gence result is about the almost-sure convergence of the processes (M̃t ) and (C̃t ). Con-
sider the R

2-valued stochastic process (Xt )t≥1 = (X1,t , X2,t )t≥1, where Xt and Xt ′ are
independent for t �= t ′. Within each t, X1,t ∼ φ(· | μ•

1 ) and X2,t | (X1,t = x1,t ) ∼ φ(· |
μ•

2 − r(x1,t − μ•
1 )) are jointly Gaussian. Interpret Xt as the pair of potential draws in

the tth round of the stage game. Clearly, there exists a probability space (
, A, P), with
sample space 
 = (R2 )∞ interpreted as paths of the process just described, A the Borel
σ-algebra on 
, and P the measure on sample paths so that the process Xt(ω) = ωt has
the desired distribution. The term “almost surely” means with probability 1 with respect
to the realization of the infinite sequence of all (potential) draws, i.e., P-almost surely.
The processes (M̃t ), (C̃t ), and (H̃t ) are defined on this probability space and adapted to
the filtration (Ft )t≥1, where Ft is the sub-σ-algebra generated by draws up to round t,
Ft = σ((Xs )ts=1 ). Write (μ̃1,t , μ̃2,t ) for the random element in [μ

1
, μ̄1] × [μ

2
, μ̄2] given by

the belief M̃t .

Proposition 7. Suppose |(r − γn )/(1 + γn )| < 1, r �= γn, and γn > −1. Provided μ
1
<

μ•
1 < μ̄1 and μ

2
<μ∞

2 < μ̄2, almost surely limt→∞ C̃t = c∞ and (μ̃1,t , μ̃2,t )t≥1 converges in

L1 to (μ•
1, μ∞

2 ), where ((μ•
1, μ∞

2 , γn ), c∞ ) is the unique steady state.

3I focus on learning across different iterations of the stage game and assume agents do not update beliefs
within the stage game.
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4.1 Proof outline for Proposition 7

The argument for Proposition 7 adapts techniques from Heidhues, Kőszegi, and Strack
(2018); in particular, a law of large numbers for martingale increments. I discuss the
novelties specific to my environment below.

4.1.1 When μ1 is known First consider a simpler situation where agents dogmatically
know that μ1 = μ•

1 and only entertain uncertainty about μ2 in some bounded interval
[μ

2
, μ̄2] that includes μ∞

2 . I use a statistical tool from Heidhues, Kőszegi, and Strack
(2018): a version of the law of large numbers for martingales whose quadratic variation
grows linearly.

Proposition 10 from Heidhues, Kőszegi, and Strack (2018). Let (yt )t be a mar-
tingale that satisfies a.s. [yt ] ≤ vt for some constant v ≥ 0. We have that a.s. limt→∞ yt

t = 0.

After simplifying the problem with this result, I establish a pair of mutual bounds
on asymptotic behavior and asymptotic beliefs. If cutoff thresholds are asymptotically
bounded between cl and ch, cl < ch, then beliefs about μ2 must be asymptotically sup-
ported on the interval [μ∗

2(cl ), μ∗
2(ch )] when r − γn < 0 and asymptotically supported

on the interval [μ∗
2(ch ), μ∗

2(cl )] when r − γn > 0. Conversely, if belief is asymptotically
supported on the subinterval [μl

2, μh
2 ] ⊆ [μ

2
, μ̄2], then cutoff thresholds must be asymp-

totically bounded between C(μ•
1, μl

2; γn ) and C(μ•
1, μh

2 ; γn ).
Applying this pair of lemmas to [μ

2
, μ̄2], I conclude that asymptotically M̃t must be

supported on the subinterval with the end points I(μ
2

) and I(μ̄2 ), where I is the com-
position I(μ2 ) := μ∗

2(C(μ•
1, μ2; γ)). The proof of Proposition 2 implies that I is a con-

traction map whose iterates converge to μ∞
2 . Therefore by repeatedly applying the pair

of lemmas, the bound on asymptotic beliefs gets refined down to the singleton {μ∞
2 },

showing the almost-sure convergence of beliefs and behavior.

4.1.2 Uncertainty about μ1 In the hypothesis of Proposition 7, both μ1 and μ2 are un-
known, so there is two-dimensional uncertainty about the fundamentals. This com-
plication prevents a direct application of Heidhues, Kőszegi, and Strack’s (2018) sta-
tistical tools, as their tools are only designed to work with a one-dimensional funda-
mental. But the structure of the inference problem is such that I can separately bound
the agents’ asymptotic beliefs in two “directions,” thus reducing the task of proving
a two-dimensional belief bound into a pair of tasks involving one-dimensional belief
bounds.

Consider a pair of fundamentals, (μ1, μ2 ) and (μ′
1, μ′

2 ) = (μ1 + d, μ2 − γd) for some
d > 0, satisfying μ1, μ′

1 ≤ μ•
1. That is, (μ1, μ2 ) and (μ′

1, μ′
2 ) lie on the same line with slope

−γ. For any uncensored history (x1, x2 ) ∈ R
2, the likelihood of second-period draw x2

is the same under both pairs of fundamentals, φ(x2 | μ2 − γ(x1 − μ1 )) = φ(x2 | μ′
2 −

γ(x1 −μ′
1 )). So both pairs of fundamentals (μ1, μ2 ) and (μ′

1, μ′
2 ) explain X2 data equally

well in all uncensored histories. At the same time, (μ′
1, μ′

2 ) provides a strictly better fit
for X1 data on average than (μ1, μ2 ), since μ1 < μ′

1 ≤ μ•
1. This means in the long run,
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Figure 1. Directional derivative for data log likelihood along the vector (1, −γ) in the space
of fundamentals implies the upper shaded region receives zero posterior probability asymptoti-
cally.

fundamentals (μ1, μ2 ) should receive much less posterior probability than (μ′
1, μ′

2 ), as
the latter better rationalize the data overall.

To formalize this, I compute the directional derivative for data log likelihood along
the vector (1, −γ) in the space of fundamentals. I establish an (almost-sure) positive
lower bound on this directional derivative at all points at least 2ε′ to the left of μ•

1, and
an analogous negative upper bound to the right of μ•

1. Figure 1 is an illustration for
the case of γ > 0. This allows me to show the upper shaded region receives 0 posterior
probability asymptotically, by comparing each point in this upper shaded region with a
corresponding point in the lower shaded region along a line of slope −γ.

By repeating this argument for small values of ε′ (and applying the symmetric bound
to the right of μ•

1), I show that belief is asymptotically concentrated either along a small
vertical strip containing the steady-state beliefs, (μ•

1, μ∞
2 ) or along an edge of belief’s

support, as shown in Figure 2. The latter possibility requires belief in an extreme value
of μ2 ∈ {μ

2
, μ̄2} in the support of the prior m0 and can be ruled out by showing that,

within these regions, slightly increasing or decreasing belief in μ2 leads to better fit.
Having restricted the long-run belief to a thin vertical strip, the first “direction” of the

belief bounds is complete and the dimensionality of uncertainty is effectively reduced
back to one. The rest of the argument proceeds similarly to the case where agents know
μ•

1 discussed above.

Figure 2. Belief must be asymptotically concentrated in the shaded area.
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5. Related theoretical literature

A strand of behavioral economics literature has focused on a different cognitive error
when agents learn from partial data: selection neglect. Theory papers in this area have
studied agents who observe a selective sample in different settings: good’s quality in a bi-
lateral trade game (Esponda (2008)), investment outcomes by past entrepreneurs (Jehiel
(2018)), government policy effectiveness (Esponda and Pouzo (2017, 2019)), and out-
comes of recent experiments (Chen (2021)). In all of these settings, the sample selection
depends on some unobserved private information of other players. Biased agents fail to
account for the informational content of selection,4 thus make wrong inferences. While
I also consider a setting where agents learn from partial data, I focus on the implications
of a different bias in such environments: the gambler’s fallacy. Selection neglect and
the gambler’s fallacy can be conceptually unified under the broader category of correla-
tional mistakes. As Spiegler (2016, 2017) points out, many examples of selection neglect
can be viewed as biases stemming from incorrect conditional-independence assump-
tions. I emphasize that the biased agents in my world do not additionally suffer from
selection neglect. Agents derive different inferences from histories censored at different
thresholds purely as a result of misperceiving the reversal parameter that relates differ-
ent draws; this conclusion does not come from the combination of multiple behavioral
biases.

Rabin (2002) and Rabin and Vayanos (2010) are the first to study the inferential mis-
takes implied by the gambler’s fallacy. Like these papers, I consider agents who believe
in reversals conditional on the underlying fundamentals and mislearn some parameters
of the world as a result. Except for an example in Rabin (2002), all such investigations
focus on passive inference, whereby learners observe an exogenous signal process. By
contrast, this paper examines an endogenous learning setting where actions affect ob-
servables. Section 7 of Rabin (2002) discusses an example of endogenous learning with a
finite-urn model of the gambler’s fallacy. The nature of Rabin’s (2002) endogenous data,
however, is unrelated to the censoring effect central to the current paper.5

This work joins a strand of literature on the implications of misspecified Bayesian
learning when the learner’s actions affect the data she observes. The earliest example
is Nyarko (1991). Esponda and Pouzo (2016) propose an equilibrium concept for such
settings: the Berk–Nash equilibrium. Subsequently, a number of papers have studied
the properties of Berk–Nash equilibria in different applied contexts (Fudenberg, Ro-
manyuk, and Strack (2017), Heidhues, Kőszegi, and Strack (2018), Frick, Iijima, and Ishii
(2020)) and the persistence and stability of misspecifications (Frick, Iijima, and Ishii
(2021b), Fudenberg and Lanzani (2021), He and Libgober (2021)). In addition to us-
ing this framework to explore the gambler’s fallacy, I also highlight a new source of data

4Some recent experiments have demonstrated selection neglect in laboratory subjects: Enke (2020), Bar-
ron, Huck, and Jehiel (2019), and Araujo, Wang, and Wilson (2021).

5In Rabin’s (2002) example, biased agents (correctly) believe that the part of the data that is always ob-
servable is independent of the part of the data that is sometimes missing. However, what I term the cen-
soring effect is about misinference resulting from agents wrongly believing in negative correlation between
the early draws that are always observed and the later draws that may be censored, depending on the real-
izations of the early draws. I discuss this further in the Online Appendix of an earlier version of this paper:
https://arxiv.org/pdf/1803.08170v5.pdf.

https://arxiv.org/pdf/1803.08170v5.pdf
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endogeneity relative to the existing papers: the censoring effect in an optimal-stopping
problem. Agents’ stopping decisions determine how many signals they observe about
the fundamentals. Other recent papers (Esponda, Pouzo, and Yamamoto (2021), Fu-
denberg, Lanzani, and Strack (2021), Frick, Iijima, and Ishii (2021a), Heidhues, Kőszegi,
and Strack (2021)) prove general theorems about the convergence of misspecified learn-
ing in different settings. Though not the primary contribution of this work, the con-
vergence result in Proposition 7 deals with a setting that is not covered by these pa-
pers: a multi-dimensional inference problem with a continuum of states, signals, and
actions.

Although Section 4 considers a learning system with a sequence of short-lived
agents, the “social learning” aspect of the framework is not central to the results. In fact,
the environment where a sequence of short-lived agents act one at a time is equivalent to
an environment where a single long-lived agent plays the stage game repeatedly, myopi-
cally maximizing her expected payoff in each iteration of the stage game. In the growing
literature on social learning with misspecified Bayesians (e.g., Eyster and Rabin (2010),
Gaurino and Jehiel (2013), Bohren (2016), Bohren and Hauser (2021), Dasaratha and He
(2020), Frick, Iijima, and Ishii (2020), Bushong and Gagnon-Bartsch (2022)), agents ob-
serve their predecessors’ actions but make errors when inverting these actions to deduce
said predecessors’ information. This kind of action inversion does not take place here:
later agents inherit all the information that their predecessors have seen by adopting
their beliefs, so predecessors’ actions are uninformative.

The econometrics literature has also studied data-generating processes with cen-
soring, for example, the Tobit model and models of competing risks.6 This literature has
primarily focused on the issue of model identification from censored data (Cox (1962),
Tsiatis (1975), Heckman and Honoré (1989)). In my setting, there is no identification
problem for correctly specified agents. Instead, I study how agents make wrong pa-
rameter estimates from censored data when they infer using a family of misspecified
models. Another contrast is that the econometrics literature has focused on exogenous
data-censoring mechanisms, but censoring is endogenous in this paper and depends
on the beliefs of previous agents.

6. Concluding remarks

This paper studies endogenous learning dynamics of misspecified agents. The gen-
eral framework allows different correlational mistakes, and shows that the interaction
between the statistical bias and data censoring in optimal-stopping problems distorts
beliefs and behavior. When agents suffer from the gambler’s fallacy, they hold overly
pessimistic beliefs about the fundamentals and stop too frequently in the steady state.
Lower continuation costs, as well as initial uncertainty about the distribution’s variance,
partially correct asymptotic beliefs about the distribution’s mean.

An earlier version of this paper7 shows that the steady-state results (about overpes-
simistic inference and early stopping) and the convergence result continue to hold for

6References can be found in Amemiya (1985) and Crowder (2001).
7Available at https://arxiv.org/pdf/1803.08170v5.pdf.

https://arxiv.org/pdf/1803.08170v5.pdf
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a larger class of stage games and any symmetric, log-concave distributions. That earlier
version also contains an extension with any finite number L ≥ 2 of periods instead of
two periods.

In line with previous work on the gambler’s fallacy, I take the behavioral error as
given and do not try to explain the origin of the bias. Endogenizing the gambler’s fallacy
and other common statistical errors is an interesting open question.

I have studied a particular environment where censoring happens (histories in
optimal-stopping problems). The key mechanism I highlight—the interaction between
data censoring and bias—applies more broadly and delivers different predictions in dif-
ferent contexts. Environments that feature different censoring patterns would produce
different predictions, but again through the same basic mechanism—interaction be-
tween censoring and bias. More broadly, other kinds of “symmetric” behavioral biases
may lead to “asymmetric” predictions in environments that feature directional data cen-
soring. I am leaving open the interaction of other kinds of behavioral learning with other
censoring mechanisms to future work.

Appendix: Proofs

A.1 Proof of Proposition 1

In the true model, X2|(X1 = x1 ) ∼ N (μ•
2 − r(x1 − μ•

1 ), σ2 ), while the agents’ feasible
model �(μ1, μ2; γ) has X2|(X1 = x1 ) ∼ N (μ2 − γ(x1 − μ1 ), σ2 ). Suppose histories are
generated with a stopping rule that continues in the positive Lebesgue measure set
K ⊆R. The objective in (1) is

∫
x1 /∈K

φ
(
x1 | μ•

1
) · ln

(
φ

(
x1 | μ•

1

)
φ(x1 | μ1 )

)
dx1

+
∫
x1∈K

φ
(
x1 | μ•

1
) ·

{∫ ∞

−∞
φ

(
x2 | μ•

2 − r
(
x1 −μ•

1
))

· ln
[
φ

(
x1 | μ•

1
) ·φ(

x2 | μ•
2 − r

(
x1 −μ•

1
))

φ(x1 | μ1 ) ·φ(
x2 | μ2 − γ(x1 −μ1 )

)]
dx2

}
dx1.

This can be rewritten as

∫
x1 /∈K

φ
(
x1 | μ•

1

)
ln

(
φ

(
x1 | μ•

1

)
φ(x1 | μ1 )

)
dx1

+
∫
x1∈K

φ
(
x1 | μ•

1
){∫ ∞

−∞
φ

(
x2 | μ•

2 − r
(
x1 −μ•

1
))

ln
[
φ

(
x1 | μ•

1

)·
φ(x1 | μ1 )

]
dx2

}
dx1

+
∫
x1∈K

φ
(
x1 | μ•

1
) ·

{∫ ∞

−∞
φ

(
x2 | μ•

2 − r
(
x1 −μ•

1
))

· ln
[
φ

(
x2 | μ•

2 − r
(
x1 −μ•

1

))
φ

(
x2 | μ2 − γ(x1 −μ1 )

)]
dx2

}
dx1,
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which is

∫ ∞

−∞
φ

(
x1 | μ•

1
) · ln

(
φ

(
x1 | μ•

1
)

φ(x1 | μ1 )

)
dx1

+
∫
x1∈K

φ
(
x1 | μ•

1
) ·

∫ ∞

−∞
φ

(
x2 | μ•

2 − r
(
x1 −μ•

1
)) · ln

[
φ

(
x2 | μ•

2 − r
(
x1 −μ•

1
))

φ
(
x2 | μ2 − γ(x1 −μ1 )

)]
dx2 dx1.

The KL divergence between N (μtrue, σ2
true ) and N (μmodel, σ2

model ) is ln(σmodel/σtrue ) +
[(σ2

true +(μtrue −μmodel )2 )/(2σ2
model )]− 1

2 , so we may simplify the first term and the inner
integral of the second term:

(
μ1 −μ•

1
)2

2σ2 +
∫
x1∈K

φ
(
x1 | μ•

1

) ·
(
μ2 − γ(x1 −μ1 ) −μ•

2 + r
(
x1 −μ•

1
))2

2σ2 dx1.

Multiplying through by σ2, we get a simplified objective with the same minimizers:

ξ(μ1, μ2, γ) =
(
μ1 −μ•

1

)2

2
+

∫
x1∈K

φ
(
x1 | μ•

1
) · 1

2
· [μ2 −γ(x1 −μ1 ) −μ•

2 + r
(
x1 −μ•

1
)]2

dx1.

We have the partial derivatives by differentiating under the integral sign:

∂ξ

∂μ2
=

∫
x1∈K

φ
(
x1 | μ•

1
) · [μ2 − γ(x1 −μ1 ) −μ•

2 + r
(
x1 −μ•

1
)]
dx1

∂ξ

∂μ1
= (

μ1 −μ•
1

) + γ

∫
x1∈K

φ
(
x1 | μ•

1

) · [μ2 − γ(x1 −μ1 ) −μ•
2 + r

(
x1 −μ•

1

)]
dx1

= (
μ1 −μ•

1
) + γ

∂ξ

∂μ2

∂ξ

∂γ
= −

∫
x1∈K

φ
(
x1 | μ•

1
) · [x1 −μ1] · [μ2 − γ(x1 −μ1 ) −μ•

2 + r
(
x1 −μ•

1
)]
dx1.

Suppose (μ∗
1, μ∗

2, γ∗ ) is the minimum. By the first-order conditions for μ1 and μ2, we
have

∂ξ

∂μ1

(
μ∗

1, μ∗
2, γ∗) = ∂ξ

∂μ2

(
μ∗

1, μ∗
2, γ∗) = 0 ⇒ μ∗

1 = μ•
1.

Substituting this into the first-order condition for μ2,

∂ξ

∂μ2

(
μ•

1, μ∗
2, γ∗) = 0 ⇒ μ∗

2 = μ•
2 + (

r − γ∗) · (μ•
1 −E[X1|X1 ∈K]

)
.

It remains to find γ∗. We have

∂ξ

∂γ

(
μ∗

1, μ∗
2, γ∗) = −P[X1 ∈K] ·E[(

X1 −μ∗
1

) ·(μ∗
2 −γ∗(X1 −μ∗

1

)−μ•
2 +r

(
X1 −μ•

1

))
|X1 ∈K

]
.
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We rearrange the expectation term as

E
[(
X1 −μ∗

1
) · (μ∗

2 − γ∗(X1 −μ∗
1
) −μ•

2 + r
(
X1 −μ•

1
))

|X1 ∈K
]

= E
[(
X1 −μ∗

1

)
|X1 ∈K

] ·E[(
μ∗

2 − γ∗(X1 −μ∗
1

) −μ•
2 + r

(
X1 −μ•

1

))
|X1 ∈K

]
+ Cov

[
X1 −μ∗

1, μ∗
2 − γ∗(X1 −μ∗

1

) −μ•
2 + r

(
X1 −μ•

1

)
|X1 ∈K

]
.

The first-order condition (FOC) for μ2 implies E[(μ∗
2 − γ∗(X1 − μ∗

1 ) − μ•
2 + r(X1 −

μ•
1 ))|X1 ∈ K] = 0 at the optimum (μ∗

1, μ∗
2, γ∗ ). Also, we may drop terms without X1 in

the conditional covariance operator, and we get

∂ξ

∂γ

(
μ∗

1, μ∗
2, γ∗) = P[X1 ∈K] · (γ∗ − r

) · Cov(X1, X1|X1 ∈K).

We have P[X1 ∈K] > 0 and Cov(X1, X1|X1 ∈K) > 0; hence we conclude

∂ξ

∂γ

(
μ∗

1, μ∗
2, γ∗)

⎧⎪⎪⎨
⎪⎪⎩
> 0 for γ∗ > r

= 0 for γ∗ = r

< 0 for γ∗ < r.

When r ∈ [γl, γh], (μ∗
1, μ∗

2, γ∗ ) cannot minimize ξ if γ∗ �= r at either end point where FOC
in γ does not hold, ξ can be strictly reduced by changing γ slightly. In case that γl > r, at
the optimum we must have ∂ξ

∂γ (μ∗
1, μ∗

2, γ∗ ) > 0. By the Karush–Kuhn–Tucker condition,
this means the minimizer is γ∗ = γl. Conversely, when γh < r, at the optimum we must
have ∂ξ

∂γ (μ∗
1, μ∗

2, γ∗ ) < 0. In that case, the minimizer is γ∗ = γh. So in both cases, γ∗ = γn
as desired.

Finally, by using μ∗
2 = μ•

2 + (r − γn ) · (μ•
1 − E[X1|X1 ∈ K]) and specializing to the

case where the continuation region K is either (−∞, c] or [c, ∞), we get the closed-form
expression of μ∗

2(c).

A.2 Proving Lemma 1

I state and prove a stronger result, which will be used in some of the later proofs.

Lemma A.1. Consider the model �(μ1, μ2; γ) for any μ1, μ2, γ ∈ R. Let D(x1 ) be the
difference between the expected payoff in stopping and continuing after X1 = x1 in the
model. If γ = −1, then D(x1 ) is constant in x1. If γ > −1, then D(x1 ) is continuous and
strictly increasing in x1 with limx1→±∞ D(x1 ) = ±∞. If γ < −1, then D(x1 ) is continu-
ous and strictly decreasing in x1 with limx1→±∞ D(x1 ) = ∓∞. When γ �= −1, there is a
unique C(μ1, μ2; γ) so that the agent is indifferent between continuing and stopping af-
ter x1 = C(μ1, μ2; γ). For fixed μ1 ∈ R, γ �= −1, the function μ2 �→ C(μ1, μ2; γ) is linear
with a slope of 1/(γ + 1).

Using Lemma A.1, agents stop after high values of X1 when γ > −1 and stop after
low values of X1 when γ < −1, because D is strictly increasing when γ > −1 and strictly
decreasing when γ < −1. Also, since μ2 �→ C(μ1, μ2; γ) has a slope of 1/(γ + 1), it is
strictly increasing if γ > −1 and strictly decreasing if γ <−1.
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Proof of Lemma A.1. In the model �(μ1, μ2; γ), the expected difference between
stopping and continuing after X1 = x1 is

D(x1 ) = x1 − qE
[
max

(
x1, [X2 | x1]

)] − (1 − q)E[X2 | x1] + κ,

where [X2 | x1] ∼ N (μ2 −γ(x1 −μ1 ), σ2 ). This is clearly continuous in x1. When γ = −1,
D is constant because we have for every a ∈R, δ > 0,

D(a+ δ) −D(a) = δ− q
{
E

[
max

(
a+ δ, [X2 | a+ δ]

)] −E
[
max

(
a, [X2 | a]

)]} − δ(1 − q).

In comparing max(a + δ, [X2 | a + δ]) and max(a, [X2 | a]), note the distribution [X2 |
a+δ] is [X2 | a] shifted to the right by δ, so the distribution max(a+δ, [X2 | a+δ]) is just
max(a, [X2 | a]) shifted to the right by δ. Thus, E[max(a+δ, [X2 | a+δ])]−E[max(a, [X2 |
a])] = δ. So overall, D(a+ δ) −D(a) = 0.

When γ > −1, [X2 | a + δ] is strictly stochastically dominated by δ + [X2 | a]; there-
fore, E[max(a + δ, [X2 | a + δ]) < δ + E[max(a, [X2 | a])]. Also, we have E[X2 | a + δ] −
E[X2 | a] = −δγ, so we get D(a+δ) −D(a) > (1 −q)(1 +γ)δ > 0. This shows D is strictly
increasing at a rate of at least (1 − q)(1 + γ) at every point in the domain; therefore,
limx1→±∞ D(x1 ) = ±∞.

When γ < −1, [X2 | a + δ] strictly stochastically dominates δ + [X2 | a]; therefore,
E[max(a + δ, [X2 | a + δ]) > δ + E[max(a, [X2 | a])]. Also, we have E[X2 | a + δ] − E[X2 |
a] = −γδ, so we get D(a + δ) − D(a) < (1 − q)(1 + γ)δ < 0. This shows D is strictly
decreasing at a rate of at least (1 − q)(1 + γ) at every point in the domain; therefore,
limx1→±∞ D(x1 ) = ∓∞.

When γ �= −1, the existence and uniqueness of C(μ1, μ2; γ) come from the fact that
D is strictly monotonic and takes on both positive and negative values, so it must cross
0 at a unique point.

In fact, C(μ1, μ2; γ) is linear in μ2 with a coefficient of 1/(γ + 1). To see this, fix μ1

and γ, and consider the difference x1 − qE[max(x1, [X2 | x1])] − (1 − q)E[X2 | x1] + κ as
a function G(x1, μ2 ) of x1 and μ2. For every δ > 0, we have G(x1 + δ/(γ + 1), μ2 + δ) =
G(x1, μ2 ). This is because

N
(

(μ2 + δ) − γ

((
x1 + δ

γ + 1

)
−μ1

)
, σ2

)
= N

(
μ2 − γ(x1 −μ1 ), σ2) + δ− δ

γ

γ + 1

= N
(
μ2 − γ(x1 −μ1 ), σ2) + δ

1
γ + 1

;

therefore, qEμ2+δ[max(x1 +δ/(γ+1), [X2 | x1])] = q(Eμ2[max(x1, [X2 | x1])]+δ/(γ+1)).
Also (1 − q)Eμ2+δ[X2 | x1] = (1 − q)(Eμ2[X2 | x1] + δ/(γ + 1)). Using these two facts,

G

(
x1 + δ

γ + 1
, μ2 + δ

)
−G(x1, μ2 ) = δ

γ + 1
− q

(
δ

1
γ + 1

)
− (1 − q)

(
δ

1
γ + 1

)
= 0.

That is, increasing belief about μ2 by δ and also increasing the realization of the early
draw by δ/(γ + 1) cancel each other out in terms of the difference between the ex-
pected payoffs in stopping and continuing. Therefore, we must have C(μ1, μ2 + δ; γ) =
C(μ1, μ2; γ) + δ/(γ + 1).
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A.3 Proof of Proposition 2

Consider the map I : R → R defined by I(μ2 ) := μ∗
2(C(μ•

1, μ2; γn )), where we define
μ∗

2(c) = μ•
2 + (r − γn ) · (μ•

1 − E[X1 | X1 ≤ c]) if γn > −1 and μ∗
2(c) = μ•

2 + (r − γn ) ·
(μ•

1 − E[X1 | X1 ≥ c]) if γn < −1. Lemma A.1 shows μ2 �→ C(μ•
1, μ2; γn ) is linear with a

slope of 1/(γn + 1). Also, by a property of the Gaussian distribution, both c �→ E[X1 |
X1 ≤ c] and c �→ E[X1 | X1 ≥ c] are Lipschitz continuous with a Lipschitz constant
of 1. Therefore, the composition I is Lipschitz continuous with a Lipschitz constant
of |(r −γn )/(1 +γn )| < 1, hence a contraction map. By a property of contraction maps, I
has a unique fixed point, which we denote μ∞

2 . When γn > −1, the beliefs (μ∞
1 , μ∞

2 , γn )
together with the cutoff strategy that stops when c ≥ C(μ∞

1 , μ∞
2 ; γn ) make up a steady

state by Proposition 1 and Lemma 1. When γn < −1, the beliefs (μ∞
1 , μ∞

2 , γn ) together
with the cutoff strategy that stops when c ≤ C(μ∞

1 , μ∞
2 ; γn ) make up a steady state for

the same reason. Also, this steady state is unique. By Proposition 1, in any steady-state
beliefs (μ′

1, μ′
2, γ′ ), we must have μ′

1 = μ•
1, γ′ = γn. This implies μ′

2 must be a fixed point
of I by the optimality of behavior and the KL divergence minimization of beliefs, yet μ∞

2
is the unique fixed point of I .

A.4 Proof of Proposition 3

Under the condition |(r−γn )/(1 +γn )| < 1, by Proposition 2 there exists a unique steady
state where γ∞ = γn and the agent uses a cutoff strategy with some threshold c∞. The
agent stops when X1 ≥ c∞ if γn > −1 and stops when X1 ≤ c∞ if γn <−1.

Suppose r, γn > −1. Then by Proposition 1, μ∞
2 = μ•

2 + (r − γn ) · (μ•
1 − E[X1 | X1 ≤

c∞]). Since E[X1 | X1 ≤ c∞] < c∞, we get μ∞
2 < μ•

2 + (r − γn ) · (μ•
1 − c∞ ) ⇐⇒ μ∞

2 −
γn(c∞ − μ•

1 ) < μ•
2 − r(c∞ − μ•

1 ) if r − γn < 0 and, symmetrically, μ∞
2 − γn(c∞ − μ•

1 ) >
μ•

2 − r(c∞ − μ•
1 ) if r − γn > 0. In the r − γn < 0 case, it shows the agent’s belief about

the second-period mean of X2 conditional on X1 = c∞ is strictly lower than the truth.
As the agent who believes in the model �(μ•

1, μ∞
2 ; γn ) is indifferent between continuing

and stopping after X1 = c∞, an agent who believes in the model �(μ•
1, μ•

2; r ) finds it
strictly better to continue after X1 = c∞. Under the model �(μ•

1, μ•
2; r ) with r > −1, by

Lemma A.1 the agent strictly prefers continuing only at those c with c < C(μ•
1, μ•

2; r ) =
c•, which shows c∞ < c•. The r − γn > 0 case symmetrically leads to the conclusion that
c∞ > c•.

Suppose both r, γn < −1. Then by Proposition 1, μ∞
2 = μ•

2 + (r − γn ) · (μ•
1 − E[X1 |

X1 ≥ c∞]). Since E[X1 | X1 ≥ c∞] > c∞, we get μ∞
2 >μ•

2 + (r −γn ) · (μ•
1 − c∞ ) ⇐⇒ μ∞

2 −
γn(c∞ −μ•

1 ) >μ•
2 − r(c∞ −μ•

1 ) if r−γn < 0 and, symmetrically, μ∞
2 −γn(c∞ −μ•

1 ) <μ•
2 −

r(c∞−μ•
1 ) if r−γn > 0. In the r−γn < 0 case, it shows the agent’s belief about the second-

period mean of X2 conditional on X1 = c∞ is strictly higher than the truth. As the agent
who believes in the model �(μ•

1, μ∞
2 ; γn ) is indifferent between continuing and stopping

after X1 = c∞, an agent who believes in the model �(μ•
1, μ•

2; r ) finds it strictly better to
stop after X1 = c∞. Under the model �(μ•

1, μ•
2; r ) with r < −1, by Lemma A.1 the agent

strictly prefers stopping only only at those c with c < C(μ•
1, μ•

2; r ) = c•, which shows
c∞ < c•. The r − γn > 0 case symmetrically leads to the conclusion that c∞ > c•.
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A.5 Proof of Proposition 4

I will show a stronger statement. Given a pair of second-period payoff functions uH2 and
uL2 , say uH2 payoff dominates uL2 (abbreviated uH2 � uL2 ) if for every x1 ∈ R, uH2 (x1, x2 ) ≥
uL2 (x1, x2 ) for every x2 ∈R, and also uH2 (x1, x2 ) > uL2 (x1, x2 ) for a positive-measure set of
x2 in R. It is clear that increasing q or decreasing κ in the statement of Proposition 4 leads
to a payoff dominating game. There is a unique steady state for any (q, κ) by Proposi-
tion 2 since r = 0 and γn > 0. The next part of Proposition 4 is implied by the following
proposition.

Proposition A.1. Let r = 0 and γn > 0. Suppose both (u1, uH2 ) and (u1, uL2 ) correspond
to stage games with some (q, κ), and that uH2 � uL2 . The steady state of (u1, uH2 ) features
strictly more optimistic belief about the second-period fundamental and a strictly higher
cutoff threshold than the steady state of (u1, uL2 ).

I require an auxiliary lemma for the proof.

Lemma A.2. Suppose both (u1, uH2 ) and (u1, uL2 ) correspond to stage games with some
(q, κ), and that uH2 � uL2 . For all μ1, μ2 ∈R, γ > 0, Cu1,uH2

(μ1, μ2; γ) >Cu1,uL2
(μ1, μ2; γ).

Proof. Indifference cL = Cu1,uL2
(μ1, μ2; γ) implies u1(cL ) = EX̃2∼φ(·|μ2−γ(cL−μ1 ))[u

L
2 (cL,

X̃2 )]. Since uH2 (cL, x2 ) ≥ uL2 (cL, x2 ) for all x2 ∈ R, with strict inequality on a positive-
measure set, this shows u1(cL ) < EX̃2∼φ(·|μ2−γ(cL−μ1 ))[u

H
2 (cL, X̃2 )]. The best stopping

strategy in the model �(μ1, μ2; γ) with the utility functions (u1, uH2 ) has a cutoff form
by Lemma A.1. This shows Cu1,uH2

(μ1, μ2; γ) is strictly above cL.

Proof of Proposition A.1. Now to the proof of Proposition A.1. Say the unique
steady states under (u1, uH2 ) and (u1, uL2 ) are ((μ•

1, μ∞
2,H , γn ), c∞

H ) and ((μ•
1, μ∞

2,L, γn ),
c∞
L ), respectively. Let IH and IL be the iteration maps corresponding to these two stage

games, that is to say,

IH(μ2 ) := μ∗
2

(
Cu1,uH2

(
μ•

1, μ2; γn
))

IL(μ2 ) := μ∗
2
(
Cu1,uL2

(
μ•

1, μ2; γn
))

.

From the proof of Proposition 2, both IH and IL are contraction maps. Consider their it-
erates with a starting value of 0. That is, put μ[0]

2,H = 0, μ[0]
2,L = 0, and let μ[t]

2,H = IH(μ[t−1]
2,H ),

μ[t]
2,L = IL(μ[t−1]

2,L ) for t ≥ 1. By a property of contraction maps and since the fixed points

of the iteration maps are the steady-state beliefs, μ[t]
2,H → μ∞

2,H and μ[t]
2,L → μ∞

2,L.

By induction, I will show μ[t]
2,L ≤ μ[t]

2,H for every t ≥ 0. The base case of t = 0 is true by

definition. If μ[T ]
2,L ≤ μ[T ]

2,H , then

Cu1,uL2

(
μ•

1, μ[T ]
2,L; γ

) ≤ Cu1,uL2

(
μ•

1, μ[T ]
2,H ; γ

)
<Cu1,uH2

(
μ•

1, μ[T ]
2,H ; γ

)
.

The first inequality comes from C being increasing in the second argument and the
inductive hypothesis, while the second inequality is due to Lemma A.2. Therefore,
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IL(μ[T ]
2,L ) ≤ IH(μ[T ]

2,H ) using the fact that μ∗
2 is increasing by Proposition 1, so μ[T+1]

2,L ≤
μ[T+1]

2,H .
Since weak inequalities are preserved by limits, we have μ∞

2,H ≥ μ∞
2,L. It is impossible

to have μ∞
2,H = μ∞

2,L, because this would lead to c∞
H > c∞

L by Lemma A.2, which in turn
implies μ∞

2,H = μ∗
2(c∞

H ) >μ∗
2(c∞

L ) = μ∞
2,L. This inequality contradicts μ∞

2,H = μ∞
2,L. There-

fore, we in fact have μ∞
2,H > μ∞

2,L. The conclusion that c∞
H > c∞

L follows from Lemma A.2
and the fact that C increases in its second argument.

A.6 Proof of Proposition 5

Rewrite (2) as

∫ ∞

−∞
φ

(
x1 | μ•

1,
(
σ•)2) · ln

(
φ

(
x1 | μ•

1,
(
σ•)2)

φ
(
x1 | μ1, σ2

1
) )

dx1

+
∫ c

−∞
φ

(
x1 | μ•

1,
(
σ•)2)

·
∫ ∞

−∞
φ

(
x2 | μ•

2,
(
σ•)2) ln

[
φ

(
x2 | μ•

2,
(
σ•)2)

φ
(
x2 | μ2 − γ(x1 −μ1 ), σ2

2
)]

dx2 dx1.

KL divergence between N (μtrue, σ2
true ) and N (μmodel, σ

2
model ) is ln(σmodel/σtrue ) +

[(σ2
true + (μtrue − μmodel )2 )/(2σ2

model )] − 1
2 , so we may simplify the first term and the

inner integral of the second term:

ln
σ1

σ• +
(
μ1 −μ•

1
)2

2σ2
1

+
(
σ•)2

2σ2
1

− 1
2

+
∫ c

−∞
φ

(
x1 | μ•

1, σ•) ·
[

ln
σ2

σ• +
(
σ•)2 + (

μ2 − γ(x1 −μ1 ) −μ•
2
)2

2σ2
2

− 1
2

]
dx1.

Dropping terms not dependent on any of the four variables gives a simplified version of
the objective:

ξ(μ1, μ2, σ1, σ2 )

:= ln
σ1

σ• +
(
μ1 −μ•

1

)2

2σ2
1

+
(
σ•)2

2σ2
1

+
∫ c

−∞
φ

(
x1 | μ•

1,
(
σ•)2) ·

[
ln

σ2

σ• +
(
σ•)2 + (

μ2 − γ(x1 −μ1 ) −μ•
2

)2

2σ2
2

]
dx1.

Differentiating under the integral sign,

∂ξ

∂μ2
=

∫ c

−∞
φ

(
x1 | μ•

1,
(
σ•)2) ·

[(
μ2 − γ(x1 −μ1 ) −μ•

2
)

σ2
2

]
dx1
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∂ξ

∂μ1
=

(
μ1 −μ•

1

)
σ2

1

+ γ

∫ c

−∞
φ

(
x1 | μ•

1,
(
σ•)2) ·

[(
μ2 − γ(x1 −μ1 ) −μ•

2

)
σ2

2

]
dx1

=
(
μ1 −μ•

1

)
σ2

1

+ γ
∂ξ

∂μ2
.

At FOC (μ∗
1, μ∗

2, σ∗
1 , σ∗

2 ), we have ∂ξ
∂μ2

(μ∗
1, μ∗

2, σ∗
1 , σ∗

2 ) = 0, hence μ∗
1 = μ•

1. Similar argu-
ments as before then establish μ∗

2 = μ•
2 − γ(μ•

1 − E[X1 | X1 ≤ c]), where expectation is
taken with respect to the true distribution of X1 (with the true variance (σ• )2). Then
∂ξ
∂σ1

(μ∗
1, μ∗

2, σ∗
1 , σ∗

2 ) = (1/σ∗
1 ) − ((σ• )2/(σ∗

1 )3 ) = 0, which gives σ∗
1 = σ• (since σ∗

1 ≥ 0).
Finally, from the FOC for σ2,

∫ c

−∞
φ

(
x1; μ•

1,
(
σ•)2) ·

[
1
σ∗

2
−

(
σ•)2 + (

μ∗
2 − γ

(
x1 −μ∗

1

) −μ•
2

)2

(
σ∗

2
)3

]
dx1 = 0.

Substituting in values of μ∗
1 and μ∗

2 already solved for,

(
σ∗

2

)2 = (
σ•)2 +E

[(
μ∗

2 − γ
(
X1 −μ•

1

) −μ•
2

)2
|X1 ≤ c

]
= (

σ•)2 +E
[(
μ•

2 − γ
(
μ•

1 −E[X1 | X1 ≤ c]
) − γ

(
X1 −μ•

1

) −μ•
2

)2
|X1 ≤ c

]
= (

σ•)2 + γ2
E

[[(
X1 −μ•

1

) − (
E[X1 | X1 ≤ c] −μ•

1

)]2
|X1 ≤ c

]
= (

σ•)2 + γ2 Var[X1|X1 ≤ c]

as desired. Finally, σ∗
2 (c) is an increasing function of c because Var[X1 |X1 ≤ c] increases

in c for X1 Gaussian (Mailhot (1985)).

A.7 Proving Proposition 6

I start with a lemma that says if the decision problem is convex, a stronger belief in
fictitious variation increases the subjectively optimal cutoff threshold.

Lemma A.3. Suppose that under the feasible model �(μ1, μ2, σ2
1 , σ2

2 ; γ), the agent is in-
different between stopping at c and continuing. Suppose σ̂2

2 > σ2
2 . Then if x2 �→ u2(c, x2 )

is convex with strict convexity for x2 in a positive-measure set, then under the feasible
model �(μ1, μ2, σ2

1 , σ̂2
2 ; γ), the agent strictly prefers continuing at c.

Proof. Indifference at x1 = c under �(μ1, μ2, σ2
1 , σ2

2 ; γ) implies

u1(c) = EX2∼N (μ2−γ(x1−μ1 ),σ2
2 )

[
u2(c, X2 )

]
.

When hypothesis is satisfied,

EX2∼N (μ2−γ(x1−μ1 ),σ2
2 )

[
u2(c, X2 )

]
< EX2∼N (μ2−γ(x1−μ1 ),σ̂2

2 )

[
u2(c, X2 )

]
since σ̂2

2 > σ2
2 implies that N (μ2 − γ(x1 −μ1 ), σ̂2

2 ) is a strict mean-preserving spread of
N (μ2 − γ(x1 −μ1 ), σ2

2 ). The right-hand side is the expected continuation payoff under
model �(μ1, μ2, σ2

1 , σ̂2
2 ; γ), so the agent strictly prefers continuing when X1 = c.
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Now I give the proof of Proposition 6.

Proof of Proposition 6. By the proof of Proposition 2, I(μ2; γ) := μ∗
2(C(μ•

1, μ2, γ))
for society A is a contraction map in μ2. By way of contradiction, suppose cB ≤ cA. Then
μB

2 ≤ μA
2 by Proposition 5. In society A, C(μ•

1, μB
2 ; γ) < cB by Lemma A.3, as there is

strictly positive probability of recall. This shows I(μB
2 ; γ) < μB

2 . In fact, for the t-times
iteration, we have I(t )(μB

2 ; γ) ≤ I(μB
2 ; γ) < μB

2 , which means I has a fixed point strictly
smaller than μA

2 . This contradicts μA
2 being the only fixed point of I . Hence we must

have μB
2 > μA

2 and cB > cA. We have σB
2 = σ∗

2 (cB ), which is larger than σ∗
2 (cA ) by com-

bining cB > cA with Proposition 5.

A.8 Proving Proposition 7

I introduce some new notation. Abbreviate � := [μ
1

, μ̄1] × [μ
2

, μ̄2]. Let γ = γn and let

li(μ2 ) be the line in R
2 with slope −γ that passes through the point (μ•

1, μ2 ). There are
some minimal and maximal μ◦

2
and μ̄◦

2 so that li(μ◦
2

) ∩� �= ∅ and li(μ̄◦
2 ) ∩� �= ∅. Finally,

for μl
2 < μh

2 , let ♦[μl
2, μh

2 ] := ⋃
μ2∈[μl

2,μh
2 ] li(μ2 ). So we have � ⊆ ♦[μ◦

2
, μ̄◦

2]. Similarly the

half-open versions ♦[μl
2, μh

2 ) and ♦(μl
2, μh

2 ] are defined as the unions
⋃

μ2∈[μl
2,μh

2 ) li(μ2 )

and
⋃

μ2∈(μl
2,μh

2 ] li(μ2 ). Figure 3 illustrates a case with γ > 0.

A.8.1 Preliminary results First I consider how the predicted second-period payoff af-
ter X1 = x1 depends on the parameters of the feasible model �(μ1, μ2; γ).

Lemma A.4. For every μ1, μ2, x1 ∈ R, the conditional distribution X2|X1 = x1 is the
same under �(μ•

1, μ2 + γ(μ1 −μ•
1 ); γ) and �(μ1, μ2; γ). So in particular, C(μ1, μ2; γ) =

C(μ•
1, μ2 + γ(μ1 −μ•

1 ); γ).

Proof. Under the feasible model �(μ•
1, μ2 + γ(μ1 −μ•

1 ); γ), the conditional density of
X2 given X1 = x1 is φ(· | μ2 + γ(μ1 − μ•

1 ) − γ(x1 − μ•
1 )), which simplifies to φ(· | μ2 −

γ(x1 − μ1 )). It is easy to see that this is also the expression for the same conditional
density under �(μ1, μ2; γ).

Figure 3. Notation for the proof of Proposition 7.
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Suppose C(μ1, μ2; γ) = c. This implies u1(c) = E�(μ1,μ2;γ)[u2(c, X2 ) |X1 = c]. But by
the equivalence of conditional distribution given above,

u1(c) = E�(μ•
1,μ2+γ(μ1−μ•

1 );γ)
[
u2(c, X2 ) | X1 = c

]
.

This means c is also the indifference threshold for the model �(μ•
1, μ2 + γ(μ1 −μ•

1 ); γ).

As a corollary, this lemma shows the restriction to cutoff strategies is without loss
and that C̃t is well defined. That is, for any belief given by a density on �, there exists
a cutoff strategy that is weakly optimal among the class of all stopping strategies and,
further, this cutoff strategy is strictly optimal among the class of cutoff strategies. This is
because for any x1 ∈ R and any density m̃ on �,∫

�
E�(μ1,μ2;γ)

[
u2(x1, X2 ) |X1 = x1

] · m̃(μ1, μ2 )d(μ1, μ2 )

=
∫ μ̄◦

2

μ◦
2

E�(μ•
1,μ2;γ)

[
u2(x1, X2 ) | X1 = x1

] · m̃V (μ2 )dμ2,

where m̃V (μ2 ) is the integral of m̃(μ1, μ2 ) over li(μ2 ). This equality holds because by
Lemma A.4, all fundamentals on li(μ2 ) imply the same continuation payoff after X1 = x1

as the fundamentals (μ•
1, μ2 ).

Lemma A.5. If γ >−1, then the function

x1 �→ u1(x1 ) −
∫ μ̄◦

2

μ◦
2

E�(μ•
1,μ2;γ)

[
u2(x1, X2 ) | X1 = x1

]
m̃V (μ2 )dμ2

is strictly increasing, continuous, and crosses 0.

Proof. Let dν(μ2 ) = m̃V (μ2 )dμ2. Consider the payoff difference between accepting x1

and continuing under belief ν:

D(x1; ν) := u1(x1 ) −
∫

EX2∼φ(·|μ2−γ(x1−μ•
1 ))

[
u2(x1, X2 )

]
dν(μ2 ).

Note that D(x1, ν) = ∫
D(x1; μ•

1, μ2, γ)dν(μ2 ). When γ > −1, Lemma A.1 shows that for
every μ2 ∈ R, D(x1; μ•

1, μ2, γ) is strictly increasing in x1. Hence, the same must hold for
D(x1, ν).

Lemma A.1 shows there exists some x′
1 ∈R so that D(x′

1; μ•
1, μ

2
, γ) < 0 and that there

exists some x′′
1 ∈ R satisfying D(x′′

1; μ•
1, μ̄2, γ) > 0. Since u2 increases in its second argu-

ment, we also get D(x′
1; μ•

1, μ2, γ) < 0 and D(x′′
1; μ•

1, μ2, γ) > 0 for all μ2 ∈ [μ
2

, μ̄2]. This
implies D(x′

1; ν) < 0 and D(x′′
1; ν) > 0, as ν is supported on (a subset of) [μ

2
, μ̄2].

To show D(x1; ν) is continuous in x1, fix some x̄1. Let π(μ2 ) represent the expecta-
tion of the absolute value of a normal random variable with mean μ2 − γ((x̄1 − 1) −μ•

1 )
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and variance σ2. Here π(μ2 ) is bounded by a constant plus a linear function of μ2 as we
vary μ2. For |x1 − x̄1| ≤ 1,∣∣EX2∼φ(·|μ2−γ(x1−μ•

1 ))
[
u2(x1, X2 )

]∣∣ ≤ q
(|x̄1| + 1 +π(μ2 )

) + (1 − q)π(μ2 ) + |κ|,
and the right-hand side is a positive and integrable function with respect to dν(μ2 ). For
a sequence x(n)

1 → x̄1, the integrand in D(x(n)
1 ; ν) is dominated by q(|x̄1| + 1 + π(μ2 )) +

(1 − q)π(μ2 ) + |κ| for all large enough n, so by the dominated convergence theorem,
D(x(n)

1 ; ν) →D(x̄1; ν). So D(·; ν) is continuous.

Now the key step is to separate the two-dimensional inference problem into a pair
of one-dimensional problems.

A.8.2 Learning μ•
1 I define the stochastic process of data log likelihood (for a given

fundamental). For each μ1, μ2 ∈ supp(m0 ), let �t(μ1, μ2 )(ω) be the log likelihood that
the fundamentals are (μ1, μ2 ) and histories (H̃s )s≤t(ω) are generated by the end of
round t. It is given by

�t(μ1, μ2 )(ω) := ln
(
m0(μ1, μ2 )

) +
t∑

s=1

ln
(
lik

(
H̃s(ω); μ1, μ2

))
,

where lik(x1, ∅; μ1, μ2 ) := φ(x1 | μ1 ) and lik(x1, x2; μ1, μ2 ) := φ(x1 | μ1 ) · φ(x2 | μ2 −
γ(x1 − μ1 )). Let g1(·) and g2(· | x1 ) be the true densities for the distributions of X1 and
X2|(X1 = x1 ), incorporating the true parameters μ•

1, μ•
2, and r. Let f2(z) be the Gaussian

distribution with the mean μ•
2 and variance σ2 evaluated at z. By simple algebra, we

may expand

�t(μ1, μ2 )(ω) = ln
(
m0(μ1, μ2 )

) +
t∑

s=1

ln
[
g1

(
X1,s(ω) −μ1 +μ•

1

)]

+
t∑

s=1

1
{
X1,s(ω) ≤ C̃s(ω)

} · ln
[
f2

(
X2,s(ω) −μ2 +μ•

2 + γ
(
X1,s(ω) −μ1

))]
.

I first establish that, without knowing anything about the process (C̃t ), we can con-
clude agents either learn μ•

1 arbitrarily well or they believe in a boundary value of μ2;
that is, either μ2 = μ

2
or μ2 = μ̄2. (We can later rule out these boundary beliefs of μ2.)

Lemma A.6. Let ε > 0 be given. If γ > 0, then

lim
t→∞M̃t

{
�∩ (([

μ•
1 − ε, μ•

1 + ε
] ×R

) ∪ ([
μ

1
, μ•

1
] × [μ

2
, μ

2
+ ε]

)
∪ ([

μ•
1, μ̄1

] × [μ̄2 − ε, μ̄2]
))} = 1.

If γ ≤ 0, then

lim
t→∞M̃t

{
�∩ (([

μ•
1 − ε, μ•

1 + ε
] ×R

) ∪ ([
μ

1
, μ•

1
] × [μ̄2 − ε, μ̄2]

)
∪ ([

μ•
1, μ̄1

] × [μ
2

, μ
2
+ ε]

))} = 1.
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Proof. First calculate the directional derivative ∇v
1
t �t(μ1, μ2 ), where v = (1/

√
1 + γ2,

−γ/
√

1 + γ2 )′ is the unit vector with slope −γ. We have

∂(�t/t )
∂μ1

(μ1, μ2 ) = 1
t

D1m0(μ1, μ2 )
m0(μ1, μ2 )

− 1
t

t∑
s=1

g′
1

(
X1,s −μ1 +μ•

1

)
g1

(
X1,s −μ1 +μ•

1
)

− γ

t

t∑
s=1

1{X1,s ≤ C̃s} · λ(
X2,s −μ2 +μ•

2 + γ(X1,s −μ1 )
)

∂(�t/t )
∂μ2

(μ1, μ2 ) = 1
t

D2m0(μ1, μ2 )
m0(μ1, μ2 )

− 1
t

t∑
s=1

1{X1,s ≤ C̃s} · λ(
X2,s −μ2 +μ•

2 + γ(X1,s −μ1 )
)
,

where D1m0 and D2m0 are the two partial derivatives of m0, and λ(·) := f ′
2(·)/f2(·). At

every ω and every (μ1, μ2 ), note the last summand in ∂(�t/t )
∂μ1

is γ times the last summand

in ∂(�t/t )
∂μ2

. Therefore,

∇v
1
t
�t(μ1, μ2 ) = −1

σ2
√

1 + γ2

(
1
t

t∑
s=1

g′
1
(
X1,s −μ1 +μ•

1
)

g1
(
X1,s −μ1 +μ•

1

)
)

+ 1

t
√

1 + γ2

1
t

D1m0(μ1, μ2 )
m0(μ1, μ2 )

− γ

t
√

1 + γ2

D2m0(μ1, μ2 )
m0(μ1, μ2 )

.

Since m0, D1m0, and D2m0 are continuous on the compact set �, there exists some 0 <

B < ∞ so that |(D1m0(μ1, μ2 ))/(m0(μ1, μ2 ))| < B and |(D2m0(μ1, μ2 ))/(m0(μ1, μ2 ))| <
B for all (μ1, μ2 ) ∈�. Pick any ε′ > 0. We have that for every ω,

inf
(μ1,μ2 )∈�L

[(
∇v

1
t
�t(μ1, μ2 )

)
+ 1

σ2
√

1 + γ2

(
1
t

t∑
s=1

g′
1
(
X1,s −μ1 +μ•

1
)

g1
(
X1,s −μ1 +μ•

1

)
)]

≥ −1
t

(1 + γ)√
1 + γ2

B,

where �L := [μ
1

, μ•
1 −2ε′]×[μ

2
+γε′, μ̄2] when γ > 0 and �L := [μ

1
, μ•

1 −2ε′]×[μ
2

, μ̄2 +
γε′] when γ ≤ 0 is a subrectangle to the left of μ•

1 − ε′. By the law of large numbers
applied to the independent and identically distributed (i.i.d.) sequence (g′

1(X1,s − (μ•
1 −

ε) +μ•
1 )/g1(X1,s − (μ•

1 − ε) +μ•
1 ))s≥1, almost surely

1
t

t∑
s=1

g′
1

(
X1,s − (

μ•
1 − ε

) +μ•
1

)
g1

(
X1,s − (

μ•
1 − ε

) +μ•
1
) → EX∼g1

[
g′

1(X1 + ε)
g1(X1 + ε)

]
.

Since EX∼g1[g′
1(X1 )/g1(X1 )] = 0 and since z �→ g′

1(z)/g1(z) = d
dz (ln(g1(z)) is strictly

decreasing by log concavity of the normal distribution, there is some δ > 0 so that
EX∼g1[g′

1(X1 + ε′ )/g1(X1 + ε′ )] = −δ. Furthermore, for any μ1 ≤ μ•
1 − ε′, then for any

x1 ∈ R, g′
1(x1 − μ1 + μ•

1 )/g1(x1 − μ1 + μ•
1 ) ≤ g′

1(x1 + ε′ )/g1(x1 − ε′ ). Along any ω where
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Figure 4. Eventually posterior belief assigns zero probability to �L.

1
t

∑t
s=1[g′

1(X1,s − (μ•
1 − ε′ ) +μ•

1 )/g1(X1,s − (μ•
1 − ε′ ) +μ•

1 )] → −δ, we therefore also have

lim sup
t→∞

sup
μ1≥μ•

1−ε′

1
t

t∑
s=1

g′
1
(
X1,s −μ1 +μ•

1
)

g1
(
X1,s −μ1 +μ•

1

) ≤ −δ.

Therefore, almost surely

lim inf
t→∞ inf

(μ1,μ2 )∈�L

(
∇v

1
t
�t(μ1, μ2 )

)
≥ δ

σ2
√

1 + γ2
.

Let �′
L be �L shifted by the vector (ε′, −γε′ ), so it remains in � and at least ε′ to the

left of μ•
1. That is, �′

L := [μ
1
+ ε′, μ•

1 − ε′] × [μ
2

, μ̄2 − γε′] if γ > 0 (illustrated in Figure 4)

and �′
L := [μ

1
+ ε′, μ•

1 − ε′] × [μ
2
− γε′, μ̄2] if γ ≤ 0. I will show that limt→∞ M̃t(�L ) = 0

almost surely. The idea is we can map every point in �L to another point in �′
L in the

direction of v (see Figure 4). For every point, its image under the map will have much
higher posterior probability, since we have a uniform, strictly positive lower bound on
the directional derivative of log likelihood �t in the direction of v:

M̃t(�L ) =
∫
�L

m̃t(μ1, μ2 )dμ

=
∫
�′

L

m̃t(μ1, μ2 ) · m̃t
(
μ1 − ε′, μ2 − γε′)
m̃t(μ1, μ2 )

dμ

=
∫
�′

L

m̃t(μ1, μ2 ) exp
(
�t

(
μ1 − ε′, μ2 − γε′) − �t(μ1, μ2 )

)
dμ

=
∫
�′

L

m̃t(μ1, μ2 ) exp
(

−
∫ ε

0
∇v�t

(
μ1 − ε′ + z, μ2 − γε′ + γz

)
dz

)
dμ.

Almost surely,

lim inf
t→∞ inf

(μ1,μ2 )∈�′
L,z∈[0,ε′]

(∇v�t
(
μ1 − ε′ + z, μ2 − γε′ + γz

)) ≥ tδ

σ2
√

1 + γ2
,
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so almost surely

lim sup
t→∞

M̃t(�L ) ≤ lim sup
t→∞

exp
(

− ε′tδ

σ2
√

1 + γ2

)
·
∫
�′

L

m̃t(μ1, μ2 )dμ.

But for every ω and t, the right-hand side is bounded above by exp(−(ε′tδ)/
(σ2

√
1 + γ2 )), which tends to 0 as t → ∞ since ε′, δ > 0. So in fact M̃t(�L ) → 0 almost

surely.
Since the choice of ε′ > 0 was arbitrary, this shows for every ε > 0, almost surely

limt→∞ M̃t([μ
1

, μ•
1 − ε] × [μ

2
+ ε, μ̄2]) = 0 when γ > 0 and limt→∞ M̃t([μ

1
, μ•

1 − ε] ×
[μ

2
, μ̄2 − ε]) = 0 when γ ≤ 0. And by a symmetric argument, limt→∞ M̃t([μ•

1 + ε, μ̄1] ×
[μ

2
, μ̄2 − ε]) = 0 when γ > 0 and limt→∞ M̃t([μ•

1 + ε, μ̄1] × [μ
2
+ ε, μ̄2]) = 0 when γ ≤ 0.

Taking the complement of these sets that get assigned probability 0 in the limit estab-
lishes the result.

A.8.3 Decomposing partial derivative of log likelihood with respect to μ2 I record a de-
composition of ∂�

∂μ2
(μ1, μ2 ), the partial derivative of the log-likelihood process with re-

spect to its second argument.
Define two stochastic processes,

ϕs(μ1, μ2 ) := −λ
(
X2,s −μ2 +μ•

2 + γ(X1,s −μ1 )
) · 1{X1,s ≤ C̃s}

ϕ̄s(μ1, μ2 ) := ∂

∂μ2
L̄

(
μ2 + γ

(
μ1 −μ•

1
) | C̃s

)
,

where L̄(μ2 | c) := ∫ c
−∞ g1(x1 ) · ∫ ∞

−∞ g2(x2 | x1 ) · ln(φ(x2 | μ2 − γ(x1 −μ•
1 )))dx2 dx1. Note

that ϕ̄s(μ1, μ2 ) is measurable with respect to Fs−1, since (C̃t ) is a predictable process.
Write ξs(μ1, μ2 ) := ϕs(μ1, μ2 ) − ϕ̄s(μ1, μ2 ) and yt(μ1, μ2 ) := ∑t

s=1 ξs(μ1, μ2 ). Write
zt(μ1, μ2 ) := ∑t

s=1 ϕ̄s(μ1, μ2 ).

Lemma A.7. We have ∂�t
∂μ2

(μ1, μ2 ) = D2m0(μ1,μ2 )
m0(μ1,μ2 ) + yt(μ1, μ2 ) + zt(μ1, μ2 ).

Proof. This comes from expanding �t(μ1, μ2 ) and taking its derivative as in the proof
of Lemma A.6.

Now I derive a result about the ξt(μ1, μ2 ) processes for different pairs (μ1, μ2 ).

Lemma A.8. There exists κξ < ∞ so that for every (μ1, μ2 ) ∈ � and for every t ≥ 1, ω ∈ 
,
E[ξ2

t (μ1, μ2 )|Ft−1](ω) ≤ κξ.

Proof. Note that ϕ̄t(μ1, μ2 ) is measurable with respect to Ft−1. Also, ϕt(μ1, μ2 )|Ft−1 =
ϕt(μ1, μ2 )|C̃t , because by independence of Xt from (Xs )t−1

s=1, the only information that
Ft−1 contains about ϕt(μ1, μ2 ) is in determining the cutoff threshold C̃t .
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At a sample path ω so that C̃t(ω) = c ∈R,

E
[
ϕs(μ1, μ2 )|Ft−1

]
(ω)

= E
[−λ

(
X2,s −μ2 +μ•

2 + γ(X1,s −μ1 )
) · 1{X1 ≤ c}

]
= ∂

∂μ2

∫ c

−∞
g1(x1 ) ·

∫ ∞

−∞
g2(x2 | x1 ) · ln

(
φ

(
x2 | μ2 − γ(x1 −μ1 )

))
dx2 dx1

= ∂

∂μ2

∫ c

−∞
g1(x1 ) ·

∫ ∞

−∞
g2(x2 | x1 ) · ln

(
φ

(
x2 | [μ2 + γ

(
μ1 −μ•

1
)] − γ

(
x1 −μ•

1
)))

dx2 dx1

= ∂

∂μ2
L̄

(
μ2 + γ

(
μ1 −μ•

1

) | c).

This shows that E[ϕs(μ1, μ2 )|Ft−1](ω) = ϕ̄s(μ1, μ2 )(ω). Since this holds regardless of c,
we get that E[ϕs(μ1, μ2 )|Ft−1] = ϕ̄t(μ1, μ2 ) for all ω, that is to say,

E
[
ξ2
t (μ1, μ2 )|Ft−1

] = Var
[
ϕt(μ1, μ2 )|Ft−1

] ≤ E
[
ϕ2
t (μ1, μ2 )|Ft−1

]
≤ E

[(
λ
(
X2,s −μ2 +μ•

2 + γ(X1,s −μ1 )
))2]

.

It suffices to show E[(λ(X2 − μ2 + μ•
2 + γ(X1 − μ1 )))2] exists for all μ1, μ2 ∈ R and is

continuous. The (finite) maximum value this expectation takes on the compact set �
can be taken as κξ.

Since the second derivative of the log of the normal density is uniformly bounded,
there exists some κf2 < ∞ so that for all z ∈ R, −κf2 < λ′(z) < 0. So λ(z) is Lipschitz
continuous with constant κf2 . Let b0 := λ(−μ2 +μ•

2 − γμ1 ).
For any x1, x2 ∈R,

(
λ
(
x2 −μ2 +μ•

2 + γ(x1 −μ1 )
))2

= b2
0 + (

λ
(
x2 −μ2 +μ•

2 + γ(x1 −μ1 )
))2 − (

λ
(−μ2 +μ•

2 − γμ1
))2

≤ b2
0 + ∣∣λ(

x2 −μ2 +μ•
2 + γ(x1 −μ1 )

) − λ
(−μ2 +μ•

2 − γμ1
)∣∣

× ∣∣λ(
x2 −μ2 + γ

(
x1 +μ•

2 −μ1
)) + λ

(−μ2 +μ•
2 − γμ1

)∣∣
≤ b2

0 + (
κf2 · (|x2| + γ|x1|

)) · (2b0 + (
κf2 · (|x2| + γ|x1|

)))
.

Note the bound is a second-order polynomial in |x1| and |x2|. We have

E
[(
λ
(
X2 −μ2 +μ•

2 + γ(X1 −μ1 )
))2]

≤ E
[
b2

0 + (
κf2 · (|X2| + γ|X1|

)) · (2b0 + (
κf2 · (|X2| + γ|X1|

)))]
<∞,

where the last inequality is due to the fact that X1 and X2 have finite second moments.

A.8.4 A law of large numbers for martingale increments I use a statistical result from
Heidhues, Kőszegi, and Strack (2018) to show that the yt/t term in the decomposition of
1
t
∂�t
∂μ2

almost surely converges to 0 in the long run and, furthermore, this convergence is
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uniform on �. This lets me focus on terms of the form ϕ̄s(μ1, μ2 ), which can be inter-
preted as the expected contribution to the log-likelihood derivative from round s data.
This lends tractability to the problem as ϕ̄s(μ1, μ2 ) only depends on C̃s , but not on X1,s

or X2,s .

Lemma A.9. For every (μ1, μ2 ) ∈�, limt→∞ |yt(μ1, μ2 )/t| = 0 almost surely.

Proof. Heidhues, Kőszegi, and Strack’s (2018) Proposition 10 shows that if (yt ) is a mar-
tingale such that there exists some constant v ≥ 0 satisfying [y]t ≤ vt almost surely, where
[y]t is the quadratic variation of (yt ), then almost surely limt→∞(yt/t ) = 0.

Consider the process yt(μ1, μ2 ) for a fixed (μ1, μ2 ) ∈ �. By definition yt =∑t
s=1 ϕs(μ1, μ2 ) − ϕ̄s(μ1, μ2 ). As established in the proof of Lemma A.8, for every s,

ϕ̄s(μ1, μ2 ) = E[ϕs(μ1, μ2 )|Fs−1]. So for t ′ < t,

E
[
yt(μ1, μ2 )|Ft ′

]

=
t ′∑

s=1

ϕs(μ1, μ2 ) − ϕ̄s(μ1, μ2 ) +E

[
t∑

s=t ′+1

ϕs(μ1, μ2 ) − ϕ̄s(μ1, μ2 )
∣∣∣Ft ′

]

=
t ′∑

s=1

ϕs(μ1, μ2 ) − ϕ̄s(μ1, μ2 ) +
t∑

s=t ′+1

E
[
E

[
ϕs(μ1, μ2 ) − ϕ̄s(μ1, μ2 )|Fs−1

] | Ft ′
]

=
t ′∑

s=1

ϕs(μ1, μ2 ) − ϕ̄s(μ1, μ2 ) + 0 = yt ′(μ1, μ2 ).

This shows (yt(μ1, μ2 ))t is a martingale. Also,

[
y(μ1, μ2 )

]
t
=

t−1∑
s=1

E
[(
ys(μ1, μ2 ) − ys−1(μ1, μ2 )

)2
|Fs−1

] =
t−1∑
s=1

E
[
ξ2
s (μ1, μ2 )|Fs−1

] ≤ κξ · t

by Lemma A.8. Therefore, Heidhues, Kőszegi, and Strack (2018) Proposition 10 applies.

Lemma A.10. limt→∞ sup(μ1,μ2 )∈� |yt(μ1, μ2 )/t| = 0 almost surely.

Proof. This argument is similar to Lemma 11 in Heidhues, Kőszegi, and Strack (2018).
I apply Lemma 2 of Andrews (1992), which says to prove this result I just need to check
conditions BD, P-SSLN, and S-LIP from Andrews (1992). BD holds because � is a
bounded subset of R2. P-SLLN holds by Lemma A.9, which shows for all (μ1, μ2 ) ∈ �,
limt→∞ |yt(μ1, μ2 )/t| = 0 almost surely.

Condition S-LIP is essentially a Lipschitz continuity condition. It requires finding a
sequence of random variables Bt such that |ξt(μ1, μ2 ) − ξt(μ′

1, μ′
2 )| ≤ Bt · (|μ1 − μ′

1| +
|μ2 − μ′

2|) almost surely, such that these random variables satisfy supt≥1
1
t

∑t
s=1 E[Bs] <

∞, and limt→∞ 1
t

∑t
s=1(Bs −E[Bs]) = 0 almost surely.
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But for every ω, ϕs(μ1, μ2 ) := −λ(X2,s −μ2 +μ•
2 + γ(X1,s −μ1 )) · 1{X1,s ≤ C̃s},

∣∣ϕs(μ1, μ2 ) −ϕs
(
μ′

1, μ′
2

)∣∣
≤ ∣∣λ(

X2,s −μ2 +μ•
2 + γ(X1,s −μ1 )

) − λ
(
X2,s −μ′

2 +μ•
2 + γ

(
X1,s −μ′

1

))∣∣.
As ln(f2(·)) has a bounded second derivative, the right-hand side is bounded by κf2 ·
(|μ2 −μ′

2| + γ · |μ1 −μ′
1|).

Now that we know |ϕs(μ1, μ2 ) − ϕs(μ′
1, μ′

2 )|(ω) ≤ κf2 · (|μ2 − μ′
2| + γ · |μ1 − μ′

1|) for
all ω, we must also have |ϕ̄s(μ1, μ2 ) − ϕ̄s(μ′

1, μ′
2 )|(ω) ≤ κf2 · (|μ2 −μ′

2| +γ · |μ1 −μ′
1|) for

all ω since ϕ̄s(μ1, μ2 ) = E[ϕs(μ1, μ2 ) | Fs−1].
Setting Bs as the constant 2κf2 for every s satisfies S-LIP.

A.8.5 Bounds on asymptotic beliefs and asymptotic cutoffs Recall that Lemma A.4 im-
plies that for any μ2, all pairs of fundamentals on the line li(μ2 ) have the same optimal
cutoff threshold. Then against any feasible model �(μ1, μ2; γ) with (μ1, μ2 ) ∈ �, the
best cutoff strategy is between C(μ•

1, μ◦
2

; γ) and C(μ•
1, μ̄◦

2; γ). Define these cutoffs as c◦
and c̄◦, respectively.

Lemma A.11. Let c◦ ≤ c ≤ c̄◦. If r − γ < 0, then lim inft→∞ C̃t ≥ c almost surely implies
limt→∞ M̃t(♦[μ◦

2
, μ∗

2(c))) = 0 almost surely and lim supt→∞ C̃t ≤ c almost surely implies

limt→∞ M̃t(♦(μ∗
2(c), μ̄◦

2]) = 0 almost surely. If r − γ > 0, then lim inft→∞ C̃t ≥ c almost
surely implies limt→∞ M̃t(♦(μ∗

2(c), μ̄◦
2]) = 0 almost surely and lim supt→∞ C̃t ≤ c almost

surely implies limt→∞ M̃t(♦[μ◦
2

, μ∗
2(c))) = 0 almost surely.

Proof. We prove the liminf statement for the case of r − γ < 0 and briefly discuss the
argument for the limsup statement for the case of r − γ > 0; the arguments for the other
two statements are very similar.

Consider the first statement when r − γ < 0, fixing some c with c◦ ≤ c ≤ c̄◦. We show
that for all ε > 0, there exists δ > 0 such that almost surely,

lim inf
t→∞ inf

(μ1,μ2 )∈�∩♦[μ◦
2

,μ∗
2(c)−ε]

1
t

∂�t

∂μ2
(μ1, μ2 ) ≥ δ.

From Lemma A.7, we may rewrite the left-hand side as

lim inf
t→∞ inf

(μ1,μ2 )∈�∩♦[μ◦
2

,μ∗
2(c)−ε]

[
1
t

D2m0(μ1, μ2 )
m0(μ1, μ2 )

+ yt(μ1, μ2 )
t

+ zt(μ1, μ2 )
t

]
,

which is no smaller than taking the inf separately across the three terms in the bracket:

lim inf
t→∞ inf

(μ1,μ2 )∈�∩♦[μ◦
2

,μ∗
2(c)−ε]

1
t

D2m0(μ1, μ2 )
m0(μ1, μ2 )

+ lim inf
t→∞ inf

(μ1,μ2 )∈♦[μ◦
2

,μ∗
2(c)−ε]

yt(μ1, μ2 )
t

+ lim inf
t→∞ inf

(μ1,μ2 )∈�∩♦[μ◦
2

,μ∗
2(c)−ε]

zt(μ1, μ2 )
t

.
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Since D2m0/m0 is bounded on � as D2m0 is continuous, and m0 is continuous and
strictly positive on the compact set �, the first term is 0 for every ω. To deal with the
second term,

lim inf
t→∞ inf

(μ1,μ2 )∈�∩♦[μ◦
2

,μ∗
2(c)−ε]

yt(μ1, μ2 )
t

≥ lim inf
t→∞ inf

(μ1,μ2 )∈�
−

∣∣∣∣yt(μ1, μ2 )
t

∣∣∣∣
= lim inf

t→∞

{
−1 · sup

(μ1,μ2 )∈�

∣∣∣∣yt(μ1, μ2 )
t

∣∣∣∣
}

.

Lemma A.10 gives limt→∞ sup(μ1,μ2 )∈� |yt(μ1, μ2 )/t| = 0 almost surely. Hence, we con-
clude that, almost surely,

lim inf
t→∞ inf

(μ1,μ2 )∈�∩♦[μ◦
2

,μ∗
2(c)−ε]

yt(μ1, μ2 )
t

≥ 0.

It suffices then to find δ > 0 and show lim inft→∞ inf(μ1,μ2 )∈�∩♦[μ◦
2

,μ∗
2(c)−ε](zt(μ1, μ2 )/

t ) ≥ δ almost surely. To do this, I first show ϕ̄s(μ1, μ2 )(ω) ≥ δ whenever C̃s(ω) ≥ c and
μ2 ≤ μ∗

2(c) − ε. At every c◦ ≤ c′ ≤ c̄◦, we get

∂

∂μ2
L̄

(
μ2 | c′) =

∫ c′

−∞
g1(x1 ) ·

∫ ∞

−∞
(−1) · g2(x2 | x1 ) ·λ(

x2 −μ2 +μ•
2 + γ

(
x1 −μ•

1

))
dx2 dx1.

The first-order condition implies that ∂
∂μ2

L̄(μ∗
2(c′ ) | c′ ) = 0. Since λ is strictly decreasing,

we also get ∂
∂μ2

L̄(μ2 | c′ ) > 0 for any μ2 <μ∗
2(c′ ). Since we have r − γ < 0, μ∗

2(·) is strictly

increasing, which means ∂
∂μ2

L̄(μ∗
2(c) − ε | c′ ) > 0 for any c ≤ c′ ≤ c̄◦. Let δ > 0 satisfy

minc′∈[c, c̄◦]
∂

∂μ2
L̄(μ∗

2(c) − ε | c′ ) > δ, which exists because c′ �→ ∂
∂μ2

L̄(μ∗
2(c) − ε | c′ ) is con-

tinuous on the compact domain [c, c̄◦]. When C̃s(ω) = c′ ∈ [c, c̄◦] and for any (μ1, μ2 ) ∈
�∩♦[μ◦

2
, μ∗

2(c) − ε], we have ϕ̄s(μ1, μ2 )(ω) = ∂
∂μ2

L̄(μ2 | c′ ) ≥ ∂
∂μ2

L̄(μ∗
2(c) − ε | c′ ) > δ.

Along any ω where lim inft→∞ C̃t ≥ c, we therefore have

lim inf
s→∞ inf

(μ1,μ2 )∈�∩♦[μ◦
2

,μ∗
2(c)−ε]

ϕ̄s(μ1, μ2 ) ≥ δ

and, thus,

lim inf
t→∞ inf

(μ1,μ2 )∈�∩♦[μ◦
2

,μ∗
2(c)−ε]

zt(μ1, μ2 )
t

= lim inf
t→∞ inf

(μ1,μ2 )∈�∩♦[μ◦
2

,μ∗
2(c)−ε]

1
t

[
t∑

s=1

ϕ̄s(μ1, μ2 )

]
≥ δ.

Let R := [μ
1

, μ̄1] × [μ
2

, μ̄2 − ε] ∩ ♦[μ◦
2

, μ∗
2(c) − 2ε] and let R′ := R + (0, ε)′ be R-shifted

upward by ε. We have both R, R′ ⊆ � ∩ ♦[μ◦
2

, μ∗
2(c) − ε]. Figure 5 illustrates the case of

γ > 0.
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Figure 5. Bounding the posterior belief assigned to the region R.

So using the same argument as in the proof of Lemma A.6,

M̃t(R) =
∫
R′
m̃t(μ1, μ2 ) · m̃t(μ1, μ2 − ε)

m̃t(μ1, μ2 )
dμ

=
∫
R′
m̃t(μ1, μ2 ) exp

(
�t(μ1, μ2 − ε) − �t(μ1, μ2 )

)
dμ

=
∫
R′
m̃t(μ1, μ2 ) exp

(
−

∫ ε

0

∂�t

∂μ2
(μ1, μ2 − ε+ z)dz

)
dμ.

Almost surely,

lim inf
t→∞ inf

(μ1,μ2 )∈R′,z∈[0,ε]

(
∂�t

∂μ2
(μ1, μ2 − ε+ z)

)
≥ tδ,

so almost surely

lim sup
t→∞

M̃t(R) ≤ lim sup
t→∞

exp(−tεδ) ·
∫
R′
m̃t(μ1, μ2 )dμ = 0.

Letting ε → 0 and noting that li(μ∗
2(c)) crosses the top edge of � to the left of μ•

1
when γ > 0, we get limt→∞ M̃t(♦[μ∗

2(c), μ̄◦
2] ∪ [μ

1
, μ•

1] × {μ̄2}) = 1 almost surely. But
from Lemma A.6, the set [μ

1
, μ•

1] × {μ̄2} must receive no weight in the limit; hence

limt→∞ M̃t(♦[μ◦
2

, μ∗
2(c))) = 0 almost surely as desired. (The case of γ < 0 is analogous.)

Now consider any c◦ ≤ c̄ ≤ c̄◦. I briefly discuss why lim supt→∞ C̃t ≤ c̄ almost surely
implies limt→∞ M̃t(♦[μ◦

2
, μ∗

2(c̄))) = 0 almost surely when r − γ > 0. As in the argument

before, the key is to find some δ > 0 such that ∂
∂μ2

L̄(μ2 | c′ ) > δ whenever c′ ∈ [c◦, c̄] and

μ2 ≤ μ∗
2(c̄). For each c ∈ [c◦, c̄◦], the FOC implies ∂

∂μ2
L̄(μ∗

2(c′ ) | c′ ) = 0. Since λ is strictly

decreasing, we also get ∂
∂μ2

L̄(μ2 | c′ ) > 0 for any μ2 < μ∗
2(c′ ). Since we now consider

r − γ > 0, μ∗
2(c) is strictly decreasing in c, and this shows ∂

∂μ2
L̄(μ∗

2(c̄) − ε | c′ ) > 0 for any

c◦ ≤ c′ ≤ c̄. We can find δ > 0 such that ∂
∂μ2

L̄(μ∗
2(c̄) − ε | c′ ) > δ for every c◦ ≤ c′ ≤ c̄ by

continuity, so we also get ∂
∂μ2

L̄(μ2 | c′ ) > δ for any μ2 ≤ μ∗
2(c̄) − ε.

Now I use a bound on agents’ asymptotic beliefs about μ2 to deduce asymptotic
restrictions on their cutoffs.
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Lemma A.12. Suppose that there are μ◦
2

≤ μl
2 < μh

2 ≤ μ̄◦
2 such that limt→∞ M̃t(♦[μl

2,

μh
2 ]) = 1 almost surely. Then lim inft→∞ C̃t ≥ C(μ•

1, μl
2; γ) and lim supt→∞ C̃t ≤ C(μ•

1, μh
2 ;

γ) almost surely.

Proof. I show lim inft→∞ C̃t ≥ C(μ•
1, μl

2; γ) almost surely. The argument establishing
lim supt→∞ C̃t ≤C(μ•

1, μh
2 ; γ) is symmetric.

Let cl = C(μ•
1, μl

2; γ), and recall before we defined c◦ := C(μ•
1, μ◦

2
; γ) and c̄◦ :=

C(μ•
1, μ̄◦

2; γ).
Let U(c; μ1, μ2 ) be the expected payoff of using the stopping strategy Sc when

(X1, X2 ) ∼ �(μ1, μ2; γ). I first show c �→ U(c; μ1, μ2 ) is single peaked: it is strictly in-
creasing up to c = c∗, the subjectively optimal cutoff under �(μ1, μ2; γ), then strictly de-
creasing afterward. Recall (from the proof of Lemma A.1 when γ ≥ −1) the cutoff form of
the best stopping strategy comes from the fact that u1(x1 ) < E�(μ1,μ2;γ)[u2(x1, X2 )|X1 =
x1] for x1 < c∗, but u1(x1 ) < E�(μ1,μ2;γ)[u2(x1, X2 )|X1 = x1] for x1 > c∗. For two cut-
offs c1 < c2 < c∗, the two stopping strategies Sc1 and Sc2 only differ in how they treat
first-period draws in the interval [c1, c2], so we can write the difference in their ex-
pected payoffs as

∫ c2
c1

(E�(μ1,μ2;γ)[u2(x1, X2 )|X1 = x1] − u1(x1 ))φ(x1 | μ1 )dx1. The inte-
grand is strictly positive on [c1, c2]; therefore, U(c1; μ1, μ2 ) < U(c2; μ1, μ2 ). This shows
U(·; μ1, μ2 ) is strictly increasing up until c∗; a symmetric argument shows it is strictly
decreasing after c∗.

By Lemma A.4, C(μ′
1, μ′

2; γ) = C(μ•
1, μ2; γ) for all (μ′

1, μ′
2 ) ∈ li(μ2 ). Since c �→

U(c; μ1, μ2 ) is single peaked for every (μ1, μ2 ) and since cl ≤ C(μ•
1, μ2; γ) for all μ2 ∈

[μl
2, μh

2 ], we also get cl ≤ C(μ′
1, μ′

2; γ) for every (μ′
1, μ′

2 ) ∈ ♦[μl
2, μh

2 ], since ♦[μl
2, μh

2 ] is
the union of the line segments, ♦[μl

2, μh
2 ] = ⋃

μ2∈[μl
2,μh

2 ] li(μ2 ).

Fix some ε > 0. We get U(cl; μ1, μ2 ) − U(cl − ε; μ1, μ2 ) > 0 for every (μ1, μ2 ) ∈
♦[μl

2, μh
2 ]. As (μ1, μ2 ) �→ (U(cl; μ1, μ2 ) − U(cl − ε; μ1, μ2 )) is continuous, there exists

some κ∗ > 0 so that U(cl; μ1, μ2 ) − U(cl − ε; μ1, μ2 ) > κ∗ for all (μ1, μ2 ) ∈ ♦[μl
2, μh

2 ].
In particular, if ν ∈ �(♦[μl

2, μh
2 ]) is a belief about fundamentals, then

∫
U(cl; μ1, μ2 ) −

U(cl − ε; μ1, μ2 )dν(μ) > κ∗.
Now let κ̄ := supc∈[c◦, c̄◦] sup(μ1,μ2 )∈�U(c; μ1, μ2 ) and κ := infc∈[c◦, c̄◦] inf(μ1,μ2 )∈�U(c;

μ1, μ2 ). Find p ∈ (0, 1) so that pκ∗ − (1 − p)(κ̄ − κ) = 0. At any belief ν̂ ∈ �(�) that
assigns more than probability p to the parallelogram ♦[μl

2, μh
2 ], the optimal cutoff is

larger than cl − ε. To see this, take any ĉ ≤ cl − ε and I will show ĉ is suboptimal. If ĉ < c,
then it is suboptimal after any belief on ♦. If c ≤ ĉ ≤ cl − ε, I show that

∫
U(cl; μ1, μ2 ) −

U(ĉ; μ1, μ2 )dν̂(μ) > 0. To see this, we may decompose ν̂ as the mixture of a probability
measure ν on ♦[μl

2, μh
2 ] and another probability measure νc on �\♦[μl

2, μh
2 ]. Let p̂ > p

be the probability that ν assigns to ♦[μl
2, μh

2 ]. The above integral is equal to

p̂

∫
♦[μl

2,μh
2 ]
U

(
cl; μ1, μ2

) −U(ĉ; μ1, μ2 )dν(μ)

+ (1 − p̂)
∫
�\♦[μl

2,μh
2 ]
U

(
cl; μ1, μ2

) −U(ĉ; μ1, μ2 )dνc(μ).

Since cl is to the left of the optimal cutoff for all (μ1, μ2 ) ∈ ♦[μl
2, μh

2 ] and ĉ ≤ cl − ε,
then U(ĉ; μ1, μ2 ) ≤ U(cl − ε; μ1, μ2 ) for all (μ1, μ2 ) ∈ ♦[μl

2, μh
2 ]. The first summand
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is no less than p̂
∫
♦[μl

2,μh
2 ] U(cl; μ1, μ2 ) − U(cl − ε; μ1, μ2 )dν(μ) ≥ p̂κ∗. Also, the inte-

grand in the second summand is no smaller than −(κ̄ − κ); therefore,
∫
U(cl; μ1, μ2 ) −

U(ĉ; μ1, μ2 )dν̂(μ) ≥ p̂κ∗ − (1 − p̂)(κ̄− κ). Since p̂ > p, we get p̂κ∗ − (1 − p̂)(κ̄− κ) > 0.
Along any sample path ω where limt→∞ M̃t(♦[μl

2, μh
2 ])(ω) = 1, eventually

M̃t(♦[μl
2, μh

2 ])(ω) > p for all large enough t, meaning lim inft→∞ C̃t(ω) ≥ cl − ε. Since
limt→∞ M̃t(♦[μl

2, μh
2 ]) = 1 almost surely, this shows lim inft→∞ C̃t ≥ C(μ•

1, μl
2; γ) − ε

almost surely. As the choice of ε > 0 was arbitrary, we conclude lim inft→∞ C̃t ≥
C(μ•

1, μl
2; γ) almost surely.

A.8.6 The contraction map I now combine the results established so far to prove the
convergence statement in Proposition 7.

Proof of Proposition 7 (Convergence). Let μA
2,[1] := μ◦

2
and μB

2,[1] := μ̄◦
2. For k =

2, 3, � � �, iteratively define μA
2,[k] := I(μA

2,[k−1]; γ) and μB
2,[k] := I(μB

2,[k−1]; γ). Let μl
2,[k] :=

min(μA
2,[k], μ

B
2,[k] ) and μh

2,[k] := max(μA
2,[k], μ

B
2,[k] ). I show by induction that for every k,

limt→∞ M̃t(♦[μl
2,[k], μ

h
2,[k]]) = 1 almost surely. (The base case of k = 1 holds by the sup-

port of the prior belief.)
Inductive step when r − γ < 0. From Lemma A.12, if limt→∞ M̃t(♦[μl

2,[k], μ
h
2,[k]]) = 1

almost surely, then lim inft→∞ C̃t ≥ C(μ•
1, μl

2,[k]; γ) and lim supt→∞ C̃t ≤ C(μ•
1, μh

2,[k]; γ)
almost surely. Using these conclusions in Lemma A.11, we deduce that almost surely,

lim
t→∞M̃t

(
♦

[
μ∗

2
(
C

(
μ•

1, μl
2,[k]; γ

))
, μ∗

2
(
C

(
μ•

1, μh
2,[k]; γ

))]) = 1.

Both C(μ•
1, ·; γ) and μ∗

2(·) are strictly increasing, so limt→∞ M̃t(♦[μl
2,[k+1],

μh
2,[k+1]]) = 1 almost surely.

Inductive step when r−γ > 0. Now C(μ•
1, ·; γ) is strictly increasing but μ∗

2(·) is strictly
decreasing. From Lemma A.12, if limt→∞ M̃t(♦[μl

2,[k], μ
h
2,[k]]) = 1 almost surely, then

lim inft→∞ C̃t ≥ C(μ•
1, μl

2,[k]; γ) and lim supt→∞ C̃t ≤ C(μ•
1, μh

2,[k]; γ) almost surely. But
using these conclusions in Lemma A.11, for the case of r −γ > 0, we further deduce that

lim
t→∞M̃t

(
♦

[
μ∗

2
(
C

(
μ•

1, μh
2,[k]; γ

))
, μ∗

2
(
C

(
μ•

1, μl
2,[k]; γ

))]) = 1.

So now we have μl
2,[k+1] = μ∗

2(C(μ•
1, μh

2,[k]; γ)) and μh
2,[k+1] = μ∗

2(C(μ•
1, μl

2,[k]; γ)), but

still conclude limt→∞ M̃t(♦[μl
2,[k+1], μ

h
2,[k+1]]) = 1 almost surely.

The iterates (μA
2,[k] )k≥1 and (μB

2,[k] )k≥1 are the iterates of a contraction map, so

limk→∞ μA
2,[k] = μ•

2 = limk→∞ μB
2,[k]. Thus, the agent’s posterior converges in L1 to li(μ∞

2 )
almost surely (since the support of the prior is bounded). In addition, the sequences of
bounds on asymptotic actions also converge by continuity: limk→∞ C(μ•

1, μA
2,[k]; γ) =

c∞ = limk→∞ C(μ•
1, μB

2,[k]; γ). This implies limt→∞ C̃t = c∞ almost surely. Finally, com-

bining the asymptotic belief result with Lemma A.6, we see that in fact M̃t converges in
L1 to the point (μ•

1, μ∞
2 ) almost surely.
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