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We study a canonical model of decentralized exchange for a durable good or as-
set, where agents are assumed to have time-varying, heterogeneous utility types.
Whereas the existing literature has focused on the special case of two types, we al-
low agents’ utility to be drawn from an arbitrary distribution. Our main contribu-
tion is methodological: we provide a solution technique that delivers a complete
characterization of the equilibrium, in closed form, both in and out of the steady
state. This characterization offers a richer framework for confronting data from
real-world markets and reveals a number of new economic insights. In particu-
lar, we show that heterogeneity magnifies the impact of frictions on equilibrium
outcomes and that this impact is more pronounced on price levels than on price
dispersion and welfare.

Keywords. Over-the-counter markets, search frictions, bargaining, heterogene-
ity, price dispersion.
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1. Introduction

We consider a canonical model of decentralized exchange for an indivisible durable
good or asset, such as a house, a bond, a credit-default swap, a commercial aircraft,
a painting, or even an idea for a company. A fixed measure of agents are periodically
and randomly matched in pairs, and bargain over the price if there are gains from trade.
Agents can hold either 0 or 1 unit of the asset, and have time-varying utility types that
generate heterogeneous valuations. Importantly, whereas the existing literature (e.g.,
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Duffie, Gârleanu, and Pedersen (henceforth DGP) (2005, 2007)) has focused on the spe-
cial case of two utility types, we allow agents’ utility types to be drawn from an arbitrary
distribution. Our main contribution is methodological: we provide a solution technique
that delivers a complete characterization of the equilibrium, in closed form, both in and
out of the steady state.

This characterization is valuable for several reasons. First, by establishing that the
model with arbitrary heterogeneity is much richer than the special case with only two
types, yet equally tractable, our characterization can be used to confront a broader set of
empirical observations in real-world markets. For example, unlike the special case with
only two types, our model is capable of generating dispersion in both the terms of trade
and the time it takes different investors to buy or sell—both important features of mar-
kets for durable goods and assets, especially assets traded in over-the-counter markets.
Indeed, in a companion paper (Hugonnier, Lester, and Weill (2020)), we apply some of
the techniques developed here to assess the role of search and bargaining frictions in
dealer-intermediated over-the-counter markets and show that our framework captures
some of the key features of the municipal bond market.

Second, solving the model without imposing arbitrary restrictions on the distribu-
tion of utility types reveals a common, underlying structure that unifies a broad class
of search-theoretic models and provides an important bridge to the literature on asset
pricing in frictionless environments. In particular, we show that, as in standard asset
pricing models, an agent’s private valuation for the asset in our setting can be repre-
sented as the present value of future dividend flows to a hypothetical investor whose
stochastic discount factor reflects the relevant search and bargaining frictions. Last,
studying the relationship between search and bargaining frictions and heterogeneity in
valuations reveals new economic insights. We highlight two. First, in an environment
with decentralized trade and heterogeneous valuations, we show that trade is mostly
concentrated among agents with utility types near the marginal type, as defined in a
frictionless benchmark. Hence, even absent heterogeneity in trading speed or inventory
capacity, our results suggest an underlying gravitational pull toward a market structure
in which a small “core” of agents emerge as natural intermediaries. Second, we show
that heterogeneity magnifies the impact of frictions on equilibrium outcomes, and that
this impact is more pronounced on price levels than on price dispersion and welfare.
As a result, using observed price dispersion to quantify the effect of search frictions on
price discounts or premia can be misleading, as price dispersion can essentially vanish
while price levels are still far from their frictionless counterpart. A practical implication
of this finding is that frictions can have relatively large effects on yield spreads in over-
the-counter (OTC) credit markets even when markets appear highly liquid according to
traditional measures like volume or price dispersion.

The paper proceeds as follows. After briefly reviewing the literature, we lay out the
environment in Section 2. In Section 3, we develop the methodology that allows us to
characterize the equilibrium in closed form, both in and out of steady state, for an ar-
bitrary initial distribution of utility types. Importantly, in our analysis of the individual
optimization problems, we establish several key properties of reservation values that
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hold irrespective of the cross-sectional distributions that agents take as given. This al-
lows us to eschew the usual guess-and-verify approach and ensures the uniqueness of
our equilibrium. Finally, in Section 4, we exploit our characterization to study the rela-
tionship between heterogeneity in valuations, asset prices, trading volume, and welfare
as trading frictions vanish.

1.1 Related literature

This paper belongs to the literature that applies search-and-matching theory to study
decentralized markets for durable goods or assets. For an extensive review of this litera-
ture, we refer the reader to Hugonnier, Lester, and Weill (2020), and provide here a more
narrow discussion of papers that study unintermediated or “pure” decentralized asset
markets.

The present paper merges and replaces two working papers, Hugonnier (2012) and
Lester and Weill (2013), in which we independently developed the methods to charac-
terize equilibria with arbitrary heterogeneity in valuations.1 Among other early attempts
to study pure decentralized trade with more than two types, Gavazza (2011) and Afonso
and Lagos (2015) are most closely related to our work.2 In particular, in an online ap-
pendix, Gavazza (2011) proposes a model of pure decentralized trade with a continuum
of types, but focuses on the case in which investors trade only once between preference
shocks. In contrast, many of the insights that arise in our environment derive from the
many trading opportunities that arise between preference shocks. In Afonso and Lagos
(2015), the heterogeneity in valuations derives from allowing investors to take on arbi-
trary (discrete) asset positions. Though several insights from Afonso and Lagos (2015)
also arise in our environment, the two papers differ in both methodology and focus:
while they establish many results via numerical methods in an attempt to confront trad-
ing patterns in the federal funds market, we derive a variety of analytical results that al-
low us to study implications for volume and prices across a broad range of OTC markets.

A number of subsequent papers have explored applications of our results, as well
as alternative dimensions of heterogeneity that are relevant in OTC markets, includ-
ing Shen, Wei, and Yan (2020), Üslü (2019), Sagi (2015), Farboodi, Jarosch, and Shimer
(2018), Farboodi, Jarosch, Menzio, and Wiriadinata (2018), Bethune, Sultanum, and Tra-
chter (2018), Zhang (2017), Liu (2018), Tse and Xu (2020), and Yang and Zeng (2019).
However, the most closely related work is our companion paper, Hugonnier, Lester, and
Weill (2020). In that paper, we study a market with two distinct types of agents, cus-
tomers and dealers, where the dealers themselves trade in a decentralized market. To
study characteristics of the intermediation process that have been documented using
new, transaction-level data sets, including so-called intermediation chains that are com-
mon in dealer-intermediated OTC markets, we assume that dealers have heterogenous
and continuously distributed private flow valuations for the asset (or inventory costs).

1In contrast to the current paper and Lester and Weill (2013), where heterogeneous valuations are “hard-
wired” into investors’ preferences, Hugonnier (2012) considers an environment where investors’ valuations
differ because of heterogeneity in beliefs about the growth rate of the dividend process and studies condi-
tions under which the speculative behavior highlighted by Harrison and Kreps (1978) in frictionless markets
also arises in a decentralized market setting.

2See also Cujean and Praz (2013) and Neklyudov (2019).
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Then, exploiting the techniques developed here to characterize the steady-state equi-
librium of the decentralized interdealer market, we derive a number of testable impli-
cations, calibrate the structural parameters to key moments from the municipal bond
market, and explore the model’s quantitative predictions regarding the relationship be-
tween the frictions that we estimate in the market, observable outcomes like bid–ask
spreads, and unobservable outcomes like welfare.

In contrast with Hugonnier, Lester, and Weill (2020), the current paper has a sharper
methodological focus: to provide a technical toolkit for analyzing decentralized markets
for assets or durable goods. For one, the model we study here is different, with no ex ante
distinction between customers and dealers, which allows us to characterize all equilib-
rium objects in closed form and to establish uniqueness of equilibrium. Second, with no
ex ante heterogeneity across agents, our solution techniques apply equally well to con-
tinuous distributions and those with mass points, so that our framework nests earlier,
discrete-type models as special cases (including, e.g., Duffie, Gârleanu, and Pedersen
(2005, 2007)). As we will argue below, this level of generality ultimately reveals deeper
properties of a broad class of search-and-matching models of pure decentralized asset
markets. Third, in the current environment, we are able to characterize the dynamics
of equilibria outside of the steady state, starting from any initial distribution of utility
types, making it straightforward to analyze the market’s response to a variety of aggre-
gate shocks, including a change in the quantity of the asset available (e.g., an issuance
shock) or a change in the distribution of valuations (e.g., an aggregate liquidity shock).
Finally, leveraging our explicit solutions, we are able to study the properties of equilib-
ria as trading frictions vanish, which reveals that heterogeneity magnifies the impact of
search frictions on allocations, prices, and welfare.

2. The model

2.1 Environment

We consider a continuous-time, infinite-horizon model with time indexed by t ≥ 0. The
economy is populated by a unit measure of infinitely lived, risk-neutral investors who
discount the future at rate r > 0. There is one indivisible, durable asset in fixed supply,
s ∈ (0, 1), and one perishable good that we treat as the numéraire. Investors can hold
either zero or one unit of the asset.

Preferences The instantaneous utility function of an investor at time t is ct +qtδt , where
ct denotes the investor’s net consumption of the numéraire good (ct < 0 if the investor
produces more than he consumes), qt ∈ {0, 1} denotes the investor’s asset holdings, and
δt denotes the utility flow the investor receives from holding a unit of the asset. We
assume that δt differs across investors and, for each investor, changes over time. In par-
ticular, let F0(δ) denote the cumulative distribution of utility types at t = 0. Moreover,
we suppose that each investor receives independent and identically distributed (i.i.d.)
preference shocks that arrive according to a Poisson process with intensity γ, where-
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upon the investor draws a new utility flow δ′ from a (potentially different) cumulative
distribution function F(δ′ ).3

Given these assumptions, the cumulative distribution of utility types across the pop-
ulation evolves according to

Ḟt(δ) = γ
(
F(δ) − Ft(δ)

)
,

where Ḟt denotes the time derivative. One can easily derive the explicit solution to this
ordinary differential equation,

Ft(δ) = F(δ) + e−γt
(
F0(δ) − F(δ)

)
,

and see that it converges to the long-run distribution F(δ) as t → ∞. Note that, at this
point, we place very few restrictions on the exogenous distributions F0(δ) and F(δ):
our solution method applies equally well to discrete distributions such as the two-point
distribution of DGP, continuous distributions, and a mixture of the two, and does not
require that F0(δ) be absolutely continuous with respect to F(δ). As a result, our frame-
work allows transient initial conditions that can be used to model the recovery of the
market following a liquidity shock. We only require that supp(F0 ) ∪ supp(F ) is included
in a compact interval and make it sufficiently large so that there are no mass points at
the boundaries. For simplicity, we normalize this interval to [0, 1].

Matching and trade Investors trade in a purely decentralized market in which each in-
vestor initiates contact with another randomly selected investor according to a Poisson
process with intensity λ/2. If two investors are matched and there are gains from trade,
they bargain over the price of the asset. The outcome is taken to be the Nash bargain-
ing solution, in which the investor with asset holdings q ∈ {0, 1} has bargaining power
θq ∈ (0, 1), with θ0 + θ1 = 1.

The state variable An important object of interest throughout our analysis will be the
joint distribution of utility types and asset holdings. The standard approach in the lit-
erature, following DGP, is to characterize this distribution by analyzing the density or
measure of investors across types (q, δ) ∈ {0, 1} × [0, 1]. Our analysis below reveals that
the model becomes much more tractable when we study instead the cumulative mea-
sure; this allows for a closed-form solution for an arbitrary underlying distribution of
types, both in and out of steady state.

Let �q,t(δ) denote the measure of investors at time t ≥ 0 with asset holdings q ∈ {0, 1}
and utility type less than or equal to δ ∈ [0, 1]. These joint distributions must satisfy the
following accounting identities for all t ≥ 0:

�0,t(δ) +�1,t(δ) = Ft(δ) (1)

�1,t(1) = s. (2)

3All of our results apply mutatis mutandis to the case where types are persistent, in the sense that the
distribution of an agent’s new type δ′ conditional on his old type δ, F(δ′|δ), is first-order stochastically
increasing in δ. The only caveat is that the equilibrium is then unique in the class of equilibria for which the
reservation value function (defined below) is bounded, rather than globally unique as it is in our benchmark
model.
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Equation (1) requires that the cross-sectional distribution of utility types in the popu-
lation is equal to Ft(δ) for all t ≥ 0. Equation (2) is a market-clearing condition that
equates the total measure of investors who own the asset and the total supply of assets
in the economy.

2.2 The frictionless benchmark: Centralized exchange

Before analyzing the environment with search frictions, it is helpful to first characterize
the equilibrium in a frictionless benchmark; this allows us to identify certain key pa-
rameters and, later, study the limiting properties of equilibria as search frictions vanish.
To that end, consider an environment with a competitive, centralized market where in-
vestors can buy or sell the asset instantly at some price pt for all t ≥ 0. Since there is
no aggregate uncertainty, the price path is necessarily a function of time in a determin-
istic equilibrium. We assume that this function is uniformly bounded and absolutely
continuous with a uniformly bounded (almost everywhere) derivative ṗt .

Given the price path, the objective of an investor is to choose a finite variation asset-
holding process qt ∈ {0, 1} that is progressively measurable with respect to the filtration
generated by his utility-type process and that maximizes

Eδ

[∫ ∞

0
e−rtδtqt dt −

∫ ∞

0
e−rtpt dqt

]
= p0q0 +Eδ

[∫ ∞

0
e−rtqt(δt − rpt + ṗt )dt

]
,

where the equality follows from integration by parts. Maximizing pointwise on the right-
hand side shows that an investor’s optimal asset holdings satisfy

q�t =

⎧⎪⎪⎨
⎪⎪⎩

0 if δt < rpt − ṗt

∈ {0, 1} if δt = rpt − ṗt

1 if δt > rpt − ṗt .

Since the supply of the asset is s, in equilibrium the marginal type must belong to the set

��
t ≡

{
δ ∈ [0, 1] : lim

y↑δ
Ft(y ) ≤ 1 − s ≤ Ft(δ)

}

at all times. The equilibrium distribution of utility types among investors who own 1
unit of the asset is accordingly given by

��
1,t(δ) = max

{
0, Ft(δ) − (1 − s)

}
and, from (1), the equilibrium distribution of utility types among investors who do not
own the asset must be ��

0,t(δ) = min{Ft(δ), 1 − s}.
Finally, since the correspondence ��

t is compact-valued and upper hemicontinu-
ous, it follows from the measurable selection theorem (Stokey and Lucas (1989, Theo-
rem 7.6)) that there exists a measurable path of marginal types, and it is easily seen that
given any such path of marginal types, the induced price path

p�
t =

∫ ∞

t
e−r(u−t )δ�u du
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implements the equilibrium asset allocation. In words, the frictionless price is the
present value of the utility flows enjoyed by a hypothetical investor who holds the asset
forever and whose utility type is marginal at all times. To guarantee that the frictionless
price is uniquely defined in the steady state, from now on we will ignore the nongeneric
case where the steady-state distribution of utility types F(δ) is flat at the level 1 − s.

3. Equilibrium with search frictions

We now characterize the equilibrium with search frictions in three steps. First, in Sec-
tion 3.1, we derive investors’ reservation value functions, which allows us to characterize
the (unique) optimal trading rules and equilibrium asset prices given any path for the
joint distribution of utility types and asset holdings, �0,t and �1,t . Then, in Section 3.2,
we show that the optimal trading rules imply a unique path for the joint distributions
�0,t and �1,t , which we derive explicitly. Finally, in Section 3.3, we combine these re-
sults to construct the unique equilibrium and show that it converges to a steady state
from any initial allocation.

3.1 Reservation values

Let Vq,t(δ) denote the maximum attainable utility of an investor with q ∈ {0, 1} units of
the asset and utility type δ ∈ [0, 1] at time t ≥ 0, and denote this investor’s reservation
value by4

�Vt(δ) ≡ V1,t(δ) − V0,t(δ).

In addition to considering an arbitrary distribution of utility types, our analysis of reser-
vation values improves on the existing literature in several dimensions. First, in Sec-
tion 3.1.1, we depart from the usual guess-and-verify approach by establishing elemen-
tary properties of reservation values directly, without making any a priori assumption
on the direction of gains from trade. This allows us, down the road in Theorem 1, to
claim a general uniqueness result for equilibrium. Second, in Section 3.1.2, we study a
differential representation of reservation values that generalizes an earlier closed-form
solution for the trading surplus in DGP’s two-type model. Third, in Section 3.1.3, we
study a sequential representation of reservation values that generalizes the concept of a
marginal investor to an asset market with search-and-matching frictions.

3.1.1 Necessary properties Denote by

Pτ
(
δ, δ′) ≡ θ0�Vτ(δ) + θ1�Vτ

(
δ′) (3)

the Nash solution to the bargaining problem at time τ ≥ 0 between an asset owner of
utility type δ and a non-owner of utility type δ′. An application of Bellman’s principle of

4Note that the reservation value function is well defined for all δ ∈ [0, 1] and not only for those utility
types in the support of the underlying distribution, Ft (·).
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optimality shows that

V1,t(δ) = Et

[∫ τ

t
e−r(u−t )δdu+ e−r(τ−t )

(
1{τ=τ1}V1,τ(δ) + 1{τ=τγ }

∫ 1

0
V1,τ

(
δ′)dF(

δ′)

+ 1{τ=τ0}

∫ 1

0
max

{
V1,τ(δ), V0,τ(δ) + Pτ

(
δ, δ′)}d�0,τ

(
δ′)

1 − s

)]
, (4)

where τγ is an exponential random variable with parameter γ that represents the arrival
of a preference shock, τq is an exponential random variable with parameter λs if q =
1 and λ(1 − s) if q = 0 that represents the occurrence of a meeting with a randomly
selected investor who owns q units of the asset, and the expectation is conditional on
τ ≡ min{τ0, τ1, τγ } > t.

Substituting the price (3) into (4) and simplifying shows that the maximum attain-
able utility of an asset owner satisfies

V1,t(δ) = Et

[∫ τ

t
e−r(u−t )δdu+ e−r(τ−t )

(
V1,τ(δ)

+ 1{τ=τγ }

∫ 1

0

(
V1,τ

(
δ′) − V1,τ(δ)

)
dF

(
δ′)

+ 1{τ=τ0}

∫ 1

0
θ1

(
�Vτ

(
δ′) −�Vτ(δ)

)+ d�0,τ
(
δ′)

1 − s

)]
. (5)

The first term on the right-hand side of (5) accounts for the fact that an asset owner
enjoys a constant flow of utility at rate δ until time τ. The remaining terms capture
the three possible events for an asset owner at time τ: a preference shock (τ = τγ ), in
which case a new utility type is drawn from the distribution F(δ′ ); meeting another as-
set owner (τ = τ1 ), in which case there are no gains from trade and the continuation
payoff is V1,τ(δ); or meeting a non-owner (τ = τ0 ), who is of type δ′ with probability
d�0,τ(δ′ )/(1 − s), in which case the owner sells the asset if the payoff from doing so
exceeds the payoff from keeping the asset and continuing to search.

Proceeding in a similar way for q = 0 shows that the maximum attainable utility of
an investor who does not own an asset satisfies

V0,t(δ) = Et

[
e−r(τ−t )

(
V0,τ(δ) + 1{τ=τγ }

∫ 1

0

(
V0,τ

(
δ′) − V0,τ(δ)

)
dF

(
δ′)

+ 1{τ=τ1}

∫ 1

0
θ0

(
�Vτ(δ) −�Vτ

(
δ′))+ d�1,τ

(
δ′)

s

)]
, (6)

and subtracting (6) from (5) shows that the reservation value function satisfies the au-
tonomous dynamic programming equation

�Vt(δ) = Et

[∫ τ

t
e−r(u−t )δdu+ e−r(τ−t )

(
�Vτ(δ)

+ 1{τ=τγ }

∫ 1

0

(
�Vτ

(
δ′) −�Vτ(δ)

)
dF

(
δ′)
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+ 1{τ=τ0}

∫ 1

0
θ1

(
�Vτ

(
δ′) −�Vτ(δ)

)+ d�0,τ
(
δ′)

1 − s

− 1{τ=τ1}

∫ 1

0
θ0

(
�Vτ(δ) −�Vτ

(
δ′))+ d�1,τ

(
δ′)

s

)]
. (7)

This equation reveals that an investor’s reservation value is influenced by two distinct
option values, which have opposing effects. On the one hand, an investor who owns
an asset has the option to search and find a non-owner who will pay even more for the
asset; as shown on the third line, this option increases her reservation value. On the
other hand, an investor who does not own an asset has the option to search and find
an owner who will sell at an even lower price; as shown on the fourth line, this option
decreases her willingness to pay and, hence, her reservation value.

To guarantee the global optimality of the trading decisions induced by (5) and (6),
we further require that the maximum attainable utilities of owners and non-owners, and
hence the reservation values, satisfy the transversality conditions

lim
t→∞e−rtVq,t(δ) = lim

t→∞e−rt�Vt(δ) = 0, (q, δ) ∈ {0, 1} × [0, 1]. (8)

The following proposition establishes the existence, uniqueness, and some necessary
properties of solutions to (5), (6), and (7) that satisfy (8).

Proposition 1. There exists a unique function �V : R+ × [0, 1] → R that satisfies (7)
subject to (8). This function is uniformly bounded, absolutely continuous in (t, δ) ∈
R+ × [0, 1], and strictly increasing in δ ∈ [0, 1], with a uniformly bounded derivative with
respect to utility type. Given �Vt(δ), there are unique functions V0,t(δ) and V1,t(δ) that
satisfy (5), (6), and (8).

The fact that reservation values are strictly increasing in δ implies that when an as-
set owner of type δ meets a non-owner of type δ′ > δ, they will always agree to trade.
Indeed, these two investors face the same distributions of future trading opportunities
and preference shocks. Thus, the only relevant distinction between them is the differ-
ence in utility flow enjoyed from the asset, which implies that the reservation value of an
investor of type δ′ is strictly larger than that of an investor of type δ < δ′. The monotonic-
ity property holds regardless of the distributions �q,t(δ), which investors take as given
when calculating their optimal trading strategy. Moreover, as we establish below, this
property greatly simplifies the derivation of closed-form solutions for both reservation
values and the equilibrium distribution of asset holdings and utility types.

3.1.2 Differential representation Integrating both sides of (7) with respect to the condi-
tional distribution of τ, and using the fact that reservation values are strictly increasing
in utility type, we obtain that the reservation value function satisfies the integral equa-
tion

�Vt(δ) =
∫ ∞

t
e−(r+γ+λ)(u−t )

(
δ+ λ�Vu(δ) + γ

∫ 1

0
�Vu

(
δ′)dF(

δ′)
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+ λ

∫ 1

δ
θ1

(
�Vu

(
δ′) −�Vu(δ)

)
d�0,u

(
δ′)

− λ

∫ δ

0
θ0

(
�Vu(δ) −�Vu

(
δ′))d�1,u

(
δ′))du. (9)

In addition, since Proposition 1 establishes that �Vt(δ) is absolutely continuous in
(t, δ) ∈R+ × [0, 1] with a bounded derivative with respect to utility type, we know that

�Vt(δ) = �Vt(0) +
∫ δ

0
σt

(
δ′)dδ′ (10)

for some nonnegative and uniformly bounded function σt(δ) that is itself absolutely
continuous in time for almost every δ ∈ [0, 1]. We naturally interpret this function as
a measure of the local surplus in the decentralized market, since the gains from trade
between a seller of type δ and a buyer of type δ+dδ are approximately given by σt(δ)dδ.

Substituting (10) into (9), changing the order of integration, and differentiating both
sides of the resulting equation with respect to t and δ reveals that the local surplus sat-
isfies (

r + γ + λθ1
(
1 − s −�0,t(δ)

) + λθ0�1,t(δ)
)
σt(δ) = 1 + σ̇t(δ) (11)

at almost every point of R+ × [0, 1]. The local surplus characterized in (11) is the natural
generalization of the trading surplus in DGP to nonstationary environments with arbi-
trary distributions of utility types. To see this precisely, recall that DGP characterized
an equilibrium in a special case of our model: in a steady state with two utility types,
δ� ≤ δh. In that setting, the measures 1 − s −�0(δ) and �1(δ) are constant over [δ�, δh ),
and correspond to the masses of buyers and sellers, respectively, denoted by μhn and
μ�o in DGP. Using this property, integrating both sides of (11), and restricting attention
to the steady state gives

(r + γ + λθ1μhn + λθ0μ�o )
(
�V (δh ) −�V (δ� )

) = δh − δ�,

which is the surplus formula of DGP.
Given (11), we can now derive a closed-form solution for reservation values. A calcu-

lation provided in Appendix A.1 shows that, together with the requirements of bound-
edness and absolute continuity in time, (11) uniquely pins down the local surplus as

σt(δ) =
∫ ∞

t
e− ∫ u

t (r+γ+λθ1(1−s−�0,ξ(δ))+λθ0�1,ξ(δ))dξ du. (12)

Combining this explicit solution for the local surplus with (9) and (10) allows us to derive
the reservation value function in closed form.

Proposition 2. For any distribution �0,t(δ) and �1,t(δ) satisfying (1) and (2), the
unique solution to (7) and (8) is explicitly given by

�Vt(δ) =
∫ ∞

t
e−r(u−t )

(
δ−

∫ δ

0
σu

(
δ′)(γF(

δ′) + λθ0�1,u
(
δ′))dδ′
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+
∫ 1

δ
σu

(
δ′)(γ(

1 − F
(
δ′)) + λθ1

(
1 − s −�0,u

(
δ′)))dδ′

)
du, (13)

where the local surplus σt(δ) is defined by (12).

We close this subsection with several intuitive comparative static results for reserva-
tion values.

Corollary 1. For any (t, δ) ∈ R+ × [0, 1], the reservation value �Vt(δ) increases if an
investor can bargain higher selling prices (larger θ1), if he expects to have higher future
valuations (a first-order stochastic dominant shift in F(δ′ )), or if he expects to trade with
higher valuation counterparts (a first-order stochastic dominance shift in the path of ei-
ther �0,t ′(δ′ ) or �1,t ′(δ′ )).

To complement these results, note that an increase in the search intensity, λ, can
either increase or decrease reservation values. This is because of the two option values
discussed above: an increase in λ increases an owner’s option value of searching for a
buyer who will pay a higher price, which drives the reservation value up, but it also in-
creases a non-owner’s option value of searching for a seller who will offer a lower price,
which has the opposite effect. As we will see below in Section 4, the net effect is ambigu-
ous and depends on all parameters of the model.

3.1.3 Sequential representation Differentiating both sides of (9) with respect to time
shows that the reservation value function can be characterized as the unique bounded
and absolutely continuous solution to the Hamilton–Jacobi–Bellman (HJB) equation

r�Vt(δ) = δ+�V̇t(δ) + γ

∫ 1

0

(
�Vt

(
δ′) −�Vt(δ)

)
dF

(
δ′)

+ λ

∫ 1

δ
θ1

(
�Vt

(
δ′) −�Vt(δ)

)
d�0,t

(
δ′)

+ λ

∫ δ

0
θ0

(
�Vt

(
δ′) −�Vt(δ)

)
d�1,t

(
δ′). (14)

The following proposition shows that the solution to this equation can be represented as
the present value of utility flows from the asset to a hypothetical investor whose utility
type process is adjusted to reflect the frictions present in the market.

Proposition 3. The reservation value function can be represented as

�Vt(δ) = Et,δ

[∫ ∞

t
e−r(s−t )δ̂s ds

]
, (15)

where the market-valuation process, δ̂t , is a pure jump Markov process on [0, 1] with in-
finitesimal generator defined by

At[v](δ) ≡
∫ 1

0

(
v
(
δ′) − v(δ)

)(
γ dF

(
δ′) + 1{δ′>δ}λθ1 d�0,t

(
δ′) + 1{δ′≤δ}λθ0 d�1,t

(
δ′))

for any uniformly bounded function v : [0, 1] → R.
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Representations such as (15) are standard in frictionless asset pricing, where private
values are obtained as the present value of cash flows under a probability constructed
from marginal rates of substitution. The emergence of such a representation in a de-
centralized market is, to the best of our knowledge, new to this paper and can be viewed
as generalizing the concept of the marginal investor. Namely, in the frictionless bench-
mark, the market valuation is equal to the utility flow of the marginal investor, δ�t , since
investors can trade instantly at price p�

t . In a decentralized market, the market valuation
differs from δ�t for two reasons. First, since meetings are not instantaneous, an owner re-
ceives his private utility flow until finding a trading partner. Second, since investors do
not always trade with the marginal type, the terms of trade are random and depend on
the distribution of types among trading partners. Importantly, this second channel is
only active if there are more than two utility types, because otherwise a single price gets
realized in bilateral meetings.

3.2 The joint distribution of asset holdings and types

In this section, we provide a closed-form characterization of the joint equilibrium dis-
tribution of asset holdings and utility types, in and out of steady state. To the best of
our knowledge, this characterization is new to the literature. In particular, even in their
special two-type case, DGP did not derive an explicit characterization of out-of-steady-
state dynamics. We then establish that this distribution converges to the steady state
from any initial conditions satisfying (1) and (2). Finally, we discuss several properties
of the steady-state distribution and explain how its shape depends on the arrival rates of
preference shocks and trading opportunities.

Since reservation values are increasing in utility type, trade occurs between two in-
vestors if and only if one is an owner with utility type δ′ and the other is a non-owner with
utility type δ′′ ≥ δ′. Investors with the same utility type are indifferent between trading
or not, but whether they trade is irrelevant since they effectively exchange ownership
type. As a result, the rate of change in the measure of owners with utility type less than
or equal to a given δ ∈ [0, 1] satisfies

�̇1,t(δ) = γ
(
s −�1,t(δ)

)
F(δ) − γ�1,t(δ)

(
1 − F(δ)

) − λ�1,t(δ)
(
1 − s −�0,t(δ)

)
. (16)

The first term in (16) is the inflow due to type-switching: at each instant, a measure γ(s−
�1,t(δ)) of owners with utility type greater than δ draws a new utility type, which is less
than or equal to δ with probability F(δ). A similar logic can be used to understand the
second term, which is the outflow due to type-switching. The third term is the outflow
due to trade. In particular, a measure (λ/2)�1,t(δ) of investors who own the asset and
have utility type less than δ initiates contact with another investor, and with probability
1 − s−�0,t(δ), that investor is a non-owner with utility type greater than δ, so that trade
ensues. The same measure of trades occur when non-owners with utility type greater
than δ initiate trade with owners with utility type less than δ, so that the sum equals the
third term in (16).5

5Note that trading generates positive gross inflow into the set of owners with utility type less than δ, but
zero net inflow. Indeed, a gross inflow arises when a non-owner with utility type δ′ ≤ δ meets an owner
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Using (1), we can rewrite (16) as a first-order ordinary differential equation for the
measure of asset owners with utility type less than or equal to each δ:

�̇1,t(δ) = −λ�1,t(δ)2 −�1,t(δ)
(
γ + λ

(
1 − s − Ft(δ)

)) + γsF(δ). (17)

Importantly, this Riccati equation for �1,t(δ) is independent from �1,t(δ′ ) for all δ′ �= δ,
and holds without imposing any regularity conditions on the distribution of utility types
Ft(δ): it works equally well for continuous distributions, discrete distributions, or mix-
tures of the two, with or without transient states.6 Proposition 4 below establishes that
there exists a unique solution to this equation and shows that it converges to a unique
steady state.

Proposition 4. Given (δ, �1,0(δ)) ∈ [0, 1]2 × [0, s], there exists a unique solution �1,t(δ)
to (17). This solution is defined for all t ≥ 0 and converges to the steady-state measure

�1(δ) = F(δ) −�0(δ) ≡ −1
2

(
1 − s + γ/λ− F(δ)

) + 1
2
(δ), (18)

where

(δ) ≡
√(

1 − s + γ/λ− F(δ)
)2 + 4s(γ/λ)F(δ).

In the proof of Proposition 4, in the Appendix, we derive the explicit solution for
�1,t(δ) outside of the steady state. To illustrate the convergence of the equilibrium
distributions to the steady state, we introduce a simple numerical example, which we
will continue to use throughout the text. In this example, the discount rate is r = 0.05;
the asset supply is s = 0.5; the meeting rate is λ = 12, so that a given investor meets
others on average once a month; the arrival rate of preference shocks is γ = 1, so that
investors change type on average once a year; the initial distribution of utility types
among asset owners is �1,0(δ) = sF(δ);7 and the underlying distribution of utility types
is F0(δ) = F(δ) = δα with α = 1.5, so that Ft(δ) = F(δ) at all times and the (constant)
marginal type from the frictionless benchmark is given by δ� = 0.6299.

Using this parameterization, the left panel of Figure 1 plots the equilibrium distribu-
tions among owners and non-owners at t = 0, after 1 month, after 6 months, and in the
limiting steady state. As time passes, one can see that the assets are gradually allocated
toward investors with higher valuations: the distribution of utility types among owners
improves in the sense of first-order stochastic dominance (FOSD). Similarly, the distri-
bution of utility types among non-owners deteriorates, in the FOSD sense, indicating
that investors with low valuations are less and less likely to hold the asset over time.

with an even lower type δ′′ < δ′. By trading, the previous owner of utility type δ′′ leaves the set, but the new
owner of utility type δ′ enters the same set, resulting in zero net inflow.

6In contrast, differentiating with respect to δ reveals that the dynamic system for measures (instead of
cumulative measures) does exhibit interdependence across values of δ, i.e., the equation characterizing the
density (or point mass) at δ depends on the density at δ′ �= δ, making closed-form solutions more difficult
to attain in all but the simplest cases.

7Note that, since s = 0.5, the initial distribution of utility types among asset owners and non-owners are
the same, i.e., �1,0(δ) = sF(δ) = (1 − s)F(δ) = �0,0(δ).
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Figure 1. Equilibrium distributions. Notes: Panel A plots the cumulative distribution of types
among non-owners (upper curves) and owners (lower curves) at different points in time. Panel
B plots these distributions in the steady state, for different levels of search frictions, indexed by
the average intercontact time, 1/λ.

Focusing on the steady-state distributions, (18) offers several natural comparative
statics that we summarize in the following corollary.

Corollary 2. For any δ ∈ [0, 1], the steady-state measure �1(δ) of asset owners with
utility type less than or equal to δ is increasing in γ and decreasing in λ.

Intuitively, as preference shocks become less frequent (i.e., γ decreases) or trading
opportunities become more frequent (i.e., λ increases), the asset is allocated to investors
with higher valuations more efficiently, implying a FOSD shift in the distribution of types
among owners. In the limit, where types are permanent (γ → 0) or trading opportuni-
ties are constantly available (λ → ∞), the steady-state distributions converge to their
frictionless counterparts, as illustrated by the right panel of Figure 1, and the allocation
is efficient. We return to this frictionless limit in Section 4.

3.3 Equilibrium

Definition 1. An equilibrium is a reservation value function �Vt(δ), and a pair of dis-
tributions �0,t(δ) and �1,t(δ) such that the distributions satisfy (1), (2), and (17), and
the reservation value function satisfies (7) subject to (8) given the distributions.

Given the analysis above, a full characterization of the unique equilibrium is im-
mediate. Note that uniqueness follows from the fact that we proved reservation values
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were strictly increasing directly, given arbitrary time paths for the distributions �0,t(δ)
and �1,t(δ), rather than guessing and verifying that such an equilibrium exists.8

Theorem 1. There exists a unique equilibrium. Moreover, given any initial conditions
satisfying (1) and (2), this equilibrium converges to the steady state where reservation val-
ues are given by

r�V (δ) = δ−
∫ δ

0
σ

(
δ′)(γF(

δ′) + λθ0�1
(
δ′))dδ′

+
∫ 1

δ
σ

(
δ′)(γ(

1 − F
(
δ′)) + λθ1

(
1 − s −�0

(
δ′)))dδ′ (19)

with the time-invariant local surplus

σ(δ) = 1

r + γ + λθ1
(
1 − s −�0(δ)

) + λθ0�1(δ)
,

and the cumulative distributions of utility types among asset owners and non-owners are
given by (1) and (18).

4. The frictionless limit

We now study the equilibrium as trading frictions vanish, i.e., as λ → ∞.9 This is an
important exercise for two reasons. First, this is the empirically relevant case in many
financial markets, where trading speeds are becoming faster and faster (e.g., Pagnotta
and Philippon (2018)). Second, this exercise reveals several new economic insights re-
garding the effects of heterogeneity in markets with search frictions. We highlight two
specific results. First, we show that heterogeneity creates a large volume of trade, rel-
ative to the frictionless benchmark, that becomes increasingly concentrated among a
small set of agents as the trading speed increases. Second, we show that heterogeneity
magnifies the impact of frictions on equilibrium outcomes, and that this impact is more
pronounced on price levels than on price dispersion and welfare. As a result, using ob-
served price dispersion to quantify the effect of search frictions on price discounts or
premia can be misleading, as price dispersion can essentially vanish while price levels
are still far from their frictionless counterpart.

4.1 Misallocation and trading volume

We focus on the asymptotic properties of the steady-state equilibrium, in which the dis-
tribution of utility types is F(δ), and drop all time subscripts accordingly. To start, we

8Also note that uniqueness does not depend on the assumption of Nash bargaining, but rather extends
to any method of price determination that achieves bilateral efficiency and preserves the monotonicity of
reservation value functions.

9As will become clear, convergence is governed by a composite parameter, λ/γ, which may be inter-
preted as the ratio between the supply and the demand of transaction services. However, in many contexts,
it is economically more meaningful to vary the supply holding the demand fixed, or vice versa. Correspond-
ingly, we choose to present our results as the limiting case of λ → ∞, holding γ fixed.
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explore the equilibrium asset allocation—and the process of reallocation—as trading
frictions vanish. As a first step, we establish that the allocation converges to its friction-
less counterpart, ��

q(δ), q ∈ {0, 1}, as λ → ∞.

Lemma 1. As search frictions vanish, limλ→∞�q(δ) =��
q(δ) for q ∈ {0, 1}.

Misallocation While Lemma 1 is standard in models of this ilk, the nature of misallo-
cation near the frictionless limit reveals new insights when there is rich heterogeneity in
the distribution of valuations. To formalize the concept of misallocation, let

M(δ) =
∫ δ

0
1{δ′<δ�} d�1

(
δ′) +

∫ δ

0
1{δ′≥δ�} d�0

(
δ′),

where the utility type δ� defined by the equality F(δ� ) = 1 − s is the marginal type of the
frictionless steady-state equilibrium. This measure is the sum of two types of misallo-
cation: the measure of investors with utility type less than δ who would own the asset
in a frictionless environment but do not own it in the presence of search frictions; and
the measure of investors with utility type less than δ who would not own the asset in a
frictionless environment but own it in the presence of search frictions.

To measure the extent of misallocation at a specific utility type, we study the ra-
tio M(δ)

M(1) , i.e., the cumulative distribution function (CDF) of misallocation across utility
types. The following result establishes that misallocation becomes concentrated around
the marginal type as trading frictions vanish.

Lemma 2. For any ε > 0, limλ→∞ M(δ�+ε)−M(δ�−ε)
M(1) = 1.

Intuitively, misallocation becomes highly concentrated around the marginal type
because there is an equilibrium feedback loop between the intensity with which agents
with utility type δ trade and the distribution of utility types among owners and non-
owners. For example, since the selling intensity λ(1 − s − �0(δ)) is decreasing in δ, an
owner with a utility type δ′ ≈ 0 sells relatively quickly. As a result, there is little misalloca-
tion among low utility types, i.e., most agents with δ′ ≈ 0 are non-owners, which makes
it easy to sell when an owner draws a low utility type. By contrast, an owner with utility
type δ′′ just below δ� sells much more slowly, since most agents with δ > δ′′ already own
the asset, thus reinforcing the fact that misallocation clusters in a neighborhood around
the marginal type δ�.

We emphasize that this property of misallocation arises in our decentralized market
because trading intensities differ across utility types. Indeed, when all investors trade
with equal intensity—as in frictionless models with centralized markets or in frictional
models where all trades are executed by a set of dealers who have access to central-
ized markets—the measure of misallocation described above would be constant across
utility types.
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Trading volume Next, we show that the concentration of misallocation translates into
a concentration of trading volume near the marginal type. To see this, let us first define
trading volume as the flow rate of trades per unit time:

ϑ= λ

∫
[0,1]2

1{δ0>δ1} d�0(δ0 )d�1(δ1 ). (20)

When the underlying distribution of utility types is continuous, we can use integration
by parts to rewrite (20) as

ϑ = λ�1
(
δ�

)(
1 − s −�0

(
δ�

))
+ λ

∫ δ�

0
dM(δ)

(
�0

(
δ�

) −�0(δ)
) + λ

∫ 1

δ�
dM(δ)

(
�1(δ) −�1

(
δ�

))
. (21)

The first term in (21) represents the volume generated by trades between owners with
utility types in [0, δ�] and non-owners with utility types in [δ�, 1]; these would be the only
trades taking place in the equilibrium of a model with frictionless exchange. With search
frictions, however, there are additional inframarginal trades, captured by the second and
third terms. In particular, the second term accounts for inframarginal trades between
owners with utility types δ < δ� and non-owners with utility types in [δ, δ�], while the
third term accounts for inframarginal trades between non-owners with utility types δ >

δ� and owners with utility types in [δ�, δ].
The formula highlights the role of misallocation in generating trading volume in

excess of that in the frictionless benchmark.10 It also suggests that near-marginal in-
vestors, who are characterized by greater misallocation, are likely to have a larger con-
tribution to trading volume. This is confirmed in the next proposition.

Proposition 5. Assume that the distribution of utility types is continuous. Then the
steady-state trading volume is explicitly given by

ϑ ≡ γs(1 − s)

[(
1 + γ

λ

)
log

(
1 + λ

γ

)
− 1

]
. (22)

In particular, the steady-state trading volume ϑ is strictly increasing in the meeting rate
λ, with limλ→∞ϑ= ∞ and

lim
λ→∞

λ

ϑ

(∫ δ�

δ�−ε
�1(δ)d�0(δ) +

∫ δ�+ε

δ�

(
1 − s −�0(δ)

)
d�1(δ)

)
= 1

for any ε > 0.

Proposition 5 establishes two key results. First, when the underlying distribution of
utility types is continuous, the equilibrium trading volume is unbounded as λ → ∞. By

10Note, however, that these additional trades are not an indication of inefficiency; the equilibrium with
search frictions is constrained efficient.
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contrast, the equilibrium trading volume is finite in the frictionless benchmark.11 One
can also show that volume remains bounded if the distribution of utility types is discrete,
under the natural assumption that investors who are indifferent do not trade. Therefore,
as long as search frictions are sufficiently small, our fully decentralized market can gen-
erate arbitrarily large excess volume relative to the frictionless benchmark and relative to
a model in which heterogeneity is generated by a discrete distribution of utility types.12

Second, trading volume is, for the most part, generated by investors near the
marginal type when the meeting rate is sufficiently large. To illustrate this phenomenon,
Figure 2 plots the contribution of each owner non-owner pair to the equilibrium trading
volume, defined as

κ(δ0, δ1 ) = 1{δ0>δ1}
d�0

dF
(δ0 )

d�1

dF
(δ1 ).

The figure shows that investors with extreme utility types account for a small fraction
of total trades and, therefore, lie at the periphery of the trading network. For example,

Figure 2. Contribution to trading volume. Notes: This figure plots the volume density as a
function of the owner’s and non-owner’s type when meetings occur, on average, once a week.
The parameters we use in this figure are otherwise the same as in Figure 1.

11In a frictionless equilibrium, a measure s of agents holds the asset, each with type δ > δ�. They sell
as soon as they switch to a type δ < δ�, which occurs with intensity γ(1 − F(δ� )) = γ(1 − s) by the market-
clearing condition. Hence, the trading volume is equal to γs(1 − s).

12Equation (22) also delivers several additional comparative statics. For example, it shows that trading
volume peaks when the asset supply equates the number of potential buyers and sellers—which is well
known from the monetary search literature (Kiyotaki and Wright (1993))—and that it increases when in-
vestors change type more frequently.
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owners with low utility types may trade quickly, but there are very few such owners in
equilibrium. Hence, these owners account for little trading volume. Likewise, there are
many asset owners with high utility types, but these investors trade very slowly, so they
do not account for many trades in equilibrium. Only in the cluster of investors with near-
marginal utility types do we find a sufficiently large fraction of individuals who are both
holding the “wrong” portfolio and able to meet suitable trading partners at a reasonably
high rate—these are the investors that make up the core of the trading network.

4.2 Prices

We start with the intuitive, but important result that the reservation value of all investors
converges to the frictionless equilibrium price.

Proposition 6. As search frictions vanish, limλ→∞�V (δ) = δ�/r ≡ p� for every δ ∈
[0, 1].

To understand this result, consider the market-valuation process of Proposition 3.
Since the equilibrium asset allocation becomes approximately efficient as λ → ∞, it be-
comes very easy for an investor with utility type δ < δ� (δ > δ�) to sell (buy) an asset,
but a lot more difficult to buy (sell) one. In particular, we show in Appendix A.2 that the
trading intensities of non-owners and owners, respectively, satisfy

lim
λ→∞λ�1(δ) = γsF(δ)(

F
(
δ�

) − F(δ)
)+

{
<∞ if δ < δ�

= ∞ if δ≥ δ�
(23)

and

lim
λ→∞λ

(
1 − s −�0(δ)

) = γ(1 − s)
(
1 − F(δ)

)
(
F(δ) − F

(
δ�

))+

{
= ∞ if δ≤ δ�

<∞ if δ > δ�,

Thus, it follows from Proposition 3 that, starting from below (above) the marginal type,
the market-valuation process moves up (down) very quickly as the meeting frequency
increases. Taken together, these observations imply that the market-valuation process
δ̂t defined in Proposition 3 converges to the marginal type δ� as λ → ∞, and it now
follows from the sequential representation (15) that all reservation values converge to
the frictionless equilibrium price.

Price level near the frictionless limit To analyze the behavior of reservation values and
prices near the frictionless limit, we study the behavior of the market-valuation process
near the marginal type, which yields the following result.

Proposition 7. Assume that the distribution of utility types is twice continuously differ-
entiable on supp(F ) with a derivative that is bounded away from zero. Then

�V (δ) = p� + π/r

F ′(δ�)
(

1
2

− θ0

)(
γs(1 − s)
θ0θ1

) 1
2 1√

λ
+ o

(
1√
λ

)
(24)

for all utility types δ ∈ [0, 1].
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The first term in the expansion follows directly from Proposition 6, since all reserva-
tion values converge to the frictionless price p� = δ�/r. The main result of the proposi-
tion is the second term in the expansion, which determines the deviation of reservation
values from the frictionless price. To calculate this term, we center the market-valuation
process around its frictionless limit and scale it by its convergence rate,

√
λ. This deliv-

ers an auxiliary process x̂t = √
λ(δ̂t − δ� ) whose limit distribution can be characterized

explicitly, and the second term of the expansion is then obtained by calculating the limit
of

√
λ
(
�V (δ) −p�

) = E√
λ(δ−δ� )

[∫ ∞

0
e−rt x̂t dt

]
.

We see from the proposition that the deviation from the frictionless price depends on
three key features of our decentralized market model. The first key feature is the time
it takes near-marginal investors on both sides of the market to find trading opportu-
nities.13 Specifically, since the asset is almost perfectly allocated in the limit, it takes a
long search time—of the order 1/

√
λ, instead of 1/λ—for near-marginal investors to find

a counterparty who is willing to trade.14

The second key feature is the relative bargaining powers of buyers and sellers, which
determine whether the asset is traded at a discount or at a premium: if θ0 > 1/2, the
asset is traded at a discount relative to the frictionless equilibrium price in all bilateral
meetings, and vice versa if θ0 < 1/2. When buyers and sellers have equal bargaining
powers, the correction term vanishes and all reservation values are well approximated
by the frictionless price, irrespective of the other features of the market. The intuition
is that, in this case, the bargaining positions of near-marginal buyers and sellers cancel
out since they have equal bargaining power and they find counterparties willing to trade
with approximately equal intensity

√
λ× √

γs(1 − s).
The third feature of the market that matters for reservation values is the heterogene-

ity among investors near the marginal type, as measured by F ′(δ� ). Formally, consider
the following ordering of distributions in terms of heterogeneity: we say that a distribu-
tion G is more heterogenous than F if G is obtained from F by way of a single-crossing
spread, i.e., if there is a δ0 such that G(δ) ≥ F(δ) for δ < δ0 and G(δ) ≤ F(δ) for δ≥ δ0. As
Chateauneuf, Cohen, and Meilijson (2004) argue, the distribution G is more heteroge-
nous than F in a very intuitive sense, since it is obtained by shifting probability mass to
the left in the interval [0, δ0] and to the right in the interval [δ0, 1].15 If, in addition, F

13Interestingly, the slow convergence that we characterize in Proposition 7 is not present in the special
case of two types studied in DGP. The reason is that, with a continuous distribution of types, near-marginal
investors on both sides of the market experience long search times as λ → ∞. In contrast, in the two-type
case studied in DGP, the search times are asymmetric—bounded away from zero for buyers and of order
1/λ for sellers. Since the price deviation is determined by the side of the market with shortest search time,
convergence occurs in order 1/λ.

14We thank a referee for noting that these long search times are also responsible for the concentration of
misallocation near the marginal type, δ�, and the large trading volume as λ → ∞.

15If this operation is also mean-preserving, it makes the distribution more heterogenous in the sense of
second-order stochastic dominance. Conversely, Chateauneuf, Cohen, and Meilijson (2004) note that any
increase in heterogeneity in the second-order stochastic dominance sense can be obtained by successive
mean-preserving single crossings.
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and G satisfy the conditions of Proposition 7, and G has the same marginal investor as
F , so that F(δ� ) = G(δ� ), then F ′(δ� ) ≥ G′(δ� ). Therefore, according to this definition,
an increase in heterogeneity that preserves the marginal type reduces the derivative of
the distribution at the marginal type, increases the leading term of the expansion (24),
and thus induces larger deviations from the frictionless equilibrium price.16

To further emphasize the role of heterogeneity, consider what happens when the
continuous distribution of utility types approximates a discrete distribution. In such a
case, the cumulative distribution function will approach a step function that is vertical
at the marginal type, where demand is perfectly elastic. As a result, the derivative F ′(δ� )
will approach infinity, and it follows from (24) that the corresponding deviation from the
frictionless equilibrium price will be very small. This informal argument can be made
precise by working out the convergence rate of reservation values with a discrete dis-
tribution of utility types (see Appendix A.2 for the explicit expression of the correction
term).

Proposition 8. When the distribution of utility types is discrete, the convergence rate of
reservation values to the frictionless equilibrium price is generically equal to 1/λ.

To understand the different convergence rates in Propositions 7 and 8, consider a
sequence of discrete distributions converging weakly to some continuous distribution.
A simple argument shows that the corresponding allocations and prices converge to
their continuous counterparts, but the asymptotic expansions of reservation values do
not. Specifically, the proof of Proposition 8 reveals that, in the expansion with a dis-
crete distribution, the coefficient multiplying 1/λ diverges as the discrete distribution
approaches its continuous limit. This means that convergence is slower and slower.
Proposition 7 makes this observation mathematically precise by showing that, in the
continuous limit, the convergence rate switches from 1/λ to 1/

√
λ.

To see that the difference in convergence rates is economically significant, let us
compare the price deviation p� − �V (δ� ) implied by the continuous distribution of our
baseline example with that implied by a two-point distribution, constructed to keep the
marginal and average investors the same. The left panel of Figure 3 shows that when in-
vestors meet counterparties twice a day on average (i.e., λ= 500), the deviation is 60 per-
cent for the continuous distribution and only about 2 percent for the corresponding dis-
crete distribution. When meetings occur 20 times per day on average (i.e., λ = 10, 000),
the deviation is 15 percent for the continuous distribution, but it is now indistinguish-
able from 0 for the discrete distribution. Why is there such a quantitatively large differ-
ence in price impact? According to our analysis, the difference is driven by a fundamen-
tal economic difference between the two classes of distributions: the elasticity of asset
demand is infinite with a discrete distribution and finite with a continuous one.

16Interestingly, a direct calculation shows that the derivative is proportional to the elasticity of the

Walrasian demand at the frictionless price, p�

F(rp� )−1
d(1−F(rp))

dp |p=p� = δ�

s F
′(δ� ), keeping in mind that

1 − F(δ� ) = s. Hence, holding the marginal investor and the supply the same, if the Walrasian demand
is less elastic, price effects in the decentralized market will be larger. It is intuitive that a less elastic demand
magnifies the bilateral monopoly effects at play in our search-and-matching market.
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Figure 3. Continuous versus discrete distribution. Notes: These figures plots the price devia-
tion relative to the frictionless equilibrium (panel A) and the price dispersion (panel B) as func-
tions of the meeting rate for the base case model of Figure 1 with bargaining power θ0 = 0.75,
and a model with a two-point distribution of types constructed to have the same mean and to
induce the same marginal investor as the continuous distribution of the base case model.

Price dispersion near the frictionless limit An important implication of Proposition 7 is
that, to a first-order approximation, there is no price dispersion. This can be seen by not-
ing that the correction term in (24) does not depend on the investor’s utility type. Hence,
to obtain information about the impact of frictions on price dispersion, it is necessary
to work out higher order terms. This is the content of our next result.

Proposition 9. Assume that the distribution of utility types is twice continuously differ-
entiable with a derivative that is bounded away from 0. Then

�V (1) −�V (0) = 1

2θ0θ1F
′(δ�) log(λ)

λ
+O

(
1
λ

)
.

By contrast, with a discrete distribution of utility types, the convergence rate of the price
dispersion is generically equal to 1/λ.

Comparing the results of Propositions 7 and 9 shows that, with a continuous distri-
bution of utility types, the price dispersion induced by search frictions vanishes at rate
log(λ)/λ, which is much faster than the rate 1/

√
λ at which reservation values converge

to the frictionless equilibrium price. This finding has important consequences for em-
pirical analysis of decentralized markets, as it implies that inferring the impact of search
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frictions based on the observable level of price dispersion can be misleading. In partic-
ular, search frictions can have a very small impact on price dispersion and, yet, have a
large impact on the equilibrium price level.

This finding is illustrated in Figure 3. Comparing the left and right panels, one sees
that price dispersion induced by search frictions converges to 0 much faster than the
price deviation. For instance, when investors meet counterparties twice a day on av-
erage, the price discount implied by our baseline model is about 60 percent, but the
corresponding price dispersion is about 20 times smaller. One can also see from the fig-
ure that, in accordance with the result of Proposition 9, price dispersion is larger with a
continuous distribution of utility types than with a discrete distribution.

4.3 Welfare

In the analysis above, we established that the asymptotic behavior of two liquid-
ity measures—the deviation of price from its frictionless limit and the dispersion of
prices—provides quantitatively different signals about market liquidity. We now ask how
these two measures are related to the welfare cost of frictions, defined as

w(λ) ≡
∫ 1

δ�
δd�0(δ) −

∫ δ�

0
δd�1(δ).

In words, this cost is the difference between the collective flow utility of investors in
the market with and without frictions: the first term accounts for the forgone utility
of those investors who do not hold an asset in the frictional market when they should
(according to the frictionless benchmark), while the second term accounts for the extra
utility attributed to those investors who hold an asset in the frictional market when they
should not.

Proposition 10. Assume that the distribution of utility types is twice continuously dif-
ferentiable with a derivative that is bounded away from 0. Then

w(λ) = γs(1 − s)

F ′(δ�) log(λ)
λ

+O

(
1
λ

)
.

By contrast, with a discrete distribution of utility types, the convergence rate of the welfare
cost to 0 is generically equal to 1/λ.

Proposition 10 establishes that search frictions have a larger welfare impact when
the distribution of utility types is continuous than they do when the distribution is
discrete—as was the case for price levels and price dispersion. The proposition also
reveals that as trading gets faster, the welfare cost of frictions is accurately measured
by the observed amount of price dispersion, since the two quantities converge to their
frictionless counterparts at the same speed. At an intuitive level, both price dispersion
and welfare depend on the allocation of the asset among investors with valuations away
from the marginal type, which approaches the frictionless limit relatively quickly. Trad-
ing volume and price levels, however, depend on the allocation of the asset among in-
framarginal investors, which approaches the frictionless limit more slowly.
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5. Conclusion

We analyze a search and bargaining model of an asset market in which investors’ valu-
ations are periodically drawn from an arbitrary distribution. The main contribution is
methodological: we develop a solution technique that allows for a full characterization
of the equilibrium, in closed form, both in and out of steady state. The result is a frame-
work that is much richer than the popular workhorse model with only two valuations,
yet equally tractable. As such, the model offers a variety of novel implications and can be
used to confront newer, transaction-level data emerging from a variety of OTC markets.

Appendix

A.1 Proofs omitted in Section 3

We start by showing that (8) is equivalent to the seemingly stronger requirement of
boundedness and that any such solution to (7) must be strictly increasing in utility types.

Lemma A.1. Any solution to (7) that satisfies (8) is uniformly bounded on S ≡R+ × [0, 1]
and strictly increasing in δ ∈ [0, 1] for any fixed t ≥ 0.

Proof. Integrating with respect to the conditional distribution of the stopping time τ

shows that the set of solutions to (7) is the set of fixed points of the operator defined by

Tt[f ](δ) =
∫ ∞

t
e−ρ(u−t )(δ+ (γ + λ)fu(δ) +Ou[f ](δ)

)
du (25)

with

Ot[f ](δ) =
∫ 1

0

(
ft

(
δ′) − ft(δ)

)(
γ dF

(
δ′) +

1∑
q=0

1{(2q−1)(ft (δ′ )−ft (δ))≥0}λθq d�1−q,t
(
δ′)).

Assume that �Vt(δ) = Tt[�V ](δ) is a fixed point that satisfies (8). Since the right-
hand side of (25) is absolutely continuous in time, we have that the solution inherits
this property, and it thus follows from Lebesgue’s differentiation theorem that we have
�̇Vt(δ) = r�Vt(δ) − δ−Ot[�V ](δ) for every δ ∈ [0, 1] and almost every t ≥ 0. Integrating
by parts then shows that

�Vt(δ) = e−r(H−t )�VH(δ) +
∫ H

t
e−r(u−t )(δ+Ou[�V ](δ)

)
du (26)

= lim
H→∞

∫ H

t
e−r(u−t )(δ+Ou[�V ](δ)

)
du (27)

for all (δ, t ) ∈ S and any constant t ≤H < ∞, where the second equality follows from (8).
Now assume toward a contradiction that the given solution fails to be nondecreasing in
space so that �Vt(δ) >�Vt(δ′ ) for some (t, δ) ∈ S and 1 ≥ δ′ > δ. Because the right-hand
side of (25) is absolutely continuous in time, this assumption implies that

H� ≡ inf
{
u≥ t : �Vu(δ) ≤ �Vu

(
δ′)}> t.
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By definition we have that

�Vu(δ) ≥ �Vu
(
δ′), t ≤ u≤H�, (28)

and because the continuous functions x �→ (y − x)+ and x �→ −(x− y )+ are both nonin-
creasing for every fixed y ∈R, it follows that

Ou[�V ](δ) ≤Ou[�V ]
(
δ′), t ≤ u≤H�. (29)

To proceed further, we distinguish two cases depending on whether the constant H� is
finite or not. Assume first that it is finite. In this case, it follows from (26) that we have

�Vt(δ) =
∫ H�

t
e−r(u−t )(δ+Ou[�V ](δ)

)
du+ e−r(H�−t )�VH�(δ),

and combining this identity with (29) then gives

�Vt(δ) =
∫ H�

t
e−r(u−t )(δ+Ou[�V ]

(
δ′))du+ e−r(H�−t )�VH�

(
δ′)<�Vt

(
δ′), (30)

where the equality follows by continuity and the second inequality follows from δ < δ′.
Now assume that H� = ∞ so that (28) and (29) hold for all u≥ t. In this case, (27) implies
that

�Vt(δ) ≤ lim
H→∞

∫ H

t
e−r(u−t )(δ+Ou[�V ]

(
δ′))du < �Vt

(
δ′)

and combining this inequality with (30) delivers the required contradiction. To see that
the solution is strictly increasing, rewrite (25) as

Tt[f ](δ) =
∫ ∞

t
e−ρ(u−t )(δ+Mu[f ](δ)

)
du (31)

with the operator

Mu[f ](δ) = ληfu(δ) + γ

∫ 1

0
fu

(
δ′)dF(

δ′) + λθ0

∫ 1

0
min

{
fu

(
δ′), fu(δ)

}
d�1,u

(
δ′)

+ λθ1

∫ 1

0
max

{
fu

(
δ′), fu(δ)

}
d�0,u

(
δ′),

and the constants ρ≡ r+γ+λ and η≡ 1 − sθ0 − (1 − s)θ1. Because Mu[f ](δ) is increas-
ing in fu(δ) and the given solution is nondecreasing in δ, we have that

�Vt
(
δ′) −�Vt(δ) =

∫ ∞

t
e−ρ(u−t )(δ′ − δ+Mu[�V ]

(
δ′) −Mu[�V ](δ)

)
du≥ δ′ − δ

ρ

for any 0 ≤ δ ≤ δ′ ≤ 1 and strict monotonicity follows. To conclude the proof, it remains
to establish boundedness. Because the given solution is increasing we have

sup
t≥0

Ot[�V ](1) ≤ 0 ≤ inf
t≥0

Ot[�V ](0)

and it now follows from (27) that 0 ≤ �Vt(0) ≤ �Vt(δ) ≤ �Vt(1) ≤ 1/r on S .
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Proof of Proposition 1. By Lemma A.1, we have that the existence, uniqueness, and
strict (positive) monotonicity of a solution to (7) such that (8) holds is equivalent to the
existence and uniqueness of a fixed point of the operator T in the space X of uniformly
bounded, measurable functions from S to R equipped with the sup norm. As is eas-
ily seen from (31), we have that T maps X into itself. Moreover, using the definition of
Mu[f ](δ), one easily sees that T satisfies Blackwell’s sufficient conditions for a contrac-
tion (see Theorem 3.3 in Stokey and Lucas (1989)) with modulus γ+λ

r+γ+λ . The existence of
a unique fixed point in X now follows from the contraction mapping theorem because
r > 0 by assumption.

To establish the second part, let Xk denote the subset of functions f ∈ X that are
nonnegative and nondecreasing in space with

0 ≤ ft
(
δ′) − ft(δ) ≤ δ′ − δ

r + γ
≡ k

(
δ′ − δ

)
(32)

for all 0 ≤ δ ≤ δ′ ≤ 1 and t ≥ 0. Further, let X �
k denote the set of functions f ∈ Xk that are

strictly increasing in space and absolutely continuous with respect to time and space,
and observe that because Xk is closed in X , it suffices to prove that T maps Xk into X �

k .
Fix an arbitrary f ∈ Xk. Since f ≥ 0, it follows from (31) that Tt[f ](δ) ≥ 0. On the

other hand, using (32), the definition of η, the increase of ft(δ), and the fact that the
nondecreasing functions x �→ min{a; x} and x �→ max{a; x} are 1-Lipschitz continuous,
we deduce that 0 ≤ Mt[f ](δ′′ ) − Mt[f ](δ) ≤ λk(δ′′ − δ) for all 0 ≤ δ ≤ δ′′ ≤ 1 and t ≥ 0.
Combining this with (31) and the definition of k then shows that

δ′′ − δ

ρ
≤ Tt[f ]

(
δ′′) − Tt[f ](δ) ≤ (1 + λk)

(
δ′′ − δ

)
ρ

= k
(
δ′′ − δ

)
for all 0 ≤ δ ≤ δ′′ ≤ 1 and t ≥ 0. These bounds imply that Tt[f ](δ) is strictly increas-
ing in space and lies in Xk, so it now only remains to establish absolute continuity.
By definition of Xk, we have that ft(δ) = ft(δ′ ) + ∫ δ

δ′ φt(x)dx for all t ≥ 0, almost every
δ, δ′ ∈ [0, 1]2, and some 0 ≤ φt(x) ≤ k. Substituting this identity into (25) and changing
the order of integration shows that

Tt[f ](δ) =
∫ ∞

t
e−ρ(u−t )

(
δ+ (λ+ γ)fu(δ) −

∫ δ

0
φu

(
δ′)(γF(

δ′) + λθ0�1,u
(
δ′))dδ′

+
∫ 1

δ
φu

(
δ′)(γ(

1 − F
(
δ′)) + λθ1

(
1 − s −�0,u

(
δ′)))dδ′

)
du, (33)

and absolute continuity now follows from Sremr (2010, Theorem 3.1).

Lemma A.2. Given the reservation value function, there exists a unique pair of functions
V1,t(δ) and V0,t(δ) that satisfy (4) and (6) subject to (8).

Proof. Assume that V1,t(δ) and V0,t(δ) satisfy (4) and (6) subject to (8). Integrating on
both sides of (4) and (6) with respect to the conditional distribution of τ shows that

Vq,t(δ) =
∫ ∞

t
e−ρ(u−t )

(
λVq,u(δ) + Cq,u(δ) + γ

∫ 1

0
Vq,u

(
δ′)dF(

δ′))du (34)
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with the uniformly bounded functions

Cq,t(δ) = qδ+
∫ 1

0
λθq

(
(2q− 1)

(
�Vt

(
δ′) −�Vt(δ)

))+
d�1−q,t

(
δ′). (35)

Because the right-hand side of (34) is absolutely continuous in time, we have that Vq,t(δ)
inherits this property, and it thus follows from Lebesgue’s differentiation theorem that

V̇q,t(δ) = rVq,t(δ) − Cq,t(δ) − γ

∫ 1

0

(
Vq,t

(
δ′) − Vq,t(δ)

)
dF

(
δ′) (36)

for all δ ∈ [0, 1] and almost every t ≥ 0. Combining this differential equation with the
assumed transversality condition then implies that

Vq,t(δ) = e−r(H−t )Vq,H(δ) (37)

+
∫ H

t
e−r(u−t )

(
Cq,u(δ) + γ

∫ 1

0

(
Vq,u

(
δ′) − Vq,u(δ)

)
dF

(
δ′))du

= lim
H→∞

∫ H

t
e−r(u−t )

(
Cq,u(δ) + γ

∫ 1

0

(
Vq,u

(
δ′) − Vq,u(δ)

)
dF

(
δ′))du,

and because Cq,t(δ) is increasing in space by Lemma A.4 below, the same argu-
ments as in the proof of Lemma A.1 show that Vq,t(δ) is increasing in space and uni-
formly bounded. Combining these properties with (36) then shows that e−rtVq,t(δt ) +∫ t

0 e
−ruCq,u(δu )du is a bounded martingale in the filtration of the investor’s utility type

process, and it follows that

Vq,t(δ) = Et,δ

[∫ ∞

t
e−r(u−t )Cq,u(δu )du

]
. (38)

This establishes uniqueness of the solutions and it now only remains to show that these
solutions are consistent with the reservation value function. Applying the law of iterated
expectations in (38) shows that V1,t(δ) − V0,t(δ) is a bounded fixed point of

Ut[f ](δ) =
∫ ∞

t
e−ρ(u−t )

(
λfu(δ) + C1,u(δ) − C0,u(δ) + γ

∫ 1

0
fu

(
δ′)dF(

δ′))du.

A direct calculation shows that U is a contraction on X and, therefore, admits a unique
fixed point in X . Because the reservation value function is increasing, we have

C1,t(δ) − C0,t(δ) + γ

∫ 1

0
�Vt

(
δ′)dF(

δ′) = δ+ γ�Vt(δ) +Ot[�V ](δ)

and it follows that this fixed point coincides with the reservation value function.

Lemma A.3. For any fixed δ ∈ [0, 1], the unique solution to (11) that is both absolutely
continuous in time and uniformly bounded is explicitly given by

σt(δ) =
∫ ∞

t
e− ∫ u

t Rξ(δ)dξ du, (39)

with the effective discount rate Rt(δ) = r + γ + λθ1(1 − s −�0,t(δ)) + λθ0�1,t(δ).
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Proof. Fix an arbitrary δ ∈ [0, 1] and assume that σt(δ) is a uniformly bounded solution
to (11) that is absolutely continuous in time. Using integration by parts, we easily obtain
that

σt(δ) = e− ∫ T
t Rξ(δ)dξσT (δ) +

∫ T

t
e− ∫ u

t Rξ(δ)dξ du, 0 ≤ t ≤ T <∞.

Since σ ∈ X and Rt(δ) > 0, we have that limT→∞ e− ∫ T
t Rξ(δ)dξσT (δ) = 0 and, therefore,

σt(δ) = lim
T→∞

(
e− ∫ T

t Rξ(δ)dξσT (δ) +
∫ T

t
e− ∫ u

t Rξ(δ)dξ du

)
=

∫ ∞

t
e− ∫ s

t Ru(δ)du ds

by monotone convergence.

Lemma A.4. The functions Cq,t(δ) are increasing in δ ∈ [0, 1].

Proof. For q = 0, the result follows from (35) and the fact that the reservation value
function is increasing in δ. Assume now that q = 1. Using the monotonicity of the reser-
vation value function is increasing and integrating by parts on the right of (35) gives

C1,t(δ) = δ+
∫ 1

δ
λθ1σt

(
δ′)(1 − s −�1,t

(
δ′))dδ′,

and differentiating this expression shows that

C′
1,t(δ) = 1 − λσt(δ)θ1

(
1 − s −�1,t(δ)

) ≥ 1 − λθ1(1 − s)

r + γ + λ
(
θ0s + θ1(1 − s)

) > 0,

where the inequalities follow from (39), the definition of Rt(δ), and the fact that r > 0.

Proof of Proposition 2. Let σt(δ) be as above and consider the absolutely continu-
ous function

ft(δ) =
∫ ∞

t
e−r(u−t )

(
δ−

∫ δ

0
σu

(
δ′)(γF(

δ′) + λθ0�1,u
(
δ′))dδ′

+
∫ 1

δ
σu

(
δ′)(γ(

1 − F
(
δ′)) + λθ1

(
1 − s −�0,u

(
δ′)))dδ′

)
du.

Using the boundedness of σt(δ), F(δ), and �q,t(δ), we deduce that f ∈ X . On the other
hand, Lebesgue’s differentiation theorem implies that ft(θ) is almost everywhere differ-
entiable in both time and space with

ḟt(δ) = rft(δ) − δ+
∫ δ

0
σt

(
δ′)(γF(

δ′) + λθ0�1,t
(
δ′))dδ′

−
∫ 1

δ
σt

(
δ′)(γ(

1 − F
(
δ′)) + λθ1

(
1 − s −�0,t

(
δ′)))dδ′ (40)
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for all δ ∈ [0, 1] and almost every t ≥ 0, and

f ′
t (δ) =

∫ ∞

t
e−r(u−t )(1 − σu(δ)

(
γ + λθ1

(
1 − s −�0,u(δ)

) + λθ0�1,u(δ)
))
du

=
∫ ∞

t
e−r(u−t )(rσu(δ) − σ̇u(δ)

)
du= σt(δ)

for all t ≥ 0 and almost every δ ∈ [0, 1], where the second equality follows from (11) and
the third follows from integration by parts and the boundedness of σt(δ). Therefore,

ft
(
δ′) − ft(δ) =

∫ δ′

δ
σt

(
δ′′)dδ′′,

(
δ, δ′) ∈ [0, 1]2, (41)

and it follows that ft(δ) is strictly increasing in space. Using this monotonicity in con-
junction with (41) and integrating by parts on the right-hand side of (40) shows that
ḟt(δ) = rft(δ)−δ−Ot[f ](δ) for all δ ∈ [0, 1] and almost every t ≥ 0. Solving that equation
shows

ft(δ) = e−ρ(H−t )fH(δ) +
∫ H

t
e−ρ(u−t )(δ+ (γ + λ)fu(δ) +Ou[f ](δ)

)
du

for any t ≤ H < ∞, and it now follows from the dominated convergence theorem and
the uniform boundedness of the function ft(δ) that

ft(δ) =
∫ ∞

t
e−ρ(u−t )(δ+ (γ + λ)fu(δ) +Ou[f ](δ)

)
du.

Comparing this expression with (25), we conclude that ft(δ) = Tt[f ](δ) ∈ X , and the
result now follows from the uniqueness established in the proof of Proposition 1.

Proof of Corollary 1. As shown in the proof of Proposition 1, we have that �Vt(δ) is
the unique fixed point of T : Xk → Xk defined by (31) and, by inspection, this mapping
is increasing in ft(δ) and decreasing in r. Furthermore, it follows from (33) that T is
increasing in θ1 and decreasing in θ0, F(δ) and �q,t(δ), and the desired monotonicity
now follows from Lemma A.5 below.

Lemma A.5. Let C ⊆ X be closed and assume that A[·; α] : C → C is a contraction that is
increasing in f and increasing in α. Then its fixed point is increasing in α.

Proof. Denote by ft(δ; α) ∈ C the fixed point of A[·; α]. Combining the assumed mono-
tonicity with the fixed-point property shows that we have ft(δ; α) ≤ At[f (·; α); β](δ) for
all (t, δ) ∈ S and β ≥ α. Iterating this relation shows that ft(δ; α) ≤ An

t [f ; β](δ) for all
n ≥ 1 and the result now follows by letting n → ∞ and using the fact that the mapping
A[·; β] is a contraction.

Proof of Proposition 3. Using (14) together with the notation of the statement
shows that the reservation value function is the unique bounded and absolutely con-
tinuous solution to

r�Vt(δ) = �̇Vt(δ) + δ+At[�V ](δ).
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Therefore, it follows from Itô’s lemma that e−rt�Vt(δ̂t )+∫ t
0 e

−ruδ̂u du is a local martingale
and this implies that we have

�Vt(δ) = Et,δ
[
e−r(τn−t )�Vτn(δ̂τn )

] +Et,δ

[∫ τn

0
e−r(u−t )δ̂u du

]

for a nondecreasing sequence of stopping times that converges to infinity. Since the
reservation value function is uniformly bounded, the first term on the right-hand side
converges to zero as n → ∞, and the desired result now follows by monotone conver-
gence.

Proof of Proposition 4. Given an initial condition satisfying �0,0(δ) + �1,0(δ) =
F0(δ), it follows from textbook results (see, e.g., Reid (1972)) that the Riccati equation
(17) admits a unique solution that can be expressed in terms of the confluent hypergeo-
metric function of the first kind M1(a, b; x) (see Abramowitz and Stegun (1964)) as

λ�1,t(δ) = λ
(
Ft(m) −�0,t(δ)

) = Ẏ+,t(δ) −A(δ)Ẏ−,t(δ)
Y+,t(δ) −A(δ)Y−,t(δ)

(42)

with

Y±,t(δ) = e−λZ±(δ)tW±,t(δ)

Z±(δ) = 1
2

(
1 − s + γ/λ− F(δ)

) ± 1
2
(δ) (43)

W±,t(δ) =M1

(
λ

γ
Z±(δ), 1 ± λ

γ
(m); e−γt λ

γ

(
F(δ) − F0(δ)

))

and

A(δ) = Ẏ+,0(δ) − λ�1,0(δ)Y+,0(δ)

Ẏ−,0(δ) − λ�1,0(δ)Y−,0(δ)
.

Straightforward algebra shows that (42) can be rewritten as

λ�1,t(δ) = λZ+(δ)W+,t(δ) − Ẇ−,t(δ) + eλ(δ)tA(δ)
(
Ẇ+,t(δ) − λZ−(δ)W−,t(δ)

)
eλ(δ)tA(δ)W−,t(δ) −W+,t(δ)

.

Well known properties of M1(a, b; x) imply that limt→∞ Ẇ±,t(δ) = 1− limt→∞W±,t(δ) = 0
and combining these limits with the above expression of the equilibrium distribution
finally shows that we have limt→∞�1,t(δ) = −Z−(δ) = �1(δ), where the last equality
follows from (43).

Lemma A.6. The steady-state cumulative distribution of types among owners �1(δ) is
increasing in the asset supply, and increasing and concave in φ = γ/λ with

lim
φ→0

�1(δ) = sF(δ) and lim
φ→∞

�1(δ) = (
F(δ) − 1 + s

)+
.

In particular, the steady-state cumulative distribution functions converge to their friction-
less counterparts as the meeting rate λ → ∞.
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Proof. Monotonicity in s follows by noting that ∂�1(δ)
∂s = (�1(δ) +φF(δ))/(δ). On the

other hand, using the definition of the steady-state distribution, it can be shown that

∂�1(δ)
∂φ

= sF(δ) −�1(δ)
(δ)

= s(1 − s)F(δ)
(
1 − F(δ)

)
(
φ+�1(δ) + (1 − s)

(
1 − F(δ)

))
(δ)

(44)

and the desired monotonicity follows by observing that all the terms on the right-hand
side are nonnegative. Knowing that �1(δ) is increasing in φ, we deduce that (δ) =
2�1(δ) + 1 − s+φ−F(δ) is also increasing in φ and it now follows from the first equality
in (44) that

∂2�1(δ)

∂φ2 = − 1
(δ)

∂�1(δ)
∂φ

(
1 + ∂(δ)

∂φ

)
≤ 0.

The limiting values follow by sending φ to zero and ∞ in the definition of �1(δ).

The proof of Corollary 2 follows directly from Lemma A.6.
The proof of Theorem 1 follows directly from the definition of an equilibrium, Propo-

sition 1, and Proposition 4. We omit the details.

A.2 Proofs omitted in Section 4

Proof of Lemma 1. The proof is contained in the proof of Lemma A.6.

To simplify the notation, let φ≡ γ/λ. The following lemma follows immediately from
the equation defining the steady-state distribution of utility types among asset owners.

Lemma A.7. The steady-state distributions of types satisfy �1(δ) = F(δ) − �0(δ) =
�(F(δ)), where the bounded function

�(x) ≡ −1
2

(1 − s +φ− x) + 1
2

√
(1 − s +φ− x)2 + 4sφx

is the unique positive solution to �2 + (1 − s +φ− x)�− sφx = 0. Moreover, the function
�(x) is strictly increasing and convex, and strictly so if s ∈ (0, 1).

Proof. It is obvious that �(x) is the unique positive solution of the second-order poly-
nomial shown above, and the implicit function theorem implies that �(x) is strictly in-
creasing. In particular we have that �(x) > 0 for x > 0 so that the second-order polyno-
mial must be strictly increasing in � and strictly decreasing in x. Convexity follows by
direct calculation of �′′(x).

Convergence rates of the distributions. To derive the rates at which the equilib-
rium distributions converge to their frictionless counterparts, recall the inflow–outflow
equation that characterizes the steady-state equilibrium distributions:

γF(δ)
(
s −�1(δ)

) = γ�1(δ)
(
1 − F(δ)

) + λ�1(δ)
(
1 − s −�0(δ)

)
. (45)
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By Proposition 6, we have that �1(δ) → 0 and �0(δ) → F(δ) < 1 − s for all δ < δ� as
λ → ∞, and it thus follows from (45) that for δ < δ�, the distribution of utility types
among asset owners admits the approximation

�1(δ) = γF(δ)s
1 − s − F(δ)

(
1
λ

)
+ o

(
1
λ

)
. (46)

Similarly, by Proposition 6 we have that �1(δ) → F(δ) − 1 + s > 0 and �0(δ) → 1 − s

for all utility types δ > δ� as the meeting frequency becomes infinite, and it thus follows
from (45) that for δ > δ�, the distribution of utility types among non-owners admits the
approximation

1 − s −�0(δ) = γ(1 − s)
(
1 − F(δ)

)
F(δ) − (1 − s)

(
1
λ

)
+ o

(
1
λ

)
. (47)

To derive the convergence rate at the point δ = δ�, assume first that the distribution of
utility types crosses the level 1 − s continuously and observe that in this case we have

1 − s −�0
(
δ�

) = 1 − s − F
(
δ�

) +�1
(
δ�

) = �1
(
δ�

)
.

Substituting these identities into (45) evaluated at the marginal type and letting λ → ∞
on both sides shows that we have

�1
(
δ�

) = 1 − s −�0
(
δ�

) = √
γs(1 − s)

(
1√
λ

)
+ o

(
1√
λ

)
. (48)

If the distribution of utility types crosses 1 − s by a jump, we have F(δ� ) > 1 − s, and it
follows that the approximation (47) also holds at the marginal type.

Proof of Lemma 2. The total measure of misallocated assets is

M(1) = �1
(
δ�

) +�0(1) −�0
(
δ�

) = �1
(
δ�

) + (1 − s) − F
(
δ�

) +�1
(
δ�

) = 2�1
(
δ�

)
.

Therefore, for any ε > 0 sufficiently small,

M
(
δ� + ε

) −M
(
δ� − ε

)
M(1)

= �1
(
δ�

) +�0
(
δ� + ε

) −�0
(
δ�

) −�
(
δ� − ε

)
2�1

(
δ�

)
= 1 − 1 − s −��

0

(
δ� + ε

) +�1
(
δ� − ε

)
2�1

(
δ�

) ,

where we used that �0(δ) +�1(δ) = F(δ) and F(δ� ) = 1 − s for all δ. It then follows from
(46), (47), and (48) that the second term goes to zero as λ → ∞.

Trading volume If a meeting between a buyer and a seller with the same type results
in trade with some probability π ∈ [0, 1], then we can express the steady-state trading
volume as

ϑ(π ) = λ

∫
[0,1]2

1{δ0>δ1} d�0(δ0 )d�1(δ1 ) +πλ
∑

δ∈[0,1]

��0(δ)��1(δ),
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where ��q(δ) = �q(δ) − limy↑δ �q(y ) ≥ 0 denotes the discrete mass of investors who
hold q ∈ {0, 1} units of the asset and have a utility type exactly equal to δ.

Lemma A.8. If the distribution of utility types is continuous, then

ϑ(π ) = ϑc ≡ γs(1 − s)

[
(1 + γ/λ) log

(
1 + λ

γ

)
− 1

]
(49)

for all π ∈ [0, 1], and is strictly increasing in both the meeting rate λ and the arrival rate
of preference shocks γ. Otherwise, if the distribution of utility types has atoms, then the
steady-state trading volume is strictly increasing in π ∈ [0, 1] with ϑ(0) <ϑc <ϑ(1).

Proof. Consider the continuous functions G1(x) = �(x)/s and G0(x) = (x − �(x))/
(1 − s) Rearranging the equation for �(x) in Lemma A.7 shows that

G1(x) = φG0(x)
1 +φ−G0(x)

. (50)

Since the functions Gq(x) are continuous, strictly increasing, and map [0, 1] onto itself,
they admit continuous and strictly increasing inverses G−1

q (y ), and it follows from (50)
that

G1
(
G−1

0 (y )
) = φy

1 +φ− y
. (51)

Consider the class of tie-breaking rules whereby a fraction π ∈ [0, 1] of the meetings
between an owner and a non-owner of the same type lead to a trade. By definition, the
trading volume associated with such a tie-breaking rule can be computed as

ϑ(π ) = λs(1 − s)
(
P[δ0 > δ1] +πP[δ0 = δ1]

)
,

where the random variables (δ0, δ1 ) ∈ [0, 1]2 are distributed according to �0(δ)/
(1 − s) =G0(F(δ)) and �1(δ)/s = G1(F(δ)) independently of each other. A direct calcu-
lation shows that the quantile functions of these random variables are given by

inf
{
x ∈ [0, 1] : Gq

(
F(x)

) ≥ u
} = inf

{
x ∈ [0, 1] : F(x) ≥G−1

q (u)
} = �

(
G−1

q (u)
)
,

where �(y ) denotes the quantile function of the underlying distribution of types, and it
thus follows from Embrechts and Hofert (2013, Proposition 2) below that

ϑ(π )
λs(1 − s)

= P
[
�

(
G−1

0 (u0 )
)
>�

(
G−1

1 (u1 )
)] +πP

[
�

(
G−1

0 (u0 )
) = �

(
G−1

1 (u1 )
)]

,

where u0 and u1 denote a pair of i.i.d. uniform random variables. If the distribution
is continuous, then its quantile function is strictly increasing, and the above identity
simplifies to

ϑ(π )
λs(1 − s)

= P
[
G−1

0 (u0 ) >G−1
1 (u1 )

] = P
[
u1 <G1

(
G−1

0 (u0 )
)]

= E
[
G1

(
G−1

0 (u0 )
)] =

∫ 1

0
G1

(
G−1

0 (x)
)
dx=

∫ 1

0

φx

1 +φ− x
dx= ϑ�

λs(1 − s)
,
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where we used formula (51) for G1(G−1
0 (y )). If the distribution fails to be continuous,

then its quantile function will have flat spots that correspond to the levels across which
the distribution jumps, but it will remain weakly increasing. Therefore,{

�
(
G−1

0 (u0 )
)
>�

(
G−1

1 (u1 )
)} ⊂ {

G−1
0 (u0 ) >G−1

1 (u1 )
} ⊂ {

�
(
G−1

0 (u0 )
) ≥ �

(
G−1

1 (u1 )
)}

and it follows that

ϑ(0)
λs(1 − s)

= P
[
�

(
G−1

0 (u0 )
)
>�

(
G−1

1 (u1 )
)] ≤ ϑ�

λs(1 − s)

= P
[
G−1

0 (u0 ) ≥G−1
1 (u1 )

]
< P

[
�

(
G−1

0 (u0 )
) ≥ �

(
G−1

1 (u1 )
)] = ϑ(1)

λs(1 − s)
.

Since the function ϑ(π ) is continuous and strictly increasing in π, this further implies
that there exists a unique tie-breaking probability π� such that ϑ� = ϑ(π� ).

Proof of Proposition 5. The first part follows directly from Lemma A.8. To establish
the second part, let ε be as in the statement and assume that the distribution of utility
types is continuous. In this case the equilibrium trading volume can be decomposed as

ϑc = λ�1
(
δ�

)(
1 − s −�0

(
δ�

)) + λ

∫ δ�−ε

0
�1(δ)d�0(δ) + λ

∫ 1

δ�+ε

(
1 − s −�0(δ)

)
d�1(δ)

+ λ

∫ δ�

δ�−ε
�1(δ)d�0(δ) + λ

∫ δ�+ε

δ�

(
1 − s −�0(δ)

)
d�1(δ). (52)

We show that all the terms on the first line remain bounded as λ → ∞. Since F(δ� ) =
1 − s when the distribution of type is continuous, we have that the first term is equal to

λ�1
(
δ�

)(
1 − s − F

(
δ�

) +�1
(
δ�

)) = λ�1
(
δ�

)2

and we know from Lemma A.7 that the measure �1(δ� ) of owners below the marginal
type solves λ�1(δ� )2 +γ�1(δ� )−γs(1−s) = 0. This immediately implies that λ�1(δ� )2 ≤
γs(1 − s) and it follows that the first term on the first line of (52) remains bounded as
λ → ∞. Turning to the second term, we note that

λ

∫ δ�−ε

0
�1(δ)d�0(δ) ≤ λ�1

(
δ� − ε

)
F

(
δ� − ε

)
, (53)

where the inequality follows (1) and the increases of �1(δ). From Lemma A.7, we have
that the steady-state measure of owners with valuations below δ� − ε solves

λ�1
(
δ� − ε

)2 +
(

1 − s − F
(
δ� − ε

) + γ

λ

)
λ�1

(
δ� − ε

) − γsF
(
δ� − ε

) = 0.

This immediately implies that

λ�1
(
δ� − ε

) ≤ γsF
(
δ� − ε

)
1 − s − F

(
δ� − ε

)
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and combining this inequality with (53) shows that the second term on the first line of
(52) remains bounded as λ → ∞. Proceeding similarly, one can show that the third term
also remains bounded as frictions vanish, and the result now follows by observing that
limλ→∞ϑc = ∞.

Proof of Proposition 6. By Theorem 1, we have that

r�V (δ) = δ−
∫ δ

0
k0

(
δ′)dδ′ +

∫ 1

δ
k1

(
δ′)dδ′

with the uniformly bounded functions defined by

k0
(
δ′) = γF

(
δ′) + λθ0�1

(
δ′)

r + γ + λθ1
(
1 − s −�0

(
δ′)) + λθ0�1

(
δ′)

k1
(
δ′) = γ

(
1 − F

(
δ′)) + λθ1

(
1 − s −�0

(
δ′))

r + γ + λθ1
(
1 − s −�0

(
δ′)) + λθ0�1

(
δ′) .

Using Lemma 1 and the assumption that θq > 0, we obtain

lim
λ→∞kq

(
δ′) = θq�

�
1−q

(
δ′)

θ0�
�
1

(
δ′) + θ1�

�
0

(
δ′) = 1{q=0}1{δ≥δ�} + 1{q=1}1{δ<δ�},

and the required result now follows from an application of the dominated convergence
theorem because the functions kq(δ′ ) take values in [0, 1].

Proof of Proposition 7. Assume without loss of generality that supp(F ) = [0, 1].
Evaluating (19) at δ� and making the change of variable x = √

λ(δ′ − δ� ) in the two inte-
grals shows that

r
√
λ
(
�V

(
δ�

) −p�
) = P(λ) −D(λ), (54)

where the functions on the right-hand side are defined by

D(λ) ≡
∫ 0

−∞
1{x≥−δ�

√
λ}

γF
(
δ� + x/

√
λ
) + θ0

√
λg1(x)

r + γ + θ0
√
λg1(x) + θ1

√
λg0(x)

dx

P(λ) ≡
∫ ∞

0
1{x≤(1−δ� )

√
λ}

γ
(
1 − F

(
δ� + x/

√
λ
)) + θ1

√
λg0(x)

r + γ + θ0
√
λg1(x) + θ1

√
λg0(x)

dx

with the functions

gq(x) ≡ √
λ(1 − q)

(
1 − s − F

(
δ� + x/

√
λ
)) + √

λ�1
(
δ� + x/

√
λ
)
.

Letting the meeting rate λ → ∞ on both sides of (54) and using the convergence result
established by Lemma A.11 below we obtain that

lim
λ→∞ r

√
λ
(
�V

(
δ�

) −p�
)

=
∫ ∞

0

θ1g(−x)dx
θ0g(x) + θ1g(−x)

−
∫ 0

−∞
θ0g(z)dz

θ0g(z) + θ1g(−z)
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=
∫ ∞

0

(1 − 2θ0 )g(x)g(−x)dx(
θ0g(x) + θ1g(−x)

)(
θ0g(−x) + θ1g(x)

) dx
=

∫ ∞

0

γs(1 − s)(1 − 2θ0 )dx

γs(1 − s) + θ0θ1
(
xF ′(δ�))2 = π

F ′(δ�)
(

1
2

− θ0

)(
γs(1 − s)
θ0θ1

) 1
2

,

where the function

g(x) = 1
2
xF ′(δ�) + 1

2

√(
xF ′(δ�))2 + 4γs(1 − s)

is the unique positive solution to (55), the second equality follows by making the change
of variable −z = x in the second integral, the third equality follows from the definition
g(x), and the last equality follows from the fact that

∫ ∞

0

dx

a+ x2 = arctan(x/
√
a)√

a

∣∣∣∣
∞

0
= π

2
√
a

, a > 0.

This shows that the asymptotic expansion holds at the marginal type and the desired
result now follows from the fact that �V (δ) = �V (δ� ) + o(1/

√
λ) by Proposition 9.

Lemma A.9. Assume that the conditions of Proposition 7 hold and denote by g(x) the
positive solution to the quadratic equation

g2 − gF ′(δ�)x− γs(1 − s) = 0. (55)

Then we have that g1(x) → g(x) and g0(x) → g(−x) for all x ∈ R as λ→ ∞.

Proof. Evaluating (17) at the steady state shows that the function g1(x) is the unique
positive solution to the quadratic equation given by

g2 +
[

γ√
λ

+ √
λ

(
F

(
δ�

) − F

(
δ� + x√

λ

))]
g − γsF

(
δ� + x√

λ

)
= 0. (56)

Because the left-hand side of this quadratic equation is negative at the origin and pos-
itive at g = 1, we have that g1(x) is the unique positive root of the polynomial. Notice
that the coefficients have well defined limits as λ → ∞:

lim
λ→∞

√
λ

(
F

(
δ�

) − F

(
δ� + x√

λ

))
= −F ′(δ�)x

lim
λ→∞−γsF

(
δ+ x√

λ

)
= −γs(1 − s).

Since the positive root of the quadratic equation (56) can be written as a continuous
function of the coefficient, it follows that g1(x) has a well defined limit as λ → ∞ and
that the limit is the positive root of (55). Next, we note that

g0(x) = g1(x) + √
λ
(
F

(
δ�

) − F
(
δ� + x/

√
λ
))

.
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Substituting this expression into (56) then shows that the function g0(x) is the unique
positive solution to the quadratic equation given by

g2 +
[

γ√
λ

− √
λ
(
F

(
δ�

) − F
(
δ� + x/

√
λ
))]

g − γ(1 − s)
(
1 − F

(
δ� + x/

√
λ
))

,

and the desired result follows from the same arguments as above.

Lemma A.10. Assume that the conditions of Proposition 7 hold.

(a) There exists a finite K ≥ 0 such that

g1(x) ≤K/|x|, x ∈ Iλ− ≡ [−δ�
√
λ, 0

]
g0(x) ≤K/|x|, x ∈ Iλ+ ≡ [

0,
(
1 − δ�

)√
λ
]
.

(57)

(b) For any given x̄ ∈ Iλ+ ∩ (−Iλ− ), there exists a strictly positive k such that

g1(x) ≥ k|x|, x ∈ Iλ+ ∩ [
x̄, ∞)

g0(x) ≥ k|x|, x ∈ Iλ− ∩ (−∞, −x̄
] (58)

for all sufficiently large λ.

Proof. (a) Because g1(x) is the positive root of (56), we have that (57) holds if and only
if

min
x∈Iλ−

{
K2

x2 + K

|x|
(

γ√
λ

+ √
λ

[
F

(
δ�

) − F

(
δ� + x√

λ

)])
− γsF

(
δ� + x√

λ

)}
≥ 0,

and a sufficient condition for this to be the case is that

min
x∈Iλ−

{
K

|x|
√
λ

[
F

(
δ�

) − F

(
δ� + x√

λ

)]
− γs(1 − s)

}
≥ 0. (59)

By the mean value theorem, we have that for any x ∈ Iλ− ∪ Iλ+, there exists δ̂(x) ∈ [0, 1]
such that

F
(
δ�

) − F

(
δ� + x√

λ

)
= −xF ′(δ̂(x)

)
√
λ

, (60)

and substituting this expression into (59) shows that a sufficient condition for the valid-
ity of equation (57) is that we have K ≥ K� ≡ maxδ∈[0,1]

γs(1−s)
F ′(δ) . Because the derivative of

the distribution of utility types is assumed to be bounded away from zero on the whole
interval [0, 1], we have that K� is finite and (57) follows. One obtains the same constant
when applying the same calculations to the function g0(x) over the interval Iλ+.

(b) Fix an arbitrary x̄ ∈ Iλ+ ∩ (−Iλ− ). Because g1(x) is the positive root of (56), we have
that (58) holds if and only if

max
x∈Iλ+∩[x̄,∞)

{
k2x2 + kx

(
γ√
λ

+ √
λ

[
F

(
δ�

) − F

(
δ� + x√

λ

)])
− γsF

(
δ� + x√

λ

)}
≤ 0.
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Combining this inequality with (60) then shows that a sufficient condition for (58) is
that k ≤ k� ≡ infδ∈[0,1](F ′(δ) − γ

x̄
√
λ

), and the desired result now follows by noting that

because the derivative of the distribution of types is strictly positive on [0, 1], we can
pick the meeting rate λ large enough for the constant k� to be strictly positive. One
obtains the same constant when applying the same calculations to the function g0(x)
over the interval Iλ− ∩ (−∞, −x̄].

Lemma A.11. Assume that the conditions of Proposition 7 hold.

lim
λ→∞D(λ) =

∫ 0

−∞
θ0g(x)dx

θ0g(x) + θ1g(−x)
and lim

λ→∞P(λ) =
∫ ∞

0

θ1g(−x)dx
θ0g(x) + θ1g(−x)

,

where the function g(x) is defined as in Lemma A.9.

Proof. By Lemma A.9 we have that the integrand H(x; λ) in the definition of D(λ) sat-
isfies

lim
λ→∞H(x; λ) = θ0g(x)

θ0g(x) + θ1g(−x)
. (61)

Now fix an arbitrary x̄ ∈ Iλ+ ∩ (−Iλ− ) and let the meeting rate λ be large enough. On the
interval [−x̄, 0], we can bound the integrand above by 1 and below by 0, while on the
interval Iλ−\[−x̄, 0], we can use the bounds provided by Lemma A.10 to show that

0 ≤H(x; λ) ≤ γ|x| + θ0
√
λK√

λ
(
θ0K + θ1k|x|2) ≤ γδ� + θ0K

θ0K + θ1k|x|2 ,

where the inequality follows from the definition of Iλ−. Combining these bounds shows
that the integrand is bounded by a function that is integrable on R− and does not de-
pend on λ. This allows us to apply the dominated convergence theorem, and the result
for D(λ) now follows from (61). The result for the other integral follows from identical
calculations. We omit the details.

Proof of Proposition 8. Assume that there are I ≥ 2 utility types δ1 < δ2 < · · · < δI ,
identify the marginal type with index m ∈ {1, � � � , I} so that 1 − F(δm ) ≤ s < 1 − F(δm−1 ),
and set δ0 ≡ 0 and δI+1 ≡ 1. Assume further that 1 −F(δm ) < s, which occurs generically
when the distribution of utility types is restricted to be discrete. Under these assump-
tions, the same algebraic manipulations that we used to establish (46) and (47) show
that we have

�1(δ) = �1(δi ) =

⎧⎪⎪⎨
⎪⎪⎩

1
λ

γsF(δi )
1 − s − F(δi )

+ o

(
1
λ

)
if i <m

F(δi ) − (1 − s) + 1
λ

γ
(
1 − F(δi )

)
(1 − s)

F(δi ) − (1 − s)
+ o

(
1
λ

)
if i ≥m

(62)
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for all δ ∈ [δi, δi+1 ) and i ∈ {1, � � � , I}. Likewise, we have that the local surplus satisfies

σ(δ) = σ(δi ) =

⎧⎪⎪⎨
⎪⎪⎩

1

λθ1
(
1 − s − F(δi )

) + o

(
1
λ

)
if i <m

1

λθ0
(
F(δi ) − (1 − s)

) + o

(
1
λ

)
if i ≥m

for all δ ∈ [δi, δi+1 ) and i ∈ {1, � � � , I}, and it follows that

�V (δm ) −�V (δi ) =
m−1∑
j=i

(δj+1 − δj )σ(δj ) = 1
λ

m−1∑
j=i

δj+1 − δj

θ1
(
1 − s − F(δj )

) + o

(
1
λ

)
, i >m

�V (δi ) −�V (δm ) =
i−1∑
j=m

(δj+1 − δj )σ(δj ) = 1
λ

i−1∑
j=m

δj+1 − δj

θ0
(
F(δj ) − (1 − s)

) + o

(
1
λ

)
, i <m.

This calculation shows that with a discrete distribution of utility types, price dispersion
converges to 0 in order 1/λ. To complete the proof, we calculate the steady-state reser-
vation value �V (δm ) of the marginal investor using formula (13). This gives

r�V (δm ) = δm +
I∑

i=m

(δi+1 − δi )
γ
(
1 − F(δi )

) + λθ1
(
1 − s −�0(δi )

)
r + γ + λθ0�1(δi ) + λθ1

(
1 − s −�0(δi )

)

−
m−1∑
i=0

(δi+1 − δi )
γF(δi ) + λθ0�1(δi )

r + γ + λθ0�1(δi ) + λθ1
(
1 − s −�0(δi )

)

= δm + 1
λ

I∑
i=m

(δi+1 − δi )
γ
(
1 − F(δi )

)(
F(δi ) − (1 − s)(1 − θ1 )

)
(
F(δi ) − (1 − s)

)2

− 1
λ

m−1∑
i=0

(δi+1 − δi )
γF(δi )

(
1 − F(δi ) − s(1 − θ0 )

)
(
F(δi ) − (1 − s)

)2 + o

(
1
λ

)
,

where the second equality follows from (1) and (62).

Proof of Proposition 9. The result follows from Lemmas A.12 and A.13 below. To
simplify the presentation we assume without loss of generality that supp(F ) = [0, 1] in
the statement and proofs of these lemmas.

Lemma A.12. Under the conditions of Proposition 9, we have that

A(λ) ≡ λ

∫ δ�

0
σ(δ)dδ−

∫ δ�

0

dδ
r + γ

λ
+ θ1F

′(δ�)(δ� − δ
) +�1(δ)

=O(1) (63)

B(λ) ≡ λ

∫ 1

δ�
σ(δ)dδ−

∫ 1

δ�

dδ
r + γ

λ
+ θ0F

′(δ�)(δ� − δ
) + 1 − s −�0(δ)

= O(1) (64)

as the meeting rate λ → ∞.



1352 Hugonnier, Lester, and Weill Theoretical Economics 17 (2022)

Proof. To establish (63) we start by noting that

λσ(δ) = 1
r + γ

λ
+ θ1

(
F

(
δ�

) − F(δ)
) +�1(δ)

, (65)

where we used the facts that �0(δ) = F(δ) −�1(δ) and F(δ� ) = 1 − s due to the assumed
continuity of the distribution. Substituting this identity into (63), we obtain

∣∣A(λ)
∣∣ ≤

∫ δ�

0

∣∣F ′(δ�)(δ� − δ
) − (

F
(
δ�

) − F(δ)
)∣∣

θ1F
′(δ�)(δ� − δ

)(
F

(
δ�

) − F(δ)
) dδ.

Under our assumption that the distribution of utility types is twice continuously differ-
entiable, we can use Taylor’s theorem to extend the integrand by continuity at δ�, with
value

lim
δ→δ�

∣∣F ′(δ�)(δ� − δ
) − (

F
(
δ�

) − F(δ)
)∣∣

θ1F
′(δ�)(δ� − δ

)(
F

(
δ�

) − F(δ)
) =

∣∣F ′′(δ�)∣∣
2θ1

(
F ′(δ�))2 .

Since the derivative is bounded away from 0, this shows that the integrand is bounded
and (63) follows. Turning to (64), we start by observing that due to (1) and the continuity
of the distribution, we have �1(δ) = F(δ) − F(δ� ) + 1 − s −�0(δ). Substituting into (65)
shows that

λσ(δ) = 1
r + γ

λ
+ θ0

(
F(δ) − F

(
δ�

)) + 1 − s −�0(δ)

and the desired result now follows from the same argument as above.

Lemma A.13. Under the conditions of Proposition 9, we have that

A0(λ) ≡
∫ δ�

0

dδ
r + γ

λ
+ θ1F

′(δ�)(δ� − δ
) +�1(δ)

= log(λ)

2θ1F
′(δ�) +O(1)

B0(λ) ≡
∫ 1

δ�

dδ
r + γ

λ
+ θ0F

′(δ�)(δ− δ�
) + 1 − s −�0(δ)

= log(λ)

2θ0F
′(δ�) +O(1)

(66)

as the meeting rate λ → ∞.

Proof. To establish a lower bound, we start by noting that �1(δ) ≤�1(δ� ) for all δ≤ δ�.
Substituting this into (66) and integrating, we find that

A0(λ) ≥
∫ δ�

0

dδ
r + γ

λ
+ θ1F

′(δ�)(δ� − δ
) +�1

(
δ�

)

= −1

θ1F
′(δ�) log

(
r + γ

λ
+ θ1F

′(δ�)(δ� − δ
) +�1

(
δ�

))∣∣∣∣
δ�

0
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= −1

θ1F
′(δ�) log

(√
(γ/λ)s(1 − s) + o

(
1√
λ

))
+O(1) = log(λ)

2θ1F
′(δ�) +O(1),

where the second equality follows from the asymptotic expansion of �1(δ� ) given in (48)
above. To establish the reverse inequality, let us break down the integral into an integral
over the interval [0, δ� − 1/

√
λ], and an integral over the interval [δ� − 1/

√
λ, δ�]. A direct

calculation shows that the first integral can be bounded above by

∫ δ�−1/
√
λ

0

dδ

θ1F
′(δ�)(δ� − δ

) = 1

θ1F
′(δ�) log

(
δ�

√
λ
) = log(λ)

2θ1F
′(δ�) +O(1).

On the other hand, noting that infδ∈[δ�−1/
√
λ,δ�] �1(δ) ≥ g1(−1)√

λ
and integrating, we find

that the second integral can be bounded from above by

∫ δ�

δ�−1/
√
λ

dδ

θ1F
′(δ�)(δ� − δ

) + g1(−1)/
√
λ

= 1

θ1F
′(δ�) log

(
1 + θ1F

′(δ�)
g1(−1)

)
= O(1),

where the last equality follows Lemma A.9. The proof of the asymptotic expansion for
the second integral is similar. We omit the details.

Proof of Proposition 10. Integrating by parts shows that

w(λ) =
∫ δ�

0
�1(δ)dδ+

∫ 1

δ�

(
1 − s −�0(δ)

)
dδ.

The quadratic equation for the equilibrium distribution and the assumed continuity
of the distribution of utility types jointly imply that λ�1(δ) = γsF(δ)/(γ/λ + �1(δ) +
F(δ� ) − F(δ)), and combining this identity with arguments similar to those of the proof
of Lemma A.12 shows that the first integral in the definition of the welfare cost satisfies

∣∣∣∣
∫ δ�

0

(
λ�1(δ) − γsF

(
δ�

)
γ/λ+�1(δ) + F ′(δ�)(δ� − δ

))
dδ

∣∣∣∣ =O(1). (67)

On the other hand, the same arguments as in the proof of Lemma A.13 imply that

∫ δ�

δ�−1/
√
λ

γsF
(
δ�

)
dδ

γ/λ+�1(δ) + F ′(δ�)(δ� − δ
) ≤ γsF

(
δ�

)
F ′(δ�) log

(
1 + F ′(δ�)

g1(−1)

)
= O(1),

and combining this inequality with (67) gives

∫ δ�

0
λ�1(δ)dδ =

∫ δ�−1/
√
λ

0

γsF
(
δ�

)
γ/λ+�1(δ) + F ′(δ�)(δ� − δ

) dδ+O(1).

To obtain a lower bound for the integral, we can bound �1(δ) above by �1(δ� − 1/
√
λ),

and to obtain an upper bound, we can bound �1(δ) below by 0. In both cases, we can
compute the resulting integral explicitly and we find that the bounds can both be written
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as

γsF
(
δ�

)
2F ′(δ�) log(λ) +O(1) = γs(1 − s)

2F ′(δ�) log(λ) +O(1).

Going through the same steps shows that the second integral satisfies

∫ 1

δ�
λ
(
1 − s −�0(δ)

)
dδ= γs(1 − s)

2F ′(δ�) log(λ) +O(1)

and the desired result now follows by adding the two asymptotic expansions. To com-
plete the proof, assume that the distribution of utility types is discrete. Using the same
notation as in the proof of Proposition 8, we find that

w(λ) =
m−1∑
i=0

(δi+1 − δi )�1(δi ) +
I∑

i=m

(δi+1 − δi )
(
1 − s − F(δi ) +�1(δi )

)

and the conclusion follows from the expansion of �1(δi ) in (62).
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