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Deep and shallow thinking in the long run
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Humans differ in their strategic reasoning abilities and in beliefs about others’
strategic reasoning abilities. Studying such cognitive hierarchies has produced
new insights regarding equilibrium analysis in economics. This paper investigates
the effect of cognitive hierarchies on long run behavior. Despite short run behav-
ior being highly sensitive to variation in strategic reasoning abilities, this variation
is not replicated in the long run. In particular, when generalized risk dominant
strategy profiles exist, they emerge in the long run independently of the strate-
gic reasoning abilities of players. These abilities may be arbitrarily low or high,
heterogeneous across players, and evolving over time.
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1. INTRODUCTION

Coordination, when it occurs, is an almost accidental (though statistically predictable) by-
product of non-equilibrium thinking.

—YVincent Crawford (2007)

There is evidence that humans sometimes reason iteratively to predict the behav-
ior of others and that the depth of such reasoning can vary according to person and
situation (see Crawford (2019) for a survey). Apart from some notable exceptions (e.g.,
Sdez-Marti and Weibull (1999), Myatt and Wallace (2003)), the literature on long run out-
comes in games played in populations usually abstracts from such considerations. An
open question has been whether the best known result in this literature, the emergence
of (generalized) risk dominant Nash equilibria (see Peski (2010)) under broad classes of
best response dynamics, is robust to iterative reasoning. We answer this question in the
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Risk Dominance With Two Strategies

. . Generalized Risk Dominance
and Uniform Interaction

Level of Rationality

k=1 Blume (2003) Peski (2010)
2<k<o * *
k=00 Myatt and Wallace (2003) *

F1GURE 1. Summary of literature. Blume (2003) and Peski (2010) consider myopic (k = 1) play-
ers who follow the general class of processes that we consider in Section 6. Myatt and Wallace
(2003) consider sophisticated (k = oo) players who can iteratively reason to a Nash equilibrium
every period. The current paper (denoted %) extends these results to any k in the generalized set-
ting and, a fortiori, to the two strategy uniform interaction setting. In addition, our results span
the table in the sense that, as empirical work suggests (Stahl and Wilson (1994), Nagel (1995) on-
ward) and is theoretically plausible (Stahl (1993)), if players have different k or if levels of k are
determined randomly from period to period, then the result still holds. Other work, discussed
later, considers two player games under sample-based processes (Sdez-Mart1 and Weibull (1999),
Matros (2003), Khan and Peeters (2014)).

affirmative. Even though short run behavior can be dramatically affected by such rea-
soning and convergence to Nash equilibrium may fail to occur in the short run, long run
predictions are robust to all levels of reasoning by players. Moreover, these levels may
be heterogeneous and may even be random, in which case they can be correlated across
players.

Let us describe our model. Every period, each player in a game is independently
active with positive probability. Given the current strategy profile, an active player for-
mulates a conjecture about the behavior of the other players to which he will usually,
but not always, best respond. A player of level k£ = 1 will conjecture that other players
remain at the current strategy profile. Higher levels of £ are defined iteratively. A player
of level k will conjecture that all other players are of level kK — 1. Level k = co involves
reasoning to a Nash equilibrium strategy every period. There are at least two ways to in-
terpret such processes. One way is to take the model at face value. This is consistent with
the foundational level k literature that explicitly considers behavioral dynamics (Nagel
(1995), Selten (1991), Stahl (1993)). Another interpretation is that the game is played by
new players each period, with these players looking to the actions of previous players for
guidance. Some players may consider it sensible to best respond to the previous period’s
play, other players may expect their opponents to best respond to the previous period’s
play, and so on. This interpretation is consistent with level k thinking as a theory of be-
havior in one-off interactions that take place against a background of social learning.
Note that under either interpretation, a level 1 player will conjecture that other play-
ers play as in the previous period. This contrasts with static models of level k thinking
in which a level 1 player assumes that other players are “level 0” players who choose
strategies randomly and independently of how the game has been played in the past.

The strongest known results on the long run emergence of risk dominance under
level k reasoning are shown in Figure 1, with the remaining entries in the table being
contributions of the current paper. Given that risk dominance is robust across all entries
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in the table, it is worth explaining why the robustness of long run behavior to level & rea-
soning is not obvious. The reason is that short run behavior under level £k dynamics can
be very sensitive to differing levels of k. Short run behavior refers to behavior that will
be observed with high probability when non-best responses are rare. Specifically, short
run dynamics are the dynamics that we would observe if active players were to always
best respond to their conjectures. Consider a coordination game between Alice and Bob
in which each player has two strategies, A and B, and would like to choose the same
strategy as the other player. Let both players have the same level of k. For k =1, from
any miscoordinated strategy profile, there is always a chance that one player is inactive
while the other player best responds to the first player’s current strategy. When this hap-
pens, coordination is attained. In contrast, for £ = 2, miscoordination will persist. To
see this, consider the profile where Alice plays 4 and Bob plays B. From this profile, a
level 2 Alice will conjecture that Bob is level 1 and will best respond to Alice’s current
strategy by playing A. Therefore, Alice will best respond to her conjecture by continuing
to play A. When Bob updates his strategy, he will reason similarly and will continue to
play B. Persistent miscoordination is driven by persistently incorrect conjectures.!

Now, consider the influence of non-best response behavior over the long run. Specif-
ically, consider the logit dynamics, under which strategies that lead to higher conjec-
tured payoffs are more likely to be played. In contrast to the sensitivity of short run be-
havior, we find that long run stability of risk dominant equilibria under the logit dynamic
is robust to different levels of k (Theorem 1). The intuition for this can be explained with
reference to the above example. If A is the risk dominant strategy, then the probability of
Alice playing 4 when she conjectures that Bob will play B is greater than the probability
that she plays B when she conjectures that Bob will play 4, regardless of whether her
conjectures are correct or incorrect. That is, this bias exists regardless of whether short
run behavior converges to a Nash equilibrium or involves persistent miscoordination.
Consequently, long run behavior is pushed toward risk dominance, irrespective of the
players’ levels of rationality.

For expositional reasons, we first state our main result for a level k version of logit
choice (Theorem 1). Applying Theorem 1 to technology adoption in networked popu-
lations, we show that the strategy profile at which every player plays a risk dominant
technology remains the most stable outcome for arbitrary levels of rationality (Proposi-
tion 1). Later, we expand our analysis beyond the logit dynamic. Specifically, we con-
sider a broad class of perturbed best response dynamics in which the probability of play-
ing a non-best response is weakly decreasing in the payoff loss that results. In addition,
we move beyond level k£ conjectures to consider a broad class of conjectures that players
can make about the behavior of other players. Last, we consider randomness in players’
conjectures (Theorem 2).

INote that this differs from the phenomenon of miscoordination due to synchronous strategic updat-
ing. For example, if Alice and Bob were both level 1 and always adjusted their strategies simultaneously,
then from a starting position of miscoordination, their attempts to coordinate would repeatedly fail. In
contrast, players’ updating probabilities in our model are independent, so synchronicity is not a cause of
miscoordination.
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To prove these results, we use recent advances in the study of asymmetric dynam-
ics. First, we break down the dynamic process of strategy updating into subprocesses
for each player and level of rationality. For example, if Alice sometimes behaves as a
level 1 player and sometimes as a level 2 player, then one of the subprocesses has Al-
ice acting as a level 2 player while Bob’s strategy is frozen and unchanging. Next, we
show that these subprocesses satisfy a certain type of asymmetry toward generalized
risk dominant strategy profiles. This asymmetry corresponds to the probabilistic bias
in Alice’s choices that we identified above. Importantly, the asymmetry is independent
of the correctness or otherwise of the underlying conjectures. We then combine these
subprocesses using the methods of Newton (2020, 2019) to obtain an aggregate process
that is also asymmetric toward such profiles. This asymmetry implies that generalized
risk dominant strategy profiles are those that will be observed most often in the long run
(Peski (2010)).

The paper is organized as follows. Section 2 discusses related literature. Section 3
describes level k logit dynamics and Section 4 gives the first iteration of our main re-
sult. Section 5 applies this result to technology adoption on networks. Section 6 gives
our main result under a broad class of dynamics and a broad class of conjectures that
players can make about the behavior of other players. Section 7 concludes. All proofs
are relegated to the Appendix.

2. RELATED LITERATURE

Economic experiments on static, sequential, and repeated games have produced evi-
dence to support both level £ modeling assumptions and the possibility of heterogeneity
in k across players. See Crawford (2019) for a recent review of this literature. Moreover,
there is evidence that short run convergence to equilibrium may depend on cognitive
ability (Gill and Prowse (2016), Proto, Rustichini, and Sofianos (2019)). However, there is
also experimental evidence of a tendency for subjects to reason at progressively higher
levels over time (Nagel (1995), Duffy and Nagel (1997)). Indeed, changes in levels of k
have been fitted to models of reinforcement learning Stahl (1999, 2000) and Bayesian
updating (Ho and Su (2013)). In contrast, the main results of the current paper concern
long run behavior after levels of k£ have either reached a steady state or have risen to and
persist above a given level. In such situations, our results predict a tendency toward risk
dominant equilibria, as has been observed in several experimental settings (Van Huyck,
Battalio, and Beil (1990), Battalio, Samuelson, and Van Huyck (2001), Heinemann, Nagel,
and Ockenfels (2004), Cabrales, Nagel, and Armenter (2007)).

There also exists a theoretical literature on the persistence of different levels of k in
populations. The overall conclusion is that because “being right is just as good as being
smart” (Stahl (1993)), heterogeneous levels of rationality can persist when players with
those levels play similar strategies (see also Mohlin (2012)). Other work discusses ex-
plicit weaknesses of iterated reasoning. Stennek (2000) shows how iterated deletion of
strictly dominated strategies can lead to fitness losses unless probability weight that is
redistributed from a dominated strategy when it is deleted is only transferred to those
strategies that dominate it. Geanakoplos and Gray (1991) explain how errors in assess-
ing the value of future continuation games can lead to suboptimal play in the present. A
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striking way to be unable to assess the value of the future in such settings would be if a
player did not use information about other player’s payoffs when making decisions. As
we might expect, such players will usually be eliminated from the population (Robalino
and Robson (2016)). Finally, heterogeneity in other traits may interact with iterated rea-
soning. For example, Heller (2015) shows how being able to know far in advance when
a series of repeated prisoner’s dilemmas will end can be evolutionarily selected against,
as when two such players are paired, it becomes impossible to sustain cooperation for
a considerable number of periods before the end of the game. Similarly, collaborative
decision making may lead to cooperation in prisoner’s dilemmas in the absence of fur-
ther reasoning, but will fail to do so if subsequent reasoning leads to defection (Newton
(2017), Rusch (2019)).

The dynamic processes that we adapt for level £ and broader conjectures about
opponents’ behavior are common in the evolutionary literature. Theorem 1 concerns
logit dynamics (Blume (1993)). For a detailed discussion of logit dynamics, the reader
is directed to Alds-Ferrer and Netzer (2010). The general idea is that the probability of
playing a non-best response strategy decreases log-linearly in the payoff loss from play-
ing that strategy relative to the payoff from playing a best response. If log-linearity is
dropped, we obtain a much larger class of dynamics. Theorem 2 concerns this class,
which is close to the classes of skew-symmetric rules (Blume (2003)) and payoff-based
rules (Peski (2010)). Recent experimental studies designed to explicitly test the proper-
ties of non-best response behavior find evidence in support of such dynamics (Mis and
Nax (2016), Lim and Neary (2016), Hwang, Lim, Neary, and Newton (2018)). The survey
of Newton (2018) covers recent work on trait evolution and dynamics, including many
of the papers discussed above.

The dynamics considered in the current paper have the current strategy profile as
the state variable. This has been popular in the literature following Kandori, Mailath,
and Rob (1993). A parallel literature considers a sample-based process—adaptive play
(Young (1993b))—according to which members of populations are drawn to play a game
against members of other populations and respond to a sample of how the game has
been played in the recent past. This adds a degree of complication to the model that
has been leveraged to obtain results for level k thinking in two player games in which
one player is drawn from each of two populations. From a benchmark in which every
player has k = 1, the focus of research has been on conditions under which the pres-
ence of k = 2 players changes the implications of the benchmark model. Sdez-Marti
and Weibull (1999) consider the bargaining model of Young (1993a) in the presence of
k = 2 players, Matros (2003) considers generic two player games in the presence of k = 2
players, and Khan and Peeters (2014) consider generic two player games in the presence
of players with any finite k. The general conclusion of this literature is that £ > 1 makes
a difference if and only if a low sample size for clever players in one population causes
them to foresee a change in the behavior of the opposing population the next period that
does not in fact happen. However, having acted to preempt the predicted change, the
clever players put in motion a sequence of transitions that moves the process to another
equilibrium.
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Finally, we note that there is a literature that considers possible nonconvergence of
certain processes to mixed Nash equilibria (see Crawford (1974)) and the role that k =
2 players can have in overcoming this nonconvergence (Selten (1991), Conlisk (1993b,
1993a), Tang (2001)). In contrast, the dynamics of the current paper may fail to converge
to Nash equilibrium in the short run due to the presence of k = 2 players. However,
our main results regarding long run predictions turn out to be unaffected by whether
or not short run convergence occurs, thus providing a unifying theme to the literature
described in Figure 1.

3. MODEL
3.1 Thegame

Consider a normal form game G = (N, {S;}icn, {Uilien)- The set of players is N. Each
player i € N has a finite strategy set S; and a strategy for player i is denoted s; € S;. The
set of strategy profiles is § = X,_y S; with generic element s € S. Let s_; denote s re-
stricted to N \ {i}. The payoff to player i at strategy profile s is given by U;(s) = U;(s;, s—;)-
Assume that U;(s;, s_;) # U;(s}, s_;) for any s, s, s_;, which holds generically in payoffs.
Cases in which it does not hold will be considered later in Section 6.

3.2 Level k best responses

We assume that each player i € N has a level of rationality given by an integer k; > 1.
Different players are allowed to have different values of k;. We refer to a player with a
given value of k; as a level k; player. A player’s level will determine the conjecture he
makes about the behavior of other players. In Section 6, we will allow players’ levels
to be random, correlated, and changing over time. For now, we assume that any given
player’s level remains fixed and unchanging.

For a given strategy profile s, we denote the profile of best responses by

Bl(s)= (Bl-l(s)) where B} (s) € argmax U;(s;, 5—;)- (1)

H )
ieN 5;€S;

We will refer to B! (s) as the profile of level 1 best responses to s. Note that, by our gener-
icity assumption on payoffs, best responses are uniquely determined. We also wish to
consider best responses to best responses, best responses to these in turn, and so on. To
do this, we recursively define level k best responses as

B*(s)=B'(B*"(s)) forkeN, k>2. )

Note that the difference between different levels of best response lies in the conjectured
strategy profiles to which a player best responds. The conjectures described here are
based on the iteration of the best response correspondence.’> More general conjectures
that are not based on iterated best response will be considered in Section 6.

2Note that level 1 best responses are a best response to the status quo. Therefore, level 0 behavior in this
context corresponds to inertia, in contrast to static models in which level 0 is often modeled as uniform
random choice.
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If the best response correspondence converges, that is, if there exists k& such that
B¥(s) = B¥=1(s) for all s € S, then we say that the game G is Nash convergent. In such
games, iterative reasoning based on best responses will lead players to a Nash equilib-
rium.

ReEMARK 1. If G is Nash convergent, then for all s € S, B®(s) := limy_, Bk (s) is a Nash
equilibrium (Nash (1950)).

3.3 Level k logit choice

For our principal analysis we will adopt the logit choice rule. We do this as it is the
best known and most commonly used stochastic behavioral rule. However, our results
extend to a family of payoff dependent behavioral rules, which we shall discuss in Sec-
tion 6. The standard logit choice rule (Cox (1958), Block and Marschak (1959)) is as fol-
lows. Given a current strategy profile s*, the probability of player i choosing strategy s’ is
given by

e Uilssty)

4

Prl(s§|st) =———_  forsomen>0. (3)

Z e%Ui(Sin’_,-)

SiGSi

This is a perturbed best response rule parameterized by n > 0. The probability of choos-
ing any given strategy under this rule is increasing in the payoff from choosing that strat-
egy. For small values of 7, a player following this rule will usually play a level 1 best re-
sponse. Hence, we refer to the rule as level 1 logit choice. However, sometimes the player
will play a non-best response. For small values of 7, such non-best responses are rare
and the level 1 best response is played almost all of the time. Analogously, we define
level k logit choice for k > 2:

e Vilsp B 1)

. > S UGB

S,‘ES,‘

4)

Pr¥ (s)]s")

That is, for small values of 1, a player following the level k logit choice rule will usually
play a level k best response.

For n = 0, define level k logit choice probabilities as the limits of (3) and (4) as n — 0.
That is, a level k best response will be played with probability 1.

The difference between the standard logit choice rule and the level k logit choice
rule for k£ > 2 is the conjectured play of the opposing players. Specifically, standard logit
probabilities for player i are calculated with respect to the conjecture that other players
remain playing their current strategies, whereas level k logit probabilities are calculated
with respect to the conjecture that other players play level k£ — 1 best responses.
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¢ dol ’\s if 7 is level 1
active w.p. ¢; and plays s w.
iis b by P k(st|st) if i is level k; > 2
inactive w.p. (1 —¢;) and plays s{*! = st
Period t Period t+1 Period t+2

FIGURE 2. Strategy updating. Revision probabilities in period ¢ + 1 for different levels of ratio-
nality of player i.

It follows from (4) and the definition of Nash convergence that if the game G is Nash
convergent and players are sufficiently rational, then level & logit choice under small 5
will usually conform to the play of Nash equilibrium strategies.

ReMARK 2. If the game G is Nash convergent, then, for large enough k;, for any current
strategy profile s’ € S, level k; logit choice by player i will choose the Nash equilibrium
strategy B?°(s") with probability approaching 1 as n — 0.

3.4 Dynamic strategy updating

We define the level k logit dynamics on the state space of strategy profiles. The game
is played repeatedly in discrete time and strategies are updated according to the level k
logit choice rule. Let the strategy profile played at period ¢ be s'. At time ¢ + 1, any given
player i is, independently of the other players, active with probability ¢; € (0, 1). If i is
not active at ¢ + 1, then his strategy at ¢ 4+ 1 remains the same as his strategy at ¢; that is,

‘“ = si. If player i is active at period 7 + 1 and is of level k;, then he updates his strategy
accordlng to the level k; logit choice rule. See Figure 2 for illustration.

Level k logit dynamics combine the commonly used logit dynamic and level £ con-
jectures. As remarked in the Introduction, there are two ways of interpreting this fusion.
One way is to interpret the dynamic as a fixed set of players who reason in an itera-
tive manner and continue to do so as time passes. Another interpretation is to consider
players as being drawn from a population every period, observing the current strategy
profile, using level k reasoning to form a conjecture about how other players will play,
responding to this in a single iteration of the game, and then disappearing back into the
population to be replaced by somebody else the following period. This latter interpre-
tation is consistent with level k thinking as a theory of behavior in one-off interactions,
together with a process of social learning in which a society converges, or perhaps fails
to converge, to a convention.

REMARK 3. If k; = 1 for every player, then this process is effectively the standard logit
dynamic of Blume (1993).* Players for whom k = 2 correspond to the “clever” players of
Sdez-Mart1 and Weibull (1999), Matros (2003).

3In fact, it can be checked that, given current strategy profile s’, logit choice probabilities under a se-
quence of decreasing values of n correspond to a sequence that identifies B> (s’) as a proper equilibrium
under the definition of Myerson (1978).

4See Al6s-Ferrer and Netzer (2010) for an extended discussion of this process and Sandholm (2010), New-
ton (2018) for a discussion of related processes.
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REMARK 4. Let G be Nash convergent and let every player have a level k; high enough
that B%i—1(.) = B>(.). Under the unperturbed (n = 0) dynamic, if the strategy profile at
time ¢ is s*, then with probability at least [],_, gi, the strategy profile at time ¢ + 1 will be
the Nash equilibrium B*(s’). High rationality players who achieve such coordination
correspond to the “sophisticated” players of Myatt and Wallace (2003).

Remarks 3 and 4 illustrate that the level k logit dynamics bridge the gap between per-
turbed best response dynamics in the style of Kandori, Mailath, and Rob (1993), Young
(1993b) and instantaneously jumping to a Nash equilibrium. Indeed, an important im-
plication of the current paper is that certain results are robust across this entire class of
models.

3.5 Stochastic stability

Under the level k£ logit dynamics with i > 0, any state can be reached from any other
state. Therefore, the process is irreducible and has a unique stationary distribution,
which we denote 7,. The stationary distribution gives the proportion of time that the
process will spend at any strategy profile in the long run. We are interested in dynamics
that are close to best response dynamics, that is, when 7 is small.

It can be shown by standard arguments (Foster and Young (1990)) that 7, converges
as 1 — 0. Denote this limiting stationary distribution by . If 79 (s) > 0, we say that s is
stochastically stable. If m(s) = 1, we say that s is uniquely stochastically stable. For small
values of 7, the process will spend almost all of its time at stochastically stable strategy
profiles. Thus, the identity of stochastically stable states tells us which strategy profiles
we can expect to be played most of the time in the long run.

Regularities in behavior that are not observable in the short run may emerge in the
long run. It is these regularities that we seek when we analyze long run behavior un-
der perturbed dynamics. In the example in the Introduction, unperturbed level 2 best
response leads to every strategy profile being an absorbing state of the dynamics. In
contrast, the drift toward 4 under the perturbed dynamic leads to the predominance of
profile (A, A), as we shall see formally in the next section.

4. MAIN RESULT

Our main result is that results on the stability of risk dominant strategy profiles under
standard (k = 1) perturbed best response dynamics are robust to level k updating. We
shall withhold additional discussion of why the result is novel, interesting, and non-
obvious until after presenting it. First, we shall define the concept of risk dominance
that we use: generalized risk dominance (Peski (2010)).

Consider any given strategy profile and label it s/. Without loss of generality, we
label the strategies of every player at s as A, so that 5! = A4 for all i e N. If a pair of
strategy profiles s, " is such that every player plays A at least at one of s and s’, then we
say that s and s’ are A-associated (see Figure 3). Generalized risk dominance of s holds
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s4 5 5 §B

Alice A A B B
Bob 4 B A B

FIGURE 3. A-association. Consider the illustrated example with two players and two strategies,
labeled A and B, for each player. It can be seen that s is 4-associated with every other strategy
profile. Furthermore, s is A-associated with s’, as every player plays A4 at least at one of these
two profiles. However, s is not A-associated with s5, as Bob plays A4 at neither of these profiles.
Finally, s’ and s? are not 4-associated, as Alice plays A at neither of these profiles.

when, for any two A4-associated strategy profiles, the incentives to play A4 at one of these
profiles outweighs any incentive not to play A at the other profile.®

DEerINITION 1 (Generalized risk dominance). Profile s is generalized risk dominant
(GR-dominant) if, for all 4-associated strategy profiles s’ and s”, foralli € N,

Ui(A4,s_;) + Ui(A, s”;) = max Uj(s;, s"_;) + max U(s;, s” ;). (5)
si#FA si#A
Substituting > for > in (5) gives the definition of strict generalized risk dominance.

REMARK 5. With two players and two strategies, (strict) GR-dominance is equivalent
to (strict) risk dominance of Harsanyi and Selten (1988). We consider this further in
Section 5. For two players and more than two strategies, (strict) GR-dominance implies
(strict) %-dominance of Morris, Rob, and Song Shin (1995). Conversely, when there are
many players but payoffs are a linear sum of payoffs from two player interactions, a
strong form of %-dominance implies GR-dominance (Peski (2010)). In general, however,
these concepts are independent (see also Iijima (2015)).

We are now ready to state our main theorem. Risk dominance is robustly selected
for under the entire class of level k& logit dynamics.

THEOREM 1. Under the level k logit dynamics with k; > 1 for all i € N, the following
statements hold.

o Ifs? is GR-dominant, then s* is stochastically stable.

o Ifs4 is strictly GR-dominant, then s is uniquely stochastically stable.

REMARK 6. It is known that stochastic stability of GR-dominant profiles holds under
a class of payoff dependent behavioral rules (see Section 6) that includes logit (Peski
(2010)). This is a generalization of earlier results concerning the stochastic stability of
risk dominant profiles in 2 by 2 games (Kandori, Mailath, and Rob (1993), Young (1993b),
Blume (1993, 2003)). It is further known that these results are robust to heterogeneity in
behavioral rules (Newton (2020)). However, unlike the above work, the current work

5Peski (2010) defines ordinal and cardinal forms of GR-dominance. The definition we use corresponds
to the cardinal form.
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considers non-myopic conjectures. Specifically, the above papers consider smoothed
best responses to the current strategy profile s’, whereas we consider smoothed best
responses to a variety of conjectures based on s’. Furthermore, we allow heterogeneity
in these conjectures across players.

REMARK 7. The seminal papers of Kandori, Mailath, and Rob (1993), Young (1993b),
Blume (1993) can be considered to have made two principal contributions: (I) The un-
perturbed (n = 0) dynamic eventually converges to a Nash equilibrium with probability
1 (under conditions of what Young calls weak acyclicity), and (II) in two strategy coor-
dination games, risk dominant Nash equilibria are stochastically stable. In the current
model, (I) does not hold. Persistent miscoordination may arise due to & > 1 and can pre-
vent convergence of the unperturbed dynamic to a Nash equilibrium (see the example
in the Introduction and its formalization in Section 5). Nevertheless, result (II) contin-
ues to hold. That is, the long run stability of risk dominance does not rely on short run
convergence to Nash equilibrium.

REMARK 8. Consider Nash convergent G, small 7, g; close to 1, and k; high enough that
Bki=1(.) = B*(.) for all i. Under these conditions, from any non-Nash equilibrium pro-
file, the process will reach a Nash equilibrium in a single period with a probability close
to 1. This instant convergence, often assumed in one-shot games, does not change the
stochastic stability of risk dominance. Taken together with Remark 7, this implies that
stochastic stability of risk dominance is unaffected by either of the contrasting cases of
instant convergence or nonconvergence of the unperturbed dynamic to Nash equilib-
rium.

REMARK 9. We show in Section 6 that our results are robust to the levels of players being
generated randomly in each period in a way that allows for correlation, both positive
and negative, across players. Consider an alternative approach of adding a state vari-
able that tracks players’ levels, with levels increasing over time. Considering this state
variable as part of the state space, the process is no longer irreducible. However, if G is
Nash convergent, then the process governing evolution of the strategy profile converges
as best responses converge to B> (-). This implies that the behavioral implications of
Theorem 1 continue to hold.

Intuition behind the Proof. The proof of Theorem 1 is given in the Appendix. A sum-
mary of the proof is as follows. First, we disaggregate the process and consider subpro-
cesses in which only a single player of some given level k£ updates his strategy, with the
strategies of other players remaining fixed. Note that, unlike the aggregate process, such
subprocesses are not irreducible. However, we can still show that they satisfy a particular
property. Specifically, we show in Lemma 2 that if s is GR-dominant, then these sub-
processes satisfy a form of asymmetry toward strategy 4. This form of asymmetry was
considered for aggregate processes by Peski (2010) and applied to individual behavioral
rules by Newton (2020).
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A B
A | apa | ass
B | apa | aps

F1GURE 4. Unweighted payoffs from each interaction; a 4 4 > ap 4 and app > a 4. For each com-
bination of A and B, entries give payoffs for the row player.

In the context of Theorem 1, asymmetry toward risk dominant profiles arises from
two biases. First, the logit dynamics have a probabilistic bias toward risk dominant pro-
files. Second, level k£ conjectures exhibit bias toward risk dominant profiles in the follow-
ing sense: if profiles s’ and s” are A4-associated and s is GR-dominant, then the conjec-
tures Bf.‘_l (s) and Bf.‘_l (s”) that a level k player makes when faced with these strategy
profiles are themselves A-associated. Importantly, this bias is present for any level k
conjecture, regardless of its accuracy. This fact is what makes Theorem 1 independent
of players’ levels.

The next step in the proofis to re-aggregate the subprocesses to once again consider
the aggregate process in which every player updates independently as described in our
model. We show in Lemma 3 that asymmetry of the disaggregated processes implies
asymmetry of the aggregate process. This is done by applying Theorem 3 of Newton
(2020, 2019). Finally, we apply Theorem 1 of Peski (2010), which states that asymmetry
of the aggregate process toward strategy 4 implies stochastic stability of s4.

5. APPLICATION: TECHNOLOGY ADOPTION ON NETWORKS

Consider a situation in which each player may adopt one of two technologies. Specifi-
cally, let S; = {4, B} for all i € N. Each player is influenced by other players and may be
influenced by some players more than others. Let w;; € R>¢ be the influence of player
j on player i. Assume that every player i is influenced by at least one other player, so
that ),y (; wi > 0. Each player wishes to adopt a similar strategy to those who in-
fluence him. Specifically, payoffs from each pairwise interaction are given by the game
illustrated in Figure 4. The payoff to player i at strategy profile s is then the sum of the
payoffs from his pairwise interactions weighted by their influence. That is,

Ui(s) =Ui(si, s-i) = Y wijdss), (6)
JeEN~{i}

where ay;5; € R is the payoff to player i from his interaction with player ;.

A classic result (Blume (1993)) is the stochastic stability of strategy profiles at which
every player plays the same risk dominant strategy (Harsanyi and Selten (1988)). In the
two player game of Figure 4, a strategy is risk dominant if it maximizes payoff given that
the opposing player randomizes evenly across his two strategies.

DEFINITION 2. Strategy A is risk dominant if

aq4+ayp>apa+app, (7

and is strictly risk dominant if the inequality holds strictly.
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It is possible to show that (strict) risk dominance of 4 implies (strict) GR-dominance
of s4. We can then apply Theorem 1 to show that (strict) risk dominance of A4 implies
(unique) stochastic stability of s. The reverse implication then follows from the fact
that at least one of the two strategies must be risk dominant.

ProrosiTiON 1. For technology adoption on a network under the level k logit dynamics
withk;>1forallie N,

e s is stochastically stable if and only if A is risk dominant

e s is uniquely stochastically stable if and only if A is strictly risk dominant.

The special case of Proposition 1 in which all players are level 1 is known from Blume
(1993, 1996). Proposition 1 shows that stochastic stability of risk dominance is robust
to varying levels of rationality. The result is not obvious. We saw in the Introduction
that level k£ thinking can lead to short run behavior that is completely different from
that implied by level 1 thinking. However, in all cases, long run behavior tends to risk
dominance (see also Remark 7). The following example formalizes the example from
the Introduction.

ExaMPLE 1. Let N = {i, j} and w;; = wj; = 1. If player i is of level 2, then he will never
change his strategy as a result of playing a best response to his conjecture. To see this,
let the current strategy profile be s* = (s/, sj.). Given this current strategy profile, player i
will conjecture that player j will play B} (s') =s!. That is, player i expects player j at time
t + 1 to coordinate with the strategy of player i at time ¢. A best response for player i to
this conjecture is to remain playing the same strategy at time ¢ + 1 as he plays at time «.
That is, he does not change his strategy. Consequently, if both player i and player j are
level 2, then neither of them will ever change his strategy as a result of a best response.
It follows that all strategy profiles are absorbing states of the process with n = 0. This
is in stark contrast to the standard case in which every player has level 1, where the
process with n = 0 converges with probability 1 in finite time to a Nash equilibrium
of the game. Nevertheless, Proposition 1 tells us that level k£ does not affect stochastic
stability predictions for the perturbed process. The stability of risk dominance is robust
to rationality. O

6. GENERALIZATION

In this section we generalize the model in several dimensions. As before, we consider
players who do not best respond to the current strategy profile, but rather form conjec-
tures about play at 7 4+ 1 to which they best respond. However, now we do not restrict
attention to level k conjectures, but rather consider a more general class. In general,
a conjecture for player i is a function f; : § — S. A profile of conjectures is given by
f = {fl tien-

An important class of conjectures are those that preserve A-association. Given A-
associated profiles s, s/, this requires that the respective conjectures formed when pre-
sented with these strategy profiles are themselves A-associated.
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DEFINITION 3 (A-association preserving). A profile of conjectures f preserves A-
association if, for all i € N, s and s’ A4-associated, we have that f;(s) and f;(s') are A4-
associated.

The conjectures considered so far in the paper correspond to fi(s) = s and fi(s) =
Bk=1(s) for k > 2. The conjecture f;(s) = s always satisfies Definition 3 (see below). For
fi(s) = Bk=1(s), if s is GR-dominant and best responses are unique, then Definition 3 is
satisfied (Lemma 1 in the Appendix). The intuition is that when s is GR-dominant, ex-
pression (5) implies that for A-associated s’ and s”, for all i € N, strategy A is a (unique)
best response to at least one of s’ or s”. Therefore, for all i € N, we have B}(s’) = A or
Bl.1 (s") = A, so that B (s') and B! (s”) are A-associated. This logic continues as we iterate
the best response operator. Given that this was our only use of the assumption of unique
best responses, for the remainder of the paper we drop this assumption.

We shall show in Theorem 2 that our main result continues to hold when we replace
level k conjectures with those satisfying Definition 3. However, the emphasis we have
placed on level k conjectures has not been arbitrary. Indeed, given that the dynamics we
consider are built around best response to a conjecture, the most natural conjectures to
consider are those that are themselves constructed using best response. Furthermore,
a consequence of this shared reliance on best response is that GR-dominance suffices
to bias both the conjectures (via Definition 3) and the strategy choice in favor of the
GR-dominant strategies.

We present some examples of conjectures that satisfy Definition 3 irrespective of
whether GR-dominance holds.

ExaMmPpLE 2 (Myopia). Consider the conjecture that all players remain playing their cur-
rent strategy. That is, f;(s) = s. It follows trivially that if s and s’ are 4-associated, then
fi(s) and f;(s') are A-associated. O

ExampLE 3 (Majoritarianism). Let |[N|be odd and consider the conjecture that all play-
ers play the most popular current strategy, with some tie breaking rule employed. If s
and s’ are A-associated, it must be that a majority of players at s or s’ play 4. Conse-
quently, fi(s) = s or f;(s') = s*; therefore, f;(s) and f;(s') are A-associated. O

ExamPLE 4 (Imitate a friend). Consider the conjecture that each player imitates some
other player. That s, forall j € N, we have (f;(s)); = Sk; forsome k; € N.If sand s" are 4-
associated, then Sk; = A or s}(l_ = A. Consequently, for all j, (fi(s)); = A or (f;(s')); = A.
Therefore, fi(s) and f;(s") are A-associated. O

We present some examples of conjectures that fail to satisfy Definition 3. The first is
the polar opposite of Example 3; the second is a conjecture based on averaging.

ExamPLE 5 (Minoritarianism). Consider the conjecture that all players play the least
popular current strategy, with some tie breaking rule employed. Consider s and s’ that
are A-associated, with a majority of players at both s and s’ playing 4. Consequently,
for all j € N, we have (f;(s)); # 4 and (f;(s")); # A; therefore, f;(s), fi(s') are not A4-
associated. O
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ExaMPLE 6 (Averaging). Let |[N| be even and, for all i € N, let §; = {0, 1, 2}. Let A =0.
Consider the conjecture that all players play the average strategy, rounded to the nearest
integer. That is, for all j e N, (fi(s)); = Lﬁ YoienSi + %J. Consider s and s’ that are A-

associated, with s; =0 and s; = 2 for i = 1,...,|2M, and s; =2 and s; = 0 for i = @ +

L,...,|N|. Then, for all j € N, we have (fi(s)); = (fi(s')); = 1; therefore, f;(s) and f;(s")
are not A-associated. O

Another dimension that we generalize is the behavioral rule that acts on the conjec-
tured strategy profile. So far, we have considered the logit choice rule. Now, we consider
a large class of regular behavioral rules (Young (1993b)) in which behavior depends on
payoff differences.®

Adjust the behavioral rule given in Section 3 as follows. If player i is active at period
t+ 1, then he forms a conjecture f;(s') about behavior at time ¢ + 1. Given his conjecture
about the behavior of other players, he then updates his strategy according to a per-
turbed best response rule parameterized by 1. Let Y;(s;, s”) denote the expected payoff
loss, relative to a best response, incurred by player i when he plays s’ against s” .. That is,

Yi(s;, ") =max Ui (s, s”;) — Ui(s, s”;). 8)

S,’GS,’

The probability that slf“ = s, at time ¢ + 1 is then given by
Lo (Y:(s, f;
Pr(slH'l — S;lst) — (a + 0(1))6_Egl(Yl(Si!fl(St)))y (9)

where a is a strictly positive constant that can depend on s}, s*, and f;, but not on »; o(1)
is a term that approaches 0 as n — 0; g; is a nonnegative, weakly increasing function.
Parameter values should satisfy that the sum of probabilities over all s} € S; equals 1.

Note that larger values of g;(-) in (9) imply smaller probabilities. Together with (8),
this implies that the probability of choosing s; decreases in the difference between the
payoff from best responding to the conjectured profile f;(s’) and the payoff from playing
s; against f;(s"). The logit choice rule corresponds to g;(x) = x for appropriate choice of
a and o(1).

We present one final generalization. It may be that player’s conjectures vary from
period to period. It may even be the case that players’ conjectures are correlated with
each other. For example, it may be that a player is more likely to exhibit low rationality
behavior when other players are exhibiting low rationality behavior.

Let F be a set of profiles of conjectures and let ¢ be an exogenously given distribu-
tion over F. Adjust the model so that rather than there being a single fixed profile of
conjectures, every period a profile of conjectures f is chosen according to ¢.

We are now ready to present our generalization of Theorem 1. If conjectures preserve
A association, then under the class of perturbed best response rules described by (9),
GR-dominance implies stochastic stability. Thus, the results of the current paper extend
to a wide range of conjectures and behavioral rules.

6These behavioral rules roughly correspond to skew-symmetric rules (Blume (2003)), payoff-based rules
(Peski (2010)), and self-regarding payoff-difference-based rules (Newton (2020)).
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THEOREM 2. Letall f € F preserve A-association. Under the dynamics (9), the following
statements hold.

e Ifs? is GR-dominant, then s* is stochastically stable.

o If s is strictly GR-dominant and, for all i € N, we have g; strictly increasing and
fi(sy =s4 forall f € F, then s* is uniquely stochastically stable.

We end this section with an example, applying our theorems to another popular be-
havioral rule that is covered by our general model. This is the best response with uniform
deviations rule in which all perturbations from best response occur with similar proba-
bility.

DEerINITION 4. A behavioral rule is best response with uniform deviations if

) 0 ifx<0, (10)
(x) =
8i 1 ifx>0.

For appropriate choice of @ and o(1), best response with uniform deviations corre-
sponds to the best response with mutations rule of Kandori, Mailath, and Rob (1993).
The important thing about such rules is that any non-best response occurs with a prob-

ability of order ¢ := e

ExampLE 7. Consider the technology adoption game of Section 5 played under the best
response with uniform deviations rule given in Definition 4. Players are level k players
whose levels are randomly determined every period. Specifically, let the set of possi-
ble profiles of conjectures F be such that for all f € F, i € N, and s € S, either fi(s) =s
or fi(s) = Bk=1(s) for k > 2. For example, F might contain a low rationality profile of
conjectures in which every player is of level 1 or 2 as well as a high rationality profile
of conjectures in which every player is of level 3 or 4. If A4 is risk dominant, then s is
GR-dominant (Step 1 of the proof of Proposition 1 in the Appendix). Therefore, the first
part of Theorem 2 applies so that risk dominance of 4 implies that s is stochastically
stable.

PROPOSITION 2. Consider Example 7. If A is risk dominant, then s is stochastically
stable.

Note that under best response with uniform deviations, g; is not strictly increasing,
so the second part of Theorem 2 cannot be similarly applied. To see this, consider the
two player network in Example 1 and let A be strictly risk dominant so that s4 is strictly
GR-dominant. Let s and s’ be such that s; # s} and s; # s}. That is, the strategies of both
players differ across s and s’. Note that A (respectively, B) is a best response to a level k;
conjecture on s if and only if B (respectively, A) is a best response to the same conjecture
on §'. Further note that, by Definition 4, all non-best responses are played with the same
order of probability. From this, we see that in terms of transition probabilities there is
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no difference between strategies 4 and B. The profile at which both players play A4 is
stochastically stable by Proposition 2; therefore, the profile at which both players play
B is also stochastically stable. This possible failure of uniqueness is briefly discussed in
the next section. O

7. DiscUusSION
7.1 Uniqueness

Best response with uniform deviations (Definition 4) does not transfer all payoff infor-
mation relevant to a transition to the transition probabilities themselves. As we saw in
Example 7, this insensitivity can lead to non-uniqueness of stochastically stable states
even when there exists a strictly GR-dominant strategy profile. However, uniqueness
may obtain if other aspects of the model make the aggregate dynamic sensitive to payoff
differences. For example, we can obtain uniqueness in the technology adoption game
if the network is such that, allowing a “free” mutation of any player to B, we still have
GR-dominance of s in the restricted problem with that player’s action fixed. This is
essentially the logic that underpins the condition for uniqueness (“strict ordinal GR-
dominance”) given by Peski (2010) for k = 1.

7.2 Noisy introspection

Note that in our model of level k logit choice, players’ conjectures do not consider the
possibility that other players’ choices are perturbed. This is in contrast to, for exam-
ple, the “noisy introspection” model of Goeree and Holt (2004). In an environment of
large perturbations, this could lead to differences in best responses. For example, Alice
may be concerned about the possibility of negative consequences arising from a per-
turbation in Bob’s choice. In contrast, the model of the current paper considers small
perturbations. As these perturbations vanish (n — 0), noise in conjectures will also van-
ish, so that the payoffs that enter Alice’s choice function will converge to those used in
expressions (3) and (4) of our model.

7.3 Comparison to adaptive play

Consider the model of adaptive play (Young (1993b)) in which members of two popula-
tions (labeled « and B) sample and respond to past behavior. Let the sample sizes used
by members of each population be s, and sg, respectively, and let s, < sg without loss
of generality. There is a difference in long run behavior between the cases (i) s, < sg
and k = 1 for all members of population «, and (ii) all other cases (see Khan and Peeters
(2014)). That is, long term differences in behavior that arise due to differences in sam-
ple size are not robust to level k thinking. In contrast, for models for which the current
strategy profile is the state variable, we uncover no sensitivity with regard to long run
behavior (Theorem 1).
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7.4 Afterword

In this article, we showed that GR-dominant strategies emerge in the long run when
behavioral rules similar to best response are played against a large class of conjectures
about the play of other players. This class includes conjectures that are themselves for-
mulated using best response, in particular, the conjecture that other players play level k
best responses. The results hold despite the fact that short run behavior in the dynamic
can be sensitive to model details. Natural avenues for further research include the study
of alternative learning models as well as the collection and interpretation of empirical
data in light of the theory.

APPENDIX: PROOFS
A.1 Additional definitions and useful results

For parameter value n and strategy profiles s, s’ € S, let P"(s, s’) denote the probability
that s'*! = s’ conditional on s’ = s.

Define a new Markov process on S, denoted P/, by adjusting the original process by
setting g; =0 for all j # i. Let P'(s, s') denote the probability that s'*! = 5" conditional
on s’ =s. Observe that, forall n > 0, 5, s’ € S, we have

P(s,s") = nPi"(s, (57, 5-4))- (11
ieN
Define cost functions

lim —nlog P (s, s’ if P7(s, ') > 0 for some 1>0,
ci(s, S,) — ] >0 i ( ) i ( ) (12)
00 otherwise,

and let c(s, s') be the equivalent quantity after replacing P;" by P".
Simple algebra shows that for the updating rule in our model, we have

0 ifs' =s,
ci(s, s') = | max Ui(xi, BS1(5)) — Ui(sh, B M () ifsi#si, 8" =524, (13)
%) otherwise.

We adopt the convention that co > oo.
We say that s” A-dominates s’ if s} = A for all i such that s} = A.

DEerINITION 5. Let c(+, -) be asymmetric (toward A) if, for any s, s/, and § such that s and
5 are A-associated, there exists §’ such that

e § A-dominates §
e s’ and §’ are A-associated

e c(s,5)>¢c(5,5).
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DEFINITION 6. Let c(+, -) be strictly asymmetric (toward A) if
(a) foranys# s ¢c(s4,5)>0
(b) foranys, s/, and 5§ such that s and § are 4-associated, there exists 5’ such that
e § A-dominates §
e s’ and §’ are A-associated

e eitherc(5,5)=0orc(s,s) > c(5,§).
Note that Definitions 5 and 6 can be applied to both c(+, -) and ¢;(-, -).

TrEOREM N (Newton (2020, 2019)). Let P71, {PI.T’}ieN satisfy (11). (i) If ¢;(, -) is asymmet-
ric for all i € N, then c(-, -) is asymmetric (Newton (2020, Theorem 3)). (ii) If ¢;(-,-) is
strictly asymmetric for all i € N, then c(-, -) is strictly asymmetric (Newton (2019, Theo-
rem 3)).

THEOREM P (Peski (2010, Theorem 1)). (i) If c(-, -) is asymmetric, then s4is stochastically
stable. (ii) If c(-, -) is strictly asymmetric, then s* is uniquely stochastically stable.

A.2 Proofs for Section 4
LEMMA 1. Let s and § be A-associated. If s4 is GR-dominant, then B*(s) and B*(5) are

A-associated for all k > 1.

ProOOE. If 5, § are A-associated, then by GR-dominance of s4, in particular expression
(5), we have

Ui(A4,5-;) — max U;(x;, 5—;) = max U;(x;, s—;) — Ui (A4, s_;). (14)
X,‘;ﬁA ;ﬁA

Xij
If B (5) # A, we have

max U;(s;, s—;) — Ui(A, s_;) > 0, (15)

si#A
so combining (14) and (15), we obtain

U,‘(A,g_i) — max U,-(x,-,E_i) > 0. (16)
x;#A

Therefore, B} (5) = A. This holds for all i such that B} (s) # A; therefore, B! (s) and B} (5)
are A-associated.

Iterating the above argument, we obtain that B (s) and B¥(5) are A-associated for
k=23,.... O

LEMmMma 2. (@) IfsA is GR-dominant, then, for alli € N, c; is asymmetric toward A. (ii) If
s4 is strictly GR-dominant, then, foralli € N, c; is strictly asymmetric toward A.



1520 Nax and Newton Theoretical Economics 17 (2022)

Prook. Note thatas s is A-associated with itself, GR-dominance of s and uniqueness
of best responses imply that

Bf(s1) =5 forall k> 0. 17

If s # s4, then either s_; # sfi, in which case ¢;(s4, s) = 00, or s_; = si‘li, si# A, in
which case
ci(sA, s) = maxUj(x;, Blilfl(sA)) = Ui(si, Blilfl(sA))

xiES[
by (13)

= maxUi(xi,s) = Ui(sirs”)
by (17)

=Ui(4, sA) — Ui(si, sA)
> 0. (18)

Therefore, the condition in Definition 6(a) is satisfied.
Now consider s, s’, § € S such that s and § are A-associated. If s is GR-dominant, it
follows from Lemma 1 that

Bk(s) and Bk(S") are A-associated for all k > 1. (19)

Casel: s=s"ors;=Aorc(s,s') =ooors;=A. If ¢;(s,5') =00, let§ = s4. Then the
conditions in Definitions 5 and 6(b) are satisfied.

If ¢c;(s, s') is finite, let § = 5. Equation (13) implies ¢;(5, §') = 0. Therefore, the condi-
tions in Definitions 5 and 6(b) are satisfied.

Case 2: s #s' and s} # A, and ¢;(s, s') is finite and §; # 4. Equation (13) together with
finiteness of ¢;(s, s’) implies s_; = 5" ; s and § are A-associated, so 5; # A implies that
si= A; s #s' then implies s” # A. Let ' be such that s’ ; =5_; and §; = A4.

If ¢;(§, §') =0, then the conditions in Definitions 5 and 6(b) are satisfied.

If ¢;(5,5) > 0, then

ci(s,s") = maxU;(x;, B]:l(s)) — Ui(s}, B]:l(s))

- X;€S;
by (13)

> Ui(A, B, (s)) - max Ui(xi, B, (9)
= maxUix, B (5) - Ui(4, B '(9)
by (19)
and GR-dominance
= als). (20)

by (13)
and ¢(5,5)>0

That is, the condition in Definition 5 as satisfied. Further note that if s4 is strictly GR-
dominant, then the weak inequality in (20) due to GR-dominance becomes a strict in-
equality, so that the condition in Definition 6(b) is satisfied. O
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Lemma 3. () If s? is GR-dominant, then c is asymmetric toward A. (ii) If s4 s strictly
GR-dominant, then c is strictly asymmetric toward A.

PRrOOEF. (i) GR-dominance of s and Lemma 2(i) together imply that, for alli € N, ¢; is
asymmetric toward A. Theorem N(i) then implies that c is asymmetric toward A. (ii)
Strict GR-dominance of s and Lemma 2(ii) together imply that, foralli € N, ¢; is strictly
asymmetric toward 4. Theorem N(ii) then implies that c is strictly asymmetric toward
A. O

PROOF OF THEOREM 1. Assume s is GR-dominant. Lemma 3(i) and Theorem P(i) to-
gether imply stochastic stability of s4.

Assume s is strictly GR-dominant. Lemma 3(ii) and Theorem P(ii) together imply
unique stochastic stability of s4. O

A.3 Proofs for Section 5

Proor oF ProrosIiTION 1. Step 1. First we show that if A4 is (strictly) risk dominant,
then s4 is (strictly) GR-dominant. Note that condition (5) for GR-dominance reduces to

Ui(A, SLi) + Ui(A, S/,/i) = U,'(B, s/,l') + Ui(B; SZ,-) 21)

forallie N, s’ and s” A-associated.
Now, if s’ and s” are A-associated, then for all i,

Ui(4,s;) = Ui(B, s_;)

= Z wij(aq4 —apy) — Z wjj(app — a4B)

by (6) JEN i} JEN~{i}
s}:A s}:B

> Z wij(aBg — a4B) — Z wij(@44 —ap4)

by (7) JEN JEN~{i}
s'=A s'=B
j j
> Z wij(app — a4B) — Z wij(a44 —apa)
by A-associationje{y\{i} ]'E{/V\{i}
Ofs,, § S}« =B Sj =A
= U,‘(B, SZZ-)—Ui(A,S/_,i). (22)
by (6)

That is, (21) holds and s is GR-dominant. If risk dominance is strict, then the first > in
(22) is strict; therefore, (21) holds strictly and s4is strictly GR-dominant.

Step 2. The definition of risk dominance implies that at least one of A4, B is risk
dominant.

Non-strict. By Step 1, if A is risk dominant, then s is GR-dominant. Theorem 1 then
implies that s4 is stochastically stable.
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If A4 is not risk dominant, then B is strictly risk dominant. Step 1 then implies that s?
is strictly GR-dominant and Theorem 1 implies that s® is uniquely stochastically stable.
Therefore, s is not stochastically stable.

Strict. By Step 1, if A is strictly risk dominant, then s is strictly GR-dominant. The-
orem 1 then implies that s is uniquely stochastically stable.

If A is not strictly risk dominant, then B is risk dominant. Step 1 then implies that s?

is GR-dominant and Theorem 1 implies that sBis stochastically stable. Therefore, s4is
not uniquely stochastically stable. O
A.4 Proofs for Section 6
Applying (12) to (9), we have
0 ifs' =s,
ci(s,8') == gi(Yi(sh, fi(s))) ifsi#si, s, =54 (23)
00 otherwise.

LEMMA 4. Let f preserve A-association. (i) If s4 is GR-dominant, then, forallie N, ¢
is asymmetric toward A. (i) If s is strictly GR-dominant and, for alli € N, g; is strictly
increasing and f;(s1) = s4, then, foralli € N, c; is strictly asymmetric toward A.

Proor. Consider s, 5,5 € § such that s and § are A-associated. As f preserves A-
association, we have

fi(s) and f;(5) are A-associated. (24)

Casel:s=s"ors;= Aorc(s,s') =occors;= A.Ifci(s, s') =00, let§ = s4. The conditions
in Definitions 5 and 6(b) are satisfied.

If ¢;(s, ') is finite, let 5 = 5. Equation (23) implies ¢;(5, §') = 0; therefore, the condi-
tions in Definitions 5 and 6(b) are satisfied.

Case2: s #s' and s} # A and ¢;(s, s') is finite and §; # 4. Equation (23) and finiteness
of ¢;(s,s") imply s_; = 5" ; s and § are A-associated, so §; # A implies that s; = 4; s # 5’
then implies s} # 4. Let §’ be such that §’ ; =3_; and §; = A.

If ¢;(§, §') =0, then the conditions in Definitions 5 and 6(b) are satisfied.

If ¢;(5,5) > 0, then

ci(s,s) = gi(Yi(sj fi(s)))

by (23)
S/,gi(% Ui(xi, (fi(9))_;) = Ui(s)y (fi()_,)
y (8)

> gi(Ui(A, (fi) ;) — max Ui(xi, (fi(s))—i))

= s(mmy Ui (36)) - Uda, (56).)
by (24)
and GR-dominance
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:,gi(Yi(S;, fi(®)) = c(5,%). (25)
by (8) by (23)
and ¢(5,5)>0

That is, the condition in Definition 5 is satisfied. Further note that if s4 is strictly
GR-dominant and g; is strictly increasing, then the weak inequality in (25) due to GR-
dominance becomes a strict inequality, so that the condition in Definition 6(b) is satis-
fied.

For the remainder of this proof, assume that f(s) = s4, s4 is strictly GR-dominant,
and g; is strictly increasing.

Note that, as s is 4-associated with itself, strict GR-dominance of s implies that

arg max Ui(xi, (sA)_l.) ={A}. (26)

If s # s, then either s_; # s, in which case c(s, s) = 00, or s_; = s, and 5; # 4, in

which case

c(s?,s) = &i(Yi(si fi(s™)))
by (23)
= gl(?eax Uz(Xz) (fL(SA))_l.) — U,‘(Si, (f,-(sA))_L)>

by (8) 1 1
= si(maxUie () - Ui (7))

by f(s4)=s4

Z 0. 27)

by si#A, (26),

gi strictly increasing

Therefore, the condition in Definition 6(a) is satisfied. O

Proor oF THEOREM 2. Let P? be the Markov kernel of the process with F = {fj, ..., fu}.
Define processes peh . pefnasidentical to P¢ except that F = {f1}, ..., F = {f,}, re-
spectively. Note that

P? = Zcp(fm)Pg’f". (28)
i=1

Let cost functions for P&/1, ..., P& /n be given by ch, ..., el

Assume s is GR-dominant. Lemma 4(i) implies that, for all i € N, f,, € F, cif’” is
asymmetric toward 4. Theorem N(i) then implies that, for m=1,...,n, cfm is asym-
metric toward A. Given (28), that is, P¢ is a convex combination of P&/1, ..., P&/n, this
implies that ¢ is asymmetric toward A (Newton (2020, Theorem 1)). Theorem P(i) then
implies that s/ is stochastically stable.

Assume s4 is strictly GR-dominant and, for all i € N, g; is strictly increasing and
fi(s1) = s, Lemma 4(ii) implies that, for all i € N, f,, € F, cif’" is strictly asymmetric
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toward A. Theorem N(ii) then implies that, form =1, ..., n, cfmis strictly asymmetric
toward 4. Given (28), that is, P¢ is a convex combination of P&/1, ..., P#/n this implies
that c is strictly asymmetric toward 4 (Newton (2019, Theorem 1)). Theorem P(ii) then
implies that s is uniquely stochastically stable. O

PROOF OF PROPOSITION 2. Assume A is risk dominant. Step 1 of the Proof of Proposi-
tion 1 implies that s is GR-dominant. Therefore, the first part of Theorem 2 applies and
s is stochastically stable. d
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