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On the revealed preference analysis of stable
aggregate matchings
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Echenique, Lee, Shum, and Yenmez (2013) established the testable revealed pref-
erence restrictions for stable aggregate matching with transferable and nontrans-
ferable utility and for extremal stable matchings. In this paper, we rephrase their
restrictions in terms of properties on a corresponding bipartite graph. From this,
we obtain a simple condition that verifies whether a given aggregate matching
is rationalizable. For matchings that are not rationalizable, we provide a simple
greedy algorithm that computes the minimum number of matches that need to be
removed to obtain a rationalizable matching. We also show that the related prob-
lem of finding the minimum number of types that we need to remove in order to
obtain a rationalizable matching is NP-complete.
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1. Introduction

This paper revisits the results of Echenique et al. (2013) (ELSY from now on) by inves-
tigating the testable revealed preference implications of stable aggregate matchings in
a transferable utility (TU) and nontransferable utility (NTU) setting.1 For their char-
acterization, Echenique et al. (2013) start by mapping a given aggregate matching to a
particular graph. They show that the matching is NTU rationalizable if and only if this
graph has no two distinct, regular, and vertex-minimal cycles that are connected.2 Sub-
sequently, they show that an aggregate matching is TU rationalizable or NTU rational-
izable by an extremal stable matching if and only if the associated graph has no regular
vertex-minimal cycle.
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The contribution of this paper is threefold. First, we derive an easy equivalent set of
conditions to verify these rationalizability conditions. Our conditions only involve com-
paring the number of vertices and edges on the connected components of a correspond-
ing bipartite graph and are therefore very easy to verify. Next, we look at matchings
where the rationalizability conditions are not satisfied. Relying on results from matroid
theory, we provide efficient greedy algorithms to determine the minimum number of
matches that need to be removed in order to obtain a matching that is rationalizability.
This provides us with a goodness-of-fit measure to determine how close a given match-
ing is to being rationalizable. Another way to restore rationalizability is by removing
types. This begs the question of determining the minimal number of types that must be
removed in order to obtain a matching that is rationalizable. We show that this problem
is NP-hard.

The paper unfolds as follows. Section 2 sets the stage by describing the framework
and ELSY’s characterization. In Section 3, we present an equivalent characterization in
terms of a bipartite graph. Section 4 looks at the problem of removing a minimal num-
ber of matches to obtain a matching that is rationalizable. In turn, Section 5 looks at
the problem of removing a minimal number of types in order to obtain a rationalizable
matching. Section 6 contains a short empirical illustration. Section 7 contains a conclu-
sion. All proofs are in the Appendix.

2. Framework and contribution

In this section, we introduce the notation and definitions necessary to state the main
result of ELSY.

There are two disjoint finite sets of types, denoted by M and W . The set M is the
set of types of men and W is the set of types of women. For each type combination
(m, w) ∈ M ×W , we know the number of matchings (marriages) that take place between
these types. We denote this number by X(m, w) ∈ N ∪ {0}.3 We define an (aggregate)
matching by a triple M = (M , W , X ).

Similar to ELSY, we ignore singles. In addition, we will also abstain from includ-
ing individual rationality constraints as a stability requirement. For many data sets on
matchings, singles are not observed or are assumed to have preferences different than
matched individuals. If so, omitting them from the analysis is without loss of generality.
On the other hand, the model can easily be extended to include singles by adding on
each side of the market an additional type representing “singlehood.” See, for example,
the working paper of Echenique, Lee, and Shum (2010) on how to incorporate singles
into the current framework.

The nontransferable utility setting Following the revealed preference methodology, the
goal is to assign preferences for each type of men m ∈ M over all types of women w ∈ W

and preferences for all types of women w ∈ W over all types of men m ∈M , such that the
observed matching is stable. Let PM= (Pm )m∈M be a preference profile for the types of

3It is easy to generalize the setting to X(m, w) ∈ R+, for example, to account for random matchings.
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men in M and let PW = (Pw )w∈W be a preference profile for the types of women in W .
Every preference Pm and Pw is a strict linear order over W and M , respectively.

The pair (m, w) ∈ M × W is a blocking pair if there exists a type m′ ∈ M and a type
w′ ∈W such that

mPw m′, w Pm w′, and both X
(
m′, w

)
> 0 and X

(
m, w′)> 0.

This means that type w women prefer men of type m over men of type m′ and that type
m men prefer women of type w women over women of type w′, although there are type
m men matched to type w′ women and type w women matched to men of type m′. The
matching M = (M , W , X ) is stable for the preferences (PM , PW ) if there are no blocking
pairs.

Although in reality we may observe the matching M = (M , W , X ), we usually do not
observe the preference profiles PM and PW . If it is possible to find preference profiles
PM and PW such that the observed matching is stable, then the matching is said to be
NTU rationalizable.

Definition (NTU Rationalizability). A matching M = (M , W , X ) is NTU rationalizable
if and only if there exists a preference profile PM and a preference profile PW such that
M is stable for the preferences (PM , PW ).

An extremal stable matchings is a matching that is better for one side of the market
(and worse for the other side) than any other stable matching. Here, better is in the
sense of first-order stochastic dominance.4 Men optimal stable matchings are called
M-optimal while women optimal matchings are W-optimal.

Definition (M- (W -) Extremal Rationalizability). A matching M = (M , W , X ) is M-
(W -) rationalizable if and only if there exists a preference profile PM and a preference
profile PW such that M is the M- or W -optimal stable matching for the preferences
(PM , PW ).

The transferable utility setting In the TU setting, every type-man–type-woman combi-
nation obtains a surplus α(m, w) that can be divided between the two partners. In such
TU settings, stable matchings are those that maximize joint surplus (Shapley and Shubik
(1972)):

max
∑

Z(m,w)∈N∪{0}

α(m, w)Z(m, w),

such that
∑

m∈M
Z(m, w) =

∑

m∈M
X(m, w) ∀w ∈W

∑

w∈W
Z(m, w) =

∑

w∈W
X(m, w) ∀m ∈M .

(OP1)

4See Echenique et al. (2013) for the exact definition.
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The two restrictions in the program are adding up constraints and imposing that the
matching (M , W , Z ) should have, for each man type and woman type, the same number
of individuals as in the observed matching.

The matching (M , W , Z ) is TU stable if Z is a solution of (OP1). In reality, how-
ever, we do not observe the surplus values α(m, w). Following the revealed prefer-
ence methodology, the aim is to find values α(m, w) such that the observed matching
M = (M , W , X ) solves (OP1).

Definition (TU Rationalizability). A matching M = (M , W , X ) is TU rationalizable if
and only if there exist surplus values (α(m, w))m∈M ,w∈W such that M = (M , W , X ) is TU
stable, i.e., solves (OP1).

Graph theoretic concepts In order to state the rationalizability characterizations of
ELSY, we need to introduce some graph theoretic notation and definitions.

An undirected graph or network G = (V , E) consists of a finite set of vertices or
nodes, V , and edges, E, where each edge e ∈ E is a two element subset of V . We usu-
ally write edges as e = (x, y ) instead of e = {x, y}, but it should be understood that (x, y )
and (y, x) represent the same edge.

A path in a graph G = (V , E) is a sequence of distinct vertices in V , say ρ =
〈x0, x1, � � � , xn〉 such that (xi, xi+1 ) ∈ E for all i = 0, � � � , n − 1. Two vertices x, y ∈ V are
connected if there is a path from x to y.

A cycle in a graph G= (V , E) is a sequence of vertices γ = 〈x0, x1, x2, � � � , xn, x0〉 such
that (i) for all i = 1, � � � , n − 1, (xi, x(i+1) ) ∈ E and (xn, x0 ) ∈ E, (ii) all these edges are
distinct, and (iii) all vertices x0, � � � , xn are also distinct.

A cycle γ = 〈x0, x1, � � � , xn, x0〉 is vertex-minimal if there is no proper subset of ver-
tices that also form a cycle. As an illustration, in Figure 1, the cycle γ = 〈a, b, c, d, e, a〉 is
not vertex-minimal as γ′ = 〈a, b, d, e, a〉 is a cycle with fewer vertices.

If γ and γ′ are two cycles and there is a path from a vertex in γ to a vertex in γ′ in G,
we say that the two cycles are connected.

The graph G̃ = (Ṽ , Ẽ) is a subgraph of G = (V , E) if Ṽ ⊆ V and Ẽ contains all edges
from E that have both vertices in Ṽ :

Ẽ = {
(x, y ) ∈E : x, y ∈ Ṽ

}
.

A connected component of G = (V , E) is a subgraph G̃ = (Ṽ , Ẽ) such that any two ver-
tices in Ṽ are connected via some path in G̃ and no vertex in Ṽ is connected to a vertex

a b

c

de

Figure 1. The cycle 〈a, b, c, d, e〉 is not vertex-minimal.
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Figure 2. A matching and its graph G = (V, E).

in V \ Ṽ via some path in G. Every graph can be partitioned into its connected compo-
nents. Two vertices are in the same connected component of G if and only if they are
connected in G.

A tree is a connected graph with no cycles. If every connected component of a graph
is a tree, the graph is called a forest.

Generalizing this notion, we call a connected graph a pseudotree if it contains at most
one cycle. If every connected component of a graph is a pseudotree, the graph is called
a pseudoforest.

The graph G Starting from a matching M = (M , W , X ), ELSY define a particular graph
G = (V, E), where V consists of all type combinations (m, w) that have at least one
matching:

V= {
(m, w) ∈M ×W : X(m, w) > 0

}
.

Next, the graph G = (V, E) has an edge between a vertex (m, w) and a vertex (m′, w′ ) if
and only if m= m′ or w = w′:

E = {(
(m, w),

(
m′, w′)) ∈V

2 : m=m′ or w =w′}.

Figure 2 gives an example reproduced from ELSY. The left panel shows a matching M =
(M , W , X ) for three types of men and three types of women. The value at row mi and
column wj is given by X(mi, wj ). The panel on the right gives the graph G = (V, E).
There is a node for every nonzero entry in the matching table and an edge between
every two nodes in a common row or column.

We call a cycle γ in G regular if it involves at least two types of men and two types of
women. For example, in Figure 2 the following cycle is regular:

γ = 〈
(m1, w1 ), (m1, w2 ), (m3, w2 ), (m3, w1 ), (m1, w1 )

〉
.

On the other hand, the the following cycle is not regular:

γ′ = 〈
(m1, w2 ), (m3, w2 ), (m2, w2 ), (m1, w2 )

〉
.

The following theorem gives the characterization of ELSY.

Theorem 1 (Echenique et al. (2013)). (i) A matching M = (M , W , X ) is NTU rational-
izable if and only if the graph G = (V, E) does not contain two distinct, regular,
vertex-minimal cycles that are connected.
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Figure 3. Two connected cycles that are not vertex-minimal.

(ii) A matching M = (M , W , X ) is TU rationalizable, M-extremal rationalizable, or
W-extremal rationalizable if and only if the graph G = (V, E) does not contain a
regular, vertex-minimal cycle.

As the revealed preference conditions for TU rationalizability and M- (W-) extremal
rationalizability are equivalent, we will refer to the two cases simply as TU rationaliz-
ability from now on.

The example in Figure 2 is not NTU (TU) rationalizable. Indeed, there are two regu-
lar, vertex-minimal cycles that are connected:

γ1 = 〈
(m1, w1 ), (m1, w2 ), (m3, w2 ), (m3, w1 ), (m1, w1 )

〉

γ2 = 〈
(m1, w2 ), (m1, w3 ), (m2, w3 ), (m2, w2 ), (m1, w2 )

〉
.

Figure 3 illustrates why we need to requirement vertex-minimality of the cycles. The
graph has two connected regular cycles

γ1 = 〈
(m1, w1 ), (m3, w1 ), (m3, w2 ), (m1, w2 ), (m1, w1 )

〉

and

γ2 = 〈
(m1, w1 ), (m3, w1 ), (m3, w2 ), (m2, w2 ), (m1, w2 ), (m1, w1 )

〉
.

The cycle γ2, however, is not vertex-minimal as the node (m2, w2 ) can be removed to
obtain the cycle γ1. As such, the graph is still NTU rationalizable although it has two
connected regular cycles.

If we want to verify whether a given matching is rationalizable, we could proceed
by directly verifying the condition in Theorem 1. For example, for NTU rationalizability,
one could try to enumerate all regular vertex-minimal cycles in the network G = (V, E)
and check whether two of them are connected. Doing so, however, is not straightfor-
ward. As we will show in Theorem 2 below, there is a much more efficient way to verify
rationalizability. In order to do so, we need to introduce an alternative representation of
the matching in terms of a bipartite graph.

3. The bipartite graph

Our results rely on the construction of a bipartite graph G = (V , E ) from the matching
M = (M , W , X ). We will use the calligraphic notation G, V , and E to denote this graph.
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Figure 4. The graphs G (left) and G (right).

The vertices V are given by the set of types

V = M ∪W .

Next, we have an edge between a vertex m and a vertex w if and only if they have some
matches:

E = {
(m, w) ∈M ×W : X(m, w) > 0

}
.

Figure 4 gives an illustration. The left part reproduces G from Figure 2. The right graph
gives the corresponding bipartite graph G = (V , E ). Vertices in G are related to edges in
G, while edges in G correspond to a pair of connected edges in G.

The following result shows how rationalizability can alternatively be verified using
the graph G = (V , E ).

Theorem 2. (i) The following conditions are equivalent:

(i.a) The matching M = (M , W , X ) is NTU rationalizable.

(i.b) The graph G = (V, E) has no two distinct, regular, vertex-minimal cycles that
are connected.

(i.c) The graph G = (V , E ) has no two connected cycles.

(i.d) Every connected component of the graph G = (V , E ) has at least as many ver-
tices as edges.

(ii) The following conditions are equivalent:

(ii.a) The matching M = (M , W , X ) is TU rationalizable.

(ii.b) The graph G = (V, E) has no regular, vertex-minimal cycle.

(ii.c) The graph G = (V , E ) has no cycle.

(ii.d) Every connected component of the graph G = (V , E ) has more vertices than
edges.

The equivalences (i.a)–(i.b) and (ii.a)–(ii.b) repeat the characterization of ELSY from
Theorem 1. Our main contribution is the equivalence (i.b)–(i.c) and (ii.b)–(ii.c). These
show the connection between regular, vertex-minimal cycles of G and cycles in the bi-
partite graph G. Notice that for the cycles in G we do not impose any requirement in
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terms of vertex-minimality. Also, as every cycle in G contains at least two man types
and two woman types (due to the “bipartiteness” of G), every cycle in G automatically
satisfies the regularity requirement.

The equivalences (i.c)–(i.d) and (ii.c)–(ii.d) follow directly from known results in
graph theory. In particular, a connected graph has one single cycle if and only if it has
the same number of vertices and edges, and a connected graph has no cycle if and only
if it has more vertices than edges (see, for instance, Berge (1962, p. 27ff)).

As an illustration of Theorem 2, notice that the bipartite graph of Figure 4 has two
connected cycles, 〈m1, w1, m3, w2, m1〉 and 〈m1, w2, m2, w3, m1〉, so the matching is not
NTU rationalizable. This also follows immediately from observing that the single con-
nected component of G involves six vertices and seven edges, so condition (i.d) is not
satisfied.

Conditions (i.d) and (ii.d) provide us with a very efficient test to see if a matching
is rationalizable: (i) construct the graph G = (V , E ), (ii) partition this graph into its con-
nected components (e.g., using a depth first search), and (iii) compare the number of
vertices and edges on each component. Step (i) takes at most O(|M| × |W |) steps. Step
(ii) is of order O(|V| + |E|) and step (iii) also takes linear time. Given that |E| ≤ |M| × |W |,
we see that the total running time is O(|M| × |W |).

4. Distance to rationalizability

The rationalizability conditions in Theorem 2 only provide a yes/no answer: a matching
is either rationalizable or not. In many cases, such a yes/no answer is not very infor-
mative as even a small deviation from rationalizability may lead to a rejection of the
revealed preference test. As noted by Varian (1990),

[w]hat we usually care about [for revealed preference] is whether optimization is a reason-
able way to describe some behavior. For most purposes, ‘nearly optimizing behavior’ is
just as good as ‘optimizing’ behavior.

Similar reasoning can be made in the current matching framework: what we really
care about is whether the notion of stability provides a reasonably good way to describe
the observed matching patterns. As such, we would like to have a measure of how far a
given matching is from being rationalizable.5

Assume that we have a metric d that captures the distance between two matchings.
In particular, for two matchings M = (M , W , X ) and M′ = (M , W , X ′ ) with the same
set of men and women types, we denote by d(M, M′ ) ≥ 0 the distance between M and
M′. A straightforward goodness-of-fit measure is obtained by computing the minimal

5In revealed preference analysis, near consistency with rationalizability is usually evaluated using
a goodness-of-fit measure. Some examples are Afriat’s critical cost efficiency index Afriat (1973), the
Houtman–Maks index (Houtman and Maks (1985)), the Varian index (Varian (1990)), the money pump in-
dex (Echenique, Lee, and Shum (2011)), the swaps index (Apesteguia and Ballester (2015)), and the mini-
mum cost index (Dean and Martin (2016)). We are not aware of any other existing goodness-of-fit measure
for the current matching context.
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distance to the set of rationalizable matchings:

p(M) = min
X ′ d

(
M, M′),

subject to M′ = (
M , W , X ′) is NTU (resp. TU) rationalizable.

(1)

In this paper, we will focus on the L1 distance:

d
(
M, M′) =

∑

m∈M ,w∈W

∣∣X(m, w) −X ′(m, w)
∣∣. (2)

In Appendix C, we provide a simple characterization of this distance. We have the fol-
lowing result.

Proposition 3. Let M = (M , W , X ) be an aggregate matching and let

p(M) = min
X ′

∑

m∈M ,w∈W

(
X(m, w) −X ′(m, w)

)

subject to X ′(m, w) ≤X(m, w), ∀m ∈M , w ∈W , and
(
M , W , X ′) is NTU (resp. TU) rationalizable.

Then p(M) also solves (1) for the L1 distance metric defined in (2).

Proposition 3 is proved by showing that the closest rationalizable matching in terms
of the L1 distance will always satisfy X ′(m, w) ≤ X(m, w) for all m and w. The sim-
ple idea behind the proposition is that if a matching is non-rationalizable, then adding
matches will never bring us closer to rationalizability.

For ease of interpretation, we will express the result of (1) in terms of the maximal
fraction of matchings that one can preserve from M = (M , W , X ) while still guarantee-
ing that the resulting matching is rationalizable. We call this the critical matching index
(CMI):

CMI(M) = 1 − p(M)∑

(m,w)∈E
X(m, w)

.

From Proposition 3, we see that the CMI takes values between 0 and 1, and equals 1 if
and only if the observed matching is rationalizable. As such, it provides a goodness-of-fit
measure of how close a matching is to being rationalizable.

Computing the CMI Using known results from matroid theory, we show that the CMI
can be easily computed using a greedy algorithm.6 Toward this end, we will focus on

6In a previous working paper version (Demuynck and Salman (2020)), we also presented two other pro-
cedures to solve this problem. The first takes the form of a linear program that is based on providing an
orientation on the edges of the bipartite graph G = (V , E ). The second approach provides an algorithm that
is based on the dual of this linear program.



1660 Demuynck and Salman Theoretical Economics 17 (2022)

determining the CMI for NTU rationalizability. At the end of this section, we will discuss
the modifications that need to take place to compute the CMI for TU rationalizability.

We know from Theorem 2 that a matching M = (M , W , X ) is NTU rationalizable
if and only if G = (V , E ) has at most one cycle for each connected component. Such a
graph is called a pseudoforest.

For an edge e = (m, w) ∈ E , let us define the weight w(e) = X(m, w). We are look-
ing for a set of edges E ⊆ E that has maximum weight and at the same time forms a
pseudoforest (forest). This gives the problem

q(M) = max
E⊆E

∑

e∈E
w(e) subject to G= (V , E) is a pseudoforest. (3)

From Proposition 3, it follows that q(M) = ∑
e∈E w(e) −p(M), so

CMI(M) = q(M)∑

e∈E
w(e)

,

To solve (3), we will use matroid theory.7 A matroid (Z, I ) is an algebraic structure that
consists of a finite ground set Z of elements and a collection I of subsets of Z. Elements
of I are called independent sets. A matroid satisfies the following three conditions:

(i) ∅ ∈ I .

(ii) If A ∈ I and B ⊆A, then B ∈ I .

(iii) If A, B ∈ I and |A| < |B|, then there is at least one element a ∈ B \ A such that
A∪ {a} ∈ I .

The first condition states that the empty set is independent. Condition (ii) requires that
any subset of an independent set is independent. The third and most interesting con-
dition states that for any two independent sets of unequal size, it is possible to find an
element in the larger set that is not in the smaller one, such that adding this element
to the smaller set again gives an independent set. Matroid theory provides a unifying
algebraic structure to a wide variety of mathematical concepts. In particular, for a given
graph G = (V , E), the pair (E, I ), where I contains all sets A ⊆ E such that (V , A) is
a pseudoforest, is also a matroid,8 also called the bicircular matroid (see, for example,
Simões Pereira (1972) and Matthews (1977)).

7See, for example, Oxley (1992) for an introduction to matroid theory.
8The first and second conditions are easily checked. To see the third condition, let E and E′ be two

elements of I (i.e., (V , E) and (V , E′ ) are pseudoforests) such that |E| < |E′|. Let VE and VE′ be the sets of
vertices that are part of the edges in E and E′, respectively. As (VE′ , E′ ) is a pseudoforest, we have |VE′ | ≥
|E′|. There are two possible cases to consider. If |VE| ≥ |VE′ |, we obtain |VE| ≥ |VE′ | ≥ |E′| > |E|, so adding
one edge from E′ \E to E again produces a pseudoforest. On the other hand, if |VE′ | > |VE|, then there exists
at least one vertex, v, in VE′ \ VE . Hence, adding an edge from E′ having v as an endpoint to E gives a new
graph with one more edge and at least one more vertex. This again gives a pseudoforest.
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Matroids are closely linked to greedy algorithms.9 For a matroid (Z, I ) and a non-
negative weight function w : Z → R+, we can consider the problem of finding an inde-
pendent set of maximum weight:

max
A⊆Z

∑

a∈A
w(a) subject to A ∈ I . (4)

This can be solved using a greedy algorithm. The first step is to sort the elements in Z

according to the weights w(a):

w(a1 ) ≥w(a2 ) ≥ · · · ≥ w(an ).

The algorithm constructs a solution A of (4) by sequentially trying to include the ele-
ments a1, a2, � � � , an while remaining independent. In particular, we start with the empty
set A = ∅ ∈ I . Next, it is verified whether {a1} = A ∪ {a1} ∈ I . If so, the element a1 is
added to A. If not, the element a1 is skipped. Next, it is verified whether A∪ {a2} is in I
and if so, a2 is added to A. In general, at iteration k, we check whether A ∪ {ak} is in I .
If so, ak is added A. If not, ak is skipped. After n iterations, the resulting set A will solve
(4).

Algorithm 1 applies the greedy algorithm to (3). First the edges e = (m, w) ∈ E are
sorted in descending order according to their weights w(e) = X(m, w). Next, starting
from the empty set of edges E = ∅ and a value q = 0, we iterate over the sorted list of
edges e and check at each iteration whether E ∪ {e} is a pseudoforest.

In order to implement Algorithm 1, we need to find an efficient way to verify whether
at each iteration, E ∪ {e} is a pseudoforest. For this, we can use the disjoint-set data
structure (Galler and Fisher (1964)). This data structure stores a partition of a finite set of
elements and can determine membership (i.e., find the set to which a particular element
belongs), and can merge two sets (union) in log time.

Algorithm 1 The Greedy Algorithm.

1: Sort the edges E in descending order according to the weight function w : E → R+,
where for e = (m, w)

w(e) = X(m, w).

2: Initialize E = ∅ and q = 0.
3: for e= (m, w) over the sorted list of edges do
4: if E ∪ {e} is a pseudoforest then
5: E ← E ∪ {e}
6: q ← q+w(e)
7: end if
8: end for

9See, for example, Oxley (1992, Section 1.8).
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Our disjoint-set data structure will contain the connected components (in terms of
its vertices) of the graph (V , E), together with an identifier that tells us whether the com-
ponent is a tree or not. At a certain iteration of the algorithm, if edge e = (m, w) is se-
lected from the sorted list, we first use two membership calls to find the components of
(V , E) that contain m and w. If the components are the same and if it is a tree, w(e) is
added to q and the component is marked as being no longer a tree (as adding the edge e

creates a cycle in the component).
If m and w belong to distinct components and if both components are a tree, then

w(e) is added to q, the components are merged together, and the resulting component
is labelled as a tree. If m and w are in distinct components and if only one of those is a
tree, then w(e) is added to q, and the two components are merged, and marked as not
being a tree (as the merged component will have a cycle). In any other case, the edge e

is skipped. Sorting the edges takes O(|E| log(|E|)) steps (e.g., using merge sort). For each
edge, we need to perform two membership calls and possibly one merge. Each of these
steps take O(log(|V|)) time, so the entire algorithm has running time O(|E| log(|E|)).10

The output of Algorithm 1 gives a matching M′ = (M , W , X ′ ) that solves (3).

TU rationalizability In order to compute the CMI for TU rationalizability, we only need
to make a few modifications. From Theorem 2, we know that a matching is TU rational-
izable if the graph G has no cycles. A graph without any cycles is known as a forest.

The collection of subforests of a given graph is also a matroid, called the cycle ma-
troid. As such, we can easily modify Algorithm 1 to the TU setting simply by replacing
the concept of pseudoforests by its forest analogue. The single change for the algorithm
is in step 4, which we have to modify to

ifE ∪ {e} is a forest then.

This modified algorithm is identical to finding a maximum spanning tree of G, which is
a well known problem in computer science (Kruskal (1956)).

5. Removing types

In this section, we look at another way to measure the distance from a given matching
to the set of rationalizable matchings.

Let us call M′ = (M , W ′, X ′ ) a woman-type reduction of the matching M = (M ,
W , X ) if W ′ ⊆ W , and for all m ∈ M and w ∈ W ′, X ′(m, w) = X(m, w). In other words,
it is the matching obtained by removing all woman types in W \W ′.11

Given a matching M = (M , W , X ) that is not NTU or TU rationalizable, we would
like to find the largest woman-type reduction M′ of M, in terms of |W ′|, such that M′ is

10See also Gabow and Tarjan (1988) for a similar but even more efficient linear time algorithm. However,
their procedure relies on some additional, more intricate, data structures.

11In a similar way, we can also define a man-type reduction (by restricting M ′ to be a subset of M) or a
joint type reduction (when both M ′ and W ′ are subsets of M and W , respectively). For simplicity however,
we will focus on woman-type reductions. However, the proof of Proposition 4 below can easily be adjusted
to these other settings.
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rationalizable:

max
W ′⊆W

∣∣W ′∣∣ subject to M′ = (
M , W ′, X ′) is NTU (resp. TU) rationalizable. (5)

It is easy to see that if |W ′| = 1, then the woman-type reduction M′ is NTU and TU ratio-
nalizable as the corresponding graph G will have no cycles. As such, (5) is well defined.

Let us first reformulate this problem as a decision problem.

Decision Problem (MTR-NTU: Maximum Type Reduction for NTU). Given a match-
ing M = (M , W , X ) and a number K ∈ N, does there exist a woman-type reduction
M′ = (M , W ′, X ′ ) such that M′ is NTU rationalizable and |W ′| ≥K?

Decision Problem (MTR-TU: Maximum Type Reduction for TU). Given a matching
M = (M , W , X ) and a number K ∈ N, does there exist a woman-type reduction M′ =
(M , W ′, X ′ ) such that M′ is TU rationalizable and |W ′| ≥K?

We have the following result.

Proposition 4. The decision problems MTR-NTU and MTR-TU are both NP-complete.

This result shows that it is not possible (unless P = NP) to find an efficient (polyno-
mial time) algorithm to solve (5).12 The proof of the proposition uses a reduction from
the maximum independent set problem.13

Decision Problem (MIS: Maximum Independent Set). Given a graph G = (V , E) and
a number k ∈ N, is there a set of vertices Ṽ ⊆ V such that |Ṽ | ≥ k and no two vertices in
Ṽ are connected by an edge in E.

6. A marriage market illustration

For our illustration, we look at a marriage market setting and focus on the NTU rational-
izability condition.14 We use the data set from Dupuy and Galichon (2014). This is data
from the 1993–2002 waves of the DNB household survey undertaken by CentERdata.15

The data are a representative panel of the Dutch population.16 The sample contains
information on several characteristics of both spouses for 1158 couples. In order to an-
alyze the rationalizability of this matching, we first need to define the types of men and
women. We do this on the basis of a subset of observable characteristics (see Table 2 in
Appendix B for summary statistics).

12See Garey and Johnson (1979) for an excellent introduction to the theory of computational complexity
and NP hardness in particular.

13This is problem GT20 in Garey and Johnson (1979).
14In the working paper version, we conducted a more thorough empirical exercises. For interested read-

ers, see, Demuynck and Salman (2020).
15See https://www.eui.eu/Research/Library/ResearchGuides/Economics/Statistics/DataPortal/DNB.
16We refer to the paper of Dupuy and Galichon (2014) for a description of the data set and the details on

the procedure used to generate the final sample. The full data set and documentation can be downloaded
from https://doi.org/10.1086/677191.

https://www.eui.eu/Research/Library/ResearchGuides/Economics/Statistics/DataPortal/DNB
https://doi.org/10.1086/677191
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• Education. We follow Dupuy and Galichon (2014) and consider the following three
categories: (i) lower education (kindergarten, primary, elementary, secondary);
(ii) intermediate (secondary, pre-university, vocational); (iii) higher education (uni-
versity).

• BMI (Body Mass Index). This variable is discretized using the cutoffs from the World
Health Organization:17 (a) if the BMI is below 18.5 (underweight), (b) if the BMI is
between 18.5 and 24.99 (normal), (c) if the BMI is between 25 and 30 (overweight),
and (d) if the BMI is above 30 (obese).

• Height. This variable is categorized using the mean μ and standard deviation σ of
the height of all men (resp. women). We categorize the height variable equal to (a) if
height is below μ − σ , (b) if the height is between μ − σ and μ, (c) if the height is
between μ and μ+ σ , and (d) if the height is above μ+ σ .

• Age. We discretize this variable using 3 year intervals.

For the illustration, we define types by considering combinations of three or four of the
characteristics given above.

Table 1 gives the results. The first row gives the CMI for the matching. This measures
how far the data set is from being rationalizable. For example, the number 0.394 shows
that if we define types on the basis of education, height, and BMI, we need to remove
almost 60% of all 1158 matchings in order to obtain a matching that is rationalizable.

The second row in the table gives the p-value for the null hypothesis that the ob-
served matching is random. This is conducted by sampling a large number of random
matchings with, for each type, the same number of men and women as in the observed
matching.18 The p-value is the fraction of these random matchings that have a CMI
that is larger than or equal to the CMI of the observed matching. We refer to the work-
ing paper version for more detailed information (Demuynck and Salman (2020)). The
last two lines provide information on the number of man types and woman types in the
matching.

Table 1. Figures for marriage market illustration.

Type Dimensions

Education

Education Education Education Height Height
Height Height BMI BMI BMI

BMI Age Age Age Age

CMI 0.394 0.391 0.472 0.384 0.472
p-value 0.0004 0.0 0.0 0.0 0.0
|M| 47 175 167 232 697
|W | 48 83 83 109 330

17See https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/
body-mass-index-bmi (accessed on July 7, 2020).

18For this, we follow the algorithm of Agresti, Wackerly, and Boyett (1979). The p-values are computed
on the basis of 17,000 random matches.

https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi
https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi
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7. Conclusion

This paper complements and extends the revealed preference analysis in Echenique
et al. (2013). We provide an efficient way to test whether aggregate matchings are TU
or NTU rationalizable by comparing the number of vertices and edges of the connected
components of a bipartite graph. We further study non-rationalizable matchings. We
draw the connection with matroid theory to obtain an efficient algorithm that permits
the identification of the minimum number of matches that need to be removed to re-
store rationalizability and we show that restoring rationalizability by removing a mini-
mal number of types is NP-hard. We provided an short illustration to show the practical
relevance of using the revealed preference approach to analyze aggregate matchings.

From an empirical point, the results of this paper bring us closer to the verification
of stability for matching markets where preferences of the individuals are unobservable,
which is the case in most real life decentralized matching markets. Our illustration show
that using goodness-of-fit measures like the CMI makes it possible to capture the degree
of non-rationalizability in these markets.

The fact that the set of TU or NTU rationalizable submatchings forms a matroid
might be particularly interesting for future research. Matroid theory is a vast and ex-
panding area of research in mathematics and computer science. In this regard, several
other results from this field may also be relevant for the current framework. As an ex-
ample, Edmonds (1965) constructed an efficient algorithm that can partition a given set
into a minimum number of independent subsets. Translating this to our framework, it
means that we can efficiently decompose a given matching into a minimal number of
rationalizable matchings.

Appendix A: Proofs of results in main text

A.1 Proof of Theorem 2

The equivalence (i.a)–(i.b) and (ii.a)–(ii.b) follow from Theorem 1. Also, the equivalences
(i.c)–(i.d) and (ii.c)–(ii.d) follow from known results in the literature (see Berge (1962,
p. 27ff)). As such, we will focus on proving the equivalence (i.b)–(i.c) and (ii.b)–(ii.c). For
this, we first state some intermediate results.

Lemma 5. Let γ = 〈v0, � � � , vn, v0〉 be a cycle. Then there exists no strict subset of edges of γ
that also form a cycle.

Proof. Toward a contradiction, assume that γ′ is a cycle formed from a subset of edges
of γ. Let (V , E) be the graph consisting of the vertices and edges of γ, and let (V ′, E′ ) be
the graph formed by the set of vertices and edges in γ′.

As every vertex and edge in a cycle is distinct, it follows that every vertex in V is part
of exactly two edges in E, and every vertex in V ′ is part of exactly two edges in E′.

As V ′ ⊂ V and (V , E) is connected, there must be an edge e ∈ E that connects some
vertex v′ ∈ V ′ to a vertex in V \ V ′. This, however, implies that e /∈ E′, so v′ has only one
edge in (V ′, E′ ), a contradiction.
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Fix a natural number n. For a natural numbers i ≤ n, I write �i� to denote i mod (n+
1) (i.e., the remainder of dividing i by n+ 1).

Lemma 6. If i = �j + 1� and j = �i+ 1�, then n = 0 or n = 1.

Proof. The first condition requires that there is a q ∈ N such that j + 1 = q(n + 1) + i.
Similarly, the second condition requires that there is an s ∈N such that i+1 = s(n+1)+j.
Solving this system gives

2 = (q+ s)(n+ 1).

As q, s, n ∈N, this implies that either n = 0 or n = 1.

As a first result, we demonstrate the intuitive fact that every regular, vertex-minimal
cycle in the graph G = (V, E) should have no three consecutive vertices on a common
horizontal or vertical line.

Lemma 7. Consider a matching M = (M , W , N ) with graph G = (V, E). If γ = 〈v0, � � � ,
vn, v0〉 is a regular, vertex-minimal cycle in G = (V, E), then for any three subsequent ver-
tices vi = (mi, wi ), v�i+1� = (m�i+1�, w�i+1� ), and v�i+2� = (m�i+2�, w�i+2� ), the following
statements hold:

• if mi =m�i+1�, then w�i+1� =w�i+2�,

• if wi =w�i+1�, then m�i+1� = m�i+2�.

Proof. Let γ = 〈v0, v1, � � � , vn, v0〉 be a regular, vertex-minimal cycle and consider three
consecutive vertices vi = (mi, wi ), v�i+1� = (m�i+1�, w�i+1� ), and v�i+2� = (m�i+2�, w�i+2� )
in the cycle. Given that the cycle is regular, it should have at least four distinct vertices.
As such, γ �= 〈vi, v�i+1�, v�i+2�, vi〉.

Now, toward a contradiction, assume that mi = m�i+1� and w�i+1� �= w�i+2�. Given
that (v�i+1�, v�i+2� ) ∈ E, it must be that m�i+1� = m�i+2�. As such, mi = m�i+2� and, there-
fore, (vi, v�i+2� ) ∈ E, a contradiction with minimality of γ.

The case where wi = w�i+1� and m�i+1� �=m�i+2� leads to a similar contradiction.

If γ = 〈v0, � � � , vn, v0〉 is a cycle in G and if for some type m ∈ M , there is an i such
that vi = (m, w), we say that the cycle γ visits m. We use a similar definition for visiting a
women type w. The following lemma shows that every regular, vertex-minimal cycle of
G visits a type at most twice and this on subsequent vertices.

Lemma 8. If γ = 〈v0, � � � , vn, v0〉 is a regular, vertex-minimal cycle in G, then for all m ∈M

(w ∈ W ) that are visited by γ, there are exactly two subsequent vertices vi and v�i+1� in the
cycle that contain m (w) and no other vertex contains m (w).

Proof. We show the proof for a man type m. The proof for a women type w is entirely
similar.
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Consider a regular, vertex-minimal cycle γ = 〈v0, v1, � � � , vn, v0〉 that visits m. This
means that there is a vertex vi = (m, w) for some w ∈W . As (v�i−1�, vi ) ∈ E, it must be that
either m�i−1� = m or w�i−1� = w. If the latter is the case, then from Lemma 7, it follows
that m = m�i+1�. As such, either v�i−1� contains m or v�i+1� contains m This shows that
there are at least two subsequent vertices in γ that contain m. Toward a contradiction,
assume that there are three vertices that contain m, say

vi = (m, wi ), vj = (m, wj ), vk = (m, wk )

for some wi, wj , wk ∈ W . Without loss of generality, assume that 0 ≤ i < j < k ≤ n. If i, j
and k are three consecutive numbers, then by Lemma 7, we have wj = wk, which implies
that vj = vk. Given that the only identical vertices in a cycle are the first and last vertices,
this gives j = k= 0, a contradiction.

Given this, assume, without loss of generality, that j + 1 < k. However, then
〈v0, � � � , vj , vk, � � � , vn, v0〉 is a cycle with fewer vertices, contradicting the vertex-mini-
mality of γ.

The following lemma shows that there is a one to one correspondence between reg-
ular, vertex-minimal cycles in G and cycles in G. As a corollary, we immediately obtain
the equivalence between conditions (ii.b) and (ii.c) of Theorem 2.

Lemma 9. For n ≥ 3, the following statements hold:

(i) If γ = 〈v0, v1, � � � , vn, v0〉 is a regular, vertex-minimal cycle in G with vi = (mi, wi )
and w0 =w1, then γ′ = 〈m0, w1, m2, � � � , mn−1, wn, m0〉 is a cycle in G.

(ii) If γ = 〈v0, v1, � � � , vn, v0〉 is a regular, vertex-minimal cycle in G with vi = (mi, wi )
and m0 = m1, then γ′ = 〈w0, m1, w2, � � � , wn−1, mn, w0〉 is a cycle in G.

(iii) If γ′ = 〈m0, w1, m2, � � � , mn−1, wn, m0〉 is a cycle in G, then γ′ = 〈v0, v1, � � � , vn, v0〉
with vi = (mi, wi+1 ) if i is even and vi = (wi, m�i+1� ) if i is odd is a regular, vertex-
minimal cycle in G.

(iv) If γ′ = 〈w0, m1, w2, � � � , wn−1, mn, w0〉 is a cycle in G, then γ′ = 〈v0, v1, � � � , vn, v0〉
with vi = (wi, mi+1 ) if i is even and vi = (mi, w�i+1� ) if i is odd is a regular, vertex-
minimal cycle in G.

Proof. We are going to demonstrate (i) and (iii). The two other statements are ana-
logues.

Recall that a sequence of vertices 〈x0, � � � , xn, x0〉 is a cycle in the graph G = (V , E) if

• for all i, (xi, x�i+1� ) ∈E

• all vertices x0, � � � , xn are distinct

• all edges (xi, x�i+1� ) are distinct.

For (i), let γ = 〈v0, v1, � � � , vn, v0〉 be a regular, vertex-minimal cycle in G with vi =
(mi, wi ) and w0 =w1.
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Then, from repeated application of Lemma 7, we see that w0 = w1, m1 = m2, and
w2 = w3, � � � , mn = m0. This shows that vi = (wi, mi ) = (wi, m�i+1� ) ∈ E for i odd and vi =
(mi, wi ) = (mi, wi+1 ) ∈ E for i even. Also notice that n is odd. Let us show that

γ′ = 〈m0, w1, m2, � � �wn, m0〉

is a cycle in G. For this, we need to show that γ′ has no identical edges and m0, w1, � � � ,
mn−1, wn does not contain identical vertices.

To show that γ′ has no identical vertices, assume, toward a contradiction, that mi =
mj for i �= j in γ′. Notice that both i and j are even. Then from the definition, vi =
(mi, wi+1 ) and vj = (mj , wj+1 ). As mi = mj , Lemma 9 tells us that vi and vj are adjacent,
i.e., i = �j + 1� or j = �i + 1�. Lemma 6 shows that n = 0 or n = 1. As n is odd, we have
n = 1, so γ = 〈v0, v1, v0〉, which contradicts regularity.

Next, let us show that γ′ has no two identical edges. If (mi, wi+1 ) = (mj , wj+1 ) with
i �= j, this contradicts the fact that m0, � � � , wn cannot have two identical vertices. The
same holds if (wi, m�i+1� ) = (wj , m�j+1� ) for some i �= j. Next, if (mi, wi+1 ) = (m�j+1�, wj ),
then by a similar reasoning it must be that i = �j + 1� and i + 1 = j. Lemma 6 tells us
that n = 1 or n = 0. However, n is odd, so n = 1. This gives γ = 〈v0, v1, v0〉, which again
contradicts regularity.

For (iii), consider a cycle γ′ = 〈m0, w1, m2, � � � , mn−1, wn, m0〉 in G. Notice that n is an
odd number. Consider the vertices vi = (mi, wi+1 ) for i even and vi = (wi, m�i+1� ) for i

odd in G. Then for all i, (vi, v�i+1� ) ∈ E. Let us show that

γ = 〈v0, v1, � � � , vn, v0〉

is a regular, vertex-minimal cycle in G. First notice that G visits at least two man and two
woman types, so it is regular. Next, as γ′ is a cycle, every man type m and woman type w

is contained in at most two vertices of γ (if not, then γ′ would contain at least three edges
involving the same man or woman type, which means that γ′ has two identical vertices).
In order to show that γ is a cycle, we need to show that γ has no identical vertices and
no identical edges.

Toward a contradiction, assume that vi = vj with i �= j. If both i and j are even, then
(mi, wi+1 ) = (mj , wj+1 ), which implies that γ′ has two identical edges, a contradiction.
If both i and j are odd, a similar contradiction occurs. If i is even and j is odd, then

(mi, wi+1 ) = vi = vj = (m�j+1�, wj ).

Given that all vertices in m0, w1, � � � , wn are distinct, this gives i = �j + 1� and i + 1 = j.
From Lemma 6, we know that n = 1 or n = 0. As n is odd, we have n = 1 and, there-
fore, γ′ = 〈m0, w1, m0〉, which contradicts the fact that a cycle cannot have two identical
edges. The case where i is odd and j is even is similar.

In order to see that G does not contain identical edges, assume toward a contra-
diction that (vi, v�i+1� ) = (vj , v�j+1� ) with i �= j. Then either (vi = vj and v�i+1� = v�j+1�)
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or (vi = v�j+1� and v�i+1� = vj). The first case contradicts the first part of the proof
as it would mean that v0, � � � , vn has two identical vertices. As such it must be that
v�i+1� = vj and v�j+1� = vi. Given that all vertices are distinct, it follows that i = �j + 1�
and �i + 1� = j. Again, by Lemma 6, n = 1 or n = 2 and the latter violates the condition
that n is odd. As such, γ′ = 〈m0, w1, m0〉, which contradicts the fact that γ′ has no two
identical edges.

Finally, we need to show that γ is a vertex-minimal cycle. If not, there exists a subset
of vertices of γ that also forms a cycle. Let γ̃ be such a cycle. Without loss of generality,
we can assume that γ̃ is vertex-minimal. If this cycle is regular, then from part (i) of
the proof, this produces a cycle in G, say γ̃′, whose set of edges is a strict subset of the
edges from γ′. This, however, contradicts Lemma 5. If the cycle is not regular, i.e., only
contains one man type or one woman type, then as γ̃ contains at least three vertices,
there should be a man or woman type that was involved in more than two vertices of γ,
a contradiction.

The following lemma shows the equivalence between (i.b) and (i.c).

Lemma 10. The graph G has two distinct regular, vertex-minimal connected cycles if and
only if the bipartite graph G has two distinct connected cycles.

Proof. Let γ1 and γ2 be two regular, vertex-minimal connected cycles in G, and let γ′
1

and γ′
2 be the corresponding cycles in G (see Lemma 9). Given the bijection between

such vertex-minimal cycles in G and cycles in G, we have that γ1 and γ2 are distinct if an
only if γ′

1 and γ′
2 are distinct.

(⇒) Assume that γ1 and γ2 are distinct and connected in G. If γ1 and γ2 have a vertex
in common, then γ′

1 and γ′
2 have a common edge, so we are done.

If not, let ρ = 〈v0, � � � , vn〉 be a path in G between the cycles γ1 and γ2. Without loss
of generality, assume that ρ is vertex-minimal (i.e., there is no subset of vertices in ρ that
also connects v0 to vn). Similar to the proof of Lemma 7, we can show that ρ has no
three subsequent vertices on a common horizontal or vertical line, i.e., for vi = (mi, wi ),
vi+1 = (mi+1, wi+1 ) and vi+2 = (mi+2, wi+2 ), if mi = mi+1, then wi+1 = wi+2, and if wi =
wi+1, then mi+1 =mi+2.

Assume that w0 = w1 and n is odd. The other cases can be treated in a similar way.
Notice that m0 ∈ γ′

1 and wn ∈ γ′
2. As such,

ρ′ = 〈m0, w1, m2, w3, � � � , mn−1, wn〉

has (mi, wi+1 ) ∈ E , m0 ∈ γ′
1, and wn ∈ γ′

2. Given that ρ is a vertex-minimal path, we can
use a proof, very similar to the proof of Lemma 9, to show that ρ′ is also a path. This
shows that γ′

1 and γ′
2 are connected.

For the reverse, let γ′
1 and γ′

2 be two cycles in G. Let γ1 and γ2 be the corresponding
vertex-minimal cycles in G (see Lemma 9). If the two cycles γ′

1 and γ′
2 have a vertex in

common, say m, then there is an edge v = (m, w) in γ′
1 and an edge v′ = (m, w′ ) in γ′

2.
Also, v is in γ1 and v′ is in γ2. As (v, v′ ) ∈ E, we have that γ1 and γ2 are connected.
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Now assume that γ′
1 and γ′

2 are disjoint. Let ρ be a path of length n from γ′
1 to γ′

2.
Without loss of generality, we can assume that ρ has minimal length. Also assume that
n is odd. The case where n is even is treated in a similar way. Then

ρ′ = 〈m0, w1, � � � , wn〉.

Define vi = (mi, wi+1 ) for i even and vi = (wi, mi+1 ) for i < n odd. We see that for all i,
(vi, vi+1 ) ∈ E and as ρ′ is a path, we have that vi �= vj for all i, j. Then

ρ= 〈v0, � � � , vn−1〉
is a path in G. If v0 = (m0, w1 ) ∈ γ1 and vn−1 = (mn−1, wn ) ∈ γ2, this gives a path from γ1

to γ2. If v0 = (m0, w1 ) /∈ γ1 and vn−1 = (mn−1, wn ) ∈ γ2, then as m0 ∈ γ′
1, there is a w′ ∈ γ′

1
such that (w, m0 ) is an edge of γ′

1. Define v = (w, m0 ) to be the corresponding vertex of
γ1. Then

〈v, v0, � � � , vn−1〉
is a path in G from γ1 to γ2. The other cases can be dealt with in a similar way.

A.2 Proof of Proposition 3

Rewriting (1) using the distance function (2) gives

min
X ′

∑

m∈M ,w∈W

∣∣X(m, w) −X ′(m, w)
∣∣

subject to
(
M , W , X ′) is rationalizable.

(6)

The following lemma shows that any solution X ′ to this problem has fewer matches
than X .

Lemma 11. Any solution X ′ to (6) has that X ′(m, w) ≤X(m, w) for all m ∈M and w ∈W .

Proof. Assume that for some m̂ ∈ M and ŵ ∈ W , X ′(m, w) > X(m, w). Consider the
new matching (M , W , X̂(m, w)), where for all m, w with m �= m̂ or w �= ŵ, X̂(m̂, ŵ) =
X ′(m, w) and X̂(m̂, ŵ) = X(m̂, ŵ). We have that (M , W , X̂ ) is also rationalizable as
it contains, for all types, no more matches compared to X ′ (so the bipartite graph of
(M , W , X̂ ) will be a subgraph of the bipartite graph of (M , W , X ′ )). Also

∑

m∈M ,w∈W

∣∣X(m, w) −X ′(m, w)
∣∣

=
∑

m∈M ,w∈W

∣∣X(m, w) − X̂(m, w)
∣∣ + ∣∣X(m̂, ŵ) −X ′(m̂, ŵ)

∣∣

>
∑

m,w

∣∣X(m, w) − X̂(m, w)
∣∣,

which shows that X ′ was not optimal, a contradiction.
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Lemma 11 shows that (6) can be rewritten as

min
X ′

∑

m∈M ,w∈W

(
Xm,w −X ′

m,w
)

subject to
(
M , W , X ′) is rationalizable and

X ′
m,w ≤Xm,w, ∀m ∈M , ∀w ∈W .

which is the statement of Proposition 3 in the main text.

A.3 Proof of Proposition 4

Given a woman-type reduction M′ = (M , W ′, X ′ ) and a number K, it is easy to verify
(i) whether |W ′| ≥ K and (ii) whether the reduction is NTU or TU rationalizable (using
Proposition 2) in polynomial time. This shows that the problem MTR-NTU and MTR-TU
is in NP time.

In order to show that the problem is NP-hard, we use a reduction from the problem
MIS: Given a graph G = (V , E) and a number k ∈ N, is there a set of vertices Ṽ ⊆ V such
that |Ṽ | ≥ k and no two vertices in Ṽ are connected by an edge in E.

We need to show that for every instance of MIS we can construct (in polynomial
time) an instance of MTR-NTU and MTR-TU such that the instance for the MIS problem
is a yes if and only if the instance for the associated MTR problem is a yes. We will first
prove this for MTR-NTU and then for MTR-TU.

MTR-NTU Consider the graph G = (V , E) and a number k ∈ N as an instance of MIS.
We construct an instance of MTR-NTU, i.e., a matching (M , W , X ) and a number K in
the following way:

• For every vertex v ∈ V , we construct two woman types wv,1 and wv,2.

• For every v ∈ V , we consider two man-types mv,1 and mv,2.

• For every vertex v ∈ V and every edge e ∈E connected to v, we construct a man type
mv,e.

To define the matchings among these types, we set

X(mv,1, wv,1 ) = 1

X(mv,1, wv,2 ) = 1

X(mv,2, wv,1 ) = 1

X(mv,2, wv,2 ) = 1

X(mv,e, wv,2 ) = 1 if e is adjacent to v.

Figure 5 gives the example of the configuration for a vertex v with three adjacent edges,
e1, e2, and e3. Notice that this constitutes a cycle. As such, we call it the the cycle of the
vertex v or v cycle.
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mv,1

mv,e1

mv,e2

mv,e3

mv,2

wv,1 wv,2

Figure 5. Illustration of a cycle of a vertex v with three adjacent edges e1, e2, and e3.

A next part of the MTR instance connects the various v cycles with each other.

• For every edge e= (vi, vj ) ∈E, we construct a woman type we and we set

X(mvi ,e, we ) = 1

X(mvj ,e, we ) = 1.

To finish the description of the MTR-NTU instance, we set the parameter K for the MTR-
NTU problem equal to |V | + |E| + k.

This finishes the instance construction. In total, we have 2|V | + ∑
v d(v) man types

and 2|V | + |E| woman types, where d is the degree of the vertex v. This number is
bounded by 4|V | + |V |2 + |E|, which is polynomial in the inputs.

As an illustrative example of how the instance of MTR-NTU may look, consider
the network given in Figure 6, which has four vertices {a, b, c, d} and four edges
{e1, e2, e3, e4}.

The MTR-NTU instance corresponding to this graph is given in Figure 7.
In order to finish the proof, we need to show that every yes instance of MIS corre-

sponds to a yes instance for the associated MTR-NTU problem and vice versa.
Toward this end, let {G = (V , E), k} be the instance of the MIS problem and let {M =

(M , W , X ), K} be the associated instance of the MTR-NTU problem. Assume that {G =
(V , E), k} is a yes instance and let Ṽ be an independent set of size |Ṽ | ≥ k. Let us show
that there is a woman-type reduction (M , W ′, X ′ ) of size |W ′| ≥K = |V | + |E| + k.

For all v ∈ V \ Ṽ , remove from W the type wv,2. Notice that this destroys the cycle of
vertex v. This leaves us with at least |V | + |E| + k = K woman types W ′. Now assume
that M′ = (M , W ′, X ′ ) is not rationalizable. In this case, there should be two distinct

a b

c d

e1

e2

e3

e4

Figure 6. An example graph G= (V , E) with four vertices and four edges.



Theoretical Economics 17 (2022) Revealed preference analysis 1673

ma,1

ma,e1

ma,e2

ma,2

wa,1 wa,2

mb,1

mb,e1

mb,e3

mb,2

wb,1 wb,2

mc,1

mc,e2

mc,e3

mc,e4

mc,2

wc,1 wc,2

md,1

md,e4

md,2

wd,1 wd,2 we1 we2 we3 we4

Figure 7. MTR-NTU instance of the graph in Figure 6.

connected minimal cycles. However, this can only be if two v cycles with v ∈ Ṽ are still
connected. This contradicts the definition of an independent set.

For the reverse, let {M = (M , W , X ), K} be a yes instance for MTR-NTU and let M′ =
(M , W ′, X ′ ) be a woman-type reduction with |W ′| ≥ K = |V | + |E| + k. We are going to
perturb this solution slightly to a new yes instance of MTR-NTU in the following way:
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P1. For all w, if w ∈ W \ W ′ and w = wv,1 for some vertex v ∈ V , and if wv,2 ∈ W ′, we
remove wv,2 from W ′ and add wv,1 to W ′ instead. The only reason why wv,1 would
be omitted from W ′ is to destroy the v cycle. However, the same can be accom-
plished by the woman type wv,2, so rationalizability is preserved. Notice that the
size of the set W ′ does not change.

P2. For all w, if w ∈W \W ′, if w = we for some edge e ∈ E, and if wv,2 ∈ W ′ for one of the
two vertices v of the edge e, we add we to W ′ and remove wv,2 from W ′. The reason
why we would be omitted from W ′ is to separate the two cycles corresponding to
the two vertices of e. However, by deleting one of these two vertices for the woman
type wv,2, this accomplishes the same goal. As such, rationalizability is preserved
and the size of W ′ does not change.

After repeated applications of these perturbations, consider the set Ṽ of all vertices v

such that wv,2 ∈W ′. Let us show that this is an independent set of the desired size.
Toward a contradiction, assume that v, v′ ∈ Ṽ and e = (v, v′ ) ∈ E. This means that

both wv,2, wv′,2 ∈ W ′. If also wv,1, wv′,1, we ∈ W ′, then this violates rationalizability of
M′, as there are two distinct connected minimal cycles. As such, at least one of the three
types is not in W ′.

• If wv,1 /∈ W ′, then by the fact that wv,2 ∈ W ′, this woman type should have been
added to W ′ in exchange for wv,2 by the first perturbation (P1) above. A similar
reasoning holds if wv′,1 /∈W ′.

• If we /∈ W ′, then the second perturbation (P2) above requires that both wv,2 and
wv′,2 /∈W ′, a contradiction.

This proves that Ṽ is an independent set. Notice that there can be at most |V | + |E|
elements in W ′ that are not of the type wv,2. A such, if |W ′| ≥ |V | + |E| +k, it follows that
Ṽ ≥ k.

MTR-TU Consider the graph G = (V , E) and a number k ∈N as an instance of MIS. We
construct an instance of MTR-TU, i.e., a matching (M , W , X ) and a number K, in the
following way:

• For every vertex v ∈ V , we construct a woman type wv.

• For every edge e ∈E we construct two woman types w1
e and w2

e .

• For every vertex v ∈ V and every edge e ∈ E connected to v, we construct two man
types m1

v,e and m2
v,e.

To define the matchings among these types we set

X
(
m1

v,e, wv
) = 1 if e is adjacent to v

X
(
m2

v,e, wv
) = 1 if e is adjacent to v

X
(
m1

v,e, w1
e

) = 1 if e is adjacent to v

X
(
m2

v,e, w2
e

) = 1 if e is adjacent to v.
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wv

m1
v,e1

m2
v,e1

m1
v,e2

m2
v,e2

m1
v,e3

m2
v,e3

w1
e1

w2
e1

w1
e2

w2
e2

w1
e3

w2
e3

Figure 8. Illustration of a configuration of a vertex v with three adjacent edges e1, e2, and e3.

Figure 8 gives the example of the configuration for a vertex v with three adjacent edges,
e1, e2, and e3.

To finish the description of the MTR-TU instance, we set the parameter K for the
MTR-TU problem equal to 2|E| + k.

This finishes the instance construction. In total, we have |V | + 2|E| woman types
and 2

∑
v d(v) = 4|E| man types, where d is the degree of the vertex v. This number is

bounded by 6|E| + |V |, which is polynomial in the inputs.
As an illustrative example of how the instance of MTR-TU may look, consider

again the network given in Figure 6 with its four vertices {a, b, c, d} and four edges
{e1, e2, e3, e4}. The MTR-TU instance corresponding to this graph is given in Figure 9.

In order to finish the proof, we need to show that every yes instance of MIS corre-
sponds to a yes instance for the associated MTR-TU problem and vice versa.

Toward this end, let {G = (V , E), k} be the instance of the MIS problem and let {M =
(M , W , X ), K} be the associated instance of the MTR-TU problem. Assume that {G =
(V , E), k} is a yes instance and let Ṽ be an independent set of size |Ṽ | ≥ k. Let us show
that there is a woman-type reduction (M , W ′, X ′ ) of size |W ′| ≥K = 2|E| + k.

For all v ∈ V \ Ṽ , remove from W the type wv. Notice that this destroys any cycle
containing wv. This leaves us with 2|E| + |Ṽ | ≥ 2|E| + k = K woman types W ′. Now as-
sume that M′ = (M , W ′, X ′ ) is not rationalizable. In this case, there should be a vertex-
minimal cycle. Consider a man type mi

v,e that is part of the cycle. As every man type mi
v,e

is only matched to wv and wi
e, then both (mi

v,e, wv ) and (mi
v,e, wi

e ) must be part of the cy-
cle. As wi

e is also matched to exactly two man types, i.e., mi
v,e and mi

v′,e, where e= (v, v′ ),

the vertex (mi
v′,e, wi

e ) should also be part of the cycle. But then it must be that the vertex

(mi
v′,e, wv′ ) is also part of the cycle, which means that both vertices v and v′ of the edge e

are in Ṽ , a contradiction with the definition of an independent set.
For the reverse, let {M = (M , W , X ), K} be a yes instance for MTR-TU and let

M′ = (M , W ′, X ′ ) be a woman-type reduction with |W ′| ≥ K = 2|E| + k. We are going
to perturb this solution slightly to a new yes instance of MTR-TU in the following way:

P. For all w, if w ∈ W \ W ′ with w = wi
e and if wv ∈ W ′ for some vertex v of edge e, we

remove wv from W ′ and add wi
e to W ′ instead. As any cycle that involves wi

e must
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wa wb wc wd w1
e1

w2
e1

w1
e2

w2
e2

w1
e3

w2
e3

w1
e4

w2
e4

m1
a,e1

m2
a,e1

m1
a,e2

m2
a,e2

m1
b,e1

m2
b,e1

m1
b,e3

m2
b,e3

m1
c,e2

m2
c,e2

m1
c,e3

m2
c,e3

m1
c,e4

m2
c,e4

m1
d,e4

m2
d,e4

Figure 9. MTR-TU instance of the graph in Figure 6.

involve the vertex (wi
e, mi

v,e ) and, therefore, also the vertex (mi
v,e, wv ), it follows that

any cycle that is destroyed by removing wi
e is also destroyed by removing wv.

After repeated applications of these perturbations, consider the set Ṽ of all vertices v

such that wv ∈ W ′. Let us show that this is an independent set of the desired size.
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Toward a contradiction, assume that v, v′ ∈ Ṽ and e = (v, v′ ) ∈ E. This means that
both wv, wv′ ∈ W ′. If also w1

e , w2
e ∈ W ′, then this violates rationalizability of M′, as there

is a cycle

(
m1

v,e, wv
)
,
(
m1

v,e, w1
e

)
,
(
m1

v′,e, w1
e

)
,
(
m1

v′,e, wv′
)
,
(
m2

v′,e, wv′
)
, � � � ,

(
m2

v′,e, w2
e

)
,
(
m2

v,e, w2
e

)
,
(
m2

v,e, wv
)
,
(
m1

v,e, wv
)
.

As such, at least one of the types w1
e or w2

e is not in W ′. However, then by applying the
perturbation P, either wv or wv′ should also have been removed. This proves that Ṽ is an
independent set. Notice that there are at most 2|E| elements in W ′ of type wi

e. A such, if
|W ′| ≥ 2|E| + k, it follows that Ṽ ≥ k.

Appendix B: Summary statistics

Table 2. Summary statistics for marriage market illustration.

Variable

Women Men

Mean St. Dev. Mean St. Dev.

Education 1.87 0.566 2.01 0.571
Height 169.35 6.406 182.34 7.199
BMI 23.44 3.831 24.53 2.944
Age 32.78 4.841 35.52 6.009

Note: Education takes values 1, 2, or 3 (see main text), height is measured in
centimeters, BMI is defined as weight (in kilograms) divided by height (in meters)
squared, and age is in years.

Appendix C: A characterization of the L1 distance function

Met M be a finite universal set of men types and let W be a finite universal set of women
types. For nonempty M ⊆ M and W ⊆ W , let us write the distance between two match-
ings M = (M , W , X ) and M′ = (M , W , X̃ ) by d(M, M′ ). The distance is only defined if
the matchings have the same set of men and women types.

For ease of notation, we introduce a function k(M , W , X , X ′ ) such that for M =
(M , W , X ) and M′ = (M , W , X ′ ),

k
(
M , W , X , X ′) ≡ d

(
M, M′).

We impose several assumptions (axioms) on the function d (or, equivalently, k). First of
all, we assume that d is not equal to the zero function and that it is symmetric.

Assumption 1 (Nontriviality). There are matchings M = (M , W , X ), M′ = (M , W , X ′ )
such that

k
(
M , W , X , X ′)> 0.
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Assumption 2 (Symmetry). For all matchings M = (M , W , X ) and M′ = (M , W , X ′ ),

k
(
M , W , X , X ′) = k

(
M , W , X ′, X

)
.

Next, we impose two anonymity conditions. The first requires that the distance
should not distinguish between men and women types.

Assumption 3 (Anonymity I). For all matchings M = (M , W , X ) and M′ = (M , W , X ′ ),

k
(
M , W , X , X ′) = k

(
W , M , XT ,

(
X ′)T )

,

where XT and (X ′ )T are the transpose of X and X ′, respectively.

The second anonymity assumption requires that our distance measure does not de-
pend on the labels of the types.

Assumption 4 (Anonymity II). For a permutation σ : M → M , let us denote by Mσ the
set {mσ(1), � � � , mσ(|M|)}. Then, for all matchings M = (M , W , X ),

k(M , W , X ) = k(Mσ , W , X ).

The following assumption requires that the distance is additively separable over sub-
groups of types.

Assumption 5 (Separability). Let M = M1 ∪ M2 and M1 ∩ M2 = ∅. Let X1 =
(Xm,w )m∈M1,w∈W and X2 = (Xm,w )m∈M2,w∈W , and similar for X ′

1 and X ′
2. Then

k
(
M , W , X , X ′) = k

(
M1, W , X1, X ′

1
) + k

(
M2, W , X2, X ′

2
)
.

Define a simple matching to be a matching with only one man type and one woman
type. The following assumption requires that for these simple matchings, multiplying
the number of matchings by some strictly positive number scales the distance by the
same number.

Assumption 6 (Homogeneity of Degree 1). Let α ∈N (α> 0). Then for all simple match-
ings M = ({m}, {w}, x) and M′ = ({m}, {w}, x′ ),

k
(
{m}, {w}, αx, αx′) = αk

(
{m}, {w}, x, x′).

Finally, we assume that for two simple matchings, subtracting the same number of
matches from both does not change the distance between the two.

Assumption 7 (Translation Invariance). Let a ∈ N, x, x′ ∈ N, and a < min{x, x′}. Then,
for all simple matchings M = ({m}, {w}, x),

k
(
{m}, {w}, x, x′) = k

(
{m}, {w}, x− a, x′ − a

)
.
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We then have the following result.

Proposition 12. Assumptions 1–7 are satisfied if and only if there exists a κ > 0, such
that for all matchings M = (M , W , X ) and M′ = (M , W , X̃ ),

d
(
M, M′) = κ

∑

m,w

∣∣X(m, w) −X ′(m, w)
∣∣.

Moreover, all assumptions are independent.

Proof. It is easy to verify that the specification in the proposition satisfies all as-
sumptions. For the reverse, notice that by repeated application of Separability, and
Anonymity I,

d
(
M, M′) =

∑

m∈M ,w∈W
k
(
{m}, {w}, X(m, w), X ′(m, w)

)
.

By Anonymity I and II, the values k({m}, {w}, X(m, w), X ′(m, w)) are independent of the
labels m and w, and, therefore, only depend on the values of X(m, w) and X ′(m, w). As
such, for all x, x̃ ∈N∪ {0}, we can define the function

δ
(
x, x′) ≡ k

(
{m}, {w}, x, x′).

If x = x′ = 0, then by Homogeneity of Degree 1,

δ(0, 0) = αδ(0, 0)

for all α ∈ N (α > 0), so δ(0, 0) = 0. Next, by Homogeneity of Degree 1, Translation In-
variance, and Symmetry, we obtain

δ
(
x, x′) = δ

(
x− min

{
x, x′}, x̃− min

{
x, x′})

= δ
(
0,

∣∣x− x′∣∣)

= ∣∣x− x′∣∣δ(0, 1).

If we let κ= δ(0, 1), this gives

d
(
M, M′) = κ

∑

m,w

∣∣X(m, w) −X ′(m, w)
∣∣.

By nontriviality, we have κ > 0.
To show independence, we give, for each property, a distance that satisfies all but

that single property.

• Nontriviality:

d
(
M, M′) = 0.

• Symmetry:

d
(
M, M′) =

∑

m∈M ,w∈W

(
X(m, w) −X ′(m, w)

)
.
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• Anonymity I:

d
(
M, M′) =

∑

m∈M

∣∣∣∣
∑

w∈W
X(m, w) −

∑

w∈W
X ′(m, w)

∣∣∣∣.

• Anonymity II:

d
(
M, M′) =

∑

m∈M ,w∈W
rmrw

∣∣X(m, w) −X ′(m, w)
∣∣,

where rm and rw are the order of m and w in the universal type sets M and W respec-
tively (for some arbitrary ranking).

• Separability:

d
(
M, M′) =

∣∣∣∣
∏

m∈M ,w∈W
X(m, w) −

∏

m∈M ,w∈W
X ′(m, w)

∣∣∣∣.

• Homogeneity:

d
(
M, M′) =

∑

m∈M ,w∈W

(
X(m, w) −X ′(m, w)

)2
.

• Translation invariance:

d
(
M, M′) =

∑

m∈M ,w∈W

((
X(m, w)

)2 − (
X ′(m, w)

)2)1/2
.
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