
Theoretical Economics 17 (2022), 1683–1717 1555-7561/20221683

Maskin meets Abreu and Matsushima

Yi-Chun Chen
Department of Economics and Risk Management Institute, National University of Singapore

Takashi Kunimoto
School of Economics, Singapore Management University

Yifei Sun
School of International Trade and Economics, University of International Business and Economics

Siyang Xiong
Department of Economics, University of California, Riverside

The theory of full implementation has been criticized for using integer/modulo
games, which admit no equilibrium (Jackson (1992)). To address the critique, we
revisit the classical Nash implementation problem due to Maskin (1977, 1999)
but allow for the use of lotteries and monetary transfers as in Abreu and Mat-
sushima (1992, 1994). We unify the two well-established but somewhat orthog-
onal approaches in full implementation theory. We show that Maskin monotonic-
ity is a necessary and sufficient condition for (exact) mixed-strategy Nash imple-
mentation by a finite mechanism. In contrast to previous papers, our approach
possesses the following features: finite mechanisms (with no integer or modulo
game) are used; mixed strategies are handled explicitly; neither undesirable out-
comes nor transfers occur in equilibrium; the size of transfers can be made arbi-
trarily small; and our mechanism is robust to information perturbations.

Keywords. Complete information, full implementation, information perturba-
tions, Maskin monotonicity, mixed-strategy Nash equilibrium, social choice func-
tion.

JEL classification. C72, D78, D82.

Yi-Chun Chen: ecsycc@nus.edu.sg
Takashi Kunimoto: tkunimoto@smu.edu.sg
Yifei Sun: sunyifei@uibe.edu.cn
Siyang Xiong: siyang.xiong@ucr.edu
We owe special thanks to four anonymous referees for their insightful comments as well as to Kim-Sau
Chung, Eddie Dekel, and Phil Reny for long discussions which led to major improvements of the paper.
We also thank Soumen Banerjee, Olivier Bochet, Matthew Jackson, Hitoshi Matsushima, Stephen Morris,
Daisuke Nakajima, Hamid Sabourian, Roberto Serrano, Balázs Szentes, Xiangqian Yang, and participants
at various seminars and conference presentations for helpful comments. Part of this paper was written
while the four authors were visiting Academia Sinica, and we would like to thank the institution for its hos-
pitality and support. We also gratefully acknowledge the financial support from the Singapore Ministry
of Education Academic Research Fund Tier 1 (R-122-000-296-115), the National Natural Science Founda-
tion of China (NSFC71703020), and the Fundamental Research Funds for the Central Universities in UIBE
(CXTD13-03).

© 2022 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at https://econtheory.org. https://doi.org/10.3982/TE4255

https://econtheory.org/
mailto:ecsycc@nus.edu.sg
mailto:tkunimoto@smu.edu.sg
mailto:sunyifei@uibe.edu.cn
mailto:siyang.xiong@ucr.edu
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://econtheory.org
https://doi.org/10.3982/TE4255


1684 Chen, Kunimoto, Sun, and Xiong Theoretical Economics 17 (2022)

1. Introduction

Implementation theory can be seen as reverse engineering game theory. Suppose that
a society has decided on a social choice rule—a recipe for choosing the socially-optimal
alternatives on the basis of individuals’ preferences over alternatives. The individuals’
preferences vary across states and the realized state is common knowledge among the
agents but unknown to a social planner/mechanism designer. To (fully) implement the
social choice rule, the designer chooses a mechanism so that at each state, the equilib-
rium outcomes of the mechanism coincide with the outcomes designated by the social
choice rule.

We study Nash implementation by a finite mechanism where agents report only their
preferences and preference profiles. We focus on the monotonicity condition (hereafter,
Maskin monotonicity), which Maskin shows is necessary and “almost sufficient” for
Nash implementation. We aim to implement social choice functions (henceforth, SCFs)
that are Maskin-monotonic in mixed-strategy Nash equilibria without making use of the
integer game or the modulo game, which prevails in the full implementation literature.

In the integer game, each agent announces some integer and the person who an-
nounces the highest integer gets to name his favorite outcome. When the agents’ fa-
vorite outcomes differ, an integer game has no pure-strategy Nash equilibria. The ques-
tionable feature is also shared by modulo games. The modulo game is regarded as a fi-
nite version of the integer game in which agents announce integers from a finite set. The
agent who matches the modulo of the sum of the integers gets to name an allocation. In
order to “knock out” undesirable equilibria in general environments, most constructive
proofs in the literature, following Maskin (1999) (circulating as a working paper in 1977),
have either taken advantage of the fact that the integer/modulo game has no solution in
pure strategies and/or restricted attention to pure-strategy Nash equilibria.

Instead of invoking integer/modulo games, we study Nash implementation in a re-
stricted domain where the designer can invoke both lotteries and (off-the-equilibrium)
transfers in designing the implementing mechanism. We study a finite environment in
which a finite mechanism is to be anticipated.1 Finite mechanisms are also bounded
in the sense of Jackson (1992) and have no aforementioned questionable features. In-
deed, Jackson (1992, Example 4) shows that when no domain restriction on the en-
vironment is imposed, some Maskin-monotonic SCF is not implementable in mixed-
strategy Nash equilibria by any finite mechanism. It raises the question as to whether
every Maskin-monotonic SCF is mixed-strategy Nash implementable with domain re-
strictions imposed by lotteries and transfers.2

Our main result (Theorem 1) shows that when the designer can make use of lotter-
ies and transfers off the equilibrium, Maskin monotonicity is indeed a necessary and
sufficient condition for mixed-strategy Nash implementation by a finite mechanism. In

1In Chen, Kunimoto, Sun, and Xiong (2022), we consider infinite environments in which we construct an
infinite yet “well-behaved” implementing mechanism to achieve the same goal.

2Another direction one can take is to characterize, without making any domain restriction, the subclass
of Maskin-monotonic SCFs, which can be implemented in mixed-strategy Nash equilibria in a finite mech-
anism. For that goal, our exercise serves as a clarification of whether in certain environments, the class of
implementable SCFs is as permissive as it can be.
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our finite mechanism, each agent is asked to report only his preference and a preference
profile. That is, we replace the integer announcement in Maskin’s mechanism with an
announcement of each agent’s own preference. The preference announcement plays
the same role as an integer in knocking out unwanted equilibria, albeit in a different
manner. Following the idea of Abreu and Matsushima (1994), we design the mechanism
so that whenever an “unwanted equilibrium” occurs, the agents’ reports must be “truth-
ful,” namely they announce their own preference and preference profile as prescribed
under the true state. That in turn implies, through cross-checking the (truthful) prefer-
ences and the preference profiles reported by the agents, that the unwanted equilibrium
could not have happened. In our finite mechanism, a pure-strategy (truth-telling) equi-
librium exists, and all mixed-strategy equilibria achieve the desirable social outcome at
each state.

We also provide several extensions of our main results. First, we show that our im-
plementation is robust to information perturbations. Second, we extend Theorem 1
to cover social choice correspondences (i.e., multivalued social choice rules), studied
in Maskin (1999) as well as in many subsequent papers. Formally, we show that when
there are at least three agents, every Maskin-monotonic social choice correspondence is
mixed-strategy Nash implementable (Theorem 2). Moreover, as long as the social choice
correspondence is finite-valued, our implementing mechanism remains finite. Third,
we show that if there are at least three agents and the SCF satisfies Maskin monotonicity
in the restricted domain without any transfer, then it is implementable in mixed-strategy
Nash equilibria by a finite mechanism in which the size of transfers remains zero on the
equilibrium and can be made arbitrarily small off the equilibrium (Theorem 3).

The rest of the paper is organized as follows. In Section 2, we position our paper in
the literature. In Section 3, we present the basic setup and definitions. Section 4 proves
our main result. We discuss the extensions of our main result in Section 5. The Appendix
contains all proofs, which are omitted from the main text.

2. Related literature

Maskin (1999) proposes the notion of Maskin monotonicity and implements a Maskin-
monotonic social choice correspondence by constructing an infinite mechanism with
integer games. While integer games are useful in achieving positive results in general
settings, the hope has been that for more specific environments, more realistic mech-
anisms, or mechanisms without the “questionable features,” may suffice. The research
program has been proposed by Jackson (1992). One such class of specific environments
is the one with lotteries and transfers which our paper, as well as the partial implemen-
tation literature, focuses on.

In environments with lotteries and transfers, Abreu and Matsushima (1992, 1994)
obtain permissive full implementation results using finite mechanisms without the
aforementioned questionable features. Like our implementing mechanisms, their
mechanisms also make use of only payoff relevant messages, such as preferences or
preference profiles. However, Abreu and Matsushima (1992, 1994) do not investigate
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Nash implementation but rather appeal to a different notion of implementation: vir-
tual implementation (in Abreu and Matsushima (1992)) or exact implementation under
iterated weak dominance (in Abreu and Matsushima (1994)).3

Virtual implementation means that the planner contents herself with implementing
the SCF with arbitrarily high probability. In contrast, by studying exact Nash implemen-
tation in the specific setting, we unify the two well-established but somewhat orthogo-
nal approaches to implementation theory, which are due to Maskin (1999) and to Abreu
and Matsushima (1992, 1994). Our exercise is directly comparable to Maskin (1999) and
highlights the pivotal trade-off between domain restrictions and the feature of imple-
menting mechanisms. We consider it to be one step in advancing the research program
proposed by Jackson (1992).

An alternative approach to handling mixed-strategy equilibria is to resort to refine-
ments such as undominated Nash equilibria or subgame-perfect equilibria. With such
refinements, essentially every SCF, whether Maskin-monotonic or not, is implementable
in a complete-information environment; see, for example, Moore and Repullo (1988)
and Abreu and Matsushima (1994). However, according to Chung and Ely (2003) and
Aghion, Fudenberg, Holden, Kunimoto, and Tercieux (2012), if we were to achieve ex-
act implementation in these refinements, which are also robust to a small amount of
incomplete information, then Maskin monotonicity would be restored as a necessary
condition. Those permissive implementation results, which are driven by the lack of
the closed-graph property of the refinements, cast doubt on the success of taking care
of non-Maskin-monotonic SCFs by resorting to equilibrium refinements. In contrast,
our Theorem 1 establishes exact and robust implementation in mixed-strategy Nash
equilibria to the maximal extent that every Maskin-monotonic SCF is implementable
(Proposition 3).4

Ollár and Penta (2017) study a full implementation problem using transfers both on
and off the equilibrium. Specifically, Theorem 2 of Ollár and Penta (2017) provides a
sufficient condition restricting agents’ beliefs via moment conditions under which their
notion of robust full implementation is possible in a direct mechanism. Their notion of
robustness is a “global notion” which accommodates arbitrary information structures
consistent with a fixed payoff environment.5 In contrast, our paper follows the classical
implementation literature in dealing with the specific belief restriction of complete in-
formation, and our notion of robustness (in Section 5.1) accommodates only perturba-
tions around the complete-information benchmark. With the specific belief restriction,
we prove that Maskin monotonicity is both necessary and sufficient for implementa-
tion in mixed-strategy Nash equilibria in a finite, indirect mechanism with only off-the-
equilibrium transfers.

3Iterated weak dominance in Abreu and Matsushima (1994) also yields the unique undominated Nash
equilibrium outcome. For undominated Nash implementation by “well-behaved” mechanisms, see also
Jackson, Palfrey, and Srivastava (1994) and Sjöstrom (1994).

4Harsanyi (1973) shows that a mixed-strategy Nash equilibrium outcome may occur as the limit of a se-
quence of pure-strategy Bayesian Nash equilibria for “nearby games” in which players are uncertain about
the exact profile of preferences. Hence, ignoring mixed-strategy equilibria would be particularly problem-
atic if we were to achieve implementation which is robust to information perturbations.

5See Ollár and Penta (2021) for a further extension of the approach of Ollár and Penta (2017).
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3. Preliminaries

3.1 Environment

Consider a finite set of agents I = {1, 2, � � � , I} with I ≥ 2, a finite set of possible states �,
and a set of pure alternatives A. We consider an environment with lotteries and trans-
fers. Specifically, we work with the space of allocations/outcomes X ≡ �(A) ×RI where
�(A) denotes the set of lotteries on A that have a countable support, and RI denotes
the set of transfers to the agents. We identify a ∈A with a degenerate lottery in �(A).

For each x= (�, (ti )i∈I ) ∈X , agent i receives the utility ũi(x, θ) = vi(�, θ)+ ti for some
bounded expected utility function vi(·, θ) over �(A). That is, we work with an environ-
ment with a transferable utility (TU) on agents’ preferences, which Maskin (1999) does
not impose. We abuse notation to identify �(A) with a subset of X , that is, each � ∈ �(A)
is identified with the allocation (�, 0, � � � , 0) in X .

We focus on a complete-information environment in which a true state θ is common
knowledge among the agents but unknown to a mechanism designer. The designer’s
objective is specified by a social choice function f : � → X , namely, if the state is θ, the
designer would like to implement the social outcome f (θ).

3.2 Mechanism and solution

We denote a (finite) mechanism by M = ((Mi, τi )i∈I , g) where Mi is a nonempty finite
set of messages available to agent i; g : M → X (where M ≡×I

i=1 Mi) is the outcome
function, and τi : M → R is the transfer rule which specifies the payment to agent i. At
each state θ ∈ �, the environment and the mechanism together constitute a game with
complete information, which we denote by �(M, θ). Note that the restriction of Mi to a
finite set rules out the use of integer games à la Maskin (1999). Throughout the paper,
we only make use of finite mechanisms and call them mechanisms for simplicity.

Let σi ∈ �(Mi ) be a mixed strategy of agent i in the game �(M, θ). A strategy profile
σ = (σ1, � � � , σI ) ∈×i∈I �(Mi ) is said to be a mixed-strategy Nash equilibrium of the
game �(M, θ) if, for all agents i ∈ I and all messages mi ∈ supp(σi ) and m′

i ∈Mi, we have∑
m−i∈M−i

∏
j �=i

σj(mj )
[
ũi

(
g(mi, m−i ), θ

) + τi(mi, m−i )
]

≥
∑

m−i∈M−i

∏
j �=i

σj(mj )
[
ũi

(
g
(
m′

i, m−i

)
, θ

) + τi
(
m′

i, m−i

)]
.

A pure-strategy Nash equilibrium is a mixed-strategy Nash equilibrium σ such that each
agent i’s mixed-strategy σi assigns probability one to some mi ∈ Mi. For any message
profile m ∈M , let σ(m) ≡ ∏

j∈I σj(mj ).
Let NE(�(M, θ)) denote the set of mixed-strategy Nash equilibria of the game

�(M, θ). We also denote by supp(NE(�(M, θ))) the set of message profiles that can
be played with positive probability under some mixed-strategy Nash equilibrium σ ∈
NE(�(M, θ), that is,

supp
(
NE

(
�(M, θ)

)) = {
m ∈M : there exists σ ∈ NE

(
�(M, θ)

)
such that σ(m) > 0

}
.

We now define our notion of Nash implementation.
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Definition 1. An SCF f is implementable in mixed-strategy Nash equilibria by a finite
mechanism if there exists a mechanism M = ((Mi, τi )i∈I , g) such that for every state
θ ∈ �, (i) there exists a pure-strategy Nash equilibrium in the game �(M, θ) and (ii) m ∈
supp(NE(�(M, θ))) ⇒ g(m) = f (θ) and τi(m) = 0 for every i ∈ I .

Our definition is adapted from mixed-strategy Nash implementation in Maskin
(1999) to (1) require that the implementing mechanism be finite and (2) accommodate
our quasilinear environments with transfers. In particular, Condition (ii) requires that
transfers be imposed only off the equilibrium. Mezzetti and Renou (2012a) propose an-
other definition of Nash implementation that keeps Condition (ii) but weakens Condi-
tion (i) in requiring only the existence of a mixed-strategy Nash equilibrium, which,by
Nash’s theorem, is guaranteed in a finite mechanism. In their sufficiency result, Mezzetti
and Renou (2012a) do not use transfers, however, they construct an infinite mechanism
with integer games.

3.3 Maskin monotonicity

We now restate the definition of Maskin monotonicity that Maskin (1999) proposes for
Nash implementation.

Definition 2. An SCF f satisfies Maskin monotonicity if, for every pair of states θ̃ and
θ with f (θ̃) �= f (θ), some agent i ∈ I and some allocation x ∈X exist such that

ũi(x, θ̃) ≤ ũi
(
f (θ̃), θ̃

)
and ũi(x, θ) > ũi

(
f (θ̃), θ

)
. (1)

To illustrate how the idea of Maskin monotonicity is applied, suppose that the SCF f

is implemented in Nash equilibria by a mechanism. When θ̃ is the true state, there exists
a pure-strategy Nash equilibrium m ∈ M in �(M, θ̃), which induces f (θ̃). If f (θ̃) �= f (θ)
and θ is the true state, then m cannot be a Nash equilibrium, that is, there exists some
agent i who has a profitable deviation. Suppose that the deviation induces outcome
x, that is, agent i strictly prefers x to f (θ̃) at state θ. Since m is a Nash equilibrium at
state θ̃, such a deviation cannot be profitable at state θ̃; that is, agent i weakly prefers
f (θ̃) to x at state θ̃. In other words, x belongs to agent i’s lower contour set at f (θ̃) of
state θ̃, whereas it belongs to the strict upper-contour set at f (θ̃) of state θ. Therefore,
Maskin monotonicity is a necessary condition for Nash implementation; in fact, it is
a necessary condition even for Nash implementation that restricts attention to pure-
strategy equilibria (i.e., to require that condition (ii) of Definition 1 hold only for pure-
strategy Nash equilibria).

4. Main result

In this section, we present our main result, which shows that Maskin monotonicity is
necessary and sufficient for mixed-strategy Nash implementation. We formally state
the result as follows.
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Theorem 1. An SCF f is implementable in mixed-strategy Nash equilibria by a finite
mechanism if and only if it satisfies Maskin monotonicity.

In the rest of this section, we will establish Theorem 1 and discuss the issues regard-
ing the theorem. Section 4.1 details how our implementing mechanism is constructed.
In Section 4.2, we prove Theorem 1 by making use of the implementing mechanism con-
structed in Section 4.1. Section 4.3 illustrates two special cases in which our implement-
ing mechanism can be made into a direct mechanism where each agent reports a state.
In Section 4.4, we discuss the necessity of domain restrictions in establishing Theorem 1.

4.1 The mechanism

We construct a mechanism M = ((Mi, τi )i∈I , g), which will be used to prove Theo-
rem 1. The mechanism shares a number of features of the implementing mechanisms
in Maskin (1999) and in Abreu and Matsushima (1992, 1994), which we summarize at
the end of the subsection. The construction involves two major building blocks that we
call the best challenge scheme and dictator lotteries, respectively. After introducing these
building blocks, we will define the message space, allocation rule, and transfer rule of
our implementing mechanism.

For each agent i, as a preliminary step, we define

�i ≡
{
vi(·, θ) : θ ∈�

}
.

That is, �i is the set of expected utility functions of agent i induced by some state θ. De-
note by θi ∈ �i the expected utility function of agent i obtained at state θ ∈ �, namely
that θi = vi(·, θ). We call θi the type of player i at state θ. We denote by ui(·, θi )
the quasilinear utility function, which corresponds to type θi, namely that for each
x = (�, (ti )i∈I ) ∈ X , we have ui(x, θi ) ≡ vi(�, θ) + ti. For a Maskin-monotonic SCF f , we
have f (θ) = f (θ̃) if states θ and θ̃ induce the same type profile (i.e., θi = θ̃i for every i).
Hence, if a type profile (θ̃i )i∈I is induced by some state θ ∈ �, we may abuse the notation
to write (θ̃i )i∈I ∈� and set f ((θ̃i )i∈I ) ≡ f (θ).

Remark 1. It is possible no state in � induces a given type profile. For example, suppose
we that have two states α and β and two agents A and B who have an identical expected
utility function that varies across the states, namely αA = αB �= βA = βB. In this example,
there are four type profiles: (αA, αB ), (αA, βB ), (βA, αB ), and (βA, βB ), and yet neither
the type profile (αA, βB ) nor (βA, αB ) corresponds to a state.

4.1.1 Best challenge scheme For (x, θi ) ∈ X × �i, we use Li(x, θi ) to denote the lower-
contour set at allocation x in X for type θi, that is,

Li(x, θi ) = {
x′ ∈X : ui(x, θi ) ≥ ui

(
x′, θi

)}
.

We use SU i(x, θi ) to denote the strict upper-contour set of x ∈X for type θi, that is,

SU i(x, θi ) = {
x′ ∈X : ui

(
x′, θi

)
> ui(x, θi )

}
.
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Hence, according to Definition 2, an SCF f satisfies Maskin monotonicity if and only if
for every pair of states θ̃ and θ in �,

f (θ̃) �= f (θ) ⇒ ∃i ∈ I such that Li

(
f (θ̃), θ̃i

) ∩ SU i

(
f (θ̃), θi

) �= ∅. (2)

Agent i in (2) is called a “whistle-blower” or a “test agent,” and an allocation in
Li(f (θ̃), θ̃i ) ∩ SU i(f (θ̃), θi ) is called a “test allocation” for agent i and the ordered pair
of states (θ̃, θ). We now define a notion called the best challenge scheme, which plays a
crucial role in proving Theorem 1. We say that a mapping x : �× �i → X is a challenge
scheme for an SCF f if and only if, for each pair of state θ̃ ∈� and type θi ∈�i,{

x(θ̃, θi ) ∈ Li

(
f (θ̃), θ̃i

) ∩ SU i

(
f (θ̃), θi

)
, if Li

(
f (θ̃), θ̃i

) ∩ SU i

(
f (θ̃), θi

) �= ∅;

x(θ̃, θi ) = f (θ̃), if Li

(
f (θ̃), θ̃i

) ∩ SU i

(
f (θ̃), θi

) = ∅.

We may think of state θ̃ as an announcement made by one or more other agents that
agent i of type θi could “challenge” (as a whistle-blower). The following lemma shows
that there is a challenge scheme in which each whistle-blower i facing state announce-
ment θ̃ finds it weakly best to challenge θ̃ by simply reporting his true type θi.

Lemma 1. There is a challenge scheme x(·, ·) for an SCF f such that for every state θ̃ and
type θi,

ui
(
x(θ̃, θi ), θi

) ≥ ui
(
x
(
θ̃, θ′

i

)
, θi

)
, ∀θ′

i ∈�i. (3)

We relegate its formal proof to Appendix A.1.6 In defining the implementing mech-
anism, we shall invoke a challenge scheme, which satisfies (3). We call such a challenge
scheme the best challenge scheme. In words, under the best challenge scheme, for any
state θ̃, agent i of type θi weakly prefers the allocation x(θ̃, θi ) to any other x(θ̃, θ′

i ) in-
duced by announcing θ′

i �= θi.

4.1.2 Dictator lotteries Let X̃ ≡ A ∪ ⋃
i∈I ,θi∈�i , θ̃∈� x(θ̃, θi ). We can then conclude that

X̃ is a set over which all agents’ utilities are bounded, because vi(·, θ) is bounded, � is
finite, and we prespecify x(θ̃, θi ) for each i ∈ I , type θi ∈ �i, and state θ̃ ∈ �. Hence, we
can choose η′ > 0 as an upper bound on the monetary value of a change of allocation in
X̃ , that is,

η′ > sup
i∈I ,θi∈�i ,x,x′∈X̃

∣∣ui(x, θi ) − ui
(
x′, θi

)∣∣. (4)

We now state a result, which ensures the existence of what we call dictator lotteries
for agent i. A collection of lotteries are called dictator lotteries of agent i if they satisfy
Conditions (5) and (6) stated in Lemma 2. Condition (5) says that in selecting the dictator
lotteries, each agent has a strict incentive to reveal his true type. Condition (6) says that
these dictator lotteries are strictly less preferred to any allocations in X̃ .

6We owe special thanks to Phil Reny for suggesting the lemma, which simplifies the implementing mech-
anism adopted in an earlier version of our paper.
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Lemma 2. For each agent i ∈ I , there exists a collection of lotteries {yi(θi )}θi∈�i
such that

for all types θi, θ′
i ∈ �i with θi �= θ′

i, we have

ui
(
yi(θi ), θi

)
> ui

(
yi

(
θ′
i

)
, θi

)
; (5)

moreover, for each j ∈ I and type θ′
j ∈�j , we also have that, for every x ∈ X̃ ,

ui
(
yj

(
θ′
j

)
, θi

)
< ui(x, θi ). (6)

Since two distinct types in �i induce different expected utility functions over �(A),
it follows from Abreu and Matsushima (1992, Lemma, p. 999) that we can prove the
existence of lotteries {y ′

i(·)} ⊂ �(A) that satisfy Condition (5). To satisfy Condition (6), we
simply add a penalty of η′ to each outcome of the lotteries {y ′

i(θi )}θi∈�i
. More precisely,

for each θi ∈�i, we set

yi(θi ) = (
y ′
i(θi ), −η′, � � � , −η′) ∈X .

4.1.3 Message space A generic message of agent i is described as follows:

mi =
(
m1

i , m2
i

) ∈Mi =M1
i ×M2

i =�i ×
[

I×
j=1

�j

]
.

That is, agent i is asked to make (1) a report of his own type (which we denote by m1
i );

and (2) a report of a type profile (which we denote by m2
i ). To simplify the notation,

we write m2
i,j = θ̃j if agent i reports in m2

i that agent j is of type θ̃j . Recall that agents
have complete information about the true state. If the true state is θ, we say that agent i
sends a truthful first report if m1

i = θi and a truthful second report if m2
i = (θj )j∈I . Note

that each agent is asked to report a type profile in M2
i instead of a state. Hence, the

mechanism must take care of the difficulties in identifying the state from a type profile,
which we explain at the beginning of Section 4.1.

It is useful to compare the message space of our mechanism with that of the im-
plementing mechanism in Maskin (1999). In Maskin’s mechanism (see Maskin (1999,
p. 31)), each agent is asked to report a preference profile and an integer, as well as an
allocation. The allocation need not be specified in the case of SCFs, since there is no
ambiguity about the socially desirable outcome assigned to each state. In contrast, we
ask each agent to report a preference/type profile and a type. The type component of
the message space plays the role of an integer in Maskin’s mechanism in knocking out
unwanted equilibria, albeit in a different manner. As the integer game admits no equi-
librium when there is disagreement over most preferred outcomes, it is used to assure
that undesirable message profiles do not form an equilibrium. However, the logic of
that argument no longer works when the goal is to achieve implementation in mixed-
strategy Nash equilibria by a finite mechanism. Indeed, there is no a priori way to rule
out any message profile because any of them might be played with positive probability
in a mixed-strategy Nash equilibrium.

By making use of the type component m1
i in the message space, we appeal to the

approach of Abreu and Matsushima (1992, 1994) to resolve the issue. More precisely,
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we design the mechanism so that when an unwanted message profile is triggered in
equilibrium, the type report m1

i must coincide with agent i’s preference under the true
state. Through the cross-checking of the preferences and preference profiles reported
by the agents (in a similar manner to Abreu and Matsushima (1992, 1994)), it further
implies that the unwanted message profile could not have happened. Unlike Abreu and
Matsushima (1992, 1994), however, to ensure that m1

i is truthful, we must guarantee
that the designer’s twin goals of allowing for whistle-blowing/challenges (as in Maskin
(1999)) and eliciting the truth (from the dictator lotteries, as in Abreu and Matsushima
(1992, 1994)) can be aligned perfectly. It is achieved through Lemmas 1 and 2: since
truth-telling is weakly optimal for the former and strictly optimal for the latter, we can
make the truth-telling in m1

i strictly optimal by taking a convex combination of the best
challenge scheme and dictator lotteries. Hence, Maskin meets Abreu and Matsushima.
We formalize the idea in Section 4.1.4.

4.1.4 Outcome function For each message profile m ∈ M , the allocation is determined
as follows:

g(m) = 1
I(I − 1)

∑
i∈I

∑
j �=i

[
ei,j(mi, mj )

(
1
2

∑
k=i,j

yk
(
m1

k

)) ⊕ (
1 − ei,j(mi, mj )

)
x
(
m2

i , m1
j

)]
,

where {yk(·)} are the dictator lotteries for agent k obtained from Lemma 2, and αx⊕ (1−
α)x′ denotes the outcome, which corresponds to the compound lottery that outcome x

occurs with probability α, and outcome x′ occurs with probability 1 − α;7 moreover, we
define

ei,j(mi, mj ) =

⎧⎪⎪⎨
⎪⎪⎩

0, if m2
i ∈ �, m2

i = m2
j , and x

(
m2

i , m1
j

) = f
(
m2

i

)
;

ε, if m2
i ∈ �, and

[
m2

i �=m2
j or x

(
m2

i , m1
j

) �= f
(
m2

i

)]
;

1, if m2
i /∈ �.

To explain the outcome function, hereafter we say that the second reports of agent i and
agent j are consistent if m2

i = m2
j and the common type profile identifies a state in �;

moreover, we say that agent j does not challenge agent i if x(m2
i , m1

j ) = f (m2
i ).

In words, the designer first chooses an ordered pair of distinct agents (i, j) with equal
probability. The outcome function distinguishes three cases: (1) if the second reports
of agent i and agent j are consistent and agent j does not challenge agent i, then we
implement f (m2

i ); (2) if agent i reports a type profile which does not identify a state in �,
then we implement the dictator lottery 1

2

∑
k=i,j yk(m1

k );8 (3) otherwise, we implement
the compound lottery:

Cε
i,j(mi, mj ) ≡ ε

(
1
2

∑
k=i,j

yk
(
m1

k

)) ⊕ (1 − ε)x
(
m2

i , m1
j

)
.

7More precisely, if x = (�, (ti )i∈I ) and x′ = (�′, (t ′i )i∈I ) are two outcomes in X , we identify αx⊕ (1 − α)x′
with the outcome (α� ⊕ (1 − α)�′, (αti + (1 − α)t ′i )i∈I ). For simplicity, we also write the compound lottery
1
2 yi(m

1
i ) ⊕ 1

2 yj(m
1
j ) as 1

2

∑
k=i,j yk(m1

k ).
8Observe that we make the first report of both agents i and j effective (through affecting the compound

lottery 1
2

∑
k=i,j yk(m1

k )), regardless of whether pair (i, j) or pair (j, i) is picked. The construction will be
used in proving Claim 1, which in turn, is used to prove Claim 4.
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Note that Cε
i,j(mi, mj ) is an (ε, 1 − ε)-combination of (i) the two dictator lotteries—

yi(m1
i ) and yj(m1

j )—which occur with equal probability and (ii) the allocation specified

by the best challenge scheme x(m2
i , m1

j ).

By (4), we can choose ε > 0 sufficiently small, and η> 0 sufficiently large9 such that
first, we have

η> sup
i∈I ,θi∈�i ,m,m′∈M

∣∣ui(g(m), θi
) − ui

(
g
(
m′), θi

)∣∣; (7)

second, it does not disturb the “effectiveness” of agent j’s challenge: due to (6), we can
have

x
(
m2

i , m1
j

) �= f
(
m2

i

)
⇒ uj

(
Cε
i,j(mi, mj ), m2

i,j

)
< uj

(
f
(
m2

i

)
, m2

i,j

)
and

uj
(
Cε
i,j(mi, mj ), m1

j

)
> uj

(
f
(
m2

i

)
, m1

j

)
. (8)

It means that whenever agent j challenges agent i, the lottery Cε
i,j(mi, mj ) is strictly

worse than f (m2
i ) for agent j when agent i tells the truth about agent j’s preference in

m2
i ; moreover, the lottery Cε

i,j(mi, mj ) is strictly better than f (m2
i ) for agent j when agent

j tells the truth in m1
j , which implies that agent i tells a lie about agent j’s preference.

4.1.5 Transfer rule We now define the transfer rule. For every message profile m ∈ M

and every agent i ∈ I , we specify the transfer received by agent i as follows:

τi(m) =
∑
j �=i

[
τ1
i,j(mi, mj ) + τ2

i,j(mi, mj )
]
,

where for each agent j �= i, we define

τ1
i,j(mi, mj ) =

⎧⎪⎪⎨
⎪⎪⎩

0, if m2
i,j =m2

j,j ;

−η, if m2
i,j �=m2

j,j and m2
i,j �= m1

j ;

η, if m2
i,j �=m2

j,j and m2
i,j = m1

j ,

(9)

τ2
i,j(mi, mj ) =

{
0, if m2

i,i =m2
j,i;

−η, if m2
i,i �=m2

j,i.
(10)

Recall that η> 0 is chosen to be larger than the maximal utility difference from the out-
come function g(·); see (7).

In words, for each pair of agents (i, j), if their second reports on agent j’s type coin-
cide (m2

ij = m2
jj), then no transfer will be made; if their second reports on agent j’s type

differ (m2
ij �= m2

jj), then we consider the following two subcases: (i) if agent i’s second re-

port about agent j’s type matches agent j’s first report (m2
i,j = m1

j ), then agent j pays η

9Instead of using η′ defined in (4), we choose η because the mechanism may produce a strictly larger

finite set of alternatives than those contained in X̃ . For instance, allocations from the dictator lotteries may
occur from the mechanism but are not contained in X̃ .
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to agent i; (ii) if agent i’s second report about agent j’s type does not match agent j’s first
report (m2

i,j �= m1
j ), then both agents pay η to the designer. Note that the first report m1

i

does not affect the transfer to agent i.

4.2 Proof of Theorem 1

As we argue in Section 3.3, Maskin monotonicity is a necessary condition for Nash im-
plementation. We therefore focus on the “if” part of the proof. Fix an arbitrary true
state θ throughout the proof. Recall that θi stands for agent i’s type at state θ and (θi )i∈I
denotes the true type profile.

We argue that the truth-telling message profile m (i.e., mi = (θi, θ) for each agent i)
constitutes a pure-strategy Nash equilibrium. Since m is truthful, for all agents i and
j, we have ei,j(mi, mj ) = 0 and τi(m) = 0 (consistency and no challenge). Consider a
possible deviation m̃i of agent i from m. First, if m̃2

i,j = θ′
j �= θj for some j ∈ I , then the

message profile (m̃i, m−i ) induces the penalty of η from rule τ1
i,j(·) if j �= i, and rule τ2

i,j(·)
if j = i. As a result, m̃i is strictly worse against m−i than m−i.

Second, if m̃1
i �= θi and m̃2

i = θ, (m̃i, m−i ) leads either to x(θ, m̃1
i ) = f (θ) and thereby

the same payoff, or to x(θ, m̃1
i ) �= f (θ). In the latter case, the message profile (m̃i, m−i )

results in the outcome Cε
i,j(m̃i, mj ), which by (8), is strictly worse than f (θ) induced

by m. Furthermore, deviating from mi to m̃i does not affect the transfer of agent i. There-
fore, the truth-telling message profile m constitutes a pure-strategy Nash equilibrium.

We next show that for every Nash equilibrium σ of the game �(M, θ) and every mes-
sage profile m reported with positive probability under σ , we must achieve the socially
desirable outcome, that is, g(m) = f (θ) and τi(m) = 0 for every agent i. The proof is
divided into three steps.

Step 1 (Contagion of truth). If agent j announces his type truthfully in his first report
with probability one, then everyone must also report agent j’s type truthfully in their
second report.

Step 2 (Consistency). Every agent reports the same state θ̃ in the second report.

Step 3 (No challenge). No agent challenges the common reported state θ̃, that is,
x(θ̃, m1

j ) = f (θ̃) for every agent j ∈ I .

Consistency implies that τi(m) = 0 for every agent i ∈ I , whereas no challenge to-
gether with Maskin monotonicity of the SCF f implies that g(m) = f (θ̃) = f (θ). It com-
pletes the proof of Theorem 1. We now proceed to establish these three steps. In the
rest of the proof, we fix σ as an arbitrary mixed-strategy Nash equilibrium of the game
�(M, θ).

As a consequence of Lemmas 1 and 2, the mechanism has the following crucial prop-
erty, which we will make use of in establishing the implementation.

Claim 1. Let σ be a Nash equilibrium of the game �(M, θ). If m1
i �= θi for some

mi ∈ supp(σi ), then for every agent j �= i, we have ei,j(mi, mj ) = ej,i(mj , mi ) = 0 with σj-
probability one.



Theoretical Economics 17 (2022) Maskin meets Abreu and Matsushima 1695

The claim essentially follows from Lemmas 1 and 2. Indeed, the two lemmas to-
gether imply that agents must have a strict incentive to tell the truth in their first report,
as long as switching from a lie to truth affects the allocation with positive probability.
A detailed verification of the claim, however, is tedious, as it involves checking differ-
ent cases of the value of functions ei,j(·) and ej,i(·). We relegate its formal proof to Ap-
pendix A.4.

Step 1: Contagion of truth

Claim 2. The following two statements hold:

(a) If agent j sends a truthful first report with σj-probability one, then every agent i �= j

must report agent j’s type truthfully in his second report with σi-probability one.

(b) If every agent i �= j reports the same type θ̃j of agent j in his second report with σi-
probability one, then agent j must also report the type θ̃j in his second report with
σj-probability one.

Proof. We first prove (a). Suppose instead that there exist some agent i ∈ I and some
message mi played with σi-positive probability such that mi misreports agent j’s type
in the second report, that is, m2

i,j �= θj . Let m̃i be a message that differs from mi only in

reporting j’s type truthfully m̃2
i,j = θj . Such a change affects only τ1

i,j(·). For every m−i

played with σ−i-positive probability, we consider the following two cases.

Case 1. m2
j,j = θj .

Since agent j sends a truthful first report with σj-probability one, due to the con-
struction of τ1

i,j(·), we have τ1
i,j(mi, m−i ) = −η whereas τ1

i,j(m̃i, m−i ) = 0.

Case 2. m2
j,j �= θj .

Since agent j sends a truthful type in the first report with σj-probability one, ac-
cording to the construction of τ1

i,j(·), we have τ1
i,j(mi, m−i ) is either 0 or −η whereas

τ1
i,j(m̃i, m−i ) = η.

Thus, in terms of transfers, the gain from reporting m̃i rather than mi is at least
η, which is larger than the maximal utility loss from the outcome function g(·) by (7).
Hence, m̃i is a profitable deviation from mi against σ−i. As it contradicts the hypothesis
that mi ∈ supp(σi ), we have established (a).

We now prove (b). Suppose, on the contrary, that there exists some message mj

played with σj-positive probability such that m2
j,j �= θ̃j . Let m̃j be a message that is iden-

tical to mj except that m̃2
j,j = θ̃j . Such a change affects only τ2

j,i(·). According to the

construction of τ2
j,i(·) and since every agent i �= j reports θ̃j in the second report with

σi-probability one, agent j saves the penalty of (I − 1)η from reporting m̃j instead of
mj . Again, since η is greater than the maximal utility difference by (7), we conclude
that m̃j is a profitable deviation from mj against σ−i. It contradicts the hypothesis that
mj ∈ supp(σj ). Hence, we prove (b).
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Step 2: Consistency Claim 3 shows that in equilibrium, all agents must announce the
same state θ̃ with probability one.

Claim 3. There exists a state θ̃ ∈ � such that every agent announces θ̃ in their second
report with probability one.

Proof. We consider the following two cases.

Case 1. Everyone tells the truth in the first report with probability one, that is, m1
i = θi

with σi-probability one for every agent i ∈ I .

It follows directly from Claim 2 that m2
i = θ with σi-probability one for every agent

i ∈ I .

Case 2. There exists agent i who tells a lie in the first report with σi-positive probability.

That is, there exists mi ∈ supp(σi ) such that m1
i �= θi. By Claim 1, (mi, m−i ) is consis-

tent with σ−i-probability one. In particular, there exists θ̃ ∈� such that every agent j �= i

must report

m2
j =m2

i = θ̃ with σj-probability one. (11)

Hence, by Claim 2(b), for every m̃i ∈ supp(σi ), we have

m̃2
i,i =m2

i,i = θ̃i. (12)

We now prove that for every m̃i ∈ supp(σi ), we have m̃2
i = m2

i = θ̃, which would complete
the proof. We prove it by contradiction, that is, suppose there exists m̃i ∈ supp(σi ) such
that

m̃2
i �=m2

i . (13)

Furthermore, (11) and (13) imply that for every agent j �= i, ej,i(mj , m̃i ) = ε with σj-
probability one. Hence, by Claim 1, every agent j �= i must tell the truth in the first report,
that is, m1

j = θj with σj-probability one. As a result, Claim 2(a) implies for every agent
j �= i,

m̃2
i,j =m2

i,j = θj with σi-probability one. (14)

Finally, (12) and (14) imply m̃2
i = m2

i , contradicting (13).

Step 3: No challenge By Claim 3, there exists a common state θ̃ ∈ � with σi-probability
one for every agent i ∈ I . We now show in Claim 4 that no one challenges the common
state θ̃.

Claim 4. No agent challenges with positive probability the common state θ̃ announced
in the second report.
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Proof. Suppose by way of contradiction that x(θ̃, m1
i ) �= f (θ̃) for some message mi ∈

supp(σi ). By Claim 3, we have x(m2
j , m1

i ) �= f (m2
j ) for every message mj ∈ supp(σj )

and every agent j �= i. It implies that ej,i(mj , mi ) = ε with σj-probability one for ev-
ery j �= i and mj ∈ supp(σj ). By Claim 1, we have m1

j = θj with σj-probability one

and m1
i = θi. Thus, we obtain x(θ̃, θi ) �= f (θ̃). By the construction of the best chal-

lenge scheme, we also have x(θ̃, θi ) ∈ Li(f (θ̃), θ̃i ) ∩ SU i(f (θ̃), θi ). Then, by (8), ev-
ery message m̄i with x(θ̃, m̄1

i ) = f (θ̃) cannot be a best response against σ−i. Indeed,
since x(θ̃, θi ) ∈ SU i(f (θ̃), θi ), it is a profitable deviation to replace m̄1

i by θi. Hence,
x(θ̃, m̃i ) �= f (θ̃) and ej,i(mj , m̃i ) = ε for every m̃i ∈ supp(σi ). Once again, by Claim 1,
we have m̃1

i = θi with σi-probability one. Therefore, every agent’s first report is truthful
with probability one. By Claim 2, we conclude that θ̃ = θ. Since x(θ̃, θi ) �= f (θ̃), it fol-
lows that x(θ̃, θi ) belongs to the empty intersection Li(f (θ), θi ) ∩SU i(f (θ), θi ), which is
impossible.

4.3 Implementation in a direct mechanism

In this section, we present two special cases in which our implementing mechanism
can be made into a direct mechanism. Both cases require three or more agents. A direct
(revelation) mechanism is a mechanism ((Mi ), g, (τi ))i∈I in which (i) agents are asked
to report the state (i.e., Mi = � for every agent i), and (ii) a unanimous report leads to
the socially desirable outcome with no transfers (i.e., g(θ, � � � , θ) = f (θ), and τi(θ) = 0,
for every i ∈ I and θ ∈ �). Our notion of direct mechanism is adopted in, for example,
Dutta and Sen (1991) and Osborne and Rubinstein (1994, Definition 179.2) both of which
ask each agent to report a state.

Although direct mechanisms invoke a simpler message space than the augmented
mechanisms used in the full implementation literature, the literature on partial imple-
mentation has attempted to construct mechanisms that are simpler or easier to imple-
ment than direct mechanisms, allowing lotteries and transfers. See, for example, Das-
gupta and Maskin (2000) and Perry and Reny (2002). While our result complements
these papers, our main focus is to study full implementation in mixed-strategy Nash
equilibrium without making use of integer or modulo games.

The first case shows that every Maskin-monotonic SCF is (fully) implementable in
pure-strategy Nash equilibria in a direct mechanism. Pure-strategy Nash implementa-
tion means that we only require that each pure-strategy Nash equilibrium achieve de-
sirable outcomes, that is, condition (ii) of Definition 1 holds only for pure-strategy Nash
equilibria. Indeed, one might expect that by penalizing disagreement with transfers,
the designer can easily obtain a unanimous state announcement without using inte-
ger/modulo games. Once there is a unanimous state announcement in equilibrium,
Maskin monotonicity will ensure implementation, as it does in Maskin (1999). The fol-
lowing proposition formalizes the idea; see Appendix A.2 for a proof.

Proposition 1. Suppose that there are at least three agents and the SCF f satisfies
Maskin monotonicity. Then f is implementable in pure-strategy Nash equilibria by a
direct mechanism.
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The idea of “penalizing disagreement” becomes problematic once we consider
mixed-strategy equilibria. Indeed, the direct mechanism, which we construct in proving
Proposition 1 is reminiscent of modulo games, which as is well known, admit unwanted
mixed-strategy equilibria. Thus, it should come at no surprise that the direct mecha-
nism also admits unwanted mixed-strategy equilibria.

The second case establishes (full) mixed-strategy Nash implementation in direct
mechanisms by considering a state space of a “product form,” that is, � =×I

i=1 �i. We
state the following result and relegate its proof to Appendix A.3.

Proposition 2. Suppose that there are at least three agents, �=×I
i=1 �i, and the SCF f

satisfies Maskin monotonicity. Then f is implementable in mixed-strategy Nash equilib-
ria by a direct mechanism.

Proposition 2 represents an extreme case in which mixed-strategy Nash implemen-
tation can be achieved in a direct mechanism. Product state space naturally arises in a
Bayesian setup with a full-support common prior. While such a full-support prior is pre-
cluded by the complete-information assumption, it is consistent with “almost complete
information,” which we will introduce in Section 5.1.

4.4 Implementation without off-the-equilibrium transfers

The following example illustrates the fact that without any domain restriction such as
quasilinear preferences with transfers, some Maskin-monotonic SCF cannot be imple-
mented by mixed-strategy Nash equilibria in finite mechanisms.

Example 1 (Example 4 of Jackson (1992)). Consider the environment with two agents
1 and 2. Suppose that there are four alternatives a, b, c, and d and two states θ and θ′.
Suppose that agent 1 has the state-independent preference a �1 b �1 c ∼1 d, and agent
2 has the preference a �θ

2 b �θ
2 d �θ

2 c at state θ and preference b �θ′
2 a �θ′

2 c ∼θ′
2 d at state

θ′. Consider the SCF f such that f (θ) = a and f (θ′ ) = c. ♦

With no restrictions on agents’ preferences, Jackson (1992) shows that for every fi-
nite mechanism, which implements f in pure-strategy Nash equilibria, there must also
exist a “bad” mixed-strategy Nash equilibrium such that at state θ′ the equilibrium out-
come differs from c with positive probability.10 Since f satisfies Maskin monotonicity,
the example shows that without imposing any domain restrictions on the environment,

10We briefly recap the argument here. Let M be a finite mechanism, which implements the SCF f in
pure-strategy Nash equilibria. Consider a mechanism, which restricts the message space of M such that,
against any message of agent i, the opponent agent j can choose a message that induces either outcome a

or b. The restricted set of messages is nonempty since the equilibrium message profile at state θ leads to
outcome a. It follows that at state θ′, the game induced by the restricted mechanism must have a mixed-
strategy Nash equilibrium. Moreover, the equilibrium outcome must be a or b with positive probability;
otherwise, agent 2 can deviate to induce outcome a or b with positive probability. Since c and d are ranked
lowest by both agents at state θ′, the mixed-strategy equilibrium must remain an equilibrium at state θ′ in
the game induced by M; moreover, the equilibrium fails to achieve f (θ′ ) = c.
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it is impossible to implement any Maskin-monotonic SCF in mixed-strategy equilibria
by a finite mechanism. However, regardless of the cardinal representation of the pref-
erences in Jackson’s example, the SCF f can actually be implemented in mixed-strategy
equilibria with arbitrarily small transfers off the equilibrium; for more discussion, see
Section 5.3 and in particular, footnote 16.

5. Extensions

We now establish several extensions of our main result (Theorem 1). In Section 5.1, we
show that the implementation result is robust to information perturbations. That is, we
establish that our implementation result remains valid in any incomplete-information
environment that is close to our complete-information benchmark. In Section 5.2, we
extend our result to the case of social choice correspondences (henceforth, SCCs). Sec-
tion 5.3 clarifies how the designer can modify the implementing mechanism to make
the size of transfers arbitrarily small. For the sake of clarity, we will not discuss any com-
bination of multiple extensions. For instance, we will study the case of SCCs only in
Section 5.2 but focus entirely on SCFs in the rest of the paper.

The extensions involve more technical details. Thus, we assume, in this section, that
the set A (of pure alternatives) is finite and relegate all the proofs to the Appendix.

5.1 Robustness to information perturbations

Chung and Ely (2003) and Aghion et al. (2012) consider a designer who not only wants all
equilibria of her mechanism to yield a desirable outcome under complete information,
but is also concerned about the possibility that agents may entertain small doubts about
the true state. They argue that such a designer should insist on implementing the SCF
in the closure of a solution concept as the amount of incomplete information about the
state vanishes. Chung and Ely (2003) adopt undominated Nash equilibrium and Aghion
et al. (2012) adopt subgame-perfect equilibrium as a solution concept in studying the
robustness issue.

To allow for information perturbations, suppose that the agents do not observe the
state directly but are informed of the state via signals. The set of agent i’s signals is de-
noted as Si, which is identified with �, that is, Si ≡ �.11 A signal profile is an element
s = (s1, � � � , sI ) ∈ S ≡×i∈I Si. When the realized signal profile is s, agent i observes only
his own signal si. Let sθi denote the signal which corresponds to state θ, and we write
sθ = (sθi )i∈I . State and signals are drawn from some prior distribution over �× S. In par-
ticular, complete information can be modeled as a prior μ such that μ(θ, s) = 0 when-
ever s �= sθ. Such a μ will be called a complete-information prior. We assume that for
each agent i, the marginal distribution on i’s signals places a strictly positive weight on
each of i’s signals, that is, margSiμ(si ) > 0 for every si ∈ Si, so that the posterior belief
given every signal is well-defined. For every prior ν, we also write ν(·|si ) for the condi-
tional distribution of ν on signal si.

11We adopt the formulation from Chung and Ely (2003) and Aghion et al. (2012). Our result holds for any
alternative formulation under which the (Bayesian) Nash equilibrium correspondence has a closed graph.
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The distance between two priors is measured by the uniform metric. That is, for
every two priors μ and ν, we have d(μ, ν) ≡ maxθ,s |μ(θ, s) − ν(θ, s)|. Write νε → μ if
d(νε, μ) → 0 as ε → 0. A prior ν together with a mechanism M = ((Mi, τi )i∈I , g) induces
an incomplete-information game, which we denote by �(M, ν). A (mixed-)strategy of
agent i is now a mapping σi : Si → �(Mi ).

The designer may resort to a solution concept E for the game �(M, ν) (such as
Bayesian Nash equilibrium), which induces a set of mappings from �×S to X , which we
call acts, following Chung and Ely (2003). For instance, each Bayesian Nash equilibrium
σ induces the act ασ with ασ (θ, s) ≡ σ(s) ◦ (g, (τi )i∈I )−1, where we abuse the notation
to identify the finite-support distribution σ(s) ◦ (g, (τi )i∈I )−1 on X with an allocation in
X . We denote the set of acts induced by the solution concept E as E(M, ν). We endow
X with a topology with respect to which the utility function ui is continuous on X .12 We
now define E-implementation.

Definition 3. An SCF f is E-implementable under the complete-information prior μ if
there exists a mechanism M = ((Mi ), g, (τi ))i∈I such that for every (θ, s) ∈ supp(μ) and
every sequence of priors {νn} converging to μ, the following two requirements hold: (i)
there is a sequence of acts {αn} with αn ∈ E(M, νn ) such that αn(θ, s) → f (θ) and (ii) for
every sequence of acts {αn} with αn ∈ E(M, νn ), we have αn(θ, s) → f (θ).

Chung and Ely (2003) and Aghion et al. (2012) show that Maskin monotonicity is a
necessary condition for UNE-implementation and SPE-implementation, respectively.13

The result of Chung and Ely (2003) implies that implementation of a non-Maskin-
monotonic SCF in undominated Nash equilibria such as the result in Abreu and Mat-
sushima (1994) is necessarily vulnerable to information perturbations. Moreover, both
Chung and Ely (2003, Theorem 2) and Aghion et al. (2012) establish the sufficiency re-
sult by using an infinite mechanism with an integer game and restricting attention to
pure-strategy equilibria. It raises the question as to whether their robustness test may
be too demanding when it is applied to finite mechanisms where mixed-strategy equi-
libria have to be taken seriously. In particular the implementing mechanism of Jackson,
Palfrey, and Srivastava (1994), that of Abreu and Matsushima (1994), or the simple mech-
anism in Section 5 of Moore and Repullo (1988) are considered examples of such finite
mechanisms.

The canonical mechanism, which we propose in the proof of Theorem 1 is indeed fi-
nite, and we show that our finite mechanism implements every Maskin-monotonic SCF
in mixed-strategy Nash equilibria. Since the solution concept of Bayesian Nash equilib-
rium, viewed as a correspondence on priors, has a closed graph, that finite mechanism
also achieves NE-implementation. We now obtain the following result as a corollary of
Theorem 1 in our setup with lotteries and transfers.

12For instance, it is the case if A is a (Hausdorff) topological space, vi(a, θ) is bounded and continuous
in a, and �(A) is endowed with the weak∗-topology. Then X ≡ �(A) × RI , endowed with the product
topology, is also a Hausdorff topological space.

13Aghion et al. (2012) adopt sequential equilibrium as the solution concept for the incomplete-
information game �(M, ν).
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Proposition 3. Let E be a solution concept such that ∅ �= E(M, μ) ⊆ NE(M, μ) for each
finite mechanism M and a complete-information prior μ. Then every Maskin-monotonic
SCF f is E-implementable.

The condition ∅ �= E(M, μ) ⊆ NE(M, μ) is satisfied for virtually every refinement of
Nash equilibrium, because we allow for mixed-strategy equilibria and �(M, μ) is a finite
game.

5.2 Social choice correspondences

A large portion of the implementation literature strives to deal with social choice corre-
spondences (hereafter, SCCs), that is, multivalued social choice rules. In this section, we
extend our Nash implementation result to cover the case of SCCs. We suppose that the
designer’s objective is specified by an SCC F : �⇒X ; and for simplicity, we assume that
F(θ) is a finite set for each state θ ∈ �. It includes the special case where the codomain
of F is A. Following Maskin (1999), we first define the notion of Nash implementation
for an SCC.

Definition 4. An SCC F is implementable in mixed-strategy Nash equilibria by a finite
mechanism if there exists a mechanism M = ((Mi, τi )i∈I , g) such that for every state
θ ∈ �, the following two conditions are satisfied: (i) for every x ∈ F(θ), there exists a
pure-strategy Nash equilibrium m in the game �(M, θ) with g(m) = x and τi(m) = 0 for
every agent i ∈ I and (ii) for every m ∈ supp(NE(�(M, θ))), we have supp(g(m)) ⊆ F(θ)
and τi(m) = 0 for every agent i ∈ I .

Second, we state the definition of Maskin monotonicity for an SCC.

Definition 5. An SCC F satisfies Maskin monotonicity if for each pair of states θ̃ and θ

and z ∈ F(θ̃)\F(θ), some agent i ∈ I and some allocation z′ ∈X exist such that

ũi
(
z′, θ̃

) ≤ ũi(z, θ̃) and ũi
(
z′, θ

)
> ũi(z, θ).

We now state our Nash implementation result for SCCs and relegate the proof to
Appendix A.5.14

Theorem 2. Suppose there are at least three agents. An SCC F is implementable in
mixed-strategy Nash equilibria by a finite mechanism if and only if it satisfies Maskin
monotonicity.

Compared with Theorem 1 for SCFs, Theorem 2 needs to overcome additional diffi-
culties. In the case of SCFs, when the agents’ second reports are consistent at a common
state θ̃, they will be associated with a single outcome f (θ̃). Hence, if agent i’s second

14When there are only two agents, we can still show that every Maskin-monotonic SCC F is weakly imple-
mentable in Nash equilibria, that is, there exists a mechanism, which has a pure-strategy Nash equilibrium
and satisfies requirement (ii) in Definition 4.
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report is challenged, then every second report, which is played with positive probability
by any agent, must also be challenged in equilibrium. Together with Claim 1, it implies
that every agent must tell the truth in their first and second report, which leads to a
contradiction in the proof of Claim 4.

In the case of SCCs, each allocation x ∈ F(θ) has to be implemented as the outcome
of some pure-strategy equilibrium. Hence, each agent must also report an allocation to
be implemented. It also follows that a challenge scheme for an SCC must be defined
for a type θi to challenge a pair (θ̃, x) with x ∈ F(θ̃). As a result, even when the agents’
second reports are consistent at state θ̃ (which still holds by Claim 3), they might still
be randomizing between two allocations x and x′ in F(θ̃) such that (θ̃, x) is challenged
and yet (θ̃, x′ ) is not. Hence, we cannot follow a similar argument as in Claim 1 to derive
a contradiction. Instead, we build on the implementing mechanism in Section 4.1 and
show that agent i will not report (θ̃, x), which can be challenged either by (i) agent j �= i

or by (ii) agent i himself. We deal with Case (i) by imposing a large penalty on agent i
conditional on agent j’s challenging (θ̃, x), whereas we deal with Case (ii) by allowing
agent i to challenge himself without having to pay the penalty.

Remark. Mezzetti and Renou (2012b) also consider deterministic SCCs in a separa-
ble environment studied in Jackson, Palfrey, and Srivastava (1994). Mezzetti and Re-
nou (2012b) identify a condition (which they call top-D inclusiveness) under which an
SCC is implementable in mixed-strategy Nash equilibria in finite mechanisms if and
only if it satisfies set-monotonicity (proposed by Mezzetti and Renou (2012a)). There
are several differences between our Theorem 2 and their result. First, Mezzetti and Re-
nou (2012b) require only the existence of mixed-strategy equilibria but we follow Maskin
(1999) in requiring the existence of pure-strategy equilibria in part (i) of Definition 4.
Second, Mezzetti and Renou (2012b) consider an ordinal setting, while we consider a
cardinal setting. These two features of Mezzetti and Renou (2012b) are the reason why
they use set-monotonicity as a necessary condition for characterizing their ordinal Nash
implementation.15 Third, our quasilinear environments with transfers are more restric-
tive than the separable environments considered by Mezzetti and Renou (2012b). Fi-
nally, Mezzetti and Renou (2012b) need “top D-inclusiveness” as an additional condi-
tion, which requires that there exist at least one agent for whom the SCC contains the
agent’s best outcome within the range of the SCC for every state of the world, whereas
we impose no conditions beyond Maskin monotonicity for the SCC.

5.3 Small transfers

One potential drawback of the mechanism we propose for Theorem 1 is that the size
of transfers may be large. To tackle the problem, we use the technique introduced by

15In Chen et al. (2022), we study the concept of ordinal Nash implementation proposed by Mezzetti and
Renou (2012a). The notion requires that the implementing mechanism achieve mixed-strategy Nash im-
plementation for every cardinal representation of preferences over lotteries. We show that ordinal almost
monotonicity, as defined in Sanver (2006), is a necessary and sufficient condition for ordinal Nash imple-
mentation.
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Abreu and Matsushima (1994) to show that if the SCF satisfies Maskin monotonicity in
the restricted domain without any transfer, then it is Nash-implementable with arbitrar-
ily small transfers.

We first propose a notion of Nash implementation with bounded transfers off the
equilibrium and still no transfers on the equilibrium.

Definition 6. An SCF f : � → �(A) is implementable in mixed-strategy Nash equi-
libria by a finite mechanism with transfers bounded by τ̄ if there exists a mechanism
M = ((Mi, τi )i∈I , g) such that for every state θ ∈ �, (i) there exists a pure-strategy Nash
equilibrium in the game �(M, θ) and (ii) for each m in supp(NE(�(M, θ))), we have
g(m) = f (θ) and τi(m) = 0 for every agent i ∈ I and (iii) |τi(m)| ≤ τ̄ for every m ∈ M and
every agent i ∈ I .

Next, we propose a notion of Nash implementation in which there are no transfers
on the equilibrium and only arbitrarily small transfers off the equilibrium.

Definition 7. An SCF f is implementable in mixed-strategy Nash equilibria by a fi-
nite mechanism with arbitrarily small transfers if, for every τ̄ > 0, the SCF f is imple-
mentable in Nash equilibria by a finite mechanism with transfers bounded by τ̄.

We say that an SCF f satisfies Maskin monotonicity in the restricted domain �(A)
if f (θ̃) �= f (θ) implies that there are an agent i and some lottery x(θ̃, θi ) in �(A) such
that x(θ̃, θi ) belongs to Li(f (θ̃), θ̃i ) ∩ SUi(f (θ̃), θi ). Here, for (�, θi ) ∈ �(A) ×�i, we use
Li(�, θi ) to denote the lower-contour set at allocation � in �(A) for type θi, that is,

Li(�, θi ) = {
�′ ∈ �(A) : vi(�, θ) ≥ vi

(
�′, θ

)}
.

In a similar fashion, SUi is defined. Clearly, Maskin monotonicity in the restricted do-
main �(A) is stronger than Maskin monotonicity in the domain X , as the former re-
quires that the test allocation be a lottery over alternatives without any transfer. In Ap-
pendix A.6, we assume there are at least three agents, and prove the following result.16

Theorem 3. Suppose there are at least three agents. An SCF fA : � → �(A) is imple-
mentable in mixed-strategy Nash equilibria by a finite mechanism with arbitrarily small
transfers if fA satisfies Maskin monotonicity in the restricted domain.

Appendix

In this Appendix, we provide the proofs omitted from the main body of the paper.

16In the case with only two agents, Theorem 3 still holds if there exists an alternative w ∈ A, which is the
worst alternative for any agent at any state. In that case, we can simply modify the “voting rule” φ in the
proof of Theorem 3 to be φ(mh ) = f (θ̃) if both agents announce a common type profile, which identifies a
state θ̃ in mh, and φ(mh ) = w otherwise. In particular, w = c in Example 4 of Jackson (1992), and thus the
SCF can be implemented with arbitrarily small transfers. Moreover, the conclusion holds regardless of the
utility representation of the agents’ preferences. However, note that we assume that agents have quasilinear
utilities while Jackson’s example does not make such an assumption.
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A.1 Proof of Lemma 1

First, we elaborate the proof of Lemma 1 here.

Proof. Consider a challenge scheme x̄(·, ·). First, we show that we can modify x̄(·, ·)
into a new challenge scheme x(·, ·) such that

x(θ̃, θi ) �= f (θ̃) and x
(
θ̃, θ′

i

) �= f (θ̃) ⇒ ui
(
x(θ̃, θi ), θi

) ≥ ui
(
x
(
θ̃, θ′

i

)
, θi

)
. (15)

To construct x(·, ·), for each player i, we distinguish two cases: (a) if x̄(θ̃, θi ) = f (θ̃) for
all θi ∈ �i, then set x(θ̃, θi ) = x̄(θ̃, θi ) = f (θ̃); (b) if x̄(θ̃, θi ) �= f (θ̃) for some θi ∈ �i, then
define x(θ̃, θi ) as the most preferred allocation of type θi in the finite set

X(θ̃) = {
x̄
(
θ̃, θ′

i

)
: θ′

i ∈�i and x̄
(
θ̃, θ′

i

) �= f (θ̃)
}

.

Since x̄(θ̃, θ′
i ) ∈ Li(f ((θ̃), θ̃i ), we have ui(x(θ̃, θi ), θ̃i ) ≤ ui(f (θ̃), θ̃i ); moreover, since

x(θ̃, θi ) as the most preferred allocation of type θi in X(θ̃) and x̄(θ̃, θi ) ∈ SU i(f (θ̃), θi ),
it follows that ui(x(θ̃, θi ), θi ) > ui(f (θ̃), θi ). In other words, x(·, ·) remains a challenge
scheme. Moreover, x(·, ·) satisfies (15) by construction.

Next, for each state θ̃ and type θi, we show that x(·, ·) satisfies (3). We proceed by
considering the following two cases. First, suppose that x(θ̃, θi ) �= f (θ̃). Then, by (15), it
suffices to consider type θ′

i with x(θ̃, θ′
i ) = f (θ̃). Since x(θ̃, θ′

i ) = f (θ̃) and x(θ̃, θi ) �= f (θ̃),
then it follows from x(θ̃, θi ) ∈ SU i(f (θ̃), θi ) that ui(x(θ̃, θi ), θi ) > ui(x(θ̃, θ′

i ), θi ). Hence,
(3) holds. Second, suppose that x(θ̃, θi ) = f (θ̃). Then it suffices to consider type θ′

i

with x(θ̃, θ′
i ) �= f (θ̃). Since x(θ̃, θi ) = f (θ̃), we have Li(f (θ̃), θ̃i ) ∩ SU i(f (θ̃), θi ) = ∅.

Moreover, x(θ̃, θ′
i ) �= f (θ̃) implies that x(θ̃, θ′

i ) ∈ Li(f (θ̃), θ̃i ). Hence, we must have
x(θ̃, θ′

i ) /∈ SU i(f (θ̃), θi ). That is, ui(x(θ̃, θi ), θi ) ≥ ui(x(θ̃, θ′
i ), θi ), that is, (3) holds.

A.2 Proof of Proposition 1

To facilitate the comparison with Maskin (1999), we assume that there are three or more
agents and define the following direct mechanism, denoted by MD, according to three
rules.

Rule 1. If there exists state θ̃ such that every agent announces θ̃, then implement the
outcome f (θ̃).

Rule 2. If there exists state θ̃ such that everyone except agent i announces θ̃ and agent
i announces θ̃′, then implement a test allocation x(θ̃, θ̃′

i ) for agent i and the ordered
pair of states (θ̃, θ̃′ ); and if there is no such test allocation, implement f (θ̃). Moreover,
charge agent i+1 (mod I) a large penalty 2η, where the scale η dominates any difference
in utility from allocation.

Rule 3. Otherwise, implement f (m1 ). Moreover, charge each agent i a penalty of η if i
reports a state which is not reported by the unique majority (i.e., {mi} �= arg maxθ̃ |{j ∈ I :
mj = θ̃}|).17

17Note that Rule 3 penalizes every agent by η, if each of them reports a different state.
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Now let the true state be θ.
It follows from Rule 2 that since θ is the true state, x(θ, θ̃′

i ) �= f (θ) implies that
x(θ, θ̃′

i ) ∈ Li(f (θ), θi ). Hence, everyone reporting the true state constitutes a pure-
strategy Nash equilibrium.

Now fix an arbitrary pure-strategy Nash equilibrium m. First, we claim that m cannot
trigger Rule 2. Suppose that Rule 2 is triggered, and let agent i be the odd man out. Then
agent i + 1 finds it strictly profitable to deviate to announce mi. After such a deviation,
since I ≥ 3, either Rule 3 is triggered or it remains in Rule 2, but agent i is no longer
the odd man out. Thus, agent i + 1 saves at least η (from paying 2η to paying η or 0).
Such a deviation may also change the allocation selected by the outcome function g(·),
which induces utility change less than η. Hence, agent i + 1 strictly prefers deviating to
announce mi, which contradicts the hypothesis that m is a Nash equilibrium.

Second, we claim that m cannot trigger Rule 3 either. Suppose that Rule 3 is trig-
gered. Pick an arbitrary state reported by some (not necessarily unique) majority of
agents, that is, θ̂ ∈ arg maxθ̃ |{j ∈ I : mj = θ̃}|. Let Iθ̂ be the set of agents who report θ̂.
Clearly, Iθ̂ � I , because Rule 3 (rather than Rule 1) is triggered. Then we can find an
agent i∗ ∈ Iθ̂ such that agent i∗ + 1 (mod I) is not in Iθ̂. Since agent i∗ + 1 does not be-
long to the unique majority, he must pay η under m. Then agent i∗ + 1 will strictly prefer
deviating to announce mi∗ = θ̂. After such a deviation, either Rule 3 is triggered, and
agent i∗ + 1 falls in the unique majority who reports θ̂; or Rule 2 is triggered, but agent
i∗ cannot be the odd man out. Thus, agent i∗ + 1 saves η (from paying η to paying 0)
and η′ is larger than the maximal utility change induced by different allocations in g(·).
The existence of profitable deviation of agent i∗ + 1 contradicts the hypothesis that m is
a Nash equilibrium.

Hence, we conclude that m must trigger Rule 1. It follows that f (θ̃) = f (θ). Other-
wise, by Maskin monotonicity, a whistle blower can deviate to trigger Rule 2.

A.3 Proof of Proposition 2

The proof is based on modifying the implementing mechanism and the proof of The-
orem 1. We only provide a sketch here. Set Mi = M1

i × M2
i where M1

i = �i and M2
i =×j �=i �j . Since I ≥ 3, the type of each agent is reported by at least two agents in their

second report. For each message profile m = (mi )Ii=1, denote by �̃(m) the set of state

induced from the agents’ second report, namely that θ̃ ∈ �̃(m) iff for every i ∈ I , we have
θ̃i =m2

j,i for some agent j �= i. Then we modify the outcome function:

g(m) = 1

I
∣∣�̃(m)

∣∣ ∑
i∈I

∑
θ̃∈�̃(m)

[
e(m)

1
I

∑
j∈I

yj
(
m1

j

) ⊕ (
1 − e(m)

)
x
(
θ̃, m1

i

)]

where e(m) = 0 if (i) �̃(m) contains a unique state (consistency) and (ii) x(θ̃, m1
i ) = f (θ̃)

for every agent i and every θ̃ ∈ �̃(m) (no challenge); otherwise, e(m) = ε.18 For the trans-
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fer rule, we define

τ̂1
i,j(mi, m−i ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if m2
i,j =m2

k,j for all k ∈ I\{i, j};

−η if m2
i,j �=m2

k,j for some k ∈ I\{i, j} and m2
i,j �= m1

j ;

η if m2
i,j �=m2

k,j for some k ∈ I\{i, j} and m2
i,j = m1

j .

Set τi(m) = ∑
j �=i τ̂

1
i,j(m). As the agents no longer report their own type in the second

report, we do not need to define τ2
i,j(·).

The proof of implementation follows the same steps as the proof of Theorem 1 and
we only highlight the difference. First, for the contagion of truth argument, we can only
establish Claim 2(a) because in the modified mechanism, the agents no longer report
their own type in the second report so that we do not have rule τ2

i,j(·). For the con-
sistency argument, it turns out that Claim 2(a) suffices. Specifically, consider an arbi-
trary message mi ∈ supp(σi ) such that m1

i �= θi. The same argument as in the proof of
Claim 3 implies that (mi, m−i ) is consistent for every m−i ∈ supp(σ−i ). To show that
(m̃i, m−i ) is consistent for any other m̃i ∈ supp(σi ), we make use of the assumption
that we have three or more agents. In particular, since (mi, m−i ) is consistent for every
m−i ∈ supp(σ−i ), if (m̃i, m−i ) is inconsistent, it must be m̃2

i,k �= m2
j,k for some j �= i, k �= i,

and k �= j. By Claim 1, agent k must report his true type with probability one. Then
it follows from Claim 2(a) that m̃2

i,k = m2
j,k with probability one and we have reached a

contradiction. The argument for no challenge remains the same.

A.4 Proof of Claim 1

Suppose that m1
i �= θi for some mi ∈ supp(σi ). Consider a message m̃i which differs from

mi only in sending a truthful first report, that is, m̃1
i = θi and m̃2

i = m2
i . We prove the claim

by showing that m̃i is always a weakly better response than mi against mj , and is strictly
better whenever the following condition does not hold: ei,j(mi, mj ) = ej,i(mj , mi ) = 0.
Recall that the first report of agent i has no effect on his own transfer.

We consider first the case that the designer uses agent j’s report to check agent i’s
report. In that situation, the first report of agent i has no effect on the function ei,j(·, mj )
for every mj . Hence, we have ei,j(m̃i, mj ) = ei,j(mi, mj ). Moreover, if m2

i /∈ �, then
ei,j(m̃i, mj ) = ei,j(mi, mj ) = 1; thus, by Lemma 2, m̃i is a strictly better response than
mi against mj . Hence, we may assume m2

i ∈� and consider the following two cases:

Case 1.1. ei,j(m̃i, mj ) = ei,j(mi, mj ) = ε.

It follows from Lemmas 2 and 1 that

ui
(
Cε
i,j(m̃i, mj ), θi

) − ui
(
Cε
i,j(mi, mj ), θi

)
> 0.

Hence, m̃i is a strictly better response than mi against mj .

18Here, we do not have the case with e(m) = 1 since �=×I

i=1 �i implies that �̃(m) ⊆ �.



Theoretical Economics 17 (2022) Maskin meets Abreu and Matsushima 1707

Case 1.2. ei,j(m̃i, mj ) = ei,j(mi, mj ) = 0.

Since m2
i = m̃2

i , both (mi, mj ) and (m̃i, mj ) lead to the same outcome x(m2
i , m1

j ) =
x(m̃2

i , m1
j ) = f (m2

i ).
Next, suppose that the designer uses agent i’s report to check agent j’s report. Again,

if m2
j /∈ �, then ej,i(mj , m̃i ) = ej,i(mj , mi ) = 1; thus, by Lemma 2, m̃i is a strictly better

response than mi against mj . Hence, we may assume m2
j ∈� and consider the following

four cases.

Case 2.1. ej,i(mj , mi ) = ε and ej,i(mj , m̃i ) = 0.

It follows from (6) and Lemma 1 that

ui
(
f
(
m2

j

)
, θi

) − ui
(
Cε
j,i(mj , mi ), θi

)
> 0,

where f (m2
j ) is the outcome induced by (mj , m̃i ).

Case 2.2. ej,i(mj , mi ) = 0 and ej,i(mj , m̃i ) = ε.

Since ej,i(mj , mi ) = 0, we have m2
i = m̃2

i = m2
j . Hence, ej,i(mj , m̃i ) = ε implies that

x(m2
j , m̃1

i ) = x(m2
j , θi ) �= f (m2

j ). Thus, it follows from (8) that

ui
(
Cε
j,i(mj , m̃i ), θi

) − ui
(
f
(
m2

j

)
, θi

)
> 0,

where f (m2
j ) is the outcome induced by (mj , mi ).

Case 2.3. ej,i(mj , mi ) = ej,i(m̃j , mi ) = ε.

It follows from Lemmas 1 and 2 that

ui
(
Cε
j,i(mj , m̃i ), θi

) − ui
(
Cε
j,i(mj , mi ), θi

)
> 0.

Case 2.4. ej,i(mj , mi ) = ej,i(m̃j , mi ) = 0.

Both (mj , mi ) and (mj , m̃i ) lead to the same outcome x(m2
j , m̃1

i ) = x(m2
j , m1

i ) =
f (m2

j ).
In sum, as long as ei,j(mi, mj ) = ε or ej,i(mj , mi ) = ε (Case 1.1 and Cases 2.1–2.3),

m̃i is a strictly better response than mi against mj . Hence, in order for m̃i not to be a
profitable deviation, we must have ei,j(mi, mj ) = ej,i(mj , mi ) = 0.

A.5 Proof of Theorem 2

We first extend the notion of a challenge scheme for an SCC. Fix agent i of type θi. For
each state θ̃ ∈ � and z ∈ F(θ̃), if Li(z, θ̃i ) ∩ SU i(z, θi ) �= ∅, we select some x(θ̃, z, θi ) ∈
Li(z, θ̃i ) ∩ SU i(z, θi ); otherwise, we set x(θ̃, z, θi ) = z. In the sequel, we define F(�) ≡⋃

θ∈� F(θ). Observe that F(�) is a finite set, since each F(θ) is assumed to be finite.
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As in the case of SCFs, the following lemma shows that there is a challenge scheme
under which truth-telling induces the best allocation. In addition, we choose the chal-
lenge scheme in such a way that for every agent i, type θi, and state θ̃ under which
the challenge is effective (i.e., x(θ̃, z, θi ) �= z), no type θ′′

i ∈ �i is indifferent between
x(θ̃, z, θi ) and any allocation z′ in F(�).

Lemma 3. For any SCC F , there is a challenge scheme {x(θ̃, z, θi )}i∈I , θ̃∈�,z∈F(θ̃),θi∈�i
such

that for every i ∈ I , θ̃ ∈�, z ∈ F(θ̃), and θi ∈�i,

ui
(
x(θ̃, z, θi ), θi

) ≥ ui
(
x
(
θ̃, z, θ′

i

)
, θi

)
, ∀θ′

i ∈�i; (16)

moreover, whenever, x(θ̃, z, θi ) �= z, we have

ui
(
x(θ̃, z, θi ), θ′′

i

) �= ui
(
z′, θ′′

i

)
, ∀θ′′

i ∈�i, ∀z′ ∈ F(�). (17)

Proof. We first prove (17) by constructing a challenge scheme {x(θ̃, z, θi )}. Fix agent
i of type θi. For each state θ̃ ∈ � and z ∈ F(θ̃), if Li(z, θ̃i ) ∩ SU i(z, θi ) = ∅, we let
x(θ̃, z, θi ) = z; otherwise, we define

S(i, z, θ̃, θ) = {
z′′ ∈X : ui

(
z′′, θ̃i

)
< ui(z, θ̃i ) and ui

(
z′′, θi

)
> ui(z, θi )

}
.

Observe that S(i, z, θ̃, θ) is a nonempty open set, since we can add a small penalty to
agent i with an allocation in Li(z, θ̃i ) ∩ SU i(z, θi ). Now consider

S∗(i, z, θ̃, θ)

≡ S(i, z, θ̃, θ)�
⋃

θ′′
i ∈�i

⋃
z′∈F(�)

{
z′′ ∈X : ui

(
z′′, θ′′

i

) = ui
(
z′, θ′′

i

)}
.

Thanks to the finiteness of F(�) and �i, S∗(i, z, θ̃, θ) remains a nonempty open set after
we delete finitely many closed sets {z′′ ∈ X : ui(z′′, θ′′

i ) = ui(z′, θ′′
i )}, one for each θ′′

i ∈ �i

and z′ ∈ F(�). Now we choose an element x(θ̃, z, θi ) ∈ S∗(i, z, θ̃, θ). Hence, we obtain
(17). The proof of (16) is completed once we apply the proof of Lemma 1 to the challenge
scheme {x(θ̃, z, θi )}i∈I , θ̃∈�,z∈F(θ̃),θi∈�i

.

Next, we propose a mechanism M = ((Mi ), g, (τi ))i∈I , which will be used to prove
the if-part of Theorem 2. First, a generic message of agent i is described as follows:

mi =
(
m1

i , m2
i , m3

i

) ∈Mi = M1
i ×M2

i ×M3
i = �i ×

[ I×
j=1

�j

] × F(�) such that

m2
i ∈� ⇒ m3

i ∈ F
(
m2

i

)
.

That is, agent i is asked to announce (1) agent i’s own type (which we denote by m1
i ); (2) a

type profile (which we denote by m2
i ); (3) an allocation m3

i such that m3
i ∈ F(m2

i ) if m2
i is

a state. As we do in the case of SCFs, we write m2
i,j = θ̃j if agent i reports in m2

i that agent
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j’s type is θ̃j . Likewise, since F is Maskin-monotonic, we have F(θ) = F(θ̃) if θ̃i = θi for
every i; hence, for m2

i ∈�, F(m2
i ) is uniquely defined as F(θ̃) such that θ̃j =m2

i,j for all j.
We define φ(m) as follows: for each m ∈M ,

φ(m) =
{
x, if

∣∣{i ∈ I : m3
i = x

}∣∣ ≥ I − 1;

m3
1, otherwise.

We say that φ(m) is an effective allocation under m. In words, the effective allocation is
x, if there are I − 1 players who agree on allocation x; otherwise, the effective allocation
is the allocation announced by agent 1.

The allocation rule g is defined as follows: for each m ∈M ,

g(m) = 1

I2

∑
i∈I

∑
j∈I

[
ei,j(m)

1
I

∑
k∈I

yk
(
m1

k

) ⊕ (
1 − ei,j(m)

)
x
(
θ̃, φ(m), m1

j

)]
,

where {yk(θk )}θk∈�k
are the dictator lotteries for agent k as defined in Lemma 2. Given

a message profile m, and a pair of agents i and j, we say that agent j challenges agent i if
and only if m3

i =φ(m) and x(m2
i , φ(m), m1

j ) �= φ(m), that is, agent i’s reported allocation
is an effective one and agent j challenges this effective allocation. We define the ei,j-
function as follows: for each m ∈M ,

ei,j(m) =

⎧⎪⎪⎨
⎪⎪⎩

0, if m2
i ∈ �, m2

i = m2
j , and agent j does not challenge agent i;

ε, if m2
i ∈ �, and

[
m2

i �= m2
j or agent j challenges agent i

]
;

1, if m2
i /∈ �.

Recall that the ei,j-function in Section 4.1.4 for the case of SCFs only depends on mi

and mj . In contrast, the ei,j-function here depends on the entire message profile, as the
nature of the challenge also depends on whether the allocation reported by agent i is an
effective allocation or not.

Fix i, j ∈ I , ε ∈ (0, 1), and m ∈M . Then we define

Cε
i,j(m) ≡ ε× 1

I

∑
k∈I

yk
(
m1

k

) ⊕ (1 − ε) × x
(
m2

i , φ(m), m1
j

)
.

For every message profile m and agent j, we can choose ε > 0 sufficiently small such that
(i) Cε

i,j(m) does not disturb the “effectiveness” of agent j’s challenge, that is,

x
(
m2

i , φ(m), m1
j

) �=φ(m)

⇒ uj
(
Cε
i,j(m), m2

i,j

)
< uj

(
φ(m), m2

i,j

)
and uj

(
Cε
i,j(m), m1

j

)
> uj

(
φ(m), m1

j

)
; (18)

moreover, (ii) an “effective self-challenge” of agent j induces a generic outcome such
that at each state, no agent is indifferent between the resulting outcome and any out-
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come in F(�), that is,

x
(
m2

j , φ(m), m1
j

) �= φ(m)

⇒ uj
(
Cε
j,j(m), θj

) �= uj(x, θj )

for any θ and any x ∈ F(�). (19)

Observe that property (ii) can be made satisfied because inequality (17) holds in
Lemma 3; moreover, by (6) in Lemma 2, uj(Cε

j,j(m), θj ) is a strictly decreasing function
in ε.

The transfer to agent i is specified as follows: for each m ∈M ,

τi(m) =
∑
j �=i

[
τ̄1
i,j(m) + τ̄2

i,j(m) + τ3
i,j(m)

]

where we set τ̄1
i,j(m) = 2τ1

i,j(m) and τ̄2
i,j(m) = 2τ2

i,j(m), while τ1
i,j(m) and τ2

i,j(m) are de-

fined as in Section 4.1.5; moreover, we specify τ3
i,j(m) as follows: for each m ∈M ,

τ3
i,j(m) =

{
−η, if agent j challenges agent i,

0, otherwise.

That is, agent i is asked to pay η if his reported outcome m3
i is challenged by agent j �= i.

Note that we still require that η be greater than the maximal payoff difference, which is
guaranteed by (7) in Section 4.1.5.

In the rest of the proof of Theorem 2, we fix θ as the true state and σ as a (possibly
mixed strategy) Nash equilibrium of the game �(M, θ) throughout.

To prove Theorem 2, we use a stronger statement than Claim 1 since each agent i’s
dictator lotteries are triggered whenever there is an agent j and an agent k (whether
k = j or k �= j) such that ej,k(mj , mk ) = ε. The proof of this stronger claim is identical to
the proof of Case 1.1 in Claim 1.

Claim 5. If m1
i �= θi for some mi ∈ supp(σi ), then we have ej,k(mi, m−i ) = 0 for every

m−i ∈ supp(σ−i ) and every pair of agent(s) j, k ∈ I .

We now observe that Claims 2 and 3 used in the proof of Theorem 1 hold with exactly
the same proof. As we did in the proof of Theorem 1, by Claim 3, we denote the common
state announced in the agents’ second report by θ̃. In the following, we establish Claim 7
as the counterpart of Claim 4 used in the proof of Theorem 1 in the modified mechanism
introduced above.

For each allocation x ∈ F(�), we define the following set of agents:

J (x) ≡ {
j ∈ I : Lj(x, θ̃j ) ∩ SU j(x, θj ) = ∅}

.

The following preliminary claim will be used in proving Claims 7 and 8.

Claim 6. For any pair of agent(s) i and j (whether i = j or i �= j) and message profile
m ∈ supp(σ ) such that m3

i =φ(m), we have x(θ̃, m3
i , m1

j ) �=m3
i if and only if j /∈ J (m3

i ).
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Proof. Fix agent i ∈ I and a message profile m ∈ supp(σ ). We first prove the if-
part. Suppose, on the contrary, that there exists some agent j /∈ J (m3

i ) such that
x(θ̃, m3

i , m1
j ) = m3

i . Then, by (18), the deviation from mj to m̃j = (θj , m2
j , m3

j ) delivers
a strictly better payoff for agent j against m−j , while, by Lemmas 2 and 3, the deviation
from mj to m̃j generates no payoff loss for agent j against any m′

−j �= m−j . Hence, the
deviation m̃j is profitable, which contradicts the hypothesis that σ is a Nash equilibrium
of the game �(M, θ).

Next, we prove the only-if-part. Suppose, on the contrary, that there exists some
agent j ∈ J (m3

i ) such that x(θ̃, m3
i , m1

j ) �= m3
i . Since j ∈ J (m3

i ), we must have m1
j �= θj .

Define m̃j as a deviation which is identical to mj except that m̃3
j = θj �= m3

j . Then we

have x(θ̃, m3
i , θj ) = m3

i since j ∈ J (m3
i ). By (18), m̃j generates a strictly better payoff for

agent j than mj against m−j . By Lemmas 2 and 3, we also know that agent j’s payoff gen-
erated by m̃j is at least as good as that generated by mj against any m′

−j �= m−j . Hence,
m̃j constitutes a profitable deviation, which contradicts the hypothesis that σ is a Nash
equilibrium of the game �(M, θ).

Claim 7. No one challenges an allocation announced in the third report of any other
agent, that is, for any pair of agents i, j ∈ I with i �= j and any m ∈ supp(σ ), if m3

i =φ(m),
then x(θ̃, m3

i , m1
j ) =m3

i .

Proof. Suppose to the contrary that there exist i, j ∈ I with i �= j, m ∈ supp(σ ) such that
m3

i =φ(m) and x(θ̃, m3
i , m1

j ) �=m3
i . By Claim 6, j /∈ J (m3

i ). We now derive a contradiction
in each of the following two cases.

Case (i). There is some m̃ ∈ supp(σ ) such that J (φ(m̃)) = I .

Define m̃i as the same as mi except that m̃3
i = φ(m̃). Fix m̂−i ∈ supp(σ−i ). We distin-

guish two subcases.

Case (i.1). φ(mi, m̂−i ) =m3
i .

By Claim 6 and the fact that j /∈ J (m3
i ), we have x(θ̃, φ(mi, m̂−i ), m̂1

j ) �= φ(mi, m̂−i ),

that is, φ(mi, m̂−i ) must be challenged by m̂1
j and agent i is penalized by η according to

τ3
i,j . In comparison, if φ(m̃i, m̂−i ) = φ(m̃), since J (φ(m̃)) = I , it follows from Claim 6

that no agent challenges φ(m̃i, m̂−i ); if φ(m̃i, m̂−i ) �= φ(m̃), then m̃i is not effective;
hence, agent i avoids paying the penalty η for being challenged.

Case (i.2). φ(mi, m̂−i ) �= m3
i .Then the deviation does not change allocation or transfers

from agent i’s perspective.

We know that Case (i.1) happens with positive probability from our hypothesis.
Hence, by (7), it is a profitable deviation.
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Case (ii). for every m̃ ∈ supp(σ ), J (φ(m̃)) �= I .

Fix m̃ ∈ supp(σ ). If m̃3
k = φ(m̃) for some agent k ∈ I , then Claim 6 implies that

x(θ̃, m̃3
k, m̃1

k′ ) �= m̃3
k for some agent k′, namely that agent k′ challenges agent k at m̃.

Thus, we know that ek,k′(m̃) = ε. Hence, by Claim 5, every agent reports the true type in
their first reports under any m̃ ∈ supp(σ ). Hence, by Claim 2, we conclude that θ̃ = θ. It
implies that φ(m̃) ∈ F(θ) and J (φ(m̃)) = I . Thus, it contradicts that J (φ(m̃)) �= I .

Claim 8. No one challenges an allocation announced in his own third report, that is, for
every agent i, m ∈ supp(σ ) and m3

i =φ(m) we have x(θ̃, m3
i , m1

i ) = m3
i .

Proof. Suppose to the contrary that there exist agent i and some message m ∈ supp(σ )
such that x(θ̃, m3

i , m1
i ) �= m3

i . By Claim 7 and the construction of φ, the agent i must be
agent 1. Moreover, φ(m) = m3

1 and φ(m) �= m3
j for every j �= 1. Hence,

φ(m̃1, m−1 ) = m̃3
1 for every m̃1. (20)

By Claim 6, we know that 1 /∈ J (m3
1 ), that is,

L1
(
m3

1, θ̃1
) ∩ SU1

(
m3

1, θ1
) �= ∅; (21)

moreover, for every m̃ ∈ supp(σ ) with φ(m̃) = m3
1, we have x(θ̃, m3

1, m̃1
1 ) �= m3

1. Next, we
shall show that

m̃ ∈ supp(σ ) and φ(m̃) = m̃3
1 ⇒ x

(
θ̃, m̃3

1, m̃1
1

) �= m̃3
1. (22)

To establish (22), suppose on the contrary that x(θ̃, m̃3
1, m̃1

1 ) = m̃3
1 for some m̃ ∈

supp(σ ) with m̃3
1 = φ(m̃). We now compare the payoff difference between mi and m̃i

against m̂−1 by considering the following two different situations.

Case (i). φ(m1, m̂−1 ) =m3
1 and φ(m̃1, m̂−1 ) = m̃3

1.

In this case, we know that x(θ̃, m3
1, m1

1 ) �= m3
1 and x(θ̃, m̃3

1, m̃1
1 ) = m̃3

1. By Claim 7, no
agent challenges any of the other agents. Thus, the allocation difference occurs only
when agent 1 is chosen to challenge himself.

Case (ii). φ(m1, m̂−1 ) �= m3
1 or φ(m̃1, m̂−1 ) �= m̃3

1.

By the construction of φ, there exists z ∈ F(θ̃) such that every agent j �= 1 reports
m̂3

j = z. Once again, by the construction of φ, we also have φ(m1, m̂−1 ) = φ(m̃1, m̂−1 ) =
z. Moreover, by Claim 7, no agent challenges z, that is, x(θ̃, z, m̂1

k ) = z for every k ∈ I .
Hence, (m1, m̂−1 ) and (m̃1, m̂−1 ) deliver the same allocation and transfer to agent 1.

In summary, against σ−i, the payoff difference between mi and m̃i lies only in case
(i) and is equal to

1

I2 ui
(
Cε
i,i(mi, m̂−1 ), θi

) − 1

I2 ui
(
m̃3

i , θi
)
.
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The payoff difference must be zero because both mi and m̃i are played with positive
probability in equilibrium. However, it contradicts (17). Hence, (22) holds.

Finally, it follows from (20) and (22) that agent 1 must challenge himself with prob-
ability one. By Claim 5, every agent reports the true type in their first reports under any
m̃ ∈ supp(σ ). Moreover, by Claim 2, we have θ̃ = θ, which is a contradiction to (21).

It only remains to prove the existence of pure-strategy Nash equilibrium.

Claim 9. For every x ∈ F(θ), there exists a pure-strategy Nash equilibrium m ∈ M of the
game �(M, θ) such that g(m) = x and τi(m) = 0 for every i ∈ I .

Proof. Fix an arbitrary allocation x ∈ F(θ). We argue that truth-telling (i.e., mi =
(θi, θ, x) for each i) constitutes a pure-strategy equilibrium of the game �(M, θ). Note
that reporting m̃i with m̃1

i = θi, m̃2
i = θ, and m̃3

i �= x instead of mi affects neither the allo-
cation nor the transfer. The argument for proving that either m̃1

i �= θi or m̃2
i �= θ cannot

be a profitable unilateral deviation for every agent i is identical to the relevant portion
of the proof of Theorem 1.

A.6 Proof of Theorem 3

Recall that in the mechanism, which we use to prove Theorem 1, agent i’s generic mes-
sage is mi = (m1

i , m2
i ) ∈ �i × [×I

j=1 �j ]. We expand m2
i into H copies of [×I

j=1 �j ] and
define

mi =
(
m1

i , m2
i , � � � , mH+1

i

) ∈ �i ×
[ I×
j=1

�j

] × · · · × [ I×
j=1

�j

]
︸ ︷︷ ︸

H terms

where H is a positive integer to be chosen later. For each message profile m ∈ M , the
allocation is defined as follows:

g(m) = 1
I(I − 1)

∑
i∈I

∑
j �=i

[
ei,j(mi, mj )

1
2

∑
k=i,j

yk
(
m1

k

)

⊕ 1 − ei,j(mi, mj )
H

[
x
(
m2

i , mH+2
j

) ⊕
H+1∑
h=3

φ
(
mh

)]]

where {yk(·)} are the dictator lotteries19 for agent k defined in Lemma 2, φ(·) is an out-
come function such that

φ
(
mh

) =
{
f (θ̃), if mh

i = θ̃ ∈ � for at least I − 1 agents;

b, otherwise, where b is an arbitrary outcome in A,

19Although the dictator lotteries may contain transfers, we do not take into account the scale of transfers
in it. To dispense with the transfers in the dictator lotteries, we can use an arbitrarily small amount of
money to make the best challenge schemes and social choice function generic, that is, any two resulting
outcomes are distinct from each other.
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and

ei,j(mi, mj ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if m2
i ∈ �, m2

i = m2
j =mh

i = mh
j and x

(
m2

i , mH+2
j

) = f
(
m2

i

)
,

∀h ∈ {3, � � � , H + 1};

1, if m2
i /∈ �;

ε, otherwise.

We now define the transfer rule. For every message profile m ∈M and agent i ∈ I , we
specify the transfer to agent i as follows:

τi(m) =
∑
j �=i

[
τ1,2
i,j (m) + τ2,2

i,j (m)
] +

H+1∑
h=3

τhi (m) + di
(
m2, � � � , mH+1)

where γ, κ, ξ > 0 (their size are determined later)

τ1,2
i,j (m) =

⎧⎪⎪⎨
⎪⎪⎩

0, if m2
i,j =m2

j,j ;

−γ if m2
i,j �=m2

j,j and m2
i,j �=m1

j ;

γ if m2
i,j �=m2

j,j and m2
i,j =m1

j ,

τ2,2
i,j (m) =

{
0, if m2

i,i =m2
j,i;

−γ, if m2
i,i �=m2

j,i;

moreover, for every h ∈ {3, � � � , H + 1},

τhi (m) =
{

−κ, if there exists θ̃ such that mh
i �= θ̃ but mh

j = θ̃ for all j �= i;

0, otherwise,

and

di
(
m2, � � � , mH+1)

=

⎧⎪⎪⎨
⎪⎪⎩

−ξ, if there exists h ∈ {3, � � � , H + 1} such that mh
i �=m2

i and mh′
j = m2

j ,

for all h′ ∈ {2, � � � , h− 1} and all j �= i;

0, otherwise.

Finally, we choose positive numbers γ, ξ, H, κ, and ε such that

τ̄ > γ + (H − 1)κ+ ξ

γ > ξ + εη

κ > εη

ξ >
1
H

η+ κ.

More precisely, we first fix τ̄ and choose γ < 1
3 τ̄ and ξ < min{ 1

3 τ̄, γ}. Second, we choose H

large enough so that ξ > 1
Hη. Third, we choose κ small enough such that (H − 1)κ < 1

3 τ̄
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and ξ > 1
Hη+κ. Fourth, we choose ε small enough such that γ > ξ+εη and κ > εη. We

can now prove Theorem 3 following the three steps as in the proof of Theorem 1.

A.6.1 Contagion of truth First, note that Claims 1 and 2 hold. The proof of Claim 2
applies with only one minor difference: Here, m2

i may affect agent i’s payoff through
di(·). However, a similar argument follows, since we have γ > ξ+ εη.20 Let θ denote the
true state.

Claim 10. If every agent j reports the truth in his first report σj-probability one, then
every agent j reports the truth in his 2nd,. . . ,(H + 1)th report. That is, mh

j = θ for h =
2, � � � , H + 1.

By Claims 1 and 2, every agent j reports the state truthfully in his 2nd report. Then
we can follow verbatim the argument on page 12 of Abreu and Matsushima (1994),
which shows that every agent j reports the state truthfully in his hth report for every
h= 2, � � � , H + 1.

A.6.2 Consistency

Claim 11. There exists a state θ̃ such that every agent announces θ̃ in the second report
all the way to the last/(H + 1)th report with probability one.

Proof. We prove consistency by considering the two cases as in the proof of Claim 3.
The proof for the first case remains the same. For the second case, suppose that one
agent, say i, tells a lie in the first report. As agent i believes that all the other agents report
the same state θ̃ in their second all the way to the last report. By the same argument in
the second case in the proof of Claim 3, we can show that agent i announces θ̃ in the
second report with probability one. In addition, for every h = 2, � � � , H + 2, as agent i
believes that all the other agents report the same state θ̃, by the rule φ(mh ) and τhi (mh ),
we know mh

i = θ̃.

A.6.3 No challenge

Claim 12. No agent challenges with positive probability the common state θ̃ announced
in the second report.

Proof. The argument is the same as the proof of Claim 4.
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