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The implications of pricing on social learning
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Two firms produce substitute goods of unknown quality. At each stage the firms
set prices and a consumer with private information and unit demand buys from
one of the firms. Both firms and consumers see the entire history of prices and
purchases. Will such markets aggregate information? Will the firm with the su-
perior product necessarily prevail? We adapt the classic social-learning model
by introducing strategic dynamic pricing. We provide necessary and sufficient
conditions for asymptotic learning. In contrast to previous results, we show that
asymptotic learning can occur when signals are bounded, namely, happens when
the density of the consumers at the boundaries of the posterior belief distribution
goes to zero. We refer to this property of the signal structure as the “vanishing
margins” property.
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1. Introduction

In many markets of substitute products, the value of the various alternatives may de-
pend on some unknown variables. These may take the form of a future change in reg-
ulation, a technological shock, an environmental development, or prices in related up-
stream markets, etc. Although this information is unknown, individual consumers may
receive some private information about these fundamentals. We ask whether markets
aggregate information correctly and the ex post superior product eventually dominates
the market in such an environment.
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For example, consider two competing pharmaceutical companies that produce al-
ternative treatments (i.e., drugs) for a particular medical condition. One firm’s product
is established while the other’s treatment is new. The clinical trials performed during the
new drug’s FDA approval process induce a common prior over whichever product is su-
perior. Before the new product is commercially launched, doctors receive a sample to be
used within their patient community. Therefore, the doctors obtain some private infor-
mation. Note that these signals are likely to be bounded as the number of free samples
given to each doctor is often small. Additionally, as communities differ (e.g., in genetics
and demography), the realized success rates of each treatment may differ from one doc-
tor to another. As a result, doctors observe different signals. We ask whether society will
correctly aggregate these signals and whether the better drug will necessarily prevail.

Whenever prices are fixed, classic results from the social learning theory tell us that
doctors will herd on one of the drugs (possibly the inferior one). Our results, however,
argue that when the drug firms adjust their prices dynamically, the aggregation of infor-
mation depends only on the distribution of the idiosyncratic communities, that is, those
are the communities that drive the significant results. We capture the exact condition by
the newly introduced notion of “vanishing margins.”1

We study whether the learning process mentioned above guarantees an efficient out-
come. We isolate the role of learning by introducing a simple duopoly model of common
value. In our model, consumers, with a unit demand, choose between two substitute
products, each with zero marginal cost of production. The timing of the interaction is
as follows. Nature randomly chooses one of two states, and thus determines the iden-
tity of the firm with the superior product. At each stage, both firms observe the entire
history of the market—past prices and consumption decisions—and simultaneously set
prices. After that, a single consumer arrives and receives a private signal regarding the
state of nature. The consumer, based on his signal, the pair of product prices, and the
market’s history, decides which product to buy (if any). Our main goal is to identify con-
ditions under which the information in the market fully aggregates asymptotically, that
is, asymptotic learning holds.

When prices are set exogenously and are fixed throughout, the above model is
precisely the standard herding model (Banerjee (1992), Bikhchandani, Hirshleifer, and
Welch (1992)). In that model, as shown by Smith and Sørensen (2000), the characteriza-
tion of asymptotic learning crucially depends upon the quality of agents’ private signals.
In particular, one must distinguish between two families of signals: bounded versus un-
bounded. In the unbounded case, the agent’s private beliefs can, with positive proba-
bility, be arbitrarily close to zero and one. Therefore, no matter how many people herd
on one alternative, the probability that the next agent will choose the other alternative
is always positive. This property entails asymptotic learning.

1For a recent example, consider the pricing of treatments for spinal muscular atrophy (SMA). Until re-
cently, the only treatment for SMA was Biogen’s Spinraza treatment. In April 2019, Novartis received FDA
approval for a competing treatment called Zolgensma. The research that led to the FDA approval was per-
formed on 150 patients, and thus contained little information about the treatment’s effect on the general
population. Biogen responded to the threat by offering discounts to several large healthcare providers (see
Gatlin (2019), Reuters (2019)).
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The learning results in our model diverge from those of the canonical model when
signals are bounded.2 In the herding model, there is always a positive probability that
all agents will eventually choose the suboptimal alternative. However, intuition suggests
that when prices are endogenized, they serve to prevent such a herding phenomenon.
Hypothetically, once a herd develops on one firm’s product, the other firm will lower
its product price to attract new consumers, and learning will not cease. It turns out
that this intuition, although not entirely correct, does have some merit. In order for the
intuitive argument to hold, signals must exhibit a property that we shall term vanishing
margins.

We say that signals exhibit vanishing margins if the density of consumers at the pos-
terior belief’s boundaries is zero. These consumers, that is, consumers who receive sig-
nals that induce the most extreme posterior beliefs, are those who are likely to go against
a herd and purchase the less popular product. From the market leader’s perspective,
they comprise the tail of the distribution. The property of vanishing or nonvanishing
margins serves as a measure of the tail’s thickness. Therefore, thin-tailed distributions
are those that exhibit the vanishing margins property.

When society herds, each agent follows in the footsteps of his predecessors. There-
fore, intuitively, one expects that a thick tail, that is, a case in which there is a positive
probability of seeing a consumer with an extreme signal, will induce learning. Our main
result shows that the opposite occurs. When firms are myopic, signals are bounded, and
prices are strategically determined, asymptotic learning holds if and only if signals have
the vanishing margins property. We extend this result to forward-looking firms; how-
ever, to rule out collusive behavior that prevents learning, we need the assumptions that
signals are informative enough and that firms use Markovian strategies that depend only
on the public belief and not on the calendar time.

The intuition behind our main result is as follows. Consider a setting where the pub-
lic belief is sufficiently extreme, and a clear market leader emerges. This leader faces
the following dilemma. It can either capture the entire market by setting a low price or
forego the “tail” consumers by setting a high price. Whenever signals exhibit thin mar-
gins, the latter option turns out to be optimal for the leader. Consequently, when “tail”
consumers do arrive, the market is completely turned. When signals exhibit nonvanish-
ing margins, aggressive pricing eventually prevails, thus halting any further information
aggregation.

1.1 Related literature

Our work primarily contributes to the herding literature initiated by Bikhchandani, Hir-
shleifer, and Welch (1992) and Banerjee (1992), who introduced models of social learn-
ing with agents who act sequentially. Their main contribution was to point out the pos-
sibility of rational herds that induce market failure. Smith and Sørensen (2000) noticed
that such market failure happens only when signals are bounded. The lion’s share of

2When signals are unbounded, the rationale underlying Smith and Sørensen’s learning result applies to
our model and so learning prevails.
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follow-up studies focused on examining the robustness of the aforementioned condi-
tion in more elaborate settings.3

The first to incorporate dynamic pricing into herding models were Avery and Zem-
sky (1998). They considered a single firm whose product value is associated with an
(unknown) state of nature. Instead of having the product offered at a fixed price, as in
the earlier papers (e.g., Welch (1992)), they assumed that the price is set dynamically. In
their model, a market maker computes, at each stage, the expected value of the product
and sets the price accordingly. By contrast, in our model prices are set endogenously
by the profit-maximizing firms. Moreover, Avery and Zemsky (1998) showed that the
presence of a market maker and dynamic pricing result in learning. In our setting, such
learning requires the addition of an extra condition, vanishing margins, to the informa-
tion structure.

A model that is reminiscent of our model is that of Bose, Orosel, Ottaviani, and
Vesterlund (2006, 2008) who studied a herding model with a forward-looking monop-
olist that sells a good of uncertain quality to consumers. Consumers arrive sequentially
and decide whether to purchase the product of the monopolist based on their predeces-
sors’ decisions, past prices, and an additional private signal. Bose et al. (2006) restricted
attention to information structures with finitely many signals and Bose et al. (2008) to
symmetric binary signals. In both models, it was shown that herding is inevitable. Addi-
tionally, they showed that if the public belief is sufficiently in favor of the monopoly, then
the monopolist will price low enough to attract all consumers, regardless of their real-
ized signal. As we show, their results rely on finite signals where the vanishing margins
condition is never satisfied. The methodology and techniques discussed in the present
paper may be used to show that in the monopolistic setting, that is, when there is a single
forward-looking firm that competes against an outside option, an information structure
that exhibits vanishing margins guarantees asymptotic learning and one that does not
exhibit vanishing margins (at both ends) guarantees that asymptotic learning fails.

Moscarini and Ottaviani (1997) studied the duopoly case in a static setting with a
single-stage interaction between two firms and a single knowledgeable consumer. In
fact, their model is a special case of our stage game (�(μ)), which we study in Section 3.
Similar to Bose et al. (2006, 2008), they restricted attention to finite, in fact, binary and
symmetric signal space. They showed that whenever the prior belief is above (or below)
some threshold, all equilibria in their model are deterrence equilibria (see Definition 6).
That is, in all equilibria, one firm prices out the other firm. Clearly, the emergence of
a deterrence equilibrium implies that learning stops in the repeated model. In addi-
tion, the authors provided comparative statics over the threshold public belief for which
learning stops as a function of the informativeness of the signal (and this is where the
restricted signal space is leveraged). As signals become more informative the thresholds
move to the extremes. Our result for the stage game, Theorem 2, argues that deterrence

3For example, Lee (1993) presented a model with more than two states. Goeree, Palfrey, and Rogers
(2006) extended the model from a pure common value to include a private value ingredient. Eyster, Galeotti,
Kartik, and Rabin (2014) studied a model where agents’ utility is affected by congestion, and Acemoglu,
Ozdaglar, and ParandehGheibi (2010), Mossel, Sly, and Tamuz (2015), and Arieli and Mueller-Frank (2019)
studied a model where agents observe only a partial set of their predecessors.
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occurs, and hence learning stops, whenever the vanishing margins condition does not
hold. As this condition can never hold for a finite signal space (see Section 5.1), the result
in Moscarini and Ottaviani (1997) follows as a corollary.

Mueller-Frank introduced a pair of models with dynamic pricing of a monopoly
Mueller-Frank (2016) and a duopoly Mueller-Frank (2012). The models are very simi-
lar to ours with the distinction that for Mueller-Frank the firms have the informational
advantage and know the true state of the world.4 Mueller-Frank asked whether social
learning is sufficient to drive consumers to the optimal choice in the long run (“asymp-
totic efficiency”). Counterintuitively, he demonstrated equilibria in which this is not the
case. By contrast, learning entails asymptotic efficiency in our setting (see Corollary 1).

While our major contribution is to the literature on social learning, the vanishing
margins property and its effect on firms’ strategic behavior has interesting implications
for market behavior and, in particular, for market entry and the adoption of new tech-
nologies. Previous studies on such questions assumed that incumbents have either an
informational advantage (Bagwell (2007)) or a “first move” advantage, and that they can
preempt entry by increasing capacity, investing in R&D (Daron and Cao (2015), Bar-
rachina, Tauman, and Urbano (2014)), or both (see Milgrom and Roberts (1982a,b)). Our
stage game is an example of predatory pricing behavior, in which both incumbent and
entrant act simultaneously, and no firm has an informational advantage.

The paper is organized as follows. Section 2 presents the model and the main theo-
rem for the case where firms are myopic. In Section 3, we provide an equilibrium anal-
ysis of a stage game, which is central to the analysis of the learning model. We then
leverage the analysis of the stage game to prove the aforementioned theorem for the
myopic case. Section 4 is an extension of our model and results to the case where firms
are farsighted. Section 5 informally discusses related issues.

2. Social learning and myopic pricing

Our model comprises a countably infinite number of consumers, indexed by t ∈ N, and
two firms: Firm 0 and Firm 1. There are two states of nature � = {0, 1}. In state ω,
firm ω ∈ {0, 1} produces the superior product. We normalize the value of the superior
product VH to 1 and the value of the inferior product VL to 0. In every time period t,
the two firms first set (nonnegative) prices (τt0, τt1 ) ∈ [0, 1]2 for their products.5 Then
consumer t receives a private signal and must decide whether to buy product 0, product
1, or neither product. Formally, the action set of every consumer is A= {0, 1, e}, where
the action a = i ∈ {0, 1} corresponds to the decision to buy from firm i and the action
a= e corresponds to the decision to exit and not to buy.6 The payoff of every consumer

4Mueller-Frank pointed out that when firms have an informational advantage, the equilibrium analysis
crucially hinges on consumers’ off-equilibrium beliefs. This is not the case in our model, which conse-
quently allows for robust observations.

5We conjecture that extending our model to allow for negative prices would have little effect on the
asymptotic analysis and leave this question for future research.

6Our proofs go through with almost no changes in the case where VH > VL ≥ Ve ≥ 0 where Ve is the
value from existing. In fact, we believe that the only required conditions for our analysis are VH > 0 and
VH >max{VL, Ve}.
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t, given the price vector (τ0, τ1 ) as a function of the realized state ω, is

u(a, τ0, τ1,ω) =

⎧⎪⎪⎨
⎪⎪⎩

0 if a= e
1 − τa if a=ω
−τa otherwise.

(1)

For simplicity, we assume that both firms have no marginal cost of production.
Hence, firm i’s stage payoff, given a price vector (τ0, τ1 ), can be described as a function
of the consumer’s decision as follows:

πi(a, τ0, τ1,ω) =
{
τi if a= i
0 otherwise.

(2)

We assume that the state ω is drawn at stage t = 0 according to a commonly known
prior distribution, such that P(ω = 0) = μ0 = 1 − P(ω = 1). The state ω is unknown
to both the firms and the consumers. Each consumer t ∈ N forms a belief on the
state using two sources of information: the history of prices and actions, ht ∈ Ht =
([0, 1]2 × {0, 1, e})t−1, and a private signal st ∈ S (where S is some abstract measurable
signal space). The firms observe only the realized history ht ∈ Ht at every time t and
receive no private information. Conditional on the state ω, signals are independently
drawn according to a probability measure Fω. We refer to the tuple (F0, F1, S) as an
information structure. We assume throughout that F0 and F1 are mutually absolutely
continuous with respect to each other.7 The prior μ0 and the functions F0 and F1 are
common knowledge among consumers and firms.

Let H = ⋃
t≥1Ht be the set of all finite histories and let H∞ = ([0, 1]2 × {0, 1, e})∞

be the set of all infinite histories. We let A ⊂ �({0, 1, e})[0,1]2×S be the set of decision
rules for the consumer; that is, A is the set of all measurable functions that map pairs
consisting of a price vector and a signal to a (random) consumption decision. A strategy
for consumer t is a measurable function σt : Ht → A that maps every history ht ∈Ht to
a decision rule. We denote by σ̄ = (σt )t≥1 a pure strategy profile for the consumers. We
can view σ̄ as a function σ̄ :H → A. A (behavioral) strategy for firm i is a (measurable)
mapping φ̄i : H → �([0, 1]). We note that the strategy profile (φ̄0, φ̄1, σ̄ ) together with
the prior μ0 and the information structure (F0, F1, S) induces a probability distribution
P(φ̄0,φ̄1,σ̄ ) over �×H∞ × S∞.

Let μt = P(φ̄0,φ̄1,σ̄ )(ω= 0|ht ) be the probability that the state is ω= 0 conditional on
the realized history ht ∈H. We call μt the public belief at time t. We note that {μt }∞t=1 is
a martingale and, therefore, by the martingale convergence theorem, it must converge
almost surely to a limit random variable μ∞ ∈ [0, 1].

A strategy profile (φ̄0, φ̄1, σ̄ ) and a history ht induce both an expected payoff

ti(τ0, τ1, σ̄|ht ) for every firm i and an expected consumer utility Ut(τ0, τ1, σ̄|ht ). We
can now define the notion of a Bayesian Nash equilibrium for myopic firms.

7F0 and F1 are mutually absolutely continuous whenever F0(Ŝ) > 0 ⇐⇒ F1(Ŝ) > 0 for any measurable

set Ŝ ⊂ S. Note that under this assumption the probability of a fully revealing signal, for which the posterior
probability is either 0 or 1, is zero.
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Definition 1. A strategy profile (φ̄0, φ̄1, σ̄ ) constitutes a myopic Bayesian Nash equi-
librium if for every time t the following conditions hold for almost every history ht ∈Ht
that is realized in accordance with P(φ̄0,φ̄1,σ̄ ):

• For every τ ∈ [0, 1] and i= 1, 2,


ti(φ̄0, φ̄1, σ̄|ht ) ≥
ti(τ, φ̄−i, σ̄t|ht ).

• For every price vector (τ0, τ1 ) ∈ [0, 1]2, and every decision rule σ ∈ A,

Ut
(
τ0, τ1, σ̄(ht )|ht

) ≥Ut(τ0, τ1, σ|ht ).

In words, a strategy profile (φ̄0, φ̄1, σ̄ ) constitutes a myopic Bayesian Nash equilib-
rium if, for every time t and for almost every history ht ∈Ht that is realized in accordance
with P(φ̄0,φ̄1,σ̄ ), it holds that φ̄i(ht ) maximizes the conditional expected stage payoff to
every firm i and σ̄(ht ) maximizes the conditional expected payoff to consumer t with
respect to every price vector (τ0, τ1 ).

Note that our notion of equilibrium is weaker than the notion of a subgame per-
fect equilibrium (henceforth SPE); however, it still eliminates equilibria with noncredi-
ble threats by consumers. One such equilibrium with noncredible threats is the follow-
ing equilibrium: both firms ask for a price of 0 in every time period. Every consumer t
never buys a product (i.e., plays e) unless both firms ask for a price of 0, in which case
he buys Product 0 when μt ≥ 1

2 and Product 1 when μt < 1
2 . Note that this equilibrium

is sustained by noncredible threats made by the consumer. Such threats are eliminated
by the second condition, which requires that, conditional on the realized history ht , the
decision rule σ̄(ht ) be optimal with respect to every price vector (τ0, τ1 ), and not just
with respect to (τt0, τt1 ).

The reason we focus on this set of equilibria instead of its more natural subset of
SPE is the following. Our results apply either to all equilibria or to none. Therefore, our
results hold for the subset of SPE. In addition, resorting to myopic Bayesian equilibria
allows us to circumvent the nontrivial requirement of specifying off-equilibrium beliefs.

As is common in the literature, we define asymptotic learning as follows.

Definition 2. Fix an information structure (F0, F1, S). Let μ0 ∈ (0, 1) be the prior and
let (φ̄0, φ̄1, σ̄ ) be a strategy profile of the corresponding game. We say that asymptotic
learning holds for μ0 and (φ̄0, φ̄1, σ̄ ) if the belief martingale sequence converges almost
surely to a point belief assigning probability 1 to the realized state.

Let fω denote the Radon–Nikodym derivative of Fω with respect to the probability
measure F0+F1

2 . We consider the random variable p(s) ≡ f0(s)
f0(s)+f1(s) , which is the poste-

rior probability thatω= 0, conditional on the signal s, when the prior over� is (0.5, 0.5).
Let Gω(x) = Fω({s ∈ S|p(s) < x}), ω = 0, 1, be the two cumulative distribution corre-
spondences of the random variable p(s) induced by the two probability distributions,
Fω,ω= 0, 1, over S. As is standard in the literature, let co(supp(p)) = [ᾱ, ¯α] be the con-
vex hull of the support of p.
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The main goal of our paper is to provide a characterization of asymptotic learn-
ing under strategic pricing in terms of the information structure (F0, F1, S). Such a
characterization is provided by Smith and Sørensen (2000) for the standard herding
model where prices are set exogenously. We start by presenting the formal definition
of bounded and unbounded signals due to Smith and Sørensen (2000).

Definition 3. The information structure (F0, F1, S) is called unbounded if ¯α = 0 and
ᾱ= 1. The information structure (F0, F1, S) is bounded if ¯α> 0 and ᾱ < 1.

In words, an information structure is unbounded if for every β ∈ (0, 1) the two sets
{s : p(s) > β} and {s : p(s) < β} have positive probability under (Fω )ω=0,1. Smith and
Sørensen’s characterization shows that in the standard herding model asymptotic learn-
ing holds under an unbounded information structure and fails under a bounded infor-
mation structure.

2.1 Characterization of asymptotic learning

For ease of exposition, we make the following assumption on (Gω(x))ω=0,1. We refer the
reader to Section 5 for the general case.

Assumption 1. We assume that the functions {Gω(x)}ω=0,1 are differentiable on ( ¯α, ᾱ)
with continuous derivatives (gω(x))ω=0,1 : [ ¯α, ᾱ] →R+.

Definition 4. An information structure (F0, F1, S) exhibits vanishing margins if
g1( ¯α) = g0(ᾱ) = 0.

We next show how information aggregation depends on the vanishing margins prop-
erty. The following theorem provides a full characterization of asymptotic learning in
our model.

Theorem 1. If signals are unbounded or if signals are bounded and exhibit vanishing
margins, then asymptotic learning holds for every prior and every equilibrium. If signals
are bounded and do not exhibit vanishing margins, then asymptotic learning fails for
every prior and every equilibrium.

The rationale underlying the statement of Theorem 1 is as follows. The public belief
gravitates toward one of the firms, say Firm 0, providing it with an opportunity to set a
positive deterrence price that will drive the other firm out of the market, in which case
learning stops. Raising the price above the deterrence price will drive the ultramarginal
consumers away from Firm 0 but will increase its profit from the rest of the consumers.
The condition of vanishing margins captures the case where such an increase is always
profitable and, therefore, learning continues.

Note that whenever asymptotic learning fails, only one firm, possibly the inferior
one, prevails. This implies that consumers may consistently buy the inferior product
with positive probability. However, when asymptotic learning holds, consumers and
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firms eventually learn the superior product. Does this imply that they will eventually buy
from this firm or will the other firm be able to attract consumers periodically by offering
low prices? In Corollary 1, we show that the former outcome holds and the probability
of buying from the superior firm converges to one when asymptotic learning occurs.8

Corollary 1. Let (σ , τ0, τ1 ) be a myopic Bayesian Nash equilibrium. If asymptotic
learning holds, then conditional on state ω ∈�,

lim
t→∞ P(σ ,τ0,τ1 )

({
σ̄(ht )

(
s, (τ0, τ1 )

) =ω}
|ω

) = 1.

Corollary 1 follows from the proof of our main theorem and its proof is relegated to
Appendix D.

In Theorem 1, we distinguish between vanishing and nonvanishing margins. One
may ask whether this condition is robust in the sense that will consumers learn the iden-
tity of the superior firm with high probability when the proportion of the consumers in
the tail is small enough, but not zero. Our next result shows that this transition is con-
tinuous. Namely, as margins become thinner the associated thresholds approach zero
and one. This, in turn, implies that the probability of herding on the optimal firm ap-
proaches one. To capture the notion of “thinner margins,” we consider the density at ¯α.
A similar definition and result can be obtained for ᾱ.

Definition 5. An information structure exhibits the δ-margins property, for δ > 0, if
g0( ¯α) ≤ δ.

Let μ̄ be the upper deterrence threshold of an information structure with nonvanish-
ing margins. This is the smallest prior such that, for every μ ≥ μ̄, deterrence occurs in
�(μ).9

Proposition 1. For any ε > 0 and ¯α, ᾱ > 0, there exists δ = δ(ε, ¯α) > 0 such that if the
information structure exhibits the δ-margins property, then the deterrence threshold sat-
isfies μ̄ > 1 − ε.

The proof of Proposition 1 is relegated to Appendix E.

3. The proof of Theorem 1

In the proof of Theorem 1, we rely on the analysis of the following three-player stage
game �(μ). The game comprises two firms and a single consumer and is derived from
our sequential game by restricting the game to a single period. That is, in �(μ) the state
is realized according to the prior μ (state 0 is realized with probability μ and state 1 with
probability 1 − μ). The two firms post a price simultaneously (possibly at random) and
a single consumer receives a private signal in accordance with (F0, F1, S). Based on his

8In some variants of the herding model, such as those studied in Mueller-Frank (2012, 2016), Moran and
Mueller-Frank (2022), asymptotic learning does not entail asymptotic efficiency.

9Theorem 2 below shows that whenever the information structure exhibits nonvanishing margins, μ̄ < 1.
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private signal and the realized vector of prices, the consumer takes an action a ∈ {0, 1, e}.
The utility for the consumer is determined by equation (1) and the utility for the firms is
determined by equation (2).10

To guarantee the existence of an equilibrium, we allow firms to use mixed strate-
gies. A mixed strategy for firm i is denoted by φi ∈ �[0, 1]. For a strategy profile
φ= (φ0, φ1, σ ), let Prφ,μ be the probability over�×[0, 1]2 ×S; the state, the price vector,
and the signal set S are induced by φ, μ and F0, F1, respectively.

The consumer’s best reply

Given a prior μ and a pair of prices (τ0, τ1 ), we let vμ(τ0, τ1 ) ∈ [α, α] be the threshold
in terms of the private belief above which Firm 0 is the unique best reply for the con-
sumer. That is, choosing Firm 0 is uniquely optimal for the consumer if and only if
p(s) > vμ(τ0, τ1 ). A precise functional form of vμ(τ0, τ1 ) is derived in equation (6) in
Appendix A. We can therefore suppress the behavior of the consumer, which under As-
sumption 1, is determined uniquely for every price vector (τ0, τ1 ) and almost every sig-
nal realization s ∈ S. Thus, we henceforth suppress the reference to the strategy of the
consumer when we describe equilibrium strategies.

The firms’ best reply

We can write the expected profit of Firm 0 in the game �(μ) for the price vector τ =
(τ0, τ1 ) as follows:


0(τ0, τ1, μ)

= (μ(1 −G0
(
vμ(τ0, τ1 )

) + (1 −μ)
(
1 −G1

(
vμ(τ0, τ1 )

))
τ0, (3)

where (μ(1 −G0(vμ(τ0, τ1 )) + (1 −μ)(1 −G1(vμ(τ0, τ1 ))) is the probability that the con-
sumer buys from Firm 0 given the price vector (τ0, τ1 ). A similar equation can be derived
for 
1(τ0, τ1, μ), the profit of Firm 1.

We make a distinction between two forms of perfect Bayesian Nash equilibria of the
game �(μ): a deterrence equilibrium, where one of the firms is deterred and sells its
product with probability zero, and a nondeterrence equilibrium, where both firms sell
with positive probability. That is, we have the following.

Definition 6. Let (φ0, φ1 ) be a SPE of �(μ). Say that firm j is deterred if

Prφ,μ
(
σ(μ, s, τ) = j) = 0.

In case one of the firms is deterred, we refer to (φ0, φ1, σ ) as a deterrence equilibrium.11

10This auxiliary stage-game model is reminiscent of a few models from the IO literature such as the
duopolistic competition model with horizontal differentiation due to Hotelling (1929) (see Chapter 7 in
Tirole (1988)).

11Note that in any SPE at most one firm is not deterred. Otherwise, both firms’ expected profit would be
zero. This is impossible since the a priori preferred firm can guarantee a positive expected profit, regardless
of the other firm’s strategy, by setting a sufficiently low positive price.
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We next study the properties of a deterrence equilibrium in the game �(μ). We de-
note the consumer’s posterior belief after observing the signal s bypμ(s). It follows read-
ily from Bayes’ rule that

pμ(s) = μp(s)

μp(s) + (1 −μ)
(
1 −p(s)

) .

Since p(s) ∈ [ ¯α, ᾱ] the above equation implies that pμ(s) ∈ [ ¯αμ, ᾱμ], where

¯αμ = μ¯α
μ¯α+ (1 −μ)(1 − ¯α)

and ᾱμ = μᾱ

μᾱ+ (1 −μ)(1 − ᾱ)
.

Thus, ¯αμ represents a tight lower bound on the posterior probability that the consumer
assigns to Firm 0 being the superior firm. Similarly, ᾱμ represents a tight upper bound
on the posterior probability that the consumer assigns to Firm 0 being the superior
firm. Assume that μ ≥ 1

2 and consider a price vector (τ0, τ1 ) where τ0 = 2¯αμ − 1. In
this case, the expected profit of a consumer who buys from Firm 0 is at least ¯αμ − τ0 =
¯αμ − (2¯αμ − 1) = 1 − ¯αμ. By contrast, the expected profit of a consumer who buys from
Firm 1 is at most (1 − ¯αμ ) − τ1 ≤ 1 − ¯αμ. Therefore, by setting a price τd0 := 2¯αμ − 1 Firm
0 guarantees that the consumer buys its product even if Firm 1 gives away its product
for free (namely, even when τ1 = 0). The following proposition shows that, indeed, in
a deterrence equilibrium where Firm 1 is deterred the price of Firm 0 will be 2¯αμ − 1.
A symmetric claim holds for Firm 1.

Hereafter, we abuse notation and write φ1 = τi to denote a pure strategy of firm i

that assigns probability one to the price τi.

Proposition 2. Assume that (φ0, φ1 ) is a deterrence equilibrium in �(μ); then either

Firm 1 is deterred, φ0 = 2¯αμ − 1, 
0(φ0, φ1 ) = 2¯αμ − 1, and ¯αμ ≥ 1
2

; or

Firm 0 is deterred, φ1 = 1 − 2ᾱμ, 
1(φ0, φ1 ) = 1 − 2ᾱμ, and ᾱμ ≤ 1
2

.

As a corollary of Proposition 2, we have the following.

Corollary 2. If (φ0, φ1 ) is a deterrence equilibrium where firm i is deterred, then for
j �= i it holds that Prφ,μ(σ(μ, s, τ) = j) = 1.

Thus, whenever one firm is deterred, the other firm takes full control of the market
and sells its product with probability one.

The following theorem summarizes the main characteristics of equilibria in the stage
game �(μ). This characterization is the driving force behind the proof of Theorem 1.

Theorem 2. Let μ ∈ (0, 1) and let (φ0, φ1, σ ) be a Bayesian Nash subgame perfect equi-
librium of the game �(μ):

1. If signals are unbounded, then no firm is deterred.
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2. If signals are bounded and exhibit the vanishing margins property, then no firm is
deterred.

3. If signals are bounded and do not exhibit the vanishing margins property, then

(a) If g1( ¯α) > 0, then for some sufficiently high prior μ̄ ∈ (0, 1), Firm 1 is deterred
when μ> μ̄.

(b) If g0(ᾱ) > 0, then for some sufficiently low prior
¯
μ ∈ (0, 1), Firm 0 is deterred

when μ<
¯
μ.

To see why Theorem 2 is correct, assume without loss of generality that Firm 0 is the
a priori preferred firm and offers the deterrence price, τd0 . The only possible profitable
deviation is a price increase. Such a deviation will have two offsetting effects. On the
one hand, it will increase the profit per sale but on the other hand it will result in a
loss of market share, in particular, a loss of consumers whose signal is least favorable
toward Firm 0. When the vanishing margins condition is satisfied, the loss of market
share is insignificant and is compensated by the profit per sale and so a price increase
is profitable. By contrast, when the vanishing margins condition is not satisfied and the
public belief is sufficiently skewed toward Firm 0, the market share loss becomes the
dominant effect and the deviation is not profitable.

We relegate the proof of Theorem 2 and the complete analysis of the above stage
game to Appendices A and B, respectively.

The limit arguments

In the following lemma, which is a direct implication of Definition 1, we connect the
stage game with the sequential model.

Lemma 1. A strategy profile (φ̄0, φ̄1, σ̄ ) constitutes a myopic Bayesian Nash equilibrium
if and only if for every time t, and for almost every history ht ∈Ht that is realized in accor-
dance with P(φ̄0,φ̄1,σ̄ ); the tuple (φ̄0(ht ), φ̄1(ht ), σ̄(ht )) is a subgame perfect equilibrium
(SPE) of �(μt ).

The strong connection of �(μ) to our sequential game allows us to derive some in-
sight into information aggregation from the subgame perfect equilibrium properties
of �(μ), which we analyze next. We note that, under Assumption 1, in every perfect
Bayesian Nash equilibrium of the game �(μ), the strategy σ prescribes a unique action
for the consumer almost everywhere.

The proof of Theorem 1 leverages the results of Theorem 2 and connects the pos-
sibility of deterrence to asymptotic learning. Consider the case where signals exhibit
vanishing margins. Theorem 2 tells us that at every stage t, no firm is deterred in �(μt )
and so the consumer’s actions are actually informative of his signal. This, in turn, implies
that the public belief keeps evolving, which by similar arguments to those underlying the
results of Smith and Sørensen (2000), leads to asymptotic learning. On the other hand,
assume learning is possible when signals do not exhibit vanishing margins. This means
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that eventually the public belief will be sufficiently in favor of the superior firm. This, by
Theorem 2, the superior firm will price sufficiently aggressively to deter the other firm.
In other words, all consumers in the stage game will necessarily buy from the aggressive
firm, actions will then be uninformative, and learning will stall. Note that when prices
are set exogenously this cannot happen.

We now turn to the formal proof of Theorem 1. We start with the following corollary
of Lemma 6 (the proof can be found in Appendix B).

Corollary 3. If signals exhibit vanishing margins or if signals are unbounded, then for
every ε > 0 there exist some r > ¯α and δ′ > 0 such that if μ ∈ [ε, 1 − ε] and φ= (φ0, φ1 ) is
a SPE of �(μ), then

Pμ,φ
(
vμ(τ0, τ1 ) ≥ r)> δ′.

A similar condition holds for Firm 1.

In words, by Theorem 2, if signals exhibit vanishing margins or if signals are un-
bounded, then the probability of a consumer going against the herd is positive. Corol-
lary 3 argues that this probability cannot be arbitrarily close to zero if the prior is
bounded away from the edges.

Proof of Theorem 1. We start the proof of Theorem 1 by showing that if the infor-
mation structure (F0, F1, S) does not exhibit vanishing margins, then the martingale
of the public belief must converge to an interior point. Indeed, let us assume without
loss of generality that g1( ¯α)> 0. Let (φ̄0, φ̄1, σ̄ ) be a myopic equilibrium. By Lemma 1,
for almost every history ht ∈Ht that is realized in accordance with P(φ̄0,φ̄1,σ̄ ), the pro-

file (σ̄(ht ), φ̄0(ht ), φ̄1(ht )) is a SPE of �(μt ). By Theorem 2, there exists μ̄ such that,
for all μ ∈ (μ̄, 1), there is a unique Bayesian Nash subgame perfect equilibrium of �(μ)
in which the consumer chooses Firm 0 almost everywhere (i.e., Firm 1 is deterred by
Firm 0). This implies that if μt ∈ (μ̄, 1], then μt+1 = μt almost everywhere. We note that
since signals are never fully informative it must be the case thatμt < 1 for all t (almost ev-
erywhere). Therefore, if the vanishing margins property does not hold then asymptotic
learning fails.

Next, we show that if the vanishing margins property holds, then the public belief
martingale converges to a limit belief in which the true state is assigned probability one.
By Lemma 1, (φ̄0(ht ), φ̄1(ht ), σ̄(ht )) is a SPE of �(μt ) for P(φ̄0,φ̄1,σ̄ ) in almost every his-
tory ht ∈Ht . Corollary 3 implies that if μt ∈ [ε, 1 − ε] then for some δ′ > 0 and r > ¯α, the
realized price vector (τ0, τ1 ) satisfies vμt (τ0, τ1 ) ≥ r with probability at least δ′.

Since the distribution G0(·) first-order stochastically dominates G1(·) (see
Lemma 14 in Appendix D), under any such price vector (τ0, τ1 ) there exists a proba-
bility at least G0(r )> 0 that the consumer will not buy from Firm 0. Note that (again by
Lemma 14)

G0
(
vμt (τ0, τ1 )

)
G1

(
vμt (τ0, τ1 )

) ≤ G0(r )
G1(r )

= β< 1.
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Therefore, it follows from Bayes’ rule that with probability at least G0(r )δ′ the public
belief μt+1 satisfies

μt+1

1 −μt+1
= μt

1 −μt
G0

(
vμt (τ0, τ1 )

)
G1

(
vμt (τ0, τ1 )

) ≤ μt

1 −μt β. (4)

Hence, in particular, if μt ∈ [ε, 1 − ε] then there exists a positive constant η> 0 such that
|μt+1 −μt| >η, with probability at leastG0(r )δ.

By the martingale convergence theorem, the limit μ∞ = limt→∞μt exists. By the
above argument μ∞ ∈ {0, 1} almost everywhere. This shows that asymptotic learning
holds.

4. Social learning and farsighted firms

In this section, we show that by and large our result carries through to a setting where
the firms are farsighted and maximize a discounted expected revenue stream. We ex-
tend our sequential model to the nonmyopic case by defining the nonmyopic sequential
consumption game. In this model, as in the myopic case, each firm sets a price in ev-
ery time period, except that now each firm tries to maximize its discounted sum of the
stream of payoffs. We still retain the perfection assumption with respect to consumers.

Let 
δi (φ̄0, φ̄1, σ̄ ) denote the repeated game and (φ̄0, φ̄1, σ̄ ) be a strategy profile in
it. The expected payoff to firm i when the discount factor is δ > 0 is


δi (φ̄0, φ̄1, σ̄ ) = E(φ̄0,φ̄1,σ̄ )

(
(1 − δ)

∞∑
t=1

δt−1
ti
(
φ̄0(ht ), φ̄1(ht ), σ̄(ht )|ht

))
.

We define a Bayesian Nash equilibrium as follows.

Definition 7. A strategy profile (φ̄0, φ̄1, σ̄ ) constitutes a Bayesian Nash equilibrium if:

• For every i= 1, 2 and every strategy ψ̄i of firm i,


δi (φ̄i, φ̄−i, σ̄ ) ≥
δi (ψ̄i, φ̄−i, σ̄ ).

• For every time t, almost every history ht ∈ Ht that is realized in accordance with
P(φ̄0,φ̄1,σ̄ ), every price vector (τ0, τ1 ) ∈ [0, 1]2, and every decision rule σ ∈ A, the
following condition holds:

Ut
(
τ0, τ1, σ̄(ht )|ht

) ≥Ut(τ0, τ1, σ|ht ).

In the repeated interaction case, the key impediment to asymptotic learning is that
firms collude and “split” the market. This can happen when the discount factor is close
enough to one and, say, in even-numbered time periods, Firm 1 asks for a very high price
and Firm 0 takes the full market (by playing ¯αμt ), and in odd-numbered time periods,
Firm 0 asks for a very high price and Firm 1 takes the full market. Indeed, under this
strategy profile, learning stops. This sort of equilibrium, however, is ruled out by the
Markovian property that will be defined next.
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Definition 8. A strategy φ̄i of firm i is called Markovian if there exists a measurable
function ψi : [0, 1] → �([0, 1]) such that for every strategy of the other firm j and the
consumer (φ̄j , σ̄ ) it holds, for every time t, that φ̄i(ht ) = ψi(μt ) for almost every his-
tory ht ∈Ht that is realized in accordance with P(φ̄0,φ̄1,σ̄ ). A Markovian equilibrium is a

Bayesian Nash equilibrium (φ̄0, φ̄1, σ̄ ) such that φ̄0 and φ̄1 are Markovian strategies.

Here, we focus our analysis on Markovian equilibria. Let (φ̄0, φ̄1, σ̄ ) be a strategy
profile, let ht ∈Ht , and denote by 
δi (φ̄0, φ̄1, σ̄|ht ) the continuation payoff to firm i in
the subgame starting in history ht ∈Ht . Note that in a Markovian equilibrium there ex-
ists a measurable function Vi : [0, 1] → [0, 1] such that one can write 
δi (φ̄0, φ̄1, σ̄|ht ) =
Vi(μt ) for almost every history ht that is realized in accordance with P(φ̄0,φ̄1,σ̄ ). Thus,
the continuation payoff of firm i at time t depends only on the public belief μt . By Def-
inition 7, if (φ̄0, φ̄1, σ̄ ) constitutes a Bayesian Nash equilibrium, then φ̄i maximizes the
continuation payoff 
δi (φ̄0, φ̄1, σ̄|ht ) of firm i for almost every history ht ∈ Ht that is
realized in accordance with P(φ̄0,φ̄1,σ̄ ).

The use of Markovian strategies is common in economics. In our case, Markovian
strategies rule out tit-for-tat strategies, and hence reflect the idea that firms are compet-
ing rather than colluding.12 Indeed, under Markovian strategies prices are functions of
the public belief only and so firms cannot rely on the calendar time. We note, however,
that even when restricting attention to Markovian strategies public randomization may
serve as a coordination device that the firms can use to split the market. In fact, public
randomization drives folk theorem results such as those obtained in Yamamoto (2019).
Our model does not include public randomization.

We next discuss another possibility that may lead to failure of learning. Consider
signals with ¯α and ᾱ that are close enough to 1

2 , and thus the signals are sufficiently
uninformative. In such a case, there exist strategy profiles such that in every time period
both firms achieve a positive payoff but for every pair of realized prices (τ0, τ1 ) in the
support of the two strategies only a single firm takes the full market. Thus, while there
exists a positive probability for every firm to extract a positive payoff, for every realized
pair of prices (τ0, τ1 ) consumers buy from a unique firm i with probability one and,
therefore, learning stops.

Such strategies cannot constitute a Markovian equilibrium since one can show that,
for one of the firms, one price in the support yields a zero payoff in the stage game and so
this firm could deviate by assigning probability zero to this price. However, what firms
could potentially do is to play a strategy that approximates the aforementioned strate-
gies so that for every pair of realized prices (τ0, τ1 ) in the support of the two strategies
only a single firm takes the full market with very high probability that is less than one.
In such strategies, the public belief may keep slightly and vanishingly changing. This
change in the public belief could serve as a calendar time that will be used by the firm to
collude. To rule out this possibility, we have added the requirement that signals satisfy

¯α<
1
3 and ᾱ > 2

3 .
We can now state our first result for farsighted firms.

12In a different setting, Bhaskar, Mailath, and Morris (2013) demonstrate that all equilibria that are robust
to payoff perturbations are Markovian.
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Theorem 3. Consider a bounded information structure (F0, F1, S) that exhibits the van-
ishing margins property. Asymptotic learning holds for any discount factor δ < 1 in every
pure Markovian equilibrium. If, in addition, ¯α <

1
3 and ᾱ > 2

3 , then asymptotic learning
holds for any discount factor δ < 1 in every Markovian equilibrium.

We next outline the proof of Theorem 3. We first show that if ¯α <
1
3 and ᾱ > 2

3 holds,
then in every Markovian equilibrium where μt ≥ 1

2 , the identity of the dominant firm
in any strategy profile as above is determined only by the realized price τ0 of Firm 0
(see Lemma 10). That is, for any realized price τ0 it is the case that either almost all
consumers buy from Firm 0 or almost all consumers buy from Firm 1. This property
implies that in the case where limt→∞μt ≥ 1

2 the profit for Firm 1 must approach zero
as t goes to infinity. Otherwise, Firm 0 can eventually make a profitable deviation (see
Lemma 11). Thus, the only way that learning can stop is for one firm to take full control
of the market from some time t onwards.

In order to rule out this possibility, we need to show that the public belief μt ∈ (0, 1)
never reaches a point where one of the firms takes over the market and plays the de-
terrence price from time t onwards. This case is ruled out when signals have vanishing
margins. The reason for this is that the leading firm can slightly increase the price for the
product above the deterrence price and then play again the corresponding deterrence
price from the next period onward. This is a profitable deviation since the firm increases
its current period profit since the deterrence price is not optimal in the one-stage game
and also increases its continuation payoff since the deterrence price profit is convex (see
Lemma 9).

For the converse direction, we establish the following weaker result.

Theorem 4. If signals are bounded and do not exhibit vanishing margins, then asymp-
totic learning fails for any discount factor δ > 0 in every pure Markovian equilibrium.

We prove Theorem 4 by way of contradiction. We show that if asymptotic learning
holds then with positive probability the belief martingale μt reaches a point that is ar-
bitrarily close to either zero or one such that the expected continuation payoff of the
dominating firm i is bounded by Vi(μt ) + CE|μt − μt+1| for some constant C > 0. We
then show, as in the myopic case, that the dominating firm makes a profitable deviation
to the deterrence price where all consumers buy its product with probability one.

The proofs for Theorem 3 and Theorem 4 are relegated to Appendix C.

5. Discussion

We now turn to discuss three natural questions that arise from our model and analysis:13

• Do our conclusions hold when the differentiability assumption on the signal distri-
bution (Assumption 1) is relaxed?

• Is Blackwell order consistent with asymptotic learning?

13We thank the anonymous reviewers for raising these questions.
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• What if, instead of profit maximizing firms, the price pairs are set by a social planner
who wishes to maximize welfare?

5.1 General signals

Throughout the analysis, we have restricted our attention to information structures
(F0, F1, S) that satisfy Assumption 1. In many applications, this assumption fails to hold.
In particular, Assumption 1 does not hold when the set of signals is countable or finite.
It is therefore important to understand whether our condition can be stated more gen-
erally to capture all signal distributions.

Fortunately, it turns out that such a general condition does exist. Let (F0, F1, S) be a
general signal distribution and letGω be the CDFs of the posterior beliefs, as defined in
Section 2. Define g0, g1 ∈ [0, ∞] as follows:

g0 = lim inf
x→¯α

+
G0(x)
x− ¯α

and g1 = lim inf
x→ᾱ−

1 −G1(x)
ᾱ− x .

Obviously, g0, g1 are both well-defined. Note that g0 is defined using the limit from the
left (x→ ¯α

+) whereas g1 uses the limit from the right (x→ ᾱ−).
We can now state the more general condition for vanishing margins as follows.

Definition 9. The information structure (F0, F1, S) satisfies vanishing margins if g0 =
g1 = 0.

Note that if (F0, F1, S) satisfies Assumption 1, then the condition in Definition 9 co-
incides with the condition in Definition 4. Moreover, note that for finite signal distribu-
tion we have g0 = g1 = ∞, and thus vanishing margins fails. Our results for myopic firms
hold verbatim under the more general definition of vanishing margins.14

We omit the proofs for the general setting but note that the underlying ideas for the
proofs are similar whereas their exposition becomes more cumbersome.15 The primary
reason for this is that with an arbitrary information structure the consumer can be in-
different between two options (e.g., indifferent between the two products or between
a product and exiting) with positive probability. Therefore, given a price pair, the con-
sumer may have more than one best reply. In addition, it is not necessarily the case that
any such best reply induces a two-player game between the firms that admits an equilib-
rium. The underlying reason is that the consumer strategy may lead to discontinuity in
firms’ payoffs as a function of prices. Under Assumption 1, the consumer has a unique
best reply almost everywhere and such discontinuity can be ignored.

An additional challenge posed by the aforementioned discontinuity pertains to the
mere existence of an equilibrium in �(μ). Absent this equilibrium, our results become
vacuous. Fortunately, we can use the result of Reny (1999) to overcome this.

14Although we have not written a rigorous proof for the case where firms are farsighted, we believe that
the results carry through.

15A previous version of the paper with general signals, including all proofs, is available online at http:
//bit.ly/SLPricingMK.

http://bit.ly/SLPricingMK
http://bit.ly/SLPricingMK
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Consider the following specific best-reply consumer strategy: whenever a consumer
is indifferent between buying from one firm and the outside option he always chooses to
buy from the firm. Whenever a consumer is indifferent between buying from Firm 0 and
Firm 1, and his expected utility from purchasing a product is at least zero, he chooses
the firm that is a priori preferred. That is, in this case he chooses Firm 0 whenever μ≥ 1

2
and Firm 1 whenever μ < 1

2 . In all other cases, he strictly prefers one alternative and,
therefore, chooses this alternative.

Under this consumer strategy, game �(μ) satisfies Reny’s (1999) better-reply secure
condition for any μ ∈ [0, 1]. Theorem 3.1 in Reny (1999) thus guarantees the existence of
a mixed subgame perfect equilibrium in �(μ).

5.2 Blackwell ordering and social learning

In a classic paper, Blackwell (1953) defines a partial order over information structures.
Roughly speaking, one information structure Blackwell dominates another if the su-
perior information structure can be derived from the inferior information structure by
virtue of having an additional signal. Blackwell shows that this order is consistent with
the Bayesian decision maker’s utility for all decision problems over the underlying state
space. That is, one information structure Blackwell dominates another if and only if for
any decision problem the Bayesian decision maker is (weakly) better off with the dom-
inant one. A natural question is whether the Blackwell order is consistent with asymp-
totic learning.

Surprisingly, the answer is no. To see this, it is enough to show that the vanishing
margins condition is inconsistent with Blackwell ordering. This is demonstrated next.

Consider the following two information structures. G1 induces a posterior distribu-
tion that is equal to the uniform distribution on [ 1

4 , 3
4 ]. Thus, [α, α] = [ 1

4 , 3
4 ] and G1 is

obtained using a constant density of g1 = 2 over [ 1
4 , 3

4 ]. G2 induces a posterior distribu-
tion that is obtained from a triangular density g2 that is equal to 16x− 4 on [ 1

4 , 1
2 ] and

−16x+ 12 on [ 1
2 , 3

4 ].
We note that g1

1( 1
4 ), g1

0( 3
4 )> 0 whereas g2

1( 1
4 ) = g2

0( 3
4 ) = 0. Thus, G1 does not satisfy

the vanishing margins condition and G2 does satisfy the vanishing margins condition.
By contrast, G1 Blackwell dominates G2. This holds true since G1 is a mean-preserving
spread ofG2 (this can be easily verified through a simple calculation).

Paradoxically, when society does not asymptotically learn (as in G1) the conceal-
ment of some information from the consumers (as in G2) may lead to an improvement
for society since it will now asymptotically learn.16

5.3 The planner’s problem

In our model, the price pair, at each stage, is driven by the two profit-maximizing firms.
Alternatively, one could study a model where the price pair is set, at each stage, by a
social planner. The planner has access to the same information as the firms do but
wants to maximize social welfare, as measured by the discounted sum of utilities (see

16By contrast, unbounded signals do respect the Blackwell ordering.
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Smith, Sørensen, and Tian (2017)). One could then study necessary and sufficient con-
ditions on the information structures for the planner to asymptotically learn the realized
state. In particular, one could ask whether, the vanishing margins condition is instru-
mental for learning in this case as well.

Apparently, the vanishing margins condition does not characterize asymptotic
learning in the planner’s problem. To get some intuition, recall the observation in Sec-
tion 5.2 that the vanishing margins condition does not respect Blackwell ordering. Thus
asymptotic learning may fail for a certain information structure but carry through for
another information structure that is inferior in the Blackwell-ordering sense. We ar-
gue that this does not hold in the planner’s problem. This follows from the fact that if
the planner stopped experimenting at a certain prior μ > 1

2 for the superior informa-
tion structure, then he cannot guarantee a social welfare that is higher than μ starting
at the prior μ.17 Since the planner is always better off under the superior information
structure, he cannot guarantee more than μ with respect to the inferior information
structure. Thus, he must stop experimenting also in the problem where the consumer’s
private information is obtained from the inferior information structure.

Appendix A: Proofs of the stage game

A.1 Equilibrium analysis of �(μ)

We begin by studying the consumer’s best-reply strategy in �(μ). Recall that the con-
sumer’s posterior belief after observing the signal s is pμ(s) = μp(s)

μp(s)+(1−μ)(1−p(s)) .
Fix a price vector τ = (τ0, τ1 ) and note that the consumer optimizes his expected

utility against τ if he follows the following strategy:

σ(μ, s, τ) =

⎧⎪⎪⎨
⎪⎪⎩
a= 0 if pμ(s) − τ0 ≥ max

{(
1 −pμ(s)

) − τ1, 0
}

a= 1 if
(
1 −pμ(s)

) − τ1 ≥ max
{
pμ(s) − τ0, 0

}
a= e otherwise.

(5)

Every realized price vector (τ0, τ1 ) induces two possible market scenarios. One is fully
covered market scenario, where under σ , the consumer never uses the outside option
e and always buys from one of the firms for almost all signal realizations. The other is
a partially covered market scenario, where σ(μ, s, τ) = e holds with positive probability.
We can infer from (5) that when the market is fully covered, the consumer buys from
Firm 0 whenever pμ(s) − τ0 ≥ (1 −pμ(s)) − τ1 and when the market is not fully covered,
the consumer buys from Firm 0 whenever pμ(s) − τ0 ≥ 0.

Given a prior μ and a pair of prices (τ0, τ1 ), recall that vμ(τ0, τ1 ) is the threshold in
terms of the private belief above which buying from Firm 0 is the unique best-reply of
the consumer. That is, choosing Firm 0 is uniquely optimal for the consumer if and only
if p(s)> vμ(τ0, τ1 ). One can easily see from the above equations that vμ(τ0, τ1 ) has the

17If the planner stops experimenting at μ, then all the consumers will buy the product of Firm 0, which
generates a welfare of μ.
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following form:

vμ(τ0, τ1 ) =

⎧⎪⎪⎨
⎪⎪⎩

(1 −μ)(1 + τ0 − τ1 )
2μ− (2μ− 1)(1 + τ0 − τ1 )

if the market is fully covered,

(1 −μ)τ0

μ− (2μ− 1)τ0
otherwise.

(6)

Note that vμ(τ0, τ1 ) is a continuous function of (μ, τ0, τ1 ).
We start with some preliminary results concerning equilibrium behavior in the game

�(μ).
For μ ∈ [0, 1], we use the following shorthand: Gμ(x) = μG0(x) + (1 − μ)G1(x). It

follows by equation (3) that whenever the consumer’s strategy σ obeys equation (5), the
expected utility of Firm 0 in the game �(μ), 
0(τ0, τ1, σ ), can be written as follows:


0(τ0, τ1, σ ) = (
1 −Gμ

(
vμ(τ0, τ1 )

))
τ0. (7)

For a mixed strategy profile (φ0, φ1 ), letφ ∈ �([0, 1] × [0, 1]) be the price probability
distribution (φ0, φ1 ) induced over [0, 1] × [0, 1]. By equation (7), Firm 0’s payoff from
the mixed strategy profile (φ0, φ1 ) can be written as follows:


0(φ0, φ1, σ ) =
0(φ0, φ1 )

=
∫

(μ(1 −G0(vμ(τ0, τ1 ) + (1 −μ)
(
1 −G1

(
vμ(τ0, τ1 )

))
τ0 dφ(τ0, τ1 ), (8)

where vμ(·, ·) is defined as equation (6).
The next lemma provides an alternative way to write vμ(τ0, τ1 ) and its deriva-

tive. This will turn out to be useful in the sequel. Consider the following function
v̄μ : [0, 1]2 →R:

v̄μ(τ0, τ1 ) ≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

log

⎛
⎜⎝

1 + τ0 − τ1
2

1 − 1 + τ0 − τ1
2

⎞
⎟⎠ − log

(
μ

1 −μ
)

if the market is fully covered,

log
(

τ0

1 − τ0

)
− log

(
μ

1 −μ
)

if the market is not full.

(9)

Lemma 2. It holds that

∂v̄μ(τ)
∂τ0

∣∣∣∣
τ∗(μ)

=

⎧⎪⎪⎨
⎪⎪⎩

2

1 − (τ0 − τ1 )2 if the market is fully covered,

1
τ0(1 − τ0 )

if the market is not full

(10)

and

∂vμ(τ)
∂τ0

= ev̄μ(τ0,τ1 )(
1 + ev̄μ(τ))2

∂v̄μ(τ0, τ1 )
∂τ0

. (11)
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Proof. The proof makes standard use of the log-likelihood ratio transformation (see,
e.g., Smith and Sørensen (2000), Herrera and Hörner (2013), and Duffie, Malamud, and
Manso (2014)). The log-likelihood ratio of a belief p ∈ [0, 1] is given by log( p

1−p ). In
particular, the log likelihood ratio of the posterior belief is

log
(

pμ(s)
1 −pμ(s)

)
= log

(
μ

1 −μ
)

+ log
(

p(s)
1 −p(s)

)
. (12)

It follows from equation (6) that a consumer with private belief pμ(s) prefers Firm 0 if
and only if

log
(

pμ(s)
1 −pμ(s)

)
≥ log

(
vμ(τ)

1 − vμ(τ0, τ1 )

)
= v̄μ(τ0, τ1 ).

Equation (11) then follows directly from the fact that vμ(τ) = ev̄μ(τ)

1+ev̄μ(τ) .

The following simple observation will be useful in our analysis.

Observation 1. Let μ ∈ [0, 1] and let (φ0, φ1 ) be a SPE of �(μ). The following proper-
ties hold:

φ0
(
[2¯αμ − 1, 1]

) = 1 and φ1
(
[1 − 2ᾱμ, 1]

) = 1.

Proof. We prove the observation for Firm 0. Note that if ¯αμ ≤ 1
2 we have nothing to

prove. Assume that ¯αμ >
1
2 ; then, if τ0 = 2¯αμ − 1, the consumer will buy from Firm 0

almost everywhere for almost every signal realization s and every price τ1 ≥ 0 of Firm 1.
To see this, note that pμ(s)> ¯αμ for almost every signal s ∈ S. Therefore,

pμ(s) − (2¯αμ − 1)> 1 −pμ(s).

This shows that for a price τ0 = 2¯αμ − 1 the consumer buys from Firm 0 almost every-
where even for τ1 = 0. In particular, under any price τ0 ≤ 2¯αμ − 1 the expected profit
of Firm 0 is τ0. Therefore, if ¯αμ >

1
2 , the price 2¯αμ − 1 strictly dominates all prices

τ0 < 2¯αμ − 1 for Firm 0.

A.2 Properties of deterrence equilibria

A key property of a deterrence equilibrium is given in the following lemma.

Lemma 3. Let (φ0, φ1 ) be a deterrence equilibrium in the game �(μ). If Firm 1 is deterred,
then ¯αμ ≥ 1

2 . Symmetrically, if Firm 0 is deterred, then ᾱμ ≤ 1
2 .

In words, if firm i is driven out of the market (in the sense that the consumer surely
does not buy from it), it must be the case that the consumer’s posterior belief assigns a
probability of at most 1

2 that firm i is the superior firm.
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Proof. Assume to the contrary that ¯αμ <
1
2 and that (φ0, φ1 ) is a deterrence equilib-

rium in which Firm 1 is deterred. In this case, 
1(φ0, φ1 ) = 0. Consider a deviation of
Firm 1 to the pure strategy τ1 = 1−2¯αμ2 > 0. By equation (5), we can conclude that any
consumer whose signal falls in the set {s ∈ S|pμ(s) ∈ [ ¯αμ, ¯αμ + ¯αμ2 + 1

4 )} will choose Firm
1 almost everywhere for any equilibrium strategy φ0 for Firm 0.

Note that the set {s ∈ S|pμ(s) ∈ [ ¯αμ, ¯αμ + ε)} has positive probability for every ε > 0
and in particular for ε= ¯αμ+ ¯αμ2 + 1

4 . Therefore, this deviation entails a positive expected
utility for Firm 1, and hence a profitable deviation, thus contradicting the equilibrium
assumption.

We next turn to prove Proposition 2.

Proof of Proposition 2. Let us assume without loss of generality that Firm 1
is deterred and so ¯αμ ≥ 1

2 (by Lemma 3). It follows from Observation 1 that
φ0([2¯αμ − 1, 1]) = 1. Assume by way of contradiction that φ0[2¯αμ − 1 + δ, 1] > 0 for
some positive δ > 0 and consider the price τ̃1 = δ

2 for Firm 1 (the deterred firm). In this
case, for any realized τ0 ∈ [2¯αμ − 1 + δ, 1], any consumer with a private signal s such
that pμ(s) ∈ [ ¯αμ, ¯αμ + δ

4 ], an event whose probability is positive, will buy from Firm 1,
which, in turn, will have a positive utility. In the deterrence equilibrium, Firm 1’s utility
is obviously zero, and hence the price τ̃1 = δ

2 constitutes a profitable deviation, thus con-
tradicting the equilibrium assumption. Therefore, φ0[2¯αμ − 1 + δ, 1] = 0 for any δ > 0.
Hence, Firm 0 plays τ0 = 2¯αμ − 1 almost everywhere, as claimed.

By Lemma 3, the condition ¯αμ ≥ 1
2 is necessary in order for a deterrence equilibrium

(in which Firm 1 is deterred) to exist. We now turn to study the implications of this
condition.

Lemma 4. If (φ0, φ1 ) is a nondeterrence Bayesian Nash SPE of �(μ), then the following
conditions hold: φ0((2¯αμ−1, 1))> 0,
0(φ0, φ1, σ ) ≥ 2¯αμ−1, and
1(φ0, φ1 )> 0. Sym-
metrically for Firm 1,φ1((1 − 2ᾱμ, 1))> 0,
1(φ0, φ1, σ ) ≥ 1 − 2ᾱμ, and
0(φ0, φ1 )> 0.

Proof. We prove the first part of the lemma. Lemma 1 implies thatφ0([2¯αμ−1, 1]) = 1.
We further note that if (φ0, φ1 ) is a SPE profile for which φ0 is the Dirac measure on
2¯αμ − 1, then 
0(φ0, φ1 ) = 2¯αμ − 1, which means that the consumer buys from Firm
0 almost everywhere. Hence, such an equilibrium must be a deterrence equilibrium.
Therefore, it must hold that φ0((2¯αμ − 1, 1))> 0.

The fact that 
1(φ0, φ1 ) > 0 follows since, as in the proof of Proposition 2, if
φ0((2¯αμ − 1, 1))> 0, then Firm 1 can guarantee a positive payoff against φ0.

Appendix B: Proof of Theorem 2

Unbounded signals

We begin the proof of Theorem 2, by studying the case of unbounded signals, that is,
where ¯α = 0 and ᾱ = 1. The following corollary shows that whenever signals are un-
bounded there cannot be a deterrence equilibrium. In fact, all equilibria are nondeter-
rence equilibria.
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Corollary 4. If signals are unbounded, then there are no deterrence equilibria in �(μ).

Proof. Since ᾱ= 0 and ¯α= 1, it follows that ¯αμ = 0 and ᾱμ = 1. The proof now follows
from Lemma 3.

Bounded signals with vanishing margins

We now consider the case where signals are bounded, that is, ¯α, ᾱ ∈ (0, 1), and signals
exhibit the vanishing margins property, that is, g1( ¯α) = 0. In the following lemma, we
show that the vanishing margins property also yields that g0( ¯α) = 0.

Lemma 5. If the information structure (F0, F1, S) exhibits vanishing margins, then
g0( ¯α) = 0.

Proof. Since the vanishing margins condition holds, we have that g1( ¯α) = 0. Assume to
the contrary that g1( ¯α)< g0( ¯α). Since F0, F1 are absolutely mutually continuous, there
exists ε such that

∫
¯α+ε
¯α

g0(s)ds >
∫

¯α+ε
¯α

g1(s)ds⇒G0( ¯α+ ε)>G1( ¯α+ ε). This stands in
contradiction to Lemma 14 in Appendix D, which shows thatG0 first order stochastically
dominatesG1.

The second part of Theorem 2 is proved in the following proposition.

Proposition 3. If the information structure (F0, F1, S) exhibits vanishing margins, then
for every μ ∈ (0, 1), there is no deterrence equilibrium in �(μ).

Proof. Without loss of generality, assume that μ ∈ ( 1
2 , 1) and assume to the contrary

that there exists a deterrence equilibrium in �(μ). By Lemma 3, the only possible deter-
rence equilibrium is one in which Firm 1 is deterred and by Proposition 2 it must take
the form of (2¯αμ − 1, φ1 ). Therefore, 
0(2¯αμ − 1, φ1 ) = 2¯αμ − 1. We first claim that it is
sufficient to show that


0(2¯αμ − 1 + ε, 0) −
0(2¯αμ − 1, 0)> 0 (13)

for some ε > 0. To see this, note that 
0(2¯αμ − 1, φ1 ) = 2¯αμ − 1 for any mixed strategy
φ1 of Firm 1. In addition, for any fixed price τ0 of Firm 0 the payoff
0(τ0, τ1 ) is (weakly)
decreasing in τ1. Therefore, the inequality in (13) implies that 
0(2¯αμ − 1 + ε, φ1 ) >
2¯αμ − 1 for any mixed strategy φ1 of Firm 1. Therefore, if 2¯αμ − 1 + ε yields a profitable
deviation to Firm 0 against price τ1 = 0 it also yields a profitable deviation with respect
to any strategy φ1 of Firm 1.

To establish equation (13), note that

∂
0(τ0, 0)
∂τ0

∣∣∣∣
τ0=2¯αμ−1

= 1 − (2¯αμ − 1)

(
∂vμ(τ0, 0)
∂τ0

∣∣∣∣
2¯αμ−1

)(
μg0( ¯α) + (1 −μ)g1( ¯α)

)
. (14)
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Since vanishing margins holds, by Lemma 5 we have that g1( ¯α) = g0( ¯α) = 0. There-
fore, equation (14) implies that

∂
0(τ0, 0)
∂τ0

∣∣∣∣
τ0=2¯αμ−1

= 1.

Hence, 
0(2¯αμ − 1 + ε, 0) −
0(2¯αμ − 1, 0)> 0 for all sufficiently small ε > 0.

If a deterrence equilibrium does not exist, then at each stage of our sequential setting
the actual action of the consumer will give us additional information and the public
belief will shift. Intuitively, this drives the learning result. However, it turns out that this
is not enough. Herrera and Hörner (2013) show that in the herding model the fact that
μt �= μt+1 almost everywhere does not imply that asymptotic learning holds. In order to
establish asymptotic learning, the following stronger result is required.

Lemma 6. If the information structure (F0, F1, S) exhibits the vanishing margins con-
dition or signals are unbounded, then for every ε > 0 there exists δ > 0 such that if
μ ∈ [ε, 1 − ε] and φ = (φ0, φ1, σ ) is a SPE of �(μ), then Pμ,φ(σ(τ0, τ1, s) = a) ≤ 1 − δ

for any Firm i= 0, 1.

Note that Lemma 6 subsumes Proposition 3 in that under vanishing margins, a de-
terrence equilibrium does not exist. This applies that there exists an upper bound on
the probability that the consumer buys from any given firm. This in turn implies that if
μ is bounded away from zero and one, then the distance between μ and the posterior
probability, conditional on the action of the current consumer, is bounded away from
zero.

Proof. We prove the lemma under the assumption that the information structure
(F0, F1, S) exhibits vanishing margins. The proof for the unbounded case is similar and,
therefore, omitted.

Assume by way of contradiction that there exists an ε > 0 and a sequence of SPE
φk = (φk0 , φk1 , σk ) of �(μk ) such that μk ≤ 1 − ε and

lim
k→∞

Pμk,φk
(
σk(τ0, τ1, s) = 0

) = 1.

In words, as k increases, the prior approaches 1. We show that this entails that the prob-
ability of the consumer buying from Firm 0 approaches 1 as well.

We can clearly assume (possibly by considering subsequences) that the sequence
{
ω(φk0 , φk1 , σk )}∞k=1 converges. Similarly, we can assume that {(φk0 , φk1 , μk )}∞k=1 con-
verges to some18 (φ0, φ1, μ). As limk→∞ Pμk,φk(σk(a= 0)) = 1, the limit profit of Firm 1
shrinks to zero:

lim
k→∞


1
(
φk0 , φk1 , σk

) = 0.

18The convergence of φkω is assumed with respect to the weak topology.
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It follows that the limit price of Firm 0, limk→∞φk0 , is the pure deterrence price
2¯αμ − 1. To see this, assume by way of contradiction that φ0((2¯αμ − 1 + η, 1)) > 0 for
some η > 0. We claim that Firm 1 can guarantee a positive profit against φ0 by playing
τ′

1 = η
2 in �(μ). In this case, the consumers for whom pμ(s) ∈ [ ¯αμ, ¯αμ + δ

4 ) will strictly
prefer to buy from Firm 1. This yields a positive expected payoff that is bounded away
from zero, for all sufficiently large k. A contradiction to the fact that (φk0 , φk1 , μk ) is a SPE
for every k.

Consider the game �(μk ) and the strategy profile (φk0 , φk1 ) = (2¯αμk − 1, φk1 ). A stan-
dard continuity consideration implies that since φk = (φk0 , φk1 ) is a SPE of �(μk ) and
limk→∞(φk0 , φk1 , μk ) = (φ0, φ1, μ), it holds that (φ0, φ1 ) is a SPE of �(μ). Therefore,
(φ0, φ1 ) = (2¯αμ−1, φ1 ). Under the price 2¯αμ−1, the consumer buys from Firm 0 almost
everywhere.

This yields that (φ0, φ1 ) is a deterrence equilibrium of �(μ), which stands in contra-
diction to Proposition 2.

We get the following corollary of Lemma 6.

Corollary 3. If signals exhibit vanishing margins or if signals are unbounded, then for
every ε > 0 there exists some r > ¯α and δ′ > 0 such that if μ ∈ [ε, 1 − ε] and φ= (φ0, φ1 )
is a SPE of �(μ), then

Pμ,φ
(
vμ(τ0, τ1 ) ≥ r)> δ′.

A similar condition holds for Firm 1.

Bounded signals without vanishing margins

The following lemma shows that the consumer’s threshold signal approaches the lower
bound ¯α as μ approaches 1 in every SPE.

Lemma 7. Let {μk}∞k=1 ⊆ (0, 1) be a sequence of priors such that limk→∞μk = 1. Let φk =
(φk0 , φk1 , σk ) be a SPE for the game �(μk ). Then the following holds for every ε > 0:

lim
k→∞

Pμk,φk
(
vμk(τ0, τ1 ) ∈ [ ¯α, ¯α+ ε]

) = 1.

Proof. Assume by way of contradiction that there exists some ε0 > 0 and δ > 0 for
which the following holds (possibly considering a subsequence):

lim
k→∞

Pμk,φk
(
vμk(τ0, τ1 ) ∈ [ ¯α, ¯α+ ε]

)
< 1 − δ.

This implies that the payoff to Firm 0 is at most 1−δG0( ¯α+ε0 )< 1. To see this, note that
with a probability of at least δ > 0 it holds for sufficiently large k that vμk(τ0, τ1 )> ¯α+ ε.
Therefore, with probability at least δ the profit of Firm 0 is bounded by 1 −G0( ¯α+ ε0 ).
Therefore, the expected profit of Firm 0 is bounded by

δ
(
1 −G0( ¯α+ ε0 )

) + (1 − δ) = 1 − δG0( ¯α+ ε0 ).
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Since signals are bounded and limk→∞μk = 1 it must hold, for sufficiently large k,
that

2¯αμk − 1> 1 − δG0( ¯α+ ε).

In the game �(μk ), consider a deviation by Firm 0 to the pure price τ0 = 2¯αμk − 1. Firm
0 then guarantees an expected revenue of

2¯αμk − 1> 1 − δG0( ¯α+ ε),

which implies a contradiction.

The following corollary shows that as μ approaches 1, it holds that for any SPE of
�(μ), the equilibrium price of Firm 0 approaches 1.

Corollary 5. Let {μk}∞k=0 ⊂ (0, 1) be a sequence of priors that converges to 1, and let
(φk0 , φk1 , σk ) be a SPE of �(μk ) for any k. Then

lim
k→∞

φk0 = 1.

Corollary 5 follows from Proposition 2 and Lemma 4.
The following lemma provides an upper limit to the support of Firm 1 in a nondeter-

rence equilibrium.

Lemma 8. If (φ0, φ1 ) is a nondeterrence equilibrium, then φ0([2¯αμ − 1, ᾱμ]) = 1 and
φ1([1 − 2ᾱμ, 1 − ¯αμ]) = 1.

Proof. It follows from Proposition 2 that
0(φ0, φ1 )> 0. Note further that for any price
τ0 > ᾱμ the consumer would be strictly better off choosing e than buying from Firm 0.
Therefore, we must have that φ0((ᾱμ, 1]) = 0 for otherwise a profitable deviation could
have been constructed for Firm 0.

Finally, we present a proof of the third part of Theorem 2, which considers the case
of nonvanishing margins. In such a case, whenever the prior is sufficiently biased in
favor of one firm, there is a unique equilibrium in which the a priori unfavorable firm is
deterred.

Proposition 4. If g0( ¯α) > 0, then ∃μ̄ ∈ (0, 1) such that any SPE of �(μ) is a deterrence
equilibrium for all μ> μ̄. Symmetrically, if g1(ᾱ)> 0, then ∃

¯
μ ∈ (0, 1) such that any SPE

of �(μ) is a deterrence equilibrium for all μ<
¯
μ.

Proof. We prove the first part of the proposition. The proof of the second part follows
from symmetric considerations.

Assume by way of contradiction that there exists a sequence of priors {μk} such that
limk→∞μk = 1 and a corresponding sequence of SPEs, {(φk0 , φk1 )}∞k=1, such that φk =
(φk0 , φk1 ) is a nondeterrence equilibrium of �(μk ) for all values of k.
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Note that it must be the case that for almost every realized price τ0 (with respect to
φk0 ) of Firm 0,


0
(
τ0, φk1

) =
0
(
φk0 , φk1

)
(otherwise Firm 0 would have a profitable deviation).

Let τk0 be the highest price in the support of φk0 . It follows from the above that


0
(
τk0 , φk1

) =
0
(
φk0 , φk1

)
. (15)

Since (φk0 , φk1 ) is a nondeterrence equilibrium, Lemma 4 implies thatφ0((2¯αμk −1, 1])>
0 for all k≥ 1.

We next show that for all sufficiently large k there exists ε > 0 such that 
0(τk0 −
ε, φk1 ) −
0(τk0 , φk1 )> 0.

We claim first that vμk(τk0 , τ1 ) > ¯α for almost every realized τ1 (with respect to
φk1 ). Assume that there exists a measurable subset T ⊂ [0, 1] with φk1 (T ) > 0 such that
vμk(τk0 , τ1 ) = ¯α for all τk0 . Since vμk(τ0, τ1 ) is increasing in τ0 for every fixed τ1, it fol-
lows from the definition of τk0 that vμk(τk0 , τ1 ) = ¯α for φk0 almost all realized prices τk0 of
Firm 0. Therefore, we must have that the profit of Firm 1, conditional on τ1 ∈ T , is zero.
By Lemma 4, Firm 1’s expected payoff under φk is strictly positive, and hence we must
have a profitable deviation for Firm 1.

Using equation (7), we can write

∂
0
(
τ0, φk1

)
∂τ0

∣∣∣∣
τ0=τk0

=
∫

(μk(1 −G0(vμk(τ0, τ1 ) + (1 −μk )
(
1 −G1

(
vμk(τ0, τ1 )

))
dφk1 (τ1 )

− τk0
(
∂vμk(τ0, τ1 )

∂τ0

∣∣∣∣
τk0

)(
μkg0

(
vμk

(
τk0 , τ1

)) + (1 −μ)g1
(
vμk

(
τk0 , τ1

)))
dφk1 (τ1 ). (16)

Since limk→∞μk = 1, it follows from Lemma 7 that

lim
k→∞

Pμk,φk1

(
vμk

(
τk, τk1

) − ¯α> δ
) = 0,

for any δ > 0.
Since the information structure (F0, F1, S) does not exhibit the vanishing margins

property, it follows that g1( ¯α)> 0 and, by Lemma 5, that g0( ¯α)> 0. Therefore, for some
β> 0,

lim
k→∞

Pμk,φk1

(
μkg0

(
vμk

(
τk0 , τ1

)) + (1 −μk )g1
(
vμk

(
τk0 , τ1

))
>β

) = 1.

We further note that φk1 ([0, 1 − ¯αμk ]) = 1 by Lemma 8.
Since limk→∞μk = 1, we have that limk→∞φk1 = 0. Moreover, Corollary 5 implies

that limk→∞ τk0 = limk→∞φk0 = 1. Therefore, limk→∞(τk0 − τk1 )2 = 1. Hence, equation (9)
and equation (10) of Lemma 2 imply that

lim
k→∞

(
∂vμk

(
τ0, τk1

)
∂τ0

∣∣∣∣
τk0

)
= ∞, (17)
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for any choice of τk1 in the support of φk1 . Therefore, equation (16) implies that
∂
0(τ0,τ1 )

∂τ0
|τ0=τk0 < 0 for all sufficiently large values of k. Hence, in particular, for all suffi-

ciently large values of k there exists a sufficiently small ε > 0 such that


0
(
τk0 − ε, φk1

) −
0
(
τk0 , φk1

)
> 0.

Therefore, equation (15) implies that for all sufficiently large k, Firm 0 has a profitable
deviation from φk0 . This stands in contradiction to the assumption that (φk0 , φk1 ) is an
equilibrium strategy.

Theorem 2 consolidates Corollary 4, Proposition 3, and Proposition 4.

Appendix C: Proofs for the farsighted firms

We state a lemma that will prove useful for obtaining the results for farsighted firms.

Lemma 9. 2¯αμ − 1 is a strictly convex and strictly increasing function of μ on [0, 1] with

a derivative that is bounded by 2(1−¯α)
(1−2¯α)2 .

Proof. Let

h(μ) = 2¯αμ − 1 = 2
μ¯α

μ¯α+ (1 −μ)(1 − ¯α)
− 1. (18)

The first derivative of h(μ) is h′(μ) = 2¯α(1−¯α)
[μ(2¯α−1)+(1−μ)]2 , which is positive and bounded by

2(1−¯α)
(1−2¯α)2 . This establishes that 2¯αμ − 1 is strictly increasing with a bounded derivative.

The second derivative of h(μ) is

d2h(μ)

dμ2 = 4(1 − ¯α)¯α(2¯α− 1)(
μ(1 − 2¯α) − (1 − ¯α)

)3 . (19)

Recall that ¯α < 0.5 and so the numerator in equation (19) is negative. In addition, as
μ≤ 1 we conclude that 1 − ¯α> 1 − 2¯α≥ μ(1 − 2¯α) and so the denominator of (19) is also

negative. Thus, d
2h(μ)
dμ2 > 0 and so h(μ) must be strictly convex.

C.1 Proof of Theorem 3

Theorem 3. Consider a bounded information structure (F0, F1, S) that exhibits the van-
ishing margins property. Asymptotic learning holds for any discount factor δ > 0 in every
pure Markovian equilibrium. If, in addition, ¯α <

1
3 and ᾱ > 2

3 , then asymptotic learning
holds for any discount factor δ > 0 in every Markovian equilibrium.

We recall that for every Markovian equilibrium (φ̄0, φ̄1, σ̄ ) there exists functions
Vi : [0, 1] → R for i = 0, 1 such that the continuation payoff of firm i 
δi (φ̄0, φ̄1, σ̄|ht ) =
Vi(μt ) is a function of the public belief μt only.

We call a Markovian equilibrium dominant if limt→∞ maxi∈{0,1} P(φ̄0,φ̄1,σ̄ )(σ̄(ht )(τ0,
τ1 ) = i|ht ) = 1 with probability. Thus, in a dominant equilibrium, when time goes to
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infinity, the conditional probability that there exists a unique firm i that dominates the
market approaches one. In contrast with the myopic case where all equilibria are domi-
nant, in the general case an equilibrium may be nondominant. However, one can easily
show that if the discount factor δ is sufficiently small, then all equilibria are dominant.
In general, we have the following.

Lemma 10. Consider a bounded information structure (F0, F1, S) and let (φ̄0, φ̄1, σ̄ ) be
a Markovian equilibrium. If (φ̄0, φ̄1, σ̄ ) is a pure equilibrium or if ¯α <

1
3 and ᾱ > 2

3 , then
(φ̄0, φ̄1, σ̄ ) is a dominant equilibrium.

It follows from Lemma 10 that in order to prove Theorem 3 it is sufficient to show
that if the vanishing margins condition holds, then asymptotic learning holds in any
dominant equilibrium. We start with two auxiliary claims.

Claim 1. If (F0, F1, S) is a bounded information structure that exhibits the vanish-
ing margins property and (φ̄0, φ̄1, σ̄ ) is a Markovian dominant equilibrium, then
mini=0,1 lim inft→∞ Vi(μt ) = 0 holds with probability one.

Proof. Assume by way contradiction that the claim does not hold for some Maroko-
vian dominant equilibrium (φ̄0, φ̄1, σ̄ ). Therefore, there exists a positive-measure sub-
set of histories for which lim inft→∞ Vi(μt ) ≥ c > 0 for both firms. This implies that with
positive probability μ∞ ∈ [η, 1 − η] for some constant 0 < η < 1

2 . To see this, note that
otherwise we would have that limt→∞μt ∈ {0, 1} with probability one, which stands in
contradiction to lim inft→∞ Vi(μt ) ≥ c > 0 for both firms. Let H̃ ⊆H∞ be the set of histo-
ries for which limt→∞μt = μ∞ ∈ [η, 1 −η] and lim inft→∞ Vi(μt ) ≥ c > 0 for both Firms i.
By our assumption, it holds that P(φ̄0,φ̄1,σ̄ )(H̃ ) = r > 0.

Recall that one can write the continuation payoff of firm i given a history ht as fol-
lows:

Vi(μt ) = (1 − δ)
i(φ̄0, φ̄1, σ̄|ht ) + δEφ̄0,φ̄1,σ̄

(
Vi(μt+1 )|ht

)
. (20)

We claim that with positive probability it holds that

Eφ̄0,φ̄1,σ̄

(
V0(μt+1 )|ht

) + θ <
0(φ̄0, φ̄1, σ̄|ht ) (21)

for some θ > 0 and infinitely many times t. That is, with positive probability the stage-
game payoff at time t is larger by θ than the expected continuation payoff at time t + 1.
To see this, note that equation (20) implies that if P(φ̄0,φ̄1,σ̄ )(σ̄(ht )(τ0, τ1 ) = j|ht ) ≥ 1 − ε
for some firm j, then for the other firm i,

Vi(μt ) ≤ ε+ δEφ̄0,φ̄1,σ̄

(
V0(μt+1 )|ht

)
. (22)

Therefore, if the condition in (21) does not hold with positive probability we have
that for every h ∈ H̃ and ε > 0 it holds for all sufficiently large t that Eφ̄0,φ̄1,σ̄ (V0(μt+1 )|

ht ) ≥ 
0(φ̄0, φ̄1, σ̄|ht ) − ε. In addition, equation (22) implies that 1
δ (V0(μt ) − ε) ≤

Eφ̄0,φ̄1,σ̄ (V0(μt+1 )|ht ) infinitely often with positive probability. Since for every h ∈ H̃,
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we have that V0(μt ) ≥ c/2 from some time period onward, we must have that V0(μt )> 1
with positive probability. This stands in contradiction to the fact that V0(μ) ≤ 1 for every
μ ∈ [0, 1].

Note next that if P(φ̄0,φ̄1,σ̄ )(σ̄(ht )(τ0, τ1 ) = i|ht ) ≥ 1 − ε, then P(φ̄0,φ̄1,σ̄ )(vμt (τ0, τ1 ) ≤
¯α+η(ε)|ht ) ≥ 1 −η(ε) for some η(ε) that goes to zero when ε goes to zero.

Let β> 0. Consider a deviation of Firm 0 at time t that is obtained by reducing every
realized price above β in the support of φ̄0(ht ) by β. Such a deviation φ̄′

0 when applied
at time t guarantees a stage-game payoff of 
0(φ̄0, φ̄1, σ̄|ht ) − β. In addition, for every
history ht when (21) holds we have P(φ̄′

0,φ̄1,σ̄ )(vμt (τ0, τ1 ) = ¯α|ht ) with a probability that

approaches one as t goes to infinity. Therefore, such a deviation guarantees a stage-
game payoff that is arbitrarily close to 
0(φ̄0, φ̄1, σ̄|ht ) and guarantees that μt+1 = μt
with a probability that approaches one as t goes to infinity.

Applying the deviation repeatedly in all subsequent time periods implies that Firm 0
can guarantee a continuation payoff that is arbitrarily close to 
0(φ̄0, φ̄1, σ̄|ht ) as time
goes to infinity. Equation (21) implies that for sufficiently large t it holds with positive
probability that there exists a history ht at which Firm 0 has a profitable deviation. This
stands in contradiction to the fact that (φ̄0, φ̄1, σ̄ ) is an equilibrium. Therefore, we have
that for almost every infinite history h ∈H ′ it holds that the liminf continuation payoff
of Firm 1 lim inft→∞ V1(μt ) = 0. This concludes the proof of the claim.

Claim 2. If (F0, F1, S) is a bounded information structure that exhibits the
vanishing margins and (φ̄0, φ̄1, σ̄ ) is a Markovian equilibrium for which
mini=0,1 lim inft→∞ Vi(μt ) = 0 holds with probability one, then asymptotic learning holds.

Proof. Assume by way of contradiction that the claim does not hold. Then there exists
a positive measure subset of histories for which limt→∞μt /∈ {0, 1}. Assume without loss
of generality that the subset of histories h ∈ H for which limt→∞μt ∈ [ 1

2 , 1 − η] has a
positive probability for someη> 0. We denote this subset byH ′. We can now use similar
arguments to those invoked in the proof of Proposition 2 to conclude that for almost
every history h ∈H ′ it holds that lim inft→∞ |
δ0(φ̄0, φ̄1, σ̄|ht ) − 2¯αμt − 1| = 0.

For every ε > 0, let us denote byHε the set of all finite histories ht for which∣∣
δ0(φ̄0, φ̄1, σ̄|ht ) − 2¯αμt − 1
∣∣ ≤ ε.

It follows from the above that there exists r > 0 such that for every ε > 0,

P(φ̄0,φ̄1,σ̄ )

(
∃t such that ht ∈Hε and

1
2

≤ μt ≤ 1 − η

2

)
≥ r.

As we assume vanishing margins, we can invoke Proposition 3 and conclude that
there exists sufficiently small ε0 > 0 such that whenever μ ≤ 1 − η

2 , Firm 0 has some
price τ0 ∈ [0, 1] that guarantees the following stage payoff:


0(τ0, φ1, μ)> 2¯αμ − 1 + ε0, (23)

for every strategy φ1 ∈ �([0, 1]) of Firm 1.
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We define the strategy φ̂0 for Firm 0 as follows. Let h be some finite history. If h ∈
Hε0

2
, then set φ̂0(ht ) = τ0, where τ0 is the price that satisfies the inequality in equation

(23). If h /∈Hε0
2

but has some prefix ht ∈Hε0
2

, then set the price at 2¯αμt+1 − 1 (where μt+1

is the public belief at stage t + 1). Note that this implies that from stage t + 1 onward
Firm 1 is deterred and the public belief remains fixed. Finally, whenever no prefix of h is
inHε0

2
let the price be that which was chosen according to the original strategy φ̄0.

The continuation payoff of Firm 0 for any finite history inHε0
2

is

(1 − δ)[2¯αμt − 1 + ε0] + δE(φ̂0,φ̄1,σ̄ )[2¯αμt+1 − 1|ht ].

That is, the current period deviation of Firm 0 yields, by equation (23), an expected pay-
off of at least 2¯αμt − 1 + ε0. Thereafter, the value of μt+1 is realized and in all subsequent
periods t ′ > t Firm 0 receives a constant payoff of 2¯αμt+1 − 1. As the function 2¯αμ − 1
is convex (by Lemma 9) this continuation payoff is guaranteed to satisfy the following
inequality:

E(φ̂0,φ̄1 ),σ̄[2¯αμt+1 − 1|ht ] ≥ 2¯αμt − 1.

Comparing this with the continuation payoff from the original strategy implies that the
deviation yields a profit that is at least (1 − δ) ε0

2 . This stands in contradiction to the fact
that (φ̄0, φ̄1, σ̄ ) is a Bayesian Nash equilibrium.

Theorem 3 readily follows from Lemma 10, Claim 1, and Claim 2. We have therefore
left to prove Lemma 10. Before proving Lemma 10, we prove the following auxiliary
lemma.

Lemma 11. Let μ ≥ 1
2 , (φ0, φ1 ) ∈ �([0, 1]) × �([0, 1]) a pair of mixed strategies for the

firms, and a strategy σ of consumer in �(μ). Assume that for every pair (τ0, τ1 ) of prices
in the support of (φ0, φ1 ) it holds that vμ(τ0, τ1 ) ∈ { ¯α, ᾱ}. If 
0(φ0, φ1, σ ) > 0, then
there exists a price τH0 such that 
0(φ0, φ1, μ) ≥ 
0(τH0 , φ1, μ) and vμ(τ0, τ1 ) = ¯α for
every price τ1 in the support of φ1. Moreover, if P(φ0,φ1,σ )(σ(s, (τ0, τ1 )) = 1) = r, then

0(τH0 , φ1, μ) ≥ 1

1−r 
0(φ0, φ1, μ).

A symmetric statement holds for Firm 1 and μ≤ 1
2 .

Proof. Let τH0 be the supremum across all prices in the support of φ0 such that
vμ(τ0, τ1 ) = ¯α holds with positive probability. We claim first that vμ(τH0 , τ1 ) = ¯α holds
for any price in the support of φ1. To see this, note first that τH0 ≤ ¯αμ. This follows since
for τ0 > ¯αμ it holds that vμ(τ0, τ1 )> ¯α for any price τ1. This inequality follows from the
fact that for τ0 > ¯αμ some consumers have a negative expected profit from buying Firm
0’s product. We next contend that

ᾱμ − τH0 > 1 − ᾱμ. (24)

Inequality (24) follows since for ¯α = 1
3 , ᾱ = 2

3 , if we let τH0 = ¯αμ, then (24) becomes

2( 2μ
2μ+(1−μ) ) − ( μ

μ+2(1−μ) ) − 1 > 0. One can easily show that the function 2( 2μ
2μ+(1−μ) ) −
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( μ
μ+2(1−μ) ) − 1 is strictly positive on ( 1

2 , 1). Therefore, when ¯α <
1
3 , ᾱ > 2

3 , and τH0 ≤ ¯αμ
the inequality is strict for 1

2 ≤ μ < 1. Inequality (24) implies that if the price of Firm 0 is
τH0 ≤ ¯αμ, then even if Firm 1 gives away its product for free, some consumers (those with
a posterior belief that is close to ᾱμ) will choose to buy from Firm 0. This together with
the fact that vμ(τ0, τ1 ) ∈ { ¯α, ᾱ} implies that vμ(τH0 , τ1 ) = ¯α for any price τ1 in the support
of Firm 1, as desired.

Therefore, for any price τ0 > τ
H
0 in the support of φ0 it holds that vμ(τ0, τ1 ) = ᾱ.

Hence, 
0(τH0 , φ1, σ ) = τH0 ≥
0(φ0, φ1, σ ).
Finally, note that


0(φ0, φ1, σ ) ≤ 0 ×φ0
(
τ0 > τ

H
0

) +φ0
(
τ0 ≤ τH0

)
τH0 .

The last assertion follows since φ0(τ0 ≤ τH0 ) = P(φ0,φ1,σ )(σ(s, (τ0, τ1 )) = 0) = 1 − r.
We next turn to the proof of Lemma 10.

Proof of Lemma 10. Let (φ̄0, φ̄1, σ̄ ) be a Markovian equilibrium and assume to the
contrary that it is not a dominant equilibrium. As mentioned, every equilibrium for
which asymptotic learning holds is also a dominant equilibrium. It therefore follows
from Claim 2 that lim inft→∞ Vi(μt ) ≥ c holds with positive probability for some c > 0 and
i = 1, 2. This implies that the following event: lim inft→∞ Vi(μt ) ≥ c for some c > 0 and
i= 1, 2 and limt→∞μt = μ∞ ∈ [η, 1 − η] for some η > 0, holds with positive probability.
Let H̃ ⊆H∞ be a subset of histories for which lim inft→∞ Vi(μt ) ≥ c > 0 for i = 1, 2, and
P(φ̄0,φ̄1,σ̄ )(H̃ ) > 0. Assume further, without loss of generality, that μ∞ ∈ [ 1

2 , 1 − η] for

some η> 0 for any history h ∈ H̃.
We note that for every ε > 0 and a history h ∈H there exists a time t ′ such that for t ≥

t ′ it holds that either P(φ̄0,φ̄1,σ̄ )(vμt (τ0, τ1 ) ≤ ¯α+ ε|ht ) ≥ 1 − ε or P(φ̄0,φ̄1,σ̄ )(vμt (τ0, τ1 ) ≥
ᾱ− ε|ht ) ≥ 1 − ε. That is, with probability that approaches one the realized pair of prices
(τ0, τ1 ) has the property that vμt (τ0, τ1 ) approaches the boundaries of the signal’s poste-
rior distribution. To see this note that, as in the proof of Theorem 1, the subset of histo-
ries h ∈H∞ for which P(φ̄0,φ̄1,σ̄ )(vμt (τ0, τ1 ) ∈ [ᾱ+ ε, ¯α− ε]|ht )> ε holds infinitely often
for some ε > 0 must lead consumers and firms to learn the identity of the superior firm,
and hence μ∞ ∈ {0, 1}. Therefore, by slightly reducing the price of firm 0 that is identi-
fied in Lemma 11 we have that for every θ > 0 if
0(φ̄0, φ̄1, σ̄|ht )> θ, then one can find a
price τt0 such that both
0(τt0, φ̄1, σ̄|ht ) approaches
0(φ̄0, φ̄1, σ̄|ht ) and vμt (τ0, τ1 ) = ¯αholds with probability that approaches one as, as t goes to infinity.

We can now consider two cases. If inequality (21) holds for some θ > 0 and infinitely
many times t for a positive-measure subset of historiesH ′ ⊆ H̃, then we can use a similar
consideration to the one applied in Claim 1 to deduce that Firm 0 has a profitable devi-
ation. Otherwise, we must have that 
0(φ̄0, φ̄1, σ̄|ht ) approaches Eφ̄0,φ̄1,σ̄ (V0(μt+1 )|ht )

as t goes to infinity for almost every history h ∈ H̃. Since in addition it holds that
lim inft→∞ V1(μt ) ≥ c, we must have that for some r > 0 and every ε > 0 it holds with
probability one that P(φ̄0,φ̄1,σ̄ )(σ̄(ht )(s, (τ0, τ1 )) = 1|ht ) ≥ r. We can now again use
Lemma 11 to deduce that as t goes to infinity Firm 0 can deviate and guarantees a con-
tinuation payoff that is arbitrarily close to 1

1−r 
0(φ̄0, φ̄1, σ̄|ht ). This stands in contra-
diction to the fact that (φ̄0, φ̄1, σ̄ ) is a Markovian equilibrium.
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C.2 Proof of Theorem 4

Theorem 4. Consider a bounded information structure (F0, F1, S) such that either
g0( ¯α) > 0 or g1(ᾱ) > 0. Asymptotic learning fails for any discount factor δ > 0 in every
pure Markovian equilibrium.

We now turn to the proof of Theorem 4. We prove the theorem for the case where
g0( ¯α) > 0 (the case where g1(ᾱ) > 0 is shown symmetrically). Fix δ > 0. To prove the
theorem, assume to the contrary that there exists a pure Markovian equilibrium (φ̄0, φ̄1 )
for which asymptotic learning holds. That is, φ̄i : [0, 1] → [0, 1] is the pure equilibrium
strategy of firm i that chooses a price as a function of the public belief. Let V : [0, 1] →
[0, 1] be the function representing the continuation payoff of Firm 0 as a function of the
public belief19 μ.

Given a pair of prices (τ0, τ1 ) and a prior μ, let ϕa(μ, (τ0, τ1 )) be the probabil-
ity that the consumer chooses action a ∈ {0, 1, e}. Thus, ϕω(μ, (τ0, τ1 )) represents
the probability that the consumer chooses to buy from Firm ω where ω = 0, 1, and
ϕe(μ, (τ0, τ1 )) represents the probability that the consumer chooses the outside option
e. Let wμ(τ0, τ1 ) be the supremum over α ∈ [α, α] such that an agent with a posterior αμ
will choose Firm 1. We can write

ϕ0
(
μ, (τ0, τ1 )

) = μ(
1 −G0

(
vμ(τ0, τ1 )

)) + (1 −μ)
(
1 −G1

(
vμ(τ0, τ1 )

))
,

ϕ1
(
μ, (τ0, τ1 )

) = μG0
(
wμ(τ0, τ1 )

) + (1 −μ)G1
(
wμ(τ0, τ1 )

)
,

ϕe
(
μ, (τ0, τ1 )

) = μ(
G0

(
vμ(τ0, τ1 )

) −G0
(
wμ(τ0, τ1 )

))
+ (1 −μ)

(
G1

(
vμ(τ0, τ1 )

) −G1
(
wμ(τ0, τ1 )

))
.

Furthermore, for a ∈ {0, 1, e}, letμa(μ, (τ0, τ1 )) be the posterior probability ofω= 0 con-
ditional on action a of the consumer. This represents the public belief in the next period
as a function of the consumer’s choice. By Bayes’ law, we have

μ0
(
μ, (τ0, τ1 )

) = μ
[
1 −G0

(
vμ(τ0, τ1 )

)]
ϕ0

(
μ, (τ0, τ1 )

) , μ1
(
μ, (τ0, τ1 )

) = μG0
(
wμ(τ0, τ1 )

)
ϕ1

(
μ, (τ0, τ1 )

)
and μe

(
μ, (τ0, τ1 )

) = μ
[
G0

(
vμ(τ0, τ1 )

) −G0
(
wμ(τ0, τ1 )

)]
ϕe

(
μ, (τ0, τ1 )

) .

Note that when the public belief isμt = μ, the stage t payoff to Firm 0 isϕ0(μ, (τ0, τ1 ))τ0.
The continuation payoff in the next stage is V (μ0(μ, (τ0, τ1 ))) with probability ϕ0(μ,
(τ0, τ1 )), it is V (μ1(μ, (τ0, τ1 ))) with probability ϕ1(μ, (τ0, τ1 )), and it is V (μe(μ,
(τ0, τ1 ))) with probability ϕe(μ, (τ0, τ1 )). Overall, we can write Firm 0’s expected con-
tinuation payoff 
δ0(τ0, τ1 ) as a function of the pair of prices (τ0, τ1 ) and the prior μ as
follows:


δ0(τ0, τ1|ht ) = (1 − δ)ϕ0
(
μ, (τ0, τ1 )

)
τ0

19Since we analyze the game from the perspective of Firm 0, we suppress the subscript 0.



1794 Arieli, Koren, and Smorodinsky Theoretical Economics 17 (2022)

+ δ[ϕ0
(
μ, (τ0, τ1 )

)
V

(
μ0

(
μ, (τ0, τ1 )

))
+ϕ1

(
μ, (τ0, τ1 )

)
V

(
μ1

(
μ, (τ0, τ1 )

))]
+ δϕe

(
μ, (τ0, τ1 )

)
)V (μe

(
μ, (τ0, τ1 )

)
. (25)

Note that for (τ0, τ1 ) = (φ̄0(μ), φ̄1(μ)), by the definition of V , we have that V (μ) =

δ0(φ̄0(μ), φ̄1(μ)|ht ).

LetC > 0 be a constant and consider an auxiliary payoff function�μ to Firm 0 that is
obtained when one replaces the continuation payoff V in (25) with the functionWμ(μ̂) =
V (μ) +C|μ− μ̂|. That is,

�μ(τ0, τ1 ) = (1 − δ)ϕ0
(
μt , (τ0, τ1 )

)
τ0 + δE(τ0,τ1 )

(
Wμ(μa )

)
.

In words, the next-stage continuation payoff to Firm 0 is Wμ(μa ) instead of V (μa ) for
any realized action a ∈ {0, 1, e}.

Let f be a function of τ0 and possibly other variables. We henceforth use the notation
f ′ to denote its right partial derivative ∂f

∂τ0
= limτ→τ+

0

f (τ0 )−f (τ)
τ0−τ with respect to τ0. We next

show the following lemma.

Lemma 12. There exists β > 0, a prior μ̂ < 1, and a function K(μ, (τ0, τ1 )) that satisfies
the following two conditions: first, K(μ, (τ0, τ1 )) ≤ −β for every μ > μ̂ and any pair of
prices (τ0, τ1 ), and second,

�′
μ(τ0, τ1 ) = (1 − δ)ϕ0

(
μ, (τ0, τ1 )

) + δK(
μ, (τ0, τ1 )

)
v′
μ(τ0, τ1 ). (26)

Proof of Lemma 12. The continuation payoff in equation (25) comprises three expres-
sions. Differentiating the first expression with respect to τ0 gives

(1 − δ)
[
ϕ0

(
μ, (τ0, τ1 )

) + τ0ϕ
′
0

(
μ, (τ0, τ1 )

)]
,

where

ϕ′
0
(
μ, (τ0, τ1 )

) = (−μg0
(
vμ(τ0, τ1 )

) − (1 −μ)g1
(
vμ(τ0, τ1 )

))
v′
μ(τ0, τ1 ). (27)

Since g0( ¯α) > 0 and vμ(τ0, τ1 ) approaches ¯α as μ goes to one it holds that −μg0(vμ(τ0,
τ1 )) − (1 −μ)g1(vμ(τ0, τ1 )) approaches −2β for some β> 0.

In order to complete the proof of the lemma, it is sufficient to show that the deriva-
tive of the last two expressions of (25) can be written as v′

μ(τ0, τ1 )H(μ, (τ0, τ1 )), for some
functionH(μ, (τ0, τ1 )) that goes to zero as μ goes to one.

We show this first for a fully covered market where the outside option e is played
with zero probability. Under this assumption, the last expression of (25) is zero. The
derivative of δϕ0(μ, (τ0, τ1 ))Wμ(μ0(μ, (τ0, τ1 ))) is

δ

[
ϕ′

0

(
μ, (τ0, τ1 )

)
Wμ

(
μ0

(
μ, (τ0, τ1 )

))

+ϕ0
(
μ, (τ0, τ1 )

)
W ′
μ

∂Wμ

∂μ̂

(
μ0

(
μ, (τ0, τ1 )

))
μ′

0
(
μ, (τ0, τ1 )

)]
. (28)
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Since ϕe(μ, (τ0, τ1 )) = 0, it holds that ϕ1(μ, (τ0, τ1 )) = 1 −ϕ0(μ, (τ0, τ1 )). Therefore,
the derivative of δϕ1(μ, (τ0, τ1 ))Wμ(μ1(μ, (τ0, τ1 ))) is

δ

[
−ϕ′

0

(
μ, (τ0, τ1 )

)
Wμ

(
μ1

(
μ, (τ0, τ1 )

))

+ (
1 −ϕ0

(
μ, (τ0, τ1 )

))∂Wμ
∂μ̂

(
μ1

(
μ, (τ0, τ1 )

))
μ′

1
(
μ, (τ0, τ1 )

)]
. (29)

We note that the derivative of the second expression in (25) equals the sum of the
expressions in equations (28) and (29). Summing the first expression in (28) with the
first expression in (29) gives δϕ′

0(μ, (τ0, τ1 ))[Wμ(μ0(μ, (τ0, τ1 ))) −Wμ(μ1(μ, (τ0, τ1 )))].
Since signals are bounded, |μ0(μ, (τ0, τ1 )) − μ1(μ, (τ, τ1 ))| goes to zero as μ goes to
one. Hence, it also holds that Wμ(μ0(μ, (τ0, τ1 ))) − Wμ(μ1(μ, (τ0, τ1 ))) approaches
zero. Therefore, equation (27) implies that the sum can be written as a product
M(μ, (τ0, τ1 ))v′

μ(τ0, τ1 ), whereM(μ, (τ0, τ1 )) approaches zero with μ.
It remains to show that the sum of the second expression in (28) and the second ex-

pression in (29) can be written as L(μ, (τ, τ1 ))v′
μ(τ, τ1 ) for some function L(μ, (τ0, τ1 ))

that approaches zero with μ. This sum equals

δϕ0
(
μ, (τ0, τ1 )

)∂Wμ
∂μ̂

(
μ0

(
μ, (τ0, τ1 )

))
μ′

0
(
μ, (τ0, τ1 )

)

+ (
1 −ϕ0

(
μ, (τ0, τ1 )

))∂Wμ
∂μ̂

(
μ1

(
μ, (τ0, τ1 )

))
μ′

0
(
μ, (τ0, τ1 )

)
.

We show this for (1 − ϕ0(μ, (τ0, τ1 )))
∂Wμ
∂μ̂ (μ1(μ, (τ0, τ1 )))μ′

1(μ, (τ0, τ1 )). The fact that it

holds also for ϕ0(μ, (τ0, τ1 ))
∂Wμ
∂μ̂ (μ0(μ, (τ0, τ1 )))μ′

0(μ, (τ0, τ1 )) follows similarly.
Note first that

μ′
1
(
μ, (τ, τ1 )

)
= (

(1 −μ)g1
(
vμ(τ, τ1 )

)
v′
μ(τ, τ1 )

(
1 −ϕ0

(
μ, (τ, τ1 )

))
+ϕ′

0
(
μ, (τ, τ1 )

)
(1 −μ)G1

(
vμ(τ, τ1 )

))
/
([

1 −ϕ0
(
μ, (τ, τ1 )

)]2)
.

Using this and the fact that ∂Wμ
∂μ̂ (μ1(μ, (τ0, τ1 ))) = −C, we have that (1 − ϕ0(μ,

(τ0, τ1 )))
∂Wμ
∂μ̂ (μ1(μ, (τ0, τ1 )))μ′

1(μ, (τ0, τ1 )) equals

−C (1 −μ)g1
(
vμ(τ, τ1 )

)
v′
μ(τ, τ1 )

(
1 −ϕ0

(
μ, (τ, τ1 )

)) +ϕ′
0
(
μ, (τ, τ1 )

)
(1 −μ)G1

(
vμ(τ, τ1 )

)
1 −ϕ0

(
μ, (τ, τ1 )

) .

Note that the first expression is −C(1 − μ)g1(vμ(τ, τ1 ))v′
μ(τ, τ1 ), which satisfies the re-

quired condition. The second expression is equal to

−C ϕ′
0

(
μ, (τ, τ1 )

)
(1 −μ)G1

(
vμ(τ, τ1 )

)
μG0

(
vμ(τ, τ1 )

) + (1 −μ)G1
(
vμ(τ, τ1 )

) .
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Since vμ(τ, τ1 ) approaches ¯α as μ goes to one, we can use a standard first-order approx-

imation to deduce that Gi(vμ(τ,τ1 ))
gi( ¯α)(vμ(τ,τ1 )−¯α) approaches one for i= 0, 1. This implies that the

second expression approaches −Cϕ′
0(μ, (τ, τ1 )) (1−μ)g1( ¯α)

(μg1( ¯α)+(1−μ)g1( ¯α) as μ approaches one.

Therefore, since g1( ¯α)
g0( ¯α) = ¯α1−¯α

it follows that (1−μ)g1( ¯α)
(μg1( ¯α)+(1−μ)g1( ¯α) approaches zero when μ

goes to 1. Thus, when the market is fully covered, the lemma follows from equation (27).
Consider the case where the outside option e is played with positive probabil-

ity. Again, in order to complete the proof of the lemma for this case it is suffi-
cient to show that the derivative of the last two expressions of (25) can be written as
v′
μ(τ0, τ1 )L(μ, (τ0, τ1 )), whereL(μ, (τ0, τ1 )) is some function that goes to zero as μ goes

to one.
Note that in this case the expression δϕ1(μ, (τ0, τ1 ))Wμ(μ1(μ, (τ0, τ1 ))) in equation

(25) has a derivative of zero with respect to τ0. This follows from the fact that when
the outside option is played with positive probability the term wμ(τ0, τ1 ) is constant in
some open neighborhood of τ0. Similarly, Gω(wμ(τ0, τ1 )) also has a zero derivative for
ω= 0, 1. Hence, it holds that ϕ′

e(μ, (τ0, τ1 )) = −ϕ′
0(μ, (τ0, τ1 )). Therefore, the derivative

of δϕe(μ, (τ0, τ1 ))Wμ(μe(μ, (τ0, τ1 ))) with respect to τ0 is

δ

[
−ϕ′

0

(
μ, (τ0, τ1 )

)
Wμ

(
μe

(
μ, (τ0, τ1 )

))

+ϕe
(
μ, (τ0, τ1 )

)∂Wμ
∂μ̂

(
μ0

(
μ, (τ0, τ1 )

))
μ′
e

(
μ, (τ0, τ1 )

)]
. (30)

Summing the first expression in (28) and the first expression in (30) gives δϕ′
0(μ,

(τ0, τ1 ))[Wμ(μ0(μ, (τ0, τ1 ))) − Wμ(μe(μ, (τ0, τ1 )))], which as explained above, can be
written asR(μ, (τ0, τ1 ))v′

μ(τ0, τ1 ), whereR(μ, (τ0, τ1 )) is some function that approaches
zero with μ.

Again, it remains to show that

δϕ0
(
μ, (τ0, τ1 )

)∂Wμ
∂μ̂

(
μ0

(
μ, (τ0, τ1 )

))
μ′

0
(
μ, (τ0, τ1 )

)
+ δϕe

(
μ, (τ0, τ1 )

)
W ′
μ

(
μe

(
μ, (τ0, τ1 )

))
μ′
e

(
μ, (τ0, τ1 )

)
can be written as B(μ, (τ, τ1 ))v′

μ(τ, τ1 ), where B(μ, (τ0, τ1 )) is some function that ap-
proaches zero with μ. This is shown in a similar way as explained above for the case
where the market is fully covered.

We next state another auxiliary lemma. By Lemma 9, the function 2¯αμ − 1 is convex,
differentiable, as a function of μ, and has a derivative that is bounded by some positive
constant C > 1.

Lemma 13. Let (φ̄0, φ̄1 ) be the equilibrium under which asymptotic learning holds. For
every μ̂ ∈ (0, 1), it holds with positive probability that there exists a time t such that μt =
μ≥ μ̂ and

Eφ̄(μt )

(
V (μt+1 )

) ≤Eφ̄(μt )

(
Wμ(μt+1 )

) = V (μt ) +Eφ̄(μt )

(
C|μt+1 −μt |

)
. (31)
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Proof. For a public belief μ = μt , Firm 0 can guarantee a continuation payoff that is
greater than or equal to 2¯αμ − 1 by repeatedly choosing the price τ0 = max{2¯αμ − 1, 0}.
Therefore, V (μ) ≥ 2¯αμ−1 for everyμ ∈ (0, 1). Additionally, it is easy to see that V (μ)< 1
for every μ ∈ (0, 1).

Consider the function fμ : [0, 1] →R+, which is defined as follows: fμ(μ̃) = 2¯αμ−1+
C|μ̃−μ|. The function fμ satisfies fμ(μ) = 2¯αμ − 1 and fμ(μ̃)> 2¯αμ+|μ−μ̃| − 1 for every
μ̃ �= μ. Therefore, fμ(1) > 2¯α1 − 1 = 1. Hence, for all sufficiently large μ < 1 there exist
unique priorsμ1,μ2 such that 0<μ1 <μ<μ2 < 1, |μ−μ1| = |μ−μ2|, and fμ(μj ) = 1 for
j = 1, 2. Note that μ1 and μ2 are increasing in μ and both approach one as μ approaches
one. This follows since |μ−μ2| approaches zero as μ approaches one.

Let μ∗ be large enough such that the corresponding μ∗1 has the property that

¯αμ∗1 = ¯αμ
∗1

¯αμ
∗1 + (1 − ¯α)

(
1 −μ∗1) > μ̂.

This is indeed possible as signals are bounded and ¯α> 0.
Since asymptotic learning holds, there exists with positive probability a time t̂ such

that μ∗ < μt̂ . Assume that from time t̂ to time t̂ + k − 1, inequality (31) does not hold
with probability one; then it follows by induction that

Eφ̄
(
V (μt̂+k )|μt̂

)
> V (μt̂ ) +

t̂+k−1∑
i=0

Eφ̄
(
C|μt̂+i+1 −μt̂+i||μt̂

) ≥Eφ̄
(
fμt̂ (μt̂+k )|μt̂

)
. (32)

Letη be the first random time t such thatμη /∈ [μ1
t̂

, μ2
t̂

]. Since asymptotic learning holds,
η is finite with probability one. In addition, fμt̂ (μη )> 1 and μη ≥ ¯αμ∗1 > μ̂ by construc-
tion. Therefore, if inequality (31) does not hold from time t̂ to time η with probability
one, it follows from (32) that Eφ̄(V (μη )|μt̂ )> 1. This stands in contradiction to the fact
that V (μ̃) < 1 for every μ̃ ∈ (0, 1). Hence, with positive probability there exists a time
t > t̂ such that μt > μ̂ and the inequality (31) holds.

We next prove Theorem 4.

Proof of Theorem 4. Let μ = μt and let τi = φ̄i(μt ) for i = 0, 1 be the corresponding
equilibrium prices. Let τ̄0 = min{2¯αμ − 1 + τ1, ¯αμ}. Note that τ̄0 > 0 for all sufficiently
large μ. The price τ̄0 is the maximal price for Firm 0, as a function of τ1, for which the
consumer chooses Firm 0 with probability one. Since asymptotic learning holds, the
probability that the consumer buys from Firm 0 is less than one (for otherwise learning
would have stopped), and thus τ̄0 < τ0.

We claim first that there exists μ̃ < 1 such that if μ̃ ≤ μt = μ, then �μ(τ0, τ1 ) −
�μ(τ̄0, τ1 ) < 0. To see this, note that Lemma 12 and the mean value theorem imply
that

�μ(τ0, τ1 ) −�μ(τ̄0, τ1 ) = (
ϕ0

(
μ, (τ, τ1 )

) + v′
μ(τ, τ1 )K

(
μ, (τ, τ1 )

))
(τ0 − τ̄0 ),

for some τ ∈ [τ̄0, τ0]. By Lemma 2 and Lemma 4, as μ goes to one τ1 approaches zero
and τ0 approaches one. Hence, as in the proof of Proposition 4, it follows that v′

μ(τ, τ1 )
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approaches ∞ as μ goes to one. Since K(μ, (τ, τ1 )) ≤ −β for all sufficiently large μ, we
must have that�μ(τ0, τ1 ) −�μ(τ̄0, τ1 )< 0.

Let t be a time such thatμ= μt ≥ μ̃ andEφ̄(μt )(V (μt+1 )) ≤ V (μt )+Eφ̄(μ)(Wμ(μt+1 )).
Such a time t exists with positive probability by Lemma 13. To derive the contradiction,
note that

V (μt ) = (1 − δ)ϕ0
(
μt , (τ0, τ1 )

)
τ0 + δEφ̄(μt )

(
V (μt+1 )

)
≤ (1 − δ)ϕ0

(
μt , (τ0, τ1 )

)
τ0 + δEφ̄(μt )

(
Wμ(μt+1 )

) =�μ(τ0, τ1 )<�μ(τ̄0, τ1 )

= (1 − δ)τ̄0 + δV (μt ). (33)

Note that the last equality in (33) holds since for the price τ̄0 the consumer chooses
Firm 0 with probability one and the public belief at time t + 1 is μt . This implies that
V (μt ) < (1 − δ)τ̄0 + δV (μt ) and so V (μt ) < τ̄0. If, however, Firm 0 deviates and plays
the price τ̄0 from time t onwards, then by the Markovian property, this guarantees a
continuation payoff of τ̄0. This yields a profitable deviation to Firm 0 as V (μt ) < τ̄0, in
contradiction to the assumption that (φ̄0, φ̄1 ) is a Bayesian Nash equilibrium.

Appendix D: Auxiliary lemmas

Lemma 14. The ratio G1(r )
G0(r ) is nonincreasing in r and G1(r )

G0(r ) > 1 for all r ∈ ( ¯α, ᾱ). In partic-
ular,G0 first order stochastically dominatesG1. Moreover, for any point x ∈ [ ¯α, ᾱ]∩ (0, 1),
it holds that (1 − x)g0(x) = xg1(x) and limx→+

¯α
G1(x)
G0(x) = ¯α1−¯α

.

Proof. The fact that limx→+
¯α
G0(x)
G1(x) = ¯α1−¯α

follows from the relation (1 − x)g0(x) =
xg1(x) and the fact that Gω(x) = ∫ x

¯α
gω(x)dx for ω = 0, 1 when x ≤ ᾱ. The proof of the

other parts follows from the more general result that appears in Lemma A1 of Acemoglu,
Daleh, Lobel, and Ozdaglar (2011).

Corollary 1. Let (σ , τ0, τ1 ) be a myopic Bayesian Nash equilibrium. If asymptotic
learning holds, then conditional on state ω ∈�,

lim
t→∞ P(σ ,τ0,τ1 )

({
σt

(
μt , s, τ(μt )

) =ω}
|ω

) = 1.

Proof. Without loss of generality, assume that the realized state isω= 0. Since asymp-
totic learning holds, we have that limt μt = 1 almost everywhere. By Lemma 7, we have
that limt→∞ vμt (τt0(μt ), τt1(μt )) = ¯α. Therefore,

lim
t→∞ P(σ ,τ0,τ1 )

({
σt

(
μt , s, τ(μt )

) = 0
}

|ω= 0
) = lim

t→∞G0
(
vμt

(
τt0(μt ), τt1(μt )

))
=G0( ¯α) = 1.

Appendix E: Proof of Proposition 1

Proof. Assume that the proposition is false. Thus, we can find some ε > 0, ¯α> 0, and a
sequence of information structures {Gn0,Gn1 }∞n=1, such that:
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(i) The support ofGn0 andGn1 is [ ¯α, ᾱ] for every n.

(ii) For every n, gn1( ¯α)> 0 and limn→∞ gn1( ¯α) = 0.

(iii) The deterrence threshold, μ̄n, is bounded above by 1 − ε.

Let μ be an arbitrary prior in the interval (1 − ε, 1) and let �n(μ) be the stage game for
the prior μ and the information structure (Gn0,Gn1 ). Recall that (see (14)) for every n,

∂
0(τ0, 0)
∂τ0

∣∣∣∣
τ0=2¯αμ−1

= 1 − (2¯αμ − 1)

(
∂vμ(τ0, 0)
∂τ0

∣∣∣∣
2¯αμ−1

)(
μgn0( ¯α) + (1 −μ)gn1( ¯α)

)
.

By our assumption, the only equilibrium of the game �n(μ) is a deterrence equilibrium.
Thus, for every n,

1 − (2¯αμ − 1)

(
∂vμ(τ0, 0)
∂τ0

∣∣∣∣
2¯αμ−1

)(
μgn0( ¯α) + (1 −μ)gn1( ¯α)

) ≤ 0. (34)

Recall that vμ(τ) is the indifference threshold in the game �n(μ) with prices τ = τ0, τ1.
By equation (6), it is independent of the information structure’s shape and is determined
solely by the game’s prior μ and price vector τ. In addition, Gn0 first order stochastically
dominates Gn1 (Lemma 14). Therefore, gn0( ¯α) ≤ gn1( ¯α) and so (μgn0( ¯α) + (1 − μ)gn1( ¯α)) ≤
gn1( ¯α). We can now deduce that

1 − (2¯αμ − 1)

(
∂vμ(τ0, 0)
∂τ0

∣∣∣∣
2¯αμ−1

)
gn1( ¯α) ≤ 0. (35)

Furthermore, since 2¯αμ−1< 1 wheneverμ< 1, Lemma 2 implies that (
∂vμ(τ0,0)
∂τ0

|2¯αμ−1 )<
∞. Now note that by (ii) above the limit on the left-hand side of inequality (35) is 1, a
contradiction.
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