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Mean-preserving contractions are critical for studying Bayesian models of infor-
mation design. We introduce the class of bi-pooling policies, and the class of bi-
pooling distributions as their induced distributions over posteriors. We show that
every extreme point in the set of all mean-preserving contractions of any given
prior over an interval takes the form of a bi-pooling distribution. By implication,
every Bayesian persuasion problem with an interval state space admits an optimal
bi-pooling distribution as a solution, and conversely, for every bi-pooling distri-
bution, there is a Bayesian persuasion problem for which that distribution is the
unique solution.
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1. Introduction

The recent prolific literature on information design, known as Bayesian persuasion,
studies optimal information disclosure policies when the informed player has commit-
ment power.

Characterizing an optimal information disclosure policy when the state space is
large turns out to be a hard problem. Several recent papers study different aspects of
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persuasion with large state spaces (e.g., Candogan (2019a,b), Deniz and Kováč (2019),
Dworczak and Kolotilin (2019), Dworczak and Martini (2019), Gentzkow and Kamenica
(2016), Kolotilin (2018), Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017), Kolotilin and
Wolitzky (2020), Yamashita (2018)).1 The model studied and motivated in these papers,
which is the one we study, considers an interval state space, and assumes that the re-
ceiver’s action, and hence the sender’s utility, is a function of the posterior mean over
the state space. One application of this model is to study a sender who has partial infor-
mation over an underlying binary state space. To see this, one should think of the unit
interval as the set of all probabilities assigned to one of the two states.2

To gain insights into the structure of an optimal persuasion policy in this model,
Dworczak and Martini (2019) formulate the dual problem associated with the sender’s
optimization problem. They interpret the dual problem as a “persuasion economy” and
its solution, dubbed the price function, as the corresponding Walrasian equilibrium of
the economy. Their main result is that there is no duality gap between the two prob-
lems.3 The important implication of this result is that the price function can be used
to verify the optimality of a given arbitrary persuasion policy. In other words, given a
candidate persuasion policy one can use the aforementioned price function to verify
whether it is indeed optimal or not.

Our contribution In this paper, we introduce the class of bi-pooling policies, and the
corresponding class of bi-pooling distributions over posteriors these policies induce.
Our main technical contribution is to show that every extreme point in the set of all
mean-preserving contractions of any given prior takes the form of a bi-pooling distribu-
tion. By implication, every Bayesian persuasion problem admits an optimal bi-pooling
distribution as a solution, and conversely, for every bi-pooling distribution, there is a
Bayesian persuasion problem for which that distribution is the unique solution.

A bi-pooling policy is quite simple. This policy partitions the state space (the unit
interval) into two sets, one of which is a union of disjoint open intervals. Whenever
the state is in one such interval, the sender reveals which interval it is in and provides
an additional (possibly uninformative) binary signal (hence the name “bi-pooling”). In
the complement of the union of intervals, the sender completely reveals the state; see
Figure 1.

Based on our characterization result, we obtain some additional insights into the op-
timal signaling policies. For example, we show that there always exists a monotone so-
lution for such linear (i.e., posterior mean-based) Bayesian persuasion problems. More
precisely, a monotone signaling policy is such that for any two distinct states the con-
ditional distribution over the posterior means of a higher state first-order stochastically

1Large state spaces are commonly used also in information design applications; see, for example, Roesler
and Szentes (2017), Harbaugh and Rasmusen (2018), Boleslavsky, Hwang, and Kim (2019).

2Under this interpretation, if the receiver knows that the sender’s belief about the state is distributed
according to a distribution P , then his subjective belief about the state will be E[P]. Hence, the sender’s
utility is a function of the posterior mean, as required.

3In recent work, Dworczak and Kolotilin (2019) extend the duality approach beyond the single-
dimension setting while Deniz and Kováč (2019) use the duality approach of Dworczak and Martini (2019)
to provide a simpler proof of their results while allowing for weaker assumptions.
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Figure 1. A bi-pooling policy. The policy bi-pools the interval (0.1, 0.6) into the two posterior
means {0.2, 0.4} by sending an additional binary signal. The policy pools the interval (0.8, 1) into
the posterior mean 0.9 without sending an additional signal. In the complementary intervals
([0, 0.1] and [0.6, 0.8]), the policy is fully revealing.

dominates that of the lower state. As argued in Mensch (2019), there are various per-
suasion environments where monotone signals are compelling. This may be due to reg-
ulatory measures or moral hazard issues. For example, in the credit rating framework
of Goldstein and Leitner (2018), banks whose assets are being rated may sue if they be-
lieve that they have been unfairly treated by the rating agency for giving them a lower
credit rating than banks with riskier assets. More than that, nonmonotonic signals may
introduce an incentive for banks to take unnecessary risks in order to get a higher rat-
ing. Similar considerations come up in other applications such as grading schemes for
students.

In addition, we consider a variety of economic applications where our approach
is useful in identifying the optimal signaling policies. We leverage the duality result
of Dworczak and Martini (2019), which states that the optimal policy can be found by
identifying its corresponding price function (under certain regularity conditions). Of-
ten, however, the set of potential price functions is too large to easily identify the right
one. Our results about feasible bi-pooling policies are shown to be useful in imposing
significant restrictions on the structure of feasible price functions, so that the search
for the right price function (and hence for the optimal policy) can become much more
straightforward. In particular, we revisit the framework of Kolotilin, Mylovanov, and Za-
pechelnyuk (2022), where the receiver has an outside option whose value is her private
information. We provide an intuition to their characterization of the optimal policy for
S-shaped utility functions. We extend their framework to multiple receivers, yielding an
M-shaped utility function, and we characterize the corresponding optimal policy.

Related results Some variations of our main results have been developed indepen-
dently and almost concurrently. Candogan (2019a) restricts attention to the case where
the sender’s utility is increasing and piecewise constant and proves that this admits an
optimal bi-pooling policy. Candogan (2020) dispenses with the monotonicity assump-
tion. Kleiner, Moldovanu, and Strack (2021) independently characterize the extreme
points of the set of all mean-preserving contractions for a given distribution as the set of
all mean-preserving bi-pooling distributions, and make the connection with the persua-
sion problem as well as other economic models. None of the papers mentioned above
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show that all the extreme points are exposed, namely, that any bi-pooling policy serves
as a unique optimizer for some persuasion problems.4

In a different model where the state space is small but the receiver has private infor-
mation, Guo and Shmaya (2019) show the optimality of nested interval policies. Inter-
estingly, such policies with just two nested intervals give rise to bi-pooling policies (see
Lemma 4 below).

2. Model and main results

We consider a persuasion model where the state space is the interval [0, 1] with a
nonatomic common prior F ∈ �([0, 1]) that has full support.5 The sender knows the
realized state and the receiver is uninformed. Prior to the realization of the state, the
sender commits to a signaling policy π : [0, 1] → �(S), where S is an arbitrary measur-
able space. Once the state ω ∈ [0, 1] is realized, the sender sends a signal s ∈ S according
to the committed signaling policy π(ω). Observing s, the receiver forms a posterior be-
lief about the state, and consequently, its posterior mean. Without loss of generality, we
may assume that S = [0, 1], and that the posterior mean of the state, given signal s, is
s itself. Under this normalization, it is immediate that the distribution of the posterior
mean s given the signal policy π, denoted by Fπ ∈ �([0, 1]), is a mean-preserving con-
traction of F (henceforth MPC).6 Let MPC(F ) represent the set of all mean-preserving
contractions of F . It is well known that for any G ∈ MPC(F ), there exists a signaling pol-
icy π that implements G in the sense that Fπ = G (e.g., Gentzkow and Kamenica (2016),
Kolotilin (2018)). In general, there may be multiple signaling policies that implement
the same G ∈ MPC(F ).

The sender’s indirect utility is denoted by u : [0, 1] →R, where u(x) is the sender’s ex-
pected utility in case the receiver’s posterior mean is x. We assume that u is upper semi-
continuous and refers to the pair (F , u) as a persuasion problem. The sender’s problem
takes the following simple form:

max
G∈MPC(F )

Ex∼G

[
u(x)

]
. (1)

It is also well known that a distribution G ∈ �([0, 1]) lies in MPC(F ) if and only if it
satisfies:

• For all x ∈ [0, 1]:
∫ x

0 G(x)dx ≤ ∫ x
0 F(x)dx, and

• ∫ 1
0 G(x)dx = ∫ 1

0 F(x)dx (equivalently, Ex∼G[x] = Ex∼F[x]),

where we abuse notation and use F(x), G(x) to denote F([0, x]) and G([0, x]), the cor-
responding CDFs.

4Kleiner, Moldovanu, and Strack (2021) show that all the extreme points of the set for of mean-preserving
spreads are exposed.

5Recall that the support of a distribution F is the smallest closed set that has probability one. The choice
of the unit interval is inspired by our motivation of a partially informed sender. The results generalize to
any compact interval.

6Equivalently, F is a mean-preserving spread of Fπ .
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Note that each of the constraints induces a convex and compact (in the weak* topol-
ogy) subset of distributions. Therefore, MPC(F ) is the intersection of convex and com-
pact subsets and, in turn, is itself convex and compact.

Remark 1. A possible interpretation of our model is that the true economic state is bi-
nary (0 or 1) but the sender is only partially informed, and so his belief about the state
follows F ∈ �([0, 1]) from the ex ante viewpoint. In this case, the players naturally care
(only) about the posterior mean.

For a distribution H ∈ �([0, 1]) and a measurable set C ⊆ [0, 1] we denote by H|C the
distribution of h∼H conditional on the event that h ∈ C.

Within the class of mean-preserving contractions of the prior F , we single out the
class of bi-pooling distributions. These are distributions that apply a contraction only to
some collection of intervals. Each interval is contracted to at most two atoms.

Definition 1. A distribution G ∈ MPC(F ) is called a bi-pooling distribution (with re-
spect to F) if there exists a collection of pairwise disjoint open intervals {(y

i
, yi )}i∈A such

that7

• For every i ∈A, G((y
i
, yi )) = F((y

i
, yi )) and | supp(G|(y

i
,yi ) )| ≤ 2.

• G|[0,1]\⋃i∈A(y
i
,yi ) = F|[0,1]\⋃i∈A(y

i
,yi ).

For i ∈ A such that | supp(G|(y
i
,yi ) )| = 2 we call (y

i
, yi ) a bi-pooling interval. Whenever

| supp(G|(y
i
,yi ) )| = 1 we call (y

i
, yi ) a pooling interval. In the case where all intervals are

pooling intervals, we say that G is a pooling distribution (with respect to F).

To motivate our interest in bi-pooling distributions, consider the following example.

Example 1. Consider the persuasion problem (F , u), where F = U[0, 1] is the uniform
distribution over [0, 1] and u : [0, 1] →R is an arbitrary function satisfying u( 1

3 ) = u( 2
3 ) =

0 and u(x) < 0 for x /∈ { 1
3 , 2

3 }. The only way for the sender to receive a utility of 0 is by
inducing two posterior means 1

3 and 2
3 .

This can be done using a binary signal space S = {s1, s2} by sending the signal s1

with probability one over the interval ( 1
12 , 7

12 ) and the signal s2 with probability one over
[0, 1

12 ] ∪ [ 7
12 , 1]. The posterior mean that s1 generates is 1

3 and the posterior mean s2

generates is 2
3 . In addition, this policy is a bi-pooling policy for the singleton collection

of intervals {[0, 1]}. ♦

One may well ask whether an alternative policy that pools each of two intervals into
their respective means could implement the same distribution. It turns out that there is
no a ∈ (0, 1) such that 1

3 = EF [x|x ∈ [0, a)] and 2
3 = EF [x|x ∈ (a, 1)], where the expecta-

tion conditions must be satisfied because G is a mean-preserving contraction of F and
the mass of the interval [0, a) ((a, 1]) is mapped into 1

3 ( 2
3 ).

7We identify open intervals with nonempty subsets of [0, 1] of the form (a, b) ∩ [0, 1], where (a, b) is an
interval on the real line. For ease of notation, we let (y

i
, yi ) denote these intervals.
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The example demonstrates that the simple class of pooling distributions (i.e., those
that use pooling intervals only) is insufficient for optimal persuasion. Is the set of bi-
pooling distributions sufficiently rich to solve any persuasion problem? Our main result
answers this question in the affirmative.

Theorem 1. Every persuasion problem (F , u) admits an optimal bi-pooling distribution.

The intuition behind Theorem 1 is simple. Recall the problem formulation (1).
Note that the set of MPC(F ) is a convex and compact (in the weak* topology) subset
of �([0, 1]) and the objective function (the sender’s expected utility) is a linear upper
semicontinuous functional over this set. Therefore, by Bauer’s maximum principle (see,
e.g., Theorem 7.69 in Aliprantis and Border (2006)) we are guaranteed that one of its
maximizers of (1) is an extreme point of MPC(F ). The proof of Theorem 1 then follows
directly from the following proposition.8

Proposition 1. The set of extreme points of MPC(F ) is precisely the set of bi-pooling
distributions.

The proof of Proposition 1, along with all the other proofs, is relegated to the Ap-
pendix. The idea behind the proof of the proposition is as follows. Let G ∈ MPC(F )
and let [a, b] ⊂ [0, 1] be an interval such that

∫ a
0 G(x)dx = ∫ a

0 F(x)dx,
∫ b

0 G(x)dx =∫ b
0 F(x)dx, and

∫ c
0 G(x)dx <

∫ c
0 F(x)dx for all c ∈ (a, b). Assume that the support of

G over [a, b] contains three or more points; then one can decompose G into two dis-
tributions G1 and G2, both in MPC(F ). Therefore, any such interval induced from an
extreme point of MPC(F ) must contain at most two points in its support. The conclu-
sion that an extreme point must be bi-pooling follows from this observation combined
with some straightforward topological arguments.

The aforementioned decomposition is done as follows. Let x1 < x2 < x3 be three
points in the support of G. To obtain G1, remove an infinitesimal probability mass as-
signed to x2 and split it between x1 and x3 such that the expectation over the whole
interval is maintained. To obtain G2, do the opposite transformation, namely, re-
move an infinitesimal probability mass that is assigned to x1 and x3 and add it to x2

in such a way that the expectation of G is maintained. If the transformed masses are
small enough, then both G1 and G2 are guaranteed to be in MPC(F ) and in addition
αG1 + (1 − α)G2 =G for some α ∈ (0, 1).

So far, we have argued that any persuasion problem in the domain we study admits
an optimal bi-pooling distribution. Can we reduce the set of signal distributions further
and maintain a similar result? The answer is negative, as we now proceed to show.

Theorem 2. For every bi-pooling distribution G ∈ MPC(F ) there exists a continuous
utility function u for which G is the unique optimal solution of9

 (1). That is, every ex-
treme point of MPC(F ) is exposed.

8For a parallel result, see Theorem 2 in Kleiner, Moldovanu, and Strack (2021).
9Recall that the uniqueness of an optimal distribution does not imply the uniqueness of an optimal

signaling policy. This is made explicit in Example 3.
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Figure 2. An illustration of the functions p (dotted) and u (solid).

For a given prior F and a corresponding bi-pooling distribution G, the proof of The-
orem 2 instructs us how to construct a utility function u such that G is the unique opti-
mum for the persuasion problem (F , u). The proof uses the notion of price function due
to Dworczak and Martini (2019), which we will discuss in Section 4. We demonstrate the
idea behind the proof of Theorem 2 in the following example.

Example 2. Let F = U([0, 1]) be the uniform distribution over the unit interval. Let G
be the distribution that is induced by the policy that bi-pools the interval (0, 0.5) into
the two points {0.2, 0.4}, fully reveals the state in the interval [0.5, 0.7], and pools the
interval (0.7, 1) into the point 0.85. Note that this signaling policy induces a bi-pooling
distribution in MPC(F ). To construct the utility function u, we begin with an arbitrary
convex function p : [0, 1] → R that is linear over [0, 0.5] and [0.7, 1], the bi-pooling and
pooling intervals of G, and is strictly convex over [0.5, 0.7]. Let u be an arbitrary function
satisfying u(x) ≤ p(x) with equality obtained only on the image in the support of G:
{0.2, 0.4, 0.85} ∪ [0.5, 0.7] (see the illustration in Figure 2).10 ♦

The arguments in the proof of Theorem 2 show that the unique optimizer of the
persuasion problem (F , u) is indeed the bi-pooling distribution G.

We end this section by studying the support of bi-pooling distributions. Let G be
such a distribution and let {(y

i
, yi )}i∈A be the corresponding collection of pairwise dis-

joint open intervals. Any value in the complement of this collection is clearly in the sup-
port. In addition, whenever (y

i
, yi ) is a pooling interval the unique value in its support

must be equal to E(F|(y
i
,yi ) ). What can we say about the values in the support whenever

| supp(G|(y
i
,yi ) )| = 2?

Definition 2. We say that the support {z, z} is feasible for the interval (y, y ) if there
exists a MPC of F|(y,y ) whose support is {z, z}.

10The convex function p equals the price function in Dworczak and Martini (2019) corresponding to the
optimal signal distribution for the utility function u.
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Note that the weights α and 1 − α on the atoms at z and z are determined uniquely
by the expectation requirement αz + (1 − α)z = E[F|(y,y )]. The set of binary feasible
supports is characterized in the following lemma.

Lemma 1. A support {z, z} is feasible for the interval (y, y ) if and only if y ≤ z ≤
E[F|(y,y )] ≤ z ≤ y and E[F|(C−1(z),y )] ≥ z, where C(w) = E[F|(y,w)] maps each value w to
the conditional expectation of F given that the realized state lies in (y, w).

Simply speaking, the condition requires us to consider the (unique) point z =
C−1(z) ∈ (y, y ) such that the conditional expectation over the interval (y , z) is z. For
the support {z, z} to be feasible, we must have that the conditional expectation of the
remaining interval [z, y ) exceeds z.

For the special case where F is a uniform distribution, this characterization takes the
following very simple form.

Corollary 1. If F|(y,y ) is a uniform distribution, then a support {z, z} is feasible for the

interval (y , y ) if and only if y ≤ z ≤ 1
2 (y + y ) ≤ z ≤ y and z − z ≤ 1

2 (y − y ).

3. Implementing bi-pooling distributions

In this section, we discuss possible implementations of bi-pooling distributions. Recall
our terminology that π implements some G ∈ MPC(F ) if Fπ = G. For G ∈ MPC(F ), let
�(G) denote the family of signaling policies, π, for which Fπ = G. It is well known that
�(G) �= ∅ (e.g., Gentzkow and Kamenica (2016), Kolotilin (2018)). In fact, �(G) may not
be a singleton, as demonstrated in the following example.

Example 3. We denote by δc the Dirac measure on c. Consider the distribution G =
1
2δ 1

3
+ 1

2δ 2
3

that is an MPC of the uniform distribution F =U([0, 1]). As was suggested in

Example 1, one implementation of G can be obtained by sending the signal 1
3 in the in-

terval ( 1
12 , 7

12 ) and sending the signal 2
3 in the remaining pair of intervals [0, 1

12 ] ∪ [ 7
12 , 1].

An alternative implementation would be to send the signal 1
3 in the two intervals

[0, 5
12 ] ∪ [ 11

12 , 1] and to send the signal 2
3 in the intervals ( 5

12 , 11
12 ). A third implementa-

tion would be to send the signal 1
3 in the two intervals (c, 1

2 ] ∩ [1 − c, 1] and the signal 2
3

in the remaining pair of intervals [0, c] ∪ ( 1
2 , 1 − c) for c = (

√
6 − √

5)/(
√

24) ≈ 0.04. ♦

The class of policies that induce bi-pooling distributions is central to our work and
is formally defined as follows.

Definition 3. A signaling policy π is called a bi-pooling policy if there exists a collec-
tion of pairwise disjoint intervals {(y

i
, yi )}i∈A such that for every state ω ∈ (y

i
, yi ) we

have supp(π(ω)) ⊂ {zi, zi} for some pair of points y
i
≤ zi ≤ zi ≤ yi (i.e., the policy bi-

pools the interval (y
i
, yi ) into the pair of points {zi, zi}. For every ω /∈ ⋃

i∈A(y
i
, yi ), the

policy sends the signal π(ω) = ω (i.e., it reveals the state). In the case where zi = zi for
all i ∈A, we refer to π as a pooling policy.
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It is quite straightforward to verify that the distribution over posterior means in-
duced by a bi-pooling policy is a bi-pooling distribution and the one induced by a pool-
ing policy is a pooling distribution.

Monotonic implementation As argued in the Introduction, a desired property of signal-
ing policies is monotonicity. Simply speaking, monotonicity requires that higher states
be mapped to higher posterior means. We now turn to show that bi-pooling distribu-
tions can be implemented by monotonic policies.

Definition 4. A (possibly mixed) signaling policy, π : [0, 1] → �([0, 1]), is monotonic if
π(x) first-order stochastically dominates π(y ) for every x≥ y.

We revisit Example 3 and demonstrate a mixed and monotonic implementation.
Consider a signaling policy that, over the interval [0, 2

3 ], sends a random signal whose
realization is 1

3 with probability 3
4 and 2

3 with probability 1
4 , while on the interval ( 2

3 , 1] it
sends the signal 2

3 . It is easy to verify that this signaling policy implements the distribu-
tion G and, in addition, is monotonic. This signaling policy is a bi-pooling policy with a
single bi-pooling interval, namely, the entire interval [0, 1]. Once again, the occurrence
of a monotonic signaling policy in Example 3 is not a coincidence.

Lemma 2. Every bi-pooling distribution can be implemented by a monotonic bi-pooling
signaling policy.

The next proposition follows immediately from Lemma 2 and Theorem 1.

Proposition 2. Every persuasion problem admits an optimal (mixed) monotonic sig-
naling policy.

When we restrict attention to pure signaling policies, namely, policies of the form
π : [0, 1] → [0, 1], then monotonicity is equivalent to pooling in the following sense.

Lemma 3. A persuasion problem (F , u) admits an optimal pure monotonic signaling pol-
icy if and only if it admits an optimal pooling policy.

It turns out that not all persuasion problems admit a pure monotonic solution. In
fact, Dworczak and Martini (2019) provide a sufficient condition on the utility function,
u, for the existence of a pure monotonic solution. They show that this condition is
also necessary if we require a monotonic solution for all priors. However, in a typical
Bayesian persuasion problem a prior is exogenously given, whereas, in the present con-
text, our analyses show that an optimal monotonic signaling policy always exists but not
necessarily in the class of pure monotonic signaling policies.
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Pure implementation Another natural way to implement a bi-pooling distribution is to
consider a pure signaling policy that has the following double-interval nested structure:
for each bi-pooling interval (y

i
, yi ), we can find a subinterval (wi, wi ) ⊂ (y

i
, yi ) such that

π is constant over the interval (wi, wi ) as well as over its complement (y
i
, yi ) \ (wi, wi ).

Lemma 4. Any bi-pooling distribution can be implemented by a bi-pooling signaling pol-
icy with a double-interval nested structure.

As a corollary, we get the optimality of double-interval nested signaling policies.11

Corollary 2. Every persuasion problem (F , u) has an optimal bi-pooling policy that
has a double-interval nested structure.

Corollary 2 extends a key technical result from Candogan (2020) that proves the same
result whenever u is piecewise constant.

4. Solving persuasion problems

Dworczak and Martini Dworczak and Martini (2019) propose an elegant approach to
dealing with persuasion problems in the same continuous-space setting as ours. A basic
building block in their approach is the notion of price function.12

Definition 5. A function p : [0, 1] → R is called a price function of G in the problem
(F , u) if the following conditions are satisfied:

• p(x) ≥ u(x) for every x ∈ [0, 1].

• p is convex.

• supp(G) ⊂ {x : p(x) = u(x)}.

• Ex∼G[p(x)] = Ex∼F [p(x)].

The two main theorems of Dworczak and Martini (2019) make a strong connection
between price functions and optimal persuasion policies. For completeness, we now
restate these results.

Theorem 3 (Dworczak and Martini (2019)). Let (F , u) be a persuasion problem and let
G ∈ MPC(F ). If there exists a price function, p, of G then G is optimal. Furthermore, if
u is regular, then there exists an optimal distribution G for which such a price function
exists.13

11A recent paper by Candogan and Strack (2021) generalizes this result as well as a result of Guo and
Shmaya (2019). They show that each state lies in an interval in which at most n + 2 messages are used,
where n is the number of types of the receiver.

12This function corresponds to prices in an economy as defined in Dworczak and Martini (2019), and
hence the term “price function.”

13A utility function u on the unit interval is regular if it is bounded, upper semicontinuous, and for some
ε > 0 it is Lipschitz continuous on [0, ε] and [1 − ε, 1]. In their original proof, Dworczak and Martini (2019)
make use of slightly stronger conditions. More recently, Deniz and Kováč (2019) provide a proof that makes
use of this weaker notion of regularity.
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Theorem 3 suggests that understanding the structure of price functions is instru-
mental for the construction of optimal persuasion policies in concrete settings. Proposi-
tion 2 of Dworczak and Martini (2019) furthermore argues that if a price function p is not
linear then it must coincide with the utility function. Knowing that an optimal signaling
policy can take the form of a bi-pooling distribution (Theorem 1) informs us about the
structure of the corresponding price function, as the following corollary demonstrates.

Corollary 3. Let (F , u) be a persuasion problem. Let G be an optimal bi-pooling dis-
tribution and let p be the corresponding price function of G (assuming it exists). Then p

is linear over the pooling and bi-pooling intervals of G.

Proposition 2 of Dworczak and Martini (2019) argues that if a price function p is
linear over an interval [a, b] and this is the largest interval (with respect to inclusion) in
which p is linear, then the optimal distribution G maps the interval [a, b] into itself.14

Furthermore, the price function is then tangential to the utility function in at least one
point. In this respect, the following proposition extends Proposition 2 of Dworczak and
Martini (2019) and argues that in such intervals the tangent points are either a single
point at the expectation or there are two tangent points that form a feasible pair ; see
Definition 2 and Lemma 1.15

Proposition 3. Let (F , u) be a persuasion problem such that u is upper semicontinuous
and there exists a sequence of points 0 = z0 < z1 < · · · < zk = 1 such that u is either concave
or convex in the interval (zi−1, zi ) for every i ∈ [k]. The price function p : [0, 1] → R of
an optimal bi-pooling distribution G is a concatenation of functions p(x) = pi(x) for
x ∈ [yi−1, yi], where 0 = y0 < y1 < · · · < ym = 1, m ≤ 2k, and the functionspi : [yi−1, yi] →R

satisfy

• either pi(x) = u(x) (full revelation16)

• or pi(x) ≥ u(x) is linear and tangential to u at the point E[F|(yi−1,yi )] (pooling inter-
val17)

• or pi(x) ≥ u(x) is linear and tangential to u at two points zi, zi, where {zi, zi} is fea-
sible for the interval [yi−1, yi] (bi-pooling interval).

Inspired by the third part of Proposition 3, we define a line p as a bi-tangent of a
function u on the interval [a, b] if it is tangential to u at two points. In the following sub-
sections, we leverage our characterization of optimal persuasion policies as bi-pooling
distributions for various concrete applications and use bi-tangents as a way to construct
the price functions and the optimal policies.

14That is, the conditional expectation of G over [a, b] equals the conditional expectation of F over [a, b].
15For the uniform prior case F = U([0, 1]), the tangent points zi, zi should satisfy yi−1 ≤ z ≤ 1

2 (yi−1 +yi ) ≤
z ≤ yi and zi − zi ≤ 1

2 (yi − yi−1 ); see Corollary 1.
16In this case, u must be convex on [yi−1, yi].
17For the uniform prior case F = U([0, 1]), the tangent point is 1

2 (yi−1 + yi ).
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4.1 S-shaped utility

Consider the setting of Kolotilin, Mylovanov, and Zapechelnyuk (2022). A receiver has to
decide whether or not to accept a project whose quality is known to the sender. Upon
acceptance, both the receiver and the sender enjoy a utility that is linear with respect to
the quality. Upon rejection, the receiver’s utility, denoted by V , is her private information
while the sender’s utility is zero. Kolotilin, Mylovanov, and Zapechelnyuk (2022) focus
on the case where the distribution over the value of V has a unimodal density function.
The unimodal density function induces an S-shaped indirect utility function (a convex
interval followed by a concave interval).

One of the main results in Kolotilin, Mylovanov, and Zapechelnyuk (2022) states that
an optimal signaling scheme for an S-shaped indirect utility function pools all high-
quality signals, those above some threshold, while fully revealing low-quality signals,
those below the threshold. We now demonstrate how our results can be used to provide
the intuition behind this result.

Proposition 3 informs us that the corresponding price function is composed of three
types of intervals: bi-pooling, pooling, and fully revealing. A bi-pooling interval cor-
responds to a bi-tangent interval of the price function with two internal tangent points
(Lemma 1). Note that such a bi-tangent lies above the utility and hence touches the con-
cave part of the utility at exactly one point. This implies that the other tangential point
lies in the convex part of the utility. This point must be 0 (see Figure 3 (a)) for if it were
not 0, then the bi-tangent would lie below the utility. Therefore, no bi-pooling interval
exists in the optimal policy.

Moreover, since the tangent in a pooling interval of the price function lies above the
utility, the tangent point must be in its concave part. However, since there is only one
concave part in the utility function and since the price function itself is convex, no two
such intervals can coexist. Hence, there is at most one pooling interval.

Finally, observe that full revelation cannot hold at any point of the concave regime
since the price function is convex and it coincides with the utility function at full-
revelation points. Therefore, the price function must take the form of a full-revelation

Figure 3. (a) The unique bi-tangent of an S-shape function. (b) The price function (i.e., the
solution) of an S-shape function.
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interval over the low values followed by a unique pooling interval over the high values;
see Figure 3(b).

4.2 A technical example

Thus far, we have demonstrated how the machinery we develop allows us to solve the
simple case of an S-shaped utility. We will next show further that our machinery is also
helpful in solving more complicated problems where the optimal policy may entail some
(possibly many) bi-pooling, pooling, and full-revelation regions.

The following example is provided solely as a means of demonstrating the contribu-
tion of Proposition 3 in solving for the optimal policy. The idea is to find a price function
that corresponds to a bi-pooling distribution. Specifically, we consider all possible lo-
cations of bi-pooling intervals. For each such “suspicious” location, we attempt to con-
struct a price function. A bi-pooling interval induces a bi-tangent interval of the price
function. As the number of bi-tangents is typically small, this observation provides a
practical way to start the search for the price function.18

Example 4. Let F = U([0, 1]) and u be the utility function that is given in Figure 4. In
this case, u has k = 7 interlaced concave and convex intervals and in the first interval u
is convex.

We begin by drawing all the bi-tangents. In this case, we have three such lines; see
Figure 5.

Note that the bi-tangent L2 violates the feasibility of the tangent points {z, z} (see
the third item in Proposition 3), even in the case where the bi-pooling interval has the
maximal possible length, that is, in the case of [y, y] = [0, x], where x is the (nontangen-
tial) intersection of L2 and u. Thus, a bi-pooling interval in L2 is impossible. Similarly, a
bi-pooling interval over the L3 line is impossible.

Figure 4. The utility of the sender as a function of the expected value of ω for the receiver.

18By contrast, the number of tangents associated with pooling intervals is huge.
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Figure 5. The supporting bi-tangents of u. A potentially feasible bi-tangent is drawn by a dotted
line. Infeasible bi-tangents are drawn by solid lines.

If we maintain the assumption that a bi-pooling interval indeed exists, then the cor-

responding tangent is L1 and the corresponding tangent points lie in intervals 2 and 4.

This leaves us with two possibilities. Either the bi-pooling interval is followed by a sin-

gle pooling interval or it is followed by a pooling interval and later by a fully revealing

interval. Searching for a price function that corresponds to the former case leads to a

dead end and so we can conclude that it is the latter case that finally produces the price

function as depicted in Figure 6.

As can be seen in the figure, the optimal policy in this example applies bi-pooling

in the interval (0, y ) with the pair of points (z1, z2 ) in the support. It applies pooling in

the interval (y, y ′ ) (in particular z3 = 1
2 (y ′ + y )). Finally, it is fully revealing in the interval

[y ′, 1]. ♦

Figure 6. A price function of the utility.
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Appendix A: Proofs for Section 2

Lemma 1. A support {z, z} is feasible for the interval (y , y ) if and only if y ≤ z ≤
E[F|(y,y )] ≤ z ≤ y and E[F|(C−1(z),y )] ≥ z, where C(w) = E[F|(y,w)] maps each value w to
the conditional expectation of F given that the realized state lies in (y , w).

Proof of Lemma 1. Let (y , z, z, y ) be such that Ex∼F|(C−1(z),y )
[x] ≥ z. In the proofs of

Lemma 2 and Lemma 4 below, we will show how to implement the corresponding
binary-support distribution as a MPC of F|(y,y ).

To prove the other direction, assume without loss of generality that y = 0, y = 1
and, therefore, F|(y,y ) = F . We ask first what is the largest probability that can be as-
signed to the atom z by a binary support G ∈ MPC(F ). We claim this probability is
at most F((0, C−1(z))). Let G ∈ MPC(F ) be the distribution that assigns the maximal
weight and let π : [0, 1] → �({s, s}) be a signaling policy that implements G such that
Ex∼F[x|π(x) = s] = z. We contend thatπ(x)(s) = 1 forF-almost every x ∈ (0, C−1(z)). To
see this, note that one of the two possibilities must hold. Either

∫ 1
C−1(z) π(x)(s)dF(x) = 0,

or
∫ 1
C−1(z) π(x)(s)dF(x) > 0.

In the former case, we have that the overall weight
∫ 1

0 π(x)(s)dF(x) that is assigned
to s is smaller than F((0, C−1(z))). Let π ′ : [0, 1] → �({s, s}) be a signaling policy for
which π′(x)(s) = 1 for any x ∈ (0, C−1(z)) and π ′(x)(s) = 1 for any x ∈ [C−1(z), 1). Note
that Ex∼F ,π′[x|π(x) = s] = Ex∼F|(0,C−1(z))

[x] = C(C−1(z)) = z. Therefore, π′ implements

a binary distribution that assigns a probability of F((0, C−1(z))) to z. This stands in
contradiction to the fact that G assigns a maximal weight to z.

Consider the latter case where
∫ 1
C−1(z) π(x)(s)dF(x) > 0 and π(x)(s) < 1 for an F

positive measure of x ∈ (0, C−1(z)). We generate a new signaling policy π ′ from the
signaling policy π as follows. We increase the weight π(x)(s) to 1 for some positive mea-
sure of x ∈ (0, C−1(z)) for which π(x)(s) < 1 and reduce the weight π(x)(s) to zero for
some positive measure of x ∈ (C−1(z), 1) for which π(x)(s) > 0. This can be done in
such a way that

∫ 1
0 π(x)(s)dF(x) = ∫ 1

0 π ′(x)(s)dF(x). Since EX∼F ,π[X|π(X ) = s] = z,
it follows that EX∼F ,π′[X|s] < z. We can now generate a new signaling policy π ′′ from
π′ by increasing the weight π ′(x)(s) for some positive measure of x ∈ (0, 1) for which
π(x)(s) < 1. This can be done in such a way that Ex∼F ,π′′[x|s] = z. Thus, overall, we ob-
tain a signaling policy π′′ that generates a distribution that assigns a higher weight to z

relative to G and, therefore, again reach a contradiction.
Thus, we must have that π(x)(s) = 1 for F-almost every x ∈ (0, C−1(z)). We note

that π must also satisfy π(x)(s) = 0 for F-almost every x ∈ [C−1(z), 1) as otherwise by
the definition of C−1(z) we would have EX∼F ,π[X|s] > z. Therefore, overall we have
shown that the distribution G assigns a weight of F((0, C−1(z))) to z. We note that G is
also the persuasion policy in MPC(F ) with the binary support {z, z} that maximizes z.
Thus, by the above, z = Ex∼F [x|x ∈ (C−1(z), 1)].

We next turn to the proof of Proposition 1. Henceforth, for any distribution G ∈
�([0, 1]) we abuse notation and use G(x) = G([0, x]) as the cumulative distribution
function (CDF) of G. Let rG(x) = ∫ x

0 G(y )dy. Recall that G ∈ MPC(F ) if and only if
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rG(x) ≤ rF (x) for every x ∈ [0, 1] and rG(1) = rF (1). We start with the following auxiliary
lemma.

Lemma 5. Let G be an extreme point of MPC(F ) and let (z, z) ⊆ (0, 1) be a nonempty
open interval. If G satisfies rG(z) = rF (z), rG(z) = rF (z), and rG(x) < rF (x) for every x ∈
(z, z), then G has a support of at most 2 points over (z, z).

Proof of Lemma 5. For simplicity, we assume that without loss of generality (z, z) =
(0, 1). Suppose by way of contradiction that G ∈ MPC(F ) contains at least three points
in its support. We note that since F is a nonatomic distribution, by assumption, we
must have that neither 0 nor 1 is an atom of G. Therefore, there exists a closed interval
[y, y] ⊂ (0, 1) such that the support of G contains at least three points in [y, y]. Hence,
we can find three disjoint intervals (y

i
, yi ) ⊂ (0, 1) for i = 1, 2, 3 such that the following

four properties hold: yi < y
i+1

for i = 1, 2, 0 < y
1

, y3 < 1, and G((y
i
, yi )) = αi > 0 for

i = 1, 2, 3. Let Gi = G|(y
i
,yi ) and let mi be the expectation of Gi. Let β ∈ (0, 1) be such

that βm1 + (1 −β)m3 =m2. For ε ∈R, let Hε be defined as follows:

Hε =G+ ε
(
βG1 + (1 −β)G3 −G2

)
.

The condition ε ≤ α2 guarantees that Hε((y
2

, y2 )) ≥ 0. Similarly, ε ≥ −α1
β and ε ≥ − α3

1−β

guarantee that Hε((y
1

, y1 )) ≥ 0 and Hε((y
3

, y3 )) ≥ 0, respectively.
Therefore, Hε is a well-defined probability measure for ε ≤ α2 and ε ≥ max{−α1

β ,
− α3

1−β }.
We further note that by the definition of β,

∫ 1

0

(
βG1 + (1 −β)G3 −G2

)
(x)dx =

∫ y

y

(
βG1 + (1 −β)G3 −G2

)
(x)dx

= β(1 −m1 ) + (1 −β)(1 −m3 ) − (1 −m2 ) = 0.

Therefore, for every x /∈ (y, y )

∫ x

0
Hε(x)dx = rHε(x) = rG(x). (2)

By assumption, rG(x) < rF (x) for every x ∈ (0, 1). Therefore, since rF (x) − rG(x) is a
continuous function, and since [y, y] ⊆ (0, 1), we have that rF (x) − rG(x) ≥ δ for every
x ∈ [y , y] for some δ > 0. In addition, we have by the definition of Hε that |Hε(x) −
G(x)| ≤ ε for every x ∈ [0, 1]. Therefore, |rHε(x) − rG(x)| < ε for every x ∈ [0, 1]. Hence,
there exists a small enough θ > 0 such that for every ε ∈ [−θ, θ] the measure Hε is well-
defined and for every x ∈ [y , y] it holds that rF (x) − rHε(x) ≥ δ

2 . Equation (2) implies that
rF (x) > rHε(x) for every x ∈ (0, 1).

Therefore, Hε ∈ MPC(F ) for every ε ∈ [−θ, θ]. Let H1 = H−θ and H2 = Hθ. Note that
H1 �=H2 and that G = H1+H2

2 . This implies thatG is not an extreme point of MPC(F ).

Proposition 1. The set of extreme points of MPC(F ) is precisely the set of bi-pooling
distributions.
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Proof of Proposition 1. We begin by showing that any bi-pooling distribution is an
extreme point of the set MPC(F ). Let G be such a bi-pooling distribution with the cor-
responding countable collection of pooling and bi-pooling intervals {(y

i
, yi )}i∈A. Recall

that G(x) = F(x) for every x ∈K := [0, 1] \ (
⋃

i∈A(y
i
, yi )).

By definition, the probabilities assigned to each interval of the form (y
i
, yi ) by F

and by G are equal and so rG(yi ) − rG(y
i
) = rF (yi ) − rG(y

i
) for any i ∈ A. In addition,

rG(x) = rF (x) for every x ∈ K. Now suppose by way of contradiction that G is not an
extreme point of MPC(F ) and so there exist G1, G2 ∈ MPC(F ) such that G1+G2

2 = G.
Since Gj ∈ MPC(F ), we must have that rGj (x) ≤ rF (x) for j = 1, 2 and every x ∈ [0, 1].

Since
rG1 +rG2

2 = rG, it must hold that rGj (x) = rF (x) for j = 1, 2 and every x ∈ K. Since
Gj �= G, there must be some i ∈ A and x ∈ (y

i
, yi ) such that Gj(x) �=G(x) for j = 1, 2.

For j = 1, 2 denote G̃j = Gj|(y
i
,yi ), and similarly G̃ = G|(y

i
,yi ). Since rGj (yi ) = rG(yi )

and rGj (yi ) = rG(y
i
), we must have that for j = 1, 2 the distributions G̃j and G̃ both have

the same expectation and that G̃1+G̃2
2 = G̃. The support of G̃ comprises at most two

points, and both G̃1, G̃2 must have the same (two-point) support. However, then we
must have G̃1 = G̃2 = G̃ as otherwise they could not have the same expected value, a
contradiction.

Conversely, let G be an extreme point of MPC(F ). We let K be the set of points
x such that rG(x) = rF (x). K is a closed set that contains 0 and 1. The complement
Kc ∩ [0, 1] is an open set and, therefore, can be written as a countable union of pairwise
disjoint open intervals {(y

i
, yi )}i∈A. Hence, we must have that y

i
, yi ∈ K for every i ∈ A.

Therefore, for every i ∈ A, we have rG(yi ) = rF (yi ), rG(y
i
) = rF (y

i
), and rG(x) < rF (x) for

every x ∈ (y
i
, yi ).

In order to show that G is a bi-pooling distribution, it is sufficient to show that for
any i ∈ A there are at most 2 points in the support of Gi = G|(y

i
,yi ). Let Fi = F|(y

i
,yi ) and

note that Gi ∈ MPC(Fi ). As G is an extreme point in MPC(F ), the distribution Gi must
be an extreme point in MPC(Fi ) and so by Lemma 5 must have at most two points in its
support. This completes the proof of the proposition.

Theorem 2. For every bi-pooling distribution G ∈ MPC(F ), there exists a continuous
utility function u for which G is the unique optimal solution.

Proof of Theorem 2. Consider a bi-pooling distribution G, as characterized in The-
orem 1, with {(y

i
, yi )}i∈A as the sequence of intervals. Let K = [0, 1] \ (

⋃
i∈A(y

i
, yi )).

Let p : [0, 1] → R be a convex function such that p is strictly convex on K and it is
linear on (y

i
, yi ) for every i. This function clearly exists and can be constructed by

taking a strictly convex function q : [0, 1] → R and changing it in (y
i
, yi ) by taking the

linear interpolation between q(y
i
) and q(yi ). By construction, F(y

i
, yi ) = G(y

i
, yi ),

EX∼F|(yi ,yi ) [p(X )] = EX∼G|(yi ,yi ) [p(X )] for every i ∈ A. In addition, F(K) = G(K) and

EX∼F|K [p(X )] = EX∼G|K [p(X )]. Therefore, EX∼F[p(X )] = EX∼G[p(X )].
For every i ∈A, let {wi, wi} be the support of G in (y

i
, yi ).

Let u be any continuous function satisfying (1) u(x) = p(x) for every x ∈ K or
x ∈ ⋃n

i=1{wi, wi}; and (2) u(x) < p(x) for every other x. Note that, by construction,



32 Arieli, Babichenko, Smorodinsky, and Yamashita Theoretical Economics 18 (2023)

supp(G) = {x : u(x) = p(x)}. Theorem 1 in Dworczak and Martini (2019) implies that
p is a price function for G with respect to the persuasion problem (F , u) and, therefore,
G is an optimal distribution for (F , u). We now claim that G is the unique optimal policy.

Assume by way of contradiction that H is another MPC of F such that EX∼H[u(X )] =
EX∼G[u(X )]. By Bauer’s maximum principle, we may assume, without loss of generality,
that H is an extreme point of MPC(F ) and so is a bi-pooling distribution. Let {(zi, zi )}i∈M
be the corresponding sequence of pooling and bi-pooling intervals. Since H ∈ MPC(F )
and p is a convex function, we have EX∼H[p(X )] ≤ EX∼F[p(X )] = EX∼G[p(X )]. Con-
versely, since u≤ p we have

EX∼G

[
p(X )

] = EX∼G

[
u(X )

] = EX∼H

[
u(X )

] ≤ EX∼H

[
p(X )

]
,

where the first equality follows since p is a price function for g. Therefore,
EX∼H[p(X )] = EX∼G[p(X )] = EX∼F [p(X )] = EX∼H[u(X )]. So, p is also a price func-
tion for H.

Let B = [0, 1] \ (
⋃

i∈M (zi, zi )). Since H|(zi ,zi ) is an MPC of F|(zi ,zi ) for every i ∈ M

and since p is a convex function, we conclude that EX∼H|(zi ,zi )[p(X )] = EX∼F|(zi ,zi ) [p(X )]
for every i ∈ M . This is possible only if p is linear on (zi, zi ) for every i ∈ M . Recall
that by construction p is linear only on the intervals (y

i
, yi ) and so for every i ∈ M we

must have that (zi, zi ) ⊆ (y
j
, yj ) for some j ∈ A. As p is also a price function for H we

can use the above argument, by changing the roles of G and H, to conclude that any
interval (y

i
, yi ) is contained in some interval (zi, zi ). Therefore, G and H are two bi-

pooling policies with the same set of pooling and bi-pooling intervals. To show they are
equal, it is enough to show that they agree on each such interval. Since EX∼H[u(X )] =
EX∼H[p(X )], we must also have that EX∼H|(zi ,zi ) [u(X )] = EX∼G|(zi ,zi )[p(X )] for every
i ∈M . This is possible only if the support of H in (zi, zi ) is contained in {wj , wj }. Thus,
we must have that (zi, zi ) = (y

j
, yj ) and H = F on (zi, zi ). Therefore, H =G.

Appendix B: Proofs for Section 3 and Section 4

Lemma 2. Every bi-pooling distribution can be implemented by a monotonic bi-pooling
signaling policy.

Proof of Lemma 2. Let G be a bi-pooling distribution. Any pooling interval unilater-
ally defines the signaling policy and so does the fully revealing part of G. Therefore, it
is sufficient to show that we can implement G|(y

i
,yi ) monotonically on any bi-pooling

interval (y
i
, yi ).

Assume without loss of generality that (y, y ) = (0, 1), and let z and z be the atoms of
G in (0, 1).

We now show that there exists π : (0, 1) → �({s, s}) such that (i) Eπ,X∼F [X|s] = z,
Eπ,X∼F[X|s] = z and (ii) for every x, y ∈ (0, 1) such that x ≥ y, it holds that π(x)(s) ≥
π(y )(s).

To see this, for every β ∈ [0, 1] define πβ : (0, 1) → �({s, s}) as follows:

πβ(x) =
{
βδs + (1 −β)δs if x ∈ [

y, C−1(z)
)

δs if x ∈ (
C−1(z), y

)
,
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where we recall that C(w) = Ex∼F|(y,w)[x]. We claim that πβ implements the distribution

αδz + (1 − α)δz for some β ∈ (0, 1]. To see this note that for β > 0, the signal s is cho-
sen with constant probability on the interval (0, C−1(z)] and with zero probability on
(C−1(z), 1). Therefore, the conditional expectation of the realized state given s is

EX∼F

[
X|X ∈ (

0, C−1(z)
)] = C

(
C−1(z)

) = z.

In addition, by construction, the conditional expectation of the realized state X

given s as a function of β is

Eπ[X|s] = F
(
C−1(z)

)
(1 −β)

F
(
C−1(z)

)
(1 −β) + (

1 − F
(
C−1(z)

))z
+

(
1 − F

(
C−1(z)

))
F

(
C−1(z)

)
(1 −β) + (

1 − F
(
C−1(z)

))EX∼F

[
X|X ∈ (

C−1(z), 1
)]

. (3)

That is, with conditional probability F(C−1(z))(1−β)
F(C−1(z))(1−β)+(1−F(C−1(z)))

the realization of s is

chosen from the interval (0, C−1(z)] and, therefore, has a conditional expectation z, and
with the complement probability the realization of s is chosen from (C−1(z), 1) and has
a conditional expectation EX∼F[X|X ∈ (C−1(z), 1)].

This shows in particular that πβ is monotonic for every β. Since {z, z} is feasible,
the latter conditional expectation is at least z. Note that Eπ[X|s] changes continuously
in β. In addition, Eπ0,X∼F[X|s] = EX∼F [X] for β = 0 and Eπ1,X∼F[X|s] = EX∼F [X|X ∈
(C−1(z), 1)] ≥ z. Therefore, by continuity Eπβ,X∼F [X|s] = z for some value β > 0. This
value β defines a lottery with expectation m= EX∼F[X]. Hence, the lottery is αδz + (1 −
α)δz , as desired.

Lemma 3. A persuasion problem (F , u) admits an optimal pure monotonic signaling pol-
icy if and only if it admits an optimal pooling policy.

Proof of Lemma 3. Let π be a pure monotonic signaling policy and let A = {y|
π−1(y ) contains an open set}. If A = ∅, then since π is increasing we must have that
π is one to one, and hence fully revealing. This in particular means that it is a pooling
policy. Assume A �= ∅. In this case, the monotonicity of π guarantees that the collection
of intervals {π−1(y )}y∈A is pairwise disjoint. These intervals form pooling intervals for
the corresponding policy. For y /∈ A, we must have that π−1(y ) = y is a singleton. There-
fore, π fully reveals states outside

⋃
y∈Aπ−1(y ). The converse follows immediately from

the definition of a pooling policy.

Lemma 4. Any bi-pooling distribution can be implemented by a bi-pooling signaling pol-
icy with a double-interval nested structure.

Proof of Lemma 4. It is sufficient to show that if {z, z} is feasible for z �= z, then we
can find an interval (y , y ) such that EX∼F|(y,y ) [X] = z and EX∼F|[1,y]∪[y,1][X] = z. Note that
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since {z, z} is feasible Lemma 1 implies that

EX∼F|[C−1(z),1]
≥ z.

If the above inequality holds with equality, we can let (y, y ) = (0, C−1(z)).
Assume otherwise that z < EX∼F|[C−1(z),1]

. Define a function h : [0, z) → [0, 1] such

that h(x) is the number y > z that satisfies

EX∼F|[x,y][X] = z.

In words, for every x ∈ [0, z) the value h(x) is determined such that the conditional
expectation of F given that the realized value lies in [x, h(x)] is z. Since F is non-
atomic with a full support on [0, 1], such a function h exists uniquely. Furthermore,
h is clearly continuous and strictly increasing. Note that, by definition, h(0) = C−1(z).
Since z < EX∼F|[C−1(z),1]

and since

F
([

0, C−1(z)
])
EX∼F|[0,C−1(z)]

[X] + F(
(
C−1(z), 1]

)
EX∼F|(C−1(z),1]

[X]

= F
((

0, C−1(z)
))
z + F

([
C−1(z), 1

])
EX∼F|[C−1(z),1]

= EX∼F [X] := m,

we must have that F([0, C−1(z)]) > 1−m
z−z . In addition, it clearly holds by continuity con-

siderations that as x approaches z, h(x) approaches z, and F((h(x), x)) approaches zero.
Therefore, by the mean value theorem, there must exist x′ such that F((x′, h(x′ ))) = 1−m

z−z .
We now let (y, y ) = (x′, h(x′ )).

Note that, by construction, EX∼F|(y,y ) [X] = z. Since F((y , y )) = 1−m
z−z and since

the overall conditional expectation of the realized state is m, we must have that
EX∼F|[1,y]∪[y ,1][X] = z. This completes the proof of the lemma.

Proposition 3. Let (F , u) be a persuasion problem such that u is upper semicontinuous
and there exists a sequence of points 0 = z0 < z1 < · · · < zk = 1 such that u is either concave
or convex in the interval (zi−1, zi ) for every i ∈ [k]. The price function p : [0, 1] → R of
an optimal bi-pooling distribution G is a concatenation of functions p(x) = pi(x) for
x ∈ [yi−1, yi], where 0 = y0 < y1 < · · · < ym = 1, m≤ 2k, and the functionspi : [yi−1, yi] →R

satisfy

• either19 pi(x) = u(x),

• or pi(x) ≥ u(x) is linear and tangential to u at the point E[F|(yi−1,yi )],

• or pi(x) ≥ u(x) is linear and tangential to u at two points zi, zi, where {zi, zi} is fea-
sible for the interval [yi−1, yi]; see Definition 2 and Lemma 1.

Proof of Proposition 3. We first show that there exists an optimal bi-pooling policy
that applies pooling or bi-pooling in at most 2k intervals. Let G be an optimal bi-pooling
policy such that the set of intervals {(y

i
, yi )}i∈A is minimal in the following sense. If

19In this case, u must be convex on [yi−1, yi].
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we take any interval (y
i
, yi ) and apply full revelation instead, then the resulting policy

is no longer optimal. In addition, for two disjoint intervals (y
i
, yi ) and (y

i′ , yi′ ) such
that yi < y

i′ the optimal policy resulting from applying pooling in (y
i
, yi′ ) and keeping

revelation outside (y
i
, yi′ ) as in G, leads to a suboptimal policy.

Let p be the price function of G. Let (zj , zj+1 ) be an interval in which u is convex. We
now show that it does not contain an interval (y

i
, yi ) ⊆ (zj , zj+1 ) for some i ∈ A. To see

this, note that in this case we can remove interval i from A and apply full revelation in
(y

i
, yi ). Since u is convex on (y

i
, yi ), this cannot decrease the utility of the sender. This

stands in contradiction to the minimality assumption of G.
Next, consider an interval (zj , zj+1 ) in which u is concave. We contend that it con-

tains at most one interval. Otherwise, we would have two disjoint intervals (y
i
, yi ) and

(y
i′ , yi′ ) that are contained in (zj , zj+1 ). Thus, since p = u in the support of G, and

since p is convex and u is concave on (zj , zj+1 ), we must have that p and u are linear
on the support of G over the intervals (y

i
, yi ) and (y

i′ , yi′ ). Thus, if yi < y
i′ , x is the

smallest point in the support of G in (y
i
, yi ) and x′ is the largest point in the support

of G in (y
i′ , yi′ ), then u and p are linear on [x, x′]. We could therefore apply pooling in

(y
i
, yi′ ). By doing this, we take the probability mass on [x, x′] and shift it to a single point

y ∈ [x, x′]. Since u is linear on [x, x′], this would not decrease the utility of the sender.
Again we arrived at a contradiction to the minimality of G.

Since there are k intervals (zj , zj+1 ) in which u is continuous and does not change
convexity or concavity, we have k indices i ∈ A for which (y

i
, yi ) ⊆ (zj , zj+1 ) for some j.

All other intervals (y
i
, yi ) intersect at least two intervals (zj , zj+1 ). Therefore, we must

have |A| ≤ 2k, as desired.
We turn to the other statements in the proposition. The first case corresponds to a

full information interval. The second case corresponds to a pooling interval. The third
case corresponds to a bi-pooling interval (in the uniform case we can utilize Corollary 1
to deduce that zi − zi ≤ 1

2 (yi − yi−1 )).
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