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Stable matching: An integer programming approach
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This paper develops an integer programming approach to two-sided many-to-one
matching by investigating stable integral matchings of a fictitious market where
each worker is divisible. We show that a stable matching exists in a discrete match-
ing market when the firms’ preference profile satisfies a total unimodularity con-
dition that is compatible with various forms of complementarities. We provide a
class of firms’ preference profiles that satisfy this condition.
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1. Introduction

Studies of two-sided matching originated with the seminal work of Gale and Shapley
(1962) on the markets of marriage and college admission. In the past decades, the theory
of two-sided matching has provided practical solutions to real-life matching problems
such as hospital–doctor matching, college admission, and school choice.1  Kelso and
Crawford (1982) and Roth (1984) have recognized different versions of substitutability
conditions that are sufficient for the existence of a stable matching in different settings.
The substitutability condition for a discrete matching market2 requires that any worker
chosen by a firm from a set of available workers will still be chosen when the available
set shrinks.3 Most real-life matching practices rely on different forms of substitutability
conditions. Complementarities in firms’ preferences have been regarded as the primary
source of difficulties for market design. For instance, consider the following market bor-
rowed from Che, Kim, and Kojima (2019) (henceforth, CKK)4 where there are two firms
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f1, f2, and two workers w1, w2. The agents have the preferences

f1 : {w1, w2} � ∅ w1 : f1 � f2

f2 : {w1} � {w2} � ∅ w2 : f2 � f1.
(1.1)

Firm f1’s preference violates the substitutability condition since w1 and w2 are comple-
ments for f1.5 No stable matching exists in this market.6

The lack of stable matching can be attributed to complementarities in firms’ prefer-
ences. However, consider the following market where f2’s preference is changed:

f1 : {w1, w2} � ∅ w1 : f1 � f2

f2 : {w1, w2} � {w1} � {w2} � ∅ w2 : f2 � f1.
(1.2)

There exists a stable matching in this market where f2 hires both w1 and w2. The com-
plementarity in f1’s preference does not distort stability in this market. This paper
shows that the firms’ preference profile in the latter example satisfies a total unimodu-
larity condition that guarantees a stable matching for all possible preferences of workers,
whereas this condition is violated in the former example. A matrix is totally unimodular
if every square submatrix has determinant 0 or ±1. A set of vectors is totally unimodular
if the matrix that has these vectors as columns is totally unimodular. We find that the
notion of demand type proposed by Baldwin and Klemperer (2019) (henceforth, BK) is
useful for analyzing firms’ preferences in a discrete matching market.7 When the avail-
able set of workers expands, firm f1 will hire both workers when they are available; thus
firm f1 has demand type {(1, 1)}. When the available set of workers for firm f2 expands
from {w2} to {w1, w2}, firm f2 will drop worker w2 and hire worker w1 in the former ex-
ample; thus firm f2’s demand type contains (1, −1), whereas f2’s demand type does not
contain (1, −1) in the latter example. Firm f2’s demand type is {(1, 0), (0, 1)(1, −1)} in
the former example, and {(1, 1), (1, 0), (0, 1)} in the latter example.8 The firms’ demand
type is {(1, 1), (1, 0), (0, 1), (1, −1)} in the former example, which is not totally unimod-
ular (because the determinant of (1, 1) and (1, −1) is −2). The firms’ demand type is
{(1, 1), (1, 0), (0, 1)} in the latter example, which is totally unimodular (because any ma-
trix formed by two of these vectors has determinant 0 or ±1). In this paper, we show
that total unimodularity of the firms’ demand type guarantees the existence of a stable
matching for all possible preferences of workers.

5This is because w1 would be hired by f1 from {w1, w2} but not hired by f1 from {w1}. Similarly, w2 would
be hired by f1 from {w1, w2} but not hired by f1 from {w2}.

6In this market, f1 should hire both workers or neither in any stable matching. In the former case, f2

would form a blocking coalition with w2, who prefers f2 to f1. In the latter case, f2 would be matched with
w1, leaving w2 unmatched. Then f1 would form a blocking coalition with both w1 and w2.

7BK studied the exchange economy where agents have quasilinear utilities over indivisible goods, which
we call the quasilinear market. See Section 1.1.

8In both examples, when the available set of workers for f2 expands from ∅ to {w1} or {w2}, firm f2 will
hire w1 or w2. Thus (1, 0) and (0, 1) are in f2’s demand type in both examples. In the latter example, the
demand type of f2 also contains (1, 1), since when the available set of workers expands from ∅ to {w1, w2},
firm f2 will hire both workers.
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Previous studies on discrete matching are mostly based on the Gale–Shapley mech-
anism or Taski’s fixed-point theorem.9 This paper develops a new integer programming
approach. We prove our results by studying stable integral matchings of a continuum
market induced from the original market. We assume that each worker is divisible and
construct a particular continuous preference on worker shares for each firm. This con-
tinuum market is an instance of CKK’s continuum market, and CKK’s existence theorem
guarantees the existence of a stable matching in our continuum market. Each stable
integral matching of this market corresponds to a stable matching of the original mar-
ket. Finally, we can apply tools from integer programming to prove the existence of a
stable integral matching in the continuum market when the firms’ demand type is to-
tally unimodular. In a discrete matching market, total unimodularity is independent of
substitutability and compatible with various forms of complementarities.10

Our existence theorem applies to a problem of matching firms with specialists,
which has a practical economic meaning. We depict the structure of firms’ acceptable
sets of workers by a technology tree, where each vertex of the tree represents a technol-
ogy that requires a set of workers to implement. Each edge of the tree is an upgrade from
one technology to another that requires more workers. A worker is called a specialist if
she engages in only one upgrade. We show that the firms’ demand type is totally uni-
modular when firms have preferences over the technologies in a technology tree where
each worker is a specialist. See Section 4.

1.1 Related literature

There are two parallel lines in the literature on two-sided matching. The discrete match-
ing market we study assumes no monetary transfers (school choice and college admis-
sion) or that workers’ wages are exogenously given (firm–worker matching and hospital–
doctor matching). The other line assumes continuous monetary transfers between firms
and workers where firms have quasilinear utilities and workers’ wages are determined
endogenously. This market closely relates to exchange economies where agents have
quasilinear utilities over indivisible goods. We call the matching market and exchange
economies of this line the quasilinear market, where the solution concept may be stable
matching or equilibrium.

Kelso and Crawford (1982) found that a stable matching exists in a quasilinear mar-
ket when each firm has a gross-substitute valuation over workers. Roth (1984, 1985)
found that a stable matching exists in a discrete many-to-many market when all agents
have substitutable preferences. In a quasilinear market and a discrete market, Sun
and Yang (2006, 2009) and Ostrovsky (2008), respectively, generalized the restriction of
substitutability to allow complementarities between two group of agents where substi-
tutability is satisfied within each group.11

 Danilov, Koshevoy, and Murota (2001) showed

9The Gale–Shapley mechanism with its variants is a standard tool for two-sided matching. See Sec-
tion 1.1 for literature on the fixed-point method.

10In a quasilinear market, substitutability implies total unimodularity (see Section 3.2 of BK). However,
the two conditions are independent of each other in a discrete matching market; see Section 2.3.

11Ostrovsky (2008) studied the problem of supply chain networks, which subsumes two-sided matching
as a special case; see also Hatfield, Kominers, Nichifor, Ostrovsky, and Westkamp (2013).
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that a unimodularity condition is sufficient for the existence of an equilibrium in a
quasilinear market.12 BK proved this result independently and enhanced it into the uni-
modularity theorem, which states that an equilibrium exists for all profiles of concave
valuations of a demand type if and only if the demand type is unimodular.

This paper is closely related to CKK, with BK’s notion of demand type playing a crit-
ical role. In a discrete matching market, CKK found that a stable matching always exists
with a continuum of workers when firms have continuous preferences, which can ex-
hibit various complementarities. Their approach enables market designers to pursue an
approximately stable matching, which is guaranteed to exist in a real-life market when
the market is large enough. CKK proved their existence theorem for the continuum mar-
ket using the Brouwer (or Kakutani) fixed-point theorem.13 Thus, the existence of a sta-
ble matching proved in this paper is essentially the existence of an integral Brouwer fixed
point, which is quite different from previous methods in matching theory.

BK’s demand type considers how demand changes as prices change, while our de-
mand type considers how demand changes as available workers change. BK proved their
results using tools from tropical geometry. Tran and Yu (2019) showed that the unimod-
ularity theorem for the quasilinear market can also be proved via integer programming.
Although we adopt the notion of demand type from BK and use a similar tool as Tran
and Yu (2019), our method is quite different from theirs. The unimodularity theorem
for the quasilinear market is built on the following result: An equilibrium always ex-
ists in a quasilinear market if and only if the aggregate valuation is concave.14 In a dis-
crete matching market, there is no counterpart to the notion of the aggregate valuation.
Therefore, the methods for quasilinear markets do not apply to discrete matching mar-
kets. Our method is to study the existence of a stable integral matching in a market with
“divisible” workers, where a stable matching always exists according to CKK.

Our method also relates to the linear programming (henceforth, LP) method for se-
lecting stable matchings of specific properties. Vande Vate (1989) showed the polytope
defined by the stable matchings in the marriage market and solved the optimal marriage
problem as a linear program. This method was then developed by Rothblum (1992),
Roth, Rothblum, and Vande Vate (1993), and Baïou and Balinski (2000). Teo and Sethu-
raman (1998) and Sethuraman, Teo, and Qian (2006) used this method to find a median
stable matching, which is a compromise between agents of the two sides. We discuss
the relation between the LP method and our method in Section 3.4. Biró, Manlove,
and McBride (2014) and Ágoston, Biró, and McBride (2016) used integer programming
methods to study complexities of matching with couples and special college admission
problems, respectively.

Stable matchings in a discrete matching market have been characterized as fixed
points of certain operators; see Adachi (2000), Fleiner (2003), Echenique and Oviedo

12The proof was provided in Danilov and Koshevoy (2004) as a special case of Theorem 3 therein.
13CKK applied the Kakutani–Fan–Glicksberg theorem to prove their existence theorem in a general set-

ting, allowing for indifferences in firms’ preferences and infinite worker types. Our continuum market is the
basic case with strict preferences and finite worker types in which stable matchings correspond to Brouwer
fixed points.

14See, e.g., Lemma 2 of Tran and Yu (2019).
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(2004, 2006), and Hatfield and Milgrom (2005), among others. A more straightforward
method for our purpose would be studying the system defined by the fixed-point char-
acterization under the total unimodularity condition. The fixed-point method is appeal-
ing for our problem because the fixed-point characterization provides a necessary and
sufficient condition that can be used for studying further generalizations or variations
of the total unimodularity condition.15 Although it is so far unknown how to obtain our
result using the fixed-point method, proving our result using the fixed-point method will
be useful for future research.

Complementarities were also considered in the problem of matching with couples
(e.g., Klaus and Klijn, 2005 and Nguyen and Vohra, 2018) and matching with peer effects
(see Echenique and Yenmez, 2007 and Pycia, 2012). CKK is a part of the literature that
treated the problem of complementarity by pursuing approximate stable outcomes; see
also Azevedo, Weyl, and White (2013), Kojima, Pathak, and Roth (2013), and Azevedo
and Hatfield (2018), among others. The setting of discrete matching has been gener-
alized to allow discrete contract terms between firms and workers (see Roth, 1984 and
Hatfield and Milgrom, 2005), where contracts may specify wages, insurances, retirement
plans, etc. Echenique (2012) showed that the many-to-one matching market with sub-
stitutable contracts is isomorphic to the Kelso–Crawford market with gross substitutes.
Hatfield and Kojima (2010) proposed weakened substitutability conditions that are not
implied by the Kelso–Crawford gross substitutes condition; see also Hatfield and Komin-
ers (2015). We can also extend our model to the framework with contracts by study-
ing stable integral matchings of the market in Section S.9 of CKK.16

 Huang (2021a) and
the author’s subsequent works provide sufficient conditions for the existence of a stable
matching where firms’ preferences may violate both the substitutability condition and
the total unimodularity condition.

The remainder of this paper is organized as follows. Section 2 presents the model
of a discrete matching market and the existence theorem. Section 3 elaborates on our
method for the proof of the existence theorem. Section 4 provides an application of
matching firms with specialists. Proofs are relegated to the Appendix.

2. Model

2.1 Preliminaries

There is a finite set F of firms, and a finite set W of workers. Let ø be the null firm,
representing not being matched with any firm. Each worker w ∈ W has a strict, transi-
tive, and complete preference �w over F̃ := F ∪ {ø}. For any f , f ′ ∈ F̃ , we write f �w f ′
when w prefers f to f ′ according to �w. We write f �w f ′ if either f �w f ′ or f = f ′.
Let �W denote the preference profile of all workers. Each firm f ∈ F has a strict, tran-
sitive, and complete preference �f over 2W . For any S, S′ ⊆ W , we write S �f S′ when

15For instance, we cannot tell whether a stable matching exists under some generalized unimodularity
condition if this condition does not guarantee an integral solution to the constructed linear equations in
Section 3. By contrast, we can confirm that stable matching does not exist when there is no fixed point for
the related operator in the fixed-point method.

16CKK extended their results to the framework of matching with contract terms in their Section S.9.
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f prefers S to S′ according to �f . We write S �f S′ if either S �f S′ or S = S′. Let �F

be the preference profile of all firms. A matching market can be summarized as a tuple
�= (W , F , �W , �F ).

Let Chf be the choice function of f such that for any S ⊆ W , Chf (S) ⊆ S and
Chf (S) �f S′ for all S′ ⊆ S. By convention, let Chø(S) = S for all S ⊆ W . For any f ∈ F ,
any w ∈ W , and any S ⊆ W , we say that f is acceptable to w if f �w ø; we say that S is
acceptable to f if S �f ∅.17

Definition 1. A matching μ is a function from the set F̃ ∪W into F̃ ∪ 2W such that for
all f ∈ F̃ and w ∈W ,

(i) μ(w) ∈ F̃

(ii) μ(f ) ∈ 2W

(iii) μ(w) = f if and only if w ∈ μ(f ).

We say that a matching μ is individually rational if μ(w) �w ø for all w ∈ W and
μ(f ) = Chf (μ(f )) for all f ∈ F . We say that a firm f and a subset of workers S ⊆ W form
a blocking coalition that blocks μ if f �w μ(w) for all w ∈ S, and S �f μ(f ). In words,
individual rationality requires that each matched worker prefers her current employer
to being unmatched and that no firm wishes to unilaterally drop any of its employees.
When f and S block μ, the set S may contain workers who are matched with f in μ.
Thus, we require each worker w ∈ S to weakly prefer f to μ(w). Firm f should strictly
prefer S to μ(f ) since we require S 	= μ(f ).

Definition 2. A matching μ is stable if it is individually rational and there is no block-
ing coalition that blocks μ.18

Stable matching is guaranteed to exist in a matching market when the preference
of each firm satisfies the following substitutability condition; see Chapter 6 of Roth and
Sotomayor (1990).19

Definition 3. Firm f has a substitutable preference if for any S ⊆ W and any {w, w′} ⊆
S, w ∈ Chf (S) implies w ∈ Chf (S \ {w′}).

If, on the contrary, there exist S ⊆ W and {w, w′} ⊆ S such that w ∈ Chf (S) but w /∈
Chf (S \ {w′}), then we would consider w and w′ to be complements in f ’s preference
because w becomes undesired when w′ is not available.

17Note that ø is the null firm whereas ∅ is the empty set of workers.
18The no blocking coalition condition implies the individual rationalities of firms: μ(f ) = Chf (μ(f ))

for all f ∈ F . This is also the case for Definition 5 (see footnote 28 of CKK). The exposition of these two
definitions follows the convention in the literature.

19The stability of Definition 2 is called the core defined by weak domination in Roth and Sotomayor
(1990).
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2.2 Demand type

Now we introduce BK’s concept of demand type to discrete matching. For any subset S ⊆
W of workers, we let ind(S) ∈ {0, 1}W denote the indicator vector of S. For any S, S′ ⊆ W

such that ind(S) = x and ind(S′ ) = x′, we abuse the notation to write x �f x′ when S �f S
′,

x �f x′ when S �f S
′, and Chf (x) = x′ when Chf (S) = S′.

Definition 4. For each f ∈ F , let Df = {d ∈ {0, 1}W | d 	= 0 and d = ind(Chf (S)) −
ind(Chf (S′ )) for some S, S′ such that S′ ⊂ S ⊆ W } be f ’s demand type. The demand type
for the firms’ preference profile is D = ∪f∈FDf .

A matrix is totally unimodular if every square submatrix has determinant 0 or ±1. In
particular, each entry in a totally unimodular matrix is 0 or ±1. A set of vectors is called
totally unimodular if the matrix that has these vectors as columns is totally unimodu-
lar. Total unimodularity can be tested in polynomial time; see, for example, Walter and
Truemper (2013). In a practical problem, suppose a firm f reports a preference that con-
tains N acceptable sets. If S and S′ are two sets such that Chf (S′ ) = S′ and S �f S′, we
should check whether S = Chf (S ∪ S′ ) holds to determine whether ind(S) − ind(S′ ) be-
longs to f ’s demand type. Hence, it takes O(N3 ) time to obtain f ’s demand type, which
contains at most N(N + 1)/2 vectors.

2.3 Existence theorem

We find that a stable matching exists in a discrete matching market for all possible pref-
erences of workers, provided the firms’ demand type is totally unimodular.20

Theorem 1. There exists a stable matching if the firms’ demand type D is totally unimod-
ular.

We explain our method for the proof of this theorem in Section 3. Totally unimod-
ular demand types are compatible with various forms of complementarities. We pro-
vide a class of firms’ preference profiles in Section 4 that exhibit total unimodularity and
complementarities.

Danilov, Koshevoy, and Murota (2001) and BK showed that an equilibrium exits in a
quasilinear market if agents have a unimodular demand type. Unimodularity is weaker
than total unimodularity. A set of vectors in Z

n is unimodular if every linearly indepen-
dent subset can be extended to a basis for Rn, of integer vectors, with determinant ±1.21

A matrix is unimodular if the set of its columns is unimodular. Notice that a matrix of full
row rank is unimodular if any square submatrix formed by its columns has determinant

20A previous version of this paper (Huang, 2021b) defined the null firm’s demand type to be the set of unit
vectors and defined the firms’ demand type to include the null firm’s demand type. The unimodularity con-
dition defined in the previous version is equivalent to the current total unimodularity condition according
to the following fact: For any matrix H, [H, I] is unimodular if and only if H is totally unimodular.

21k < n linearly independent vectors a1, � � � , ak can be extended to a basis for R
n if there exist vectors

ak+1, � � � , an such that a1, � � � , an is a basis for R
n. By the “determinant” of n vectors in Z

n we mean the
determinant of the n× n matrix that has them as its columns.
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0 or ±1. The following example shows that a stable matching does not necessarily exist
in a discrete matching market when D is unimodular.22

Example 1. There are three firms f1, f2, f3, and three workers w1, w2, w3. The agents
have the following preferences.

f1 : {w1, w2, w3} � ∅ w1 : f1 � f2 � ø

f2 : {w1} � {w2} � ∅ w2 : f2 � f1 � f3 � ø

f3 : {w2, w3} � ∅ w3 : f1 � f3 � ø

(2.1)

We have Df1 = {(1, 1, 1)}, Df2 = {(1, 0, 0), (0, 1, 0), (1, −1, 0)}, and Df3 = {(0, 1, 1)}. The
firms’ demand type is D = {(1, 1, 1), (1, 0, 0), (0, 1, 0), (1, −1, 0), (0, 1, 1)}, which is uni-
modular but not totally unimodular.23 This market does not admit a stable matching:
Suppose f3 is matched with {w2, w3}, then w1 is either employed by f2 or unmatched. In
both cases, f1 and {w1, w2, w3} form a blocking coalition. Suppose f3 is matched with ∅,
we do not have a stable matching for a similar reason as (1.1). ♦

In a quasilinear market, both conditions of gross substitutes (Kelso and Crawford,
1982) and gross substitutes and complements (Sun and Yang, 2006) imply total unimod-
ularity.24 However, total unimodularity is independent of substitutability in a discrete
matching market. In a quasilinear market, each vector from the demand type of a gross-
substitute valuation has at most one coordinate of +1 and at most one coordinate of
−1.25 But this is not the case for the demand type of a firm’s substitutable preference
in a discrete matching market. Next is an example of a substitutable preference profile
with demand type that fails total unimodularity.

Example 2. There are two firms f1, f2, and two workers w1, w2. The firms have the
preferences

f1 : {w1, w2} � {w1} � {w2} � ∅ f2 : {w1} � {w2} � ∅.

Both firms have substitutable preferences. However, we have Df1 = {(1, 1), (1, 0), (0, 1)}
and Df2 = {(1, 0), (0, 1), (1, −1)}. The firms’ demand type is not totally unimodular since
it contains (1, 1) and (1, −1). ♦

The necessity part of BK’s unimodularity theorem says that given a demand type that
is not unimodular, there must be some profile of concave valuations of this demand
type for which an equilibrium does not exist.26 It is unknown whether the following

22Example 1 does not conflict with the existence theorem stated in the previous version (Huang, 2021b)
because the definition of the firms’ demand type in the previous version differs from Definition 4.

23D is unimodular since the matrix formed by vectors from D has full row rank and any submatrix formed
by three vectors from D has determinant 0 or ±1. D is not totally unimodular because of the submatrix
formed by (1, 1) and (1, −1).

24See Section 3.2 of BK.
25See Definition 3.5 and Proposition 3.6 of BK.
26See Corollary 4.4 of BK.
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counterpart holds in our context: In a discrete matching market � with firms’ demand
type D not being totally unimodular (such as the market in Example 2), there must be
some market �′ with the same demand type for firms, for which a stable matching does
not exist (such as market (1.1), the firms’ demand type in (1.1) is the same as that in
Example 2).

3. Method

We elaborate on our method for the proof of Theorem 1 in this section. We present the
market with “divisible” workers in Section 3.1, the stability-preserving turnovers in this
market in Section 3.2, and an illustrative example in Section 3.3. We discuss the relation
to the LP method for stable matching in Section 3.4.

3.1 A continuum market

We construct an instance of the continuum market in CKK from a matching market �
by assuming that each worker in W is divisible. In this setting, W is called the set of
worker types. There is a divisible mass of quantity 1 of each worker type w ∈ W . A vector
x ∈ [0, 1]W is called a subpopulation, where x(w) is the quantity of the type-w workers
for each w ∈ W . We say that a subset of worker types S ⊆ W (or z ∈ {0, 1}W ) is available
at subpopulation x ∈ [0, 1]W if w ∈ S implies x(w) > 0 (resp. z(w) = 1 implies x(w) > 0).
Each worker type w ∈W has a strict preference �w over F̃ , where �w is the preference of
worker w in the original market �. Each firm f ∈ F̃ has a choice function Ĉhf : [0, 1]W →
[0, 1]W , where Ĉhf (x) ≤ x. By convention, let Ĉhø(x) = x for all x ∈ [0, 1]W . We now
construct a choice function Ĉhf for each firm f ∈ F based on its preference �f in �.

Let u1 �f u2 �f · · · �f uL �f 0 be the preference order of firm f over its acceptable
sets of workers in �, where uj ∈ {0, 1}W for all j ∈ {1, � � � , L} and 0 is the empty set of
workers. Before proceeding to the formal definition of Ĉhf , we want to give an intu-
itive description of this choice function, which resembles that of the probabilistic serial
assignment of Bogomolnaia and Moulin (2001). Consider the workers of each worker
type of x as a “divisible commodity.” The firm first consumes the workers of each type of
uj from x simultaneously at speed 1, where j is the smallest index such that uj is avail-
able at x. When the workers of one worker type of uj are exhausted, the firm switches
to consume the workers of uj′ simultaneously at speed 1, where j′ is the smallest index
such that uj′ is available at the remaining subpopulation. This procedure goes on un-
til the time reaches 1 or until there is no acceptable set of worker types available at the
remaining subpopulation.

Example 3. If f has preference {w1, w2} � {w2, w3} � {w3} � ∅ in �, then Ĉhf ((0.6,
0.6, 0.5)) = (0.6, 0.6, 0.4): It first consumes 0.6 of each of the type-w1 and type-w2 work-
ers. Then, since {w2, w3} is not available at the remaining subpopulation (0,0,0.5), it
switches to consume 0.4 of the type-w3 workers when the time reaches 1. In another
case, Ĉhf ((0.1, 0.4, 0.1)) = (0.1, 0.2, 0.1): The firm first consumes 0.1 of each of the type-
w1 and type-w2 workers, and then it consumes 0.1 of each of the type-w2 and type-w3
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workers from the remaining subpopulation (0, 0.3, 0.1). The procedure then terminates
since there is no acceptable set of worker types available at the remaining subpopulation
(0, 0.2, 0). ♦

Formally, for any x ∈ [0, 1]W , Ĉhf (x) is defined by the following recursive procedure.
Let t0 = 0 and z0 = x. Suppose t0, z0, . . . , tk−1, zk−1 (k ∈ {1, 2, � � � , L}) are already defined.
Then define

tk = min

{
1 −

k−1∑
j=0

tj , z
k−1
i | i ∈ {1, 2, � � � , n} and uki 	= 0

}

zk = zk−1 − tkuk.

(3.1)

After the sequences (tk )Lk=0 and (zk )Lk=0 have been defined, we define

Ĉhf (x) =
L∑

k=1

tkuk. (3.2)

When we consider this procedure as the consumption process described above, for
each k ∈ {1, 2, � � � , L}, tk is the time the firm spends in the consumption of uk; zk is
the remaining subpopulation after uk has been consumed. If

∑k′
j=1 tj = 1 for some

k′ ∈ {1, 2, � � � , L − 1}, then tk′′ = 0 for all k′′ ∈ {k′ + 1, � � � , L}. It turns out that the choice
function Ĉhf constructed above is continuous and satisfies the revealed preference
property.

Lemma 1. Ĉhf is continuous and satisfies the revealed preference property: For any
x, x′ ∈ [0, 1]W with x′ ≤ x, Ĉhf (x) ≤ x′ implies Ĉhf (x′ ) = Ĉhf (x).

The revealed preference property stated above is known as Sen’s property α, which is
a premise of CKK’s existence theorem. Let ĈhF be the set of choice functions of all firms
constructed in the above way. A continuum market induced from a matching market �
is also summarized as a tuple �̂ = (W , F , �W , ĈhF ), where W , F , and �W are the same
as those of �. We can interpret the induced market �̂ as a schedule matching market
of Alkan and Gale (2003), where each worker schedules her time among different firms,
and each firm schedules its time among different groups of workers. Different groups
of workers bring different outputs per unit time for each firm, which decrease along
with the firm’s preference order in the original market �. For instance, suppose f has
preference {w1, w2} � {w2, w3} � {w3} � ∅ in �. In the induced market, {w1, w2} brings
more output per unit time than {w2, w3}, which brings more output per unit time than
{w3}. When a firm faces an available supply of working time from workers, the firm
solves a linear program to find the optimal schedule, which is the same as the choice
function Ĉhf .27

A matching M in �̂ assigns each firm a subpopulation of workers: M = (Mf )f∈F̃ such

that Mf ∈ [0, 1]W for all f ∈ F̃ and
∑

f∈F̃ Mf (w) = 1 for all w ∈W . For any subpopulations

27I thank Federico Echenique for this insightful interpretation.
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x, x′ ∈ [0, 1]W , we let x ∨ x′ denote the subpopulation whose quantity of type-w workers
is max{x(w), x′(w)}. CKK use firms’ choice functions to define firms’ preferences over
matchings. Given two matchings M and M′, we say that firm f prefers M ′

f to Mf , denoted

as M′
f �f Mf , if M′

f = Ĉhf (M′
f ∨ Mf ). This relation is known as Blair’s partial order in the

literature (Blair, 1984). We write M′
f �f Mf to indicate that M′

f �f Mf and M′
f 	= Mf . For

any matching M and firm f , the subpopulation of workers assigned to firm f or some
firm worse than f (according to their preferences) in M is denoted as A�f (M) ∈ [0, 1]W ,
where

A�f (M)(w) =
∑

f ′∈F̃ :f�wf ′
Mf ′(w) (3.3)

for each w ∈ W ; A�f (M) refers to the available subpopulation for f in M since it mea-
sures the amount of workers of each type who would rather match with f in M. The
concept of stability in the continuum market �̃ is then defined as follows:

Definition 5. A matching M = (Mf )f∈F̃ in �̂ is stable if the following conditions hold.

(i) Individual Rationality: For each f ∈ F , Mf = Ĉhf (Mf ), and for all w ∈W , Mf (w) =
0 for any f that satisfies ø �w f .

(ii) No Blocking Coalition: There are no f ∈ F and M′
f ∈ [0, 1]W such that M′

f �f Mf

and M′
f ≤A�f (M).

CKK proved that stable matchings exist when each firm has a continuous choice
function.28 Then by Lemma 1, we know that there exists a stable matching in the con-
tinuum market �̂.

Example 4. Consider a matching market � where there are two firms F = {f1, f2} and
three workers W = {w1, w2, w3}. The preferences of firms and workers are

f1 : {w1, w2} � {w3} � ∅ w1 : f1 � f2 � ø

f2 : {w1, w2} � ∅ w2 : f2 � f1 � ø

w3 : f1 � ø.

♦

The above matching market induces a continuum market �̂, where the choice
functions Ĉhf1 and Ĉhf2 are generated from the above firms’ preference profile via
(3.1) and (3.2). By Lemma 1 and CKK’s existence theorem, there is at least one sta-
ble matching in this continuum market. For instance, the matching M in �̂, where
f1 is matched with (0.5, 0.5, 0.5), f2 with (0.5, 0.5, 0), and ø with (0, 0, 0.5), is sta-
ble. Under our constructed firms’ preferences, Ĉhf1 ((0.5, 0.5, 0.5)) = (0.5, 0.5, 0.5) and

28See Theorem 2 of CKK. CKK’s framework accommodates indifferences in firms’ preferences. The re-
quirements of continuity and convex-valuedness on firms’ choice correspondences in their setting reduce
to the continuity of firms’ choice functions in our setting.
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Ĉhf2 ((0.5, 0.5, 0)) = (0.5, 0.5, 0) indicate the individual rationality of M. Hiring more
type-w3 workers does not benefit f1. f1 and f2 would both like to hire more workers
of type-w1 and type-w2 at the ratio 1:1, but neither can draw workers of this ratio from
the other. For example, f1 would be better off when matched with (0.6, 0.6, 0.4). This is
because Ĉhf1 ((0.6, 0.6, 0.4) ∨ (0.5, 0.5, 0.5)) = (0.6, 0.6, 0.4) indicates (0.6, 0.6, 0.4) �f1

(0.5, 0.5, 0.5). However, f1 cannot draw any type-w2 workers from f2 since the type-
w2 workers prefer f2 to f1. In the language of Definition 5, f1 and (0.6, 0.6, 0.4) do
not form a blocking coalition because although (0.6, 0.6, 0.4) �f1 (0.5, 0.5, 0.5) holds,
(0.6, 0.6, 0.4) ≤ A�f1 (M) does not hold where A�f1 (M) = (1, 0.5, 1).

We say that a matching M in �̂ is integral if Mf (w) ∈ {0, 1} for all f ∈ F̃ and w ∈ W ;
otherwise we say that M is fractional. Another observation is that each stable integral
matching in the continuum market �̂ is also a stable matching in the original market �.
For instance, the stable integral matching in �̂, where f1 matches with (0, 0, 0), f2 with
(1, 1, 0), and ø with (0, 0, 1), is also a stable matching in �.

Lemma 2. If M is a stable integral matching in the continuum market �̂, then μ is a
stable matching in the original matching market �, where μ(w) = f and w ∈ μ(f ) if
Mf (w) = 1 for each w ∈W and f ∈ F̃ .

3.2 Stability-preserving turnovers

Every matching market � induces a continuum market �̂. Motivated by Lemma 2, we
turn to investigate when there exists a stable integral matching in �̂. According to CKK’s
existence theorem, there always exists a stable matching M in �̂, which may be fractional
or integral. Consider the stable fractional matching in Example 4, where f1 is matched
with (0.5, 0.5, 0.5), f2 with (0.5, 0.5, 0), and ø with (0, 0, 0.5). We obtain a stable integral
matching when all the workers matched with f2 switch to f1 and the type-w3 workers
previously hired by f1 become unemployed. Such “turnover” of workers in the contin-
uum market preserves stability and produces a stable integral matching. However, con-
sider the continuum market induced by (1.1), and the stable fractional matching where
f1 is matched with (0.5, 0.5) and f2 with (0.5, 0.5). We cannot obtain a stable integral
matching by any stability-preserving turnover of workers.29

Therefore, stable matching always exists in the original market when stability-
preserving turnover toward a stable integral matching exists in the continuum market.
To formalize some of the stability-preserving turnovers, we generalize the concept of
matching to “pseudo-matching” in the continuum market and introduce “stable trans-
formations” that operate on pseudo-matchings in a succinct manner. We find that some
special stability-preserving turnovers toward an integral matching can be expressed as a
series of our stable transformations.

In the continuum market �̂, we call M = (Mf )f∈F̃ a pseudo-matching if Mf ∈ [0, 1]W

for all f ∈ F̃ . A pseudo-matching may assign more or less than quantity 1 of some worker
type to firms. A pseudo-matching is a matching if

∑
f∈F̃ Mf (w) = 1 for each w ∈ W . We

29It happens that there is no stability-preserving turnover of workers in this continuum market, because
there is only one stable matching; see Example 3 of CKK.
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say that a pseudo-matching M is stable if it satisfies conditions (i) and (ii) in Definition 5.
In other words, a pseudo-matching M is stable if M is a stable matching when the quan-
tity of each worker type w in the market is adjusted to its current quantity

∑
f∈F̃ Mf (w)

in M.

Example 5. Consider the continuum market �̂ in Example 4. Let M be the pseudo-
matching where Mf1 = (0.6, 0.6, 0.3), Mf2 = (0.3, 0.3, 0), and Mø = (0, 0, 0). Then M is a
stable pseudo-matching. The reason is similar to that in Example 4.

Let M′ be the pseudo-matching where M′
f1

= (0, 0, 0), M′
f2

= (0.3, 0.3, 0), and M′
ø =

(0, 0, 0). Readers can check that M′ is also a stable pseudo-matching. ♦

Given a stable pseudo-matching M in �̂, each of the following transformations on M
produces a stable pseudo-matching M′.

Type-1 stable transformation. Choose a firm f ′ from F such that
∑L

j=1 tj < 1 holds in

the procedure (3.1) that computes Ĉhf ′(Mf ′ ). Let M′
f ′ = 0 and let M′

f = Mf for all f 	= f ′.
Type-2 stable transformation. Choose a firm f ′ from F . Consider the procedure (3.1)

that computes Ĉhf ′(Mf ′ ) = ∑L
j=1 tjuj . Choose an index k ∈ {1, 2, � � � , L} that satisfies

tk > 0, let M′
f ′ = uk, and let M′

f = Mf for all f 	= f ′.
Type-3 stable transformation. Choose a worker type w′ ∈ W that satisfies Mø(w′ ) ∈

(0, 1), let M′
ø(w′ ) = 0 or 1, and let M′

ø(w) = Mø(w) for all w 	= w′ and M′
f = Mf for all

f ∈ F .

Example 6. Consider the continuum market �̂ in Example 4 and the stable pseudo-
matchings M and M′ in Example 5. M → M′ is a type-1 stable transformation. Note
that in the procedure (3.1) that computes Ĉhf1 (Mf1 ), we have

∑L
j=1 tj = 0.9 < 1. Since

f1 cannot draw any subpopulation that includes both types from f2 in M, f1 can do no
such thing in M′ either and, thus, this transformation maintains stability.

Let M′′ be the pseudo-matching where M′′
f1

= (1, 1, 0), M′′
f2

= (0.3, 0.3, 0), and M′′
ø =

(0, 0, 0). Then M → M′′ is a type-2 stable transformation. This transformation maintains
stability because f2 cannot draw any subpopulation that includes both types from f1 no
matter when f1 is matched with (0.6, 0.6, 0.3) or (1, 1, 0).

Let M̃ be the pseudo-matching where M̃f1 = (0, 0, 0), M̃f2 = (0.3, 0.3, 0), and M̃ø =
(0, 0.3, 0). Let M̃ ′ be the pseudo-matching where M̃′

f1
= (0, 0, 0), M̃′

f2
= (0.3, 0.3, 0), and

M̃′
ø = (0, 1, 0). Then M̃ → M ′ and M̃ → M̃′ are both type-3 stable transformations. Un-

matched workers in a stable matching can be viewed as redundant for firms; thus, sta-
bility is not affected when the quantity of unmatched workers varies. ♦

Lemma 3. Each of the type-1, type-2, and type-3 stable transformations on a stable
pseudo-matching produces a stable pseudo-matching.

When we implement several stable transformations on a stable fractional matching,
the matching becomes “less fractional” and ultimately becomes integral, but it may as-
sign more or less than quantity 1 of some worker types. Thus, we also want a series of
transformations to be “balanced,” that is, to assign 1 quantity of each worker type in the
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output. Because the stable transformations transform stable fractional matchings in a
succinct manner, we can reduce “balanced” stable transformations to integral solutions
to a system of linear equations, where the total unimodularity condition applies.

3.3 Illustrative example

Example 7. Consider the market of Example 4 and the stable matching M in the con-
tinuum market where Mf1 = (0.5, 0.5, 0.5), Mf2 = (0.5, 0.5, 0), and Mø = (0, 0, 0.5). In
the following discussion, we represent a pseudo-matching in �̂ with a matrix, the rows
of which represent the subpopulations matched with the firms. M is then represented
by the 3 × 3 matrix

w1 w2 w3

f1 0.5 0.5 0.5
f2 0.5 0.5 0
ø 0 0 0.5

Consider the following transformations on M:⎛⎜⎝0.5 0.5 0.5
0.5 0.5 0
0 0 0.5

⎞⎟⎠ (1)=⇒
⎛⎜⎝0.5 0.5 0.5

0 0 0
0 0 0.5

⎞⎟⎠ (2)=⇒
⎛⎜⎝1 1 0

0 0 0
0 0 0.5

⎞⎟⎠ (3)=⇒
⎛⎜⎝1 1 0

0 0 0
0 0 1

⎞⎟⎠ .

Transformations (1), (2), and (3) are type-1, type-2, and type-3 stable transforma-
tions, respectively. It turns out that we finally reach a stable integral matching M′ in �̂,
where M′

f1
= (1, 1, 0), M′

f2
= (0, 0, 0), and M′

ø = (0, 0, 1). The outcome is not only a sta-
ble integral pseudo-matching, but also a matching that assigns precisely quantity 1 of
each worker type.

A critical observation is that we can reach a stable integral matching through stable
transformations on M when there is a nonnegative integral solution to the system of
linear equations ⎛⎜⎜⎜⎜⎜⎝

1 1 0 0 0
0 0 1 1 0
1 0 1 0 0
1 0 1 0 0
0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
z1

z2

z3

z4

z5

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
1
1
1
1

⎞⎟⎟⎟⎟⎟⎠ .

Let B denote the 5 × 5 matrix on the left. The first and second rows of B are con-
straints for preserving stability; the third to fifth rows of B are constraints for assigning
quantity 1 of each worker type. Let B∗ denote the 3 × 5 submatrix that includes the third
to fifth rows of B. Let Bi and B∗

i be the vectors of the ith column of B and B∗, respec-
tively. B∗

1 and B∗
2 correspond to {w1, w2} and {w3} in f1’s preference list, respectively. B∗

3
and B∗

4 correspond to {w1, w2} and ∅ in f2’s preference list, respectively. B∗
5 corresponds

to the type-w3 workers matched with firm ø. z = (0.5, 0.5, 0.5, 0.5, 0.5) is a solution to
this system, which refers to matching M as

M =
(

f1 f2 ø
z1(1, 1, 0) + z2(0, 0, 1) z3(1, 1, 0) + z4(0, 0, 0) z5(0, 0, 1)

)
. (3.4)
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(z1, z2 ) = (0.5, 0.5) corresponds to (t1, t2 ) in the procedure (3.1) that computes Ĉhf1 (0.5,
0.5, 0.5); (z3, z4 ) = (0.5, 0.5), corresponds to (t1, 1 − t1 ) in the procedure (3.1) that com-
putes Ĉhf2 (0.5, 0.5, 0); z5 = 0.5 corresponds to Mø = (0, 0, 0.5). Note that (3.4) with any
integral z ∈ {0, 1}5 that satisfies z1 + z2 = 1 and z3 + z4 = 1 (guaranteed by the first and
second rows of B) corresponds to a stable integral pseudo-matching obtained from M
via stable transformations. Then any z ∈ {0, 1}5 that satisfies Bz = 1 corresponds to a
stable integral matching since B∗z = 1 requires that the workers of each type assigned to
firms is of quantity 1. For instance, z′ = (1, 0, 0, 1, 1) is a solution to the system, and we
obtain the stable integral matching M′ by plugging z′ into (3.4).

Therefore, given a stable matching M in the continuum market �̂, we can construct
a system of linear equations Bz = 1. Our construction guarantees that the polytope
{z | Bz = 1, z ≥ 0} is nonempty because M corresponds to a nonnegative solution to this
system of equations. Our construction also guarantees that every integral point of this
polytope corresponds to a stable matching in the original market. Now we can apply
a standard result from integer programming to this problem. Under the condition that
matrix B is unimodular, all vertices of the polytope {z | Bz = 1, z ≥ 0} are integral (Hoff-
man and Kruskal, 1956; see also Theorem 21.5 of Schrijver, 1986). Since the polytope
is nonempty, we further know that there is at least an integral vertex on this polytope.
Finally, it is not difficult to find out that B is unimodular when the firms’ demand type D
is totally unimodular. In this example, we have Df1 = {(1, 1, 0), (1, 1, −1), (0, 0, 1)} and
Df2 = {(1, 1, 0)}. The firms’ demand type is D = {(1, 1, 0), (1, 1, −1), (0, 0, 1)}, which is
totally unimodular. Now we illustrate why total unimodularity of D implies unimodu-
larity of matrix B. For instance, B1, B2, B3, and B5 are linearly independent. The total
unimodularity of D guarantees that matrix [B∗

1 − B∗
2, B∗

5] is unimodular,30 and thus the
set {B∗

1 − B∗
2, B∗

5} can be extended to a basis for R3, of integer vectors, with determinant
±1 (e.g., by extending with (1, 0, 0)). Then, we know that {B1, B3} ∪ {B1 − B2, B5} can
be extended to a basis for R5, of integer vectors, with determinant ±1 (e.g., by extending
with (0, 0, 1, 0, 0)). Therefore, such extension also exists for the set {B1, B2, B3, B5}.31 ♦

3.4 Relation to the LP method

Linear programming has been used to select stable matchings of specific properties,
such as optimal marriage and median stable matching. Both the LP method and our
method represent matchings by their indicator vectors and study polytopes related to
these vectors. We discuss the differences between the two methods below.

First, the LP method is used to find stable matchings of specific properties in a dis-
crete matching market when firms have so-called responsive preferences—a special case
of substitutable preferences. By contrast, we investigated under what conditions stable

30This is because of the following two facts: (i) Matrix H is totally unimodular if and only if [H, I] is
unimodular (I is the identity matrix). (ii) Any column submatrix of a unimodular matrix is unimodular
again. Fact (i) implies the unimodularity of [D, I]. Thus, fact (ii) implies the unimodularity of [B∗

1 −B∗
2, B∗

5]
since B∗

1 −B∗
2 is an element of D and B∗

5 is a column from I.
31Since subtracting one column from another column leaves the determinant unchanged, we know that

{B1, B2, B3, B5} ∪ {(0, 0, 1, 0, 0)} is also an integral basis for R5, with determinant ±1.
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matching exists in the market with complementarities. Second, the LP method uses the
definition of stable matching to define a polytope whose vertices are the stable match-
ings of the market. Then the problems of optimal marriage and median stable match-
ing reduce to linear programs. By contrast, we address our problem by constructing
a fictitious market where each worker is divisible and by investigating the stable inte-
gral matchings of this market. We incorporate the results of CKK and tools from integer
programming to obtain our results.

4. Application

This section presents an application of matching firms with specialists, which has a
practical economic meaning. We describe the structure of firms’ acceptable sets of
workers as a directed rooted tree, which we call technology tree. Each vertex of the
technology tree represents a technology that requires a set of workers to implement.
Each edge of the tree is an upgrade from one technology to another that requires more
workers. A worker is called a specialist if she engages in only one upgrade. We show
that the firms’ demand type is totally unimodular when firms have unit-demand pref-
erences over the technologies of a technology tree where each worker is a specialist. We
first provide an illustrative example as follows.

Example 8. Consider a market with two firms f1, f2 and four workers w1, w2, w3, w4. A
technology tree is depicted as

v0 : ∅

v1 : {w1, w2} v2 : {w3}

v3 : {w3, w4}.

Each vertex from {v0, v1, v2, v3} represents a technology that requires the set of work-
ers on the right to implement. The root v0 represents no technology and requires no
worker. Each directed edge is an upgrade from one technology to another, where more
workers should be employed to implement the upgrade. If e= vv′ is an edge from vertex
v to vertex v′, where w is not demanded by v but demanded by v′, we say that w engages
in the upgrade e or vv′. For example, w1 and w2 both engage in upgrade v0v1. Each firm
possesses some of the technologies and has a preference order over the technologies it
possesses, which induces its preference over the sets of workers required for the tech-
nologies. For instance, f1 may possess v1 and v2; f2 may possess v1 and v3; and v0 is
trivially possessed by both firms. f1 and f2 may have the preferences

f1 : {w1, w2} � {w3} � ∅
f2 : {w3, w4} � {w1, w2} � ∅.

(4.1)

♦
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With firms’ preferences induced in this way, we find that the firms’ demand type is
totally unimodular when the technology tree satisfies the condition

each worker is a specialist who engages in only one upgrade. (4.2)

For example, given that w1 engages in upgrade v0v1, this condition requires that w1

cannot engage in other upgrades. When firms’ acceptable sets of workers are from a
technology tree that satisfies this condition, the firms’ demand type is totally unimodu-
lar since its elements form a network matrix (Tutte, 1965; see also Chapter 19.3 of Schri-
jver, 1986). See an illustration in Section A.3. To see the role of (4.2), consider the firms’
preference profile in (1.1). There are two possible structures for the technology tree that
induces the firms’ preferences:

v0 : ∅

v1 : {w1} v2 : {w2}

v3 : {w1, w2}

v0 : ∅

v1 : {w1} v2 : {w2} v3 : {w1, w2}

Both technology trees violate condition (4.2): On the first tree, w1 engages in both up-
grades v0v1 and v2v3. On the second tree, w1 engages in both upgrades v0v1 and v0v3.

Formally, a technology tree T = (V , E, W ) is a directed rooted tree (V , E) defined on
a set of workers W ; V = {v0, v1, � � � , vl} is a set of vertices with v0 as the root. Each vertex
v ∈ V represents a technology that requires a subset of workers W v ⊆ W to implement.
The root v0 represents no technology and requires no worker: W v0 = ∅. E is a set of
directed edges, all of which point away from the root. For each edge e ∈ E from vertex v

to vertex v′, W v ⊂ W v′
, and we let W e = W v′ \W v. We say that worker w is a specialist in

T if she engages in only one upgrade: | {e ∈E |w ∈W e} |= 1. We study firms’ preferences
where each firm wants to hire one set of workers from a common technology tree.

Definition 6. Firms have unit-demand preferences over a technology tree T = (V , E,
W ) if for each f ∈ F and each S ⊆W , S �f ∅ implies S =W v for some v ∈ V .

In words, firms have unit-demand preferences over a technology tree if those sets
of workers not on the tree are not acceptable for all firms. Each firm wants to employ
one set from the technology tree and can have arbitrary preference order over the sets
of workers on the tree.32 We then have the following theorem.

32Note that if a firm has preference {w3} � {w3, w4} � ∅ in Example 8, this preference is essentially equiv-
alent to {w3} � ∅.
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Theorem 2. The firms’ demand type is totally unimodular if firms have unit-demand
preferences over a technology tree where each worker is a specialist.

Therefore, we know that a stable matching always exists when firms have unit-
demand preferences over a technology tree where each worker is a specialist. Studying
this problem motivated a subsequent work of the author that generalizes condition (4.2)
and the unit demand of technologies. Both generalizations allow firms’ demand types
that are not totally unimodular.

Appendix

A.1 Proofs of the lemmata

Proof of Lemma 1. (a) Revealed preference property. For any x, x̃ ∈ [0, 1]W with x̃ ≤ x
and Ĉhf (x) ≤ x̃, consider the procedures (3.1) that compute Ĉhf (x) and Ĉhf (x̃). Let
(tk )Lk=1 and (zk )Lk=1 be the parameters in computing Ĉhf (x). Let (̃tk )Lk=1, and (̃zk )Lk=1 be
the parameters in computing Ĉhf (x̃).

Since x̃ ≤ x, we have t̃1 ≤ t1. Suppose t̃1 < t1. Then we have Ĉhf (x) ≥ t1u1 but x̃ ≥ t1u1

does not hold. This contradicts Ĉhf (x) ≤ x̃. Thus, we have t1 = t̃1, and then z̃1 ≤ z1.
Suppose for all j ∈ {1, 2, � � � , k − 1}, we have tj = t̃j and zj ≥ z̃j . Then, since zk−1 ≥

z̃k−1, we have t̃k ≤ tk. Suppose t̃k < tk. Then we have Ĉhf (x) ≥ ∑k
j=1 tjuj but x̃ ≥∑k

j=1 tjuj does not hold. This contradicts Ĉhf (x) ≤ x̃. Thus, we have tk = t̃k and z̃k ≤ zk.

According to the above inductive arguments, the procedures that compute Ĉhf (x)
and Ĉhf (x̃) coincide, and we have Ĉhf (x) = Ĉhf (x̃).

(b) Continuity. For any x, x̃ ∈ [0, 1]W , let r(x, x̃) = maxw∈W | x(w) − x̃(w) | be the max-
imum metric. Consider the procedures (3.1) that compute Ĉhf (x) and Ĉhf (x̃), where
r(x, x̃) < v. Let (tk )Lk=1 and (zk )Lk=1 be the parameters in computing Ĉhf (x). Let (̃tk )Lk=1
and let (̃zk )Lk=1 be the parameters in computing Ĉhf (x̃).

Since r(x, x̃) < v, we have | t1 − t̃1 |< v and r(t1u1, t̃1u1 ) < v. Then r(z1, z̃1 ) = maxw∈W |
x(w) − t1u1(w) − x̃(w) + t̃1u1(w) |< 2v.

We then establish the following inductive arguments. Suppose we have | tj − t̃j |<
2j−1v and r(zj , z̃j ) < 2jv for all j ∈ {1, 2, � � � , k − 1}. Then we have | ∑k−1

j=1 tj − ∑k−1
j=1 t̃j |<

(2k−1 − 1)v. We then consider four cases:
(i)

∑k
j=1 tj < 1 and

∑k
j=1 t̃j < 1. Since r(zk−1, z̃k−1 ) < 2k−1v, we have | tk− t̃k |< 2k−1v.

(ii)
∑k

j=1 tj = ∑k
j=1 t̃j = 1. We have | tk − t̃k |< (2k−1 − 1)v.

(iii)
∑k

j=1 tj = 1 and
∑k

j=1 t̃j < 1. We have
∑k

j=1 t̃j = ∑k−1
j=1 t̃j + t̃k < 1 = ∑k−1

j=1 tj + tk

and, thus, tk − t̃k >
∑k−1

j=1 t̃j − ∑k−1
j=1 tj > −(2k−1 − 1)v. Since r(zk−1, z̃k−1 ) < 2k−1v and∑k

j=1 t̃j < 1 also imply tk < t̃k + 2k−1v, we have | tk − t̃k |< 2k−1v.

(iv)
∑k

j=1 tj < 1 and
∑k

j=1 t̃j = 1. This is symmetric to (iii) and we also have | tk − t̃k |<
2k−1v.

According to the above inductive arguments, for each j ∈ {1, 2, � � � , L}, we have | tj −
t̃j |< 2j−1v and then r(tjuj , t̃juj ) < 2j−1v. We have r(Ĉhf (x), Ĉhf (x̃)) < (2L − 1)v.
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Therefore, for any ε > 0, there exists δ = ε/[(2L − 1)
√
n] such that | x − x̃ |< δ im-

plies r(x, x̃) < δ, and then r(Ĉhf (x), Ĉhf (x̃)) < ε/
√
n, which further implies | Ĉhf (x) −

Ĉhf (x̃) |< ε.33

Proof of Lemma 2. Since M is an integral matching in �̂, there exists f ∈ F̃ such that
Mf (w) = 1 for each w ∈W and, thus, μ is a matching in �.

We then prove that for any integral x ∈ {0, 1}W , Ĉhf (x) = Chf (x). Let j ∈ {1, 2, � � � , L}
be the index such that uj ≤ x, and uk ≤ x does not hold for all k < j. (If such j does not
exist, we have Ĉhf (x) = Chf (x) = 0.) Then we have tk = 0 for all k < j, tj = 1, and tk = 0
for all j < k≤L. Therefore, we have Ĉhf (x) = Chf (x) = uj .

Let M = (Mf )f∈F̃ be a stable integral matching in a continuum market �̂. Let μ be
the matching in � such that μ(w) = f and w ∈ μ(f ) if Mf (w) = 1 for each w ∈ W and
f ∈ F̃ .

(a) Individual rationality. For any f ∈ F , since Mf is integral, we have Ĉhf (Mf ) =
Chf (Mf ). The individual rationality of firms in M in �̂ implies that for each f ∈ F , Mf =
Ĉhf (Mf ) = Chf (Mf ). Because the set of workers available at workers (Mf ) is precisely
μ(f ), we have μ(f ) = Chf (μ(f )). The individual rationality of workers in M in �̂ also
implies the individual rationality of workers in μ.

(b) No blocking coalition. Suppose f and a subset of workers S ⊆ W block μ in �,
where ind(S) = M′. Since S �f μ(f ) in �, we have Ĉhf (M′ ∨M) = Chf (M′ ∨M) 	= M. Then
by the revealed preference property, we have Ĉhf (M′ ∨ M) �f M in �̂. Since f �w μ(w)
for all w ∈ S in �, then Ĉhf (M′ ∨ M) ≤ M′ ∨ M ≤A�f (M). Thus, f and Ĉhf (M′ ∨ M) block
M in �̂. A contradiction.

Proof of Lemma 3. We first prove the following two lemmata. Given a subpopulation
x ∈ [0, 1]W , let integral (x) = y ∈ {0, 1}W , where y(w) = 0 if x(w) = 0 and y(w) = 1 if
x(w) > 0 for each w ∈ W . Given a pseudo-matching M, for each f ∈ F we still define
A�f (M) by (3.3). Let A≺f (M) ∈ [0, 1]W be the subpopulation such that A≺f (M)(w) =∑

f ′∈F̃ :f�wf ′ Mf ′(w) for each w ∈W ; A≺f (M) is the subpopulation of workers assigned to

some firm worse than f in M according to their preferences. Note that A≺f (M) + Mf =
A�f (M) for each f ∈ F .

Lemma 4. Let M be a pseudo-matching and let there be a firm f ′ ∈ F such that
Ĉhf ′(Mf ′ ) = Mf ′ . Consider the procedure (3.1) that computes Ĉhf ′(Mf ′ ) = ∑L

j=1 tjuj .
There exists a blocking coalition that involves f ′ if and only if there exists k ∈ {1, 2, � � � , L}
such that

∑k
j=1 tj < 1 and uk ≤ integral(A≺f ′

(M)).

Proof. ⇐ The inequality uk ≤ integral(A≺f ′
(M)) implies that there exists ε > 0 such

that εuk ≤ A≺f ′
(M). Then the revealed preference property and

∑k
j=1 tj < 1 imply

Ĉhf ′(εuk + Mf ′ ) = Ĉhf ′[Ĉhf ′(εuk + Mf ′ ) ∨ Mf ′ ] 	= Mf ′ . We also have Ĉhf ′(εuk + Mf ′ ) ≤
εuk + Mf ′ ≤ A≺f ′

(M) + Mf ′ = A�f ′
(M). Hence, f ′ and Ĉhf ′(εuk + Mf ′ ) form a blocking

coalition.

33| · | is the Euclidean distance.
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⇒ If t1 = 1, then Mf ′ = u1 and there is no blocking coalition that involves f ′.
Thus, there exists k ∈ {1, 2, � � � , L} such that

∑k
j=1 tj < 1. Suppose for all such k,

uk ≤ integral(A≺f ′
(M)) does not hold. Then consider the procedures (3.1) that com-

pute Ĉhf ′(Mf ′ ) and Ĉhf ′(A�f ′
(M)) = ∑L

j=1 t̂juj . Since A�f ′
(M) = Mf ′ + A≺f ′

(M) and

uk ≤ integral(A≺f ′
(M)) does not hold for all k when

∑k
j=1 tj < 1, we know that tj = t̂j

for all j ∈ {1, 2, � � � , L}. Thus, we have Ĉhf ′(Mf ′ ) = Ĉhf ′(A�f ′
(M)) and by the revealed

preference property, there is no blocking coalition that involves f ′.

Lemma 5. Let M be a stable pseudo-matching. Choose f ′ ∈ F and let M′ be a pseudo-
matching such that M′

f ′(w) = 0 if Mf ′(w) = 0 for each w ∈ W and M′
f = Mf for all f 	= f ′.

Then there exists no blocking coalition that involves f 	= f ′ in M′.

Proof. For any f 	= f ′, consider the procedure (3.1) that computes Chf (Mf ) =
Chf (M′

f ) = ∑L
j=1 tjuj . Since M is stable, by Lemma 4 for all k ∈ {1, 2, � � � , L} such that∑k

j=1 tj < 1, uk ≤ integral(A≺f (M)) does not hold. Since M′
f ′(w) = 0 if Mf ′(w) = 0, we

have integral(A≺f (M′ )) ≤ integral(A≺f (M)). Therefore, for all k ∈ {1, 2, � � � , L} such that∑k
j=1 tj < 1, uk ≤ integral(A≺f (M′ )) does not hold for all f 	= f ′. By Lemma 4, there exists

no blocking coalition that involves f 	= f ′ in M′.

In each of the three transformations, since we set M′
f (w) = 1 only when Mf (w) > 0

for each f ∈ F̃ and each w ∈ W , the workers’ individual rationality holds for M′ from
the individual rationality of M. It is also straightforward to see that the firms’ individual
rationality also holds. By Lemma 5, in each of the type-1 and type-2 transformations,
there exists no blocking coalition that involves f 	= f ′ in M′. Let u1 � u2 � · · · � uL � 0
be the preference order of firm f ′ over its acceptable sets of workers in �.

Type 1. Suppose in M′ there exists a blocking coalition that involves f ′. Con-
sider the procedure (3.1) that computes Ĉhf ′(M′

f ′ ) = ∑L
j=1 t

′
juj . Since M′

f ′ = 0, then
t ′j = 0 for all j ∈ {1, 2, � � � , L}. By Lemma 4, there exists k ∈ {1, 2, � � � , L} such that

uk ≤ integral(A≺f ′
(M′ )) = integral(A≺f ′

(M)). Consider the procedure (3.1) that com-
putes Ĉhf ′(Mf ′ ) = ∑L

j=1 tjuj . Since
∑L

j=1 tj < 1 and there exists k ∈ {1, 2, � � � , L} such

that uk ≤ integral(A≺f ′
(M)), by Lemma 4, M is not stable. A contradiction.

Type 2. Suppose in M′ there exists a blocking coalition that involves f ′. Consider
the procedure (3.1) that computes Ĉhf ′(M′

f ′ ) = ∑L
j=1 t

′
juj . Since M′

f ′ = uk, by Lemma

4, there exists k′ < k such that uk′ ≤ integral(A≺f ′
(M′ )). Then consider the procedure

(3.1) that computes Ĉhf ′(Mf ′ ) = ∑L
j=1 tjuj . Since tk > 0, we have

∑k′
j=1 tj < 1 and uk′ ≤

integral(A≺f ′
(M′ )) = integral(A≺f ′

(M)). By Lemma 4, M is not stable. A contradiction.
Type 3. If we set M′

ø(w′ ) = 0 for some w′ ∈W such that Mø(w′ ) ∈ (0, 1), then for each
f ∈ F , A�f (M ′ ) ≤ A�f (M ). Any f ∈ F that can form a blocking coalition with some M′′

f in
M′ can also form a blocking coalition with M′′

f in M.
If we set M′

ø(w′ ) = 1 for some w′ ∈ W such that Mø(w′ ) ∈ (0, 1), then for any f ∈ F ,
integral(A≺f (M)) = integral(A≺f (M′ )). If there exists a blocking coalition that involves f

in M′, then by Lemma 4, there also exists a blocking coalition that involves f in M.
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A.2 Proof of Theorem 1

The proof of Theorem 1 is illustrated by Example 7. Every matching market � induces a

continuum market �̂, where Lemma 1 and the existence theorem of CKK indicate that

a stable matching M is guaranteed to exist in �̂. For each f ∈ F , consider the procedure

(3.1) that computes Ĉhf (Mf ) = ∑L
j=1 tjuj = Mf , where the last equality is implied by the

individual rationality of firms in M. We construct matrices {B∗f }f∈F as

B∗f =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[
uk1 , uk2 , � � � , uks

]
, if

L∑
j=1

tj = 1

[
uk1 , uk2 , � � � , uks , 0

]
, if

L∑
j=1

tj < 1,

(A.3)

where tl > 0 for each l ∈ {k1, k2, � � � , ks} and k1 <k2 < · · · <ks .34

We then construct matrix Bø and Bf for each f ∈ F . Each column of Bø is an (|F| +
|W |)-dimensional unit vector, where the (|F| + j)th unit vector is in Bø if Mø(wj ) > 0.35

We construct Bf from B∗f for each f ∈ F . Each Bf has |F| + |W | rows, where the first |F|

components of each column are the components of the ith unit vector of dimension |F|

when f = fi. The last |W | components of each column of Bf are those of each column

of B∗f . Thus the number of columns of each Bf is s or s+ 1 in its corresponding formula

(A.3). Then let matrix B = [Bf1 , Bf2 , � � � , Bf|F| , Bø]. Let cl(f ) be the number of columns

of Bf for each f ∈ F̃ . Thus, B is an (|F| + |W |) × ∑
f∈F̃ cl(f ) matrix. Theorem 1 is then

implied by the following lemma and Lemma 2.

Lemma 6. Consider the system of linear equations Bz = 1, where z is a
∑

f∈F̃ cl(f )-

dimensional vector and 1 is the (|F| + |W |)-dimensional vector with all its coordinates

being 1. If the firms’ demand type D is totally unimodular, then there exists a solu-

tion z = (zf1 , zf2 , � � � , zf|F| , zø ) ∈ {0, 1}
∑

f∈F̃ cl(f ) to Bz = 1, where zf is a cl(f )-dimensional

vector for each f ∈ F̃ .36 Moreover, M′ is a stable integral matching in �̂, where M′
f =∑cl(f )

j=1 z
f
j B

∗f
j for each f ∈ F̃ .37

34In (A.3), for each l ∈ {k1, k2, � � � , ks }, ul is a column of matrix B∗f ; B∗f is an |W | × s or |W | × (s + 1)
matrix. The numbers {k1, k2, � � � , ks } and s are different for different firms.

35The (|F| + j)th unit vector is the (|F| + |W |)-dimensional unit vector with its (|F| + j)th coordinate

being 1. In Example 7, Bø is the matrix with a single column B5.
36By z = (zf1 , zf2 , � � � , zf|F| , zø ), we mean the first cl(f1 ) components of z are the components of zf1 , the

(cl(f1 ) + 1)th to (cl(f1 ) + cl(f2 ))th components are the components of zf2 , and so on. In Example 7, z =
(1, 0, 0, 1, 1) is such a solution where zf1 = (1, 0), zf2 = (0, 1), and zø = 1.

37B
∗f
j is the vector of the jth column of B∗f .
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Proof. We first show that the polytope {z | Bz = 1, z ≥ 0} is nonempty. For each f ∈ F ,
consider the procedure (3.1) that computes Ĉhf (Mf ) = ∑L

j=1 tjuj = Mf and let

ẑf =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(tk1 , tk2 , � � � , tks ), if

L∑
j=1

tj = 1(
tk1 , tk2 , � � � , tks , 1 −

s∑
i=1

tki

)
, if

L∑
j=1

tj < 1,

where k1, k2, � � � , ks are those in (A.3). Let ẑø be the cl(ø)-dimensional vector where
ẑø
l = Mø(wj ) if Bø

l is the (|F| + j)th unit vector for each l ∈ {1, � � � , cl(ø)}. Let B∗∗ be the
matrix constituted of the first |F| rows of B, and let B∗ be the matrix constituted of the

last |W | rows of B. Let ẑ = (̂zf1 , ẑf2 , � � � , ẑf|F| , ẑø ).
∑cl(f )

i=1 ẑ
f
i = 1 for each f ∈ F implies

B∗∗̂z = 1, and
∑

f∈F̃ Mf (w) = 1 for each w ∈ W implies B∗̂z = 1. Hence, we know ẑ is in
{z | Bz = 1, z ≥ 0}.

If matrix B is unimodular, all vertices of polytope {z | Bz = 1, z ≥ 0} are integral (Hoff-
man and Kruskal, 1956; see also Theorem 21.5 of Schrijver, 1986). Then, since the poly-
tope is nonempty, we know that there is at least an integral vertex on this polytope. We
now show that B is unimodular if the firms’ demand type D is totally unimodular. For
any linearly independent subset B̂ of columns from B, we partition B̂ into B̂ = ∪f∈F̃ B̂f ,

where B̂f is the collection of vectors of B̂ from Bf for each f ∈ F̃ . B̂f is possibly empty for

some f ∈ F̃ .38 Let bf
1 , bf

2 , � � � denote the elements of B̂f for each f ∈ F̃ if B̂f is not empty.

For each i ∈ {1, � � � , |F|}, if B̂fi is empty, let bfi
1 be the ith unit vector of |F| + |W | dimen-

sions. For each f ∈ F , let Bf = {bf
2 − bf

1 , bf
3 − bf

1 , � � �} if there are at least two elements
in B̂f , and let Bf = ∅ otherwise. Let B̃F = (∪f∈FBf ) and B̃ = (∪f∈FBf ) ∪ B̂ø. Note that
the first |F| coordinates of each vector from B̃F and B̃ are 0. Let B̃∗

F and B̃∗ be the set of
|W |-dimensional vectors by removing the first |F| components of each vector from B̃F

and B̃, respectively. If D is totally unimodular, then B̃∗
F is totally unimodular. According

to the reason stated in footnote 30, B̃∗ is unimodular. Thus, B̃∗ can be extended to a ba-

sis for RW , of integer vectors, with determinant ±1. Then, the set {bf1
1 , bf2

1 , · · · , b
f|F|
1 } ∪ B̃

can be extended to a basis for R
F∪W , of integer vectors, with determinant ±1. Since

adding one column to another column leaves the determinant unchanged, such exten-

sion also exists for {bf1
1 , bf2

1 , · · · , b
f|F|
1 } ∪ B̂, which can be extended from B̂. Therefore, B

is unimodular.
Now we know there is at least an integral vertex on the polytope {z | Bz = 1, z ≥ 0}

when the firms’ demand type D is totally unimodular. According to the structure
of matrix B, any nonnegative integral solution to Bz = 1 must be a 0-1 vector. Let
z = (zf1 , zf2 , � � � , zf|F| , zø ) be an integral point of {z | Bz = 1, z ≥ 0}, where zf is a cl(f )-
dimensional vector for each f ∈ F̃ . Let M ′ be the integral pseudo-matching in �̂, where

M ′
f = ∑cl(f )

j=1 z
f
j B

∗f
j for each f ∈ F̃ . Because B∗∗z = 1 (i.e.,

∑cl(f )
j=1 z

f
j = 1 for each f ∈ F), we

38For instance, if we consider B̂ = {B1, B2, B5} in Example 7, then B̂f2 is empty. In the following extension
to a basis for RF∪W from B̂, we put the ith unit vector of |F| + |W | dimensions into B̂ when B̂fi is empty for
each i ∈ {1, � � � , |F|}.
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know that M′ can be obtained via stable transformations on M. By Lemma 3, M′ is a sta-
ble integral pseudo-matching. Since B∗z = 1 implies

∑
f∈F̃ M′

f (w) = 1 for each w ∈ W ,
we know that M′ is a stable integral matching.

A.3 Proof of Theorem 2

We present the proof first and then an example to illustrate the proof.
Suppose the firms have unit-demand preferences over a technology tree T =

(V , E, W ). Let G = (V , E′ ) be a complete directed graph where the set of vertices V

is the same as that of T and the direction of each edge e ∈ E′ is arbitrary. We use G and
the directed tree (V , E) to define matrix H as follows. For each e ∈E and e′ = (v, v′ ) ∈E′,

He,e′ = +1 if the unique v − v′ path in (V , E) passes through e forwardly

= −1 if the unique v − v′ path in (V , E) passes through e backwardly

= 0 if the unique v − v′ path in (V , E) does not pass through e.

H is a network matrix, which is totally unimodular (see, e.g., Chapter 19.3 of Schrijver,
1986).

Because each worker is a specialist in T , we can define ew to be the unique edge that
w engages for each w ∈ W . We use G and the technology tree T = (V , E, W ) to define
matrx H ′ as follows. For each w ∈W and e′ = (v, v′ ) ∈E′,

H ′
w,e′ = +1 if the unique v − v′ path in (V , E) passes through ew forwardly

= −1 if the unique v − v′ path in (V , E) passes through ew backwardly

= 0 if the unique v − v′ path in (V , E) does not pass through ew.

H ′ can be obtained from H by repeating some rows. In particular, if | W e |= k for
edge e in the technology tree, then the row of edge e of H is repeated k times in H ′. Thus
we know that H ′ is also totally unimodular.

If d belongs to the demand type of a firm f ∈ F , then either d is a column of H ′ or −d
is a column of H ′ (see an illustration below). Therefore, D is totally unimodular.

For instance, consider the technology tree in Example 8, and let G = (V , E′ ) be the
complete directed graph

v0

v1 v2

v3
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The directed graph G and the directed tree (V , E) generate matrix H as

v0v1 v0v2 v0v3 v1v2 v1v3 v2v3

v0v1 1 0 0 −1 −1 0
v0v2 0 1 1 1 1 0
v2v3 0 0 1 0 1 1

The directed graph G and the technology tree T = (V , E, W ) generate matrix H ′ as

v0v1 v0v2 v0v3 v1v2 v1v3 v2v3

w1 1 0 0 −1 −1 0
w2 1 0 0 −1 −1 0
w3 0 1 1 1 1 0
w4 0 0 1 0 1 1

Matrix H ′ is exactly the matrix that repeats the first row of matrix H. Now we consider
the firms’ preferences of (4.1). Let H ′

j be the jth column of matrix H ′. We find that f1’s
demand type is {H ′

1, H ′
2, −H ′

4} and f2’s demand type is {H ′
1, H ′

3, H ′
5}.
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