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Rationalizable implementation of social choice functions:
Complete characterization
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We provide a complete answer regarding what social choice functions can be ra-
tionalizably implemented.
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1. Introduction

A social choice function describes a socially desirable outcome for each possible state.
Given a solution concept (e.g., Nash equilibrium, rationalizability), we say that a so-
cial choice function can be fully implemented if there exists a game (or, equivalently, a
mechanism) such that, at any state θ, the outcome induced by any solution in the game
matches the outcome dictated by the social choice function at θ.

What social choice functions can be fully implemented? This question has been
studied extensively in the literature (see, e.g., Jackson (2001) and Maskin and Sjöström
(2002) for surveys), and most papers adopt the solution concept of Nash equilibria.
However, we adopt a different solution concept in this paper, and study what social
choice functions can be fully implemented in rationalizable strategies.

Nash equilibrium imposes two requirements: (i) (common knowledge of) players
taking best strategies to their beliefs regarding other players’ strategies and (ii) players’
beliefs being correct. If we impose only the first requirement, we get the solution con-
cept of rationalizability. Compared to Nash equilibrium, rationalizability has two advan-
tages. First, though Nash equilibrium has a simpler definition than rationalizability, the
epistemic foundation of the former is more complicated than the latter (see Aumann
and Brandenburger (1995)). As a result, from an epistemic view, interpretation of the
results of rationalizable implementation is clearer than that of Nash implementation.
Second, if players do not have common knowledge of primitives, a mechanism designer
should require robust mechanism design.1 Recent papers (e.g., Bergemann and Morris
(2009), Bergemann and Morris (2011), Oury and Tercieux (2012)) have shown that ro-
bust mechanism design usually leads to requiring rationalizable implementation. Thus,
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1Conceptually, robust mechanism design means that we implement a social choice function not only at
each state, but also on a neighborhood of each state.

© 2023 The Author. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at https://econtheory.org. https://doi.org/10.3982/TE4036

https://econtheory.org/
mailto:siyang.xiong@ucr.edu
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://econtheory.org
https://doi.org/10.3982/TE4036


198 Siyang Xiong Theoretical Economics 18 (2023)

compared to Nash implementation, rationalizable implementation helps us to better
understand robust mechanism design.

Rationalizable implementation was first studied in Bergemann, Morris, and Ter-
cieux (2011) (hereafter, BMT). Focusing on social choice functions, BMT show that strict
Maskin monotonicity is necessary for rationalizable implementation, and, furthermore,
given two additional technical conditions, strict Maskin monotonicity is also sufficient.
In two subsequent papers, Kunimoto and Serrano (2019) and Jain (2021) study rational-
izable implementation of social choice correspondences.2 In this paper, we focus on so-
cial choice functions, and our goal is to fully characterize rationalizable implementation
when no technical condition is imposed.

Previous characterization of rationalizable implementation (BMT, Jain (2021), Kuni-
moto and Serrano (2019)) hinges critically on the following two assumptions.

• No worst alternatives (Definition 2, hereafter NWA)3

• Responsiveness (Definition 3).

NWA means that the targeted social choice function cannot choose a worst outcome
of any agent at any state. Responsiveness means that the targeted social choice function
is injective. There are plenty of examples in which either responsiveness or NWA fails.
For instance, when the number of states is larger than the number of social outcomes,
responsiveness fails automatically. Technically, this paper develop tools to dispense
with responsiveness and NWA, and use these tools to fully characterize rationalizable
implementation when neither assumption is imposed.

Besides the technical contribution, our results also clarify two conceptual puzzles
implied by the results in BMT. Even though Nash equilibria and rationalizability are two
very different solution concepts, the characterizations of full implementation in these
two solution concepts are surprisingly similar: Maskin monotonicity for the former and
strict Maskin monotonicity for the latter. Our results identify the source of such a coinci-
dence: NWA. When NWA is relaxed, rationalizable implementation is fully characterized
by strict event monotonicity (Definition 9), which embeds an argument of iterated dele-
tion of never-best replies—a feature that distinguishes rationalizability from Nash equi-
libria. When NWA holds, we still have iterated deletion, but the order of deletion does
not matter, and, hence, strict event monotonicity reduces to strict Maskin monotonicity.

Second, given NWA, BMT also aim to fully characterize rationalizable implementa-
tion when responsiveness is relaxed: they show that strict Maskin monotonicity∗ (Defi-
nition 7) suffices for rationalizable implementation, and given an additional assumption
called the best-response property, strict Maskin monotonicity∗ is also necessary. How-
ever, the best-response property is not defined on primitives, and, hence, it is not clear
whether the best-response property suffers loss of generality.

Given NWA, we prove that strict Maskin monotonicity∗∗ (Definition 8) fully charac-
terizes rationalizable implementation. In Xiong (2022), we provide an example in which

2Chen, Kunimoto, Sun, and Xiong (2021) also study rationalizable implementation, but they allow for
monetary transfers.

3NWA was first introduced in Cabrales and Serrano (2011).
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NWA and strict Maskin monotonicity∗∗ hold, while strict Maskin monotonicity∗ does
not. Therefore, it suffers loss of generality to impose the best-response property.

The remainder of the paper proceeds as follows: we describe the model in Section 2;
we provide motivating examples in Section 3; we illustrate canonical mechanisms in
Section 4; we deal with responsiveness and NWA in Sections 5 and 6, respectively; we
provide the full characterization in Section 7.

2. Model

The model consists of〈
I = {i1, � � � , iI }, �= {θ1, � � � , θn}, Z, f : �−→Z, (ui : Z ×�−→R)i∈I

〉
,

where I is a finite set of I agents with I ≥ 3, � is a finite set of n states, Z is a countable
set of pure social outcomes, f is a social choice function (hereafter, SCF) that maps each
state in � to an outcome in Z, and ui is the Bernoulli utility function of agent i.

For notational ease, we write Y for �(Z ) (i.e., Y ≡ �(Z )). We assume that agents are
expected utility maximizers, and with slight abuse of notation, we also use ui to denote
agent i’s expected utility function, i.e.,

ui : Y ×� −→ R

ui(y, θ) =
∑
z∈Z

yzui(z, θ),

where yz denotes the probability of z under y. Throughout the paper, we use −i to de-
note I\{i} and assume |f (�)| ≥ 2.4 Define lower and upper contour sets as

Li(y, θ) = {y ′ ∈ Y : ui(y, θ) ≥ ui
(
y ′, θ

)} ∀y ∈ Y

L◦
i (y, θ) = {y ′ ∈ Y : ui(y, θ) > ui

(
y ′, θ

)} ∀y ∈ Y

U◦
i (y, θ) = {y ′ ∈ Y : ui(y, θ) < ui

(
y ′, θ

)} ∀y ∈ Y .

A mechanism is a tuple M = 〈M ≡ ×i∈IMi, g : M −→ Y 〉, where each Mi is a count-
able set, and it denotes the set of strategies for agent i in M. We now define ratio-
nalizability and rationalizable implementation. For every i ∈ I , define Si ≡ 2Mi and
S ≡ ×i∈ISi. Given any (M, θ), consider an operator bM,θ : S −→ S with bM,θ ≡ [bM,θ

i :

S −→ Si]i∈I , where each bM,θ
i is defined as follows. For every S ∈ S ,

bM,θ
i (S) =

⎧⎪⎨⎪⎩mi ∈Mi :
∃λ−i ∈ �(M−i ) such that

(i) λ−i(m−i ) > 0 implies m−i ∈ S−i

(ii) mi ∈ arg maxm′
i∈Mi

�m−i∈M−iλ−i(m−i )ui
(
g
(
m′

i, m−i

)
, θ
)
⎫⎪⎬⎪⎭ .

Clearly, S is a lattice with the order of “set inclusion,” and bM,θ is increasing, i.e.,

S ⊆ S′ =⇒ bM,θ(S) ⊆ bM,θ(S′).
4If |f (�)| = 1, the implementation problem can be solved trivially.
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By Tarski’s fixed point theorem, a largest fixed point of bM,θ exists, and we denote it by
SM,θ ≡ (SM,θ

i )i∈I .5 We say mi ∈ Mi is rationalizable in M at θ if and only if mi ∈ SM,θ
i ,

i.e., SM,θ
i is the set of rationalizable strategies of agent i in M at θ, and SM,θ is the set of

rationalizable strategy profiles. We say that S ∈ S satisfies the best-reply property in M
at θ if and only if S ⊂ bM,θ(S). Clearly, S ⊂ SM,θ if S satisfies the best-reply property.6

Definition 1. An SCF f : �−→ Z is rationalizably implemented by a mechanism M if

g
[
SM,θ]= {f (θ)

} ∀θ ∈�.

An SCF f is rationalizably implementable if there exists a mechanism that rationalizably
implements f .

3. Motivating examples

The characterization of rationalizable implementation in BMT hinges critically on the
two conditions defined as follows.

Definition 2 (No worst alternative). An SCF f : � −→ Z satisfies no worst alternative
(NWA) if, for each (i, θ) ∈ I ×�, there exists z ∈Z such that

ui
(
f (θ), θ

)
> ui(z, θ). (1)

Definition 3 (Responsiveness). An SCF f : �−→ Z is responsive if

f (θ) = f
(
θ′) =⇒ θ = θ′ ∀θ, θ′ ∈�.

In this section, we provide examples, showing that we can still characterize rational-
izable implementation, even if either of the two conditions fails.

3.1 Violation of NWA

First, we provide an example in which NWA fails in a particular way, and we show that
BMT’s characterization can still be immediately applied, subject to some modification.
Second, we argue that a similar logic can be applied to any general violation of NWA.

Example 1.a. I = {i1, i2, i3, i4}, � = {θ1, θ2, θ3}, Z = {a, b, c}. Table 1 records f and
agents’ utility of each social outcome at each state. For example, agent i1 has utility
of 2 for the outcome a at state θ1. ♦

In Example 1.a, strict Maskin monotonicity and responsiveness hold, but NWA is vi-
olated (for agent i4 at every state). Consider a modified version of Example 1.a, described
as follows—the only difference is that agent i4 is eliminated in Example 1.b.

5That is, SM,θ = bM,θ(SM,θ ) and for any S ∈ S with S = bM,θ(S), we have S ⊂ SM,θ.
6Suppose S satisfies the best-reply property. Inductively define (bM,θ )n(S) = bM,θ[(bM,θ )n−1(S)]. Then⋃∞
n=1(bM,θ )n(S) is a fixed point. As a result, S ⊂⋃∞

n=1(bM,θ )n(S) ⊂ SM,θ.
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Table 1. Primitives in Example 1.a.
State θ1 With f (θ1 ) = a

ui(z, θ1 ) i = i1, i2, i3 i = i4

z = a 2 0
z = b 1 1
z = c 0 2

State θ2 With f (θ2 ) = b

ui(z, θ2 ) i = i1, i2, i3 i = i4

z = a 0 2
z = b 2 0
z = c 1 1

State θ3 With f (θ3 ) = c

ui(z, θ3 ) i = i1, i2, i3 i = i4

z = a 0 1
z = b 1 2
z = c 2 0

Table 2. Primitives in Example 1.b.
State θ1 With f (θ1 ) = a

ui(z, θ1 ) i = i1, i2, i3

z = a 2
z = b 1
z = c 0

State θ2 With f (θ2 ) = b

ui(z, θ2 ) i = i1, i2, i3

z = a 0
z = b 2
z = c 1

State θ3 With f (θ3 ) = c

ui(z, θ3 ) i = i1, i2, i3

z = a 0
z = b 1
z = c 2

Example 1.b. I = {i1, i2, i3}, � = {θ1, θ2, θ3}, Z = {a, b, c}. Table 2 records f and agents’
utility of each social outcome at each state. ♦
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Table 3. Primitives in Example 2.
State θ1 With f (θ1 ) = a

ui(z, θ1 ) i = i1, i2, i3 i = i4

z = a 2 0
z = b 1 1
z = c 0 2

State θ2 With f (θ2 ) = b

ui(z, θ2 ) i = i1, i2, i4 i = i3

z = a 0 2
z = b 2 0
z = c 1 1

State θ3 With f (θ3 ) = c

ui(z, θ3 ) i = i1, i3, i4 i = i2

z = a 0 1
z = b 1 2
z = c 2 0

In Example 1.b, strict Maskin monotonicity, responsiveness, and NWA hold, i.e., the
sufficient condition in BMT is satisfied. As a result, we can achieve rationalizable imple-
mentation in Example 1.b, which further implies that we can achieve rationalizable im-
plementation in Example 1.a (by using the same mechanism for Example 1.b and ignore
agent i4’s reports). That is, literally, BMT’s characterization cannot be applied in Exam-
ple 1.a, but it can be applied in Example 1.b., which indirectly provides characterization
in Example 1.a.

Examples 1.a and 1.b shed light on rationalizable implementation when NWA fails.
We say agent i is inactive at state θ if and only if NWA is violated for agent i at θ.7 The
intuition is that if agent i is inactive at θ, we can (and should) ignore agent i at state
θ. This intuition is formalized in Lemma 2 in Section 6.2. In Example 1.a, agent i4 is
inactive at every state, and, hence, we can ignore her totally.

However, in more general cases, it may happen that i is inactive at some state θ,
while j( �= i) is inactive at some other state θ′, as described in the following example.

Example 2. I = {i1, i2, i3, i4}, �= {θ1, θ2, θ3}, Z = {a, b, c}. Table 3 records f and agents’
utility of each social outcome at each state. ♦

We will show that the same logic as above applies, i.e., we need to ignore the inactive
agent i4 at state θ1, the inactive agent i3 at state θ2, the inactive agent i2 at state θ3. This
immediately leads to a technical difficulty: the mechanism designer does not know the
true state and, hence, a priori, cannot tell when to ignore which agent. Thus, the goal of
the mechanism designer is to build a game in which the reports of all agents collectively

7Rigorously, agent i is inactive at state θ if and only if ui(f (θ), θ) ≤ ui(z, θ) for every z ∈ Z.
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Table 4. Primitives in Example 3.a.
State θ1 With f (θ1 ) = a

ui(z, θ1 ) i = i1, i2, i3

z = a 1
z = b 2
z = c 0

State θ2 With f (θ2 ) = a

ui(z, θ2 ) i = i1, i2, i3

z = a 1
z = b 2
z = c 0

State θ3 With f (θ3 ) = c

ui(z, θ3 ) i = i1, i2, i3

z = a 0
z = b 1
z = c 2

determine the true state, which guides him regarding when to ignore which agent. We
will build a new canonical mechanism that achieves this goal. For instance, it is intuitive
that our canonical mechanism would dictate⎡⎣ if agents i1, i2, and i3 report state θ1, we would ignore agent i4 and implement f (θ1 )

if agents i1, i2, and i4 report state θ2, we would ignore agent i3 and implement f (θ2 )
if agents i1, i3, and i4 report state θ3, we would ignore agent i2 and implement f (θ3 )

⎤⎦.

We discuss more intuition of our canonical mechanism in Section 4.5.

3.2 Violation of responsiveness

Consider the following degenerate example, in which responsiveness fails.

Example 3.a. I = {i1, i2, i3}, � = {θ1, θ2, θ3}, Z = {a, b, c}. Table 4 records f and agents’
utility of each social outcome at each state. ♦

In this degenerate example, states θ1 and θ2 are the “same” in the sense that all
agents’ preferences do not change in the two states. Consider the following slightly mod-
ified version of Example 3.a, in which state θ2 is eliminated.

Example 3.b. I = {i1, i2, i3}, � = {θ1, θ3}, Z = {a, b, c}. Table 5 records f and agents’
utility of each social outcome at each state. ♦

Clearly, responsiveness holds in Example 3.b, and BMT’s result shows that we can
achieve rationalizable implementation, which further implies that we can also achieve



204 Siyang Xiong Theoretical Economics 18 (2023)

Table 5. Primitives in Example 3.b.
State θ1 With f (θ1 ) = a

ui(z, θ1 ) i = i1, i2, i3

z = a 1
z = b 2
z = c 0

State θ3 With f (θ3 ) = c

ui(z, θ3 ) i = i1, i2, i3

z = a 0
z = b 1
z = c 2

Table 6. Primitives in Example 3.c.
State θ1 With f (θ1 ) = a

ui(z, θ1 ) i = i1, i2, i3

z = a 1
z = b 2
z = c 0

State θ′
2 With f (θ′

2 ) = a

ui(z, θ′
2 ) i = i1, i2, i3

z = a 2
z = b 1
z = c 0

State θ3 with f (θ3 ) = c

ui(z, θ3 ) i = i1, i2, i3

z = a 0
z = b 1
z = c 2

rationalizable implementation in Example 3.a (by using the same mechanism for Exam-
ple 3.b).

Example 3.a is a degenerate case of violation of responsiveness. The following exam-
ple shows that we can still achieve rationalizable implementation in more general cases.
Example 3.c differs from Example 3.b only at state θ′

2.

Example 3.c. I = {i1, i2, i3}, � = {θ1, θ′
2, θ3}, Z = {a, b, c}. Table 6 records f and agents’

utility of each social outcome at each state. ♦
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In Example 3.c, we have

Li

(
f (θ1 ), θ1

)⊂ Li

(
f (θ1 ), θ′

2

) ∀i ∈ I , (2)

which immediately implies SM,θ1 = SM,θ′
2 (see Lemma 1), where M is the canonical

mechanism used to implement f in Example 3.b. Hence, we can also achieve rational-
izable implementation in Example 3.c (by using the same mechanism for Example 3.b).

In fact, given violation of responsiveness, we can achieve rationalizable implemen-
tation when a much weaker condition than (2) holds (see Definition 8 and Theorem 1).

4. Illustration of the canonical mechanisms

In this section, we describe different canonical mechanisms that are used to achieve
implementation in Maskin (1999), BMT, and this paper.

4.1 The modified revelation principle

It is well known that the revelation principle fails in full implementation. Neverthe-
less, a modified version holds. To see this, suppose that a mechanism g : ×i∈IMi −→ Z

achieves full implementation in some solution concept (e.g., Nash equilibrium, ratio-
nalizability). Let [(φi : � −→ Mi )i∈I ] denote any one of the solutions of g, and relabel
each φi(θ) to a new message θ. Furthermore, denote M̃i ≡ Mi�φi(�) and, hence, Mi =
[φi(�)]∪ M̃i. Then the original mechanism g can be “rephrased” to g̃ : ×i∈I(�∪ M̃i ) −→
Z by relabeling φi(θ) to θ, and g̃ achieves full implementation.8 Let us call such g̃ an
augmented direct mechanism (with the augmented messages in M̃i for agent i). There-
fore, this establishes a modified revelation principle for full implementation: it suffers
no loss of generality to consider augmented direct mechanisms.9

This modified revelation principle provides the basis for canonical mechanisms in
full implementation. First, all agents truthfully reporting θ at state θ is always a solution
in the augmented direct mechanism. Second, the implementation problem is reduced
to identifying the augmented messages in M̃i so as to achieve full implementation. Most
papers in the literature of full implementation follow this idea.

4.2 The canonical mechanisms

There is a generic form for most mechanisms in full implementation, which is described
as follows.

Agents are invited to report the true state. There are three cases for agents’ reports:

Case (I). Agreement, i.e., all agents report the same state θ.

8Besides the solution [φi(θ)]θ∈�,i∈I chosen in g, there may be other solutions involving messages in
[×i∈IMi]�{[φi(θ)]i∈I : θ ∈ �}. Such solutions correspond to Case (II) and Case (III) in canonical mecha-
nisms discussed below. Thus, our goal is to choose each M̃i carefully so that the solutions involving Case (II)
and Case (III) in canonical mechanisms still achieve full implementation.

9However, this revelation principle is much weaker than the original revelation principal for partial im-
plementation. For the latter, a direct mechanism is precisely defined, but for the former, this is not true for
an augmented direct mechanism. That is, a priori, it is not clear what M̃i should be. Finding M̃i is one of
the goals when we solve a full implementation problem.
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Case (II). Unilateral deviation, i.e., all agents except agent j report θ.

Case (III). Multilateral deviation, i.e., this includes all other scenarios.

In Case (I), the canonical mechanism picks f (θ). In Case (II), agent j is allowed to choose
any outcome in Lj(f (θ), θ), which ensures that truthful reporting is a Nash equilibrium
(and, hence, rationalizable). In Case (III), we first let all agents compete by submitting
a positive integer. The agent who submits the largest integer wins (subject to any tie-
breaking rule), and we let the winner choose any outcome in Z.

At the true state θ, all agents reporting θ is a “good” equilibrium (or solution), which
induces f (θ). To achieve full implementation, we have to further make sure that there is
no “bad” equilibrium in any of Cases (I), (II), and (III).

For different environments and/or solution concepts, we may have to modify the
canonical mechanism above slightly, which is illustrated below.

4.3 Illustration of Maskin (1999)

Maskin (1999) adopts the canonical mechanism in Section 4.2, and uses Maskin mono-
tonicity to eliminate bad equilibria in Case (I) and uses no-veto power to eliminate bad
equilibria in Cases (II) and (III).

Definition 4 (Maskin monotonicity). An SCF f satisfies Maskin monotonicity if

f (θ) �= f
(
θ′)=⇒

(
∃j ∈ I ,

Lj

(
f (θ), θ

)∩ U◦
j

(
f (θ), θ′) �= ∅

)
∀(θ, θ′) ∈�×�. (3)

Definition 5 (No-veto power). An SCF f satisfies no-veto power if∣∣∣{i ∈ I : a ∈ arg max
z∈Z

ui(z, θ)
}∣∣∣≥ |I| − 1 =⇒ a ∈ f (θ) ∀(θ, a) ∈�×Z.

Suppose the true state is θ′. A bad equilibrium in Case (I) means that all agents report
θ with f (θ) �= f (θ′ ). Given Maskin monotonicity, such a strategy profile cannot be an
equilibrium, because (3) implies agent j has a profitable deviation to Case (II), i.e., j can
pick y ∈ Lj(f (θ), θ) ∩ U◦

j (f (θ), θ′ ). When this happens, j is called a whistle-blower, and

y ∈ Lj(f (θ), θ) ∩ U◦
j (f (θ), θ′ ) is called j’s blocking plan.10

A bad equilibrium in Case (II) or Case (III) is that agent j deviates from Case (I), and
it induces c �= f (θ). Given no-veto power, such a strategy profile cannot be an equilib-
rium, because the other |I| − 1 agents (i.e., agents −j) can further deviate to Case (III)
and induce their top outcomes in Z (by submitting a largest integer). If it were an equi-
librium, c would be a top outcome for the other |I| − 1 agents, which, together with
no-veto power, implies c = f (θ), contradicting c �= f (θ).

10That is, j uses y ∈ Lj(f (θ), θ) ∩U◦
j (f (θ), θ′ ) to inform the mechanism designer that agents −j are lying

by reporting θ; y ∈ Lj(f (θ), θ) ensures that j’s information is credible, because if agents −j were not lying,
y would be inferior to j at θ; y ∈ U◦

j (f (θ), θ′ ) ensures that y is indeed a profitable deviation for j at the true
state θ′.
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4.4 Illustration of BMT

To achieve rationalizable implementation, BMT uses strict Maskin monotonicity to
eliminate bad solutions in Case (I), when responsiveness holds.11 The intuition is the
same as above.

Definition 6 (Strict Maskin monotonicity). An SCF f satisfies strict Maskin mono-
tonicity if

f (θ) �= f
(
θ′)=⇒

(
∃j ∈ I ,

L◦
j

(
f (θ), θ

)∩ U◦
j

(
f (θ), θ′) �= ∅

)
∀(θ, θ′) ∈�×�. (4)

BMT uses NWA to eliminate bad solutions in Cases (II) and (III). NWA implies exis-
tence of y ∈ Y such that

y /∈
⋃
θ∈�

⋃
i∈I

arg max
y∈Y

ui(y, θ), (5)

i.e., y is never a top outcome for any agent at any state. BMT prove that NWA and strict
Maskin monotonicity imply existence of zi(θ, θ) ∈ Li(f (θ), θ) for each (θ, i) ∈�×I such
that

max
y∈Li(f (θ),θ)

ui
(
y, θ∗)> ui

(
zi(θ, θ), θ∗) ∀θ∗ ∈�. (6)

Furthermore, BMT modify Cases (II) and (III) in the canonical mechanism as follows. In
Case (II), agent j is allowed to choose any y ∈ Lj(f (θ), θ) and any positive integer n, and
the mechanism picks

n− 1
n

× y + 1
n

× zi(θ, θ) ∈ Lj

(
f (θ), θ

)
. (7)

In Case (III), the agent who submits the largest integer is allowed to choose any z ∈ Z

and any positive integer n, and the mechanism picks

n− 1
n

× z + 1
n

× y. (8)

Equations (5), (6), (7), and (8) imply that all agents can never have a best reply in Cases
(II) and (III), and, hence, no bad solution.

4.5 Illustration of our canonical mechanism: NWA

When neither NWA nor responsiveness is imposed, the full characterization of rational-
izable implementation is complicated. For expositional ease, we treat the two technical

11Suppose the true state is θ∗. More precisely, strict Maskin monotonicity implies existence of a whistle-
blower whenever agents reach an agreement on θ with f (θ) �= f (θ∗ ). Furthermore, given responsiveness,
f (θ) �= f (θ∗ ) is equivalent to θ �= θ∗. Therefore, strict Maskin monotonicity eliminates any bad solutions in
Case (I), i.e., agreement on θ with θ �= θ∗.
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problems separately and develop tools to fully characterize rationalizable implementa-
tion when only one of the two assumptions holds.

Suppose responsiveness holds, while NWA does not. The innovation of our canoni-
cal mechanism is introducing the notion of “active agents”:

Iθ = {i ∈ I : ∃z ∈Z such that ui
(
f (θ), θ

)
> ui(z, θ)

} ∀θ ∈�

IE =
⋂
θ∈E

Iθ, ∀E ∈ [2�\{∅}
]
.

That is, Iθ is the set of agents who can make condition (1) in NWA hold at state θ. We
call agents in Iθ active agents at state θ. Clearly, NWA is equivalent to requiring I� = I .

Without NWA, what goes wrong in BMT’s canonical mechanism? Precisely, condi-
tions (5) and (6) do not hold, and BMT’s proof breaks down. However, by incorporating
the notion of active agents, modified versions of (5) and (6) hold:

y /∈
⋃
θ∈�

⋃
i∈Iθ

arg max
y∈Y

ui(y, θ) (9)

max
y∈Li(f (θ),θ)

ui
(
y, θ∗) > ui

(
zi(θ, θ), θ∗) ∀(θ, θ∗) ∈�×�, ∀i ∈ Iθ∗

. (10)

That is, (5) and (6) hold only for active agents at each state.
With this being sorted out, there is only one major difference between BMT’s canon-

ical mechanism in Section 4.4 and ours: how is an agreement defined in Case (I)?
Specifically, we modify the canonical mechanism as follows. In Case (I), all agents in

Iθ report the same state θ,12 and the mechanism picks f (θ). The rest of the canonical
mechanism remains the same as above.

We will use strict event monotonicity and dictator monotonicity (see Definitions 9
and 10) to eliminate bad solutions in Case (I), and as above, all agents never have a best
reply in Cases (II) and (III), i.e., no bad solution.

4.6 Illustration of our canonical mechanism: Responsiveness

Suppose NWA holds, while responsiveness does not. What goes wrong in BMT’s canon-
ical mechanism? To see this, consider the concrete example

� = {θ1, θ2, θ3} such that f
(
θ1) �= f

(
θ2)= f

(
θ3).

Suppose that the true state is θ2. Strict Maskin monotonicity ensures that agreement on
θ1 in the canonical mechanism will not be a Nash equilibrium (or, more precisely, will
not be rationalizable). However, strict Maskin monotonicity does not preclude the pos-
sibility that agreement on θ3 in the canonical mechanism is a Nash equilibrium.13 Such

12To see why an agreement is determined by agents in Iθ only, suppose that a canonical mechanism
achieves rationalizable implementation. At state θ, consider any inactive agent j /∈ Iθ. Pick any rationaliz-
able strategy of agent j and it is a best reply to a rationalizable conjecture, which induces the worst outcome
f (θ) for j. This immediately implies any other strategy must also be a best reply to the same rationalizable
conjecture, i.e., all the other strategies are rationalizable for j. Alternatively and equivalently, any of j’s
report of the true state is not informative. Therefore, an agreement is determined by agents in Iθ only.

13Strict Maskin monotonicity kicks in only when f (θ2 ) �= f (θ3 ), but, here, we have f (θ2 ) = f (θ3 ).
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a possibility does not destroy Nash implementation, because f (θ2 ) = f (θ3 ). However,
it destroys rationalizable implementation, which is due to a distinct feature of rational-
izability. When both “all agents reporting θ2” and “all agents reporting θ3” are Nash
equilibria, one rationalizable strategy profile could be “odd-indexed agents reporting θ2

and even-indexed agents reporting θ3,” which would trigger either Case (II) or Case (III),
and induce undesired outcomes zi(θ, θ) or y with positive probability, i.e., rationalizable
implementation is not achieved.

4.6.1 BMT’s attempt BMT provide a first attempt to characterize rationalizable im-
plementation when responsiveness is violated. Suppose the true state is θ2. Strict
Maskin monotonicity provides tools for a whistle-blower to block only “reporting θ”
with f (θ) �= f (θ2 ). The example above shows that the problem comes from θ′ with
f (θ′ ) = f (θ2 ). Thus, if there is no whistle-blower who is able to block “reporting θ′”
with f (θ′ ) = f (θ2 ), we have to identify θ′ and θ2 to avoid (the undesired outcomes in)
Cases (II) and (III).14 Alternatively and equivalently, we must form a partition P∗ on �

such that

P∗(θ) = P∗(θ′) =⇒ f (θ) = f
(
θ′) ∀(θ, θ′) ∈�×�,

and at any true state θ, reporting any state in P∗(θ) must be rationalizable in the canon-
ical mechanism for all agents at θ. This immediately leads to the additional requirement

P∗(θ) �= P∗(θ′)

=⇒

⎛⎜⎜⎜⎝
at the true state θ′,

there exists a whistle-blower j ∈ I such that
j can block “agents − j reporting θ̂”

simultaneously for any θ̂ ∈ P∗(θ)

⎞⎟⎟⎟⎠ ∀(θ, θ′) ∈�×�. (11)

By reporting θ̂ ∈ P∗(θ), agents −j disclose that any state in P∗(θ) might be the true state,
and, hence, the whistle-blower must block all of the false states in P∗(θ) simultaneously.

One critical issue is how we should formalize “simultaneously” in (11). BMT adopt
the formalization, i.e., strict Maskin monotonicity∗ (Definition 7),

P∗(θ) �= P∗(θ′)=⇒
⎛⎜⎝ ∃j ∈ I ,[ ⋂

θ̂∈P∗(θ)

L◦
j

(
f (θ̂), θ̂

)]∩ U◦
j

(
f (θ), θ′) �= ∅

⎞⎟⎠ ∀(θ, θ′) ∈�×�.

That is, at the true state θ′, when all agents report θ̂ ∈ P∗(θ), there must exist a whistle-
blower j with a blocking plan y ∈ [

⋂
θ̂∈P∗(θ) L◦

j (f (θ̂), θ̂)] ∩ U◦
j (f (θ), θ′ ), i.e., y is credible

at all states in P∗(θ) and is strictly profitable at θ′.
Specifically, BMT modify the canonical mechanism as follows. In Case (I), all

agents report some states in P∗(θ) and the mechanism picks f (θ). In Case (II), all
agents except agent j report some states in P∗(θ), then we let agent j choose any out-
come y ∈ [

⋂
θ̂∈P∗(θ) L◦

j (f (θ̂), θ̂)] and any positive integer n, and the mechanism picks

14That is, when all agents report θ′ or θ2, we regard it as Case (I), and the canonical mechanism picks
f (θ′ ) = f (θ2 ).
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n−1
n × y + 1

n × zi(θ, θ) ∈ Li(f (θ), θ). The rest of the canonical mechanism remains the
same.

BMT uses strict Maskin monotonicity∗ to eliminate bad solutions in Case (I), and as
above, all agents never have a best reply in Cases (II) and (III), i.e., no bad solution.

4.6.2 Our canonical mechanism We take a different formalization of “simultaneously”
in (11) as (i.e., strict Maskin monotonicity∗∗ in Definition 8)

P∗(θ) �= P∗(θ′)
=⇒

⎛⎜⎝ ∃j ∈ I , ∃φ : �→ Y ,
φ(θ̂) ∈ L◦

j

(
f (θ̂), θ̂

)∩ U◦
j

(
f (θ), θ′) �= ∅

∀θ̂ ∈ P∗(θ)

⎞⎟⎠ ∀(θ, θ′) ∈�×�. (12)

Our innovation is that we allow a whistle-blower to adopt a state-contingent blocking
plan, i.e., φ : �→ Y in (12).

Specifically, we modify the canonical mechanism as follows. In Case (I), all agents
report some states in P∗(θ) and the mechanism picks f (θ). In Case (II), all agents ex-
cept agent j report some states in P∗(θ), then we let agent j choose any φ : � → Y such
that φ(θ̂) ∈ L◦

j (f (θ̂), θ̂) for every θ̂ ∈ P∗(θ) and any positive integer n, and the mech-

anism picks n−1
n × φ(θj+1 ) + 1

n × zi(θj+1, θj+1 ) ∈ Li(f (θj+1 ), θj+1 ), where θj+1 denotes
the report of agent (j + 1) module I. The rest of the mechanism remains the same.

We use strict Maskin monotonicity∗∗ to eliminate bad solutions in Case (I), and as
above, all agents never have a best reply in Cases (II) and (III), i.e., no bad solution.

5. How to deal with violation of responsiveness?

In this section, we drop responsiveness and fully characterize rationalizable implemen-
tation when only NWA is assumed.

5.1 A summary of the full characterization

Let Pf denote the partition on � induced by f , which is defined as

Pf (θ) = {θ′ ∈ � : f
(
θ′)= f (θ)

} ∀θ ∈ �.

Given NWA, BMT show that strict Maskin monotonicity∗ defined below is sufficient
for rationalizable implementation.

Definition 7 (Strict Maskin monotonicity*). An SCF f : � −→ Z satisfies strict Maskin
monotonicity∗ if there exists a partition P on � finer than Pf such that for any (θ, θ′ ) ∈
�×�,

θ′ ∈ P(θ) ⇐=
⎡⎢⎣ ∀(y, i) ∈ Y × I ,(

ui
(
f (θ), θ̂

)
> ui(y, θ̂),

∀θ̂ ∈ P(θ)

)
=⇒ ui

(
f (θ), θ′)≥ ui

(
y, θ′)

⎤⎥⎦
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or, equivalently,

θ′ /∈ P(θ) =⇒
⎡⎢⎣ ∃(y, i) ∈ Y × I ,(

ui
(
f (θ), θ̂

)
> ui(y, θ̂),

∀θ̂ ∈ P(θ)

)
and ui

(
y, θ′)> ui

(
f (θ), θ′)

⎤⎥⎦ . (13)

We propose a new axiom that is weaker than strict Maskin monotonicity∗.

Definition 8 (Strict Maskin monotonicity∗∗). An SCF f : �−→ Z satisfies strict Maskin
monotonicity∗∗ if there exists a partition P on � finer than Pf such that for any (θ, θ′ ) ∈
�×�,

θ′ ∈ P(θ) ⇐=
[

∀i ∈ I , ∃θ̂ ∈ P(θ), ∀y ∈ Y ,
ui
(
f (θ), θ̂

)
> ui(y, θ̂) =⇒ ui

(
f (θ), θ′)≥ ui

(
y, θ′)

]
(14)

or, equivalently,

θ′ /∈ P(θ) =⇒
[

∃i ∈ I such that ∀θ̂ ∈ P(θ), ∃yθ̂ ∈ Y ,

ui
(
f (θ), θ̂

)
> ui

(
yθ̂, θ̂

)
and ui

(
yθ̂, θ′)> ui

(
f (θ), θ′)

]
. (15)

Conditions (13) and (15) speak out the difference between the two axioms: when
θ′ /∈ P(θ) (i.e., the true state is θ′ and all agents falsely report states in P(θ)), strict
Maskin monotonicity∗ requires existence of a whistle-blower i and a common block-
ing plan y that works for every states θ̂ ∈ P(θ), while strict Maskin monotonicity∗∗
requires existence of a whistle-blower i and a state-contingent blocking plan yθ̂ that
works for each state θ̂ ∈ P(θ). Clearly, strict Maskin monotonicity∗ implies strict Maskin
monotonicity∗∗, and the latter also suffices for rationalizable implementation.

Theorem 1. Suppose that an SCF f : � −→ Z satisfies NWA. Then f is rationalizably
implementable if and only if f satisfies strict Maskin monotonicity∗∗.

The “only if” and “if” parts of Theorem 1 are proved in Section 5.2 and Appendix A.3.
Given a condition called the best-response property, BMT show that strict Maskin

monotonicity∗ is necessary for rationalizable implementation. However, the best-
response property is not defined on primitives, and, hence, it remains an open ques-
tion regarding whether it suffers loss of generality to assume the best-response prop-
erty? Xiong (2022) provides a negative answer to this question. Specifically, it constructs
an example in which NWA and strict Maskin monotonicity∗∗ hold, but strict Maskin
monotonicity∗ fails. By Theorem 1, we can achieve rationalizable implementation in
this example, even though Maskin monotonicity∗ does not hold.

5.2 The proof of the “only if” part of Theorem 1

Suppose that f is rationalizably implemented by a mechanism M = 〈M , g : M −→ Y 〉.
Consider the partition defined as

P(θ) = {θ̃ ∈� : SM, θ̃ = SM,θ} ∀θ ∈�.



212 Siyang Xiong Theoretical Economics 18 (2023)

Since f is rationalizably implemented by M, the partition P defined above is finer than
Pf . Furthermore, for any (θ, θ′ ) ∈ �× �, suppose that the right-hand side of (14) holds
and we aim to prove θ′ ∈ P(θ) (i.e., strict Maskin monotonicity∗∗ holds). We need the
following result; its proof is relegated to Appendix A.1.

Lemma 1. If an SCF f is rationalizably implemented by a mechanism M, we have

SM,θ ⊂ SM,θ′ =⇒ SM,θ = SM,θ′ ∀(θ, θ′) ∈�×�.

We will show that SM,θ satisfies the best-reply property in M at state θ′, i.e., SM,θ ⊂
SM,θ′

. By Lemma 1, we have SM,θ = SM,θ′
and, hence, θ′ ∈ P(θ).

Consider any i ∈ I , and pick any mi ∈ SM,θ
i . By the right-hand side of (14), there

exists θ̂ ∈P(θ) such that

ui
(
f (θ), θ̂

)
> ui(y, θ̂) =⇒ ui

(
f (θ), θ′)≥ ui

(
y, θ′) ∀y ∈ Y . (16)

Since θ̂ ∈ P(θ), we have mi ∈ SM,θ
i = SM, θ̂

i , and, hence, there exists λ−i ∈ �(SM, θ̂
−i ) such

that mi is a best reply to λ−i for agent i at state θ̂, i.e.,

ui
(
g(mi, λ−i ), θ̂

)= ui
(
f (θ̂), θ̂

)= ui
(
f (θ), θ̂

)≥ ui
(
g(m̃i, λ−i ), θ̂

) ∀m̃i ∈Mi,

which further implies

ui
(
g(mi, λ−i ), θ̂

)= ui
(
f (θ), θ̂

)
> ui

(
g(m̃i, λ−i ), θ̂

) ∀m̃i ∈Mi�SM, θ̂
i (17)

g(mi, λ−i ) = g(m̃i, λ−i ) = f (θ̂) ∀m̃i ∈ SM, θ̂
i . (18)

Then (16) and (17) imply

ui
(
g(mi, λ−i ), θ′)= ui

(
f (θ), θ′)

= ui
(
f (θ̂), θ′)≥ ui

(
g(m̃i, λ−i ), θ′) ∀m̃i ∈ Mi�SM, θ̂

i . (19)

Finally, (18) and (19) imply

ui
(
g(mi, λ−i ), θ′)= ui

(
f (θ̂), θ′)≥ ui

(
g(m̃i, λ−i ), θ′) ∀m̃i ∈Mi,

i.e., mi is a best reply to λ−i for i at θ′. Thus, SM,θ satisfies the best-reply property at θ′.

6. How to deal with violation of NWA?

In this section, we drop NWA and fully characterize rationalizable implementation when
only responsiveness is assumed.

6.1 A summary of the full characterization

We fully characterize rationalizable implementation by two new axioms. First, we pro-
pose an axiom called strict event monotonicity, which strengthens strict Maskin mono-
tonicity (Definition 6), and when NWA holds, the two notions coincide.
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Definition 9 (Strict event monotonicity). An SCF f : � −→ Z satisfies strict event
monotonicity if for every (θ′, E) ∈�× [2�\{∅}],{

f
(
θ′)}= f (E) whenever

ui
(
f (θ), θ

)
> ui(y, θ)

=⇒ ui
(
f (θ), θ′)≥ ui

(
y, θ′) ∀(θ, y, i, ) ∈E ×Y × IE

(20)

or, equivalently, {
f
(
θ′)} �= f (E) implies

ui
(
f (θ), θ

)
> ui(y, θ) and

ui
(
y, θ′)> ui

(
f (θ), θ′) for some (θ, y, i, ) ∈ E ×Y × IE .

(21)

There are two subtle differences between strict event monotonicity and strict Maskin
monotonicity. First, pairwise comparison between states (i.e., θ′ vs θ) is conducted in
strict Maskin monotonicity, while a state is compared to a group of states (i.e., θ′ vs E)
in strict event monotonicity. Second, as shown in conditions (4) and (21), the whistle-
blower is required to be an active agent in IE in strict event monotonicity, while he or
she could be anyone in I in strict Maskin monotonicity. It is straightforward to show
that, given NWA, strict event monotonicity is equivalent to strict Maskin monotonicity.

Definition 10 (Dictator monotonicity). Agent i ∈ I is a dictator if {i} = Iθ. An SCF
f : �−→Z satisfies dictator monotonicity if for every (i, θ, θ′, θ′′ ) ∈ I ×�×�×�,[

{i} = Iθ

and f (θ) �= f
(
θ′)
]

=⇒
[

∃y ∈ Y such that
ui
(
f
(
θ′′), θ′′)≥ ui

(
y, θ′′) and ui

(
y, θ′)> ui

(
f (θ), θ′)

]
. (22)

Theorem 2. A responsive SCF f : � −→ Z is rationalizably implementable if and only if
f satisfies strict event monotonicity and dictator monotonicity.

We provide an intuition of Theorem 2 in Sections 6.3 and 6.4, and the proofs are
presented in Sections 6.3.2 and 6.4.2 and Appendix A.5.

6.2 A crucial observation

We first offer a crucial observation, which provides a powerful tool in establishing both
the necessity and the sufficiency parts of Theorem 2.

Lemma 2. Suppose that a social choice function f : � −→ Z is rationalizably imple-
mented by a mechanism M = 〈M , g : M −→ Y 〉. Then, for every (i, θ) ∈ I ×�,

i /∈ Iθ =⇒
[

SM,θ
i = Mi and

g(mi, m−i ) = f (θ), ∀(mi, m−i ) ∈Mi × SM,θ
−i

]
. (23)
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Given f being rationalizably implemented by M, Lemma 2 says that at any state, all
strategies are rationalizable for an inactive agent. The proof is straightforward: given
i /∈ Iθ, pick any mi ∈ SM,θ

i , and there exists λ−i ∈ �(SM,θ
−i ) such that mi is a best reply to

λ−i and g(mi, λ−i ) = f (θ). Given i /∈ Iθ, f (θ) is a worst outcome for i at θ, and, hence,
any other strategy is a best reply to λ−i. Therefore, SM,θ

i = Mi.
Lemma 2 sheds light on the canonical mechanism that rationalizably implements

f : at true state θ, we should only let active agents in Iθ determine the outcome of the
mechanism, and ignore agents in I\Iθ, because they are not informative.

6.3 The meaning of dictator monotonicity

6.3.1 The sufficiency part of dictator monotonicity: Intuition We first show why we
need dictator monotonicity when we prove the sufficiency part of Theorem 2. If agent
i is a dictator at θ and i reports θ in the canonical mechanism, by Lemma 2, we should
trust i and ignore other agents’ reports, and pick f (θ). In particular, consider the follow-
ing scenario: at true state θ′, we aim to implement f (θ′ ), but agent i with {i} = Iθ reports
θ with f (θ) �= f (θ′ ), while all the other agents report θ′′. In this scenario, f (θ) “should”
be chosen by Lemma 2. Since f (θ′ ) �= f (θ), a whistle-blower must exist to block this false
reporting, but who should this whistle-blower be? Recall Lemma 2, which says that we
should ignore all the other agents’ reports when i is a dictator at θ and reports θ. As a re-
sult, the only possible whistle-blower must be agent i. To ensure that the whistle-blower
i has a blocking plan, we need[

∃y ∈ Y such that
ui
(
f
(
θ′′), θ′′)≥ ui

(
y, θ′′) and ui

(
y, θ′)> ui

(
f (θ), θ′)

]
. (24)

That is, this legitimate blocking plan for i must satisfy two conditions. First, given agents
−i reporting θ′′, the blocking plan y must be credible:15

ui
(
f
(
θ′′), θ′′)≥ ui

(
y, θ′′). (25)

Second, the blocking plan must be strictly profitable at θ′, i.e.,

ui
(
y, θ′)> ui

(
f (θ), θ′). (26)

Equations (25) and (26) imply (24), i.e., the dictator monotonicity in Definition 10 (pre-
cisely, (22)).

6.3.2 The necessity part of dictator monotonicity: Proof To prove the necessity of dic-
tator monotonicity, we show a contrapositive statement of (22): for every (i, θ, θ′, θ′′ ) ∈
I ×�×�×�,⎡⎢⎣ {i} = Iθ and(

∀y ∈ Y ,
ui
(
f
(
θ′′), θ′′)≥ ui

(
y, θ′′)=⇒ ui

(
f (θ), θ′)≥ ui

(
y, θ′)

)⎤⎥⎦=⇒ f (θ) = f
(
θ′). (27)

15Agent i uses y to report that agents −i are lying by reporting θ′′. It is credible because if the true state
were θ′′, y would be inferior to f (θ′′ ) for agent i.
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Suppose that f is rationalizably implemented by a mechanism M = 〈M , g : M −→
Y 〉, and that the left-hand side of (27) holds. We aim to show f (θ) = f (θ′ ).

Pick any (mi, m′′
i ) ∈ SM,θ

i × SM,θ′′
i , and there exists λ′′

−i ∈ �(SM,θ′′
−i ) such that m′′

i is a
best reply to λ′′

−i for i at θ′′, i.e.,

ui
(
g
(
m′′

i , λ′′
−i

)
, θ′′)= ui

(
f
(
θ′′), θ′′)≥ ui

(
g
(
mi, λ

′′
−i

)
, θ′′) ∀mi ∈Mi. (28)

By {i} = Iθ and Lemma 2, we have

g(mi, m−i ) = f (θ) = g
(
mi, λ

′′
−i

) ∀m−i ∈M−i, (29)

which, together with (28) and the left-hand side of (27), implies

ui
(
g
(
mi, λ

′′
−i

)
, θ′)= ui

(
f (θ), θ′)≥ ui

(
g
(
mi, λ

′′
−i

)
, θ′) ∀mi ∈ Mi. (30)

For (mi, λ′′
−i ), (30) shows that i does not have a profitable deviation at θ′, and (29) shows

that agents −i do not have a profitable deviation at θ′. Therefore, (mi, λ′′
−i ) is a Nash

equilibrium at θ′, which induces f (θ). Therefore, f (θ) = f (θ′ ).

6.4 The meaning of strict event monotonicity

6.4.1 The sufficiency part of strict event monotonicity: Intuition To illustrate strict event
monotonicity, we consider an alternative and equivalent notion.

Definition 11 (Strict iterated-elimination monotonicity). An SCF f : � −→ Z satisfies
strict iterated-elimination monotonicity if for every θ′ ∈ �, there exists (θ1, θ2, � � � , θn )
such that {

θ1, θ2, � � � , θn
}=�

θn = θ′,

and for every k ∈ {1, 2, � � � , n− 1},

ui
(
f
(
θk
)
, θk
)
> ui

(
y, θk

)
and

ui
(
y, θ′)> ui

(
f
(
θk
)
, θ′) for some (y, i) ∈ Y × I{θk,θk+1, ���,θn}.

(31)

Proposition 1. A responsive SCF f : � −→ Z satisfies strict event monotonicity if and
only if f satisfies strict iterated-elimination monotonicity.

The proof of Proposition 1 is relegated to Appendix A.4. To see the intuition of the
“if” part of Theorem 2, we first recall the canonical mechanism in Section 4.5. In this
mechanism, we invite agents to report the true state, and there are three cases: agree-
ment, unilateral deviation, and multilateral deviation. A distinct feature of this mecha-
nism is that agents do not have a best reply when Cases (II) and (III) are triggered. As a
result, a strategy can be rationalized only in Case (I). We now show that “truthful report”
is the only rationalizable strategy in this mechanism. Suppose the true state is θ′. We
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start a iterative process of deletion with � = {θ1, θ2, � � � , θn}. First, suppose all agents
report θ1. By (31) in Proposition 1, a whistle-blower i ∈ I� finds it strictly profitable to
deviate to Case (II) and pick y ∈ L◦

i (f (θ1 ), θ1 ) ∩ U◦
i (f (θ1 ), θ′ ). Thus, reporting θ1 is not

rationalizable for i, and as a result, θ1 can be deleted from the rationalizable set of every
agent in I�.16 Second, with �̂ = {θ2, θ3, � � � , θn}, suppose all agents report θ2. Simi-
larly, by Proposition 1, reporting θ2 is not rationalizable for some whistle-blower i′ ∈ I�̂

and, hence, not rationalizable for all agents in I�̂.... We continue this iterative process
of deletion until we delete θn−1. As a result, only reporting θn = θ′ is rationalizable for
agents in I{θ′}, which induces f (θ′ ) at θ′, i.e., we achieve rationalizable implementation.

6.4.2 The necessity part of strict event monotonicity: Proof Suppose that f is rationaliz-
ably implemented by a mechanism M = 〈M , g : M −→ Y 〉, and that (20) holds for some
(θ′, E) ∈�× [2�\{∅}], i.e.,

ui
(
f (θ), θ

)
> ui(y, θ) =⇒ ui

(
f (θ), θ′)≥ ui

(
y, θ′) ∀(θ, y, i, ) ∈E ×Y × IE . (32)

We aim to show {f (θ′ )} = f (E), which establishes strict event monotonicity. Consider

SM,E ≡
(
SM,E
i ≡

(⋃
θ∈E

SM,θ
i

))
i∈I

.

We will show that SM,E satisfies the best-reply property in M at state θ′, which further
implies SM,E ⊂ SM,θ′

and, hence, {f (θ′ )} = f (E).
First, consider any i /∈ IE , i.e., i /∈ Iθ for some θ ∈E. By Lemma 2, we have SM,θ

i = Mi

and, hence,

Mi = SM,θ
i ⊂ SM,E

i ⊂Mi,

i.e., SM,E
i = Mi. Pick any m̂−i ∈ SM,θ

−i . Lemma 2 implies

g(mi, m̂−i ) = f (θ) ∀mi ∈Mi,

i.e., every mi ∈ Mi = SM,E
i is a best reply to m̂−i ∈ SM,θ

−i ⊂ SM,E
−i for agent i at state θ′.

Second, consider any i ∈ IE . Pick any θ ∈E and any mi ∈ SM,θ
i , and we will show that

mi is a best reply for agent i at state θ′ to some λ−i ∈ �(SM,E
−i ), which would establish the

best-reply property of SM,E at state θ′.
Since mi ∈ SM,θ

i , there exists λ̃−i ∈ �(SM,θ
−i ) such that mi is a best reply to λ̃−i for i at

θ, i.e.,

ui
(
g(mi, λ̃−i ), θ

)= ui
(
f (θ), θ

)≥ ui
(
g(mi, λ̃−i ), θ

) ∀mi ∈Mi,

and more precisely,

g(mi, λ̃−i ) = f (θ) = g(mi, λ̃−i ) ∀mi ∈ SM,θ
i (33)

ui
(
g(mi, λ̃−i ), θ

)= ui
(
f (θ), θ

)
> ui

(
g(mi, λ̃−i ), θ

) ∀mi ∈ Mi�SM,θ
i . (34)

16Given θ1 being not rationalizable for agent i, agents in I��{i} can rationalize reporting θ1 only in Cases
(II) and (III), in which a best reply does not exist.
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Thus, (33) implies

ui
(
g(mi, λ̃−i ), θ′)= ui

(
f (θ), θ′)= ui

(
g(mi, λ̃−i ), θ′) ∀mi ∈ SM,θ

i , (35)

and (32) and (34) imply

ui
(
g(mi, λ̃−i ), θ′)= ui

(
f (θ), θ′)≥ ui

(
g(mi, λ̃−i ), θ′) ∀mi ∈Mi�SM,θ

i . (36)

Equations (35) and (36) imply mi is a best reply to λ̃−i ∈ �(SM,θ
−i ) ⊂ �(SM,E

−i ) for i at θ′.

7. A full characterization of rationalizable implementation

In this section, we combine the techniques developed in Sections 5 and 6, and fully
characterize rationalizable implementation when neither NWA nor responsiveness is
imposed.

From the analysis in Section 5, we learn that a necessary and sufficient condition
requires existence of a partition P finer than Pf such that for any two states θ and θ′
with P(θ) �= P(θ′ ), there must exist a whistle-blower i, who, at true state θ′, can always
block any false state θ̂ ∈ P(θ) reported by agent −i. Furthermore, from the analysis in
Section 6, we learn that three additional modification should be imposed: (i) we should
compare E(⊂ �) with θ′ (rather than θ vs. θ′), (ii) the whistle-blower must be active at
any state in E, and (iii) dictator monotonicity holds.

Definition 12 (Strict event monotonicity∗∗). An SCF f : � −→ Y satisfies strict event
monotonicity∗∗ if there exists a partition P of � finer than Pf such that the following two
conditions hold.

(i) Strict event monotonicity. For every (θ′, E) ∈�× [2�\{∅}],

P
(
θ′)= ⋃

θ∈E
P(θ) ⇐=

[
∀(θ, i) ∈E × I[

⋃
θ∈E P(θ)], ∃θ̂ ∈ P(θ), ∀y ∈ Y ,

ui
(
f (θ), θ̂

)
> ui(y, θ̂) =⇒ ui

(
f (θ), θ′)≥ ui

(
y, θ′)

]
.

(ii) Dictator monotonicity. For every (i, θ, θ′, θ′′ ) ∈ I ×�×�×�,[
{i} = IP(θ)

and P(θ) �= P
(
θ′)
]

=⇒
[

∃y ∈ Y such that
ui
(
f
(
θ′′), θ′′)≥ ui

(
y, θ′′) and ui

(
y, θ′)> ui

(
f (θ), θ′)

]
.

Two points are worth noting. First, strict event monotonicity∗∗ combines strict event
monotonicity and dictator monotonicity. Without responsiveness, all axioms must be
based on a common partition on �. Because of this, we have to write both strict event
monotonicity and dictator monotonicity into one single axiom, which is based on a
common partition on �. With abuse of notation, we call this new axiom strict event
monotonicity∗∗.

Second, P(θ) represents the set of states that are indistinguishable from θ (regard-
ing players’ rationalizable strategies in canonical mechanisms). Parts (i) and (ii) of Def-
inition 12 are simply the corresponding versions of Definitions 9 and 10, respectively,
incorporating this idea of equivalent class of states (induced by the partition P).
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Theorem 3. An SCF f is rationalizably implementable if and only if f satisfies strict
event monotonicity∗∗.

The proof of Theorem 3 is similar to those of Theorems 1 and 2, and we omit it.

Appendix: Proofs

A.1 Proof of Lemma 1

Suppose that f is rationalizably implemented by a mechanism M = 〈M , g : M −→ Y 〉
and that SM,θ ⊂ SM,θ′

. We aim to show SM,θ = SM,θ′
. Clearly, SM,θ ⊂ SM,θ′

implies

f (θ) = f
(
θ′). (37)

We will show that SM,θ′
satisfies the best-reply property at state θ, which would imply

SM,θ′ ⊂ SM,θ and, hence, also SM,θ = SM,θ′
. For any i ∈ I , pick any mi ∈ SM,θ

i . Then

there exists λ−i ∈ �(SM,θ
−i ) ⊂ �(SM,θ′

−i ) such that

ui
(
g(mi, λ−i ), θ

)= ui
(
f (θ), θ

)≥ ui
(
g(m̃i, λ−i ), θ

) ∀m̃i ∈Mi. (38)

Pick any m′
i ∈ SM,θ′

i . Then SM,θ ⊂ SM,θ′
and (37) imply

ui
(
g
(
m′

i, λ−i

)
, θ
)= ui

(
f
(
θ′), θ)= ui

(
f (θ), θ

)
. (39)

Thus, (38) and (39) imply

ui
(
g
(
m′

i, λ−i

)
, θ
)= ui

(
f (θ), θ

)≥ ui
(
g(m̃i, λ−i ), θ

) ∀m̃i ∈Mi,

i.e., m′
i is a best reply to λ−i for i at θ. Additionally, SM,θ′

satisfies the best-reply property
at θ.

A.2 A useful lemma

Following a similar construction as in BMT, we get the following lemma.

Lemma 3. There exist lotteries

y ∈ Y{
y∗
i (θ) ∈ Y : (θ, i) ∈�× I

}
{
zi
(
θ, θ′) ∈ Y :

(
θ, θ′) ∈�×� and i ∈ I

}
such that

ui
(
y∗
i (θ), θ

)
> ui(y , θ) ∀θ ∈�, ∀i ∈ Iθ (40)

ui
(
f
(
θ′), θ′)> ui

(
zi
(
θ, θ′), θ′) ∀(θ, θ′) ∈�×�, ∀i ∈ Iθ′

(41)

ui
(
zi
(
θ, θ′), θ)> ui

(
zi
(
θ′, θ′), θ) ∀(θ, θ′) ∈�×� with θ �= θ′, ∀i ∈ Iθ. (42)
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If NWA is imposed, i.e., I� = I , Lemma 3 reduces to Lemma 2 in BMT.

Proof of Lemma 3. We can find a set {y
i
(θ) : (θ, i) ∈�× I } such that

ui
(
f (θ), θ

)
> ui

(
y
i
(θ), θ

) ∀θ ∈�, ∀i ∈ Iθ. (43)

Define

y
i

�= 1
|�|

∑
θ∈�

y
i
(θ)

yi(θ)
�= 1

|�|
∑

θ̂∈��{θ}

y
i
(θ̂) + 1

|�|f (θ) ∀(θ, i) ∈�× I ,

which, together with (43), implies

ui
(
yi(θ), θ

)
> ui(yi, θ) ∀θ ∈�, ∀i ∈ Iθ. (44)

Furthermore, define

y
�= 1

|I|
∑
i∈I

y
i

y∗
i (θ)

�= 1
|I|

∑
j∈I�{i}

y
j
+ 1

|I|yi(θ) ∀(θ, i) ∈�× I ,

which, together with (44), implies

ui
(
y∗
i (θ), θ

)
> ui(y, θ) ∀θ ∈�, ∀i ∈ Iθ,

which shows (40) in Lemma 3. With ε > 0, define

zi
(
θ′, θ′) �= (1 − ε)y

i

(
θ′)+ εy

i
∀(θ′, i

) ∈�× I (45)

zi
(
θ, θ′) �= (1 − ε)y

i

(
θ′)

+ ε

|�|
( ∑
θ̂∈��{θ}

y
i
(θ̂) + f (θ)

)
∀(θ, θ′, i

) ∈�×�× I with θ �= θ′. (46)

By (43), we have

ui
(
f
(
θ′), θ′) > ui

(
y
i

(
θ′), θ′) ∀θ′ ∈�, ∀i ∈ Iθ′

(47)

ui
(
f (θ), θ

)
> ui

(
y
i
(θ), θ

) ∀θ ∈�, ∀i ∈ Iθ. (48)

Then, (45), (46), and (48) imply

ui
(
zi
(
θ, θ′), θ)> ui

(
zi
(
θ′, θ′), θ) ∀(θ, θ′) ∈�×� with θ �= θ′, ∀i ∈ Iθ,

which establishs (42) in Lemma 3.
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Furthermore, by choosing sufficient small ε > 0, (45), (46), and (47) imply

ui
(
f
(
θ′), θ′)> ui

(
zi
(
θ, θ′), θ′) ∀(θ, θ′) ∈ �×�, ∀i ∈ Iθ′

,

which establishes (41) in Lemma 3.

A.3 Proof of the “if” part of Theorem 1

Suppose that NWA and strict Maskin monotonicity∗∗ hold. Thus, there exists a partition
P of � finer than Pf such that for any (θ, θ′ ) ∈�×�,

θ′ /∈ P(θ) implies

[
∃i ∈ I such that ∀θ̂ ∈ P(θ), ∃yθ̂ ∈ Y ,

ui
(
f (θ̂), θ̂

)
> ui

(
yθ̂, θ̂

)
and ui

(
yθ̂, θ′)> ui

(
f (θ̂), θ′)

]
. (49)

That is, yθ̂ in (49) is the blocking plan for agent i when the true state is θ′ and all other
agents report θ̂. Let B denote the finite set of all such yθ̂. Since I ×� is finite, there exists
a finite set �⊂ Y such that

B ∪ f (�) ∪ {zi(θ, θ′) ∈ Y :
(
θ, θ′) ∈�×�

}⊂ �

θ′ /∈ P(θ) implies

[
∃i ∈ I such that ∀θ̂ ∈ P(θ), ∃yθ̂ ∈ �,

ui
(
f (θ̂), θ̂

)
> ui

(
yθ̂, θ̂

)
and ui

(
yθ̂, θ′)> ui

(
f (θ̂), θ′)

]
, (50)

where zi(θ, θ′ ) are defined in Lemma 3. That is, � is a finite set that contains all of f (θ),
zi(θ, θ′ ), and potential blocking plans for all possible profiles of (θ′, θ̂). Our canonical
mechanism is required to be a countable-action game and, hence, we should focus on �.

We use M = 〈M = (Mi )i∈I , g : M −→ Y 〉 defined as follows to implement f . In this
mechanism, each agent i sends a message mi = [m1

i , m2
i , m3

i , m4
i ] ∈Mi, where

m1
i ∈ �

m2
i ∈ N

m3
i ∈ ��

m4
i ∈ Z.

The innovation is that m3
i ∈ �� is a state-contingent blocking plan. As usual, we partition

M into three sets: agreement, unilateral deviation, and multilateral deviation:

M ′ = {(mi =
[
m1

i , m2
i , m3

i , m4
i

])
i∈I ∈ M : ∃θ ∈�, m1

i ∈ P(θ) and m2
i = 1, ∀i ∈ I

}
M ′′ = {m ∈M�M ′ : ∃(θ, i) ∈�× I , m1

j ∈ P(θ) and m2
j = 1, ∀j ∈ I�{i}

}
M ′′′ = M�

(
M ′ ∪M ′′).

Then g is defined by the following rules.

Rule 1: Agreement. When m ∈ M ′, there exist θ ∈ �, m1
i ∈ P(θ), and m2

i = 1 for every
i ∈ I . In particular, f (θ) is unique and g picks f (θ).
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Rule 2: Unilateral deviation. When m ∈ M ′′, there exists (θ, i) ∈ � × I such that m1
j ∈

P(θ) and m2
j = 1 for every j ∈ I�{i}. In particular, such f (θ) is unique. For notational

ease, consider agent i + 1 (module I)17 and set θ̂ ≡ m1
i+1. The interpretation is that even

though agents −i may report different states in P(θ), we “hypothetically” regard that they
all report θ̂ when agent i is the whistle-blower. We further distinguish two subcases:

Rule 2.a. If ui(f (θ̂), θ̂) ≥ ui(m3
i (θ̂), θ̂), then g picks m3

i (θ̂) with probability 1 − 1
m2

i +1
and

g picks zi(θ̂, θ̂) with probability 1
m2

i +1
.

Rule 2.b. Otherwise, g picks zi(θ̂, θ̂).
Rule 3: Multilateral deviation. When m ∈ M ′′′, consider agent j = max[arg maxh∈I m2

h],
i.e., j is the largest-numbered agent who reports the largest integer in the second dimen-
sion. Then g picks m4

j with probability 1 − 1
m2

j +1
and g picks y with probability 1

m2
j +1

.

From now on, let us assume that the true state is θ∗, and we will show that reporting
states in P(θ∗ ) is the only rationalizable strategy for all agents. Before starting our proof,
we first show that there exist the best challenging schemes in Rules 2 and 3. Fix any

m̂3
i (θ) ∈ arg max

y∈{ỹ∈�:ui(f (θ),θ)≥ui(ỹ,θ)}
ui
(
y, θ∗) ∀θ ∈� (51)

m̂3
i ≡ [m̂3

i (θ)
]
θ∈�

m̂4
i ∈ arg max

z∈Z
ui
(
z, θ∗). (52)

That is, m̂3
i ≡ [m̂3

i (θ)]θ∈� and m̂4
i are the best options for agent i if Rules 2 and 3 are

triggered, respectively. Specifically, we have

ui
(
m̂4

i , θ∗) ≥ ui
(
yi
(
θ∗), θ∗)> ui

(
y, θ∗) ∀θ ∈ � (53)

ui
(
m̂4

i , θ∗) ≥ ui
(
m̂3

i (θ), θ∗)> ui
(
zi(θ, θ), θ∗) ∀θ ∈�, (54)

where yi(θ∗ ), y, and zi(θ, θ) are defined in Lemma 3. In particular, the weak inequalities
in (53) and (54) follow from (52), and the strict inequality in (53) follows from (40) in
Lemma 3. To see strict inequality in (54), first suppose θ = θ∗. Then we have

ui
(
m̂3

i

(
θ∗), θ∗)≥ ui

(
f
(
θ∗), θ∗)> ui

(
zi
(
θ∗, θ∗), θ∗), (55)

where the weak inequality follows from f (θ∗ ) ∈ {ỹ ∈ � : ui(f (θ∗ ), θ∗ ) ≥ ui(ỹ, θ∗ )} and the
strict inequality follows from (41) in Lemma 3. Second, suppose θ �= θ∗. Then we have

ui
(
m̂3

i (θ), θ∗)≥ ui
(
zi
(
θ∗, θ

)
, θ∗)> ui

(
zi(θ, θ), θ∗), (56)

where the weak inequality follows from zi(θ∗, θ) ∈ {ỹ ∈ � : ui(f (θ), θ) ≥ ui(ỹ , θ)} due to
(41) in Lemma 3 and the strict inequality follows from (42) in Lemma 3. Hence, (55) and
(56) imply the strict inequality in (54).

17That is, agent (I + 1) is agent 1.
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When either Rule 2 or Rule 3 is triggered, the induced payoffs are listed as

Rule 2 :

⎡⎣ (n− 1) × ui
(
y, θ∗)+ ui

(
zi(θ, θ), θ∗)

n
for some (n, θ, y ) ∈N×�×�

such that ui
(
f (θ), θ

)≥ ui(y, θ)

⎤⎦
Rule 3:

[
n× ui

(
z, θ∗)+ ui

(
y, θ∗)

n+ 1
for some (n, z) ∈ N×Z

]
.

Then (54) implies

ui
(
m̂4

i , θ∗)≥ ui
(
m̂3

i (θ), θ∗)> (n− 1) × ui
(
y, θ∗)+ ui

(
zi(θ, θ), θ∗)

n

∀(n, θ, y ) ∈N×�×� such that ui
(
f (θ), θ

)≥ ui(y, θ) (57)

and (53) implies

ui
(
m̂4

i , θ∗) > n× ui
(
z, θ∗)+ ui

(
y, θ∗)

n+ 1
∀(n, z) ∈N×Z, (58)

i.e., m̂3
i and m̂4

i are strictly better than any induced payoffs in Rules 2 and 3, respectively.
In five steps, we now prove that M rationalizably implements f .
Step 1. At true state θ∗ ∈ �, any [m1

i , m2
i , m3

i , m4
i ]i∈I with (m1

i , m2
i ) = (θ∗, 1) for every

i ∈ I is a Nash equilibrium, which induces f (θ∗ ) as dictated by Rule 1.
For every i ∈ I , any deviation of i would either stay in Rule 1 and induce the same

outcome f (θ∗ ) or trigger Rule 2, which induces either zi(θ∗, θ∗ ) or a mixture of zi(θ∗, θ∗ )
and m3

i (θ∗ ) with ui(f (θ∗ ), θ∗ ) ≥ ui(m3
i (θ∗ ), θ∗ ). Clearly, zi(θ∗, θ∗ ) is worse than f (θ∗ ) by

Lemma 3 (precisely, (41)). Therefore, any deviation of i is not profitable.
Step 2. At true state θ∗ ∈ �, for every i ∈ I , if any mi ∈ Miis a best reply to λ−i ∈

�(M−i ), then (mi, λ−i ) induces Rules 2 and 3 with probability 0.
We prove this by contradiction. Suppose (mi, λ−i ) induces Rules 2 or 3 with a positive

probability. We thus partition M−i as

M−i =
(⋃
θ∈�

Mθ
−i

)
∪
( ⋃

(n,θ,y )∈N×�×�

M
(n,θ,y )
−i

)
∪
( ⋃

(n,z)∈N×Z

M(n,z)
−i

)
,

where

Mθ
−i ≡

{
m−i ∈M−i :

(mi, m−i ) triggers Rule 1 and induces payoff
ui
(
f (θ), θ∗) for agent i

}

M
(n,θ,y )
−i ≡

⎧⎪⎨⎪⎩m−i ∈M−i :

ui
(
f (θ), θ

)≥ ui(y, θ) and
(mi, m−i ) triggers Rule 2 and induces payoff
(n−1)×ui

(
y,θ∗)+ui

(
zi(θ,θ),θ∗)

n for agent i

⎫⎪⎬⎪⎭
M(n,z)

−i ≡
{
m−i ∈M−i :

(mi, m−i ) triggers Rule 3 and induces payoff
n×ui

(
z,θ∗)+ui

(
y,θ∗)

n+1 for agent i

}
.
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Table 7. Payoff comparison.

As m̃2
i → ∞ Payoff Under mi Supremum of Payoffs Under [m1

i , m̃2
i , m̂3

i , m̂4
i ]

m−i ∈ Mθ
−i ui(f (θ), θ∗ ) ≤ ui(m̂3

i (θ), θ∗ )

m−i ∈ M
(n,θ,y )
−i �= ∅ (n−1)×ui(y,θ∗ )+ui(zi(θ,θ),θ∗ )

n < ui(m̂3
i (θ), θ∗ )

m−i ∈ M(n,z)
−i

n×ui(y,θ∗ )+ui(y,θ∗ )
n+1 < ui(m̂4

i , θ∗ )

Suppose agent i deviates from mi = [m1
i , m2

i , m3
i , m4

i

]
to [m1

i , m̃2
i , m̂3

i , m̂4
i ] with m̃2

i → ∞,
where m̂3

i and m̂4
i are defined in (51) and (52). The payoff changes are listed in Table 7.

In Table 7, the strict inequality follows from (57) and (58). Hence, for any mixed
strategy λ−i ∈ �(M−i ) that induces Rules 2 and 3 with a positive probability, we have

ui
(
g
([
m1

i , m2
i , m3

i , m4
i

]
, λ−i

)
, θ∗)< lim

m̃2
i →∞

ui
(
g
([
m1

i , m̃2
i , m̂3

i , m̂4
i

]
, λ−i

)
, θ∗)

and as a result, there exists m̂2
i ∈N such that

ui
(
g
([
m1

i , m2
i , m3

i , m4
i

]
, λ−i

)
, θ∗)< ui

(
g
([
m1

i , m̂2
i , m̂3

i , m̂4
i

]
, λ−i

)
, θ∗),

contradicting mi being a best reply to λ−i.
Step 3. At true state θ∗ ∈ �, for every i ∈ I , any strategy mi = [m1

i , m2
i , m3

i , m4
i ] with

m2
i > 1is not rationalizable for agent i.

This follows from Step 2, because m2
i > 1 induces Rules 2 or 3 with probability 1.

Step 4. At true state θ∗ ∈ �, for any θ ∈ ��P(θ∗ ) (or, equivalently, θ∗ /∈ P(θ)), there
exists j ∈ I such that any strategy mj = [m1

j , m2
j , m3

j , m4
j ] with m1

j ∈ P(θ) is not rational-
izable for agent j.

By our construction of � above and (50), we have

∀θ̃ ∈ P(θ), ∃yθ̃ ∈ �

uj
(
f (θ̃), θ̃

)
> uj

(
yθ̃, θ̃

)
and uj

(
yθ̃, θ∗)> uj

(
f (θ̃), θ∗).

and, furthermore, by our definition of m̂3
j (θ) above, we have

∀θ̃ ∈ P(θ)

uj
(
f (θ̃), θ̃

)≥ uj
(
m̂3

j (θ̃), θ̃
)

and uj
(
m̂3

j (θ̃), θ∗)> uj
(
f (θ̃), θ∗). (59)

For any mj = [m1
j , m2

j , m3
j , m4

j ] with m1
j ∈ P(θ), we prove by contradiction that it is not

rationalizable for j. Suppose otherwise, i.e., mj is a best reply to some λ−j ∈ �(SM,θ∗
−j ).

By Step 2, (mj , λ−j ) must induce Rule 1 with probability 1. Thus, every agent i report
m1

i ∈ P(θ) and m2
i = 1, which induces f (θ). As a result, agent j’s payoff is uj(f (θ), θ∗ ).

Then agent j would like to deviate from mj to [m1
j , m̃2

j , m̂3
j , m̂4

j ] with m̃2
j → ∞, which

would induce Rule 2 and

uj
(
g(mj , λ−j ), θ∗)= uj

(
f (θ), θ∗)< lim

m̃2
j →∞

ui
(
g
([
m1

j , m̃2
j , m̂3

j , m̂4
j

]
, λ−j

)
, θ∗),
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where the inequality follows from (59). Hence, there exists m̂2
j ∈N such that

uj
(
g(mj , λ−j ), θ∗)= uj

(
f (θ), θ∗)< ui

(
g
([
m1

j , m̂2
j , m̂3

j , m̂4
j

]
, λ−j

)
, θ∗),

contradicting mj being a best reply to λ−j .
Step 5. At true state θ∗ ∈ �, for any (i, θ) ∈ I×[��P(θ∗ )], any mi = [m1

i , m2
i , m3

i , m4
i ]

with m1
i ∈ P(θ)is not rationalizable for agent i.

First, this is true for the agent j identified in Step 4. Second, consider any i �= j.
We prove this step by contradiction. Suppose mi = [m1

i , m2
i , m3

i , m4
i ] with m1

i ∈ P(θ) is
rationalizable for agent i. Then mi is a best reply to some rationalizable conjecture λ−i ∈
�(SM,θ∗

−i ). By Step 2, (mi, λ−i ) must induce Rule 1 with probability 1 or, equivalently,
with probability 1, every agent h ∈ I reports m1

h ∈ P(θ), including agent j, contradicting
Step 4.

To sum, Step 1 shows

SM,θ∗ ⊃
∏
i∈I

{(
m1

i , m2
i , m3

i , m4
i

) ∈Mi :
(
m1

i , m2
i

)= (θ∗, 1
)}

and Steps 2–5 show

SM,θ∗ ⊂
∏
i∈I

{(
m1

i , m2
i , m3

i , m4
i

) ∈Mi : m1
i ∈ P

(
θ∗) and m2

i = 1
}

.

Thus, every m ∈ SM,θ∗
triggers Rule 1 and induces f (θ∗ ), i.e., g(SM,θ∗

) = {f (θ∗ )}.

A.4 Proofs of Proposition 1

Consider any responsive SCF f : � −→ Z. First, we suppose strict event monotonicity
and we show strict iterated-elimination monotonicity. Fix any θ′ ∈ �. Then we will de-
fine a sequence (θ1, θ2, � � � , θn ) inductively. Define θn = θ′ and apply strict event mono-
tonicity on E =�. Given responsiveness, we have {f (θ′ )} �= f (E) and, hence, strict event
monotonicity implies

ui
(
f
(
θ1), θ1)> ui

(
y, θ1) and ui

(
y, θ′)> ui

(
f
(
θ1), θ′)

for some
(
θ1, y, i

) ∈�×Y × I�.

Inductively, for each k ∈ {2, � � � , n− 1}, we apply strict group monotonicity on

E =��
{
θ1, � � � , θk−1}

and we get

ui
(
f
(
θk
)
, θk
)
> ui

(
y, θk

)
and ui

(
y, θ′)> ui

(
f
(
θk
)
, θ′)

for some
(
θk, y, i

) ∈ [��
{
θ1, � � � , θk−1}]×Y × I��{θ1, ���,θk−1},

i.e., strict iterated-elimination monotonicity holds.
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Second, we suppose strict iterated-elimination monotonicity and we show strict
event monotonicity. For any (θ′, E) with {f (θ′ )} �= f (E), we aim to show

ui
(
f (θ), θ

)
> ui(y, θ) and ui(y, θ) > ui

(
f (θ), θ′)]

for some (θ, y, i, ) ∈E ×Y × IE . (60)

Given strict iterated-elimination monotonicity, there exists (θ1, θ2, � � � , θn ) such that{
θ1, θ2, � � � , θn

}=�

θn = θ′,

and for every k ∈ {1, 2, � � � , n− 1},

ui
(
f
(
θk
)
, θk
)
> ui

(
y, θk

)
and ui

(
y, θ′)> ui

(
f
(
θk
)
, θ′)

for some (y, i) ∈ Y × I{θk,θk+1, ���,θn}. (61)

We write E = {θk1 , � � � θkn } ⊂ � with k1 < · · · < kn and k1 < n due to {f (θ′ )} �= f (E). Then
(61) implies

ui
(
f
(
θk1
)
, θk1

)
> ui

(
y, θk1

)
and ui

(
y, θ′)> ui

(
f
(
θk1
)
, θ′)

for some (y, i) ∈ Y × I{θk1 ,θk1+1, ���,θn}. (62)

Note that θk1 ∈ E and E = {θk1 , � � � θkn } ⊂ {θk1 , θk1+1, � � � , θn}, and, hence,
I{θk1 ,θk1+1, ���,θn} ⊂ IE . As a result, (62) implies (60).

A.5 Proof of the “if” part of Theorem 2

Suppose that f satisfies responsiveness, strict event monotonicity, and dictator mono-
tonicity. As argued above, since I ×� is finite, there exists a finite set � ⊂ Y such that

f (�) ∪ {zi(θ, θ′) ∈ Y :
(
θ, θ′) ∈�×�

}⊂ �

∀(θ′, E
) ∈ �× [2�\{∅}

]
(63)

{
f
(
θ′)} �= f (E) implies

[
ui
(
f (θ), θ

)
> ui(y, θ) and ui

(
y, θ′)> ui

(
f (θ), θ′)

for some (θ, y, i, ) ∈E ×�× IE

]
∀(i, θ, θ′, θ′′) ∈ I ×�×�×�[

{i} = Iθ

and f (θ) �= f
(
θ′)
]

=⇒
[

∃y ∈ � such that
ui
(
f
(
θ′′), θ′′)≥ ui

(
y, θ′′) and ui

(
y, θ′)> ui

(
f (θ), θ′)

]
(64)

[
{i} = Iθ

and f (θ) �= f
(
θ′)
]

=⇒ ui
(
f
(
θ′), θ′)> ui

(
f (θ), θ′), (65)

where zi(θ, θ′ ) are defined in Lemma 3, and (63) follows from strict event monotonicity,
(64) follows from dictator monotonicity, and (65) follows from (64) by considering θ′ =
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θ′′. That is, � is a finite set that contains all of f (θ), zi(θ, θ′ ) and all potential blocking
plans. In particular, when we take E =�, we get {f (θ′ )} �= f (E), and (63) implies

I� �= ∅. (66)

We use M = 〈M = (Mi )i∈I , g : M −→ Y 〉 defined as follows to implement f . In this
mechanism, each agent i sends a message mi = [m1

i , m2
i , m3

i , m4
i ] ∈Mi, where

m1
i ∈ �

m2
i ∈ N

m3
i ∈ ��

m4
i ∈ Z.

We partition M as agreement, unilateral deviation, and multilateral deviation:

M ′ = {(mi =
[
m1

i , m2
i , m3

i , m4
i

])
i∈I ∈M : ∃θ ∈ �,

(
m1

i , m2
i

)= (θ, 1), ∀i ∈ Iθ
}

M ′′ = {m ∈M�M ′ : ∃(θ, i) ∈�× I ,
(
m1

j , m2
j

)= (θ, 1), ∀j ∈ I�{i}
}

M ′′′ = M�
(
M ′ ∪M ′′).

It is worth noting that Iθ is used in the definition of M ′, and I is used in the definition of
M ′′. Specifically, agreement is defined as all agents in Iθ reporting (θ, 1) in the first two
dimensions. Furthermore, unilateral deviation refers to the unilateral deviation from all
agents in I reporting the same (θ, 1) for some θ. Thus, a unilateral deviation from a
message profile in M ′ may induce a message profile in M ′′′.

Then g is defined by the following rules.

Rule I (Agreement). When m ∈ M ′, there exists θ ∈ � such that (m1
i , m2

i ) = (θ, 1) for
every i ∈ Iθ. By (66), such θ is unique. Then g picks f (θ).

Rule II (Unilateral deviation). When m ∈ M ′′, there exists (θ, i) ∈ � × I such that
(m1

j , m2
j ) = (θ, 1) for every j ∈ I�{i}, and such (θ, i) is unique due to |I| ≥ 3. We further

distinguish two subcases.
Rule II.a. If ui(f (θ), θ) ≥ ui(m3

i (θ), θ), then g picks m3
i (θ) with probability 1 − 1

m2
i +1

and

g picks zi(θ, θ) with probability 1
m2

i +1
.

Rule II.b. If ui(f (θ), θ) < ui(m3
i (θ), θ), then g picks zi(θ, θ).

Rule III (Multilateral deviation). When m ∈ M ′′′, consider agent j = max[arg maxh∈I m2
h],

i.e., j is the largest-numbered agent who reports the largest integer in the second dimen-
sion. Then g picks m4

j with probability 1 − 1
m2

j +1
and g picks y with probability 1

m2
j +1

.

From now on, fix any true state as θ∗ ∈�. As above, fix any

m̂3
i (θ) ∈ arg max

y∈{ỹ∈�:ui(f (θ),θ)≥ui(ỹ,θ)}
ui
(
y, θ∗) ∀θ ∈�

m̂3
i ≡ [m̂3

i (θ)
]
θ∈�

m̂4
i ∈ arg max

z∈Z
ui
(
z, θ∗).
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Using the same argument as in Appendix A.3, we can show

ui
(
m̂4

i , θ∗) ≥ ui
(
m̂3

i (θ), θ∗)> (n− 1) × ui
(
y, θ∗)+ ui

(
zi(θ, θ), θ∗)

n

∀i ∈ Iθ∗
, ∀(n, θ, y ) ∈N×�×� such that ui

(
f (θ), θ

)≥ ui(y, θ) (67)

ui
(
m̂4

i , θ∗) > n× ui
(
z, θ∗)+ ui

(
y, θ∗)

n+ 1

∀i ∈ Iθ∗
, ∀(n, z) ∈N×Z. (68)

In five steps, we now prove that M rationalizably implements f .
Step 1. At true state θ∗ ∈ �, any [m1

i , m2
i , m3

i , m4
i ]i∈I with (m1

i , m2
i ) = (θ∗, 1) for every

i ∈ I is a Nash equilibrium, which induces f (θ∗ ) as dictated by Rule I.
By following this strategy profile, agent i gets payoff ui(f (θ∗ ), θ∗ ). For any i /∈ Iθ∗

,
any deviation of i would still induce f (θ∗ ), i.e., not a profitable deviation. For any i ∈
Iθ∗

, consider any of i’s deviations (m̂1
i , m̂2

i , m̂3
i , m̂4

i ) that change the outcome chosen by
g. This deviation would either trigger Rule I, when (m̂1

i , m̂2
i ) = (θ̂, 1) with θ̂ �= θ∗ and

{i} = I θ̂, or trigger Rule II otherwise. For the former case, this is not profitable because
of dictator monotonicity (precisely, (65)). In the latter case, g picks either zi(θ∗, θ∗ ) or
a mixture of zi(θ∗, θ∗ ) and m̂3

i (θ∗ ) with ui(f (θ∗ ), θ∗ ) ≥ ui(m3
i (θ∗ ), θ∗ ), all of which are

worse than f (θ∗ ) for i at θ∗ by (41) in Lemma 3, i.e., not a profitable deviation.
Step 2. At true state θ∗ ∈ �, for every i ∈ Iθ∗

, if any mi ∈ Mi is a best reply to λ−i ∈
�(M−i ), then (mi, λ−i )induces Rules II and III with probability 0.

The proof is the same as Step 2 in Appendix A.3, and we omit it.
Step 3. At true state θ∗ ∈�, for any θ ∈ ��{θ∗}, there exists j ∈ Iθ ∩ Iθ∗

such that any
mj = [m1

j , m2
j , m3

j , m4
j ] with (m1

j , m2
j ) = (θ, 1)is not rationalizable for agent j.

By Proposition 1, strict event monotonicity is equivalent to strict iterated-elimination
monotonicity, which means that there exists (θ1, θ2, � � � , θn ) such that{

θ1, θ2, � � � , θn
} = �

θn = θ∗,

and for every k ∈ {1, 2, � � � , n− 1},

uj
(
f
(
θk
)
, θk
)
> uj

(
y, θk

)
and uj

(
y, θ∗)> uj

(
f
(
θk
)
, θ∗)

for some (y, j) ∈ �× I{θk,θk+1, ���,θn}. (69)

Then, inductively, for each k ∈ {1, 2, � � � , n − 1}, we will show that it is not rationalizable
for agent j (identified in (69)) to report (θk, 1) in the first two dimensions.

Clearly, j ∈ I{θk,θk+1, ���,θn} ⊂ Iθn = Iθ∗
. Furthermore, (69) immediately implies

uj
(
m̂4

j , θ∗)≥ uj
(
m̂3

j

(
θk
)
, θ∗)≥ uj

(
y, θ∗)> uj

(
f
(
θk
)
, θ∗), (70)

where the strict inequality follows from (69), the first weak inequality follows from
(67), the second weak inequality follows from the definition of m̂3

j (θk ), and y ∈ {ỹ ∈ � :

ui(f (θk ), θk ) ≥ ui(ỹ, θk )}.
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We now consider two cases: (a) {j} = Iθk ; (b) {j} �= Iθk .
Step 3.a. When {j} = Iθk , any mj = (m1

j , m2
j , m3

j , m4
j ) with (m1

j , m2
j ) = (θk, 1) is not

rationalizable for j.
We prove this by contradiction. Given {j} = Iθk , suppose mj = (m1

j , m2
j , m3

j , m4
j ) with

(m1
j , m2

j ) = (θk, 1) is rationalizable for agent j. Then mj is a best reply to some λ−j ∈
�(SM,θ∗

−j ). Since {j} = Iθk , we reach agreement (i.e., Rule I) under the strategy profile

(mj , λ−j ), which induces the outcome f (θk ).
Given θk �= θ∗ and responsiveness, dictator monotonicity (i.e., (64)) implies

∀θ′′ ∈�, ∃y ∈ � such that (71)

ui
(
f
(
θ′′), θ′′)≥ ui

(
y, θ′′) and ui

(
y, θ∗)> ui

(
f
(
θk
)
, θ∗), (72)

which further implies

uj
(
m̂3

j

(
θ′′), θ∗)> uj

(
f
(
θk
)
, θ∗) ∀θ′′ ∈�, (73)

i.e., agent j always finds it profitable to use m̂3
j to deviate to Rule II. Also, (70) implies

uj
(
m̂4

j , θ∗)> uj
(
f
(
θk
)
, θ∗), (74)

i.e., whenever possible, agent j always finds it profitable to use the blocking plan m̂4
j to

deviate to Rule III. Then agent j would like to deviate from mj to [m1
j , m̃2

j , m̂3
j , m̂4

j ] with

m̃2
j → ∞, which would induce either Rule II or Rule III, and

uj
(
g(mj , λ−j ), θ∗)= uj

(
f
(
θk
)
, θ∗)< lim

m̃2
j →∞

ui
(
g
([
m1

j , m̃2
j , m̂3

j , m̂4
j

]
, λ−j

)
, θ∗),

where the inequality follows from (73) and (74). Thus, there exists m̂2
j ∈N such that

uj
(
g(mj , λ−j ), θ∗)= uj

(
f
(
θk
)
, θ∗)< ui

(
g
([
m1

j , m̂2
j , m̂3

j , m̂4
j

]
, λ−j

)
, θ∗),

contradicting mj being a best reply to λ−j .

Step 3.b. When {j} �= Iθk , any strategy mj = (m1
j , m2

j , m3
j , m4

j ) with (m1
j , m2

j ) = (θk, 1)
is not rationalizable for agent j.

We prove this by contradiction. Suppose mj = (m1
j , m2

j , m3
j , m4

j ) with (m1
j , m2

j ) =
(θk, 1) is rationalizable for agent j. Then mj is a best reply to some λ−j ∈ �(SM,θ∗

−j ).

Recall j ∈ I{θk,θk+1, ���,θI } ⊂ Iθk ∩ Iθ∗
. By Step 2, the strategy profile (mj , λ−j ) induces

Rule I with probability 1. Given (m1
j , m2

j ) = (θk, 1), all agents in Iθk must report (θk, 1)

under (mj , λ−j ).18 With Iθk�{j} �= ∅, we consider two subcases (i) agents −j all report
(θk, 1) and (ii) otherwise. In case (i), agent j can deviate to Rule II, and in case (ii), agent
j can deviate to Rule III. Note that (70) implies

uj
(
m̂3

j

(
θk
)
, θ∗) > uj

(
f
(
θk
)
, θ∗) (75)

18By the induction hypothesis, we cannot reach agreement on any state in {θ1, θ2, � � � , θk−1}.
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uj
(
m̂4

j , θ∗) > uj
(
f
(
θk
)
, θ∗), (76)

i.e., (75) says that, in case (i), agent j always finds it profitable to use the blocking plan
m̂3

j to deviate to Rule II; (76) says that, in case (ii), agent j always finds it profitable to use

the blocking plan m̂4
j to deviate to Rule III. Thus, agent j would like to deviate from mj

to [m1
j , m̃2

j , m̂3
j , m̂4

j ] with m̃2
j → ∞, which would induce either Rule II or Rule III and

uj
(
g(mj , λ−j ), θ∗)= uj

(
f
(
θk
)
, θ∗)< lim

m̃2
j →∞

ui
(
g
([
m1

j , m̃2
j , m̂3

j , m̂4
j

]
, λ−j

)
, θ∗),

where the inequality follows from (75) and (76). Thus, there exists m̂2
j ∈N such that

uj
(
g(mj , λ−j ), θ∗)= uj

(
f
(
θk
)
, θ∗)< ui

(
g
([
m1

j , m̂2
j , m̂3

j , m̂4
j

]
, λ−j

)
, θ∗),

contradicting mj being a best reply to λ−j .
Step 4. At true state θ∗ ∈ �, for every i ∈ I�, any strategy mi = (m1

i , m2
i , m3

i , m4
i ) with

(m1
i , m2

i ) �= (θ∗, 1)is not rationalizable for agent i.

For any i ∈ I�, pick any mi = (m1
i , m2

i , m3
i , m4

i ) ∈ SM,θ∗
i . Then mi is a best reply to

some λ−i ∈ �(SM,θ∗
−i ). By Step 2, (mi, λ−i ) induces Rule I with probability 1. However, by

Step 3, any agreement on θ ∈ ��{θ∗} cannot be reached. Thus, the only possible agree-
ment is on θ∗, i.e., all agents in Iθ∗

report (θ∗, 1). As a result, only mi = (m1
i , m2

i , m3
i , m4

i )
with (m1

i , m2
i ) = (θ∗, 1) is rationalizable for i ∈ I� at θ∗.

Step 5. At true state θ∗ ∈ �, for every i ∈ Iθ∗
, any strategy mi = (m1

i , m2
i , m3

i , m4
i )with

(m1
i , m2

i ) �= (θ∗, 1) is not rationalizable for agent i.

For any i ∈ Iθ∗
, pick any mi = (m1

i , m2
i , m3

i , m4
i ) ∈ SM,θ∗

i . Then mi is a best reply

to some λ−i ∈ �(SM,θ∗
−i ). By Step 2, (mi, λ−i ) induces Rule I with probability 1. Since

I� �= ∅, by Step 4, it must be the case that all agents in I� report (θ∗, 1). Thus, the
only possibility is agreement on θ∗, i.e., all agents in Iθ∗

report (θ∗, 1). Therefore, only
mi = (m1

i , m2
i , m3

i , m4
i ) with (m1

i , m2
i ) = (θ∗, 1) is rationalizable for agent i ∈ Iθ∗

at θ∗.
To sum, Step 1 shows

SM,θ∗ ⊃
∏
i∈I

{(
m1

i , m2
i , m3

i , m4
i

) ∈Mi :
(
m1

i , m2
i

)= (θ∗, 1
)}

,

and Steps 2–5 show

SM,θ∗ ⊂
( ∏
i∈Iθ∗

{(
m1

i , m2
i , m3

i , m4
i

) ∈Mi :
(
m1

i , m2
i

)= (θ∗, 1
)})×

( ∏
i∈I�Iθ∗

Mj

)
.

As a result, we have g(SM,θ∗
) = {f (θ∗ )}, i.e., rationalizable implementation is achieved.
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