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Additive valuations of streams of payoffs that satisfy the
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This paper characterizes those preferences over bounded infinite utility streams
that satisfy the time value of money principle and an additivity property, and the
subset of these preferences that, in addition, are either impatient or patient. Based
on this characterization, the paper introduces a concept of optimization that is ro-
bust to a small imprecision in the specification of the preference, and proves that
the set of feasible streams of payoffs of a finite Markov decision process admits
such a robust optimization.
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1. Introduction

It is well documented that economic agents’ behavior is often incompatible with exact
optimization. We believe that economic theory has overemphasized exact optimization,
especially its implications for economic agents’ behavior. The reason is that in most real-
life applications, there is some imprecision in the specification of the model, in particu-
lar, in the specification of the preference over the possible outcomes. Therefore, a ratio-
nal economic agent may, or even should, forgo exact optimization in a single economic
model with well-defined parameters, and prefer behavior that is approximately optimal
in a whole class of economic models whose differences reflect imprecision in specify-
ing the parameters of the model. Moreover, it is desirable that the economic agent’s
behavior exhibits gradual change as the model changes.

We call this type of behavior robust optimization and believe that robust optimiza-
tion may explain many of the gaps between the observed behavior of economic agents
and the behavior that is implied by exact optimization.

The present paper focuses on robust optimization in an economic model where the
decision maker must choose between different feasible bounded infinite streams of pay-
offs and the imprecision is in the specification of the preference.
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The decision maker can be an individual, a firm, or a community of individuals. The
stream of payoffs can be a stream of equal payoffs (called a perpetuity) or of payoffs that
vary over time.

The first part of the paper characterizes the preferences over bounded infinite
streams of payoffs that satisfy a few plausible assumptions. The characterization shows
that each one of these preferences is represented1 by a unique cardinal utility, called
hereafter a valuation.

The essential difference between the characterization of valuations in the present
paper and earlier studies (e.g., Koopmans (1960), Koopmans, Diamond, and Williamson
(1964), Diamond (1965), Fishburn (1966), Koopmans (1972), Lauwers (1995), Chichil-
nisky (1996, 1997), Chambers and Echenique (2018), Drugeon and Huy (2021)) is the
adoption of the time value of money principle. The time value of money principle reflects
the preference for expediting the receipt of positive payoffs: the faster the accumulation
of payoffs, the better. In other words, this principle states that a unit of payoff in a given
period is weakly preferable to a unit of payoff that is spread out over later periods. This
principle is natural when saving is costless.

The time value of money principle is the natural generalization of the time-
preference principle (see, e.g., Olson and Bailey (1981), von Böehm-Bawerk (1912)) and
of the overtaking criterion (see, e.g., von Weizsäcker (1967), Brock (1970), Brown and
Lewis (1981) and the references therein). While the time value of money principle is
meaningful for all preferences or ordinal utilities over streams of payoffs, the time-
preference principle is meaningless for preferences or ordinal utilities for which only
the payoffs in the distant future matter and the overtaking criterion is meaningless for
preferences or ordinal utilities for which the payoffs in the distant future are negligible.

The other assumptions that are used in our characterization are variations of ad-
ditivity, nontriviality, and Wold’s condition (Wold (1943–1944), Beardon and Mehta
(1994)).

The additivity property states that if the streams A and B are equivalent to the per-
petuities C and D, respectively, then the sum of the streams A and B is equivalent to the
sum of the perpetuities C and D.

The other assumption is that any stream of payoffs is equivalent to a perpetuity
(Wold’s condition) and the higher the perpetuity’s (constant) payoff, the better.

A valuation is impatient if the contribution of payoffs in the distant future is negligi-
ble. It is patient if only the payoffs in the distant future matter.

The main result of the first part is Theorem 3, which characterizes the set of valua-
tions. It shows that the set of valuations is the set of mixtures of impatient valuations,
which are characterized in Theorem 1, and patient valuations, which are characterized
in Theorem 2.

Our characterization of impatient valuations (respectively, patient valuations) uses
the same properties that are used in the characterization of (general) valuations with the
addition of an impatience property (respectively, a patience property).

1A preference relation � over a set X is represented by a cardinal utility u if for all x, y ∈ X , it holds that
x� y if and only if u(x) ≥ u(y ).
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There are other characterizations of patient and impatient valuations that use spe-
cific axioms for the characterization of each subclass of valuations. As will be evident
from our study of robust optimization in the second part, we view the non-impatient
valuations as “limit points” of impatient ones or as an imprecise description of an impa-
tient valuation. Therefore, it is advantageous to use the same properties that are mean-
ingful in characterizing impatient valuations in the characterization of (general) valua-
tions and in the characterization of patient valuations.

Our characterizations show that (a) any impatient valuation is a weighted average of
the periods’ payoffs with averaging weights that are non-increasing in time (Theorem 1),
(b) any patient valuation is a linear function that assigns to each stream a value that is
between the limit inferior and the limit superior of the averages of the first n payoffs
in the stream (Theorem 2), and (c) any valuation is a weighted average of an impatient
valuation and a patient one (Theorem 3).

Two classic examples of impatient valuations are the nth Cesàro average valuation,
which is denoted by un, and the r-discounted valuation (0 < r ≤ 1), which is denoted by
ur . For a stream f = (f1, f2, � � �),

un(f ) = f1 + · · · + fn

n
and ur(f ) =

∞∑
t=1

r(1 − r )t−1ft .

The tth period’s averaging weight of un is 1/n if t ≤ n and is 0 if t > n, and the tth
period’s averaging weight of ur is r(1 − r )t−1.

A mixture of a patient valuation and an impatient valuation takes into account pay-
offs both in the near and in the distant future, and, therefore, it is useful for studying
economic models like global warming where one must take into account both the fore-
seeable and the distant future.

The second part of the paper uses the characterization in the first part to define and
study robust optimization in models where the decision maker chooses between feasi-
ble bounded infinite streams of payoffs.

As there is a one-to-one correspondence between the preferences (that satisfy our
assumptions) and the valuations, it suffices to study optimization that is robust to a
small imprecision in the specification of the valuation.

Optimization that is robust to small changes in the valuation is common in a bank’s
selection of its portfolio. A few considerations in selecting the portfolio are discussed
as an illustration of the importance of robust optimization in selecting a proper feasible
stream of payoffs.

A bank’s portfolio consists of its assets, which are mainly a collection of loans, and its
liabilities, which are mainly a collection of customers’ (including other banks’) deposits
and bonds issued by the bank, where each asset or liability has a different maturity and
a different payment schedule.

The economic value of the bank is the present value of the stream of its portfolio
payoffs. It is a function of the yield curve, which specifies the interest rate as a function
of time.

The bank’s set of feasible portfolios depends on market and competitive conditions,
as well as on regulatory constraints. One of the regulatory constraints, as well as an
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important consideration in the bank’s selection of its portfolio, is the sensitivity of its
economic value to changes in the yield curve.2

The objective of maximizing the value of the bank’s portfolio while ensuring that the
losses due to changes in the yield curve remain within prescribed limits is essentially an
approximate optimization that is robust to a given imprecision in the specification of
the valuation.

The yield curve, and hence also the valuation, changes over time. Therefore, an ad-
ditional desired property of the bank’s portfolio-selection strategy is that the selected
portfolio is gradually modified as the yield curve changes.

The fact that each preference can be represented by a unique valuation (and each
valuation is a cardinal utility and thus allows comparison of utility differences) enables
us to quantify approximate optimization: optimization of the valuation within a small
positive ε.

To define a small imprecision in the specification of the preference, we define a
topology on the space of valuations. A minimal requirement for the topology on the
space of valuations is that the map that assigns to each valuation the utility, according
to this valuation, of a given unit vector3 be continuous. The smaller the topology on
the space of valuations is, the less stringent is the notion of a small change in the valu-
ation and hence the more demanding is the notion of robust optimization. Therefore,
the topology on the space of valuations that we are studying is the minimal topology for
which the map that assigns to each valuation its value on a unit vector is continuous. We
show that this topology is compact (and pseudo-metrizable).

We define the concepts of a robust ε-optimizer at a given valuation. It is a feasible
stream of payoffs whose utility, according to any valuation in some neighborhood of the
given valuation, is at least the utility that this valuation, and, moreover,4 any valuation
in this neighborhood, assigns to any feasible stream of payoffs minus ε.

Theorem 4 proves that the existence of a robust ε-optimizer at any valuation implies
the existence of finitely many streams of payoffs such that for each valuation, one of
them is a robust ε-optimizer, and the existence of a robust ε-optimizer that depends
continuously on the valuation whenever the set of feasible infinite streams of payoffs is
convex.

The third part of the paper illustrates a nontrivial application of the theory of robust
optimization that is developed in the first two parts. The application is to the classi-
cal model of a finite Markov decision process (MDP). It proves the existence of robust
optimization in the model of a finite MDP.

A policy in a MDP defines a probability over infinite streams of payoffs rather then a
deterministic infinite stream of payoffs. Our first result, Theorem 5, proves the existence
of robust optimization in a finite MDP under the assumption that the preference over

2Obviously, there are other important sensitivity issues. We mention the sensitivity to the yield curve as
the yield curve specifies the valuation.

3That is, a stream where in one period the payoff is 1 and in all other periods the payoff is 0.
4This additional stronger requirement guarantees that the oscillation, in this neighborhood, of the op-

timal value at a valuation, namely, the supremum of the utility of the valuation over all feasible streams of
payoffs, is no more than ε.
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distributions coincides with the preference over the deterministic stream of expected
payoffs in each period.

The time value of money principle plays a crucial role in the existence of robust op-
timization in a finite MDP. Without it, and even with the addition of the time-preference
principle and the strong Pareto optimality assumptions, the existence of a robust ε-
optimizer at a preference for which the payoffs in the distant future are not negligible
does not hold in a finite MDP.5

Theorem 6, which generalizes Theorem 5, demonstrates the existence of robust
optimization in a finite MDP where the valuations are viewed as von Neumann–
Morgenstern utilities.

2. Characterization of valuations

This section defines formally the concepts of valuation, impatient valuation, and patient
valuation, and states the theorems that characterize each of them in turn.

2.1 Streams of payoffs

A stream of payoffs is a sequence g = (g1, g2, � � �) of real numbers. It is bounded if ‖g‖ :=
supt |gt| <∞. The linear space of all bounded streams of payoffs is denoted by �∞.

For g, h ∈ �∞ and a ∈ R, g + h is the element (g1 + h1, g2 + h2, � � �) of �∞, i.e., the
tth coordinate of g + h is gt + ht , and ag is the element (ag1, ag2, � � �) of �∞, i.e., the tth
coordinate of ag is agt .

2.2 Linearity

The tth coordinate, gt , of the stream g is often interpreted as the utility of consumption
at stage t, and several classic sets of axioms (see Debreu (1959), Fishburn (1966)) lead to
a presentation of a utility over infinite streams of consumption that is a linear function
of the stream g.

A real-valued function u that is defined on �∞ is additive if for every g, h ∈ �∞, we
have that u(g+h) = u(g)+u(h). As 0+0 = 0, where 0 = (0, 0, � � �), an additive u satisfies
u(0) = 0.

A real-valued function u that is defined on �∞ is linear if it is additive and u(ag) =
au(g) for every g ∈ �∞ and a ∈R.

2.3 The time value of money principle

This principle captures two desirable properties of a function u : �∞ → R that represents
a preference over streams of payoffs.

5Explicitly, one can (i) characterize all linear and monotonic real-valued functions that are defined on
the space of bounded streams of payoffs and satisfy the time-preference principle and the strong Pareto
optimality assumptions, (ii) define a natural topology on the set of these functions, (iii) define (analogously)
the concept of a robust ε-optimizer, and (iv) show that there is a finite MDP for which a robust ε-optimizer
does not exist at any preference for which the payoffs in the distant future are not negligible.
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The first is monotonicity: the higher the stage payoffs are the better. For an additive
u, monotonicity is equivalent to the property that a stream of nonnegative payoffs is at
least as desirable as the stream of zero payoffs.

The second desirable property of u expresses the fact that the earlier the payments
are, the better: a unit payoff in a given period is at least as desirable as its spread over
later periods. This implies the time-preference6 property: u(et ) ≥ u(et+1 ) for all t, where
et is the tth unit vector in �∞.

An additive u satisfies the time-preference property (i.e., u(et ) ≥ u(et+1 ) for all t)
if and only if for any two streams g and h that differ only in finitely many periods of
nonzero payoffs and satisfy

∑s
t=1 gt ≥ ∑s

t=1 ht ∀s, we have u(g) ≥ u(h).
The time value of money principle, which is defined formally below, is a general-

ization of the time-preference property and is a key principle in the characterization of
valuations.

Definition 1. A real-valued function u that is defined on �∞ satisfies the time value
of money principle if, for every two streams g and h such that

∑s
t=1 gt ≥ ∑s

t=1 ht ∀s, we
have u(g) ≥ u(h).

Remark 1. A function u : �∞ → R that satisfies the time value of money principle is
monotonic, i.e., u(g) ≥ u(h) whenever gt ≥ ht ∀t, and satisfies u(et ) ≥ u(et+1 ) for all t.

Remark 2. An additive and monotonic function u : �∞ → R satisfies u(et ) ≥ 0 and∑∞
t=1 u(et ) <∞, and, therefore, u(et ) goes to zero as t goes to infinity.

2.4 Valuations

Definition 2. A real-valued function u that is defined on �∞ is normalized if u(1) = 1,
where 1 = (1, 1, � � �).

Definition 3. A normalized additive real-valued function that is defined on �∞ and
satisfies the time value of money principle is called a valuation.

Recall that two classic examples of valuations are the nth Cesàro average valuation
un and the r-discounted valuation (0 < r ≤ 1) ur . For a stream g = (g1, g2, � � �),

un(g) = g1 + · · · + gn

n
and ur(g) =

∞∑
t=1

r(1 − r )t−1gt .

Another example of a valuation is a linear function L on �∞ such that for every g ∈ �∞,
L(g) ≥ lim infn→∞ gn, where gn = (g1 + g2 + · · · + gn )/n. (Note that as L is linear, the
inequality L(g) ≥ lim infn→∞ gn ∀g implies that for every g ∈ �∞, L(g) ≤ lim supn→∞ gn.)

6For theoretical, empirical, or historical accounts of time-preference properties, see, e.g., von Böehm-
Bawerk (1912), Olson and Bailey (1981), Rothbard (1990), Fishburn and Edwards (1997), Doyle (2013), Galor
and Özak (2016), Falk, Becker, Dohmen, Enke, Huffman, and Sunde (2018) and the references therein.
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2.5 Preferences and valuations

Many writers, e.g., Debreu (1959, 1960), Koopmans (1960), Koopmans, Diamond, and
Williamson (1964), Diamond (1965), Fishburn (1966), Koopmans (1972), Olson and Bai-
ley (1981), Lauwers (1995), Chichilnisky (1996, 1997), Fishburn and Edwards (1997),
Chambers and Echenique (2018), Drugeon and Huy (2021), have studied the implica-
tions of various axioms on preferences over product sets, e.g., on sequences of con-
sumptions or on streams of payoffs, and the representation of the preferences by ordinal
utilities.

In this section, we present a list of axioms (on preferences over bounded streams of
payoffs) such that a preference over bounded streams of payoffs satisfies the axioms if
and only if it is represented by a valuation.

A preference relation � on �∞ satisfies the time value of money principle if g � h

whenever g and h are two streams in �∞ such that
∑s

t=1 gt ≥ ∑s
t=1 ht ∀s; it is additive if

for every α, β ∈R, we have that (g + h) � (α+β)1 ≡ (α+β, α+β, � � �) whenever g� α1
and h� β1; it is nontrivial if there are g, h ∈ �∞ such that g 
 h, i.e., g� h and not h� g;
it is complete if for every g and h, either g � h or h� g; it is transitive if f � h whenever
f � g and g� h.

The next result states properties of a preference relation that are sufficient for it to
be represented by a valuation.

Proposition 1. For every nontrivial preference relation � on �∞ that is complete (alter-
natively, transitive), additive, and satisfies the time value of money principle, and such
that for every stream g there is α ∈ R such that g ∼ α1, i.e., g� α1 and α1 � g, there exists
a unique valuation v such that v represents � as an ordinal utility, i.e., g � h if and only
if v(g) ≥ v(h).

Obviously, if a valuation v represents the preference relation � on �∞, then � is com-
plete, transitive, satisfies the time value of money principle, and for every stream g there
is α ∈R such that g ∼ α1.

2.6 Impatient valuations

This section defines an impatient valuation (Definition 4 below), remarks that an im-
patient valuation is continuous on norm-bounded subsets of �∞ when �∞ is equipped
with the product discrete topology and the range R is equipped with the standard topol-
ogy (Remark 3 below), and notes that in the characterization of impatient valuations,
the time value of money principle can be replaced by the time-preference assumption.

Let 1>n be the stream of payoffs g = (g1, g2, � � �) with gt = 1 ∀t > n and gt = 0 ∀t ≤ n.

Definition 4. An impatient valuation is a valuation u such that

u(1>n ) →n→∞ 0.
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Remark 3. If u is an impatient valuation, then for every g ∈ �∞, u(g1, g2, � � � , gn, 0, 0, � � �)
converges to u(g) as n goes to infinity, where (g1, g2, � � � , gn, 0, 0, � � �) stands for the
stream whose t-coordinate equals gt if t ≤ n and equals 0 if t > n.

Moreover, if u is an impatient valuation, then u(g1, � � � , gn, hn+1, � � �), where g, h ∈ �∞
and (g1, � � � , gn, hn+1, � � �) stands for the stream whose t-coordinate equals gt if t ≤ n and
equals ht if t > n, converges to u(g) as n goes to infinity.7

Moreover, the above convergence is, for each K > 0, uniform in g ∈ �∞ and h with
‖h‖ ≤K.

The first result characterizes all impatient valuations.

Theorem 1. A real-valued function u that is defined on �∞ is an impatient valuation if
and only if there are weights ωt , where t ≥ 1 ranges over the positive integers, with ωt ≥
ωt+1 ≥ 0 and

∑∞
t=1 ωt = 1, such that

u(g) =
∞∑
t=1

ωtgt .

The r-discounted valuation and the nth Cesàro average valuations are impatient val-
uations. The weights representing the r-discounted valuation ur are ωt = r(1 − r )t , and
those representing the kth Cesàro average valuation uk are ωt = 1/k if t ≤ k and ωt = 0
if t > k.

The following result shows that in the characterization of impatient valuations, the
time value of money principle can be replaced by monotonicity and the time-preference
property that u(et ) ≥ u(et+1 ).

Lemma 1. A monotonic, impatient, and additive function u : �∞ → R that satisfies
u(et ) ≥ u(et+1 ) satisfies the time value of money principle.

Therefore, a real-valued function that is defined on �∞ is an impatient valuation if
and only if it is normalized, linear, u(1>n ) →n→∞ 0, and u(et ) ≥ u(et+1 ) for all t.

2.7 Convergence of impatient valuations

Next, we define convergence of a sequence of impatient valuations.

Definition 5. A sequence uk of impatient valuations converges if for every positive in-
teger t, the sequence uk(et ) converges as k→ ∞.

The subspace of �∞ of all converging sequences g ∈ �∞, i.e., the limit of gt exists as t
goes to infinity, is denoted by c. An equivalent definition of convergence of a sequence
of impatient valuations follows.

7This property of a function u : �∞ →R is Fishburn’s convergence axiom (Fishburn (1966)).
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Remark 4. A sequence vk of impatient valuations converges if and only if vk(g) con-
verges for every g ∈ c.

It follows that the limit of a converging sequence of impatient valuations defines a
real-valued function on c. On this restricted domain, the “limit” v satisfies the following
properties of a valuation: linearity, v(1) = 1, and the time value of money principle.

Examples of converging sequences of impatient valuations are the kth Cesàro aver-
age valuations, uk, which converge as k goes to infinity, and the r-discounted valuations,
ur , which converge as r > 0 goes to zero.

The limit v of a sequence of impatient valuations need not coincide with the restric-
tion of an impatient valuation to the domain c. For example, if v is the limit of the kth
Cesàro average valuations uk, then, for every fixed n, the sequence uk(1>n ) converges to
1 as k goes to infinity, and, therefore, v(1>n ) = 1; hence, v is not impatient.

2.8 Patient valuations

Definition 6. A patient valuation is a valuation u such that

u(1>n ) = 1 ∀n≥ 1.

Note that for any valuation u, if for some n ≥ 1, we have u(1>n ) = 1, then for all n ≥ 1,
we have u(1>n ) = 1.

The second result characterizes the patient valuations.

Theorem 2. A real-valued function u that is defined on �∞ is a patient valuation if and
only if it is a linear function on the bounded streams of payoffs such that

lim inf
n→∞ gn ≤ u(g) ≤ lim sup

n→∞
gn. (4)

The next result shows that the lower and upper bounds in Theorem 2 are tight.

Lemma 2. For every bounded g there are patient valuations u and v such that v(g) =
lim infn→∞ gn and u(g) = lim supn→∞ gn.

The next result shows that in the characterization of patient valuations it is impossi-
ble to replace the time value of money principle with the condition that u(et ) ≥ u(et+1 )
for all t.

Lemma 3. There is a normalized linear function w : �∞ →R that is monotonic and satis-
fies w(et ) = 0 ∀t; hence, w satisfies w(et ) ≥ w(et+1 ), but does not satisfy the time value of
money principle.

A patient valuation can be viewed informally as a limit of the kth Cesàro average
valuation as k goes to infinity and of the r-discounted valuations as 0 < r < 1 goes to
zero. This informal view will be made formal at a later stage.
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2.9 Characterization of valuations

There are other possible informal limits of impatient valuations. For example, a
weighted average βv+ (1−β)w, 0 ≤ β< 1, of an impatient valuation w and a patient one
v is the informal limit, as k goes to infinity, of the impatient valuations βuk + (1 −β)w.

The next result characterizes all valuations by showing that the weighted averages of
an impatient valuation and a patient one are all the valuations.

Theorem 3. A real-valued function u that is defined on �∞ is a valuation if and only if it
is a convex combination of an impatient valuation and a patient one.

2.10 Ordinal and cardinal utilities on �∞

This section introduces properties of general real-valued functions that are defined on
the bounded infinite streams of payoffs. It serves to relate the characterization of valua-
tions to other known results.

An ordinal utility on a set X (e.g., �∞) is a real-valued function u that is defined on X .
It represents a preference � on X if for all x, y ∈X , x� y if and only if u(x) ≥ u(y ).

A valuation is, in particular, an ordinal utility on �∞. An ordinal utility u on �∞ is
strong Pareto optimal if for all distinct x, y ∈ �∞, x≥ y =⇒ u(x) > u(y ).

Definition 7. An ordinal utility u on �∞ is impatient if for all g, h ∈ �∞ with u(g) >
u(h), we have that for any positive constant C, there is a period T (g, h, C ) such that for
all T ≥ T (g, h, C ) and g′, h′ ∈ �∞ with ‖g′‖, ‖h′‖ ≤ C,

u
(
g≤T , g′

>T

)
> u

(
h≤T , h′

>T

)
,

where (g′
≤T , g>T ) is the sequence of payoffs whose payoff in period t equals gt if t > T

and equals g′
t if t ≤ T .

Impatience of an ordinal utility u on �∞ is called dictatorship of the present in
Chichilnisky (1996).

Note that an impatient ordinal utility u satisfies u(1>n ) →n→∞ u(0), where 0
is the perpetuity with constant payoff 0. However, an ordinal utility that satisfies
u(1>n ) →n→∞ u(0) = 0 need not be impatient. An impatient valuation is an impatient
ordinal utility since in addition to its impatient property, u(1>n ) →n→∞= 0, it is linear
and monotonic.

Definition 8. A ordinal utility u on �∞ is patient if for all g, h ∈ �∞ with u(g) > u(h),
we have that for any positive constant C there is a period T (g, h, C ) such that for all
T ≥ T (g, h, C ) and g′, h′ ∈ �∞ with ‖g′‖, ‖h′‖ ≤C,

u
(
g′

≤T , g>T

)
> u

(
h′

≤T , h>T

)
.

Patience of an ordinal utility u on �∞ is called dictatorship of the future in Chichil-
nisky (1996).
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Note that a patient ordinal utility u satisfies u(1>n ) →n→∞ u(1). However, an ordinal
utility that satisfies u(1>n ) →n→∞ u(1) = 1 need not be patient. A patient valuation is
a patient ordinal utility since in addition to its patient property, u(1>n ) →n→∞= 1, it is
linear and monotonic.

The monotonic linear functionals on �∞ have the form

u(g) =
∞∑
t=1

wtgt +φ(g),

where wt ≥ 0,
∑∞

t=1 wt < ∞, and φ is a monotonic linear function on �∞ with
lim inft→∞ gt ≤ φ(g) ≤ lim supt→∞ gt . It is strong Pareto optimal if and only if wt > 0
∀t. It is normalized if and only if φ(1) + ∑∞

t=1 wt = 1. It satisfies the time-preference
property if and only if wt ≥ wt+1. It is impatient if and only if φ = 0, and it is patient if
and only if wt = 0 for all t.

A normalized and monotonic linear functional u on �∞, e.g., a valuation, is a cardinal
utility since the difference u(g) − u(h) is the unique number c such that g ∼ h+ c1.

Using the above characterization of monotonic linear functionals on �∞, Chichil-
nisky (1996) characterized all linear ordinal utilities on �∞ that are neither impatient
nor patient, and satisfy the strong Pareto optimality.

The theory of robust optimization that is developed in the next section applies also
to robust optimization of normalized monotonic linear functionals on �∞. However,
the existence of robust optimization for a finite MDP, which is stated in Theorem 5 in
the sequel, does not hold when the possible preferences are represented by normalized
monotonic linear cardinal utilities on �∞.

The above representation of monotonic linear functionals on �∞ can be used to pro-
vide the first step in an alternative proof to our elementary proof of the characterization
of valuations. The outline of the alternative proof follows.

A valuation u is, in particular, a monotonic linear functional on �∞. Hence it has the
representation u(g) = ∑∞

t=1 wtgt +φ(g) as above.
The time-preference property of a valuation (which follows from the time value of

money principle) implies that in a valuation, wt ≥ wt+1, which together with mono-
tonicity implies that

∑∞
t=1 wt < ∞, and the normalization assumption implies that

φ(1) + ∑∞
t=1 wt = 1.

The last step is to show that the time value of money principle implies that φ(g) is
between 1 − ∑∞

t=1 wt times the limit inferior of gn and 1 − ∑∞
t=1 wt times the limit supe-

rior of gn, as n → ∞. This last step is essentially the proof of Theorem (4) that appears in
Section 5.2 in the sequel.

2.11 Valuations that satisfy additional properties

In this section we state several easily derived results that identify the valuations that
satisfy various additional properties/assumptions/postulates that were used in previous
studies of ordinal or cardinal utilities on �∞ or on preferences over product sets.
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2.11.1 Debreu’s independent and essential factors properties Any preference � on �∞
that is defined by a valuation v satisfies Debreu’s independent factor property (Debreu
(1960, Definition 4)), and the ith factor is essential (Debreu (1960, Definition 4)) if and
only if v(ei ) > 0.

2.11.2 Continuity properties

Fact 1. Any preference � that is defined by a valuation v satisfies Diamond’s PSC conti-
nuity axiom (Diamond (1965)), i.e., ∀g ∈ �∞, {g′ : g′ � g} and {g′ : g� g′} are closed in the
sup (norm) topology. It satisfies Diamond’s PPC continuity axiom (Diamond (1965)), i.e.,
∀g ∈ �∞ and ∀C > 0, the sets {g′ : ‖g′‖ ≤ C and g′ � g} and {g′ : ‖g′‖ ≤ C and g � g′} are
closed in the product topology, if and only if v is an impatient valuation.

Fact 2. The valuation v satisfies Fishburn’s convergence axiom (Fishburn (1966, (UC))),
i.e., ∀g, h ∈ �∞, limn→∞ v(g1, � � � , gn, hn+1, hn+2, � � �) = v(g), if and only if v is an impa-
tient valuation.

2.11.3 Diamond’s sensitivity properties Diamond’s sensitivity properties are versions
of monotonicity, which states that more is better. Recall that weak monotonicity of a
valuation is implied by the time value of money principle.

Diamond’s S1 sensitivity property (Diamond (1965)) is composed of two properties:
(S1.1), g′ ≥ g =⇒ g′ � g, and (S1.2), also called weak Pareto, g′

t > gt ∀t =⇒ g′ 
 g, and
Diamond’s S2 sensitivity property (Diamond (1965)), also called strong Pareto, is (g′ ≥
g and g �= g′ ) =⇒ g′ 
 g.

Fact 3. Any preference that is defined by a valuation v satisfies (S1.1). It satisfies (S1.2) if
and only if v is not a patient valuation (equivalently, v(e1 ) > 0), and it satisfies S2 if and
only if v(et ) > 0 ∀t.

2.11.4 Koopmans’ postulates (Koopmans (1960, 1972), Koopmans, Diamond, and Wil-
liamson (1964))

Fact 4. A valuation v satisfies Koopmans’ stationary recursiveness property; i.e., there is
a function V that is defined on R

2 such that

v(g1, g2, � � �) = V
(
g1, v(g2, g3, � � �)

) ∀g = (g1, g2, � � �) ∈ �∞

if and only if v is either a patient valuation (and then V (a, b) = b) or v is the discounted
valuation ur (and then V (a, b) = ra+ (1 − r )b).

Fact 5. A valuation v satisfies Koopmans’ sensitivity postulate (Koopmans (1960, Postu-
late 2)); i.e., there exist x, x′ ∈ R and g ∈ �∞ such that (x, g) 
 (x′, g) if and only if v is not
a patient valuation.

Therefore, we can state the following facts.
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Fact 6. A valuation v satisfies Koopmans’ stationary recursiveness postulate and Koop-
mans’ sensitivity postulate if and only if it is a discounted valuation ur , 0 < r ≤ 1.

Fact 7. Any valuation v satisfies Koopmans’ aggregation by period postulates (Koop-
mans (1960, (P3a) and (P3b))), equivalently, the limited complementarity postulates
(Koopmans, Diamond, and Williamson (1964, (P3a) and (P3b))), i.e., for all x, x′ ∈ R

and for all g, g′ ∈ �∞, we have that v(x, g) ≥ v(x′, g) implies v(x, g′ ) ≥ v(x′, g′ ) and
v(x′, g) ≥ v(x′, g′ ) implies v(x, g) ≥ v(x, g′ ).

Fact 8. A valuation v satisfies Koopmans’ stationarity postulate (Koopmans (1960, Pos-
tulate 4)) (i.e., for some x ∈ R, for all g, g′ ∈ �∞, we have v(x, g) ≥ v(x, g′ ) if and only if
v(g) ≥ v(g′ )) if and only if v is a mixture of a patient valuation and a discounted valua-
tion ur for some 0 < r < 1.

2.11.5 The equal-treatment and time-neutrality properties

Fact 9. A valuation v satisfies Diamond’s equal-treatment property (Diamond (1965,
(C))), also called time neutrality or intergenerational equity or finite anonymity (i.e.,
v(g) = v(πg) for every permutation π of the positive integers with only finitely many t

with π(t ) �= t (where πg is the stream of payoffs whose i-period payoff is gπ(i))) if and only
if v is a patient valuation.

However, the next fact follows from Lemma 3.

Fact 10. A normalized and monotonic linear functional v : �∞ → R that satisfies Dia-
mond’s equal-treatment property need not satisfy the time value of money principle and,
therefore, need not be a patient valuation.

Forges (1986) labels a linear functional v on �∞ as time-neutral if v satisfies (4), i.e.,
if and only if v is a patient valuation (Theorem 2), and Lauwers (1995) proves that a
linear functional u on �∞ is time-neutral if and only if it is monotonic, u(1) = 1, and
u(g) = u(πg) for every permutation π such that limn π(n)/n = 1 (where (πg) is defined
by (πg)t = gπ(t )).

2.11.6 The overtaking and catching-up criteria Fix a real-valued function v :
�∞ → R. We say that v satisfies the overtaking criterion if v(g) > v(h) whenever
lim infT→∞

∑T
t=1(gt − ht ) > 0. We say that v satisfies the catching-up criterion if v(g) ≥

v(h) whenever lim infT→∞
∑T

t=1(gt −ht ) ≥ 0. It satisfies the alternative catching-up crite-
rion if v(g) ≥ v(h) whenever

∑T
t=1(gt − ht ) ≥ 0 for all sufficiently large values of T . Note

that if v satisfies the catching-up criterion, then it satisfies the alternative catching-up
criterion, but not vice versa.

Fact 11. (a) No valuation satisfies the overtaking criterion, (b) a patient valuation satis-
fies the catching-up criterion, and (c) a normalized linear function v : �∞ → R that satis-
fies the alternative catching-up criterion is a patient valuation.
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2.11.7 Wold’s condition In his paper on a continuous function representing a prefer-
ence relation � on the positive orthant of Rn, Wold deduces from a list of plausible ax-
ioms that any y ∈R

n is equivalent to a bundle x on the diagonal, i.e., xi = xj ∀1 ≤ i, j, ≤ n.
Wold’s condition has been widely used to establish numerical representations of prefer-
ences over product sets under a variety of different assumptions (see, e.g., Diamond
(1965), Asheim, Mitra, and Tungodden (2012), Mitra and Ozbek (2013), Banerjee (2014),
Banerjee and Mitra (2018)), and its infinite-dimensional version is our basic assumption
that any bounded stream of payoffs is indifferent to some perpetuity. In particular, any
valuation satisfies Wold’s condition.

2.11.8 The Pareto and intergenerational equity properties A preference relation � on
�∞ satisfies the strong (respectively, weak) Pareto property if and only if for every two
distinct elements g, h ∈ �∞, g ≥ h (respectively, gt > ht ∀t) implies g 
 h, and it satisfies
the intergenerational equity property (also called the finite anonymity or equal treat-
ment or time neutrality property) if and only if g ∼ πg for every finite permutation π

of N.
The characterization of valuations shows the following fact.

Fact 12. There does not exist any valuation v that satisfies the weak Pareto and the inter-
generational equity properties.

Fact 12 follows from the more general result that there does not exist any function
that aggregates an infinite stream of payoffs into a real number satisfying weak Pareto
and intergenerational equity (Basu and Mitra (2003, Theorem 1)).8

2.11.9 Measurability of valuations A Borel-measurable valuation is a valuation v such
that the map v from [0, 1]N (⊂ �∞) to R is measurable when R is equipped with the σ-
algebra of Borel sets and [0, 1]N is equipped with the σ-algebra of weak* Borel sets.

Any impatient valuation is Borel measurable. Moreover, if v is an impatient valua-
tion, then the following statements hold:

(i) The map v is universally measurable on B = [0, 1]N, i.e., if μ is a Borel probability
measure with respect to the product topology on B, then v is μ-measurable.

(ii) It is measure-linear, i.e., if fn : [0, 1] → [0, 1] is a sequence of Borel measurable
functions, then the function f = v((fn )) is measurable with respect to any proba-
bility measure μ on B, and we have the identity∫

fdμ≡
∫

v
(
(fn )

)
dμ= v

((∫
fn dμ

))
.

These two properties of an impatient valuation enable one to use an impatient valu-
ation as a von Neumann–Morgenstern utility over streams of payoffs so that the pref-
erence over distributions of streams of payoffs coincides with the preference over the
deterministic stream of stage payoffs.

8This nonexistence result applies to ordinal utilities on �∞ and not to complete orderings. Svensson
(1980) established the general possibility result (for a social welfare relation) that one can find an ordering
that satisfies the axioms of strong Pareto and intergenerational equity.
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The existence of a Borel-measurable patient valuation that satisfies properties (i)
and (ii) above follows from the Zermelo–Frankel axioms together with the axiom of
choice and, e.g., the continuum hypothesis or Martin’s axiom (Martin and Solovay
(1970)).9

However, “most” patient valuations are not Borel measurable. The nonmeasurability
makes it conceptually difficult to distinguish between two distinct patient valuations.
However, the concept of robust optimization, which is detailed in Section 3, overcomes
this difficulty as the topology on the space of valuations that is used in the theory of
robust optimization “identifies” all patient valuations.

A related difficulty with measurability of preference relations is raised in Zame
(2007).10

3. Robust optimization

This section starts with a subsection on optimization that defines (for a given set of fea-
sible streams of payoffs) the optimal value and an approximate optimizer for a valuation
or a subset of valuations. The subset of valuations can be interpreted as an imprecision
in the specification of a valuation. To define a small imprecision in the specification of
a valuation, we define in Section 3.2 a topology on the set of valuations and state a few
properties of the topology.

Section 3.3 defines a robust ε-optimizer at a valuation as an approximate optimizer
for a sufficiently small neighborhood of the valuation, discusses the relation between
the existence of robust ε-optimizers and the continuity of the optimal value, and states
a minmax type condition that is equivalent to the existence of a robust ε-optimizer for
every ε > 0. Section 3.4 shows that any bounded stream of payoffs has, for any ε > 0 and
an impatient valuation, a robust ε-optimizer.

Section 3.5 remarks that the notion of robustness at a patient valuation provides
a unifying view of earlier studies of robust optimization of a patient decision maker,
and Section 3.6 remarks on the need to consider robust optimization at non-impatient
valuations even if one wishes to confine the analysis to impatient valuations.

Section 3.7 states the implications of a bounded set of streams of payoffs F having a
robust ε-optimizer at every valuation v. In this case, (a) there are finitely many streams
in F such that for each valuation, one of them is a robust ε-optimizer, and (b) if, in
addition, the set F is convex, then there is a continuous function v �→ f v ∈ F that maps
a valuation v to an ε-optimizer at v.

3.1 Optimization

For any valuation v, the maximum (or more precisely, the supremum) of v(g) over all
streams g in F is called the v-optimal value of F and is denoted by v(F ).

9As far as I know, the existence of a Borel-measurable patient valuation is not provable in Zermelo–
Frankel axioms together with the axiom of choice.

10Following the terminology of Zame (2007), a preference relation � on [0, 1]N is ethical if πg� πh when-
ever g� h and π is a finite permutation and g 
 h whenever gt > ht ∀t. Zame (2007, Theorem 2) shows that
any ethical preference over [0, 1]N is not measurable.
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An imprecise specification of a valuation is modeled as a set U of valuations. The
maximum (or, more precisely, the supremum) of u(g) over all streams g in F and valua-
tions u in U is called the U-optimal value of F and is denoted by U(F ).

Fix a nonnegative number ε ≥ 0, a valuation v, a set of valuations U , a set of streams
of payoffs F , and a stream f in F .

The stream f ∈ F is an ε-optimizer for v with respect to F if v(f ) (which is at most the
v-optimal value of F) is within ε of the v-optimal value of F (i.e., v(f ) ≥ v(g) − ε for any
g ∈ F).

The stream f ∈ F is an ε-optimizer for U with respect to F if for any valuation u in
U , we have that u(f ) (which is at most the U-optimal value of F) is within ε of the U-
optimal value of F (i.e., u(f ) ≥ w(g) − ε for any valuation w in U and any stream g in F).
Note that an ε-optimizer for U with respect to F is, for any u ∈ U , an ε-optimizer for u
with respect to F .

It follows that if the set F of streams of payoffs has an ε-optimizer for a set of valua-
tions U , then the oscillation of the u-optimal value of F , where u ranges over all valua-
tions in U , is at most ε.

An imprecision in the specification of a valuation is often expressed by stating that a
fixed valuation v is a good proxy for the “true” valuation. Such an imprecise specification
of the valuation u is modeled as the set of all valuations that are sufficiently similar to the
fixed valuation v. This leads to the following important concept of robust optimization.
This concept depends on the topology on the space of valuations.

3.2 The topology on the set of valuations

To define nearby valuations, as well as the proximity of one valuation to another one, we
need to define a topology on the set V of valuations.

The coarser the topology is, the larger the neighborhoods of a point are. Therefore,
the coarser the topology is, the stronger the positive results on the existence of robust
optimization are. Hence, we define the topology T on the space of valuations as the
coarsest topology in which the most basic real-valued functions v �→ v(et ), t ≥ 1, are
continuous.

This topology is the minimal topology in which the denumerably many functions
v �→ v(et ), t ≥ 1, are continuous.

As the topology T on V is defined by countably many continuous functions, V is
a pseudo-metric space. Namely, there is a function d : V × V → R+, e.g., d(u, v) =
maxt≥1 |v(et ) − u(et )|, such that (i) d(u, v) + d(v, w) ≥ d(u, w) ∀u, v, w ∈ V , (ii) for every
neighborhood U of a valuation u, there is ε > 0 such that any valuation v with d(v, u) < ε

is in U , and (iii) for every valuation v and a positive ε > 0, {u : d(u, v) < ε} ∈ T .
By defining the equivalence relation ≡ on V by u ≡ v if and only if u is 0-close to v,

i.e., d(u, v) = 0 (equivalently, v(et ) = u(et ) ∀t), the space of equivalence classes V / ≡ is a
metrizable space.

Recall that c is the subspace of �∞ that consists of all converging sequences. The
following remark states a few properties of the topological space (V , T ). In particular, it
shows, implicitly, that T is the minimal topology on V in which the functions v �→ v(g)
are continuous for each g ∈ c.
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Remark 5. The topological space (V , T ) is compact.

The impatient valuations are dense in V .

A sequence vk of valuations converges if and only if the sequence vk(et ) converges
∀t.
A sequence vk of valuations converges if and only if the sequence vk(g) converges
∀g ∈ c.

For any two distinct impatient valuations v, u ∈ V , there is a converging sequence
g ∈ c such that v(g) �= u(g).

For any two patient valuations v, u ∈ V and for any converging sequence g ∈ c, we
have v(g) = u(g). Therefore, any neighborhood of a patient valuation includes all
patient valuations.

Note that for any neighborhood W of a patient valuation, there is a positive inte-
ger k0 and a positive 0 < r0 < 1 such that for all k ≥ k0 and 0 < r ≤ r0, the impatient
valuations ur and uk are in W .

3.3 Robust optimization at a valuation

Let F be a set of bounded streams of payoffs and let v be a valuation. Recall that the
v-optimal value of F , v(F ), is defined by v(F ) = supf∈F v(f ) and that the following defi-
nition holds.

Definition 9. An element f ∈ F is a robust ε-optimizer at v with respect to F , ε ≥ 0, if
there is δ > 0 such that

u(f ) ≥ w(F ) − ε for all valuations u, w that are δ-close to v, (5)

and, equivalently, if there is a neighborhood U of v such that f is an ε-optimizer for U
with respect to F , i.e.,

u(f ) ≥ w(F ) − ε ∀u, w ∈U . (6)

The next proposition is a simple corollary of the definition of a robust ε-optimizer at
a valuation v.

Proposition 2. If the set F of feasible streams of bounded payoffs has, for every ε > 0, a
robust ε-optimizer at a valuation v, then the function u �→ u(F ) is continuous at v.

The following example shows that the converse, however, does not hold: there is a
bounded set of streams of payoffs for which the u-optimal value is a constant that does
not have a robust ε-optimizer at any non-impatient valuation v.

Example 1. Let F1 be the set of all streams f = (f1, f2, � � �) with ft ∈ {−1, 1},
lim inft→∞ f t = −1, and lim supt→∞ f t = 1. ♦
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For any valuation v, the v-optimal value of F1, v(F1 ), equals 1; see Section 8.1. There-
fore, the function v �→ v(F1 ) is a constant function and, hence, continuous. However, if
v is a non-impatient valuation, then no f ∈ F1 is a robust ε-optimizer at v with respect
to F1 for some ε > 0.

The next example shows that the existence of a u-optimizer at any valuation u is
insufficient for continuity of the optimal value at a non-impatient valuation.

Example 2. Let F2 be a set that consists of a single stream of payoffs g such that
lim infn→∞ gn + 2ε < lim supn→∞ gn, where ε > 0. ♦

The set F2 consists of a single element. Therefore, it has, for every valuation u, a
(unique) u-optimizer. However, it does not have a robust ε-optimizer at any patient
valuation v. Moreover, if v = (1 −β)w +βu, where u is a patient valuation, β> 0, and w

is a valuation, then F2 does not have a robust βε-optimizer at v.
An important robust optimization property of a set of streams F is that it has a ro-

bust ε-optimizer at v for every ε > 0. The following proposition provides a “minmax =
maxmin”-type condition on a set F that is equivalent to F having a robust ε-optimizer
at v for every ε > 0.

Proposition 3. The set F has a robust ε-optimizer at v for every ε > 0 if and only if

sup
f∈F ,W ∈N (v)

inf
u∈W

u(f ) = inf
W ∈N (v)

sup
h∈F ,u∈W

u(h),

where N (v) denotes the set of all neighborhoods of a valuation v.

3.4 Robust optimization at an impatient valuation

The following proposition shows that a bounded set of streams of payoffs F admits ro-
bust optimization at every impatient valuation v. Hence, robust optimization at an im-
patient valuation is of secondary importance.

Proposition 4. Let F be a bounded set of streams of payoffs and let v be an impatient
valuation. If f is an ε-optimizer for v with respect to F , then, for every ε′ > ε ≥ 0, f is
a robust ε′-optimizer at v with respect to F . Therefore, F has, for every ε > 0 and every
impatient valuation v, a robust ε-optimizer at v.

3.5 Robust optimization at a patient valuation

A neighborhood of a patient valuation contains, for all sufficiently large n and all suffi-
ciently small r, the nth Cesàro average valuation un and the r-discounted valuation ur .
Therefore, if f ∈ F is a robust ε-optimizer at a patient valuation v with respect to F , then,
for all sufficiently large n and all sufficiently small r, f ∈ F is an ε-optimizer for un and
for ur with respect to F , and the oscillation of the ur-optimal and un-optimal values of F
is at most ε.
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Therefore, the notion of robustness at a patient valuation provides a unifying view
of earlier studies of robust optimization of a patient decision maker.

We illustrate the importance of approximate (as opposed to exact) optimizers and
the advantage of studying robust optimizers at a patient valuation by considering the
following example.

Consider the imprecise specification of an impatient valuation that is obtained by
specifying that its averaging weights are sufficiently small, e.g., less than 0.01. This can
be modeled as the set U of all impatient valuations that are within a distance of 0.01
from a patient valuation.

The set F of feasible streams of payoffs consists of the perpetuity 1, with a constant
payoff 1, and the streams f k, k ≥ 0, where the payoff is 2 in the first period and in each
of the first k even periods, and the payoff is 0 in all other periods. Note that 1 is, for every
ε > 0, a robust ε-optimizer at any patient valuation with respect to F .

If our objective is to select the “best” stream in F , given that the impatient valuation’s
weight on each individual period is less than 0.01, then it seems intuitive that we should
select the perpetuity 1. This intuition is justified by the observation that the perpetuity
1, which is not an optimizer for any impatient valuation in U , is a 0.02-optimizer for11 U

(i.e., for any u ∈ U) with respect to F , and (as un ∈ U for n > 100 and un(fk ) →n→∞ 0 <

1 = un(1)) no other stream in F is even a 0.99-optimizer for U with respect to F .

3.6 Robust optimization at a non-impatient valuation

One may argue that impatience is a natural assumption on a preference over streams of
payoffs and that it is, therefore, sufficient to confine the analysis to impatient valuations.

However, to model the imprecision in the specification of the impatient valuation, it
may be advantageous to fix a non-impatient valuation and then consider all the impa-
tient valuations in its neighborhood.

For example, consider a preference of an impatient decision maker who has a pretty
good idea of the “interest rate” between successive points in time, as long as these are
not too distant; however, as regards the very distant future, he cannot tell much beyond
the fact that the interest rates remain nonnegative; furthermore, he wants to give the
very distant future a nonzero weight, say 30%. Such a preference is modeled as an impa-
tient valuation in a sufficiently small neighborhood of a non-impatient valuation that is
a mixture of an impatient valuation with weight 70% and a patient valuation with weight
30%.

Preferences that are defined by valuations that are in a sufficiently small neighbor-
hood of a non-impatient valuation arise naturally in decision problems that involve pol-
lution, global warming, etc.

The advantage of using valuations that are not impatient in the description of a small
imprecision in the specification of an impatient valuation is analogous to the advantage
of using boundary points of a square in the description of a small imprecision in the

11By the time value of money principle, a stream of alternating 0s and 2s is worth at most as much as a
constant stream of 1s. For a valuation u ∈ U , the extra 2 in the first period contributes at most 2/100; hence,
we have u(fk ) ≤ u(1) + 0.02.
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specification of an interior point, e.g., an interior point that is sufficiently close to a fixed
boundary point.

3.7 Global robust optimization

The ability to select a robust ε-optimizer at v (with respect to F) that can be changed
gradually as the valuation v changes corresponds to the existence of a robust ε-
optimizer at v (with respect to F) that varies continuously as a function of the valua-
tion v. Theorem 4 shows that if F has, for any valuation v, a robust ε-optimizer at v

with respect to F , then (a) there are finitely many streams of payoffs such that for each
valuation, one of them is a robust ε-optimizer and (b) there exists a robust ε-optimizer
at v with respect to F that depends continuously on v whenever F is convex.

In this section, we state the implications of a bounded set of streams of payoffs F

having a robust ε-optimizer at every valuation v.

Theorem 4. Assume that the set F of feasible streams of bounded payoffs has a robust
ε-optimizer at every valuation v. Then there is a finite list f 1, f 2, � � � , f k in F such that
the following statements hold:

(a) For every valuation v, there is an index 1 ≤ i ≤ k such that f i is a robust ε-optimizer
at v with respect to F .

(b) There is a continuous function v �→ f v with values in the convex hull of {f 1, � � � , f k}
such that every valuation v has a neighborhood U such that u(f v ) ≥ w(F ) − ε

∀u, w ∈ U ; hence, if f v is in F , then f v is a robust ε-optimizer at v with respect
to F .

The next proposition demonstrates that the condition that F has a robust ε-
optimizer at every valuation v is essential for the conclusions of Theorem 4 and Propo-
sition 2.

Proposition 5. For every non-impatient valuation u and a neighborhood U of u, there
is a bounded set of streams of payoffs F ⊂ c such that the following statements hold:

(a) The optimal value of F is not continuous at u. Moreover, there is a sequence of
impatient valuations vn that converges to u such that the sequence vn(F ) does not
converge.

(b) The optimal value of F is continuous at any valuation v /∈U .

(c) There exists η> 0 such that for every finite subset G ⊂ F , there is an impatient val-
uation w such that w(F ) −η> 1 +η> maxg∈Gw(g).

4. Robust optimization in a Markov decision process

4.1 Markov decision process

In a discrete-time finite Markov decision process (MDP), play proceeds in stages. At
each stage, the process is in one of finitely many states, and the decision maker chooses
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an action from a finite set of feasible actions. The action and the current state jointly
determine the payoff of the decision maker and the probability of the succeeding state.

Before making the choice, the decision maker observes the current state.
A finite MDP is defined by the list  = (S, A, r, p), where S is the finite set of states,

A is the finite set of actions, r : S ×A→R is the payoff function, and p : S ×A→ �(S) is
the transition function. If action a ∈ A is taken at stage t and the state in stage t is s ∈ S,
then the payoff at stage t is r(s, a) and the (conditional) probability distribution of the
state at stage t + 1 is p(s, a).

A pure (respectively, behavioral) policy π of the decision maker specifies the action
(respectively, the probability distribution over actions) at stage t as a function of the
current state and past states and actions. Namely, π :

⋃
t≥1(St ×At−1 ) →A (respectively,

→ �(A)).
Given an initial state s1 = s, a policy π defines a probability distribution Ps

π over the
sequences s1, a1, � � � of states and actions. The expectation with respect to Ps

π is denoted
by Es

π . For simplicity, we use the same symbol Ps
π to denote also the distribution over

the streams of payoffs gt = r(st , at ).
The set Fs of feasible distributions over streams of payoffs, as a function of the initial

state s, is defined by Fs = {Ps
π : π a behavioral policy}. It equals the convex hull of the

sets {Ps
π : π a pure policy}.

The set F̂ s of feasible streams of payoffs, as a function of the initial state s, is the set
of streams of payoffs P̂s

π = gs,π , where gs,π
t = Es

πr(st , at ) and π ranges over all policies in
the finite MDP. It equals the convex hull of the sets {P̂s

π : π a pure policy}.

Theorem 5. Let  = (S, A, r, p) be a finite MDP. For every probability distribution q ∈
�(S), the set

∑
s∈S q(s)F̂ s has, for every ε > 0 and every valuation v, a robust ε-optimizer

at v with respect to
∑

s∈S q(s)F̂ s .

Theorem 5 shows that any finite MDP has, for every ε > 0 and every valuation v, a
robust ε-optimal policy at v. A mixture of two policies in a MDP is a policy in a MDP;
hence, the set of feasible streams of payoffs in a MDP is convex. Therefore, Theorem 4
guarantees the existence, for each ε > 0, of a continuous function that assigns to each
valuation v a policy πv such that πv is a robust ε-optimal policy at v.

In fact, we prove a stronger result. To state this stronger result, we introduce the
following notation. For a valuation u and a stream of payoffs g, we denote by u(g), re-
spectively, by u(g), the infimum, respectively, the supremum, of u′(g) over all valuations
u′ that are 0-close to u.

Note that u(g) need not be measurable in g and, therefore, the expectation of u(g)
with respect to the probability Ps

π (where π is a policy) need not exist. However, u(g) and
u(g) are measurable in g, and, therefore, the expectation of u(g) and u(g) with respect
to the probability Ps

π exists.
As u(P̂s

π ) ≥Es
πu(g) and u(P̂s

π ) ≤Es
πu(g), the next theorem implies Theorem 5.

Theorem 6. For any finite MDP, valuation v, and ε > 0, there is a policy π and δ > 0,
such that for all valuations u and w that are δ-close to v and any policy σ ,

Es
πu(g) ≥Es

σw(g) − ε.
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Theorem 6 along with Theorem 4 shows that for any finite MDP, for every ε > 0,
there is a continuous map v �→ πv from valuations to policies in the MDP such that πv is
a robust von Neumann–Morgenstern ε-optimal policy at v.

The proof of Theorem 6 also proves the following stronger property of a finite MDP.
The normed space of all sequences ω = (ω1, ω2, � � �) with ‖ω‖1 := ∑∞

t=1 |ωt| < ∞ is de-
noted by �1.

Theorem 7. For any finite MDP, ω ∈ �1, patient valuation v, and ε > 0, there is a policy
π and δ > 0, such that for all valuations u and w that are δ-close to v, any policy σ , and
any ω′ ∈ �1 with ‖ω−ω′‖1 < δ,

Es
π

( ∞∑
t=1

ωtgt + u(g)

)
≥Es

σ

( ∞∑
t=1

ω′
tgt +w(g)

)
− ε.

The proof of Theorem 6 demonstrates, implicitly, how to find a robust ε-optimal
policy at a valuation u. We assume without loss of generality that the payoff function
of the MDP takes values in [0, 1]. The first step is to find a stationary uniformly op-
timal policy π and the undiscounted value v of the MDP. The second step is to find a
positive integer tε such that

∑
t=tε

wt < ε/2, where wt := v(et ). The robust ε-optimal
Markov policy σ = (σt )t≥1 plays at stages t ≥ tε according to the stationary uniformly
optimal policy π. The definition of the play of the robust ε-optimal Markov policy
σ at stages t < tε is defined recursively. Set vtε = v, Rt(st , a, vt+1 ) = wtr(st , a) + (1 −∑

s≤t wt )
∑

s′∈S p(st , a)(s′ )vt+1(s′ ), vt = maxa Rt(a, vt+1 ), and that σt(st ) is an action a that
maximizes Rt(st , a, vt+1 ).

5. Proofs of the theorems

Note that an additive function u : �∞ → R that is monotonic is (by classical arguments)
linear. Indeed, by the additivity of u, we have u(−g) = −u(g) and u(αg) = αu(g) for every
rational α. By the additivity and monotonicity of u, for every g, h ∈ �∞, |u(g) − u(h)| ≤
‖g−h‖u(1) and, therefore, u(αg), α ∈ R, is continuous in α; hence, u(αg) = αu(g) ∀α ∈R.

5.1 Proof of Theorem 1

Assume that u is an impatient valuation. Define ωt = u(et ).
By the additivity of u, we have u(0) + u(0) = u(0) and, hence, u(0) = 0. The time

value of money principle of a valuation along with the definition of ωt implies that
u(0) = 0 ≤ωt = u(et ) ≥ u(et+1 ) =ωt+1.

Note that −‖g‖1>n ≤ g − ∑n
t=1 gtet ≤ ‖g‖1>n and, therefore, using the linearity of u,

the definition of ωt , monotonicity (which follows from the time value of money princi-
ple), and the impatience of u, we have∣∣∣∣∣u(g) −

n∑
t=1

ωtgt

∣∣∣∣∣ =
∣∣∣∣∣u(g) − u

(
n∑

t=1

gtet

)∣∣∣∣∣ ≤ u
(‖g‖1>n

) →n→∞ 0.
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Therefore, u(g) = ∑∞
t=1 ωtgt . In particular, using the normalization assumption u(1) =

1, we have u(1) = ∑∞
t=1 ωt = 1. This completes the proof of the “only if” part of the

theorem.
Assume that u(g) = ∑∞

t=1 ωtgt with ωt −ωt+1 ≥ 0 and
∑∞

t=1 ωt = 1. Then u is a nor-
malized linear real-valued function on the space �∞ with u(1>n ) = ∑

t>n ωt →n→∞ 0.
Since u(g) = ∑∞

t=1 ωtgt = ∑∞
t=1(ωt − ωt+1 )tgt , it follows that if gt ≥ ht ∀t, then u(g) ≥

u(h). This completes the proof of the “if” part of the theorem.

5.2 Proof of Theorem 2

Let u be a patient valuation.
Note that if u is a patient valuation, then u(et ) = 0. Indeed, by additivity, we have

u(0) = 0, and by the monotonicity of a valuation, we have u(et ) ≥ 0. As u is a patient
valuation, 1 = u(1) = u(

∑n
t=1 et + 1>n ) = ∑n

t=1 u(et ) + 1. Therefore, u(et ) = 0 ∀t.
For g ∈ �∞, we set g := lim supk→∞ gk and g := lim infk→∞ gk.
Let u be a patient valuation and let g ∈ �∞. Fix ε > 0 and let n be sufficiently large so

that g − ε < gk < g + ε ∀k≥ n.
Let h be defined by h = ∑n

t=1(‖g‖ + ε)et + (g + ε)1>n. Note that for every positive
integer s, we have hs ≥ gs and, therefore, by the time value of money principle, u(h) ≥
u(g).

By the linearity and patience of u, u(h) = (g+ε)u(1) = g+ε. Therefore, u(g) ≤ g+ε.
As this last inequality holds for every ε > 0, we deduce that the right-hand inequality of
(4) holds for every patient valuation u and every g ∈ �∞.

Note that the left-hand inequality of (4) holds for g ∈ �∞ if (and only if) the right-
hand inequality of (4) holds for −g. Indeed, −u(g) = u(−g) ≤ lim supn→∞ −gn =
− lim infn→∞ gn. Therefore, g ≤ u(g) for every g ∈ �∞.

Assume that u is a linear function that is defined on �∞ and satisfies (4). Obviously,
u(1) = 1; hence, u is normalized. It remains to show that u satisfies the time value of
money principle. Assume that g, h ∈ �∞ with

∑n
t=1 gt ≥ ∑n

t=1 ht ∀n. Then g − h ≥ 0 and,
therefore, u(g−h) ≥ 0 by the left-hand side inequality of (4) and, therefore, as u is linear,
u(g) = u(g − h) + u(h) ≥ u(h).

5.3 Proof of Theorem 3

Obviously, a convex combination of valuations is a valuation. This proves the straight-
forward “if” part of the theorem. We proceed to the proof of the “only if” part.

Let u be a valuation and let ωt := u(et ). As u is a valuation, ωt ≥ωt+1 ≥ 0 ∀t.
As u is additive, u(0) = 0. As u is additive, normalized, and monotonic, u(1>n ) is

non-increasing in n and 0 ≤ u(1>n ) ≤ 1.
Let β be the limit of the non-increasing sequence u(1>n ) = u(1) − ∑n

t=1 ωt . As 0 ≤
u(1>n ) = 1 − ∑n

t=1 ωt ≤ u(1) = 1, we have 0 ≤ β = 1 − ∑∞
t=1 ωt ≤ 1.

If β = 0, then u is an impatient valuation.
If β = 1, then u is a patient valuation.
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Assume that 0 < β < 1. Define w : �∞ → R by w(g) := ∑∞
t=1

ωt
1−βgt and define the

function v : �∞ →R by v(g) := (u(g) − ∑∞
t=1 ωtgt )/β.

As ωt ≥ωt+1 ≥ 0 and
∑∞

t=1 ωt = 1 −β, w is an impatient valuation.

Obviously, u = (1 − β)w + βv. Therefore, it remains to prove that v is an impatient

valuation.

As u(1) − ∑∞
t=1 ωt = β, we have v(1) = 1. Therefore, the function v is normalized.

By the linearity of the function g �→ u(g) − ∑∞
t=1 ωtgt , the function v is linear.

To prove that v is a valuation, it remains to prove that v satisfies the time value of

money principle.

By the linearity of v, it suffices to prove that if g ∈ �∞ with
∑s

1 gt ≥ 0 ∀s, then v(g) ≥ 0.

For g ∈ �∞ and an integer n, we denote by g>n the element of �∞ whose tth coordi-

nate equals gt if t > n and equals 0 if t ≤ n.

Assume that
∑s

1 gt ≥ 0 ∀s. Fix ε > 0. As ωt ≥ 0 and
∑∞

t=1 ωt < ∞, there is a positive

integer k such that (kωk + ∑∞
t=k+1 ωt )‖g‖< ε.

As v is linear and v(ek ) = u(ek ) − ωk = 0, v(g) = v(g>k ) = v(
∑k

t=1 gtek + g>k ). Us-

ing the definition of v along with the time value of money principle of u, we have

βv(
∑k

t=1 gtek + g>k ) = u(
∑k

t=1 gtek + g>k ) − (
∑k

t=1 gtωk + ∑∞
t=k+1 gtωt ) ≥ 0 − ε ≥ −ε.

As the inequality βv(g) ≥ −ε holds for every ε > 0 and β > 0, we conclude that

v(g) ≥ 0.

As v(1>n ) = (u(1>n ) − ∑
t>n ωt )/β →n→∞ 1, the valuation v is a patient valuation.

5.4 Proof of Theorem 4

Let F ⊂ �∞ be a set of feasible streams of bounded payoffs and let ε > 0.

Assume that for every valuation v there is a stream gv in F that is a robust ε-optimizer

at v with respect to F . Let Wv ∈ N (v) be a neighborhood of v such that

u
(
gv

) ≥w(F ) − ε ∀u, w ∈Wv. (7)

As the topological space V of all valuations is compact and the set of neighborhoods

Wv covers V (i.e.,
⋃

v∈V Wv = V ), there is a finite subcover. Namely, there are finitely

many distinct valuations v1, � � � , vk such that
⋃k

i=1 Wvi = V . Set f i = gvi and let v be a

valuation. As
⋃k

i=1 Wvi = V , there is an index 1 ≤ i ≤ k such that v ∈Wvi .

By setting v = vi and gv = f i in inequality (7), we deduce that f i is a robust ε-

optimizer at v with respect to F .

This completes the proof of the first part of the theorem.

Let αi : V → R+ be a continuous function such that αi(v) = 0 if and only if v /∈ Wvi .

The existence of such a function αi follows from the fact that V is a pseudo-metrizable

space. (For example, αi(v) can be the distance of v from the complement of Wvi .) Note

that for every v ∈ V , there is 1 ≤ i ≤ k such that v ∈ Wvi and, hence, αi(v) > 0. Therefore,∑k
i=1 αi(v) > 0 ∀v ∈ V .
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Next, we define the stream f v by

f v =

k∑
i=1

αi(v)f i

k∑
i=1

αi(v)

.

As the functions αi are continuous and
∑k

i=1 αi(v) > 0, the function v �→ f v is continu-
ous. Note that f v is in the convex hull of {f 1, � � � , f k}.

Let U be the neighborhood of v consisting of all valuations u such that for all 1 ≤ i ≤
k, αi(u) > 0 if and only if αi(v) > 0. That is, U = ⋂

i:αi(v)>0 Wvi = ⋂
i:u∈Wvi

Wvi .

Let u and w be two valuations in U . For any 1 ≤ i ≤ k such that αi(v) > 0, we have
u(f i ) ≥ w(F ) − ε ∀u, w ∈ Wvi ; hence, u(f i ) ≥ w(F ) − ε ∀u, w ∈ U ⊂ Wvi . As u is a linear
function of the stream of payoffs, we deduce that u(f v ) ≥w(F ) − ε ∀u, w ∈U .

This completes the proof of Theorem 4.

5.5 Proof of Theorem 6

Let = (S, A, r, p) be a discrete-time finite MDP and let v(s), s ∈ S, be the undiscounted
value of the MDP with initial state s.

Set gt = r(st , at ) and gn = 1
n

∑n
t=1 gt .

Let π be a stationary uniformly optimal policy12 of the decision maker in . Thus,13

for every state s ∈ S and every policy η,

Es
π lim inf

n→∞ gn ≥ v(s) ≥Es
η lim sup

n→∞
gn, (8)

and for every ε > 0, there is nε such that for every state s ∈ S, every n ≥ nε, and every
policy η,

ε+Es
πgn ≥ v(s) ≥Es

ηgn − ε. (9)

Fix a valuation u and let ωt = u(et ), t ≥ 1, be the weights of the valuation u.
To prove the theorem, it suffices to define, for every ε > 0, a neighborhood U of u

and a policy τ, such that for every policy η and every u∗ ∈U ,

7ε+ u∗(Ps
τ

) ≥ v(s) ≥ u∗(Ps
η

) − 7ε. (10)

Recall that
∑∞

t=1 ωt ≤ 1. Set ω∞ = 1 − ∑∞
t=1 ωt and let tε be a sufficiently large posi-

tive integer such that (1 + ‖r‖)
∑∞

t=tε
ωt < ε, where ‖r‖ = maxs,a |r(s, a)|.

Fix ε > 0.

12A uniformly optimal policy is a policy π that is optimal in every discounted MDP with a sufficiently
small discount rate. The existence of a stationary uniformly optimal policy in a finite MDP is due to Black-
well (1962).

13Properties (8) and (9) are easily derived from the fact that π is a stationary uniformly optimal policy.
Alternatively, by the construction of an ε-optimal policy in Mertens and Neyman (1981), it follows that the
policy π is, for every ε > 0, an ε-optimal policy in the undiscounted MDP. Alternatively, see Neyman (2003,
part 4) of Proposition 3).
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Let ∗ be the multistage decision problem (N , �, r∗ ), where the set of policies � co-
incides with the set of policies of the MDP and the payoff function r∗, as a function of
the initial state s and the policy σ , is defined by

r∗(s, σ ) =Es
σ

∑
1≤t<tε

ωtgt +
(

1 −
∑

1≤t<tε

ωt

)
Es
σv(stε ).

The payoff r∗ depends only on finitely many periods of the play of . Therefore, ∗
is equivalent to a decision problem with finitely many pure policies; hence, ∗ has an
optimal pure policy.

Let σ be an optimal policy of ∗ with payoff vector v∗. Namely,

r∗(s, σ ) = Es
σ

∑
1≤t<tε

ωtgt +
(

1 −
∑

1≤t<tε

ωt

)
Es
σv(ztε ) = v∗(s), (11)

and for every policy η,

r∗(s, η) =Es
η

∑
1≤t<tε

ωtgt +
(

1 −
∑

1≤t<tε

ωt

)
Es
ηv(stε ) ≤ v∗(s). (12)

Define the policy τ as follows. At stage t < tε, τt(s1, a1, � � � , st ) = σ(s1, a1, � � � , st ) and
at stage t ≥ tε, τt(s1, a1, � � � , stε , � � � , st ) = π(st ).

The definition of the policy τ along inequality (8) implies that

Es
τ lim inf

n→∞ gn ≥Es
τv(stε ) =Es

σv(stε ). (13)

Let U be the set of all valuations u∗ whose valuation weights ω∗
t := u∗(et ) are such

that

‖r‖
tε+nε∑
t=1

∣∣ω∗
t −ωt

∣∣ < ε. (14)

Note that U is a neighborhood of u.
Fix a valuation u∗ ∈ U . By the choice of tε, we have ‖r‖∑tε+nε

t=tε wt < ε, and, therefore,
inequality (14) implies that

tε+nε∑
t=tε

ω∗
t ‖r‖< 2ε. (15)

By equality (11), the definition of τ, the inequality ω∗
t gt ≥ ωtgt − ‖r‖|ω∗

t − ωt|, and
inequality (14), we have

Es
τ

∑
1≤t<tε

ω∗
t gt =Es

σ

∑
1≤t<tε

ω∗
t gt

≥Es
σ

∑
1≤t<tε

ωtgt − ‖r‖
∑

1≤t<tε

∣∣ωt −ω∗
t

∣∣

≥ v∗(s) −
(

1 −
∑

1≤t<tε

ωt

)
Es
σv(stε ) − ε. (16)
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Let t ≥ tε + nε. Then, using inequality (9) and the definition of τ, we have

Eτ(gtε + · · · + gt |Htε ) ≥ (t − tε + 1)
(
v(stε ) − ε

)
, (17)

where Ht is the algebra (of subsets of plays) that is generated by s1, a1, � � � , st .
By summation by parts and using the inequality ω∗

t ≥ω∗
t+1 ∀t ≥ tε, we have

∞∑
t=tε

ω∗
t gt =

∞∑
t=tε

(
ω∗

t −ω∗
t+1

) t∑
s=tε

gs (18)

and
∞∑
t=tε

ω∗
t =

∞∑
t=tε

(
ω∗

t −ω∗
t+1

)
(t − tε + 1). (19)

Therefore, using (18), the triangle inequality, (15), (9), and (19), we have

Eτ

( ∞∑
t=tε

ω∗
t gt

∣∣∣ Htε

)
=Eτ

( ∞∑
t=tε

(
ω∗

t −ω∗
t+1

) t∑
s=tε

gs

∣∣∣ Htε

)

≥Eτ

( ∞∑
t=tε+nε

(
ω∗

t −ω∗
t+1

) t∑
s=tε

gs

∣∣∣ Htε

)
−

tε+nε−1∑
t=tε

ω∗
t ‖r‖

≥
∞∑

t=tε+nε

(
ω∗

t −ω∗
t+1

)
(t − tε + 1)

(
v(stε ) − ε

) − 2ε

≥
∞∑
t=tε

(
ω∗

t −ω∗
t+1

)
(t − tε + 1)

(
v(stε ) − ε

) − 4ε

=
∞∑
t=tε

ω∗
t

(
v(stε ) − ε

) − 4ε ≥
∞∑
t=tε

ω∗
t v(stε ) − 5ε.

By taking the expectation, we deduce that

Es
τ

∞∑
t=tε

ω∗
t gt ≥

∞∑
t=tε

ω∗
t E

s
τv(stε ) − 5ε. (20)

Multiplying inequality (8) by ω∗∞ := 1 − ∑∞
t=1 ω

∗
t and adding inequality (20), we have

Es
τω

∗∞ lim inf
n→∞ gn +Es

τ

∞∑
t=tε

ω∗
t gt ≥

(
ω∗∞ +

∞∑
t=tε

ω∗
t

)
Es
τv(stε ) − 5ε

=
(

1 −
∑

1≤t<tε

ω∗
t

)
Es
τv(stε ) − 5ε

≥
(

1 −
∑

1≤t<tε

ωt

)
Es
τv(stε ) − 6ε. (21)
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By summing inequalities (16) and (21), we have

Es
τω

∗∞ lim inf
n→∞ gn +Es

τ

∞∑
t=1

ω∗
t gt ≥ v∗(s) − 7ε.

For any stream of bounded payoffs g, we have u∗(g) ≥ω∗∞ lim infn→∞ gn +∑∞
t=1 ω

∗
t gt

by the characterization of valuations (Theorems 1, 2, and 3), and the map g �→
ω∗∞ lim infn→∞ gn + ∑∞

t=1 ω
∗
t gt is measurable. Therefore,

u∗(Ps
τ

) ≥Es
τω

∗∞ lim inf
n→∞ gn +Es

τ

∞∑
t=1

ω∗
t gt ≥ v∗(s) − 7ε,

which proves the left-hand inequality of (10).
Fix a policy η of the decision maker. By replacing, in the above equations and in-

equalities, Es
τ by Es

η, = and ≥ by ≤, ε by −ε, and lim inf by lim sup, we have

u∗(Ps
η

) ≤Es
ηω

∗∞ lim sup
n→∞

gn +
∞∑
t=1

ω∗
t g

s,η
t ≤ v∗(s) + 7ε,

which proves the right-hand inequality of (10).
Explicitly, using inequalities (14)and (12), and ω∗

t gt ≤ωtgt + ‖g‖|ω∗
t −ωt|, we have

Es
η

∑
1≤t<tε

ω∗
t gt = Es

η

∑
1≤t<tε

ω∗
t gt ≤ v∗(s) −

(
1 −

∞∑
t=1

ωt

)
Es
ηv(stε ) + ε. (22)

By using (18), the triangle inequality, the right-hand inequality of (8), and (19), we
have

Eη

( ∞∑
t=tε

ω∗
t gt

∣∣∣ Htε

)

=Eη

( ∞∑
t=tε

(
ω∗

t −ω∗
t+1

) t∑
s=tε

gs

∣∣∣ Htε

)

≤Eη

( ∞∑
t=tε+nε

(
ω∗

t −ω∗
t+1

) t∑
s=tε

gs

∣∣∣ Htε

)
+

tε+nε−1∑
t=tε

‖r‖ω∗
t

≤
∞∑

t=tε+nε

(
ω∗

t −ω∗
t+1

)
(t − tε + 1)

(
v(stε ) + ε

) + 2ε

≤
∞∑
t=tε

(
ω∗

t −ω∗
t+1

)
(t − tε + 1)

(
v(stε ) + ε

) + 4ε

=
∞∑
t=tε

ω∗
t

(
v(stε ) + ε

) + ε ≤
∞∑
t=tε

ω∗
t v(stε ) + 5ε.
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By taking the expectation, we deduce that

Es
η

∞∑
t=tε

ω∗
t gt ≤

∞∑
t=tε

ω∗
t E

s
ηv(stε ) + 5ε. (23)

The uniform optimality of π implies that for every policy η,

Es
η lim sup

n→∞
gn ≤Es

ηv(stε ). (24)

Multiplying inequality (24) by ω∗∞ = 1−∑∞
t=1 ω

∗
t and adding inequality (23), we have

Es
ηω

∗∞ lim inf
n→∞ gn +Es

η

∞∑
t=tε

ω∗
t gt ≤

(
ω∗∞ +

∞∑
t=tε

ω∗
t

)
Es
ηv(stε ) + 5ε

=
(

1 −
∑

1≤t<tε

ω∗
t

)
Es
ηv(stε ) + 5ε

≤
(

1 −
∑

1≤t<tε

ωt

)
Es
ηv(stε ) + 6ε. (25)

Inequalities (22) and (25) imply that

u∗(Ps
η

) ≤
(

1 −
∞∑
t=1

ω∗
t

)
lim sup
n→∞

g
s,η
n +

∞∑
t=1

ω∗
t g

s,η
t ≤ v∗(s) + 7ε,

which proves the right-hand inequality of (10).
Any valuation u is a mixture of a patient valuation v and an impatient valuation w. If

w is impatient, then for any policy π we have w(gs,π ) =w(Ps
π ). If v is a patient valuation,

then for any policy π we have v(Ps
π ) ≤ v(gs,π ) ≤ v(Ps

π ). Therefore, for any valuation u we
have u(Ps

π ) ≤ u(gs,π ) ≤ u(Ps
π ).

Therefore, Theorem 6 implies Theorem 5, i.e., that the set {gs,π : π a policy} has, for
every ε > 0 and valuation v, a robust ε-optimizer at v.

Note that the inequalities ωt ≥ωt+1 ≥ 0, 1 ≤ t < tε, were not used in the proof. There-
fore, the proof demonstrates that for every finite MDP and a finite sequence of real num-
bers ω1, � � � , ωN , there is a policy π and neighborhoods Uε, ε > 0, of the patient valua-
tions such that for any policy η,

Es
π

N∑
t=1

ωtgt +Es
π lim inf

t→∞ gt ≥Es
η

N∑
t=1

ωtgt +Es
η lim sup

t→∞
gt ,

and for every u ∈Uε,

Es
π

N∑
t=1

ωtgt +Eπu
(
gs,π) ≥Es

η

N∑
t=1

ωtgt +Eηu
(
gs,π) − ε.
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6. Proofs of the propositions

6.1 Proof of Proposition 3

First, we derive an inequality that does not depend on F having a robust ε-optimizer
at v.

Note that for every neighborhood W of v, infu∈W u(F ) ≤ v(F ) ≤ supu∈W u(F ). There-
fore,

sup
W ∈N (v)

inf
u∈W

u(F ) ≤ v(F ) ≤ inf
W ∈N (v)

sup
u∈W

u(F ).

As

sup
h∈F ,W ∈N (v)

inf
u∈W

u(h) ≤ sup
W ∈N (v)

inf
u∈W

u(F ),

we conclude that

sup
h∈F ,W ∈N (v)

inf
u∈W

u(h) ≤ v(F ) ≤ inf
W ∈N (v)

sup
u∈W

u(F ) = inf
W ∈N (v)

sup
h∈F ,u∈W

u(h).

Second, assume that f is a robust ε-optimizer at v with respect to F . Then there is
a neighborhood U of v such that for every u ∈ U , we have u(f ) ≥ u(F ) − ε and |u(f ) −
v(F )| ≤ ε (and, hence, u(F ) ≤ u(f ) + ε ≤ v(F ) + 2ε). Therefore,

v(F ) − ε ≤ inf
u∈U

u(f ) ≤ sup
h∈F ,W ∈N (v)

inf
u∈W

u(h).

Also,

inf
W ∈N (v)

sup
h∈F ,u∈W

u(h) ≤ sup
h∈F ,u∈U

u(h) ≤ sup
u∈U

u(F ) ≤ v(F ) + 2ε.

Therefore,

v(F ) − ε ≤ sup
h∈F ,W ∈N (v)

inf
u∈W

u(h) ≤ inf
W ∈N (v)

sup
h∈F ,u∈W

u(h) ≤ v(F ) + 2ε.

If F has a robust ε-optimizer at v for every ε > 0, we conclude that

sup
h∈F ,W ∈N (v)

inf
u∈W

u(h) = v(F ) = inf
W ∈N (v)

sup
h∈F ,u∈W

u(h).

In the other direction, assume that

sup
h∈F ,W ∈N (v)

inf
u∈W

u(h) = a = inf
W ∈N (v)

sup
h∈F ,u∈W

u(h).

The left-hand equality implies that for every ε > 0, there are f ∈ F and neighbor-
hoods U ∈ N (v) such that u(f ) ≥ a− ε/2 for every u ∈U . In particular, v(F ) ≥ a− ε/2.

The right-hand equality implies that for every ε > 0, there is a neighborhood W ∈
N (v) such that u(F ) ≤ a+ ε/2 for every u ∈U . In particular, v(F ) ≤ a+ ε/2.
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Therefore, v(F ) = a and for every u ∈U ∩W ,

v(F ) + ε/2 ≥ u(F ) ≥ u(f ) ≥ v(F ) − ε/2 ≥ u(F ) − ε,

and thus f is a robust ε-optimizer at v with respect to F .

6.2 Proof of Proposition 4

Assume that v is an impatient valuation with v(g) = ∑∞
t=1 ωtgt , where ωt ≥ 0 and∑∞

t=1 ωt = 1.
Fix ε > 0 and gε ∈ F with v(gε ) > v(F ) − ε. We will prove that gε is a robust 10ε-

optimizer at v with respect to F .
Fix n sufficiently large such that

∑
t>n ωt‖F‖ < ε, where ‖F‖ = supf∈F ‖f‖. Let W be

the neighborhood of v of all valuations u such that |u(et ) −ωt|‖F‖< ε/n ∀t ≤ n.
Then, for every h ∈ F and u ∈ W , u(h) ≤ u(

∑n
t=1 htet + ‖F‖1>n ) ≤ ∑n

t=1 ωtht + ε +
‖F‖(1 − ∑n

t=1 u(et )) ≤ ∑n
t=1 ωtht + 3ε ≤ v(h) + 4ε. Therefore, u(F ) ≤ v(F ) + 5ε.

Similarly, u(gε ) ≥ u(
∑n

t=1 g
ε
t et − ‖F‖1>n ) ≥ ∑n

t=1 ωtht − ε − ‖F‖(1 − ∑n
t=1 u(et )) ≥∑n

t=1 ωtg
ε
t − 3ε ≥ v(gε ) − 4ε ≥ v(F ) − 5ε.

Therefore, for any u ∈ W , |u(gε ) − v(F )| ≤ 5ε and u(gε ) ≥ v(F ) − 5ε ≥ u(F ) − 10ε.
Therefore, gε is a robust 10ε-optimizer at v with respect to F .

6.3 Proof of Proposition 5

Fix a non-impatient valuation u and a neighborhood U of u.
Let u⊥

1 denote the set of all g ∈ c with ‖g‖ = 1 and u(g) = 0.
For every v ∈ V \U , supg∈u⊥

1
v(g) > 0. For every ε > 0, set Uε = {v ∈ V : supg∈u⊥

1
v(g) >

ε} = ⋃
g∈u⊥

1
{v ∈ V : v(g) > ε}. As a union of open sets, Uε is an open set. Note that Uε′ ⊇

Uε if ε′ < ε and
⋃

ε>0 Uε ⊇ V \U . Therefore, there is ε > 0 such that Uε′ ⊇ V \U for every
ε′ ≤ ε.

Let ε < 1 be sufficiently small so that Uε ⊇ V \U . For every v ∈Uε, there is an element
gv ∈ u⊥

1 and a neighborhood Uε(v) of v such that for every w ∈Uε(v), we have w(gv ) > ε.
As

⋃
v∈Uε

Uε(v) ⊇ V \U , there is a finite list v1, � � � , vk such that
⋃

1≤i≤k Uε(vi ) ⊇ V \U .

Let Fε(u) be the finite set {gv
i

: 1 ≤ i ≤ k}.
Let h ∈ �∞ be a stream of payoffs with ‖h‖ = ε, lim supt→∞ ht = ε, and lim inft→∞ ht =

−ε.
Define ut = u(et ) if t ≥ 1 and u0 = 1 − ∑∞

t=1 ut . As u is a non-impatient valuation,
0 < u0 ≤ 1.

Let nε be sufficiently large so that
∑

t>nε
|ut| < u0ε/4.

Let H be the set of all streams of payoffs hn, n > nε, where hn
t = ht if nε < t ≤ n and

hn
t = 0 otherwise.

Let g be the stream of payoffs where gt = ut/
∑∞

t=0 u
2
t if t ≤ nε and gt = (u0 −∑∞

t=n+1 ut )/
∑∞

t=0 u
2
t if t > nε.

Let F = (g +H ) ∪ (g + Fε(u)).
To prove (a), (b), and (c), it suffices to construct a sequence of impatient valuations

wn that converges to u and a positive number η> 0, such that for any finite subset G of
F , lim supn→∞ supf∈F ωn(f ) >η+ lim supn→∞ maxg∈Gωn(g).
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As u is a non-impatient valuation, u= (1−u0 )w+u0v, where v is a patient valuation.
Therefore, the sequence of impatient valuations wn := (1 − u0 )w + u0γn, where γn(g) =
gn, converges to u.

By the definition of g, it follows that

1 ≥ u(g) =
n∑

t=0

u2
t

/ ∞∑
t=0

u2
t −

( ∞∑
t=n+1

ut

)2/ ∞∑
t=0

u2
t > 1 − u0ε/16.

By the properties of h, there are sequences of integers nm that converge to infinity
such that limm→∞ wnm(g + hnm ) = u(g) + u0ε. Therefore, wnm(g + hnm ) ≥ 1 + u0ε/2 for
all sufficiently large m.

For every n1 ∈ N and f ∈ Fε(u), we have limn→∞ wn(g + hn1 ) = u(g + hn1 ) ≤
1 + u0ε/4 and limn→∞ wn(g + f ) ≤ 1. Therefore, for every finite subset G of F ,
lim supn→∞ maxg∈Gwn(g) ≤ 1 + u0ε/4. This completes the proof of properties (a) and
(c) of the set F .

Let v ∈ Uε. Define α(F , v) := v(g) + maxf∈Fε(u) v(f ). By the definitions of Uε and of
the finite set Fε(u), there is f ∗ ∈ Fε(u) such that α(F , v) = v(g+ f ∗ ) > v(g) +ε ≥ v(g+h)
∀h ∈ H.

Fix 0 <η< v(f ∗ ) − ε. Let U(v) be the set of all valuations w such that |w(g) − v(g)| +
|w(f ) − v(f )| <η for all f ∈ Fε(u). As Fε(u) is a finite subset of c and g is a fixed element
of c, U(v) is a neighborhood of v.

The definitions of U(v) and f ∗ imply that if w ∈U(v), then w(g+f ) ≤ v(g+f ∗ )+η=
α(F , v) +η for all f ∈ Fε(u).

As ‖h‖ ≤ ε for every h ∈ H, the properties of f ∗ and η imply that w(g + h) ≤ w(g) +
ε ≤ v(g) + ε+η< α(F , v) for all h ∈ H.

The definitions of F , U(v), and f ∗ imply that w(F ) ≥ w(g + f ∗ ) ≥ v(g + f ∗ ) − η =
α(F , v) −η.

As F is the union of g +H and g + Fε(u), and g + f ∗ ∈ F , we conclude that α(F , v) −
η≤w(F ) ≤ α(F , v) +η. This completes the proof of property (b) of the set F .

7. Proofs of the lemmas

7.1 Proof of Lemma 1

Assume that g, h ∈ �∞ with
∑s

t=1 ht ≥ ∑s
t=1 gt ∀s and let u : �∞ → R be a monotonic, im-

patient, and additive function that satisfies wt := u(et ) ≥ u(et+1 ). Then, as in the proof of
Theorem 1, u(g) = ∑∞

t=1 wtgt = ∑∞
t=1(wt −wt+1 )tgt ≤ ∑∞

t=1(wt −wt+1 )tht = ∑∞
t=1 htwt =

u(h).

7.2 Proof of Lemma 2

Fix g ∈ �∞. Let U be the one-dimensional subspace of �∞ that is spanned by g. Let ϕ be
the linear functional on U that satisfies ϕ(g) = g; hence, ϕ(θg) = θg ∀θ ∈R.

Define the function p : �∞ → R by the equality p(h) = h. Then p is sublinear (i.e.,
p(g + h) ≤ p(g) +p(h) and p(θg) = θp(g) for all g, h ∈ �∞, θ ∈ R+) and ϕ(h) ≤ p(h) = h

for all h ∈U .
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Therefore, by the Hann–Banach theorem, there is a linear functional u on �∞ such
that u(h) ≤ p(h) = h ∀h ∈ �∞ and u(g) = ϕ(g) = g.

It remains to show thath ≤ u(h) for allh ∈ �∞, which follows fromh = lim infn→∞ hn =
− lim supn→∞ −hn = − lim supn→∞ (−h)n = −p(−h) ≤ −u(−h) = u(h).

Applying the above-proved part to the element −g of �∞ shows that there is a linear
functional v on �∞ such that v(−g) = lim supn→∞ −gn; hence, v(g) = lim infn→∞ gn and
v(−h) ≥ lim infn→∞ −hn; hence, v(h) ≤ h ∀h ∈ �∞ and v(h) = −v(−h) ≥ −(−h) = h.

7.3 Proof of Lemma 3

Define the following two linear operators on �∞. The linear operator O : �∞ → �∞ is
defined by the equality Oh = (h1, h3, h5, � � �), i.e., (Oh)t = h2t−1, and the linear operator
E : �∞ → �∞ is defined by the equality Eh= (h2, h4, h6, � � �), i.e., (Eh)t = h2t .

Let 0 ≤ g ∈ �∞ with g < g. Let u and v be two patient valuations such that u(g) = g

and v(g) = g.
Therefore, u(g) − v(g) < 0 and u(et ) = v(et ) = 0 ∀t.
Define the function w : �∞ → R by w(h) = u(Oh)/2 + u(Eh)/2. We claim that w is

normalized, linear, monotonic, and satisfies w(et ) ≥ w(et+1 ), but w does not satisfy the
time value of money principle.

First, note that u◦O and u◦E are normalized, linear, and monotonic, and, therefore,
so is their average w. As w(et ) = 0 ∀t, 0 =w(et ) ≥w(et+1 ) = 0 ∀t.

Next, define h by Oh = g and Eh = −g, i.e., h = (g1, −g1, g2, −g2, � � �). Note that∑2n
t=1 ht = 0 and that

∑2n−1
t=1 ht = gn ≥ 0. But 2w(h) = u(Oh) + u(Eh) = u(g) − v(g) < 0.

Therefore, w does not satisfy the time value of money principle.

8. Proofs of the properties of the sets in the examples

8.1 Properties of the set F1 in Example 1

Let v be a patient valuation. We will prove14 that v(F1 ) = 1.
Let nk > 0, k ≥ 0, be an increasing sequence of positive integers such that limnk/

nk+1 = 0. Let j be a positive integer and let f i, 0 ≤ i < j, be the stream of payoffs with
f it = 1 if nk < t ≤ nk+1 and k= i mod j, and f it = 0 otherwise.

Note that
∑

0≤i<j f
i = 1>n0 , 1 − 2f i ∈ F1, and v(f i ) ≥ 0. Therefore, as v(

∑
0≤i<j f

i ) =
v(1>n0 ) = 1, there is i such that v(f i ) ≤ 1/j and, hence, v(1 − 2f i ) ≥ 1 − 2/j. Therefore,
v(F1 ) = 1.

Obviously, by the definitions of the nth Cesáro average un and the set F1, for any
f ∈ F1, we have lim infn→∞ un(f ) = lim infn→∞ f n = −1. Therefore, no f ∈ F1 is a robust
1-optimizer at v with respect to F1.

Similarly, if v is a non-impatient valuation, then, by choosing n0 sufficiently large,
we deduce that v(F1 ) = 1, and no f ∈ F1 is a robust ε-optimizer at v with respect to F1

whenever ε < limn→∞ v(1>n ).

14We thank Bruno Ziliotto for the proof.
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8.2 Properties of the set F2 in Example 2

Let u be a non-impatient valuation. Then u = (1 − β)w + βv, where w is an impatient
valuation, v is a patient one, and β> 0.

The impatient valuations (1 −β)w +βun, where un is the nth Cesàro average valua-
tion, converge, as n → ∞, to the valuation u.

Recall that F2 = {f } and lim infn→∞ f n + 2ε = lim infun(f ) + 2ε < lim supn→∞ f n =
lim supun(f ).

Then lim infn→∞((1−β)w+βun )(f ) = (1−β)w(f )+β lim infn→∞ f n < (1−β)w(f )+
β lim supn→∞ f n − 2βε = lim supn→∞((1 − β)w + βun )(f ) − 2βε. Therefore, f is not a
robust βε-optimizer at v with respect to F2.

Appendix A: Impatient robust optimization

Confining the theory of robust optimization to impatient valuations leads to the follow-
ing modification of the definition of a robust optimizer.

For any set U , we denote by U∗ the set of all impatient valuations in U . Let v be a val-
uation and let ε ≥ 0. A small imprecision in the specification of an impatient valuation
is modeled as the set of impatient valuations in a small neighborhood of a valuation v,
and v need not be an impatient valuation.

A stream f in F is an impatient-robust ε-optimizer at v with respect to F if there is a
neighborhood U of v such that

u(f ) ≥w(F ) − ε ∀u, w ∈U∗.

A robust ε-optimizer at v with respect to F is obviously an impatient-robust ε-
optimizer at v with respect to F . We now show that the converse holds as well.

Fix a stream f and a neighborhood U of a valuation v. The infimum of u(f ) over
all u ∈ U∗ equals the infimum of u(f ) over all u ∈ U , and the supremum of w(f ) over
all w ∈ U∗ equals the supremum of w(f ) over all w ∈ U . Therefore, if f is an impatient-
robust ε-optimizer at v with respect to F , then u(f ) ≥w(F ) − ε for all u, w ∈U ; hence, f
is a robust ε-optimizer at v with respect to F .

In the robustness result for a finite MDP, we alluded to stringent robustness con-
ditions that are called for when the decision maker chooses between different feasible
distributions over streams of payoffs. We introduce the formal definition.

Let P be a set of distributions P over streams of payoffs. For every valuation u and
distribution P , we denote by u(P ) the expectation of u(f ) with respect to the distribution
P , and we denote by u(P ) the expectation of u(f ) with respect to the distribution P . The
supremum of u(P ) over all P ∈ P is denoted by u(P ). Let v be a valuation.

A distribution P in P is a robust ε-optimizer at v with respect to P if there is a neigh-
borhood U of v such that

u(P ) ≥ w(P ) − ε ∀u, w ∈U .

A distribution P in P is an impatient-robust ε-optimizer at v with respect to P if there
is a neighborhood U of v such that

u(P ) ≥w(P ) − ε ∀u, w ∈U∗.
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A robust ε-optimizer at v with respect to P is obviously an impatient-robust ε-
optimizer at v with respect to P . The converse need not hold.

For example, let g be a stream of payoffs with lim infn→∞ gn = −1 < lim supn→∞ gn =
1. Let P be the set consisting of the single distribution P with P(g) = 1/2 = P(−g). For
any impatient valuation u, u(P ) = 0 = u(P ). Therefore P is a V ∗-robust ε-optimizer in P .
In particular, for any valuation v, P is an impatient-robust v-ε-optimizer in P . However,
if w is a patient valuation, then w(P ) = 1. Therefore, if v is a patient valuation, P is not a
robust v-ε-optimizer P in P .

Appendix B: The continuous-time theory

In continuous-time theory, a bounded stream of payoffs is a bounded measurable func-
tion [0, ∞) � t �→ gt ∈ R. The linear space of bounded streams of payoffs is denoted by
L∞, and 1≤T is the stream g with gt = 1 if t ≤ T and gt = 0 if t > T . Similarly, one defines
1 and 1>T in analogy to the definitions in the discrete-time case.

A valuation is an additive function v : L∞ → R that is normalized, i.e., v(1) = 1, and
satisfies the time value of money principle: if

∫ T
0 gt dt ≥ ∫ T

0 ht dt ∀T ≥ 0, then v(g) ≥ v(h).
A valuation v is impatient if v(1>T ) →T→∞ 0; it is patient if v(1>T ) = 1 ∀T (equivalently,
v(1>T ) →T→∞ 1).

The characterizations of impatient valuations, patient valuations, and valuations are
analogous to those in the discrete-time case.

A real-valued function u that is defined on L∞ is an impatient valuation if and only
if there is a function [0, ∞) � t → wt ∈ R, with

∫ ∞
0 wt dt = 1, that is non-increasing on

(0, ∞) and such that

u(g) =
∫ ∞

0
gtwt dt.

A real-valued function u that is defined on L∞ is a patient valuation if and only if it
is a linear function on L∞ such that

lim inf
T→∞

1
T

∫ T

0
gt dt ≤ u(g) ≤ lim sup

T→∞
1
T

∫ T

0
gt dt.

A real-valued function u that is defined on L∞ is a valuation if and only if it is a
convex combination of an impatient valuation and a patient one.

Similarly, the analogous results of the other theorems and propositions hold also in
the continuous-time case.

The topology on the valuation in the continuous-time case is the minimal one where
for every g ∈ C, where C consists of all elements g ∈ L∞ such that the limit limt→∞ gt
exists, the function v �→ v(g) is continuous.
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