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Optimal information structures in bilateral trade

Christoph Schottmüller
Department of Economics, University of Cologne

With the goal of maximizing expected gains from trade, this paper analyzes the
jointly optimal information structure and mechanism in a bilateral trade setting.
The difference in gains from trade between the optimal information structure and
first best constitutes the minimal loss due to asymmetric information. With bi-
nary underlying types it is shown that more than 95% of first best can be achieved
while the optimal mechanism without information design may achieve less than
90% of first best. For more general type distributions, the optimal information
structure is a monotone partition of the type space and the optimal mechanism
is deterministic. Necessary conditions for the optimal information structure are
derived and a closed form solution is given for the binary type case.
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1. Introduction

Information asymmetries can lead to inefficiencies in economic transactions compared

to a complete information benchmark; see, for example, Akerlof (1970), Mirrlees (1971),

Baron and Myerson (1982). Myerson and Satterthwaite (1983) established this result

in what is arguably the most basic economic setting: bilateral trade. In their model, a

buyer holds private information about his valuation and a seller holds private informa-

tion about his costs. Myerson and Satterthwaite establish an inefficiency result, but also

derive the trading mechanism that maximizes expected gains from trade (EGT) in their

setting. This paper generalizes their work by analyzing the pair of trading mechanism

and information structure that jointly maximizes EGT.

More precisely, imagine that buyer and seller do not know their own valuation and

costs perfectly, but only have noisy and independent private signals, i.e., estimates, of

these variables. This paper derives the information structure, i.e., a mapping from true

valuation and costs to signals, and the trading mechanism, i.e., a mapping from sig-

nals to trading probability and price, that maximize EGT. EGT under this optimal infor-

mation structure and optimal trading mechanism are consequently the maximal EGT
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that are attainable (by any information structure and trading mechanism) under the as-
sumption that players will eventually hold the information they receive privately. There-
fore, the difference in EGT attained by the solution of this paper and first best consti-
tutes the EGT loss that can be attributed to information asymmetries. Any additional
EGT loss has to be blamed on suboptimal institutions, i.e., either a suboptimal trading
mechanism or a suboptimal information structure.

Limiting the information of a player has several effects.1 Consider, for example, a
buyer whose valuation is either high or low and suppose the information structure is
such that he does not receive any information about which of the two valuations has
realized. This makes it impossible to determine whether his valuation is above or be-
low the costs of the seller and, therefore, less information directly harms efficiency. On
the other hand, less information for a player also reduces his information rent. The
latter effect relaxes the budget balance constraint and will, therefore, increase EGT. Sec-
tion 1.1 illustrates this trade-off using the canonical example with uniformly distributed
costs and valuations. Section 1.2 summarizes the related literature and Section 2 in-
troduces the model formally. Section 3 presents the optimal trading mechanism for a
given finite information structure. The main results of the paper are derived in Section 4
which presents results on jointly optimal (information structure–mechanism) pairs. As
another prominent example, binary signal/type distributions are discussed in Section 5.
Section 6 concludes. Proofs and derivations that are standard in the literature are rele-
gated to the Appendix.

1.1 Example: Uniform type distribution

The canonical example in the bilateral trade literature assumes that the buyer’s valua-
tion (v) and the seller’s cost (c) are uniformly distributed on [0, 1]. First best, i.e., trade
if and only if valuation is above costs, then leads to EGT of 1/6 = 0.16̄. Myerson and
Satterthwaite (1983) showed that the second best trading mechanism implements trade
if and only if v − c ≥ 1/4, which leads to EGT of 9/64 = 0.140625. Consequently, only
84.375% of first best EGT can be achieved without information design due to asymmet-
ric information.

Now consider the following information structure.2 The buyer receives a high (low)
signal if his valuation is above (below) 1/3. The buyer’s expected valuation upon receiv-
ing the high (low) signal is, therefore, 2/3 (1/6). Similarly, the seller receives a low (high)
signal if his cost is below (above) 2/3, leading to expected costs of 1/3 (5/6) in case of
low (high) signal. Consider the trading mechanism that induces trade at price 1/2 if and
only if the buyer receives the high and the seller receives the low signal. Otherwise, no
trade takes place and no transfers are made. Clearly, this trading mechanism is incentive
compatible and satisfies interim participation constraints. Expected gains from trade

1Throughout the paper, I use the setting of Myerson and Satterthwaite (1983), i.e., full information about
types, as a benchmark and think of information design as a deviation from this full information benchmark.
This differs from some other papers in information design that take the no information case, i.e., pooling
all types on the same signal, as the benchmark with which the optimal information structure is compared.

2Gottardi and Mezzetti (2022) also came up with this example contemporaneously.
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Figure 1. Comparison of optimal trading mechanism under different information structures.
Trade above (below) the 45◦ line is first best efficient (inefficient).

are (2/3 − 1/3) ∗ (2/3)2 = 4/27 ≈ 0.148 or 88.9% of first best. This shows that a coars-
ening of the information structure can increase expected gains from trade. The reason
is that less information reduces information rents that are at the heart of Myerson and
Satterthwaite’s inefficiency result.

Table 1 presents results of a numerical analysis in which—using the results of my
paper—the optimal information structure with n buyer and n seller signals was derived.3

For n ≥ 4, the optimization algorithm used less than n types and EGT did not increase
further. Information design closes almost the entire gap to first best in this example as
97.5% of first best EGT can be achieved in the optimal information structure. Figure 1
illustrates the results by comparing which types trade under full information, i.e., the
Myerson–Satterthwaite setup, with the optimal two, three, and four element informa-
tion structures. For instance, Figure 1(c) illustrates that the optimal information struc-
ture induces strictly more types to trade than full information. Some of the additional

3The numerical analysis first creates a grid of possible information structures in the monotone parti-
tional form, which is optimal by Proposition 1, with n buyer and seller signals and maximizes EGT by brute
force on this grid. The optimal information structure from this brute force method is used as a starting
value for an optimization algorithm. The algorithm used is MMA (method of moving asymptotes) as imple-
mented in the NLopt package; see Johnson (2019) and Svanberg (2002). The code is available on the website
of the author (https://schottmueller.github.io/). The usual disclaimer for numerical work applies, i.e., the
solution is not exact and information partitions leading to even higher EGT are, in principle, possible.

https://schottmueller.github.io/
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Table 1. EGT in optimal information structures for uniform type distribution on [0, 1] (numer-
ical analysis, rounded to third digit).

n EGT EGT/EGTfb Buyer Signals Seller Signals

1 0 0 0.5 0.5
2 0.148 0.889 0.166, 0.666 0.333, 0.833
3 0.16 0.967 0.1, 0.4, 0.8 0.2, 0.6, 0.9
4 0.163 0.975 0.0503, 0.248, 0.547, 0.849 0.102, 0.354, 0.677, 0.925

trades are even inefficient (gray area below the 45◦ degree line). However, the addi-
tional efficient trades more than outweigh this negative effect in terms of EGT; see Ta-
ble 1. With three or four partition elements, the optimal trading mechanism is no longer
a fixed price mechanism as different partition elements have distinct nonzero trading
probabilities. It should, furthermore, be noted that the optimal four element informa-
tion partition is asymmetric. A rough intuition for this asymmetry can be gained by con-
sidering the effect of coarsening information on potentially achievable EGT: consider
the effect of moving from full information to no information (i.e., a one element par-
tition) for the buyer. Abstracting from incentive problems, this reduces the potentially
attainable EGT from 1/6 to (1/2 − 1/4)/2 = 1/8 if the seller has full information, but re-
duces potentially attainable EGT from 1/8 to 0 if the seller has no information. The size
of EGT losses from coarsening information depends on the amount of information the
other party has. In particular, the potential EGT loss from coarser information is larger
if the other player has coarse information himself. Section 5.1 discusses how this can
lead to a convexity in the objective function, which then in turn leads to asymmetric
solutions.

1.2 Literature

The setting is similar to that of Myerson and Satterthwaite (1983), who derive the trad-
ing mechanism that maximizes expected gains from trade in a bilateral trade setting
in which (i) trade is voluntary, (ii) the budget has to be balanced, and (iii) the buyer
(seller) privately knows his valuation (costs). Retaining (i) and (ii), this paper modifies
(iii) by determining the optimal (information structure–trading mechanism) pair that
maximizes expected gains from trade. Note that valuations and costs are independently
distributed in Myerson and Satterthwaite (1983). As illustrated by an example in Myer-
son (1981, Section 7) and shown in general by Cremer and McLean (1988), correlated
types would allow extraction of private information at no cost and, thus, allow for full
efficiency. Information design could, therefore, achieve first best if the signal structures
of buyer and seller were correlated.4 Hence, this paper extends the assumption in My-
erson and Satterthwaite (1983) that types are independent by also requiring that signals
of buyer and seller have to be independent.

4For example, informing each player of valuation and cost is one correlated information structure that
eliminates private information as well as inefficiency entirely; see Appendix B.
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This paper is related to a recent literature on information design as surveyed in
Bergemann and Morris (2019). Within this literature the following papers consider bilat-
eral trade settings. Closely related is Gottardi and Mezzetti (2022), who study how a me-
diator can help to maximize expected gains from trade. They develop a “shuttle diplo-
macy” protocol in which a mediator travels back and forth between the two players,
providing more information to the initially uninformed players at each visit. Effectively,
this protocol establishes a particular information structure through which buyer and
seller learn their valuation and cost. Gottardi and Mezzetti show that first best efficiency
can be achieved using their protocol. This is possible because information given to one
player depends in equilibrium on the information given to the other player in earlier
visits. First best cannot be achieved in my setup as I extend the independence assump-
tion of Myerson and Satterthwaite (1983) by assuming independent signals. Gottardi
and Mezzetti (2022) also derive the information structure by maximizing expected gains
from trade if a fixed price mechanism is used.5 In contrast, my paper employs the opti-
mal trading mechanism that typically is not a fixed price mechanism. Yamashita (2018)
covers a setting in which valuations and costs depend on a privately known, idiosyn-
cratic component as well as a random state. He derives the EGT maximizing information
structure with respect to this state under the assumption that signals about the state are
public (there is no information design with respect to private signals). Assuming that
for some values of the state, trade is efficient for all possible realizations of private infor-
mation, he shows that the optimal signal structure fully discloses low states, but pools
high states. In contrast, my paper is concerned with information design with respect to
the private information of the players, i.e., signals are private, and there is no additional
state. Less closely related are papers that determine the consumer surplus maximiz-
ing information structure if a monopolist seller makes a take-it-or-leave-it offer (Roesler
and Szentes, 2017, Condorelli and Szentes, 2020). My paper differs by having a different
objective (consumer surplus vs. expected gains from trade) and private information for
both players.

The work by Bergemann and Pesendorfer (2007) is closest in terms of proof tech-
niques. Their paper derives the information structure with independent signals that
maximizes revenue in independent private value auctions. As in my paper, the optimal
information structure turns out to be a monotone partition of the type space. Apart from
the objective (revenue vs. gains from trade) and the setting (auction vs. bilateral trade),
the main difference is that my paper deals with two-sided asymmetric information and
overlapping type supports, i.e., gains from trade may be positive or negative depending
on the type realization. Consequently, the problem of maximizing expected gains from
trade is nontrivial and the budget balance constraint becomes relevant. In particular,
the mechanism design problem cannot be written as an unconstrained maximization
over virtual valuations.

Finally, Lang (2016, Chapter 4) shows by means of an example that gains from trade
can be higher if players have coarse information in a bilateral trade setting. However, he
does not analyze information structures that maximize expected gains from trade.

5In the uniform example of Section 1.1, the optimal fixed price mechanism derived in Gottardi and
Mezzetti (2022) coincides with the optimal two element partition described in Section 1.1.
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The bilateral trade problem for a given information structure, i.e., without informa-
tion design, was extensively studied in the eighties. Chatterjee and Samuelson (1983)
derived an equilibrium in strictly increasing strategies in the double auction. Myerson
and Satterthwaite (1983) showed that this equilibrium achieves the maximally possible
expected gains from trade in the standard example with uniformly distributed types.
Leininger, Linhart, and Radner (1989) use the same uniform example, but derived two
families of equilibria in the double auction. These achieve expected gains from trade
between zero and the second best level. In particular, the equilibria in step functions
appear on first sight related to the monotone partition information structures derived
in this paper. The crucial difference between those is that in a coarse information struc-
ture all types pooled on the same signal have the same information and, therefore, there
is only one—“average”—incentive compatibility constraint for all those types. In a step
function equilibrium, all pooled types make the same bid, but have different valuations
(respectively, costs). Consequently, there is one incentive compatibility constraint for
each type. Satterthwaite and Williams (1989) analyzed differentiable equilibria in a gen-
eralized double auction in which gains from trade are not split equally in case of trade.
Cramton, Gibbons, and Klemperer (1987) showed that the inefficiency result of Myerson
and Satterthwaite (1983) does not hold if property rights are more evenly distributed,
i.e., if, instead of a seller owning the asset initially, both players are partners owning
some share of the asset.6

2. Model

A single indivisible object may be traded between a buyer and a seller. The buyer’s val-
uation for the object is distributed according to the cumulative distribution function
(cdf) HB with support on a bounded subset of R+. The buyer maximizes a linear utility
function, i.e., he maximizes expected valuation minus expected payments. The seller’s
(opportunity) costs for procuring the object are distributed according to cdf HS on a
bounded subset of R+ and the seller maximizes expected payments minus expected
costs. Gains from trade equal valuation minus costs if trade takes place and are zero
otherwise.7

To make the problem interesting, I assume that the supports of HB and HS are over-
lapping. In particular, I make the slightly stronger assumption that either the supports
of both type distributions are identical intervals or that for each type of one player, there
are strictly positive gains from trade with some type of the other player:8

6Another string of the literature that achieved an efficiency result considered markets with several buyers
and sellers. Wilson (1985) showed that the double auction is efficient if the number of buyers and sellers
is large. Rustichini, Satterthwaite, and Williams (1994) derived rates of convergence to efficiency as the
number of market participants grows, while Kojima and Yamashita (2017) propose a trading mechanism
that is asymptotically efficient in a framework with interdependent valuations.

7Gains from trade equal welfare if (i) a possible budget surplus does not affect welfare and (ii) welfare
denotes the sum of buyer and seller payoff.

8Assuming only overlapping support is sufficient to prove most of the results. However, Lemma 1 and
the results in Section 5.1 make explicit use of the slightly stronger assumption below.
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Assumption 1 (Overlapping support). Either supp(HS ) and supp(HB ) are identical in-
tervals or min supp(HS ) < min supp(HB ) < max supp(HS ) < max supp(HB ).

A signal structure for the buyer F : supp(HB ) → �(�v ) maps each valuation to a prob-
ability distribution over a set of signals �v ⊂ R. As the buyer cares only about his ex-
pected valuation, it is without loss of generality to identify a signal with the expected
valuation it induces. A signal v is thus understood to imply that the buyer has expected
valuation v when receiving this signal. Using this convention (and a slight abuse of no-
tation), a signal structure can be described by a probability distribution over a set of
expected valuations. A signal structure F is then feasible if and only if HB is a mean pre-
serving spread of F . The same applies to the seller: A feasible signal structure for the
seller can be described by a distribution G over expected costs such that HS is a mean
preserving spread of G. A signal structure is then described by a feasible F and a feasible
G. Note that the two distributions F and G are required to be independent, as otherwise
first best could be achieved easily by essentially eliminating the information asymmetry
between buyer and seller; see Appendix B.

Without loss of generality, only incentive compatible direct revelation trading mech-
anisms are considered. A direct revelation trading mechanism assigns to each pair of
signals (v, c) a probability of trade y(v, c) ∈ [0, 1] and a transfer tB(v, c) ∈ R the buyer
pays as well as a transfer tS(v, c) ∈ R the seller receives. Incentive compatibility requires
that each player’s expected utility is maximized by revealing his true signal given that the
other player announces his signal truthfully, i.e.,∫

vy(v, c) − tB(v, c)dG(c) ≥
∫

vy
(
v′, c

) − tB
(
v′, c

)
dG(c)

for all v, v′ ∈ supp(F ), (ICB)∫
tS(v, c) − cy(v, c)dF(v) ≥

∫
tS

(
v, c′) − cy

(
v, c′)dF(v)

for all c, c′ ∈ supp(G). (ICS)

Participation is voluntary at the interim stage: so as to be feasible, a trading mechanism
must not only be incentive compatible, but also yield an expected utility of at least zero
conditional on any signal. Denoting the buyer’s (seller’s) interim utility by U (�), this
can be written as

U(v) =
∫

vy(v, c) − tB(v, c)dG(c) ≥ 0 for all v ∈ supp(F ), (PCB)

�(c) =
∫

tS(v, c) − cy(v, c)dF(v) ≥ 0 for all c ∈ supp(G). (PCS)

No outside source of funding is available and, therefore, the following ex post budget
balance condition has to be satisfied:

tB(v, c) = tS(v, c) for all c ∈ supp(G) and v ∈ supp(F ). (EPBB)
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Note that due to the convention that signals are the corresponding expected values,
EGT equal ∫ ∫

y(v, c)(v − c)dG(c)dF(v).

The objective of this paper is to find the feasible signal structures (F and G) and feasible
trading mechanisms (y, tB, and tS) that maximize expected gains from trade subject to
(EPBB).

In the following, I will refer to an element of the support of HB or HS as type and to
an element of the support of F or G as signal. I will call the buyer’s (seller’s) signal struc-
ture fully informative if F = HB (G = HS) and noisy otherwise. Furthermore, a direct
revelation trading mechanism will be referred to as mechanism, while a pair consisting
of such a mechanism and a signal structure will be called a grand mechanism. I use the
terms “signal structure” and “information structure” interchangeably.

3. Optimal mechanism for finite signal distributions

This section presents the optimal mechanism for a given finite signal structure. The
derivation is relegated to Appendix A, as it is very similar to Myerson and Satterthwaite’s
(1983) well known analysis of the full information case with a continuum of types.9

To fix notation for the finite signal case, let the buyer have signal vi ∈ {v1, � � � , vn} with
probability ωi and let the seller have signal cj ∈ {c1, � � � , cm} with probability γj . Lower
indices are assumed to denote lower signals. EGT equals

n∑
i=1

m∑
j=1

y(vi, cj )(vi − cj )ωiγj , (1)

where y(vi, cj ) is the probability of trade for vi and cj . Combining participation con-
straints, incentive compatibility constraints, and budget balance (see Appendix A), one
can derive the following implementability condition, where Wi = ∑i

k=1 ωk and �j =∑j
k=1 γk:

n∑
i=1

m∑
j=1

y(vi, cj )ωiγj

[
vi − (vi+1 − vi )

1 −Wi

ωi
− cj − (cj − cj−1 )

�j−1

γj

]
≥ 0. (C)

This condition has the usual interpretation in terms of information rents: denote
the expected probability of trade of a buyer with signal vi by YB(vi ) = ∑m

j=1 y(vi, cj )γj
and, for illustration, concentrate on the valuation terms for i, i.e., YB(vi )(ωivi − (vi+1 −
vi )(1 − Wi )). The first part, YB(vi )vi, is the willingness to pay of signal vi, which has
probability ωi. The second part, YB(vi )(vi+1 − vi )(1 −Wi ), is the information rent that vi
generates for higher signals. Namely signal vi+1 can earn a rent that is YB(vi )(vi+1 − vi )
higher than that of vi by misrepresenting as vi. As downward incentive compatibility

9Myerson and Satterthwaite’s approach straightforwardly extends to the problem of finding the optimal
mechanism in a given signal structure with a continuum of signals.
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constraints between adjacent signals are binding, this information rent is generated not
only for vi+1, but for all higher signals, which have a total probability weight of 1 − Wi.
The total expected revenue that can be generated from the buyer equals the probability
weighted sum of willingness to pay of all signals adjusted by the information rents they
generate. The interpretation of the cost terms is similar.

The maximization problem of this paper can now be restated as maximizing EGT
subject to (C) and standard monotonicity constraints on YS and YB that are necessary
for incentive compatibility (see Lemma 10 in Appendix A).10 Neglecting these mono-
tonicity constraints, the mechanism design problem becomes maximizing (1) subject to
(C). Hence, the optimal trading decision y must maximize the Lagrangian

L(y ) =
n∑

i=1

m∑
j=1

y(vi, cj )ωiγj

[
(1 + λ)vi − λ(vi+1 − vi )

1 −Wi

ωi

− (1 + λ)cj − λ(cj − cj−1 )
�j−1

γj

]
, (2)

where λ ≥ 0 is the Lagrange parameter of (C). As the Lagrangian is linear in y, the optimal
decision rule is

y∗(vi, cj )

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

= 1 if vi − (vi+1 − vi )
λ

1 + λ

1 −Wi

ωi
> cj + (cj − cj−1 )

λ

1 + λ

�j−1

γj
,

∈ [0, 1] if vi − (vi+1 − vi )
λ

1 + λ

1 −Wi

ωi
= cj + (cj − cj−1 )

λ

1 + λ

�j−1

γj
,

= 0 else.

(3)

This leaves us with two questions. First, is it possible that (C) is nonbinding? Sec-
ond, will y∗ satisfy the neglected monotonicity conditions? Since the signal distribution
will be chosen so as to maximize EGT, it is unclear whether the usual monotone hazard
rate conditions apply to W and �. In the following discussion, it will be shown that it
is typically not optimal to choose the signal structure such that the monotonicity con-
straint is binding (in this case, information is too fine) or such that (C) is slack (in this
case, information is too coarse).

4. Optimal grand mechanism

For most of this section, I take the number of signals as given. That is, it is assumed
that the support of F contains no more than n signals and the support of G contains no
more than m signals.11 This restriction is useful for several reasons. First, it simplifies
notation and exposition. Second, two results will be shown at a later point in the pa-
per that emphasize the relevance of finite signal structures. More precisely, finite signal

10The term YS is defined analogously to YB as YS(cj ) = ∑n
i=1 y(vi , cj ).

11For notational convenience, I will then state and prove the results, assuming that there are n (m) dis-
tinct buyer (seller) signals and all these signals have strictly positive probability, i.e., ωi > 0 and γj > 0 for
all i and j. If it is optimal to use only n∗ < n (m∗ <m) signals though n (m) signals are allowed, the results
obviously still hold, as the solution is equivalent to the solution with n∗ (m∗) in place of n (m).
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structures turn out to be optimal if at least one of the two true type distributions HB and
HS has finite support. Even if this is not the case, it will be shown that finite signal struc-
tures achieve EGT levels arbitrarily close to the levels infinite signal structures achieve.
In the following, n and m will be assumed to be at least 2. The justification for this is the
following lemma which establishes that pooling all types on one signal is never optimal.

Lemma 1. The support of the signal distribution in the EGT maximizing grand mecha-
nism contains at least two elements for each player.

Given the restriction to no more than n (m) buyer (seller) signals, I will show three
main properties of the optimal grand mechanism: decision monotonicity, monotone
partition structure, and deterministic mechanism. Section 4.2 will then add a fourth
property that holds if the type space is not too coarse: (C) binds.

Decision monotonicity refers to the standard monotonicity conditions for incentive
compatibility: YS has to be decreasing and YB has to be increasing. Note that λ= 0 in (3)
would imply that y∗ is the first mechanism, and clearly this leads to monotone YS and
YB (though not necessarily strictly monotone). So as to verify that neglecting the mono-
tonicity constraints for YB and YS in the derivation of (3) was immaterial provided that
the signal structure is optimal, it is, therefore, sufficient to concentrate on the case λ 
= 0;
that is, the case where (C) binds. Suppose now the buyer’s monotonicity constraint was
binding, that is, YB(vi ) = YB(vi+1 ) for some i ∈ {1, � � � , n− 1}. The proof of the following
lemma shows that “merging the two signals into one” would not affect EGT, but would
strictly relax the binding constraint (C), thereby contradicting optimality of the grand
mechanism. The intuition is that merging the signals leads to coarser information and,
therefore, to lower information rents. However, there is no downside in terms of EGT, as
YB(vi ) = YB(vi+1 ) implies that the additional information present in the original signal
structure was not used to determine the efficient allocation.12

Lemma 2. If (C) binds in the EGT maximizing grand mechanism with at most n buyer
signals and m seller signals, then YS is strictly decreasing and YB is strictly increasing.

If (C) does not bind in the EGT maximizing grand mechanism with at most n buyer
signals and m seller signals, then either YS is strictly decreasing and YB is strictly increas-
ing or there exists ñ≤ n and m̃≤m such that (i) ñ+ m̃ < n+m and (ii) EGT in the optimal
grand mechanism with ñ (m̃) buyer (seller) signals are no less than in the optimal grand
mechanism with n (m) buyer (seller) signals.

Lemma 2 establishes that YB and YS are strictly monotone if (C) binds. If (C) does
not bind, then there exists a coarser information structure that achieves the same EGT
and in which YB and YS are strictly monotone. In fact, the proof shows that this coarser
information structure can be obtained by simply “merging signals,” i.e., by assigning all
signals vi that have the same YB(vi ) to the same new signal ṽ.

12The lemma is stated and proven for a finite number of signals. However, this is for notational con-
venience only and the result holds generally, as “merging signals” for which the monotonicity constraint
binds generally relaxes (C) without affecting EGT.
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The previous lemma established that the optimal mechanism is indeed character-
ized by (3) and neglecting the monotonicity constraints in its derivation is immaterial,
as YB and YS will be strictly monotone (or there exists another, coarser, information
structure that is also optimal and in which YB and YS are strictly monotone). It is now
worthwhile to return to (3). This optimality condition can be stated in terms of virtual
valuations. That is, a buyer with signal vi trades with a seller of signal cj if his virtual
valuation exceeds that of the seller. The virtual valuations are defined as

VVB(vi ) = vi − (vi+1 − vi )
λ

1 + λ

1 −Wi

wi
,

VVS(vj ) = cj + (cj − cj−1 )
λ

1 + λ

�j−1

γj
.

Strict monotonicity of YB implies that higher buyer signals have a higher probability to
trade. Given the virtual valuation structure of the optimal mechanism, this implies that
higher buyer signals must be associated with higher virtual valuations in the optimal
grand mechanism. It also implies that between the virtual valuation of any two buyer
signals, there has to be the virtual valuation of a seller signal. The reason is that oth-
erwise the two buyer signals would have the same probability of trade, i.e., the mono-
tonicity constraint would hold with equality and it would be better to merge the signals.
Hence, seller and buyer signals will alternate in terms of virtual valuations.

The main result of this paper establishes that the optimal information structure is
a monotone partition of the type space. That is, each buyer signal vi corresponds to a
contiguous interval of types and the same is true for each seller signal cj .13

Proposition 1. The information structure in the EGT maximizing grand mechanism
with at most n buyer and m seller signals is a monotone partition (up to a measure zero
set).

The main idea behind the proof of Proposition 1 is that an information structure that
is not a monotone partition allows for both “mixing” and “demixing.” Mixing refers here
to the process of making an information structure coarser by moving two signals closer
together. That is, if F assigns probabilities ωi to vi and ωi+1 to vi+1, there is always a
feasible information structure that uses the same probabilities but uses signals v′

i > vi
and v′

i+1 < vi+1 instead of vi and vi+1. This can be achieved by sending the types that
receive signal vi (vi+1) under F with some small probability the signal v′

i+1 (v′
i) instead

(and v′
i (v′

i+1) otherwise). If F is not a monotone partition, the opposite is possible as
well: There is a feasible information structure that differs from F only by moving the
signals vi and vi+1 slightly apart from one another. The proof shows that EGT can always

13If HB is discrete, a monotone partition can assign a given type that has positive probability mass with
some probability to vi and some probability to vi+1. It is then easier to think of a partition of [0, 1] where
each signal vi corresponds to an interval (ai, bi] ⊂ [0, 1] such that (i) signal vi has probability mass bi −
ai in F and (ii) types in H−1

B ((ai, bi]) receive signal vi , where H−1
B is the generalized inverse of HB . The

optimal information structure with no more than n elements can, therefore, be completely described by
n− 1 cutoffs.
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be improved by one of the two operations if both mixing and demixing, are possible. It
follows that the optimal information structure has to be a monotone partition where
further demixing is impossible.

The previous results established properties of the information structure in the op-
timal grand mechanism. The following result establishes a property of the mechanism
(3) in the optimal grand mechanism. In particular, it establishes that the mechanism is
deterministic, i.e., that y(vi, cj ) is either 0 or 1 for all signal pairs (vi, cj ) in the support
of the optimal information structure. Note that the optimal mechanism for generic dis-
crete information structures is not deterministic, i.e., y(vi, cj ) ∈ (0, 1) for typically one
signal pair, because generically (C) does not hold with equality in deterministic mecha-
nisms. In fact, the only reason for a stochastic mechanism is to relax (C) sufficiently so
that (C) is just not violated. The following result demonstrates that information design
is a more efficient way to achieve the goal of relaxing this constraint.

Proposition 2. Assume that a grand mechanism with a fully informative signal struc-
ture cannot achieve first best EGT.

In an optimal grand mechanism with at most n (m) buyer (seller) signals, the mecha-
nism is deterministic if (C) binds.

If (C) does not bind, then there exists at least one optimal grand mechanism in which
the mechanism is deterministic.

Proposition 2 establishes that it is without loss of generality to focus on determin-
istic mechanisms and, consequently, only such mechanisms will be considered in the
remainder of the paper.

To illustrate Proposition 2, consider the following example with n = m = 2. Sup-
pose y(v1, c1 ) = 1/2 while y(v2, c1 ) = y(v2, c2 ) = 1 and y(v1, c2 ) = 0.14 This leads to
information rents of ω2γ1(v2 − v1 )/2 for the buyer and γ1ω2(c2 − c1 ) for the seller.
Now consider an alternative information structure in which half of the c1 signals still
receive the signal c1, but the other half is merged with signal c2 to the new signal
c̃2 = (γ1c1/2 + γ2c2 )/(γ1/2 + γ2 ). Also adjust the mechanism such that y(v1, c1 ) = 1
(while c̃2 trades only with signal v2). As the underlying types have the same trading
probabilities as before, this change of the grand mechanism does not affect EGT. How-
ever, information rents in the new structure are now ω2

γ1
2 (v2 − v1 ) for the buyer and

γ1
2 ω2(c̃2 − c1 ) for the seller. Hence, information rents for the seller are lower and (C) is

strictly relaxed. Consequently, the initial situation cannot occur in the optimal grand
mechanism if (C) binds.

A direct implication of Proposition 2 is that, generically, a fully informative signal
structure is not optimal if (i) the type set is finite and (ii) first best is not implementable.
That is, the second best solution will typically not provide full information, but make
use of information design. To see this, suppose to the contrary that there was an opti-
mal grand mechanism with a fully informative information structure although first best
is not implementable. As first best is not implementable, (C) has to bind. With a discrete

14This is, for instance, the optimal mechanism if c1 = 0, c2 = 0.9, v1 = 0.1, v2 = 1, γ1 = 0.25, and ω2 = 0.5,
where (C) binds with λ= 1/8.
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signal distribution and binding (C), the optimal trading mechanism is generically non-
deterministic as one trading probability is just lowered sufficiently such that (C) holds
with equality. But by Proposition 2, the mechanism in the optimal grand mechanism is
deterministic, which contradicts that full information is optimal.

4.1 Necessary conditions for the optimal grand mechanism

This subsection derives a set of first order conditions that are satisfied by the informa-
tion structure in the optimal grand mechanism with n buyer and m seller signals. To
simplify notation, suppose that HB and HS have densities hB and hS that are strictly
positive on a bounded and convex support. Monotonicity of the optimal information
structure implies then that the optimal information structure can be represented by cut-
off values (k0, k1, � � � , kn ) for the buyer where k0 (kn) is the infimum (supremum) of the
support of HB and ωi =HB(ki ) −HB(ki−1 ) and vi =

∫ ki
ki−1

vdHB(v)/ωi. The seller’s infor-
mation structure can be represented by a set of cutoff values (g0, g1, � � � , gm ) such that
g0 (gm) is the infimum (supremum) of the support of HS , and γj = HS(gj ) − HS(gj−1 )
and cj = ∫ gj

gj−1
c dHS(c)/γj .

Note that the optimal cutoffs have to maximize the Lagrangian (2). That is, both
∂L/∂ki = 0 and ∂L/∂gi = 0 at the optimum. This gives a set of necessary conditions for
the cutoffs k1, � � � , kn−1 and g1, � � � , gm−1. Namely,

∂L
∂ki

/hB(ki )

= YB(vi )

[
(1 + λ)ki − λ

(
vi+1 − ki

ωi+1
− ki − vi

ωi

)
(1 −Wi ) + λ(vi+1 − vi )

]

+YB(vi+1 )

[
−(1 + λ)ki + λ

vi+1 − ki

ωi+1
(1 −Wi+1 )

]

+YB(vi−1 )

[
−λ

ki − vi
ωi

(1 −Wi−1 )

]

+
m∑
j=1

[
y(vi, cj ) − y(vi+1, cj )

][−(1 + λ)cjγj − λ(cj − cj−1�j−1
] = 0, (4)

∂L
∂gj

/hS(gj )

= YS(cj )

(
−(1 + λ)gj − λ

gj − cj

γj
�j−1

)
+YS(cj+2 )

[
λ
cj+1 − gj

γj+1
�j+1

]

+YS(cj+1 )

[
−(1 + λ)gj − λ

(
cj+1 − gj

γj+1
− gj − cj

γj

)
�j − λ(cj+1 − cj )

]

+
n∑

i=1

[
y(vi, cj ) − y(vi, cj+1 )

][
(1 + λ)ωivi − λ(vi+1 − vi )(1 −Wi )

] = 0. (5)

One can substitute for wi, vi, Wi, ci, γi, and �i the values above so as to express the
conditions in terms of ki and gi. Nevertheless, these first order conditions may, at first
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sight, not look useful as they still contain λ and YB as well as YS . However, note that
(C) gives another equation that allows one to solve for λ. While this still leaves YB and
YS as unknowns, the previous results—in particular, Lemma 2 and Proposition 2—allow
one to limit the set of possible YB and YS in the optimal grand mechanism to very few
candidate solutions: As YB is strictly increasing, signal vi+1 will trade with more seller
signals than signal vi. As YS is strictly decreasing, vi+1 will, in fact, trade with one more
seller signal than vi. By Proposition 2, this implies that Y (vi+1 ) = Y (vi ) + γj , where cj is
the one additional signal with which vi+1 trades. Following this logic, it is clear that only
very few options have to be considered. For the buyer, the main question is whether
signal v1 never trades or trades with seller signal c1. Depending on this, YB(v1 ) = 0 or
YB(v1 ) = γ1. In the first case, YB(v2 ) = γ1, while in the second case, YB(v2 ) = γ1 + γ2.
Proceeding inductively, YB can be fully constructed in each of the two cases. Note that
this procedure also constructs YS . Hence, one is left with two options for YB and YS , and
the system of necessary first order conditions can be solved for both cases. Comparing
maximal EGT in all solutions of the set of first order conditions yields the optimal grand
mechanism with n (m) buyer (seller) signals.

As an example, consider the optimal grand mechanism if HB and HS are the uni-
form distribution on [0, 1] and n = m = 2. This implies that there is only one interior
cutoff k (g) for the buyer (seller), and v1 = k/2, v2 = (1 + k)/2, c1 = g/2, c2 = (1 + g)/2,
ω1 = k = 1 − ω2, and γ1 = g = 1 − γ2. Furthermore, y(v1, c2 ) = 0, as otherwise both
players effectively have only one signal (and always trade). There are two options for
y(v1, c1 ), which can be either 1 or 0. The case y(v1, c1 ) = 1 is analyzed first. Strict
monotonicity implies that y(v2, c1 ) = 1 and the assumption that there are two distinct
buyer signals (and YB is strictly monotone) then implies y(v2, c2 ) = 1. Consequently,
YB(v1 ) = g, YB(v2 ) = 1, YS(c1 ) = 1, and YS(c2 ) = 1 − k. Plugging in these values yields,
after canceling terms,

λg − (1 + λ)k(1 − g) + 1 + λ

2

(
1 − g2) = 0

for (4) and

−(1 + λ)gk− (1 − k)λ+ 1 + λ

2
k2 = 0

for (5). Constraint (C) can be written as

2gk− 2g + k− k2 + gk2 − kg2 ≥ 0 with = if λ 
= 0.

Consequently, one obtains three equations in the three variables λ, g, and k. The only
feasible solution for λ 
= 0, in the sense of k, g ∈ (0, 1), of this system of equations is
k = 0.618034 and g = 0.381966, which leads to EGT equal to 0.1459.15 For λ = 0, one
obtains g = 1/3 and k = 2/3. While this information structure satisfies (C), it only yields
EGT of 1/9 < 0.1459 and is, therefore, not optimal.

15More precisely, the solution is λ= (2
√

5 − 5)/5, and g = (6 − 2
√

5)/4 and k= (2
√

5 − 2)/4.
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The second case is analyzed similarly and corresponds to y(v1, c1 ) = 0, which clearly
implies y(v1, c2 ) = 0. By the strict monotonicity of YS and Proposition 2, this implies
y(v2, c1 ) = 1 and y(v2, c2 ) = 0. Note that this mechanism can be implemented with a
fixed price mechanism and, consequently, (C) will not bind. Equations (4) and (5) be-
come (after canceling terms)

k = g/2, g = (1 + k)/2,

which have the unique solutions g = 2/3 and k = 1/3. EGT in this grand mechanism
equal 4/27 = 0.148 > 0.1459 and, therefore, the optimal grand mechanism with n = m=
2 equals v1 = 1/6, v2 = 2/3, ω1 = 1/3, ω2 = 2/3, c1 = 1/3, c2 = 5/6, γ1 = 2/3, and γ2 = 1/3.

4.2 Binding constraint (C)

It remains to clarify whether constraint (C) typically binds in the optimal information
structure. As already pointed out in Myerson and Satterthwaite (1983), first best may be
achievable (with full information) if the type space is coarse and in this case (C) is not
binding. I present an example for this and another example in which (C) is slack due
to the restriction to a coarse signal space. Eventually, I argue that (C) optimally binds if
both type and signal space are not too coarse.

Example 1. Let seller and buyer types be binary. More precisely, let HB (HS) assign
probability 1/2 to each element in {2, 4} (respectively, {1, 3}). Consider the fully in-
formative signal structure and note that trade if and only if valuation is above cost
is implementable with the following transfers: t(2, 1) = 2, t(4, 3) = 3, t(2, 3) = 0, and
t(4, 1) = 2.5. It is straightforward to see that participation constraints are satisfied and
incentive compatibility constraints are slack, i.e., (C) holds with inequality. ♦

The main problem considered in this section was the problem of finding the optimal
signal structure with no more than n (m) signals for the buyer (seller). As a next step,
I want to show that in the optimal information structure of this problem, (C) may not
bind even if the type space is a continuum, the signal structure is not fully informative,
and first best cannot be achieved.

Example 2. Let HS and HB be uniform distributions on [0, 1]. The optimal information
structure for n = m = 2 was derived in Section 4.1. As trade takes place only between v2

and c1 < v2, it is clear that (C) does not bind. ♦

The main result of this subsection states that whenever a situation as in Example 2
occurs, increasing the number of signals will result in strictly higher EGT. As Example 1
shows, this result cannot hold if the type space is coarse and, therefore, the following
lemma is derived under the assumption that HB and HS have densities and their sup-
ports are identical intervals.
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Lemma 3. Let the support of HB and HS be identical intervals and let HB and HS be
continuous. If (C) does not hold with equality in the optimal grand mechanism with at
most n (m) buyer (seller) signals, then strictly higher EGT are obtained in the optimal
grand mechanism with at most n+ 1 (m+ 1) buyer (seller) signals.

The idea behind Lemma 3 is simple: If (C) is slack, it is possible to introduce another
cutoff close to the boundary of the support for one of the two players. This allows one
either to enable additional efficient trades or to avoid inefficient trades by the assump-
tion that type spaces are identical intervals. Because (C) was initially slack, it will remain
slack if the newly created signal is close enough to the support boundary (and, therefore,
has very low probability). Lemma 3, therefore, illustrates that the information structure
is typically too coarse if (C) does not bind.

4.3 Optimality of finite signal structures

So far, I restricted the information structure to contain no more than n (m) buyer (seller)
types. This subsection contains two justifications for this simplifying approach.

First, the information structure in the optimal grand mechanism can in general be
approximated arbitrarily closely by a finite monotone partition of the type space. The
following lemma formalizes this approximation idea in a slightly more general manner
by showing that whenever some grand mechanism achieves a certain EGT level EGT,
there is a grand mechanism with a finite signal structure that achieves an EGT level ar-
bitrarily closely to EGT.

Lemma 4. Take any information structure (F , G) and denote EGT in this information
structure (using the optimal mechanism given (F , G)) by EGT. Then for any ε > 0, there
exists an information structure (Fn, Gn ) with finite support such that EGT under (Fn, Gn )
(using the optimal mechanism given (Fn, Gn )) are at least EGT − ε.

Lemma 4 implies that the supremum of EGT attainable by grand mechanisms with
finite information structures equals the supremum of EGT attainable by any grand
mechanism. Admittedly, I did not show that there is a grand mechanism attaining this
supremum, i.e., the existence of an optimal grand mechanism is unclear.

In the following discussion, I show that in an important subclass of problems, exis-
tence of an optimal grand mechanism is guaranteed and that the information structure
in the optimal grand mechanism is finite. This is then also the second justification for
focusing on finite information structures.

Proposition 1 implies that finite type distributions HB and/or HS lead to finite EGT
maximizing information structures: a monotone partition of a type distribution with
k elements in its support could lead to a signal structure with at most 2k − 1 elements.
Strict monotonicity of YB and YS then implies that also the other player’s signal distribu-
tion has no more than 2k elements in its support. That is, the optimal grand mechanism
with at most n (m) buyer (seller) signals is the same for all n, m ≥ 2k. Combining this
observation with Lemma 4 leads to the conclusion that a grand mechanism with finite
signal support has to be optimal. This is stated more formally in the following corollary.
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Corollary 1. Let the number of elements in the support of HB (HS) be finite and denote
this number of elements by k. Then there exists an EGT that maximizes the grand mecha-
nism with a signal structure for the buyer (seller) that contains at most 2k− 1 elements in
its support, while the signal structure for the seller (buyer) contains at most 2k elements
in its support.

5. Optimal binary signal structure

One important implication of Corollary 1 for the binary case is that the information
structure in the optimal grand mechanism has at most three elements in its support if
the true type distribution is binary. In fact, it will be shown below that the support of the
optimal signal distribution will be binary if the type distribution is binary. As binary type
distributions do not only provide more structure but are also often used in the (applied)
literature (Kamenica and Gentzkow, 2011, Taneva, 2019), it makes sense to investigate
the binary case in more detail.

Before exploiting the binary structure of the type distribution, two results are stated
that only make use of the restriction n = m = 2. In other words, Lemmas 5 and 6 also
hold if only the signal distribution is restricted to be binary while the type distribution
may not be binary.

The first result is that the optimal grand mechanism enforces trade if and only if the
expected value is above expected cost. The second result states that trade takes place
between players with “good signals” but not between players with “bad signals.” For
simplicity, the signals concerning costs (value) are denoted in this section by cl (vl) and
ch (vh) with ch > cl (vh > vl).

Lemma 5. The optimal grand mechanism for n = m = 2 enforces trade if and only if the
buyer signal exceeds the seller signal.

Lemma 6. We have y(vl, ch ) = 0 and y(vh, cl ) = 1 in the optimal grand mechanism for
n =m= 2.

The “only if” part of Lemma 5 holds by (3). To illustrate the “if” part of Lemma 5,
consider signals ch and vl: ch ≥ vl, as otherwise a fixed price mechanism and pooling all
types would be optimal, but this is ruled out by Lemma 1.

Similarly, Lemma 6 has to be true as y(vl, ch ) > 0 would imply that vl ≥ ch and, there-
fore, trade irrespective of the signal at price (vl + ch )/2 would be optimal. This is out-
come equivalent to pooling all types and cannot be optimal, as information design could
be used to rule out some inefficient trades; see Lemma 1. Furthermore, y(vh, cl ) = 1 has
to hold, as otherwise maximal EGT would be 0, which is impossible given Assumption 1.

The method of proof used here, i.e., arguing through fixed price mechanisms, is ad-
mittedly specific to the binary signal case and naturally leads—in conjunction with the
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optimality of deterministic mechanisms—to the question of whether fixed price mech-
anisms are EGT maximizing in the optimal binary information structure.16 As the fol-
lowing subsection illustrates, this is not the case and the restriction to fixed price mech-
anisms is with loss of generality even for binary type distributions.

5.1 Binary type distribution

This section considers the case where the true type distribution is binary. For this case,
Corollary 1 can be slightly strengthened and extended.

Corollary 2. Let HB and HS have binary support. In the optimal grand mechanism,
the signal structure for the buyer (seller) has binary support and at least one element of
the support is also an element of the support of HB (HS).

By Corollary 2, the optimal signal distribution is binary if types are binary and one
of the valuation signals as well as one of the cost signals must be fully informative. To
simplify notation in this restricted setup, denote the true cost and valuation types by
c < c̄ and v < v̄. Assumption 1 can then be written as c < v < c̄ < v̄.

Lemma 7. Consider the optimal grand mechanism for binary type support. Then
y(vl, cl ) = 1 = y(vh, ch ) and both vh = v̄ and cl = c.

Lemma 7 leaves only the option that trade occurs unless both signals are “bad.” One
consequence of this is that the optimal mechanism is not a fixed price mechanism. The
inequality ch > vl holds, as otherwise pooling all types would increase EGT. As signals ch
and vl trade if and only if the other player has the “good signal,” no fixed price mech-
anism can be optimal, as no fixed price can make both ch and vl indifferent between
trading and not trading.

Lemma 7 does not entirely describe the information structure, as it does not indicate
with which probability v̄ (c) types receive the vl (ch) signal. However, it turns out that (C)
has to be satisfied with equality unless a fully informative signal structure yields a budget
surplus.

Lemma 8. Consider the optimal grand mechanism for binary type support and assume
that fully revealing signals do not achieve first best EGT. Constraint (C) will then bind in
the optimal grand mechanism.

Hence, the search for the optimal information structure is equivalent to a maximiza-
tion problem over two variables with one constraint or—as the constraint can be solved
explicitly for one of the variables—an optimization problem over one variable without
constraint; see Appendix D. It is even possible to show that the objective in the latter
problem is convex and, therefore, the solution is a corner solution. This means that one

16The converse of this is certainly true: Restricting oneself to fixed price mechanisms, the only relevant
information is whether the type is above or below the fixed price and, therefore, binary signals are optimal;
see Gottardi and Mezzetti (2022).
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of the two players will have a fully informative signal while the other’s signal has just
enough noise to ensure that (C) holds. To get some intuition for this result, consider
EGT that, following Lemma 7, can be written as (see Appendix D for details)

EGT(ωh, γl ) = (
ωhγ + (ω̄−ωh )γl

)
(v̄ − c) + γl(1 − ω̄)(v − c) +ωh(1 − γ)(v̄ − c̄).

Focus on the first of the three terms, which is the only nonlinear term. Types v̄ and c

trade if either the buyer gets signal vh (as the high signal trades with both seller signals),
which happens with probability ωhγ, or if the buyer gets signal vl but the seller receives
signal cl, which happens with probability (ω̄ − ωh )γl. What we see is that the efficient
trade between v̄ and c takes place with certainty if one of the two players has fully re-
vealing information, i.e., if ωh = ω̄ or if γl = γ. If both players receive noisy signals,
however, this efficient trade will not take place with strictly positive probability. Hence,
EGT(ωh, γl ) is convex and although the shape of the implementability condition is ad-
mittedly relevant for this as well, it should not come as a surprise that corner solutions
are optimal.

The information structure in the optimal grand mechanism is, therefore, one of the
following two corner solutions:17

(i) Buyer revealing : vh = v̄, vl = v, cl = c, and ch = c(γ−γBB
l (ω̄))/(1 −γBB

l (ω̄)) + c̄(1 −
γ)/(1 − γBB

l (ω̄)), while γl = γBB
l (ω̄) and ωh = ω̄.

(ii) Seller revealing : vh = v̄, vl = v̄(ω̄−ωBB
h (γ))/(1 −ωBB

h (γ)) + v(1 − ω̄)/(1 −ωBB
h (γ)),

and cl = c, ch = c̄, while γl = γ and ωh =ωBB
h (γ).

It is straightforward to compute EGT in each of the two solution candidates above
and the candidate achieving highest EGT is the optimal information structure. This
comparison leads to the following result that completely describes the optimal grand
mechanism in the case of binary types.

Proposition 3. Let the support of HS and HB be binary. Then the information structure
in the optimal grand mechanism is buyer revealing if and only if

(1 − γ)(v̄ − c̄)

(1 − ω̄)(v − c)

[
ω̄− 1

2

(
1 + γ(v̄ − c)

c̄ − γc − (1 − γ)v̄

)

+
√√√√1

4

(
1 + γ(v̄ − c)

c̄ − γc − (1 − γ)v̄

)2

− γω̄(v̄ − v) + γ(v − c)

c̄ − γc − (1 − γ)v̄

]

≥ γ − 1
2

(
1 + ω̄(v̄ − c)

ω̄v̄ − v + (1 − ω̄)c

)

+
√

1
4

(
1 + ω̄(v̄ − c)

ω̄v̄ − v + (1 − ω̄)c

)2

− ω̄(v̄ − c̄) + ω̄γ(c̄ − c)

ω̄v̄ − v + (1 − ω̄)c

and is seller revealing if the reverse inequality holds.

17The function γBB
l (ωh ), which is defined in Appendix D, gives the γl necessary to satisfy (C) with equality

for a given ωh; ωBB
h (γl ) is defined analogously.
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The resulting EGT can be compared to first best:

EGTfb = ω̄v̄ + (1 − ω̄) ∗ γv − γc − (1 − γ)ω̄c̄.

The result of this comparison will generally depend on the values of the parameters
v̄, v, c, c̄, γ, and ω̄. Note, however, that it is without loss of generality to set v̄ = 1: Divid-
ing all types by v̄ will divide all constraints as well as the objective by v̄ and, therefore, will
not affect the optimization problem. (Put differently, signals in the information struc-
ture of the optimal grand mechanism will be the previous optimal signals divided by v̄.
First and second best EGT will be divided by v̄ as well.) With this normalization, each
of the remaining parameters, i.e., v, c, c̄, γ, and ω̄, is in the compact set [0, 1] and, con-
sequently, it is easy to numerically search for the parameter constellation in which the
ratio of second best and first best EGT is minimal. Note that the just described normal-
ization does not affect the ratio of second best and first best EGT. I computed this ratio
numerically for all parameter values on a grid with step size 0.01, i.e., all parameter val-
ues ω̄, γ ∈ {0.01, 0.02, � � � , 0.99} and c ∈ {0.0, 0.01, � � � , 0.97}, v ∈ {c + 0.01, � � � , 0.98}, and
c̄ ∈ {v+0.01, � � � , 0.99} are considered. The lowest ratio was 0.95417, which was achieved
at ω̄ = γ = 0.04, c = 0, c̄ = 0.99, and v = 0.01. This means that the combination of infor-
mation and mechanism design can limit the loss due to asymmetric information to less
than 5% in a binary type bilateral trade setting. The ratio of first best to second best EGT
when using the optimal mechanism but not information design, i.e., assuming the fully
informative signal structures for buyer and seller, is a natural comparison point. In this
case, the lowest EGT ratio equals 0.89189, which was achieved at the same parameter
constellation, i.e., ω̄ = γ = 0.04, c = 0, c̄ = 0.99, and v = 0.01. This shows that informa-
tion design can close more than half of the EGT gap left by mechanism design in a binary
type bilateral trade setting.

As a final remark, note that in a symmetric setup, i.e., if γ = ω̄ and v̄ − c̄ = v − c

hold, both buyer and seller revealing information structures are optimal. Clearly, the
player whose information is revealed will have a higher expected payoff in this case,
as he receives a higher information rent. The asymmetry of the solution despite the
symmetry of the setup is intuitively explained by the convexity of EGT explained above.

6. Conclusion

This paper characterizes the EGT maximizing grand mechanism, i.e., a pair of informa-
tion structure and trading mechanism, in a bilateral trade setting. A closed form solu-
tion is derived for the special case in which the support of the true type distribution is
binary. While the derivation is not straightforward, the resulting grand mechanism is
strikingly simple in this binary type case: the optimal information structure is fully in-
formative for one player and partially informative but still binary for the other player.
The latter player receives either a signal fully revealing that he is a “good type” or a noisy
signal. The optimal information structure renders the use of complicated mechanisms
unnecessary: The optimal mechanism is deterministic and implements trade if and only
if—conditional on the signals—expected value is above expected costs.
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With more general finite type distributions, the information structure in the optimal
grand mechanism is a monotone partition of the type space and the trading mechanism
is deterministic. For type distributions with infinite support, EGT under the optimal in-
formation structure can be approximated arbitrarily closely by EGT in finite information
structures that are monotone partitions of the type space.

Under the assumption of independent signals, EGT in the optimal grand mechanism
can be interpreted as an upper bound on EGT achievable in light of asymmetric infor-
mation by any institutional framework. Consequently, the EGT loss compared to first
best can be interpreted as the EGT loss that is fully attributable to information asymme-
tries. In the binary type setting, this information loss is less than 5% of first best. This is
significantly less than the EGT loss without information design (while using the optimal
mechanism as in Myerson and Satterthwaite (1983)), which can exceed 10%.

Appendix

A Optimal mechanism for finite signal distribution

EGT equals

n∑
i=1

m∑
j=1

y(vi, cj )(vi − cj )ωiγj ,

where y(vi, cj ) is the probability of trade for vi and cj . A buyer of signal vi has expected
utility

U(vi ) =
m∑
j=1

(
viy(vi, cj ) − tB(vi, cj )

)
γj = viYB(vi ) − TB(vi ), (6)

where the expected transfer
∑

j tB(vi, cj )γj is denoted by TB(vi ) and the expected prob-
ability of trade is denoted by YB(vi ) = ∑

j y(vi, cj )γj . Similarly, the expected utility of the
seller is

�(cj ) =
n∑

i=1

(
tS(vi, cj ) − cjy(vi, cj )

)
ωj = TS(cj ) − cjYS(cj ). (7)

The goal is to determine the EGT that maximizes y and transfer rules tS and tB sub-
ject to

• the participation constraints

U(vi ) ≥ 0 for all vi ∈ {v1, � � � , vn}, �(cj ) ≥ 0 for all cj ∈ {c1, � � � , cm} (8)

• the incentive compatibility constraints

viYB(vi ) − TB(vi ) ≥ viYB(vk ) − TB(vk )

for all vi, vk ∈ {v1, � � � , vn}, (ICB)
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TS(cj ) − cjYS(cj ) ≥ TS(ck ) − cjYS(ck )

for all cj , ck ∈ {c1, � � � , cm} (ICS)

• ex post budget balance

tB(vi, cj ) = tS(vi, cj ) for all vi ∈ {v1, � � � , vn} and cj ∈ {c1, � � � , cm}. (9)

It is straightforward to show that in this setting, every ex ante budget balanced mech-
anism can be made ex post budget balanced in the sense that starting from an ex ante
budget balanced mechanism, one can manipulate the transfer rules (without changing
the decision rule y and, therefore, without changing EGT) in a way that the new mech-
anism satisfies ex post budget balance and incentive compatibility as well as participa-
tion constraints are not affected. For this reason, it is without loss of generality to use
the simpler (and in principle weaker) ex ante budget balance condition18

n∑
i=1

ωiTB(vi ) ≥
m∑
j=1

γjTS(cj ) (BB)

in inequality form instead of its ex post version in equality form. This standard result
and its proof are given here for completeness:

Lemma 9. Take a direct mechanism (y, tS , tB ) that satisfies (8), (ICB), (ICS), and (BB).
Then there is a direct mechanism (y, t̃S , t̃B ) that satisfies (8), (ICB), (ICS), and the ex post
budget balance constraint (9).

Proof. If (BB) is satisfied with strict inequality, reducing tB uniformly will keep all con-
straints satisfied and not affect EGT. Hence, it is without loss of generality to assume in
the following that (BB) holds with equality under (y, tS , tB ).

With a slight abuse of notation denote by TS(vi ) = ∑m
j=1 ts(vi, cj )γj the expected

transfer of the seller conditional on the buyer type being vi. Now define the new pay-
ment rules

t̃B(vi, cj ) = tB(vi, cj ) + [
tS(vi, cj ) − tB(vi, cj )

] − [
TS(vi ) − TB(vi )

]
,

t̃S(vi, cj ) = tS(vi, cj ) − [
TS(vi ) − TB(vi )

]
.

Clearly, t̃S(vi, cj ) = t̃B(vi, cj ) and, therefore, ex post budget balance holds. Furthermore,
T̃B(vi ) = TB(vi ) for all vi and similarly T̃ (cj ) = T (cj ) for all cj by the assumption that
(y, tS , tB ) is ex ante budget balanced. As y—and, therefore, YS and YB—did not change,
this implies that (y, t̃S , t̃B ) satisfies (8), (ICB), and (ICS) because (y, tS , tB ) did.

Hence, I will without loss of generality use (BB) instead of (9) in the following discus-
sion. This allows the expression of the objective and all constraints in terms of interim
transfers TB and TS or, alternatively, in terms of interim rents U and �.

18Strictly speaking this is not a “budget balance,” but a “no budget deficit” constraint. So as not to over-
load the presentation with too much terminology, I stick to the customary “budget balance” terminology.
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The following lemma gives a simple characterization of incentive compatibility for
the discrete case.

Lemma 10. Relation (ICB) is satisfied if and only if YB is increasing and

U(vi ) =U(vi−1 ) + ỸB(vi−1 )(vi − vi−1 ) for i = 2, � � � , n, (10)

where YB(vi−1 ) ≤ ỸB(vi−1 ) ≤ YB(vi ). Relation (ICS) is satisfied if and only if YS is decreas-
ing, and

�(cj ) = �(cj+1 ) + ỸS(cj )(cj+1 − cj ), (11)

where YS(cj ) ≥ ỸS(cj ) ≥ YS(cj+1 ).

Proof. If : Let (10) hold and let YB be increasing. Take i > k. Iterating (10), yields

U(vi ) =U(vk ) +
i−1∑
j=k

ỸB(vj )(vj+1 − vj ). (12)

As ỸB(vj ) ≥ YB(vj ) and YB is increasing, this implies

U(vi ) ≥U(vk ) +
i−1∑
j=k

YB(vk )(vj+1 − vj )

=U(vk ) +YB(vk )(vi − vk ).

Hence, (ICB) is satisfied for vi and vk. Similarly starting from (12), ỸB(vj ) ≤ ỸB(vj+1 ) and
YB being increasing implies

U(vi ) ≤U(vk ) +
i−1∑
j=k

YB(vi )(vj+1 − vj )

and, therefore, U(vk ) ≥ U(vi ) + YB(vi )(vk − vi ), which means that (ICB) is satisfied for
vk and vi.

Only if : Let (ICB) be satisfied. For k = i − 1, (ICB) is equivalent to U(vi ) −U(vi−1 ) ≥
YB(vi−1 )(vi − vi−1 ). Using the incentive constraint that vi−1 does not want to misrepre-
sent as vi, (ICB) can be rearranged to U(vi−1 ) − U(vi ) ≥ YB(vi )(vi−1 − vi ). Taking these
two inequalities together gives

YB(vi ) ≥ U(vi ) −U(vi−1 )
vi − vi−1

≥ YB(vi−1 ).

Hence, YB is increasing and (10) holds with ỸB(vi−1 ) = [U(vi ) −U(vi−1 )]/[vi − vi−1].
The proof for the seller is analogous.
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Equations (10) and (11) can be rewritten as19

U(vi ) = U(v1 ) +
i−1∑
k=1

ỸB(vk )(vk+1 − vk ),

�(cj ) = �(cm ) +
m−1∑
k=j

ỸS(ck )(ck+1 − ck ).

These conditions imply that the participation constraints for all types are implied
by the participation constraints of v1 and cm. Furthermore, using these conditions to
substitute rents for transfers in the budget balance constraint (BB) yields

−U(v1 ) +
n∑

i=1

ωi

[
viYB(vi ) −

i−1∑
k=1

ỸB(vk )(vk+1 − vk )

]

≥�(cm ) +
m∑
j=1

γj

[
cjYS(cj ) +

m−1∑
k=j

ỸS(ck )(ck+1 − ck )

]
,

which is equivalent to20

n∑
i=1

[
ωiYB(vi )vi − (vi+1 − vi )ỸB(vi )(1 −Wi )

]

≥U(v1 ) +�(cm ) +
m∑
j=1

[
γjYS(cj )cj + (cj+1 − cj )ỸS(cj )�j

]
,

where Wi = ∑i
k=1 ωk and �j = ∑j

k=1 γk. So as to relax this constraint (without violat-
ing participation or incentive compatibility constraints), it is best to choose U(v1 ) =
�(cm ) = 0 and ỸS(cj ) = YS(cj+1 ) (recall that YS is decreasing and that YS(cj ) ≥ ỸS(cj ) ≥
YS(cj+1 )) as well as ỸB(vi ) = YB(vi ) (recall that YB is increasing and that YB(vi+1 ) ≥
ỸB(vi ) ≥ YB(vi )). Note that none of these variables is part of the objective (1) and, there-
fore, these choices are indeed optimal. With these choices, the constraint can be written
as

n∑
i=1

[
ωiYB(vi )vi − (vi+1 − vi )YB(vi )(1 −Wi )

]

≥
m∑
j=1

[
γjYS(cj )cj + (cj+1 − cj )YS(cj+1 )�j

]
, (13)

which is equivalent to (C).

19Here I use the notational convention that
∑0

k=j · · · = 0 for any j = 1, 2 � � � .
20Define vn+1 = vn, c0 = c1, and cm+1 = cm for notational convenience and similarly Ỹb(vn+1 ) =

ỸS(cm+1 ) = 0.
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Neglecting the monotonicity constraints on YS and YB for now, the mechanism de-
sign problem becomes maximizing (1) subject to (C). Hence, the optimal decision rule
y must maximize the Lagrangian

L(y ) =
n∑

i=1

m∑
j=1

y(vi, cj )ωiγj

[
(1 + λ)vi − λ(vi+1 − vi )

1 −Wi

ωi

− (1 + λ)cj − λ(cj − cj−1 )
�j−1

γj

]
,

where λ ≥ 0 is the Lagrange parameter of the implementability constraint. As the La-
grangian is linear in y, the optimal decision rule is given by (3).

B Correlated signals

In the bilateral trade setup of this paper, it is straightforward to show that first best EGT
are achievable if one considers correlated information structures. To this end, consider
a signal structure that maps each pair of types (v, c) to itself, i.e., each player receives a
signal equal to the true type vector (v, c). Amend this signal structure with the trading
mechanism

y
(
(vB, cB ), (vS , cS )

) =
{

1 if vB = vS ≥ cB = cS ,

0 else,

tB
(
(vB, cB ), (vS , cS )

) =
{

(vB + cB )/2 if vB = vS ≥ cB = cS ,

0 else,

and tS((vB, cB ), (vS , cS )) = tB((vB, cB ), (vS , cS )), where the first (second) argument in y,
tB and tS is the reported buyer (seller) signal. It is straightforward to see that this trad-
ing mechanism is incentive compatible and satisfies the participation constraint. Most
importantly, first best EGT is achieved by essentially eliminating the information asym-
metry between buyer and seller.

C Proofs of results in the text

Proof of Lemma 1. Suppose to the contrary that all seller types are pooled on one sig-
nal E[c] in the EGT maximizing grand mechanism. In this case, the optimal mechanism
is clearly a fixed price mechanism with price equal to E[c]. Consequently, the optimal
information structure for the buyer is without loss of generality binary: One signal vl for
all types below E[c] and one signal vh for all types above E[c].

From here I have to distinguish two cases depending on which version of As-
sumption 1 holds. First, I continue the proof under the assumption min supp(HS ) <
min supp(HB ) < max supp(HS ) < max supp(HB ). This implies that vh has positive prob-
ability mass denoted by ωh. The argument now depends on whether vl has positive
probability mass.
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As a first subcase, assume that vl has positive probability. I will now change the seller
information structure and the mechanism in two steps and show that an EGT increasing
improvement exists that still satisfies (C). In the first step, change the information struc-
ture of the seller to an information structure with two signals cl = vl and ch ∈ (E[c], vh )
while maintaining the mechanism y(vh, ·) = 1 and y(vl, ·) = 0. By Assumption 1, such
an information structure in which both cl and ch have positive probability exists.21 Note
that EGT are the same as before because the trading probability between any two types
has not changed. Furthermore, (C) can be written as ωh(vh − ch ) > 0, i.e., (C) is slack.
In a second step, increase y(vl, cl ) from 0 to ε > 0, where ε is chosen small enough to
keep (C), which reads ωh(vh − ch ) − εγl(ωh(vh − cl ) − vl + cl ) ≥ 0, slack. As vl = cl,
EGT are again unchanged. In a final step, change the seller’s information structure such
that γl, the probability of receiving the low signal, stays the same but cl = vl − ε′ and
ch ∈ (E[c], vh ), which is again possible by Assumption 1 for ε′ > 0 small enough. As
y(vl, cl ) = ε ∈ (0, 1), this increases EGT. For ε′ > 0 small enough, (C) is not violated as
it is continuous in ε′ and was slack for ε′ = 0. This establishes a grand mechanism that
satisfies (C), has YB increasing, and YS decreasing, and yields strictly higher EGT than
the initial structure in which the seller’s types were pooled.

As a second subcase, assume that vl has zero probability mass, i.e., E[c] ≤
min supp(HB ) and both seller and buyer types are pooled on a single signal each in the
supposedly optimal information structure.22 The optimal mechanism clearly enforces
trade with probability 1 in this case. I will change the signal structure in several steps,
maintaining (C) in each step and (weakly) increasing EGT in each step. By Assump-
tion 1, there exists an s ∈ [min supp(HS ), max supp(HB )] and an ε > 0 such that HB(s) > ε

and 1 − HS(s) > ε. In a first step, change both players’ information structure to binary
signals such that signal ch = vl = s is sent with probability ε and the signals cl < ch and
vh > vl are sent with probability 1 −ε (where cl and vh are chosen such that the expected
value equals the expected value of the type distribution; by the definition of s and ε,
such a distribution is feasible). The new information structure leads to the same EGT
when maintaining trade with probability 1 and is clearly budget balanced, as a fixed
price mechanism with price s is possible. In a second step, change the mechanism by
setting y(vl, ch ) = 0. As vl = ch, this does not affect EGT, and as the change relaxes (C),
this constraint holds now with strict inequality. In a final step, increase ch slightly and
decrease cl slightly while both signals are still sent with probabilities ε and 1 − ε (the
decrease in cl is, of course, chosen such that the expected value is maintained). This is
feasible as 1 − HS(ch ) = 1 − HS(s) > ε by the definition of ε. Since (C) is continuous in
signals, a sufficiently small change will not violate this constraint. Furthermore, EGT are
strictly increased as costs conditional on trade decreases—due to YS(ch ) <YS(cl )—and
the probability of trade is unaffected. Clearly, YS is decreasing and YB is increasing.

The second case applies if Assumption 1 is satisfied in the form that HB and HS have
identical interval supports. This assumption implies that both vh and vl have positive
probability mass, denoted by ωh and ωl. Also note that clearly vl < E[c] < vh.

21For example, let γl = HS(vl )/2, where HS(vl ) > 0 by Assumption 1 as vl ≥ min supp(HB ) >

min supp(HS ).
22An argument analogous to the first case establishes also that E[v] ≥ max supp(HS ) in this case.



Theoretical Economics 18 (2023) Information structures in bilateral trade 447

I will now change the seller information structure and the mechanism in two steps
and show that an EGT increasing improvement exists that satisfies (C). In the first
step, change the information structure of the seller to an information structure with
two signals cl = vl and ch ∈ (E[c], vh ) while maintaining the mechanism y(vh, ·) = 1 and
y(vl, ·) = 0. By Assumption 1 and vh > E[c], such an information structure in which both
cl and ch have positive probability exists.23 Note that EGT are the same as before be-
cause the trading probability between any two types has not changed. Furthermore,
constraint (C) can be written as ωh(vh − ch ) > 0, i.e., (C) is slack. In a second step, in-
crease y(vl, cl ) from 0 to ε > 0, where ε is chosen small enough to keep (C), which reads
ωh(vh − ch ) − εγl(ωh(vh − cl ) − vl + cl ) ≥ 0, slack. As vl = cl, EGT are again unchanged.
In a final step, change the seller’s information structure such that γl, the probability of
receiving the low signal, stays the same but cl = vl − ε′ and ch ∈ (E[c], vh ), which is again
possible by Assumption 1 for ε′ > 0 small enough. As y(vl, cl ) = ε ∈ (0, 1), this increases
EGT. For ε′ > 0 small enough, (C) is not violated as it is continuous in ε′ and was slack
for ε′ = 0. This establishes an information structure and mechanism satisfying (C) and
yielding strictly higher EGT than the initial grand mechanism in which the seller’s types
were pooled.

Proof of Lemma 2. Suppose to the contrary that YB(vi ) = YB(vi+1 ) for some i ∈
{1, � � � , n − 1} in the optimal grand mechanism. In case the monotonicity constraint
binds for more than two signals, let vi be the lowest signal for which it binds. Now con-
sider an information structure in which signals vi and vi+1 are merged, that is, every type
v that got either signal vi or vi+1 will now get signal

ṽ = ωi

ωi +ωi+1
vi + ωi+1

ωi +ωi+1
vi+1

and nothing changes for other types. Adapt the decision rules y by letting

ỹ(ṽ, cj ) = ωi

ωi +ωi+1
y(vi, cj ) + ωi+1

ωi +ωi+1
y(vi+1, cj ).

Note that this construction implies that ỸS = YS and ỸB(vk ) = YB(vk ) for all k ∈
{1, � � � , i− 1, i+ 2, � � � , n} and, in particular, ỸB(ṽ) = YB(vi ) = YB(vi+1 ). The objective (1),
which can be written as

∑
i ωiYB(vi )vi − ∑

j γjYS(cj )cj , is, therefore, unchanged by the
merging of signals. However, constraint (C) is strictly relaxed by the merging of signals:
Note that (C) can be written as{

n∑
i=1

YB(vi )ωi

[
vi − (vi+1 − vi )

1 −Wi

ωi

]}
−

{
m∑
j=1

YS(cj )γj

[
cj + (cj+1 − cj )

�j

γj

]}
≥ 0.

The merging of types affects only the two terms for vi and vi+1, as YS and YB for other
signals were not affected. Hence, the relevant two terms are (using the notation ω̃ =

23Think of γl , i.e., the probability of signal cl , being very small.
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ωi +ωi+1)

−YB(vi−1 )vi(1 −Wi−1 ) +YB(vi )
[
ωivi − (vi+1 − vi )(1 −Wi )

]
+YB(vi+1 )

[
ωi+1vi+1 − (vi+2 − vi+1 )(1 −Wi+1 )

]
= −YB(vi−1 )vi(1 −Wi−1 ) + ỸB(ṽ)

[
ṽω̃− (vi+1 − vi )(1 −Wi ) − (vi+2 − vi+1 )(1 −Wi+1 )

]
= −YB(vi−1 )ṽ(1 −Wi−1 ) +YB(vi−1 )(ṽ − vi )(1 −Wi−1 )

+ ỸB(ṽ)
[
ṽω̃− (vi+1 − vi )(1 −Wi+1 ) − (vi+2 − vi+1 )(1 −Wi+1 )

]
− ỸB(ṽ)(vi+1 − vi )ωi+1

= −YB(vi−1 )ṽ(1 −Wi−1 ) +YB(vi−1 )(ṽ − vi )(1 −Wi+1 +ωi +ωi+1 )

+ ỸB(ṽ)
[
ṽω̃− (vi+2 − vi )(1 −Wi+1 )

] − ỸB(ṽ)(vi+1 − vi )ωi+1

= −YB(vi−1 )ṽ(1 −Wi−1 ) +YB(vi−1 )(ṽ − vi )(1 −Wi+1 ) +YB(vi−1 )(vi+1 − vi )ωi+1

+ ỸB(ṽ)
[
ṽω̃− (vi+2 − ṽ)(1 −Wi+1 )

] − ỸB(ṽ)(vi+1 − vi )ωi+1

− ỸB(ṽ)(ṽ − vi )(1 −Wi+1 )

= −YB(vi−1 )ṽ(1 −Wi−1 ) + ỸB(ṽ)
[
ṽω̃− (vi+2 − ṽ)(1 −Wi+1 )

]
+ (

YB(vi−1 ) − ỸB(ṽ)
)
(ṽ − vi )(1 −Wi+1 ) + (

YB(vi−1 ) − ỸB(ṽ)
)
(vi+1 − vi )ωi+1

< −YB(vi−1 )ṽ(1 −Wi−1 ) + ỸB(ṽ)
[
ṽω̃− (vi+2 − ṽ)(1 −Wi+1 )

]
,

where the first equality uses YB(vi ) = YB(vi+1 ) = ỸB(ṽ) and the definition of ṽ, and the
inequality uses ỸB(ṽ) = YB(vi ) >Y (vi−1 ) (recall that i was the lowest pooled type). Note
that the term we end up with is exactly the term that refers to ṽ in (C) under the mod-
ified ỹ. Consequently, the merging of signals strictly relaxed (C) without affecting the
objective. If (C) binds, this contradicts the optimality of the initial grand mechanism. If
(C) does not bind, then the information structure after the merging of types is coarser
and also a solution, as it is feasible, satisfies (C), and yields the same EGT as the initial
information structure.

The proof for the seller is analogous.

Proof of Proposition 1. I show the result for the buyer. Suppose by way of contradic-
tion that (vi )ni=1 and (ωi )ni=1 in the optimal grand mechanism do not form a monotone
partition (up to a measure zero set). This implies that there exists some i ∈ {1, � � � , n}
and a set of true valuation types Ni with some mass η > 0 that receives signal vi and
a set of true valuation types Ni+1 with mass η > 0 that receives signal vi+1 such that
E[v|v ∈Ni] > E[v|v ∈Ni+1]. We will return to these sets later.

Consider for now the optimization problem of maximizing EGT subject to (C): Max-
imize EGT, i.e.,

∑
i

∑
j ωiγj(vi − cj )y(vi, cj ), over y, (vi )ni=1, (cj )mj=1, ωi, and γj subject

to (C). Let the domain for y be [0, 1], and the domain for (ωi )ni=1, (vi )ni=1 is the set of
all distributions such that F is a mean preserving spread of these distributions. Re-
spectively, the domain of (γj )mj=1, (cj )mj=1 is such that G is a mean preserving spread
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of these distributions. Note that incentive compatibility and participation constraints
will be automatically satisfied by the solution due to substituting the expressions from
Lemma 10 and participation constraints into the budget constraint so as to obtain (C).
(By Lemma 2, the monotonicity constraint is slack.) That is, the solution to this program
will be the optimal information structure and mechanism if the number of buyer (seller)
signals is restricted to no more than n (m).24 Writing the Lagrangian for this optimization
problem with Lagrange parameters λ for constraint (C) yields

L =
n∑

i=1

m∑
j=1

{
y(vi, cj )ωiγj

[
(1 + λ)vi − λ(vi+1 − vi )

1 −Wi

ωi

− (1 + λ)cj − λ(cj − cj−1 )
�j−1

γj

]}
.

A solution to this finite-dimensional problem exists by the Weierstrass theorem, as the
feasible set is compact and nonempty and the objective is continuous. Consider L eval-
uated at the solution values for y, (ωi )ni=1, (γj )mj=1, and (cj )mj=1. That the optimal values
for (vi )ni=1 have to maximize L (within the feasible set of vi, i.e., all those (vi )ni=1 that
yield together with (ωi )ni=1 a distribution such that F is a mean preserving spread of it) is
a given. Now consider the following family of buyer valuation distributions indexed by
ε, which I denote by (ṽi )ni=1: Fix all valuations apart from some ṽi and ṽi+1 at their op-
timal levels (i.e., at the values that are part of the solution of the maximization problem
above) and let

ṽi(ε) = (ωi − ε)vi + εvi+1

ωi
,

ṽi+1(ε) = (ωi+1 − ε)vi+1 + εvi
ωi+1

,

where vi and vi+1 are the solution values in the maximization problem above. As vi(0) =
vi and vi+1(0) = vi+1, the auxiliary maximization problem of maximizing L over ε (where
all variables apart from ṽi and ṽi+1 are fixed at their optimal solution) must have a (local)
maximum at ε = 0 if the information structure is feasible for ε in an open neighborhood
around 0. The corresponding derivative of L with respect to ε is

dL
dε

= (vi+1 − vi )
[
YB(vi )

(
1 + λ+ λ(1 −Wi )/ωi

) −YB(vi−1 )λ(1 −Wi−i )/ωi

]
− (vi+1 − vi )

[
YB(vi+1 )

(
1 + λ+ λ(1 −Wi+1 )/ωi+1

)
−YB(vi )λ(1 −Wi )/ωi+1

]
. (14)

Note that the derivative does not depend on ε, i.e., L in the auxiliary maximization prob-
lem is linear in ε. It is straightforward to see that (ṽi )ni=1 is feasible for ε ≥ 0 if ε ≥ 0 is not
too high. (Essentially ṽi and ṽi+1 use the optimal information structure that is feasible

24Strictly speaking, one should also add constraints enforcing vi+1 − vi ≥ 0 and cj+1 ≥ cj , which will,
however, not change the argument below and only clutter notation further.
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and then swap the signal for ε of those types receiving signals vi and vi+1 in the optimal
information structure. Clearly, this does not change ωi or ωi+1 and yields a new feasible
information structure.) I will now show that (ṽi )ni=1 are also feasible for ε < 0 (not too
far from 0) if the optimal information structure is not a monotone partition. After ruling
out that the slope of L in ε is 0, this will complete the proof as feasibility for ε in an open
interval around 0 means that ε = 0 cannot maximize the linear L in the auxiliary prob-
lem. This contradiction establishes that the information structure (for the buyer) in the
optimal grand mechanism must be a monotone partition.

To see that ε < 0 is feasible, consider changing the information structure by swap-
ping the signal of mass τ < η in Ni and Ni+1, i.e., mass τ < η of the types in Ni receives
signal vi+1 (instead of vi) and mass τ in Ni+1 receives signal vi (instead of vi+1). This is
clearly feasible and does not change ωi or ωi+1, but the expected valuation when receiv-
ing signals vi or vi+1 changes to

ṽi(τ) = ωivi − τ
(
E[v|v ∈Ni] −E[v|v ∈Ni+1]

)
ωi

,

ṽi+1(τ) = (ωi+1vi+1 + τ
(
E[v|v ∈ Ni] −E[v|v ∈Ni+1]

)
ωi+1

.

Choosing τ = −ε(vi+1 − vi )/(E[v|v ∈Ni]−E[v|v ∈Ni+1]) yields ṽi(ε) and ṽi+1(ε) for neg-
ative ε.

The last step is to rule out that L has slope 0 in ε (when fixing all variables apart from
ṽi(ε) and ṽi+1(ε) at their optimal values). To get a contradiction, suppose this was the
case and note that this is only possible if λ 
= 0 (see (14)) and recall that YB(vi+1 ) >YB(vi )
by Lemma 2. Then there exists an ε′ > 0 such that

ṽi
(
ε′) − (

ṽi+1
(
ε′) − ṽi

(
ε′)) λ

1 + λ

1 −Wi

ωi

= ṽi+1
(
ε′) − (

vi+2 − ṽi+1
(
ε′)) λ

1 + λ

1 −Wi+1

ωi+1
, (15)

i.e., the two signals have the same virtual valuation.25 The L evaluated for ε′ is the same
as that evaluated at the optimal solution by the assumption that its derivative in ε is 0.
As a next step, change y(vi, ·) and y(vi+1, ·) by assigning the average trading probabil-
ity, i.e., ỹ(ṽi, cj ) = ỹ(ṽi+1, cj ) = y(vi, cj )ωi/(ωi + ωi+1 ) + y(vi+1, cj )ωi+1/(ωi + ωi+1 ) for
all j = 1, � � � , m. As both ṽi(ε′ ) and ṽi+1(ε′ ) have the same virtual valuation and as L is
linear in y, this does not change the value of L. Finally, note that due to the argument
in the proof of Lemma 2, merging the two signals ṽi(ε′ ) and ṽi+1(ε′ ) into one signal will
not affect EGT, but does relax (C). Hence, such a merging of signals will strictly increase

25To be precise, such an ε′ exists as the left-hand side (LHS) of (15) is strictly below the right-hand side
(RHS) for ε′ = 0, the LHS is strictly increasing in ε′ while the RHS is strictly decreasing in ε′, and both the
LHS and the RHS are continuous in ε′. Furthermore, ṽi(ε′ ) = ṽi+1(ε′ ) if ε′ = (ωi+1ωi(vi+1 − vi )/(vi+1ωi −
viωi+1 + i+ 1ωi+1 − viωi )) and RHS<LHS for this ε′. Consequently, the intermediate value theorem implies
that an ε′ exists at which LHS=RHS.
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L. But this implies that (vi, vi+1, y(vi, ·), y(vi+1, ·)) do not jointly maximize L in an aux-
iliary problem in which we fix all other variables at their optimal values. This, however,
contradicts the optimality of (vi, vi+1, y(vi, ·), y(vi+1, ·)).

The argument for the seller is analogous.

Proof of Lemma 4. Consider the hypothetical problem of maximizing EGT subject to
(C) being violated by no more than η (through the choice of a grand mechanism).
Denote by W ∗(η) the value of this maximization problem (more formally, the supre-
mum of EGT achievable by grand mechanisms that do not violate (C) by more than η).
As both EGT and (C) are continuous, W ∗ is also continuous. Let η̃ < 0 be such that
W ∗(0) −W ∗(η̃) < ε/3. (Note that a negative η indicates a stricter constraint.)

Define the set of distributions Fκ as the set of distributions with cdfs Fκ such
that (i) EFκ[v] ≤ EHB[v] − κ and (ii)

∫ x
−∞ Fκ(v)dv ≤ ∫ x

−∞ HB(v + κ)dv − κ for all x ∈
(−∞, max supp(HB ) − κ]. Similarly, define the set G as the set of distributions with cdfs
Gκ such that (i) EGκ[c] ≥ EHS [c] + κ and (ii)

∫ x
−∞ Gκ(c)dc ≤ ∫ x

−∞HS(c + κ)dc − κ for all
x ∈ (−∞, max supp(HS ) − κ]. Note that F0 and G0 are the feasible sets of distributions in
the EGT maximization problem of this paper, as the set of mean preserving spreads of a
distribution equals the set of distributions that have the same mean while also second
order stochastically dominating the distribution; see Mas-Colell, Dennis Whinston, and
Green (1995, Chapter 6.D).

Consider now the problem of maximizing EGT subject to (C) being violated by no
more than η̃ over the sets Fκ and Gκ. Let F and G denote an information structure such
that under this information structure and the optimal mechanism (i) (C) is violated by
at most η̃, (ii) EGT are above W ∗(η̃) − ε/3, and (iii) F ∈ Fκ̃ and G ∈ Gκ̃ for some κ̃ > 0.
Such F , G, and κ̃ exist by the definition of η̃ and as the conditions defining Fκ and Gκ
are continuous in κ (while EGT and (C) are continuous in signals).

Approximate (F , G) by a series of distributions (Fn, Gn )∞n=1 such that (i) the sup-
ports of Fn and Gn have at most n elements and (ii) Fn → F almost everywhere and
Gn → G almost everywhere.26 Then Fn (Gn) converges to F (G) weakly and by the
Helly–Bray theorem, EGT and (C) under (Fn, Gn ) converge to the corresponding val-
ues under (F , G).27 Therefore for some sufficiently high n∗, EGT under (Fn∗ , Gn∗ ) are
above W ∗(η̃) − 2ε/3 > W ∗(0) − ε and (C) is violated by at most η̃. But this implies—
by η̃ < 0—that under the finite information structure (Fn∗ , Gn∗ ), EGT above W ∗(0) − ε

are achievable without violating (C). Finally, define F∗
n∗ by “shifting Fn∗ up” such that

F∗
n∗ has expected value EHB[v], i.e., F∗

n∗(x) = Fn∗(x−EHB[v] +EFn∗ [v]), and note that the
definition of Fκ̃ implies EHB[v] − EFn∗ [v] > 0 (for n∗ sufficiently high). Similarly, define
G∗

n∗(x) = Fn∗(x + EHS [c] − EGn∗ [c]). Note that shifting the distribution of buyer (seller)

26For readability and notational convenience, I assume in the following discourse that F and G are con-
tinuous. If F and G already have finite support, this whole approximation step is, of course, unnecessary.
If F and G are mixed with a finite number of mass points, the following approximation is understood to
be applied only to the continuous part, i.e., Fn and Gn have the same mass points as F and G, but also
discretize the continuous parts of F and G.

27Here we use the same mechanism y as under (F , G). For completeness, define y(v, c) =
supv′<v,c′>c y(v′, c′ ) for all (v, c) not in the support of (F , G) (and let y(v, c) = 0 if y(v′, c′ ) is not defined
for any v′ < v and c′ > c). This ensures the monotonicity of YS and YB .
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valuations up (down) by a constant increases EGT and relaxes (C). Consequently, EGT
under (F∗

n∗ , G∗
n∗ ) are above W ∗(0) − ε. Furthermore, HB is a mean preserving spread of

F∗
n∗ by the definition of Fκ̃ and, similarly, HS is a mean preserving spread of G∗

n∗ . Conse-
quently, EGT of at least W ∗(0) − ε can be achieved by a grand mechanism consisting of
a feasible finite information structure and the optimal mechanism for this information
structure.

Proof of Proposition 2. The proof is by contradiction, i.e., I show that any grand
mechanism such that y(vi, cj ) ∈ (0, 1) is not optimal. To do so, consider the problem
of maximizing the Lagrangian (2) over y signals and probabilities. Optimality requires
that there is no feasible grand mechanism that achieves a higher Lagrangian value than
the optimal one. For now, assume that the Lagrange parameter λ 
= 0. The proof exploits
the following intermediate result in a number of ways.

Intermediate Result. In any grand mechanism that maximizes the Lagrangian,
y(vi, ·) 
= y(vi+1, ·) for any two buyer signals vi and vi+1 if λ 
= 0. Similarly, y(·, cj ) 
=
y(·, cj+1 ) for any two seller signals if λ 
= 0.28

Proof of the Intermediate Result. The proof follows directly from the argument in the
proof of Lemma 2.

Suppose contrary to Proposition 2 that y(vi, cj ) ∈ (0, 1). Note that this implies that
the derivative of L with respect to y(vi, cj ) equals 0 as L is linear in y(vi, cj ). Hence,
changing y(vi, cj ) to either 0 or 1 does not affect the value of the Lagrangian. If such
a change results in two adjacent signals having the same mechanism y, the intermedi-
ate result above implies that optimality is violated as there exists another grand mech-
anism with at most n (m) buyer (seller) signals leading to a strictly higher value of the
Lagrangian.

To see that such a change leads to two adjacent signals having the same mecha-
nism y, note first that by the monotonicity of the virtual valuation, y(vi, cj ) < 1 implies
y(vi, ck ) = 0 for all k > j and y(vl, cj ) = 0 for all l < i. Furthermore, y(vi, cj ) > 0 im-
plies y(vi, ck ) = 1 for all k < j and y(vl, cj ) = 1 for all l > i; see Table 2 for an illustration.
This implies that if y(vi+1, cj+1 ) = 1, then after changing y(vi, cj ) to 0, y(·, cj ) = y(·, cj+1 ).
If, however, y(vi+1, cj+1 ) = 0, then after changing y(vi, cj ) to 1, y(vi, ·) = y(vi+1, ·). If
y(vi+1, cj+1 ) ∈ (0, 1), then changing y(vi+1, cj+1 ) to 0 and y(vi, cj ) to 1 will not affect the
value of the Lagrangian, but then again y(vi, ·) = y(vi+1, ·). Finally, observe that if i = n

or j = m (and, therefore, there is no vi+1 and cj+1,) similar steps can be undertaken with
vi−1 and cj−1 instead of vi+1 and cj+1.

Finally, consider λ = 0. In this case, y(vi, cj ) ∈ (0, 1) implies vi = cj by (3). Hence,
all the steps above (in the λ 
= 0 case) will maintain the Lagrangian value and, therefore,
EGT while—through the merging of types—strictly relax constraint (C). The resulting
grand mechanism would then be optimal while (C) would be slack.

Proof of Lemma 3. For concreteness, let n ≤ m and assume that (C) holds with in-
equality under the optimal grand mechanism with at most n (m) buyer (seller) signals.

28Even if λ = 0, the merging of types works, but does not give a strict increase in the Lagrangian, i.e.,
there is always an optimal grand mechanism in which the result is true.
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Table 2. Implications of strictly monotone vir-
tual valuation and y(vi, cj ) ∈ (0, 1).

· · · cj−1 cj cj+1 · · ·
...

...
... · · ·

vi−1 0 0 · · ·
vi · · · 1 y(vi , cj ) 0 · · ·
vi+1 · · · 1 1
... · · ·

...
...

Denote the information structure in the solution to this problem by the optimal cutoffs
for the buyer (s, k1, � � � , kn−1, s̄) and the seller (s, g1, � � � , gm−1, s̄), where s and s̄ are the
minimum and maximum of the common support of HS and HB. Denote the optimal
mechanism in this information structure by y∗

n,m.
To show that EGT is higher if one more signal is allowed, I will introduce an addi-

tional cutoff into either the buyer’s or the seller’s signal structure and show that this
increases EGT without violating (C). To do so, I will distinguish two cases: First, the
highest seller type sells with zero probability in y∗

n,m; second, the highest seller type sells
with positive probability.

First, y∗
n,m(vn, cm ) > 0. Then consider the cutoffs (s, g1, � � � , gm−1, s̄ − ε, s̄) for the

seller while the cutoffs for the buyer remain unchanged. Amend y∗
n,m with y(vi, cm+1 ) = 0

for all vi. For ε = 0 (implying YS(cm+1 ) = 0), the information structure and also (C) are
unchanged and, therefore, EGT is the same as above. As (C) is continuous in ε and held
with inequality for ε = 0, it will still hold for ε > 0 small enough. Clearly, welfare is higher
in the new information structure (for ε > 0 small enough) as inefficient trades between
vn < s̄ and sellers with a type in [s̄ − ε, s̄] are avoided. (By the assumption that HS is
continuous with an interval as support, this event has positive probability.)

Second, y∗
n,m(vn, cm ) = 0. Then consider the cutoffs (s, k1, � � � , kn−1, x̄ − ε, s̄) for the

buyer, while the cutoffs for the seller remain unchanged. Amend y∗
n,m with y(vn+1, cj ) =

1 for all cj . For ε = 0 (implying ωn+1 = 0), the information structure and also (C) are
unchanged and, therefore, EGT is the same as above. As (C) is continuous in ε and held
with inequality for ε = 0, it will still hold for ε > 0 small enough. Clearly, welfare is higher
in the new information structure (for ε > 0 small enough) as efficient trades between
buyers with types in [s̄ − ε, s̄] and sellers with signal cm < s̄ are enabled.

Proof of Lemma 5. By Proposition 2, y(vl, cl ) and y(vh, ch ) are in {0, 1}. To show that
trade takes place if and only if expected value is above expected cost, note that (3) im-
plies the “only if” part. For the “if” part, consider first the case where either y(vl, cl ) = 0
or y(vh, ch ) = 0 (or both). In these cases, the optimal mechanism is a fixed price mecha-
nism in which the fixed price can be chosen as either t = vh or t = cl and clearly the result
holds. The only remaining case is y(vh, ch ) = y(vl, cl ) = 1 and it remains to show ch > vl
in this case. Consider to the contrary vl ≥ ch. But in this case, a fixed price contract at
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price t = ch and trade with probability 1 would (weakly) increase EGT while being bud-
get balanced, incentive compatible, and satisfying the participation constraints. As in
this case trade takes place regardless of signal, this outcome can be achieved by a totally
uninformative information structure (i.e., one signal per player). The optimality of such
a signal structure is, however, ruled out by Lemma 1.

Proof of Lemma 6. The proofs will be by contradiction, i.e., I will show an improve-
ment in EGT if the properties do not hold. First, suppose y(vl, ch ) > 0. Note that this
implies y(vi, cj ) = 1 for all (vi, cj ) 
= (vl, ch ) by monotonicity of the virtual valuation. By
(3), y(vl, ch ) > 0 implies vl ≥ ch (with strict inequality if either vh > vl or cl < ch have pos-
itive probability mass) and, therefore, EGT would be (weakly) higher if y(vl, ch ) = 1, i.e.,
EGT would be higher if all buyer types bought from all seller types. As vl ≥ ch implies
E[v] ≥ E[c] (again with strict inequality if either vh > vl or cl < ch has positive probability
mass), trade with probability 1 is feasible by an information structure that sends signal
E[v] to all buyers and E[c] to all sellers paired with a fixed price mechanism (where the
fixed price is in [E[c], E[v]].) As this information structure is not part of the optimal grand
mechanism by Lemma 1, there is no optimal grand mechanism in which y(vl, ch ) > 0.

Second, suppose y(vh, cl ) < 1. By the monotonicity of the virtual valuation, this im-
plies y(vi, cj ) = 0 for all (vi, cj ) 
= (vh, cl ). By (3), y(vh, cl ) < 1 implies vh ≤ cl. EGT in this
grand mechanism are, therefore, at most zero. Hence, it remains to show that there is an
alternative grand mechanism that yields strictly positive EGT. By Assumption 1, there
exists a fixed price t such that the probability that v ≥ t as well as the probability that
c ≤ t is strictly positive. Consider now the information structure that sends a high signal
to buyers with valuation weakly above t and a low signal otherwise. Similarly, let the sig-
nal for sellers with c ≤ t be low and high otherwise. Pair this information structure with
a mechanism that enforces trade if and only if the buyers signal is high and the sellers
signal is low at price t. Clearly, this grand mechanism is incentive compatible, budget
balanced, satisfies participation constraints, and yields strictly positive EGT.

Proof of Corollary 2. As the information structure in the optimal grand mechanism
is a monotone partition as a consequence of Proposition 1, its support could have at
most three elements, in which case two of these elements would also be elements of the
support of the true type distribution. The following result, stated as a separate lemma,
rules this possibility out and, therefore, the support of the signal structure in the optimal
grand mechanism can have at most two elements.

Lemma 11. Let the true type distribution of buyer valuations HB be discrete and let its
support be {v̂1, v̂2, � � � }. If v̂i and v̂i+1 are in the support of the signal distribution in the op-
timal grand mechanism with at most n (m) buyer (seller) signals and constraint (C) binds,
then the optimal grand mechanism assigns zero probability to all signals in (v̂i, v̂i+1 ).

If constraint (C) does not bind, then either the optimal grand mechanism assigns zero
probability to all signals in (v̂i, v̂i+1 ) or there exists an optimal information structure with
less than n (m) buyer (seller) types.

(An analogous result holds for the seller.)
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Proof. Suppose otherwise, i.e., let the information structure in the optimal grand
mechanism put positive probability on types v−i < vi < vi+1, and let vi−1 and vi+1 be
neighboring elements in the support of HB. Denote the corresponding probabilities in
the optimal information structure by ωi−1, ωi and ωi+1. We will consider the following
alternative distributions indexed by ε:

ω̃i−1(ε) = ωi−1 − ε
vi+1 − vi
vi+1 − vi−1

,

ω̃i(ε) = ωi + ε,

ω̃i+1(ε) = ωi+1 − ε
vi − vi−1

vi+1 − vi−1
.

(All other variables, e.g., cost types probabilities of trade and other valuation types, are
fixed at their optimal levels.) Note that the expected valuation is not affected by changes
in ε, and as vi−1 and vi+1 are neighboring elements of the true valuation support, posi-
tive as well as negative ε are feasible (if not too large in absolute value).

Now consider the Lagrangian L of the maximization problem that maximizes EGT
over ε subject to (C) (fixing all other variables at their optimal level). From the definition
ω̃i−1, ω̃i, and ω̃i+1, it is clear the L is linear in ε. As ωi−1, ωi and ωi+1 are by assumption
part of the optimal solution, L has to be maximized by ε = 0. As L is linear in ε and as
ε in an open interval around 0 is feasible, this can only be the case if the derivative of L
with respect to ε is 0 everywhere. In the following discussion, it is shown that this is not
possible if (C) binds.

Suppose the derivative of L with respect to ε is 0 everywhere. For ε = 0, we have
V V (vi−1, 0) < V V (vi, 0) < V V (vi+1, 0) by Lemma 2 (where V V (vi, ε) denotes the virtual
valuation of vi for a given ε). As ε increases, the virtual valuations change as ω̃i−1 and
ω̃i+1 decrease while ωi increases. Denote by ε′ > 0 the lowest ε such that (at least) one
of the following conditions is met:

• V V (vi, ε) = V V (vi+1, ε)

• ω̃i−1(ε) = 0.

For concreteness, let the first condition be met at ε′, i.e., V V (vi, ε′ ) = V V (vi+1, ε′ ). Note
that the value of L at ε = ε′ is the same as at ε = 0 as the derivative of L with respect to
ε is supposed to be 0. As a next step (which will again not change L), change y(vi, ·) and
y(vi+1, ·) to ỹ(vi, cj ) = ỹ(vi+1, cj ) = y(vi, cj )ωi/(ωi + ωi+1 ) + y(vi+1, cj )ωi+1/(ωi + ωi+1 )
for j = 1, � � � , m. This change will not affect L as L is linear in y(vi, cj ) with slope equal
to the virtual valuation (plus a term that is constant across buyer signals and, therefore,
unaffected) and both ṽi and ṽi+1 had the same virtual valuation. As a last step, note
that—following the proof of Lemma 2—merging types vi and vi+1 to viωi/(ωi +ωi+1 ) +
vi+1ωi+1/(ωi +ωi+1 ) with probability ω̃i(ε′ ) + ω̃i+1(ε′ ) will not affect EGT, but relax (C);
see the proof of Lemma 2. Hence, the value of L increases due to this change. However,
this contradicts that at the optimal solution, L is maximized by the “optimal” values
vi−1, vi, vi+1, and ωi−1, ωi, ωi+1 (holding all other variables at their optimal values).
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If the other condition is met at ε′, i.e., ω̃i−1(ε′ ) = 0, the last step of the proof is similar.
If ω̃i−1(ε′ ) = 0, eliminating vi−1 will strictly increase L (as vi’s incentive compatibility
constraint is strictly relaxed).

Finally, consider the case where (C) does not bind. Then the merging of signals in the
steps above establish that there is an information structure that (i) yields the same EGT,
(ii) does not violate (C), and (iii) uses less signals than the initial optimal information
structure.

Proof of Lemma 7. By Lemmas 6 and 5, the only other possibilities are (i) y(vl, cl ) =
0 = y(vl, ch ) while y(vh, cl ) = 1 = y(vh, ch ), (ii) y(vl, cl ) = 1 = y(vh, cl ) while y(vl, ch ) =
0 = y(vh, ch ), and (iii) y(vl, cl ) = 0 = y(vh, ch ) = y(vl, ch ) while y(vh, cl ) = 1. In (i), costs
are not decision relevant and, therefore, it is without loss to have only one cost signal.
In (ii), valuations are not decision relevant and it is without loss to have only one valu-
ation signal. In both cases, the optimality of a single signal would contradict Lemma 1.
Therefore, only case (iii) remains to be ruled out, which is done next.

Suppose, contrary to the lemma, that y(vl, cl ) = 0 = y(vh, ch ) = y(vl, ch ) while
y(vh, cl ) = 1, which means that trade occurs only between the high valuation and the
low cost type. Note that by Lemma 5, vl ≤ cl and vh ≤ ch. This immediately implies that
cl > c and vh < v̄ by Assumption 1 and, therefore, ch = c̄ and vl = v by Corollary 2. The
next step is to show vh = c̄. By Lemma 5, y(vh, ch ) = 0 implies vh ≤ ch = c̄. If vh < c̄, then
increasing the probability that a c̄ type receives a cl signal by ε > 0 will improve EGT,
as it reduces the probability of inefficient trade. The resulting information structure is
clearly feasible for ε > 0 sufficiently small and budget balance still holds as a fixed price
mechanism can be used. Hence, vh = c̄ has to hold. An analogous argument establishes
cl = v. Note that as a consequence there are no gains from trade between a v type receiv-
ing signal vh and a seller of signal cl. I will now change first the information structure
and then the mechanism to achieve higher EGT, thereby contradicting the optimality
of the original grand mechanism. First, EGT do not change if the buyer receives a fully
informative signal (while holding the seller’s information structure and y fix) because of
the previous observation that there are zero gains from trade between a v type receiving
vh and a seller with signal cl. But as v̄ > c̄ ≥ ch, EGT can be strictly increased from there
by changing the mechanism y by setting y(vh, ch ) = 1 instead of y(vh, ch ) = 0. Again
budget balance holds, as the resulting mechanism can be implemented by a fixed price
mechanism with price t = ch.

Therefore, y(vl, cl ) = 1 = y(vh, ch ), which implies that trade happens unless the cost
signal is high and the valuation signal is low. I will hold the mechanism, i.e., y, fixed
for the remainder of the proof and first focus on the buyer showing that vh = v̄ in the
optimal information structure. By way of contradiction, suppose vh < v̄ and note that
by Corollary 2 this implies vl = v. As vh < v̄, some buyers with true valuation v receive
the signal vh. Consider now moving ε of these buyers to signal vl. Put differently, the
information structures

ṽl(ε) = v, ṽh(ε) = ωh − ε− ω̄

ωh − ε
v + ω̄

ωh − ε
v̄,

ω̃h(ε) =ωh − ε, ω̃l(ε) = 1 −ωh + ε,
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are feasible for small ε > 0, where ω̄ is the share of v̄ in the true buyer type distribution.
Note that the original information structure is obtained for ε = 0. Constraint (C) in the
binary case (with y fixed as above) can be written as

γlṽl(ε) + (1 − γl )ω̃h(ε)ṽh(ε) − ω̃h(ε)ch − γl
(
1 − ω̃h(ε)

)
cl ≥ 0.

The derivative of the left-hand side of this condition with respect to ε is ch − v + γl(v −
cl ), which is positive as ch ≥ v and v ≥ cl by Lemmas 6 and 5. Clearly, EGT are strictly
increasing in ε as well, as the moved types with valuation v no longer trade inefficiently
with high cost sellers. This implies that EGT are strictly higher for ε > 0 while (C) is not
violated and thereby optimality of the original grand mechanism is contradicted. Hence,
vh = v̄ has to hold in the optimal grand mechanism.

The proof for cl = c in the optimal grand mechanism is analogous.

See Appendix D for the proofs of Lemma 8 and Proposition 3.

D Derivations of binary type distribution

By Lemmas 6 and 7, y(vh, ch ) = y(vl, cl ) = y(vh, cl ) = 1 while y(vl, ch ) = 0 and vh = v̄

while cl = c. Let ω̄ (γ) be the share of high (low) types in HB (HS). Then the optimization
problem can be formulated in terms of the variables ωh ∈ [0, ω̄] and γl ∈ [0, γ], and

vl = ω̄−ωh

1 −ωh
v̄ + 1 − ω̄

1 −ωh
v,

ch = γ − γl

1 − γl
c + 1 − γ

1 − γl
c̄.

Constraint (C) can be written as

BB(ωh, γl )

= γl
ω̄−ωh

1 −ωh
v̄ + γl

1 − ω̄

1 −ωh
v + (1 − γl )ωhv̄ −ωh

γ − γl

1 − γl
c −ωh

1 − γ

1 − γl
c̄ − γl(1 −ωh )c

≥ 0.

The objective, EGT, equals

EGT(ωh, γl ) = (
ωhγ + (ω̄−ωh )γl

)
(v̄ − c) + γl(1 − ω̄)(v − c) +ωh(1 − γ)(v̄ − c̄).

As EGT(ωh, γl ) is strictly increasing in both variables, BB holds with equality if and
only if BB(ω̄, γ) < 0: If BB held with inequality, increasing either γl or ωh by a sufficiently
small amount would increase EGT without violating BB.

Note at this point that it is possible to normalize the problem as described in the
main text: the maximizing ωh and γl in the original problem equal the maximizing
choices in the normalized problem in which v̄normal = 1, vnormal = v/v̄, cnormal = c/v̄,
and c̄normal = c̄/v̄. First/second best EGT in the original problem equals first/second
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best EGT in the normalized problem times v̄. This is true as EGT, EGTfb, and BB are
linear in the types v̄, v, c̄, and c.

Solving the BB condition (holding with equality) for ωh yields29

ωBB
h (γl )

= 1
2

(
1 + γl(v̄ − c)

1 − γ

1 − γl
(c̄ − c) − (1 − γl )(v̄ − c)

)

−
√√√√√√

1
4

(
1 + γl(v̄ − c)

1 − γ

1 − γl
(c̄ − c) − (1 − γl )(v̄ − c)

)2

− γlω̄(v̄ − v) + γl(v − c)
1 − γ

1 − γl
(c̄ − c) − (1 − γl )(v̄ − c)

,

while solving the BB condition (holding with equality) for γl yields

γBB
l (ωh )

= 1
2

(
1 + ωh(v̄ − c)

1 − ω̄

1 −ωh
(v̄ − v) − (1 −ωh )(v̄ − c)

)

−
√√√√√1

4

(
1 + ωh(v̄ − c)

1 − ω̄

1 −ωh
(v̄ − v) − (1 −ωh )(v̄ − c)

)2

− ωh(v̄ − c̄) +ωhγ(c̄ − c)
1 − ω̄

1 −ωh
(v̄ − v) − (1 −ωh )(v̄ − c)

.

The term ωBB
h (γl ) can be plugged into W so as to get a one-dimensional optimiza-

tion problem over γl ∈ [γBB
l (ω̄), γ]. I numerically verified that the resulting objective

function is convex in γl (under the assumption that BB(ω̄, γ) < 0).30 Consequently the
solution is either

• γl = γBB
l (ω̄) and, therefore, ωh = ω̄ or

• γl = γ and, therefore, ωh = ωBB
h (γ).

Put differently, one player receives a perfectly informative signal and the other player
receives a noisy signal. For concreteness, the relevant values γBB

l (ω̄) and ωBB
h (γ) are

given explicitly:

γBB
l (ω̄) = 1

2

(
1 + ω̄(v̄ − c)

ω̄v̄ − v + (1 − ω̄)c

)

29The second solution of the quadratic equation is above 1, as

γl(v̄ − c)
1 − γ

1 − γl
(c̄ − c) − (1 − γl )(v̄ − c)

> 1

by γl ≤ γ, and, therefore, is not relevant. Note that there always exists a solution in (0, 1) as (C) is slack if
ωh = 0.

30The code is available on the website of the author (https://schottmueller.github.io/).

https://schottmueller.github.io/
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−
√

1
4

(
1 + ω̄(v̄ − c)

ω̄v̄ − v + (1 − ω̄)c

)2

− ω̄(v̄ − c̄) + ω̄γ(c̄ − c)

ω̄v̄ − v + (1 − ω̄)c
,

ωBB
h (γ) = 1

2

(
1 + γ(v̄ − c)

c̄ − γc − (1 − γ)v̄

)

−
√√√√1

4

(
1 + γ(v̄ − c)

c̄ − γc − (1 − γ)v̄

)2

− γω̄(v̄ − v) + γ(v − c)

c̄ − γc − (1 − γ)v̄
.

To determine which of the two solutions yields higher EGT, it is simplest to compare
for both the difference to first best EGT. As EGT(ω̄, γl ) is linear in γl, this difference can
be expressed as

EGT(ω̄, γ) − EGT
(
ω̄, γBB

l (ω̄)
)

= (1 − ω̄)(v − c)

×
(
γ − 1

2

(
1 + ω̄(v̄ − c)

ω̄v̄ − v + (1 − ω̄)c

)

+
√

1
4

(
1 + ω̄(v̄ − c)

ω̄v̄ − v + (1 − ω̄)c

)2

− ω̄(v̄ − c̄) + ω̄γ(c̄ − c)

ω̄v̄ − v + (1 − ω̄)c

)
,

EGT(ω̄, γ) − EGT
(
ωBB

h (γ), γ
)

)

= (1 − γ)(v̄ − c̄)

×
(
ω̄− 1

2

(
1 + γ(v̄ − c)

c̄ − γc − (1 − γ)v̄

)

+
√√√√1

4

(
1 + γ(v̄ − c)

c̄ − γc − (1 − γ)v̄

)2

− γω̄(v̄ − v) + γ(v − c)

c̄ − γc − (1 − γ)v̄

)
.

Consequently, γl = γBB
l (ω̄) and, therefore, ωh = ω̄ in the optimal grand mechanism

if and only if

(1 − γ)(v̄ − c̄)

(1 − ω̄)(v − c)

[
ω̄− 1

2

(
1 + γ(v̄ − c)

c̄ − γc − (1 − γ)v̄

)

+
√√√√1

4

(
1 + γ(v̄ − c)

c̄ − γc − (1 − γ)v̄

)2

− γω̄(v̄ − v) + γ(v − c)

c̄ − γc − (1 − γ)v̄

]

≥ γ − 1
2

(
1 + ω̄(v̄ − c)

ω̄v̄ − v + (1 − ω̄)c

)

+
√

1
4

(
1 + ω̄(v̄ − c)

ω̄v̄ − v + (1 − ω̄)c

)2

− ω̄(v̄ − c̄) + ω̄γ(c̄ − c)

ω̄v̄ − v + (1 − ω̄)c

and γl = γ, and, therefore, ωh =ωBB
h (γ) otherwise.
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