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Equilibrium existence in games with ties

Wojciech Olszewski
Department of Economics, Northwestern University

Ron Siegel
Department of Economics, The Pennsylvania State University

We provide conditions that simplify applying Reny’s (1999) better-reply security to
Bayesian games and use these conditions to prove the existence of equilibria for
classes of games in which payoff discontinuities arise only at “ties.” These games
include a general version of all-pay contests, first-prize auctions with common
values, and Hotelling models with incomplete information.
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1. Introduction

Games with discontinuous payoffs arise naturally in various settings. In a standard auc-
tion, if several bidders submit the same highest bid, the prize is allocated according to
a lottery, but each tying bidder can obtain the prize with certainty by increasing her bid
slightly. In a Hotelling model, firms situated at the same location split their set of cus-
tomers, but each firm can typically increase its share discretely by changing its location
slightly. Additional examples abound.

The existence of equilibria in many games with discontinuous payoffs, especially
those with incomplete information, is still an open question.1 Proving general existence
results is difficult because the presence of discontinuous payoffs precludes a direct use
of most fixed-point theorems, such as Kakutani’s theorem and its generalizations. In
addition, the existence of an equilibrium may depend on subtle details of the setting.
For example, in first-price auctions and all-pay auctions, equilibrium may not exist if
some bidder’s valuation for the prize is 0 with positive probability.2 But this is the only
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1For example, the existence of equilibrium in first-price auctions with interdependent values and cor-
related signals is still an open question. Special cases have been studied, including bidders with affiliated
signals (Milgrom and Weber (1982) and Reny and Zamir (2004)) and only two bidders (Govindan and Wilson
(2010)).

2To see this, suppose there are two bidders. Bidder 1’s valuation is 0 and bidder 2’s valuation is drawn
uniformly from the interval [0, 1]. If bidder 1 bids 0, then bidder 2 does not have a best response, both in a
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reason that an equilibrium may not exist in a general class of contests that includes all-
pay auctions, as we show in Section 6.1, whereas other distributional assumptions are
required for equilibrium existence even in private-value first-price auctions (Olszewski,
Reny, and Siegel (2022)).

An obvious approach to proving the existence of equilibria is to approximate the
original game by a sequence of games with a finite number of actions and types, for
which the existence follows from the Kakutani fixed-point theorem. However, any par-
ticular sequence of equilibria of the approximating games, or even all such sequences,
need not converge to an equilibrium of the original game, even if the original game has
an equilibrium. Reny (1999) suggested a somewhat different approach3 and obtained a
result that subsumed most existence results previously available for games with a con-
tinuum of actions and discontinuous payoffs. Instead of sequences of games with a
finite number of actions and types, he studied sequences of games with continuous
payoffs that approximate the original game with discontinuous payoffs. Reny’s (1999)
results have been used subsequently by many authors. The two approaches comple-
ment one another, and which approach is more useful may depend on the details of the
setting.4

This paper provides tools for establishing equilibrium existence in distributional
strategies5 for a general class of Bayesian “games with ties,” in which payoff discontinu-
ities may arise only when players “tie,” for example, when winning bidders submit the
same bid in an auction or when firms choose the same location in a Hotelling model. We
first introduce a condition, improving deviations, and prove that this condition guaran-
tees equilibrium existence. The condition is similar to a combination of a weaker ver-
sion of Dasgupta and Maskin’s (1986) reciprocal upper semi-continuity (RUSC) and a
version of Reny’s (1999) payoff security. We then specialize our condition to games with
ties to obtain two other conditions, favorable tie-breaking and favorable tie-breaking on
average. These two conditions say, roughly, that by breaking ties unilaterally, players can
increase the sum of their payoffs above the value of an upper semi-continuous envelope
of the sum of payoffs. Favorable tie-breaking requires this increase for every strategy
profile in which ties whose resolution affects at least one player’s payoff arise with pos-
itive probability, whereas favorable tie-breaking on average requires the increase only
for strategy profiles in which such ties arise “on average.” The former condition is more
demanding, but easier to check.

Our result that improving deviations implies equilibrium existence follows from
Reny’s (1999) main theorem. Our mathematical contribution is, therefore, limited. In-
stead, our goal is to “extract” from Reny’s result tools for proving equilibrium existence

first-price and in an all-pay auction. But if bidder 1 bids more than 0 in a first-price auction, she must lose
with certainty, so low types of bidder 2 are not best responding (this example is due to Lebrun (1996)); in an
all-pay auction, bidder 1 must bid 0.

3See also the work of McLennan, Monteiro, and Tourky (2011), Barelli and Meneghel (2013), and Reny
(2016), which generalizes Reny’s (1999) earlier result.

4The two approaches can also be unified for mixed strategies (see Bich and Laraki (2017), Section 4.1).
5Distributional strategies were introduced by Milgrom and Weber (1985). A player’s distributional strat-

egy is a distribution over the product of the player’s types space and action space whose marginal on the
type space coincides with the player’s type distribution. We discuss the choice of this concept in Section 2.
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in some applications, especially those with incomplete information. Reny’s (1999) result
requires better-reply security, a property of the graph of the mapping from strategy pro-
files to payoff profiles. Verifying better-reply security is a demanding task in incomplete-
information settings in which players use distributional strategies because the graph of
the mapping from strategy profiles to payoff profiles is an infinite-dimensional object.
Perhaps for this reason, various authors have used stronger, but simpler, conditions to
prove equilibrium existence in various applications. For example, Carbonell-Nicolau
and McLean (2018) used the RUSC of Dasgupta and Maskin (1986) to show existence
in common-value first-prize auctions, and He and Yannelis (2016) provided their own
condition, which they applied to all-pay auctions. This required strong, and sometimes
restrictive, modelling assumptions. (We discuss the details in the literature review be-
low.) By extracting what is needed from Reny’s (1999) result for games with ties, we are
able to relax some of these assumptions and prove equilibrium existence for general
contests with many heterogeneous prizes and interdependent values, and for general
common-value first-prize auctions. In addition, we show that our conditions also apply
to Hotelling’s models with incomplete information.6

1.1 Literature review

Early existence results for complete-information games with discontinuous payoffs
were obtained by Dasgupta and Maskin (1986) and Simon (1987) by approximating the
original game with a sequence of finite games. They were later subsumed by Reny’s
(1999) results.7 Recently, several authors established equilibrium existence in various
incomplete-information settings. This line of research includes Lebrun (1996, 1999)
for private-value first-price auctions, Jackson and Swinkels (2005), Monteiro and Page
(2007), Prokopovych and Yannelis (2014), He and Yannelis (2016), Carbonell-Nicolau
and McLean (2018), Carmona and Podczeck (2018), and Reny (2016). Reny (2019) sur-
veys the literature on equilibrium existence in discontinuous games.

Carmona and Podczeck (2018) seems the most closely related to our paper. They
study games with sharing rules (in particular, first-price auctions and contests). They
focus on providing conditions for the existence of a common equilibrium set for all pos-
sible sharing rules. Their results imply the existence of equilibria in some incomplete-
information games with ties, for example, in a version of contests with private values
(see their Example 5). The most important added value of our favorable tie-breaking
condition, which guarantees equilibrium existence, in the context of contests and first-
price auctions is that it applies to these games with interdependent and common values,
respectively. Carmona and Podczeck’s (2018) results apply to a more restricted class of
games with interdependent values, because their �-strong indeterminacy condition is
violated in many such contests and first-price auctions.

6The Supplementary Appendix of our working paper (Olszewski and Siegel (2022)) contains three addi-
tional applications: a two-firm Hotelling setting with private production costs, independent private-value
first-price auctions with costly bids, and a two-player contest model in which players’ bids determine not
only who wins, but which prize the winner obtains.

7There is also more recent research on the existence of equilibria in games of complete information (for
example, Carmona (2009)), which is only remotely related to the present paper.
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Carbonell-Nicolau and McLean (2018) and He and Yannelis (2016) also apply their
results to auctions. Carbonell-Nicolau and McLean (2018) show existence in some
common-value auctions,8 but those auctions must also satisfy a somewhat involved
condition (Assumption C), which, as the authors point out, excludes settings in which
a player’s preference to win or lose a tie depends on other players’ types. He and Yan-
nelis (2016) prove existence in all-pay auctions in which bidders assign a common value
to the single prize. Our favorable tie-breaking condition applies to a general class of
contests with multiple prizes, which includes all-pay auctions, in which the prizes are
assigned possibly different (and interdependent) values by different bidders.

We are able to cover a range of applications due to several factors. First, Carbonell-
Nicolau and McLean (2018) and He and Yannelis (2016) find conditions on the primitives
of incomplete-information games that imply that behavioral or distributional strate-
gies satisfy both Reny’s (1999) payoff security and RUSC; these conditions in turn imply
better-reply security (according to one of Reny’s (1999) results). In contrast, our condi-
tions on games with ties imply better-reply security, but are weaker than payoff security
and RUSC. Second, we noticed that (a) a player’s deviation (tie-breaking) actions can be
allowed to depend on other players’ strategies. Moreover, (b) tie-breaking is not required
for every strategy profile in which ties whose resolution affects at least one player’s pay-
off arise with positive probability; it is required only for strategy profiles in which such
ties arise in expectation with respect to the other players’ strategies. The former obser-
vation allows the inclusion of common-value auctions in which whether a player prefers
to win or lose a tie depends on other players’ types, and the latter observation allows the
inclusion of natural extensions of the Hotelling model to incomplete information.

The paper by Allison, Bagh, and Lepore (2018) is also closely related to ours. Simi-
larly to Carmona and Podczeck (2018), Allison, Bagh, and Lepore (2018) are concerned
with the invariance of equilibria in some classes of games. They provide a sufficient
condition for the invariance of equilibria, which they call superior payoff matching and
which is very similar to the existence of our tie breakers. Their condition turns out to be
sufficient for the existence of pure-strategy equilibria in some games of complete infor-
mation with discontinuous payoffs. These games include some contests and oligopolies
with endogenous choices of product qualities. Allison, Bagh, and Lepore (2018) also
refer directly to Reny’s (1999) better-reply security and show existence even in some set-
tings in which better-reply security fails.

Reny and Zamir (2004) and Prokopovych and Yannelis (2019) address the problem
of equilibrium existence in first-price auctions with affiliated types and interdependent
values. They provide sufficient conditions for the existence of sequences of monotone
approximate equilibria whose limits are pure-strategy Bayes–Nash equilibria. Since
these authors are concerned with monotone equilibria, their conditions are naturally
more restrictive than ours.

8Their paper contains a summary of the extensive previous literature on the existence of equilibria in
auctions.



Theoretical Economics 18 (2023) Equilibrium existence 485

2. Main existence theorem

Consider a (possibly) incomplete-information game among n players whose type
spaces are X1, � � � , Xn, action spaces are B1 = · · · = Bn = B, and payoff functions are
ui(x1, � � � , xn, b1, � � � , bn ) for i = 1, � � � , n. We assume that X1, � � � , Xn and B are compact
metric spaces and

0 ≤ ui(x1, � � � , xn, b1, � � � , bn ) ≤ β

for some β> 0 and all i and x1, � � � , xn, b1, � � � , bn. (This last assumption is equivalent to
assuming that payoffs are bounded.) We denote by Fi the distribution of player i’s type
xi and assume that players’ types are independent. Our aim is to show the existence of
equilibria for a class of such games.

We will show the existence of equilibria in distributional strategies (introduced by
Milgrom and Weber (1985)), which are defined as follows. A distributional strategy of
player i, which we will denote by μi or σi, is a probability measure on Xi × Bi whose
marginal on Xi coincides with the distribution Fi of player i’s type.

Equilibrium existence in distributional strategies implies equilibrium existence in
behavioral strategies because there is a many-to-one payoff-preserving mapping from
behavioral strategies to distributional strategies. That is, each distributional strategy
corresponds to an equivalence class of behavioral strategies.9 An additional, mathe-
matical advantage of working with distributional strategies is that the strategy spaces
have a convenient linear topological structure, which we will introduce next.10

We endow each player’s set of (distributional) strategies with the weak∗ topology and
observe that the set of strategies is compact.11 We define the operations of addition and
multiplication by a scalar in the usual way,12 so the strategy sets are also convex. Given a
strategy profile μ = (μ1, � � � , μn ), we also denote by μ= μ1 ×· · ·×μn, with some abuse of
notation, the product measure on the product space X1 ×· · ·×Xn ×Bn. Player i’s payoff
given a strategy profile μ is Ui(μ) = ∫

ui(x1, � � � , xn, b1, � � � , bn )dμ, that is, the expected
value of ui taken with respect to all players’ strategies. (Throughout the paper we endow
product spaces with the product topology, use the Borel σ-algebras, and assume that
the payoff functions ui are measurable.)

We first identify a sufficient condition for equilibrium existence, and later show that
this condition is satisfied by many games in which payoff discontinuities arise only when
multiple players take the same action. The condition says, roughly, that at any strategy
profile with payoff discontinuities, the sum of players’ payoffs can be increased more

9See page 624 of Milgrom and Weber (1985). Our assumptions imply those required by Milgrom and
Weber (1985).

10Another alternative, which we did not explore, would be to study distributional Bayesian equilibria.
Balder and Rustichini (1994), Kim and Yannelis (1997), and Balbus, Dziewulski, Reffett, and Woźny (2015)
prove existence results for this concept and games with continuous payoffs, even when the number of
players is infinite. This approach naturally dispenses with the independent type assumption.

11The set of probability measures over Xi ×B is compact, and it is straightforward to verify that the set of
strategies is a closed subset of the set of probability measures over Xi ×B. In addition, the weak∗ topology
is metrizable.

12Given a constant λ, two measures μ and ν, and a measurable set S, we let (μ+ ν)(S) = μ(S) + ν(S), and
(λμ)(S) = λμ(S).
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by players deviating unilaterally than by simultaneously changing players’ actions and
types slightly. We formalize this condition, which we call improving deviations, with the
following definitions.

Definition 1. A deviation plan specifies, for every profile of strategies μ, every player i,
and every ε > 0, a measurable function τ

μ,ε
i : Xi ×Bi → Bi such that the deviation strat-

egy με
i , which, for type xi, prescribes action τ

μ,ε
i (xi, bi ) whenever μi prescribes action

bi,13 satisfies

Ui(μ) − ε ≤Ui

(
με
i , μ−i

)
. (1)

A continuous deviation plan is a deviation plan such that every player i’s payoff Ui is
continuous at (με

i , μ−i ) as a function of the strategies of all players other than i.

The existence of a continuous deviation plan is closely related to the game with dis-
tributional strategies being payoff secure (Reny (1999)).14

Definition 2. A payoff envelope is an upper semi-continuous function W (x1, � � � ,
xn, b1, � � � , bn ) such that

n∑
i=1

ui(x1, � � � , xn, b1, � � � , bn ) ≤W (x1, � � � , xn, b1, � � � , bn ). (2)

The existence of a payoff envelope can be viewed as a weakening of the requirement
that the sum of players’ payoffs is upper semi-continuous in the game with distribu-
tional strategies (Dasgupta and Maskin (1986)).

Definition 3. A game has improving deviations if there is a payoff envelope W and a
continuous deviation plan such that if the payoff Ui of some player i is discontinuous at
μ as a function of all players’ strategies, then for some ε > 0,∫

W (x1, � � � , xn, b1, � � � , bn )dμ<

n∑
j=1

Uj

(
με
j , μ−j

)
, (3)

where με
j is player j’s deviation strategy corresponding to the deviation plan.

Intuitively, we typically think of W as the lowest possible, analytically tractable upper
semi-continuous envelope of the sum of payoffs.15 Similarly, if the payoff of player i is

13In particular, for any set A = Si ×Yi, where Si ⊆ Xi and Yi ⊆ Bi are measurable, με
i (A) = μi((Si ×Bi ) ∩

((τμ,ε
i )−1(Yi ))).
14More precisely, the game is payoff secure if a continuous deviation plan exists.
15We can in fact define the payoff envelope W as the lowest upper semi-continuous envelope of the sum

of payoffs, that is,

W (x1, � � � , xn, b1, � � � , bn ) = inf
OεO

sup
x̄1, ���, x̄n , b̄1, ���, b̄nεO

.
n∑

i=1

ui(x̄1, � � � , x̄n, b̄1, � � � , b̄n ),

where O is the set of open neighborhoods of x1, � � � , xn, b1, � � � , bn. However, in some settings, a different W
may be easier to work with.
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discontinuous at (xi, bi ) and μ−i, we typically think of τμ,ε
i (xi, bi ) as an action player i of

type xi that is close to bi and resolves a payoff discontinuity in her favor, possibly leaving
the action bi unchanged, that is, setting τ

μ,ε
i (xi, bi ) = bi for (xi, bi ) and μ−i such that the

payoff of player i is continuous.
We will see that in many applications, W and τ

μ,ε
i (xi, bi ) are easy to find. The key

condition, (3), says that when each player resolves the discontinuity in her favor, the
resulting sum of payoffs is higher than W , that is, higher than when players’ actions and
types are changed slightly in a way that maximizes the sum of payoffs. Definitions 7 and
8 below adapt the condition to games in which payoff discontinuities arise only when
multiple players take the same action.16

Theorem 1. Every game with improving deviations has a Nash equilibrium in distribu-
tional strategies.

In Section 4, we use Theorem 1 to prove equilibrium existence results for games in
which payoff discontinuities occur only when players choose the same action. But The-
orem 1 can also be applied to other discontinuous games. We provide an example in
Section 7.

Remark 1. We can also formulate a closely related result for general normal-form
games in which the set of pure strategies of player i is Ai and player i’s payoff function
is ui.17 Assume that (i) (a version of payoff security) for every i, every a ∈ A = Ai ×A−i,
and every ε > 0, there exist some dεi ∈ Ai and an open neighborhood V−i of a−i such
that ui(dεi , a′

−i ) > ui(a) − ε for every a′
−i ∈ V−i, and (ii) (a version of weak RUSC) there

exists an upper semi-continuous function Z : A → R such that
∑n

i=1 ui(a) ≤ Z(a) for all
a ∈ A, and such that for every discontinuity point a of some ui, there is an ε > 0 such
that

∑n
i=1 ui(d

ε
i , a−i ) >Z(a). Then there exists a Nash equilibrium in pure strategies.

To use this result, however, one would need to show that the payoff security and
weak RUSC conditions are satisfied for the distributional strategies, whereas our condi-
tions refer to the extent possible to the underlying actions and reduce the requirements
that need to be checked with respect to distributional strategies.

3. Proof of Theorem 1

To prove Theorem 1, we will use Reny’s (1999) Theorem 3.1. Since the game with distri-
butional strategies is obviously compact and quasi-concave according to Reny’s (1999)
terminology, his Theorem 3.1 guarantees that an equilibrium exists if the game is better-
reply secure. To define better-reply security, we denote by 
 the closure of the graph of
the function that maps each profile of strategies to the vector of players’ payoffs. A game

16Continuous deviation plans can be thought of as an expression of discontinuities not being prevalent,
a key concept in proving equilibrium existence in discontinuous games, which goes back at least to Das-
gupta and Maskin’s (1986) finitely many “lines” of discontinuity, and more recently to Barelli, Govindan and
Wilson’s (2014) “mild discontinuities.”

17We thank a referee for suggesting this result.
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is better-reply secure if, for every strategy profile μ∗ = (μ∗
1, � � � , μ∗

n ) that is not an equi-
librium and every vector u∗ = (u∗

1, � � � , u∗
n ) such that (μ∗, u∗ ) is in 
, there is a player i,

a strategy μi, and a number η > 0 such that player i’s payoff from playing μi exceeds
u∗
i +η for every profile of strategies of the other players in some neighborhood of μ∗

−i.
Consider μ∗ and u∗ such that μ∗ is not an equilibrium and (μ∗, u∗ ) is in 
. Suppose

first that the payoff of every player is continuous at μ∗, so u∗
i = Ui(μ∗ ) for every player

i. Take a player i who has a profitable deviation μi, so Ui(μi, μ∗
−i ) > Ui(μ∗ ) + 3η for

some η> 0. Because the game has improving deviations, there is a continuous deviation
strategy με

i of player i such that Ui(με
i , μ∗

−i ) > Ui(μ∗ ) + 2η.18 Since Ui is continuous at
(με

i , μ∗
−i ) as a function of the strategies of all players other than i, player i’s payoff from

playing με
i exceeds u∗

i + η for every profile of strategies of the other players in some
neighborhood of μ∗

−i.
Now suppose that the payoff of some player i is discontinuous at μ∗. By definition of


, μk →k μ∗ and uk →k u∗ for some sequence (μk, uk )∞k=1 from the graph of the function
that maps each profile of strategies to the vector of players’ payoffs (so ukj = Uj(μk ) for
every player j).

Since the payoff envelope W is upper semi-continuous,

lim sup
∫

W dμk ≤
∫

W dμ∗.

(See Billingsley (1995), Problem 29.1.) Thus, by (2),

u∗
1 + · · · + u∗

n = lim
∫

(u1 + · · · + un )dμk ≤
∫

W dμ∗.

By (3), for μ−j = μ∗
−j , each player j has a deviation strategy με

j (for some ε > 0) such that

∫
W dμ∗ <

n∑
j=1

Uj

(
με
j , μ∗

−j

)
,

so

u∗
1 + · · · + u∗

n <

n∑
j=1

Uj

(
με
j , μ∗

−j

)
.

The last inequality implies that there is a player j such that Uj(με
j , μ∗

−j ) > u∗
j + 2η for

some η > 0. Since Uj is continuous at (με
j , μ∗

−j ) as a function of all players other than
j, player j’s payoff from playing με

j exceeds u∗
j + η for every profile of strategies of the

other players in some neighborhood of μ∗
−j .

4. Games with ties

Our focus is on games in which payoff discontinuities arise only when two or more play-
ers choose the same action. We refer to such actions as ties and to such games as games
with ties.

18This follows from the definition of a deviation strategy for ε= η.
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Definition 4. Given an action b and an action profile (b1, � � � , bn ) with bi = b for two
or more players i, we say that action b is a tie and that the players i for whom bi = b tie
at b.

Definition 5. A game with ties is a game in which every player i’s payoff ui is continu-
ous at (x1, � � � , xn, b1, � � � , bn ) if player i does not tie at bi.

Not all ties necessarily lead to a payoff discontinuity. We refer to those ties that do as
essential ties on average.

Definition 6. (i) Given a strategy profile μ−i, a bid bi = b is an essential tie on aver-
age for player i at (xi, bi ) if

∫
ui(x1, � � � , xn, b1, � � � , bn )dν−i is discontinuous at μ−i (as a

function of strategy profile ν−i).
(ii) A strategy profile μ has essential ties on average for player i if μi assigns a positive

probability to the set T ∗
i of type–bid pairs (xi, bi ) at which player i has essential ties on

average given μ−i.
(iii) A strategy profile μ has essential ties on average if it has essential ties on average

for some player.

We will show that for games with ties, any deviation plan that avoids essential ties on
average is continuous and the payoff of every player is continuous at any strategy profile
that does not have essential ties on average. We can, therefore, identify a class of games
with ties that satisfies the assumptions of Theorem 1 as follows.

Definition 7. A deviation plan without essential ties on average is a deviation plan τ

such that for every profile of strategies μ, every player i, and every ε > 0, strategy profile
(με

i , μ−i ), where με
i is the corresponding deviation strategy, does not have essential ties

on average for player i.

Definition 8. A game satisfies favorable tie-breaking on average if there is a payoff en-
velope W and a deviation plan without essential ties on average such that for any strat-
egy profile μ with essential ties on average, (3) holds for some ε > 0.

We can now state our equilibrium existence result for games with ties.

Theorem 2. A game with ties that satisfies favorable tie-breaking on average has improv-
ing deviations and, therefore, has a Nash equilibrium in distributional strategies.

Identifying essential ties on average may be somewhat involved because Definition
6 refers to the discontinuity of expected payoffs with respect to profiles of distributional
strategies. It is often easier to consider the continuity of the payoff functions directly.
This leads to the following stronger concept of essential ties.

Definition 9. (i) A tie bi = b is essential for player i at (x1, � � � , xn, b1, � � � , bn ) if ui is
discontinuous at (x1, � � � , xn, b1, � � � , bn ) (as a function of all players’ types and bids).
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(ii) Strategy profile μ has essential ties for player i if μ assigns positive probability to
the set T ∗

i of profiles (x1, � � � , xn, b1, � � � , bn ) at which player i has essential ties.
(iii) Strategy profile μ has essential ties if it has essential ties for some player.

A strategy profile that has essential ties on average for player i also has essential ties
for player i, but the reverse is not necessarily true. With two players, for example, starting
from a tie bi = b, by bidding slightly more than b, player i’s utility may discontinuously
increase if the type of player j 
= i is high and may discontinuously decrease if player j’s
type is low, but change continuously in expectation over player j’s type. By replacing
essential ties on average with essential ties in Definition 7 and Definition 8, we define a
deviation plan without essential ties and favorable tie-breaking, and obtain the following
corollary of Theorem 2.

Corollary 1. A game with ties that satisfies favorable tie-breaking has improving devi-
ations and, therefore, has a Nash equilibrium in distributional strategies.

For example, all-pay auctions in which higher types have a higher value for the prize
satisfy favorable tie-breaking: W can be defined as the sum of payoffs when the fair tie-
breaking rule is replaced with the rule that gives the prize to the tying player with the
highest value, and the bid τ

μ,ε
i (xi, bi ) can be defined as a bid slightly higher than bi. By

resolving a tie in her favor, each player wins the prize, whereas only one player wins the
prize when the tie is resolved simultaneously for all players, so (3) holds. We formalize
and generalize this example in Section 6.1. We will see later that in other examples,
different types xi of player i may prefer breaking the same tie in different ways, which in
addition can depend on the strategy profile μ.

Favorable tie-breaking requires (3) to be satisfied for all strategy profiles with essen-
tial ties. If (3) fails for such a strategy profile but holds for all strategy profiles at which
players’ payoff are discontinuous, then Corollary 1 fails but Theorem 2 may hold. This is
the case in Section 6.3 below.

5. Proof of Theorem 2

By the definition of a game with improving deviations, to prove Theorem 2, it suffices
to prove that (i) in a game with ties, a deviation plan without essential ties on average is
a continuous deviation plan, and (ii) any strategy profile at which some player’s payoff
is discontinuous as a function of all players’ strategies is a strategy profile with essential
ties on average. Both (i) and (ii) immediately follow from the following result, the proof
of which is provided in the Appendix.

Lemma 1. Player i’s payoff is continuous as a function of all players’ strategies at any
strategy profile μ that does not have essential ties on average for player i.
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6. Applications

We now demonstrate equilibrium existence in three settings of games with ties. Corol-
lary 1 suffices for the first two settings but not for the third setting, for which Theorem 2
is needed.19

The first setting is a model of perfectly discriminating contests, which generalizes
multi-prize all-pay auctions with complete and incomplete information, and allows for
heterogeneous prizes and private, common, and interdependent values. The key prop-
erties of this model are that (i) every player strictly prefers to win any tie at which not all
tying players get the same prize and (ii) the highest allowable bid is strictly dominated by
some lower bid. This leads to a simple deviation plan in which every player increases her
bid slightly if possible and the highest possible bid is replaced with a dominating lower
bid. Unilateral deviations at an essential tie correspond to all tying players winning the
best prize associated with the tie, whereas simultaneously breaking the tie cannot award
the best prize to all tying players, so (3) holds.20

The second setting is a common-value first-price auction in which the value of the
prize strictly increases in all players’ types. The key properties of this model are that (i)
for any bid and any strategy profile of the players other than i, at most one type of player i
can be indifferent between winning and losing, and (ii) the sum of payoffs is continuous
(it is the value of the prize minus the highest bid), so the payoff envelope can be chosen
to be the sum of payoffs. This leads to a simple deviation plan in which every player
increases or decreases her bid slightly depending on whether in expectation, given her
type and the other players’ strategies, she prefers to win or to lose the prize at that bid.
Unilateral deviations at any essential tie strictly increase the payoff of at least one player
(by property (i)) and do not decrease the payoff of any other player, so (3) holds by prop-
erty (ii). Property (ii) is lost by relaxing common values to interdependent or private
values, and this can prevent unilateral deviations from being better than simultaneous
slight changes in players’ actions and types, and even lead to equilibrium nonexistence.

The third setting is a Hotelling location model on the interval [0, 1] in which prices
are exogenous and identical across firms, and firms have private information about their
continuous location cost function. The key property of this model is that the sum of pay-
offs is continuous (it is the mass of consumers minus firms’ location costs), so the payoff
envelope can be chosen to be the sum of payoffs. Corollary 1 does not apply to this set-
ting because players’ payoffs may be continuous at a strategy profile with essential ties

19The Supplementary Appendix of our working paper (Olszewski and Siegel (2022)) contains three addi-
tional applications: a two-firm Hotelling setting with private production costs, independent private-value
first-price auctions with costly bids, and a two-player contest model in which players’ bids determine not
only who wins, but which prize the winner obtains. Theorem 1 applies to the third application, but Corol-
lary 1 and Theorem 2 do not.

20We point out that Reny’s (1999) RUSC fails here, so his Proposition 3.2 cannot be applied. To see this,
consider an all-pay auction with two players. Each player’s valuation is either 1 or 3, with equal probability.
Consider the following sequence of strategies for some a < b. Player 1 bids a− 1/n when his value is 1 and
b when his value is 3. Player 2 bids b− 1/n when his value is 1 and a when his value is 3. Then, compared to
the limit payoffs along the sequence, the expected payoff of both players jumps down in the limit strategy
profile. On the other hand, weak RUSC and payoff security (with respect to distributional strategies) are
satisfied and can be used to show equilibrium existence (see Remark 1).
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for which no deviation plan satisfies (3).21 However, if a player has an essential tie on
average at some location, then a slightly higher or lower location strictly increases her
payoff. This allows us to apply Theorem 2 by using the simple deviation plan in which
every player increases or decreases her location slightly if in expectation, given the other
players’ strategies, this strictly increases her payoff. Unilateral deviations at any strategy
profile with essential ties on average strictly increase the payoff of at least one player and
do not decrease the payoff of any other player, so (3) holds by the fact that the payoff
envelope is equal to the sum of payoffs.

6.1 Application 1: Multi-prize contests with interdependent values

There are n players who compete for n prizes. Player i’s signal xi ∈ X = [0, 1] about the
prize values is distributed according to a cumulative distribution function (cdf) Fi that
does not have an atom at 0. We showed in Footnote 1 that without this assumption, equi-
librium may not exist. The distributions need not be identical, but are commonly known
and independent across players. Complete information is a special case, as are distribu-
tions that include atoms, gaps, and continuous components. Each prize is characterized
by a number y, which represents its position in the prize ranking common to all play-
ers, and may be interpreted as an initial public signal about the prize’s value, obtained
before players learn their private signals. We order the n prizes so that y1 ≤ y2 ≤ · · · ≤ yn.

Each player i chooses a bid bi ∈ B = [0, 1], the player with the highest bid ob-
tains prize yn, the player with the second-highest bid obtains prize yn−1, and so on.22

Ties are resolved by a fair lottery. The utility of player i from obtaining prize y is
ūi(x1, � � � , xn, b1, � � � , bn, y ), where ūi is a continuous function of (x1, � � � , xn ) ∈ Xn and
(b1, � � � , bn ) ∈ Bn for all prizes y. In addition, ūi strictly increases in y for all (x1, � � � , xn )
and (b1, � � � , bn ),23 with an exception for type xi = 0 (type 0 is indifferent across all
prizes).24 We assume that bids close to 1 are strictly dominated by a lower bid and thus
are irrelevant. More precisely, we assume that for every player i, there is a bid b̄i < 1
such that ūi(x1, � � � , xn, (1, b−i ), yn ) < ūi(x1, � � � , xn, (b̄i, b−i ), y1 ) for all (x1, � � � , xn ) and
b−i = (b1, � � � , bi−1, bi+1, � � � , bn ). Finally, ui(x1, � � � , xn, b1, � � � , bn ) is the expected value
of ūi(x1, � � � , xn, b1, � � � , bn, y ) given the bid profile (b1, � � � , bn ).

The strict monotonicity of ūi in y makes this a (generalized) contest model: regard-
less of players’ types or bids, it is better to win a higher prize. This is the case, for ex-
ample, in an all-pay auction, but is not the case in a first-price auction (because at a bid

21To see this, suppose there are three players with complete information and consumers are distributed
uniformly on [0, 1], and consider the strategy profile in which players 1 and 2 locate at 1/2, and player 3
locates at 0 and 1 with equal probability. Then location 1/2 is an essential tie for players 1 and 2 at the loca-
tion profile (1/2, 1/2, 0) and at the location profile (1/2, 1/2, 1), so the strategy profile has essential ties. But
each player’s payoff continuously changes with her strategy. Thus, for sufficiently large (and continuous)
costs of moving from players’ chosen locations in the strategy profile, no deviation plan satisfies (3).

22Fu, Wu, and Zu (2022) prove equilibrium existence for a class of imperfectly discriminating multi-prize
nested lottery contests.

23Notice that we do not assume monotonicity in types or bids (of the player or of other players).
24We could exclude type 0 and assume that xi ∈ [x, 1] for some x > 0. This would slightly simplify the

analysis. We include type 0 because it usually appears in papers on contests with incomplete information.
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higher than the prize’s value, losing is better than winning).25 Notice that players’ util-
ities need not monotonically decrease in their bids, as they do in an all-pay auction.26

Notice also that the model accommodates private, common, and interdependent val-
ues, and allows a player’s utility from a given prize to depend on other players’ bids.27

These contests are clearly games with ties. We now show that they also satisfy
favorable tie-breaking, which guarantees equilibrium existence by Corollary 1. A tie
bi = b is essential for player i at (x1, � � � , xn, b1, � � � , bn ) if xi > 0 and not all the play-
ers tying at b obtain equal prizes. Define the payoff envelope W as the sum of play-
ers’ payoffs when ties are broken in a way that maximizes this sum. More precisely, let
W (x1, � � � , xn, b1, � � � , bn ) be the sum of ūi(x1, � � � , xn, b1, � � � , bn, ỹi((x1, � � � , xn ), (b1, � � � ,
bn ))) across all players i, where ỹi((x1, � � � , xn ), (b1, � � � , bn )) is determined as follows: (a)
a player with a higher bid obtains a higher prize and (b) if the bids of two or more players
are equal, then among those players, prizes are allocated in any (measurable) way that
maximizes the sum of the payoffs of the tying players.28 This guarantees that W is upper
semi-continuous and also that (2) holds.29

We now describe a deviation plan. The idea is to increase bids slightly so as to win
all essential ties, since winning a higher prize is always better. Bid b = 1 cannot be in-
creased, but can be profitably replaced with a bid of b̄i (or a bid close to b̄i to avoid ties).
Formally, we let the bid τ

μ,ε
i (xi, bi ) be a bid b′

i such that the marginal on B of each strat-
egy μj , j 
= i, does not have an atom at b′

i, and for bi < 1, the bid b′
i satisfies b′

i > bi and

ūi(x1, � � � , xn, b1, � � � , bn, y ) − ūi
(
x1, � � � , xn,

(
b′
i, b−i

)
, y

)
< ε (4)

for all (x1, � � � , xn ), b−i, and y = y1, � � � , yn. The existence of such a b′
i follows from the fact

that the marginal on B of each strategy has at most a countable number of atoms and
from the uniform continuity of ūi on Xn×Bn−1 ×[bi, 1]× {y} for y = y1, � � � , yn. For bi = 1,
let b′

i (in addition to the atom restriction) be such that ūi(x1, � � � , xn, (b′
i, b−i ), y1 ) >

ūi(x1, � � � , xn, (1, b−i ), yn ). (Recall that ūi(x1, � � � , xn, (b̄i, b−i ), y1 ) > ūi(x1, � � � , xn, (1,
b−i ), yn ).) We then have (1) because ūi weakly increases in y for all (b1, � � � , bn ) and
(x1, � � � , xn ). The deviation plan is without ties because, by Fubini’s theorem, T ∗

i has
a positive measure only if the marginals on B of player i’s strategy and the strategy of
another player have an atom at the same bid.

It remains to show that for any strategy profile μ with essential ties, (3) holds for
some ε > 0. For this, define function Vi as player i’s payoff when ties are broken in her
favor, that is, Vi(x1, � � � , xn, b1, � � � , bn ) = ūi(x1, � � � , xn, b1, � � � , bn, ŷi(b1, � � � , bn )), where

25This property also fails in Section 6.2 below, which is why we restrict attention to common values there.
26For example, in a competition for a dominant market position based on advertising, a moderate level

of advertising can increase the demand for the product, and thus the value of winning, by more than the
cost of the advertising.

27Returning to the advertising example from the previous footnote, each firm’s advertising may affect
overall market demand, which in turn affects the winning firm’s profit from a dominant market position.

28One way to do this is as follows. Given a set of k tying players, order all the permutations π1, π2, � � � , πm

of this set. Then allocate the k relevant prizes to the k tying players according to permutation πl that
maximizes the sum of payoffs, where l is such that allocating the prizes according to any permutation πl′
with l′ < l does not maximize the sum of payoffs.

29Note that the sum of payoffs is not upper semi-continuous in this application, as would be required by
Dasgupta and Maskin’s (1986) RUSC. Moreover, contests are not RUSC according to Reny’s definition.
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ŷi(b1, � � � , bn ) is the prize player i would win if she bids slightly above bi while every
player j 
= i bids bj . Let V be the sum of Vi across all players i. Then

V (x1, � � � , xn, b1, � � � , bn ) ≥W (x1, � � � , xn, b1, � � � , bn ),

with a strict inequality whenever a tie b is essential at (x1, .., xn, b1, � � � , bn ) for two or
more players (because xi > 0 if the tie b = bi is essential for player i, and ūi strictly in-
creases in y whenever xi > 0). Now take a strategy profile μ with essential ties. Since for
each player i, type xi = 0 has probability 0, we have that

α =
∫
V (x1, � � � , xn, b1, � � � , bn )dμ−

∫
W (x1, � � � , xn, b1, � � � , bn )dμ> 0.

By (4) and the definition of τμ,ε
i (xi, bi ) for bi = 1, we have∫

V (x1, � � � , xn, b1, � � � , bn )dμ−
n∑

j=1

Uj

(
με
j , μ∗

−j

)
< nε,

where με
j is the deviation strategy associated with τ

μ,ε
j . Therefore, (3) holds for ε < α/n.

6.2 Application 2: First-price auctions with common values

There are n players who compete for one prize. Player i’s signal xi ∈ X = [0, 1] about the
prize value is distributed according to a continuous cdf Fi.30 The distributions need not
be identical, but are commonly known and independent across players. Each player i

submits a bid bi ∈ B = [0, 1], and the player with the highest bid wins the prize and pays
her bid. Ties are resolved by a fair lottery. The value of the prize v(x1, � � � , xn ) is common
to all players, with v(0, � � � , 0) = 0 and v(1, � � � , 1) < 1,31 strictly increasing in each signal,
and continuous as a function of the entire profile of signals. The utility of player i is

ūi(x1, � � � , xn, bi ) =
{
v(x1, � � � , xn ) − bi if i wins the prize,

0 if i does not win the prize.

Finally, ui(x1, � � � , xn, b1, � � � , bn ) is the expected value of ūi(x1, � � � , xn, bi ) given the bid
profile (b1, � � � , bn ).

Various versions of common-value auctions have been studied by several other au-
thors, and as pointed out in the Introduction, some existence results have already been
established. The added value of our result in this context is that we do not make addi-
tional assumptions that restrict its range of applications. In particular, whether a player
prefers to win or lose a particular tie may depend on the signals of the other players.
This application illustrates the importance of the feature of our existence result that the
deviation plan τ

μ,ε
i is allowed to depend on the profile of strategies μ.

These auctions are clearly games with ties. We now show that they also satisfy favor-
able tie-breaking. A tie bi = b is essential for player i at (x1, � � � , xn, b1, � � � , bn ) if b is the

30Reny (1999) also allows for multi-dimensional types, i.e., xi ∈ [0, 1]m for i = 1, � � � , n. Our existence
result can be generalized to this setting.

31That v(1, � � � , 1) < 1 guarantees that any equilibrium remains an equilibrium if bidders can place any
nonnegative bid.
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winning bid and bi 
= v(x1, � � � , xn ). Define the payoff envelope W as the sum of players’
payoffs, that is,

W (x1, � � � , xn, b1, � � � , bn ) =
n∑

i=1

ui(x1, � � � , xn, b1, � � � , bn )

= v(x1, � � � , xn ) − max{b1, � � � , bn},

so W is continuous and (2) holds as an equality.32

We now describe a deviation plan. The idea is at every essential tie b to either in-
crease or decrease the bid slightly, depending on whether (in expectation, conditional
on tying at b) winning is better than losing. Notice that whether winning is better than
losing at a particular bid depends on the other players’ strategies, so unlike in contests,
the deviation plan will depend on the profile of strategies. More precisely, consider, for
each player i and bid bi, the event Ei(bi ) ⊂X−i ×B−i in which bi is a winning bid and at
least one other player bids bi. If μ−i(Ei(bi )) > 0, let τμ,ε

i (xi, bi ) be a bid slightly higher
or lower than bi, depending on whether, conditional on Ei(bi ), player i of type xi prefers
winning the prize and paying the winning bid or losing and paying nothing.33 Note that
player i strictly prefers one of the two options, except possibly at a single type xi, be-
cause v(x1, � � � , xn ) strictly increases in xi. Let τμ,ε

i (xi, bi ) = bi for the (at most one) type
xi that is indifferent between the two options and for all types xi when μ−i(Ei(bi )) = 0.
Notice that at bi = 1, player i strictly prefers losing to winning because v increases in all
players’ signals and v(1, � � � , 1) < 1.

By choosing τ
μ,ε
i (xi, bi ) sufficiently close to bi (whenever τμ,ε

i (xi, bi ) 
= bi), we have
Ui(μ) ≤ Ui(με

i , μ−i ), where με
i is the corresponding deviation strategy, with a strict in-

equality whenever μ has essential ties for player i. This is because if μ has essential ties
for player i, then (by Fubini’s theorem) the marginal of μi on B assigns positive proba-
bility to some bi for which Ei(bi ) > 0, and by choosing τ

μ,ε
i (xi, bi ) sufficiently close to

bi, the expected payoff of player i of every (except at most one) type xi from playing
τ
μ
i (xi, bi ) strictly increases relative to playing bi. This guarantees that (1) holds and also

that (3) holds. In addition, whenever τ
μ,ε
i (xi, bi ) 
= bi, we choose τ

μ,ε
i (xi, bi ) to be dif-

ferent from any bid at which the marginal on B of any strategy μj , j 
= i, has an atom.
Thus, the deviation plan is without essential ties, which completes the demonstration
that these auctions are games with ties that satisfy favorable tie-breaking.

6.3 Application 3: Hotelling models

A finite number of firms compete for a unit mass of customers, each with unit demand.
The customers are distributed with a positive density on the interval [0, 1]. Each firm

32Because the sum of payoffs is continuous, the existence of equilibrium can also be shown to follow
from payoff security (for the game in distributional strategies) and Dasgupta and Maskin’s (1986) RUSC
(see Reny’s Proposition 3.2).

33Of course, ex post, which of the two options player i prefers also depends on the types of the other
players, but τ

μ,ε
i is allowed to depend only on the type and bid of player i. Thus, by a preferred option

we mean the option that gives player i the higher expected payoff (over the strategies of the other players)
conditional on Ei(bi ).
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chooses a location in [0, 1], and then each customer chooses the firm closest to his or
her location. We assume that prices are fixed, equal across firms, and normalized to 1.
Variable production costs are negligible, so each firm’s payoff is equal to the share of
customers buying from the firm minus the cost of locating at the firm’s chosen location.
Firms face different costs of choosing different locations. Firm i’s type xi ∈ [0, 1] is dis-
tributed according to a cdf Fi, and the location cost function ci(xi, bi ) is a continuous
function of the firm’s type xi and location bi.34 We assume that each firm must choose
some location.

The existence of mixed-strategy equilibria in the complete-information setting was
established by Simon (1987), whose result allows for multi-dimensional locations (for
example, customers can be distributed on and firms can choose their locations from the
cube [0, 1]m). We conjecture that our existence result generalizes to settings with multi-
dimensional locations. However, finding sharp conditions for existence would proba-
bly require writing a separate paper, given the complexity of Simon’s (1987) analysis of
complete information settings.35 Our objective here is not to generalize Simon’s (1987)
result, but to demonstrate that Theorem 2 can be used to prove equilibrium existence in
some Hotelling models with incomplete information.

The Hotelling model with incomplete information is clearly a game with ties. We
now show that it also satisfies favorable tie-breaking on average. Define the payoff en-
velope W as the sum of players’ payoffs (shares minus location costs), that is,

W (x1, � � � , xn, b1, � � � , bn ) = 1 −
n∑

i=1

ci(xi, bi ),

so W is continuous and (2) holds as an equality.
We now describe a deviation plan. The idea is to shift a player’s location slightly if

doing so leads to a discrete payoff increase. More precisely, consider for each player i

and location bi the event Ei(bi ) ⊂ X−i × B−i in which at least one other player locates
at bi. If μ−i(Ei(bi )) > 0, let τμ,ε

i (xi, bi ) be a location slightly to the left or to the right of
bi (different from any location at which the marginal on B of any strategy μj , j 
= i, has
an atom) if, conditional on Ei, an infinitesimal shift in this direction discretely increases
player i’s (expected) market share, that is, discretely increases player i’s payoff.36 No-
tice that whether an infinitesimal shift in a particular direction is beneficial for a player
depends on the strategies μ−i of the other players but is independent of the player’s

34The additive separability of the customer share, which does not depend on xi , and the cost, which
depends on xi , is important for the analysis.

35Multi-dimensional versions of Hotelling’s model are settings in which Reny’s (1999) approach and our
Theorem 1 are able to guarantee the existence of an equilibrium, while existence may be difficult or im-
possible to establish by approximating the original game with a sequence of games with a finite number of
actions and types. This is because profitable deviations of different types at different locations may require
shifting locations in different and specific directions.

36By an infinitesimal shift from a location b in a direction, we mean the same location b but with a
different market sharing rule: Customers in the direction of the shift find the firm’s shifted location closer
than location b, and customers in the opposite direction of the shift find the firm’s shifted location farther
away than location b.
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type, since types only affect location costs.37 Notice also that the improving infinitesi-
mal shift must be to the right for bi = 0 and to the left for bi = 1. If no infinitesimal shift
discretely increases player i’s payoff, let τμ,ε

i (xi, bi ) be a location close to or at bi differ-
ent from any location at which the marginal on B of any strategy μj , j 
= i, has an atom.
If μ−i(Ei(bi )) = 0, let τμ,ε

i (xi, bi ) = bi for all types xi. Similarly to Section 6.2, (1) holds
and the deviation plan is without essential ties.

Since the payoff envelope W is equal to the sum of players’ payoffs, to apply The-
orem 2 it suffices to show that if a strategy profile μ has essential ties on average for
player i, then Ui(μ) <Ui(με

i , μ−i ), where με
i is the corresponding deviation strategy. By

construction, Ui(μ) <Ui(με
i , μ−i ) whenever there is a positive μi measure of bids bi for

which an infinitesimal shift in player i’s location discretely increases player i’s market
share. Thus, to conclude the proof, it suffices to show that if μ has essential ties on aver-
age for player i, then there is a positive μi measure of bids bi for which an infinitesimal
shift in player i’s location discretely increases player i’s market share. We will show that
if no infinitesimal shift from location bi discretely increases player i’s market share, then
location bi is not an essential tie on average for player i (recall that whether a bid is an
essential tie for a player is independent of the player’s type).

Consider a strategy profile μ and a location bi for which no infinitesimal shift dis-
cretely increases player i’s market share. Suppose that player i bids bi. If no other player
has an atom at bi, then player i’s payoff is continuous as a function of the other play-
ers’ strategies, because discontinuities arise only at ties. It cannot be that two or more
other players have an atom at bi, because then an infinitesimal shift in player i’s location
would discretely improve player i’s payoff (she discretely increases her share on the side
to which she is moving, so at least one side is strictly profitable). Additionally, if only
one other player j has an atom at bi, then if that player moves slightly (which is what
it means for his strategy to be weak∗-close to μj) that is very similar to player i moving
slightly, but that does not increase player i’s payoff because an infinitesimal shift does
not change player i’s payoff. We formalize this argument with the following two claims,
whose proofs are provided in the Appendix.

Claim 1. If no infinitesimal shift from location bi increases player i’s market share, then
the marginal on B of the strategy of only one player j 
= i can have an atom at bi.

Claim 2. If (a) for no player j 
= i, the marginal on B of the strategy of player j has an
atom at bi or (b) the marginal on B of the strategy of only one player j 
= i has an atom at
bi, and no infinitesimal shift from location bi discretely increases player i’s market share,
then bi is not an essential tie at any (xi, bi ).

7. Concluding remarks

This paper studies Bayesian games with ties and introduces improving deviations, favor-
able tie-breaking, and favorable tie-breaking on average, which are sufficient conditions

37Thus, unlike in Section 6.2, it is possible that for some locations bi with μ−i(Ei(bi )) > 0, no infinitesimal
shift is profitable for player i. This prevents the use of Theorem 1, as discussed in the description of the
Hotelling application at the beginning of Section 6.
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for equilibrium existence in distributional strategies. We apply favorable tie-breaking
and favorable tie-breaking on average to obtain novel equilibrium existence results for
multi-prize contests with interdependent values, first-price auctions with common val-
ues, and Hotelling models with private location costs. The Supplementary Appendix of
our working paper (Olszewski and Siegel (2022)) contains two additional applications: a
two-firm Hotelling setting with private production costs and independent private-value
first-price auctions with costly bids. A third application, also in the Supplementary Ap-
pendix of our working paper, demonstrates that improving deviations can sometimes
be used to prove equilibrium existence when favorable tie-breaking on average fails.38

These results should be used with care, however, since slight changes to such games
can lead to games with ties to which Reny’s (1999) existence result (and, therefore, The-
orems 1 and 2), as well as other equilibrium existence results in the literature, do not ap-
ply, even though an equilibrium exists. One example is first-price auctions with private
values. The difficulty in this case is that while unilateral tie-breaking can increase the
sum of payoffs, this increase may not exceed the increase generated by slightly and si-
multaneously changing all players’ actions and valuations.39

 Olszewski, Reny, and Siegel
(2022) provide relatively permissive sufficient conditions for equilibrium existence in
such auctions.

Appendix

A.1 Proof of Lemma 1

Consider a sequence (μl )∞l=1 of strategy profiles that converges to μ. We will show that
for any δ > 0, if l is large enough, then |Ui(μl ) − Ui(μ)| < δ. Given any ε > 0, take an
open subset Tε

i of Xi × B such that T ∗
i ⊂ Tε

i and μi(clTε
i ) < ε, where clTε

i denotes the
closure of Tε

i . We can in addition assume that μl
i(clTε

i ) < ε for sufficiently large l (see
Billingsley (1995), Theorem 29.1). For every (xi, bi ) from the complement of Tε

i , we have
that

∫
ui(x1, � � � , xn, b1, � � � , bn )dν−i is a continuous function of ν−i at μ−i. So there is an

l such that∣∣∣∣∫ ui(x1, � � � , xn, b1, � � � , bn )dμl
−i −

∫
ui(x1, � � � , xn, b1, � � � , bn )dμ−i

∣∣∣∣< δ/2 (5)

if l ≥ l. Thus, there is also an l that is common for all (xi, bi ) from a set S ⊂Xi ×B− clTε
i

whose μi measure is higher than 1 −ε.40 We can assume that the set S is closed, because

38A special case of that application is a two-player contest in which the winner obtains an extra bonus if
the gap between players’ bids exceeds some threshold, as may be the case in some sales competitions.

39To see this, suppose there are two players with known valuations 0 < x1 < x2, and consider the strategy
profile in which both players bid b = x1. The tie b is essential at (x1, x2, b, b) (player 2’s payoff is discontinu-
ous there), and by upper semi-continuity, the value of any payoff envelope at (x1, x2, b, b) is at least x2 −x1,
which corresponds to breaking the tie in favor of player 2. But u2(x1, x2, b, b2 ) < x2 − x1 for any bid b2 and
u1(x1, x2, b1, b) ≤ 0 for any bid b1, so there is no deviation plan for which (3) holds. It can also be shown
that Reny’s (1999) better-reply security and Reny’s (2016) point security fail in this example.

40For every m> 0, denote by Sm the set of pairs (xi , bi ) in Xi × B − clTε
i for which l < m. The existence

of S and a common l follows from Sm ⊆ Sm+1 and
⋃

m>0 S
m = Xi ×B − clTε

i .
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all measurable sets contain closed subsets of arbitrarily close measure. By Theorem 29.1
of Billingsley (1995), we can also assume that μl

i(S) > 1 − ε for sufficiently large l. By (5),∣∣∣∣∫
S

(∫
ui(x1, � � � , xn, b1, � � � , bn )dμl

−i

)
dμl

i

−
∫
S

(∫
ui(x1, � � � , xn, b1, � � � , bn )dμ−i

)
dμl

i

∣∣∣∣< δ/2 (6)

if l ≥ l for such a common l. Actually, inequality (6) holds without restricting integration
to S, provided that ε is sufficiently small compared to δ, because the measures μl

i and μi

of the complement of S are smaller than ε and we assume that functions ui are bounded.
Notice now that

∫
ui(x1, � � � , xn, b1, � � � , bn )dμ−i is a continuous function of (xi, bi )

on S. Therefore, ∣∣∣∣∫ (∫
ui(x1, � � � , xn, b1, � � � , bn )dμ−i

)
dμl

i

−
∫ (∫

ui(x1, � � � , xn, b1, � � � , bn )dμ−i

)
dμi

∣∣∣∣< δ/2 (7)

for sufficiently large l. To see why, multiply
∫
ui(x1, � � � , xn, b1, � � � , bn )dμ−i by a contin-

uous function that takes value 1 on S and value 0 on clTε
i . This product is a continuous

function, so by the definition of weak∗ convergence, its expected value with respect to
measures μl

i converges to its expected value with respect to measure μi. Additionally,
since the measures μl

i and μi of the complement of S are smaller than ε, we obtain (7)
provided that ε is sufficiently small compared to δ. (Recall that we assume that functions
ui are bounded.)

Inequalities (6) and (7) imply that |Ui(μl ) −Ui(μ)| < δ for sufficiently large l.

A.2 Proofs for Section 6.3

Proof of Claim 1. Given a profile b−i of locations of other players, let �l(b−i ) and
�r(b−i ) be the difference in the market share of player i whose current location is bi
made by the infinitesimal shifts to the left and to the right, respectively. Notice that

�l(b−i ) +�r(b−i ) ≥ 0

for any b−i and that the inequality is strict if bj = bi for more than one j 
= i. Indeed, an
infinitesimal shift to each direction increases by a factor of k+ 1 the share of customers
in this direction, where k is the number of other players j 
= i such that bj = bi. Thus, the
sum of the expected values of �l(b−i ) and �r(b−i ) is positive if the marginals on B of the
strategy of two or more other players have an atom at bi.

Proof of Claim 2. Suppose that bki → bi and μk
j →k μj , j 
= i. (We disregard xi, be-

cause it affects only the fixed costs of choosing a location, and the fixed costs are con-
tinuous in it.) Suppose first that condition (a) is satisfied. Then the marginal of each μj

assigns only an arbitrarily small probability to clWi for a small neighborhood Wi of bi,
where clWi is the closure of Wi. By Billingsley (1995, Theorem 29.1), the marginal of μk

j
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for sufficiently large k also assigns only an arbitrarily small probability to clWi. Let Vi be
another neighborhood of bi such that clVi ⊂ Wi. Thus, the only substantial difference be-
tween the market share of player i located at bki when the other players play μk

−i and the
market share of player i located at bi when the other players play μ−i can come from the
strategies of other players contingent on the locations in the complement of clWi. How-
ever, the share of player i is a continuous function of the locations selected by all players
if player i is located in Vi and the other players are located in the complement of Vi.

So the difference between the market share of player i located at bki when the other
players play μk

−i and the market share of player i located at bi when the other players play
μ−i, contingent on the locations in the complement of clWi, must also be small for suffi-
ciently large k. To see why, multiply the share of players i by a continuous function that
is equal to 0 on clVi and is equal to 1 on the complement of Wi. The difference between
the expected value of this product and the market share of player i contingent on the
locations of the other players in the complement of clWi is small for both μ−i and μk

−i,
because the marginals of all measures in μ−i and μk

−i assign small probability to clWi.
So we obtain the required property directly from the definition of weak∗ convergence.

Suppose now that condition (b) is satisfied. Denote by j∗ the j such that the marginal
of μj has an atom at bi. Then the marginal of μj for all j 
= i, j∗ assigns only an arbitrar-
ily small probability to clWi for a sufficiently close neighborhood Wi of bi, and so does
the marginal of μk

j for sufficiently large k. Moreover, the marginal of μk
j∗ for sufficiently

large k assigns to clVi, for a neighborhood Vi of bi, a probability arbitrarily close to that
assigned by μj∗ . To see why, consider another neighborhood V ′

i such that clVi ⊂ V ′
i

and such that the marginal of μj∗ assigns to V ′
i a probability arbitrarily close to that as-

signed by the marginal of μj∗ to clVi. Then, by Theorem 29.1 from Billingsley (1995), the
probability assigned to V ′

i by the marginal of μk
j for sufficiently large k cannot be much

smaller than that assigned by the marginal of μj∗ , and the probability assigned to clVi by
the marginal of μk

j for sufficiently large k cannot be much greater than that assigned by
the marginal of μj∗ .

With no loss of generality, assume that clVi ⊂ Wi. Replacing Wi with a smaller W ′
i

such that clVi ⊂ W ′
i if necessary, we can assume that μj∗ and all μk

j∗ (for sufficiently large
k) assign an arbitrarily small probability to clWi − clVi. Thus, the only substantial differ-
ence between the market share of player i located at bki when the other players play μk

−i
and the market share of player i located at bi when the other players play μ−i can come
from (i) the strategies of all players j 
= i choosing locations in the complement of clWi

or (ii) the strategy of player j∗ choosing a location in clVi and the strategies of all players
j 
= i, j∗ choosing locations in the complement of clWi.

However, the market share of player i is a continuous function of the locations se-
lected by all players if player i is located in Vi and the other players are located in the
complement of Vi. So the difference in the market shares of player i must also be small
for sufficiently large k in case (i). It must also be small (for sufficiently large k) in case
(ii), if clVi is chosen sufficiently close to bi by the assumption that the infinitesimal
shifts from location bi (to the right and to the left) have no effect on player i’s market
share.41

41More precisely, we assume that infinitesimal shifts do not increase player i’s expected payoff, but in this
case, a simple accounting argument shows that such shifts also do not decrease player i’s expected payoff.
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