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Distance on matchings: An axiomatic approach
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Matchings in a market may have varying degrees of compromise from efficiency,

fairness, and or stability. A distance function allows to quantify such concepts

or the (dis)similarity between any two matchings. There are a few attempts to

propose such functions; however, these are tailored for specific applications and

ignore the individual preferences completely. In this paper, we construct a nor-

mative framework to quantify the difference between outcomes of market mecha-

nisms in matching markets, while endogenizing the preferences of the individuals

into the distance concept. Several conditions are introduced to capture natural

and appealing behavior of such functions. We find a class of distance functions

called scaled Borda distances, which is the only class of distance functions that

satisfies these conditions simultaneously.
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1. Introduction

Matching theory analyzes markets where agents (e.g., buyers and sellers, hospitals and

interns, high schools and students) are matched according to their preferences, and

thereby conduct some transactions within the relevant context. These mechanisms pro-
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duce matchings with various normative features,1 e.g., stability, Pareto efficiency, fair-
ness, and computational complexity.2 Given the different features of matching mech-
anisms, it is natural to ask how different two matchings are. By means of a distance
function, or for short a distance, one could quantify the dissimilarity of a mechanism to
a particular solution concept, or select/refine from a set of matchings. One can pick the
matching(s) from the core with the minimal total distance to all other stable match-
ings (as a tool to find the median stable matching(s)3) or analyze the similarity of a
chosen outcome to the men(women)-optimal stable matchings, (as a tool for a fairness
analysis).

General-purpose distances on matchings can be useful as descriptive summary
statistics in various different markets. For instance, consider the house allocation prob-
lem, Abdulkadiroğlu and Sönmez (1999), which is a one-sided market. In these markets,
each agent has an initial endowment and a preference over all endowments. In case a
distance function is used to compare the outcome of an individually rational mecha-
nism and the initial endowment, the result can be interpreted as the social welfare im-
provement of implementing that particular mechanism. See the example below.

Example 1 (Housing allocation). Let N = {1, 2, � � � , 6} be the set of agents and H =
{h1, � � � , h6} be the set of houses. Let the initial endowments σ of the agents be σ(i) = hi

for all i ∈ {1, � � � , 6}. The preference of each agent is shown in Figure 1. It can be veri-
fied that after applying the top trading cycle algorithm, the final allocation μTTC will be
as follows: μTTC(1) = h1, μTTC(2) = h3, μTTC(3) = h4, μTTC(4) = h2, μTTC(5) = h5 and
μTTC(6) = h6. ♦

There have been some methods proposed in the literature to address this quantifi-
cation problem for particular domains and particular features. The most general and

Figure 1. House allocation problem.

1For comparisons of some of these methods, see Abdulkadiroglu and Sönmez (2003), Abdulkadiroğlu,
Pathak, Roth, and Sönmez (2005), Ergin and Sönmez (2006), Chen and Sönmez (2006), Erdil and Ergin
(2008), Kesten (2010), Abdulkadiroğlu, Che, and Yasuda (2011), Kesten and Ünver (2015).

2See Irving (1985), Irving, Manlove, and Scott (2000), Manlove, Irving, Iwama, Miyazaki, and Morita
(2002).

3See Chen, Egesdal, Pycia, and Yenmez (2016) and Klaus and Klijn (2006) for median stable matching.
Note that this method is analogous to the use of the Kemeny distance (Kemeny (1959), and Can and Stor-
cken (2018)) in the Kemeny–Young method (Kemeny (1959), and Young and Levenglick (1978)).
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intuitive way to compare two matchings is by simply looking at the number of indi-
viduals who are matched differently. This method4 would assign zero if the matchings
were identical in all pairs, and would be maximal if they had nothing in common. Such
a method can compare any two matchings, and hence, can be used to conceptualize
“closeness” to any desired feature. However, this neglects individuals’ preferences in
the market. Partially addressing this, Biró, Iñarra, and Molis (2014) use the number of
blocking pairs for a given matching as a concept “closeness to stability,” while Niederle
and Roth (2007) propose to count the number of “disruptive” blocking pairs only for the
same concept. Although both attempts somewhat endogenize preferences, they also
focus on quantifying closeness to a particular feature, i.e., stability.

In this paper, rather than proposing varying definitions for “closeness to stability” or
“closeness to efficiency” in different matching problems, we propose a systematic way
to quantify “closeness” to any desired feature with a domain agnostic framework. This
paper explores metric (distance) functions5 on matchings. We introduce intuitive condi-
tions and endogenize individual preferences in quantifying the dissimilarity (distance)
between two matchings, and hence, between two mechanisms or between a mechanism
and a solution concept (a desired feature) in roommate markets.6 We formulate our re-
sult on the domain of roommate markets since we are also interested in markets that
are not necessarily solvable, i.e., markets in which there are no stable matchings. In ad-
dition, since roommate markets are generic one-to-one matching problems, the results
apply to other well-known two-sided markets, e.g., the marriage markets. This creates
richness in the way these distances can be employed under different interpretations.

The conditions we propose characterize an intuitive class of positional distances
that behave like Borda scoring rules in the context of voting. They assign distances based
on the ranks of agents’ partners. We refer to this class as scaled Borda distances. Given a
market, these distances scale the sum of absolute differences in Borda scores7 of agents’
partners in two matchings.

The paper proceeds as follows. In Section 2, we present the basic notation for the
model. Section 3 introduces the model, which is a metric framework and the conditions
on distance functions. Section 4 is devoted to the analysis of the structure of distance
functions satisfying those conditions and eventually bringing forth a complete charac-
terization.

2. Notation

We consider a countable and infinite set of potential individuals, denoted by N , with a
nonempty and finite subset N �N interpreted as a set of agents. For each i ∈ N , let Ri

4To the best of our knowledge, the first reference to such method can be found in Klaus, Klijn, and Walzl
(2010) for stochastic markets.

5A metric is a function, which satisfies nonnegativity, identity of indiscernibles, symmetry, and triangular
inequality.

6A roommate market is a one-sided one-to-one matching market.
7The Borda score of a matching for an individual is the number of alternatives that are ranked strictly

below the partner of the individual in that matching.
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denote the preference of agent i, that is a complete, transitive, and antisymmetric bi-
nary relation over N , while R ≡ (Ri )i∈N is the preference profile. We say agent j is “at
least as good as” agent k for agent i whenever j Ri k. We denote the position of agent j
in the preference Ri, by rank(j, Ri ) = |{k ∈ N : kRi j}|. A generic market (also referred to
as a roommate problem) is denoted by P = (N , R), and the set of all possible roommate
problems over a particular set of agents N by P(N ). We denote the domain of all room-
mate problems by D = 〈P(N )〉N�N , i.e., the set of all possible roommate problems over
all possible sets of agents.

A matching μ is a permutation on N such that for all i, j ∈ N , μ(i) = j if and only
if μ(j) = i. We refer to j as the partner (roommate) of i at matching μ, and in case
μ(i) = i, i is said to be single at matching μ. A matching in which every agent is sin-
gle is referred to as the identity matching and is denoted by μI . We denote the set of all
possible matchings on N by M(N ). Given any problem P = (N , R) and any two match-
ings μ, μ̄ ∈ M(N ), the set of agents that are preferred (nested) between μ(i) and μ̄(i)
according to Ri forms an interval denoted by [μ, μ̄]Ri . Formally,

[μ, μ̄]Ri = {
j ∈N : μ(i) Ri j Ri μ̄(i) or μ̄(i) Ri j Ri μ(i)

}
.

The length of an interval is denoted by |μ, μ̄|Ri = #[μ1, μ2]Ri − 1, i.e., the cardinality of
the interval minus 1.

We say a matching μ̄ is between matchings μ and ¯̄μ, if μ̄(i) ∈ [μ, ¯̄μ]Ri for all i ∈ N .
Given any sequence of matchings μ1, � � � , μt in M(N ), we say μ1, � � � , μt are “on a line,”
denoted by [μ1 −μ2 − · · · −μt ], if μj is between μi and μk for all 1 ≤ i ≤ j ≤ k≤ t. We say
a matching μ is weakly above μ̄ whenever μ(i) Ri μ̄(i) for all i ∈N . In addition, we say μ

and μ̄ are adjacent whenever |μ, μ̄|Ri = 1 for all i ∈N , we say μ and μ̄ are disjoint when-
ever μ(i) �= μ̄(i) for all i ∈ N . Figure 2 demonstrates the concepts of interval, length, the
identity matching, and betweenness.

Consider problem P = (N , R). Let π be a permutation over the set of agents N . We
denote the permuted preference profile by Rπ where for all i, j, k ∈N , j Ri k if and only if
π(j)Rπ

π(i)π(k). Define the permuted problem Pπ = (N , Rπ ) accordingly. Given a match-
ing μ ∈ M(N ), we denote the permuted matching by μπ where for all i, j ∈ N , μ(i) = j if
and only if μπ(π(i)) = π(j).8 The permutations are denoted by the cycle notation, e.g.,

Figure 2. In the problem above, an example for an interval is [μ1, μ3]R1 = {2, 4, 3} and the
length of this interval is |μ1, μ3|R1 = 2. The matching μ2 is between μ1 and μ3 while the identity
matching is denoted with circles.

8This is a typical definition for permutations in roommate markets. For examples of this, see Klaus
(2017), Özkal-Sanver (2010), Sasaki and Toda (1992).
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π = (123)(45) denotes π(1) = 2, π(2) = 3, π(3) = 1, π(4) = 5, π(5) = 4, and π(i) = i for
all i ∈ N \ {1, 2, 3, 4, 5}.

Let N be a set of agents and consider a newcomer a ∈ N \ N . A problem P∗ = (N ∪
{a}, R∗ ) is called an extension of the problem P = (N , R) by a whenever preferences of
agents in N over agents in N does not change from R to R∗, and the newcomer is ranked
at the bottom in R∗ by everyone in N . Formally:

(i) rank(j, Ri ) = rank(j, R∗
i ), for all i, j ∈N ,

(ii) rank(a, R∗
i ) = #N + 1, for all i ∈N .

Similarly, we say μ̄ ∈ M(N ∪ {a}), is the extension of a matching μ ∈ M(N ) by agent
a ∈ N \ N , whenever μ̄(i) = μ(i) for all i ∈ N , and μ̄(a) = a. In such extensions, we call
a ∈ N \N , an irrelevant newcomer.

Finally, let A = {a1, a2, � � � , ak}, be a set of agents such that N ∩A = ∅. Consider the
sequence P0, P1, P2, � � � , Pk of problems such that P0 = P and Pt is an extension of Pt−1

by agent at ∈ A. Then we say Pk is an extension of P by the set of agents A. Similarly,
we can define the extension of a matching by a set of agents. It should be noted that, the
order of adding agents results in different problems.

3. Model

We use metric functions as our main framework for comparing matchings. Given a set
of agents N , and a problem P ∈P(N ), a function on matchings δP : M(N ) ×M(N ) →R

is called a metric (or a distance function) function if and only if it satisfies the regular
metric conditions.9 Hence, for a given problem P , a distance function δP assigns every
pair of matchings μ, μ̄ ∈ M(N ) a nonnegative real number depending on the structure
of P . Note that according to this framework, as P changes, so does the distance between
matchings. Therefore, we define distances on matchings as “collections of distance func-
tions on all possible problems in the domain,” denoted by

δ= 〈δP〉P∈D .

Next, we propose some conditions on distance functions on matchings. When three
points are on a line, i.e., they are aligned, distances typically have an additive feature. In
the case of individuals, this alignment can be thought of as a prospective partner being
ranked in between another two. Hence, the change from the worst to the middle partner
and the change from the middle to the best partner should add up to the change from
the worst to the best partner. In the case of matchings, this alignment can be thought of
as a matching being ordered by every individual in between another two. Therefore, this
feature, which Kemeny (1959) calls betweenness,10 requires that when three matchings
are ordered “on a line,” the distance function should be additive on these matchings.

9(i) Nonnegativity: δP (μ, μ̄) ≥ 0, (ii) identity of indiscernibles: δP (μ, μ̄) = 0 if and only if μ= μ̄, (iii) sym-
metry: δP (μ, μ̄) = δP (μ̄, μ), and (iv) triangular inequality: δP (μ, ¯̄μ) ≤ δP (μ, μ̄) + δP (μ̄, ¯̄μ).

10This is a standard additivity condition, which strengthens the triangular inequality condition for cases
where the weak inequality becomes equality, e.g., when three points are on a line in the Euclidian sense.



602 Can, Pourpouneh, and Storcken Theoretical Economics 18 (2023)

Condition 1 (Betweenness). δ satisfies betweenness if for all problems P = (N , R) ∈ D
and for all matchings μ, μ̄, ¯̄μ ∈ M(N ) such that μ̄ is between μ, ¯̄μ,

δP (μ, ¯̄μ) = δP (μ, μ̄) + δP (μ̄, ¯̄μ).

Anonymity condition is straightforward and requires that the relabeling of the agents
should not matter.

Condition 2 (Anonymity). δ satisfies anonymity if for all problems P = (N , R) ∈ D and
for all matchings μ, μ̄ ∈ M(N ) and permutation π : N →N ,

δP (μ, μ̄) = δPπ
(
μπ , μ̄π

)
.

The monotonicity condition requires that if from one problem to another, the two
matchings fall further apart from one another, then the distance function should reflect
that by an increase in the distance.

Condition 3 (Monotonicity). δ satisfies monotonicity if for all problems P = (N , R) ∈
D and P̂ = (N , R̂) ∈ D and all matchings μ, μ̄ ∈ M(N ) such that [μ, μ̄]Ri ⊆ [μ, μ̄]R̂i

for all
i ∈ N ,

δP (μ, μ̄) ≤ δP̂ (μ, μ̄).

Remark 1. An immediate implication of monotonicity is that if for two matchings μ

and μ̄, the intervals remain the same across two problems on the same set of agents,
then the distance should not change. Furthermore, changing the relative order of μ, μ̄
in individual preferences does not alter the distance as long as the intervals remain the
same.

The next condition is an invariance axiom, which states that if a problem and two
matchings are extended by a dummy (single) agent, that essentially does not change the
matchings, the distance between these matchings should be the same in the extended
problem.

Condition 4 (Independence of irrelevant newcomers). δ satisfies independence of ir-
relevant newcomers if for all problems P = (N , R) ∈ D and any extension P∗ = (N∗, R∗ ) ∈
D and all matchings μ, μ̄ ∈ M(N ) with the extension μ∗, μ̄∗ ∈ M(N̂ ) by some agent
a ∈ N \N ,

δP (μ, μ̄) = δP∗
(
μ∗, μ̄∗).

Remark 2. An immediate implication of independence of irrelevant newcomers is that
if P∗, μ∗, μ̄∗ are extensions of P , μ, μ̄, by a set of agents A, then δP (μ, μ̄) = δP∗(μ∗, μ̄∗ ).

Often when dealing with matching problems, one has to compare matchings for dif-
ferent populations and sizes. Therefore, it is common to propose conditions to ensure
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consistency across these populations and and their subgroups.11 As the set of agents en-
large, it is natural to expect the distances between matchings to increase, ceteris paribus.
The simplest way to ensure consistency in such variable population scenarios, would be
to set the minimal nonzero distance on disjoint matchings equal to the population size,
i.e., |N|, to allow comparison of populations of varying cardinality. To allow richness in
possible solutions, we propose a weaker version of this method, which sets this distance
to be a function of the population instead.

Condition 5 (Standardization). δ satisfies standardization if there exists a function κ :
2N → R such that for all N and for all disjoint matchings μ, μ̄ ∈ M(N ),

min
P∈P(N )

δP (μ, μ̄) = κ(N ).

4. Results

In what follows, we focus on distance functions that satisfy the five conditions laid out
in Section 3, i.e., Betweenness, Anonymity, Monotonicity, Independence of Irrelevant
Newcomers, and Standardization. We also explicitly mention the necessary condition(s)
for each lemma, proposition, and theorem as a prerequisite. We first introduce Lemma 1
(decomposition lemma), which proves that the distance functions we seek decompose
the distance into sums of distances between pairs of matchings that look like compo-
nents of the original matchings (see Figure 3). Thereafter, the results are presented in
two subsections. In Section 4.1, we analyze the behavior of these distance functions
specifically when they compare a matching with the identity matching, i.e., the match-
ing where every agent is single, and in Section 4.2, the results are extended to cases
where any two matchings are compared.

In Section 4.1, we first use Lemmas 2, 3, and 4 to show the distances between one-
couple matchings (matchings in which everyone except one couple is single) and the
identity matching is the same across all problems as long as the interval lengths are the
same. These lemmas also quantify how different interval lengths relate to one another.
Proposition 1 shows that the distances of such one-couple matchings to the identity
matching should be based on positions of the partners. Finally, Theorem 1 combines the

Figure 3. The general view of the decomposition lemma.

11Thomson (2011) provides an extensive survey on consistency and converse consistency in various do-
mains while Karakaya and Klaus (2017) focus on population sensitivity properties in coalition formation
games, e.g., roommate markets. Similar to our approach, Kemeny (1959) also uses normalization to set the
minimal nonzero distance on rankings.
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aforementioned results and extends Proposition 1 to conclude that the distance func-
tions we seek is equivalent to a class of positional distances.

In Section 4.2, we extend the findings of Section 4.1 to any two matchings using two
more building blocks, i.e., Propositions 3 and 4, to generalize Theorem 1 for any two
matchings. Hence, Theorem 2 provides a complete characterization of a class of posi-
tional distances, which we refer to as scaled Borda distances. In Appendix D, we also
demonstrate that the conditions in the characterization results are logically indepen-
dent.

To state the first lemma, let μ, μ̄ ∈ M(N ) be two matchings and S ⊆ N be a subset
of agents that are matched among themselves in μ and μ̄, i.e., μ(i), μ̄(i) ∈ S for all i ∈ S.
Based on the set S, we define two matchings, μS and μ̄S , as follows:

(i) for all i ∈ S, let μS(i) = μ(i) and for all i ∈ N \ S, let μS(i) = μ̄(i),

(ii) for all i ∈ S, let μ̄S(i) = μ̄(i) and for all i ∈ N \ S, let μ̄S(i) = μ(i).

In the following lemma, we show that the distance between μ, μ̄ can be decomposed
into the sum of the distances from μS and μ̄S to μ (or μ̄). Figure 3 shows a demonstration
of this decomposition.

Lemma 1 (Decomposition lemma). Let δ be a distance function, which satisfies between-
ness. Let μ, μ̄ ∈ M(N ). Then, for all S ⊆ N such that μ(i), μ̄(i) ∈ S for all i ∈ S, we have

δP (μ, μ̄) = δP
(
μ, μ̄S

) + δP
(
μ, μS

) = δP
(
μ̄S , μ̄

) + δP
(
μS , μ̄

)
.

Proof. For a proof, see Appendix A.

4.1 Comparing any matching with the identity matching

We now focus on the distance between any matching and the identity matching. By
monotonicity, as long as the intervals between the two matchings remain the same, the
distance will remain unchanged. Therefore, in order to keep the figures simple, we draw
the identity matching below the other matchings and denote the matchings as straight
lines whenever possible.

Consider a matching in which everyone is single except one couple, say μ(i) = j with
i �= j. We call such a matching a one-couple matching (see Figure 4) and denote it by
μij . Given a problem P = (N , R), we say a one-couple matching μij is of length (x, y )
whenever (|μij(i), i|Ri , |μij(j), j|Rj ) = (x, y ).

Remark 3. Consider any matching μ with k distinct couples. Then, by the decomposi-
tion lemma, and letting S = {i, j} and S̄ =N \S for each couple of μ, the distance between
μ and μI can be decomposed as the sum of distances of each of these k one-couple
matchings, and the identity matching.

According to Remark 3, to compute the distance between any matching and the
identity matching, we only need to focus on the distance between a one-couple match-
ing and the identity matching. The total distance then equals the sum of each of these
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Figure 4. A one-couple matching μij of length (x, 1).

one-couple matchings. In the sequel, we show that the distance between a one-couple
matching and the identity matching is the same for all problems whenever the interval
lengths are the same. In Lemma 2, we demonstrate the case where the interval length is
(x, 1). Then in Lemma 3, we extend this to any interval length (x, y ).

Lemma 2. Let δ be a distance function, which satisfies anonymity, monotonicity, and in-
dependence of irrelevant newcomers. Consider any finite N , N ′ �N and a strictly positive
integer x. Consider any one-couple matching μij ∈ M(N ), and any P ∈ P(N ) such that μij

is of length (x, 1) in P . Similarly, consider any one-couple matching μi′j′ ∈ M(N ′ ), and
any P ′ ∈ P(N ′ ) such that μi′j′ is of length (x, 1) in P ′. Let μI and μI′

denote the identity
matchings in corresponding problems, then

δP
(
μij , μI

) = δP ′
(
μi′j′ , μI′)

.

Proof. For a proof, see Appendix B.1.

Remark 4. Given a distance function δ satisfying the conditions in Section 3, Lemma 2
shows that the distance between the identity matching and any one-couple matching
of length (x, 1) is the same across all the problems in the domain, i.e., regardless of the
set of agents. Therefore, each distance function δ is associated with a constant for such
one-couple matchings, denoted by αδ

x1. Note, however, that throughout the rest of the
paper, we omit the superscript to simplify the notation whenever it is clear and denote
this constant simply as αx1 for δ.

The next lemma extends Lemma 2 to any one-couple matching of length (x, y ).

Figure 5. A one-couple matching μij of length (x, y ).
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Lemma 3. Let δ be a distance function, which satisfies betweenness, anonymity, mono-
tonicity, and independence of irrelevant newcomers. Consider any finite N , N ′ �N , and
two strictly positive integers x and y. Consider any one-couple matching μij ∈ M(N ), and
any P ∈ P(N ) such that μij is of length (x, y ) in P . Similarly, consider any one-couple
matching μi′j′ ∈ M(N ′ ), and any P ′ ∈ P(N ′ ) such that μi′j′ is of length (x, y ) in P ′. Let μI

and μI′
denote the identity matchings in corresponding problems, then

δP
(
μij , μI

) = δP ′
(
μi′j′ , μI′) = αx1 + αy1 − α11.

Proof. For a proof, see Appendix B.2.

Lemma 3 shows that the distance between the identity matching and any one-
couple matching of length (x, y ) is the same across all the problems in the domain, i.e.,
regardless of the set of agents. To simplify the notation, we denote this distance by αxy .
Akin to Remark 4, each δ satisfying the conditions will have a unique αxy .

Next, as a particular case of Lemma 3, we show that for any strictly positive integer
x, αxx = xα11, i.e., a one-couple matching of length (x, x) has x times the distance that a
one-couple matching of length (1, 1) has (to the identity matching).

Lemma 4. Let δ be a distance function, which satisfies betweenness, anonymity, mono-
tonicity, independence of irrelevant newcomers, and standardization. Consider any finite
N �N and a strictly positive integer x. Consider any one-couple matching μij ∈ M(N ),
and any problem P ∈ P(N ) such that μij is of length (x, x) in P . Let μI denote the identity
matching, then

δP
(
μij , μI

) = x× α11.

Proof. For a proof, see Appendix B.3.

Now we introduce Proposition 1. When all five conditions in Section 3 are imposed
on a distance function δ, Proposition 1 states that the distance between the identity
matching and a one-couple matching μij must equal to a scalar function of the sum of
absolute difference in the position of each agents’ partners in these matchings.

Proposition 1. Let δ be a distance function which satisfies betweenness, anonymity,
monotonicity, independence of irrelevant newcomers, and standardization. Then, for any
problem P = (N , R) and any one-couple matching μij ∈ M(N ), we have

δP
(
μij , μI

) = 1
2
α11

∑
k∈{i,j}

∣∣rank
(
μij(k), Rk

) − rank
(
μI(k), Rk

)∣∣. (1)

Proof. For a proof, see Appendix B.4.

Proposition 1 is fundamental in that it compares one-couple matchings and their
distance to the identity matching. It also provides a clear picture of how the class of dis-
tance functions we are looking for should behave. In fact, the right-hand side of equa-
tion (1) in the proof above is very similar to a positional voting concept known as the
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Borda rule in voting literature.12 For each candidate in a voting problem, Borda rule
defines a score that candidates get from each voter as follows:

BordaScore(j, Ri ) = |N| − rank(j, Ri ), (2)

which is interpreted as the score candidate j gets from voter i. A very straightforward ap-
plication of this scoring concept to comparing two matchings is one where we compare
the Borda scores of partners of an agent i, in these two matchings (in absolute value):

∣∣BordaScore
(
μ(i), Ri

) − BordaScore
(
μ̄(i), Ri

)∣∣
Finally, adding all the Borda score differentials for each individual’s partners in the

two matchings would properly define a new distance function, which we call the Borda
distance.

Borda distance: A distance function is called the Borda distance, denoted by δBorda,
if for all P = (N , R) ∈ D, and for all matchings μ, μ̄ ∈ M(N ),

δBorda
P (μ, μ̄) =

∑
i∈N

∣∣BordaScore
(
μ(i), Ri

) − BordaScore
(
μ̄(i), Ri

)∣∣.
=

∑
i∈N

∣∣rank
(
μ(i), Ri

) − rank
(
μ̄(i), Ri

)∣∣. (3)

Remark that equation (3) shows a clear resemblance to equation (1) in Proposition 1.
In fact, the latter is just a scalar transformation of the former with some constant. In
what follows, we formally define these scalar transformations of the Borda distance as
scaled Borda distances. Formally, we have the following.

Scaled Borda distances: A distance function is called a scaled Borda distance, denoted
by δσ−Borda, if for some σ ∈ R++, for all P = (N , R) ∈ D, and for all matchings μ, μ̄ ∈
M(N ),

δσ−Borda
P (μ, μ̄) = σ × δBorda

P (μ, μ̄) (4)

We first show that all the scaled Borda distances satisfy the conditions introduced in
Section 3. Hence, the lemmas and propositions introduced above are also applicable to
scaled Borda distances.

Proposition 2. Scaled Borda distances satisfy betweenness, anonymity, monotonicity,
independence of irrelevant newcomers, and standardization.

Proof. For a proof, see Appendix B.5

We can now introduce our first theorem, which expands Proposition 1 from one-
couple matchings to all matchings when compared with the identity matchings. For-
mally, we have the following.

12See Borda (1781), Saari (1990).
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Theorem 1. A distance function δ satisfies betweenness, anonymity, monotonicity, inde-
pendence of irrelevant newcomers, and standardization if and only if δ equals a scaled
Borda distance when comparing the identity matching with others. That is, there exists
σ > 0 such that for any problem P = (N , R) and any μ ∈ M(N ), we have

δP
(
μ, μI

) = δσ−Borda
P

(
μ, μI

)
.

Proof. For a proof, see Appendix B.6.

Note that Theorem 1 is restricted to cases comparing matchings with the identity
matching, although Proposition 2 is more general, i.e., the distances satisfy these con-
ditions for any two matchings. The next section discusses the generalization of Theo-
rem 1 and provides a complete characterization of the scaled Borda distances on any
two matchings.

4.2 Comparing any two nonidentity matching

In this section, we generalize Theorem 1 to any two matchings. That is, under the im-
posed conditions, given any problem and any two matchings, a distance function, which
compares these two matchings, must be equivalent to a scalar Borda distance. To do so,
first we propose two propositions for four-agents’ problems, then use these two propo-
sitions as building blocks to construct Theorem 2.

Proposition 3. Let δ be a distance function which satisfies betweenness, anonymity,
monotonicity, independence of irrelevant newcomers, and standardization. Consider a
problem P over four agents with the preference profile and the matchings shown in Fig-
ure 6. Note that one singleton is nested between μ1 and μ2 and another is nested between
μ2 and μ3. In such specific cases,

(i) δP (μ1, μ2 ) = δσ−Borda
P (μ1, μ2 ) for σ = 1

2α11,

(ii) δP (μ2, μ3 ) = δσ−Borda
P (μ2, μ3 ) for σ = 1

2α11.

Proof. For a proof, see Appendix C.1.

Proposition 4. Let δ be a distance function, which satisfies betweenness, anonymity,
monotonicity, independence of irrelevant newcomers, and standardization. Consider a

Figure 6. A problem over four agents with one singleton agent between the matchings.
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Figure 7. Problem P over four agents with two singleton agents between the matchings.

problem P over four agents with the preference profile and the matchings shown in Fig-
ure 7. Note that two singletons are nested between μ1 and μ2 and another two are nested
between μ2 and μ3. In such specific cases,

(i) δP (μ2, μ3 ) = δσ−Borda
P (μ2, μ3 ) for σ = 1

2α11,

(ii) δP (μ1, μ2 ) = δσ−Borda
P (μ1, μ2 ) for σ = 1

2α11.

Proof. For a proof, see Appendix C.2.

Next, we propose our main characterization.

Theorem 2. A distance function δ satisfies betweenness, anonymity, monotonicity, inde-
pendence of irrelevant newcomers, and standardization if and only if δ equals a scaled
Borda distance. That is, there exists σ > 0 such that for any problem P = (N , R) and any
μ, μ̃ ∈ M(N ), we have

δP (μ, μ̃) = δσ−Borda
P (μ, μ̃).

Proof. For a proof, see Appendix C.3.

Appendix A: Proofs of Lemma 1

Lemma 1 (Decomposition lemma). Let δ be a distance function, which satisfies between-
ness. Let μ, μ̄ ∈ M(N ). Then, for all S ⊆N such that μ(i), μ̄(i) ∈ S for all i ∈ S, we have

δP (μ, μ̄) = δP
(
μ, μ̄S

) + δP
(
μ, μS

) = δP
(
μ̄S , μ̄

) + δP
(
μS , μ̄

)
.

Proof. By definition of μ̄S and μS , both are between μ and μ̄; hence, betweenness
yields

δP (μ, μ̄) = δP
(
μ, μ̄S

) + δP
(
μ̄S , μ̄

)
and, (5)

δP (μ, μ̄) = δP
(
μ, μS

) + δP
(
μS , μ̄

)
. (6)

Since μ and μ̄ are both between μS and μ̄S betweenness results in

δP
(
μS , μ̄S

) = δP
(
μS , μ

) + δP
(
μ, μ̄S

)
and,

δP
(
μS , μ̄S

) = δP
(
μS , μ̄

) + δP
(
μ̄, μ̄S

)
.
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The four equations above yield

δP
(
μ, μ̄S

) + δP
(
μ̄S , μ̄

) = δP
(
μ, μS

) + δP
(
μS , μ̄

)
and,

δP
(
μS , μ

) + δP
(
μ, μ̄S

) = δP
(
μS , μ̄

) + δP
(
μ̄, μ̄S

)
.

Subtracting the latter equation from the former, we have δP (μ̄S , μ̄) − δP (μS , μ) =
δP (μ, μS ) − δP (μ̄, μ̄S ), which reduces to

δP
(
μ̄S , μ̄

) = δP
(
μS , μ

)
. (7)

Plugging equation (7) into equation (5), and as δ is a symmetric function, yields
δP (μ, μ̄) = δP (μ, μ̄S ) + δP (μ, μS ), and plugging equation (7) into equation (6) results
in δP (μ, μ̄) = δP (μ̄S , μ̄) + δP (μS , μ̄).

Appendix B: Proofs of Section 4.1

B.1 Proof of Lemma 2

Lemma 2. Let δ be a distance function, which satisfies anonymity, monotonicity, and
independence of irrelevant newcomers. Consider any N , N ′ � N and a strictly positive
integer x. Consider any one-couple matching μij ∈ M(N ), and any P ∈ P(N ) such that
μij is of length (x, 1) in P . Similarly, consider any one-couple matching μi′j′ ∈ M(N ′ ), and
any P ′ ∈ P(N ′ ) such that μi′j′ is of length (x, 1) in P ′. Let μI and μI′

denote the identity
matchings in corresponding problems, then

δP
(
μij , μI

) = δP ′
(
μi′j′ , μI′)

.

Proof. Consider an extension P̄ of P and the extension μ̄ij and μ̄I of matchings μij

and μI by the set of agents N ′ \ N , respectively. By Remark 2, δP (μij , μI ) = δP̄ (μ̄ij , μ̄I ).
For simplicity, we abuse the notation and write P , μij and μI instead of P̄ , μ̄ij and
μ̄I , respectively. Also, consider an extension P̄ ′ of P ′ and the extension μ̄i′j′ and μ̄I′

of matchings μi′j′ and μI′
by the set of agents N \ N ′, respectively. By Remark 2,

δP ′(μi′j′ , μI′
) = δP̄ ′(μ̄i′j′ , μ̄I′

). For simplicity, we abuse the notation and write P ′, μi′j′ ,
and μI′

instead of P̄ ′, μ̄i′j′ , and μ̄I′
, respectively. Note that now both P and P ′ (as well as

the matchings) are defined on the same set of agents N̄ = N ′ ∪N .
Let Z = {z1, � � � , zx−1} be the set of other agents nested between j and i in Ri, and

Z′ = {z′
1, � � � , z′

x−1} be the set of other agents nested between j′ and i′ in R′
i′ . There are

two possible situations: either Z =Z′ or Z �=Z′.
Case 1. Z = Z′: Consider permutation π = (ii′ )(jj′ ). Applying this permutation

on P , and using anonymity yields δP (μij , μI ) = δPπ ((μij )π , (μI )π ). Since by this per-
mutation, (μij )π = μi′j′ and (μI )π = μI′

, then δPπ ((μij )π , (μI )π ) = δPπ (μi′j′ , μI′
). Since

Z = Z′ and both problems are defined on the same set of agents, monotonicity implies
δPπ (μi′j′ , μI′

) = δP ′(μi′j′ , μI′
). Therefore, δP (μij , μI ) = δP ′(μi′j′ , μI′

).
Case 2. Z �= Z′: In this case, we add the same set of irrelevant newcomers to both

problems P and P ′, and map the agents in Z and Z′ to these newcomers so that the set
of agents that are nested between the two matchings in these two problems become the
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same, then Case 1 implies the result. Formally, let A = {a1, � � � , ax−1} be a set of agents
such that N̄ ∩A= ∅. Next, let P̂ and P̂ ′ be the extensions of P and P ′ by the set of agents
A, respectively. Also, let μ̂ij and μ̂I be the extensions of μij and μI , and μ̂i′j′ and μ̂I′

be
the extensions of μi′j′ and μI′

, respectively, all by the same set of agents A. By Remark 2,
δP (μij , μI ) = δP̂ (μ̂ij , μ̂I ) and δP ′(μi′j′ , μI′

) = δP̂ ′(μ̂i′j′ , μ̂I′
). For simplicity, we abuse the

notation and write P , μij , and μI instead of P̂ , μ̂ij , and μ̂I , and we write P ′, μi′j′ , and μI′

instead of P̂ ′, μ̂i′j′ , and μ̂I′
, respectively.

Consider the permutation π = (ztat ) for all t ∈ {1, � � � , x − 1}. Applying π on P per-
mutes the agents that are nested between j and i in Ri to the agents in A. Also, applying
the permutation π′ = (z′

tat ) for all t ∈ {1, � � � , x − 1} on P ′ permutes the agents nested
between j′ and i′ in R′

i′ to the agents in A. In both problems, anonymity implies the dis-
tances to be unchanged. As the set of agents nested between the two matchings both in
P and P ′ are now identical, a similar argument to the one in Case 1 implies the result.

B.2 Proof of Lemma 3

Lemma 3. Let δ be a distance function, which satisfies betweenness, anonymity, mono-
tonicity, and independence of irrelevant newcomers. Consider any N , N ′ � N and two
strictly positive integers x and y. Consider any one-couple matching μij ∈ M(N ), and any
P ∈ P(N ) such that μij is of length (x, y ) in P . Similarly, consider any one-couple match-
ing μi′j′ ∈ M(N ′ ), and any P ′ ∈ P(N ′ ) such that μi′j′ is of length (x, y ) in P ′. Let μI and
μI′

denote the identity matchings in corresponding problems, then

δP
(
μij , μI

) = δP ′
(
μi′j′ , μI′) = αx1 + αy1 − α11.

Proof. Consider an extension P̄ = (N ∪ {a, b}, R̄) of P and extensions μ̄ij , μ̄I ∈ M(N ∪
{a, b}) of μij , μI ∈ M(N ), respectively, by the set of agents A = {a, b}. By Remark 2,
δP (μij , μI ) = δP̄ (μ̄ij , μ̄I ). For simplicity, we abuse the notation and write P , μij , and
μI instead of P̄ , μ̄ij , and μ̄I , respectively (see Figure 8).

Consider any problem P̂ = (N̂ , R̂), shown in Figure 9, with N̂ = N and R̂ such that

• rank(a, R̂i ) = 1 and [μij , μI ]Ri = [μij , μI ]R̂i
,

• rank(b, R̂j ) = 1 and [μij , μI ]Rj = [μij , μI ]R̂j
,

Figure 8. Problem P after adding the two newcomers a and b.
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Figure 9. Problem P̂ = (N̂ , R̂).

• rank(i, R̂a ) = 1, rank(b, R̂a ) = |N̂| + 1, and rank(a, R̂a ) = |N̂| + 2,

• rank(j, R̂b ) = 1, rank(a, R̂b ) = |N̂| + 1, and rank(b, R̂b ) = |N̂| + 2.

By monotonicity, we have

δP
(
μij , μI

) = δP̂
(
μij , μI

)
. (8)

Therefore, it is sufficient to prove that δP̂ (μij , μI ) = αx1 + αy1 − α11.
Consider the following two matchings in problem P̂ such that μ ∈ M(N̂ ) with μ(i) =

j, μ(a) = b, and μ(t ) = t for all other agent t and μT ∈ M(N̂ ) with μT (i) = a, μT (j) = b,
and μT (t ) = t for all other agent t.

Claim. δP̂ (μ, μI ) = αx1 + αy1.

Proof of claim. Consider a new problem P̂π shown in Figure 10. Problem P̂π is the
permuted problem of P̂ with π = (aj). By this permutation, the identity matching re-
mains the same; hence, we write μI instead of (μI )π in P̂π . By anonymity, the following
equation holds:

δP̂
(
μT , μ

) = δP̂π

((
μT

)π
, μπ

)
. (9)

Consider a new problem P̃ shown in Figure 11. Problem P̃ is almost identical to
problem P̂π except that the position of the partners of each agent in (μT )π and μπ are
swapped. By monotonicity for P̂π and P̃ , δP̂π ((μT )π , μπ ) = δP̃ ((μT )π , μπ ). Plugging
this into equation (9), we have

δP̂
(
μT , μ

) = δP̃
((
μT

)π
, μπ

)
. (10)

Figure 10. Problem P̂π after permuting problem P̂ in Figure 9 with π = (aj ).
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Figure 11. Problem P̃ , after swapping the positions of μπ and (μT )π in problem P̂π in Fig-
ure 10.

Since μ is between μT and μI in problem P̂ , and (μT )π is between μπ and μI in
problem P̃ , betweenness yields

δP̂
(
μT , μI

) = δP̂
(
μT , μ

) + δP̂
(
μ, μI

)
and, (11)

δP̃
(
μπ , μI

) = δP̃
(
μπ ,

(
μT

)π) + δP̃
((
μT

)π
, μI

)
. (12)

Note that by permutation π, μπ = μT , hence δP̃ (μπ , μI ) = δP̃ (μT , μI ). Considering this
and the monotonicity for problems P̃ and P̂ , we have δP̃ (μT , μI ) = δP̂ (μT , μI ). There-
fore, the left-hand sides of equations (11) and (12) are equal, which yield

δP̂
(
μT , μ

) + δP̂
(
μ, μI

) = δP̃
(
μπ ,

(
μT

)π) + δP̃
((
μT

)π
, μI

)
.

Combining this with equation (10) results in δP̂ (μ, μI ) = δP̃ ((μT )π , μI ). Finally, by
the decomposition lemma and Lemma 2, δP̃ ((μT )π , μI ) = αx1 +αy1. Hence, δP̂ (μ, μI ) =
αx1 + αy1, which concludes the claim.

By the decomposition lemma, for matching μ in problem P̂ , we have δP̂ (μ, μI ) =
δP̂ (μij , μI ) + δP̂ (μab, μI ). By the claim proven above, δP̂ (μ, μI ) = αx1 + αy1, and by
Lemma 2, we have δP̂ (μab, μI ) = α11. So, δP̂ (μij , μI ) = αx1 + αy1 − α11, and by equa-
tion (8), δP (μij , μI ) = αx1 + αy1 − α11. Finally, by Lemma 2, the right-hand side of this
equation is independent of the set of agents N � N . Therefore, for all N � N , for all
problems P ∈ P(N ) and for all one-couple matchings μij of length (x, y ) we conclude
that

δP
(
μij , μI

) = αx1 + αy1 − α11.

B.3 Proof of Lemma 4

Lemma 4. Let δ be a distance function, which satisfies betweenness, anonymity, mono-
tonicity, independence of irrelevant newcomers, and standardization. Consider any N �

N and a strictly positive integer x. Consider any one-couple matching μij ∈ M(N ), and
any problem P ∈ P(N ) such that μij is of length (x, x) in P . Let μI denote the identity
matching, then

δP
(
μij , μI

) = x× α11.
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Figure 12. Problem P̄ = (N̄ , R̄).

Proof. By Lemma 3, the distance between the identity matching and any one-couple
matching of length (x, y ) is the same across all problems in the domain. Therefore,
it suffices to prove that the lemma holds for some problem P̄ , and some one-couple
matching of length (x, x) in P̄ . Consider the following specific problem P̄ = (N̄ , R̄) with
N̄ = {1, 2, � � � , 2x} shown in Figure 12. Let μ̄x,x+1 be the one-couple matching of length
(x, x) in P̄ . Note that the structure of matchings μ̄x, � � � , μ̄1 in problem P̄ is such that

• μ̄x(1) = 2x, μ̄x(2) = 2x− 1, so on and so forth,

• for all k ∈ {2, � � � , x}, and for all i ∈ N̄ , μ̄k−1(i) = μ̄k((i+2) mod (2x)), e.g., μ̄x−1(2x−
1) = μ̄x(1) = 2x,

• for all k ∈ {1, � � � , x}, μ̄k and μ̄k−1 are adjacent.

Next, we show that δP̄ (μ̄x,x+1, μ̄I ) = x× α11, which in returns shows that αxx = x× α11.
To ease the notation in this problem, we denote the identity matching by μ̄0.

Claim. δP̄ (μ̄t , μ̄t+1 ) = |N̄|
2 α11 for all t ∈ {0, � � � , x− 1}.

Proof of claim. Note that by construction, the two matchings μ̄0 and μ̄1 in P̄ are dis-
joint. By standardization, for μ̄0, μ̄1, there exists a problem P ′ = (N̄ , R′ ) ∈ P(N̄ ) such
that δP ′(μ̄0, μ̄1 ) = κ(N̄ ) and is minimal. Note that for all i ∈ N̄ , as μ̄0, μ̄1 have the
minimal possible intervals, we have [μ̄0, μ̄1]R̄i

⊆ [μ̄0, μ̄1]R′
i
. Therefore, monotonicity

implies that δP̄ (μ̄0, μ̄1 ) = κ(N̄ ). By the decomposition lemma, the distance between

μ̄0 and μ̄1 can be decomposed as the sum of |N̄|
2 one-couple matchings, each of the

same length (1, 1). Hence, δP̄ (μ̄0, μ̄1 ) = |N̄|
2 α11. Together with the previous equation,

we have κ(N̄ ) = |N̄|
2 α11. Note that, by monotonicity the distance between μ̄t , μ̄t+1 for

all t ∈ {1, 2, � � � , x − 1}, is also minimal, and by standardization this distance also equals

κ(N̄ ). Hence, δP̄ (μ̄t , μ̄t+1 ) = |N̄|
2 α11 for all t ∈ {0, � � � , x − 1}, which completes the proof

of the claim.

Next, we complete the proof of the lemma by showing δP̄ (μ̄x,x+1, μ̄I ) = x×α11. Note
that by construction of P̄ , the matchings [μ̄x − μ̄x+1 − · · ·− μ̄1 − μ̄0] are on a line. There-
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fore, betweenness—together with the claim above—yields

δP̄
(
μ̄x, μ̄0) =

x−1∑
t=0

δP̄
(
μ̄t , μ̄t+1) = x× |N̄|

2
α11. (13)

By the decomposition lemma, the distance between μ̄x and μ̄0 can be decom-

posed as the sum of |N̄|
2 one-couple matchings, each of the same length (x, x). Hence,

δP̄ (μ̄x, μ̄0 ) = |N̄|
2 αxx. Together with equation (13), |N̄|

2 αxx = x × |N̄|
2 α11, which results

in αxx = x × α11. As αxx is the same across all problems in the domain Lemma 3, this
completes the proof of the lemma.

B.4 Proof of Proposition 1

Proposition 1. Let δ be a distance function, which satisfies betweenness, anonymity,
monotonicity, independence of irrelevant newcomers, and standardization. Then, for any
problem P = (N , R) and any one-couple matching μij ∈ M(N ), we have

δP
(
μij , μI

) = 1
2
α11

∑
k∈{i,j}

∣∣rank
(
μij(k), Rk

) − rank
(
μI(k), Rk

)∣∣.
Proof. Let μij be any one-couple matching of length (x, y ). By Lemma 3, αxy =
αx1 + αy1 − α11. Also by Lemma 3, αxx = αx1 + αx1 − α11 = 2αx1 − α11, and by Lemma 4,
αxx = xα11. Combining the two implies αx1 = (x+1)

2 α11. Setting αx1 = (x+1)
2 α11 and

αy1 = (y+1)
2 α11 into αxy = αx1 + αy1 − α11 simplifies to

αxy = 1
2
α11(x+ y ).

Note that x = |μij , μI|Ri and y = |μij , μI|Rj . Then we have αxy = 1
2α11(|μij , μI|Ri +

|μij , μI|Rj ), which can be rearranged as

αxy = 1
2
α11

∑
k∈{i,j}

∣∣rank
(
μij(k), Rk

) − rank
(
μI(k), Rk

)∣∣. (14)

B.5 Proof of Proposition 2

Proposition 2. Scaled Borda distances satisfy betweenness, anonymity, monotonicity,
independence of irrelevant newcomers, and standardization.

Proof.

• Betweenness: Consider any problem P = (N , R) ∈ D and any three matchings
μ, μ̄, ¯̄μ ∈ M(N ) such that μ̄ is between μ, ¯̄μ. Note that by definition of the scaled
Borda distances, for any σ ∈R++, we have

δσ−Borda
P (μ, μ̄) + δσ−Borda

P (μ̄, ¯̄μ) = σδBorda
P (μ, μ̄) + σδBorda

P (μ̄, ¯̄μ).
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The right-hand side is equivalent to

σ
∑
i∈N

∣∣rank
(
μ(i), Ri

) − rank
(
μ̄(i), Ri

)∣∣ + σ
∑
i∈N

∣∣rank
(
μ̄(i), Ri

) − rank
( ¯̄μ(i), Ri

)∣∣.
This can then be merged as

σ
∑
i∈N

(∣∣rank
(
μ(i), Ri

) − rank
(
μ̄(i), Ri

)∣∣ + ∣∣rank
(
μ̄(i), Ri

) − rank
( ¯̄μ(i), Ri

)∣∣).

As μ̄ is between μ and ¯̄μ, we have either rank(μ(i), Ri ) ≤ rank(μ̄(i), Ri ) ≤
rank( ¯̄μ(i), Ri ), or rank(μ(i), Ri ) ≥ rank(μ̄(i), Ri ) ≥ rank( ¯̄μ(i), Ri ). Therefore, the
sign of each term in absolute values above must be the same. Hence, we can sim-
plify the equation as follows:

σ
∑
i∈N

(∣∣rank
(
μ(i), Ri

) − rank
( ¯̄μ(i), Ri

)∣∣),

which equals δσ−Borda
P (μ, ¯̄μ). Hence, we can conclude

δσ−Borda
P (μ, μ̄) + δσ−Borda

P (μ̄, ¯̄μ) = δσ−Borda
P (μ, ¯̄μ).

• Anonymity: Note that relabeling the agents has no effect on the length of the
intervals of relabeled matchings. Therefore, the scaled Borda distances satisfy
anonymity.

• Monotonicity: Consider any two problems P = (N , R) ∈ D and P̂ = (N , R̂) ∈ D, and
any two matchings μ, μ̄ ∈ M(N ) as defined in the condition. Note that by defi-
nition of interval length, for all problems P and for all i ∈ N , we have |μ, μ̄|Ri =
|rank(μ(i), Ri ) − rank(μ̄(i), Ri )|. By construction of P and P̂ , we have [μ, μ̄]Ri ⊆
[μ, μ̄]R̂i

for all i ∈ N , which implies |μ, μ̄|Ri ≤ |μ, μ̄|R̂i
for all i ∈ N . The latter

is equivalent to |rank(μ(i), Ri ) − rank(μ̄(i), Ri )|≤ |rank(μ(i), R̂i ) − rank(μ̄(i), R̂i )|
for all i ∈ N . Note also that by definition of the scaled Borda distances, we
have δσ−Borda

P (μ, μ̄) = ∑
i∈N |rank(μ(i), Ri ) − rank(μ̄(i), Ri )|, which in turn implies

δσ−Borda
P (μ, ¯̄μ) ≤ δσ−Borda

P̂
(μ, ¯̄μ) for any σ ∈ R++.

• Independence of irrelevant newcomers: By construction, the newcomer in the new
problem is single in both matchings. Therefore, the Borda scores of both matchings
do not change in the new problem. This implies for any σ ∈ R++, the scaled Borda
distances are unchanged.

• Standardization: Note that for any two disjoint matchings the minimal interval
length for any individual is 1, i.e., the matches are adjacent in individuals prefer-
ences. Summing across all individuals leads to

min
P∈P(N )

δσ−Borda
P (μ, μ̄) = σ × |N|,

which concludes that κ(N ) = σ × |N| for any σ ∈R++.
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B.6 Proof of Theorem 1

Theorem 1. A distance function δ satisfies betweenness, anonymity, monotonicity, in-
dependence of irrelevant newcomers, and standardization if and only if δ equals a scaled
Borda distance when comparing the identity matching with others. That is, there exists
σ > 0 such that for any problem P = (N , R) and any μ ∈ M(N ), we have

δP
(
μ, μI

) = δσ−Borda
P

(
μ, μI

)
.

Proof. Proposition 2 proves the “if part” for any two matchings. To show the “only-
if” part for comparing any matching with the identity matching, consider the distance
between any one-couple matching μij of any length (x, y ) and the identity matching μI .
We can then plug equation (3) into Proposition 1, which yields

δP
(
μij , μI

) = αxy = 1
2
α11 × δBorda

P

(
μij , μI

)
.

Note that by the decomposition lemma, both for δP and δBorda
P , the distance between

any μ and the identity matching μI is the sum of distances between the identity match-
ing and all one-couple matchings induced by μ. Therefore,

δP
(
μ, μI

) = 1
2
α11 × δBorda

P

(
μ, μI

)
Finally, as δP is a metric function, α11 > 0 (nonnegativity and the identity of indis-

cernibles). Setting σ = 1
2α11 > 0, we conclude the distance function is a scaled Borda

distance with σ = 1
2α11:

δP
(
μ, μI

) = σ × δBorda
P

(
μ, μI

) = δσ−Borda
P

(
μ, μI

)
.

Appendix C: Proofs of Section 4.2

C.1 Proof of Proposition 3

Proposition 3. Let δ be a distance function, which satisfies betweenness, anonymity,
monotonicity, independence of irrelevant newcomers, and standardization. Consider a
problem P over four agents with the preference profile and the matchings shown in Fig-
ure 6. Note that one singleton is nested between μ1 and μ2 and another is nested between
μ2 and μ3. In such specific cases,

(i) δP (μ1, μ2 ) = δσ−Borda
P (μ1, μ2 ) for σ = 1

2α11,

(ii) δP (μ2, μ3 ) = δσ−Borda
P (μ2, μ3 ) for σ = 1

2α11.

Proof. First, we show δP (μ1, μ2 ) = δP (μ2, μ3 ), and then using this we prove the propo-
sition. Consider the permutation π = (23). Applying this permutation on P results in the
problem Pπ , which shown on the right-hand side of Figure 13.

Note that by anonymity we have δP (μ2, μ1 ) = δPπ ((μ2 )π , (μ1 )π ). Furthermore, un-
der the permutation π, (μ1 )π = μ3 and (μ2 )π = μ2, which implies δPπ ((μ2 )π , (μ1 )π ) =
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Figure 13. The original problem P in Proposition 3 (on the left) and the permuted problem Pπ

(on the right) after permuting with π = (23).

δPπ (μ2, μ3 ). Note that by monotonicity for two problems P and Pπ , we have δPπ (μ2,
μ3 ) = δP (μ2, μ3 ). Combining these equations and the fact that δ is a symmetric func-
tion, proves that δP (μ1, μ2 ) = δP (μ2, μ3 ).

(i) Proving δP (μ1, μ2 ) = δσ−Borda
P (μ1, μ2 ) for σ = 1

2α11. Let P̄ , μ̄1, μ̄2, and μ̄3 be ex-
tensions of P , μ1, μ2, and μ3, respectively, by the set of agents A = {1′, 2′, 3′, 4′}
(see Figure 14). By Remark 2, δP (μ1, μ2 ) = δP̄ (μ̄1, μ̄2 ), δP (μ2, μ3 ) = δP̄ (μ̄2, μ̄3 ),
and δP (μ1, μ3 ) = δP̄ (μ̄1, μ̄3 ). For simplicity, we abuse the notation and write P ,
μ1, μ2, and μ3 instead of P̄ , μ̄1, μ̄2 and μ̄3, respectively.

Consider also another problem P̂ shown in Figure 15.
Note that by monotonicity for two problems P and P̂ we have δP (μ1, μ2 ) =

δP̂ (μ1, μ2 ), and δP (μ2, μ3 ) = δP̂ (μ2, μ3 ). Therefore, using the first part of the
proposition, δP̂ (μ1, μ2 ) = δP̂ (μ2, μ3 ). As in problem P̂ , [μ4 −μ1 −μ2 −μ3] are on
a line, by betweenness δP̂ (μ4, μ3 ) = δP̂ (μ4, μ1 ) + δP̂ (μ1, μ2 ) + δP̂ (μ2, μ3 ). Com-
bining this with the previous equation implies

δP̂
(
μ4, μ3) = δP̂

(
μ4, μ1) + 2δP̂

(
μ1, μ2)

⇒ δP̂
(
μ1, μ2) = 1

2

(
δP̂

(
μ4, μ3) − δP̂

(
μ4, μ1)) (15)

Next, we show that the right-hand side of equation (15) equals δσ−Borda
P̂

(μ1, μ2 )

for σ = 1
2α11, i.e., σ × δBorda

P̂
(μ1, μ2 ). We do this by proving two claims for each of

the terms on the right-hand side of equation (15).

Figure 14. An extension of the problem P in Figure 6 by the set of agents A= {1′, 2′, 3′, 4′}.
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Figure 15. Problem P̂ .

Claim 1. δP̂ (μ4, μ3 ) = δσ−Borda
P̂

(μ4, μ3 ) for σ = 1
2α11.

Proof of Claim 1. As in P̂ , the identity matching is between μ4 and μ3, be-
tweenness implies δP̂ (μ4, μ3 ) = δP̂ (μ4, μI ) + δP̂ (μI , μ3 ). Using Theorem 1,
δP̂ (μ4, μI ) = σ × δBorda

P̂
(μ4, μI ) for σ = 1

2α11 and δP̂ (μI , μ3 ) = σ × δBorda
P̂

(μI , μ3 )

for σ = 1
2α11. With respect to this, and as δBorda satisfies betweenness, we have

δP̂ (μ4, μ3 ) = δσ−Borda
P̂

(μ4, μ3 ) where σ = 1
2α11.

Claim 2. δP̂ (μ4, μ1 ) = δσ−Borda
P̂

(μ4, μ1 ) for σ = 1
2α11.

Proof of Claim 2. To show this, consider the problem P̃ shown in Figure 16.
Note that, by monotonicity for two problems P̂ and P̃ we have δP̂ (μ4, μ1 ) =
δP̃ (μ4, μ1 ), and δBorda

P̂
(μ4, μ1 ) = δBorda

P̃
(μ4, μ1 ). Hence, it is sufficient to show

δP̃ (μ4, μ1 ) = δσ−Borda
P̃

(μ4, μ1 ) for σ = 1
2α11.

To proceed, we show that δP̃ (μ4, μ1 ) = δP̃ (μ1, μ5 ). Applying permutation π =
(12)(34), on P̃ results in problem P̃π , which is shown in Figure 17.

Note that by anonymity we have δP̃ (μ1, μ4 ) = δP̃π ((μ1 )π , (μ4 )π ). Further-
more, under the permutation π, (μ1 )π = μ1 and (μ4 )π = μ5, which implies
δP̃π ((μ1 )π , (μ4 )π ) = δP̃π (μ1, μ5 ). Note that by monotonicity for two problems P̃

and P̃π we have δP̃π (μ1, μ5 ) = δP̃ (μ1, μ5 ), which shows δP̃ (μ1, μ4 ) = δP̃ (μ1, μ5 ).
Considering this and as in problem P̃ matching μ1 is between μ4 and μ5, we have

δP̃
(
μ4, μ1) = δP̃

(
μ1, μ5) = δP̃

(
μ4, μ5)

2
. (16)

Figure 16. Problem P̃ .
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Figure 17. Problem P̃π after permuting P̃ in Figure 18 with π = (12)(34).

Betweenness of μI in problem P̃ yields δP̃ (μ4, μ5 ) = δP̃ (μ4, μI ) + δP̃ (μI , μ5 ).
By Theorem 1, δP̃ (μ4, μI ) = σ × δBorda

P̃
(μ4, μI ) for σ = 1

2α11 and δP̃ (μI , μ5 ) =
σ × δBorda

P̃
(μI , μ5 ) for σ = 1

2α11. Therefore, δP̃ (μ4, μ5 ) = 1
2α11(δBorda

P̃
(μ4, μI ) +

δBorda
P̃

(μI , μ5 )). Note that δBorda
P̃

(μ4, μI ) + δBorda
P̃

(μI , μ5 ) = 2δBorda
P̃

(μ4, μ1 ), which

with the previous equation implies δP̃ (μ4, μ5 ) = α11δ
Borda
P̃

(μ4, μ1 ). Plugging

this into equation (16) results in δP̃ (μ4, μ1 ) = 1
2α11δ

Borda
P̃

(μ4, μ1 ). Note that by

monotonicity for two problems P̂ and P̃ we have δP̂ (μ4, μ1 ) = δP̃ (μ4, μ1 ) and
δBorda
P̂

(μ4, μ1 ) = δBorda
P̃

(μ4, μ1 ). Hence, δP̂ (μ4, μ1 ) = δσ−Borda
P̂

(μ4, μ1 ) for σ =
1
2α11, which completes the proof of the claim.

Having proven the claims, we plug these back into equation (15), and

δP̂
(
μ1, μ2) = 1

2

(
δσ−Borda
P̂

(
μ4, μ3) − δσ−BordaδP̂

(
μ4, μ1))

= 1
2

(
1
2
α11δ

Borda
P̂

(
μ4, μ3) − 1

2
α11δ

BordaδP̂
(
μ4, μ1))

= 1
4
α11

(
δBorda
P̂

(
μ4, μ3) − δBordaδP̂

(
μ4, μ1))

= 1
4
α11

(
δBorda
P̂

(
μ1, μ3))

= 1
4
α11

(
2δBorda

P̂

(
μ1, μ2))

= 1
2
α11

(
δBorda
P̂

(
μ1, μ2))

where the fourth and the fifth equations are due to betweenness of δBorda. Finally,
by monotonicity for two problems P and P̂ we have δP (μ1, μ2 ) = δP̂ (μ1, μ2 ) and
δσ−Borda
P (μ1, μ2 ) = δσ−Borda

P̂
(μ1, μ2 ). Therefore, δP (μ1, μ2 ) = δσ−Borda

P (μ1, μ2 ) for

σ = 1
2α11, which completes the proof of the first part of the proposition.

(ii) Proving δP (μ2, μ3 ) = δσ−Borda
P (μ2, μ3 ) for σ = 1

2α11. As we proved δP (μ1, μ2 ) =
δP (μ2, μ3 ), and by the first part of this proposition and the fact that δBorda

P (μ1,
μ2 ) = δBorda

P (μ2, μ3 ), it can be easily concluded.
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Figure 18. The original problem P of Proposition 4 (on the left) and problem P̄ (on the right)
after swapping the positions of μ2 and μ3 in problem P .

C.2 Proof of Proposition 4

Proposition 4. Let δ be a distance function, which satisfies betweenness, anonymity,
monotonicity, independence of irrelevant newcomers, and standardization. Consider a
problem P over four agents with the preference profile and the matchings shown in Fig-
ure 7. Note that two singletons are nested between μ1 and μ2 and another two are nested
between μ2 and μ3. In such specific cases,

(i) δP (μ2, μ3 ) = δσ−Borda
P (μ2, μ3 ) for σ = 1

2α11,

(ii) δP (μ1, μ2 ) = δσ−Borda
P (μ1, μ2 ) for σ = 1

2α11.

Proof. Consider another problem P̄ shown on the right-hand side of Figure 18. Note
that by monotonicity for two problems P and P̄ we have δP (μ2, μ3 ) = δP̄ (μ2, μ3 )
and δBorda

P (μ2, μ3 ) = δBorda
P̄

(μ2, μ3 ). Next, we show that for problem P̄ , δP̄ (μ3, μ2 ) =
δσ−Borda
P̄

(μ3, μ2 ) for σ = 1
2α11.

Claim. δP̄ (μ3, μ2 ) = δσ−Borda
P̄

(μ3, μ2 ) for σ = 1
2α11.

Proof of claim. Consider the permutation π = (1324). Applying this permutation on
P̄ results in the problem P̄π , which is shown in Figure 19.

Note that by anonymity we have δP̄ (μ1, μ3 ) = δP̄π ((μ1 )π , (μ3 )π ). Furthermore, un-
der the permutation π, (μ1 )π = μ2 and (μ3 )π = μ3, which implies δP̄π ((μ1 )π , (μ3 )π ) =
δP̄π (μ2, μ3 ). Note that by monotonicity for two problems P̄ and P̄π , we have δP̄π (μ2,
μ3 ) = δP̄ (μ2, μ3 ). Combining these equations and the fact that δ is a symmetric func-
tion proves that δP̄ (μ1, μ3 ) = δP̄ (μ3, μ2 ). As in P̄ , μ3 is between μ1 and μ2, betweenness
implies δP̄ (μ1, μ2 ) = δP̄ (μ1, μ3 ) + δP̄ (μ3, μ2 ). This with the previous equation implies

δP̄
(
μ3, μ2) = δP̄(μ1,μ2 )

2
(17)

Figure 19. Permuted problem P̄π after permuting problem P̄ of Figure 18 with π = (1324).
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Now, as in problem P̄ the identity matching is between μ1 and μ2, between-
ness yields δP̄ (μ1, μ2 ) = δP̄ (μ1, μI ) + δP̄ (μI , μ2 ). By Theorem 1, δP̄ (μ1, μI ) = σ ×
δBorda
P̄

(μ1, μI ) for σ = 1
2α11 and δP̄ (μI , μ2 ) = σ × δBorda

P̄
(μI , μ2 ) for σ = 1

2α11. Therefore,

δP̄
(
μ1, μ2) = σ

(
δBorda
P̄

(
μ1, μI

) + δBorda
P̄

(
μI , μ2)) for σ = 1

2
α11. (18)

It can be verified that δBorda
P̄

(μ1, μI ) + δBorda
P̄

(μI , μ2 ) = δBorda
P̄

(μ1, μ3 ) + δBorda
P̄

(μ3, μ2 ),

and that δBorda
P̄

(μ1, μ3 ) = δBorda
P̄

(μ3, μ2 ). Replacing this into equation (18) implies

δP̄ (μ1, μ2 ) = 2σ × δBorda
P̄

(μ3, μ2 ) for σ = 1
2α11. Plugging this into equation (17) yields

δP̄ (μ3, μ2 ) = σ × δBorda
P̄

(μ3, μ2 ) for σ = 1
2α11. This concludes the claim.

(i) Proving that δP (μ2, μ3 ) = δσ−Borda
P (μ2, μ3 ) for σ = 1

2α11. Note that by monotonic-
ity for two problems P and P̄ we have δP (μ2, μ3 ) = δP̄ (μ2, μ3 ). Replacing the lat-
ter using the above claim, we have δP (μ2, μ3 ) = σ × δBorda

P̄
(μ2, μ3 ) for σ = 1

2α11.

As δBorda
P (μ2, μ3 ) = δBorda

P̄
(μ2, μ3 ), we have δP (μ2, μ3 ) = σ × δBorda

P (μ2, μ3 ) for

σ = 1
2α11, which concludes the first part of the proposition.

(ii) Proving that δP (μ1, μ2 ) = δσ−Borda
P (μ1, μ2 ) for σ = 1

2α11. As in problem P , the
identity matching is between μ1 and μ3; betweenness implies δP (μ1, μ3 ) =
δP (μ1, μI ) + δP (μI , μ3 ). Using Theorem 1, δP (μ1, μ3 ) = σ × δBorda

P (μ1, μ3 ) for
σ = 1

2α11. As in problem P , μ2 is between μ1 and μ3, betweenness implies
δP (μ1, μ3 ) = δP (μ1, μ2 ) + δP (μ2, μ3 ). Together with the previous equation,
we have σ × δBorda

P (μ1, μ3 ) = δP (μ1, μ2 ) + δP (μ2, μ3 ) for σ = 1
2α11. Replacing

δP (μ2, μ3 ) with the first part of the proposition results in σ × δBorda
P (μ1, μ3 ) =

δP (μ1, μ2 ) + σ × δBorda
P (μ2, μ3 ) for σ = 1

2α11. Rearranging will result in δP (μ1,
μ2 ) = σ × δBorda

P (μ1, μ3 ) −σ × δBorda
P (μ2, μ3 ) for σ = 1

2α11, which by betweenness
of the Borda distance equals δP (μ1, μ2 ) = σ × δBorda

P (μ1, μ2 ) for σ = 1
2α11. This

concludes the second part of the proposition.

C.3 Proof of Theorem 2

Theorem 2. A distance function δ satisfies betweenness, anonymity, monotonicity, in-
dependence of irrelevant newcomers, and standardization if and only if δ equals a scaled
Borda distance. That is, there exists σ > 0 such that for any problem P = (N , R) and any
μ, μ̃ ∈ M(N ), we have

δP (μ, μ̃) = δσ−Borda
P (μ, μ̃).

Proof. Proposition 2 proves the “if part” for any two matchings. To show the “only-if”
part for comparing any two matchings, without loss of generality, let N = {1, 2, � � � , n} be
the set of agents and consider any P ∈ P(N ). In case μ = μ̃, as δ is a metric function, we
have δP (μ, μ̃) = 0, which equals δσ−Borda

P (μ, μ̃) for any σ > 0. In case μ = μI (or μ̃= μI ),

by Theorem 1, we have δP (μ, μ̃) = δσ−Borda
P (μ, μ̃) for σ = 1

2α11. Next, we shall prove that
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Figure 20. General structure for P̄ .

for any other possible pairs of matchings μ, μ̃ ∈ M(N ) \ {μI } such that μ �= μ̃, the dis-
tance also equals a scaled Borda distance with σ = 1

2α11, i.e., δP (μ, μ̃) = δσ−Borda
P (μ, μ̃)

for σ = 1
2α11.

Note that if the number of agents is odd, we can use extensions of P , μ, and μ̃ by one
irrelevant newcomer. By independence of irrelevant newcomers, the distance would be
unchanged. So, without loss of generality, we can assume that the number of agents to
be even. Furthermore, by monotonicity, we can assume that μ is weakly above μ̃.

Let N ′ = {1′, 2′, � � � , n′} be a set of agents such that |N| = |N ′| and N ∩N ′ = ∅. Let N̄ =
N ∪N ′. Let P∗, μ∗, μ̃∗ be an extension of P , μ, μ̃ by the set N ′. By Remark 2, δP (μ, μ̃) =
δP∗(μ∗, μ̃∗ ). For simplicity, we abuse the notation and write P , μ and μ̃ instead of writing
P∗, μ∗, and μ̃∗, respectively. Let us define two additional matchings μB, μT ∈ M(N̄ )
such that: (1) for all i ∈ N , μB(i) = i′ ∈ N ′, and (2) for all odd i ∈ N , μT (i) = (i + 1)′ ∈ N ′
and for all even i ∈N , μT (i) = (i− 1)′ ∈N ′.

Next, we construct another problem P̄ = (N̄ , R̄) on the same set of agents N̄ (see
Figure 20 for a general view of the structure of this problem) such that:

(i) [μ, μ̃]Ri = [μ, μ̃]R̄i
for all i ∈ N̄ , i.e., the intervals of μ and μ̃ in P̄ are the same as

those in P ,

(ii) μT is weakly above μB, μB is weakly above μ (and they are adjacent), and μ is
weakly above μ̃,

(iii) if i ∈ [μ, μ̃]R̄i
, then [μT , μB]R̄i

= {μT (i), μB(i)}, i.e., if i is nested between μ(i) and

μ̃(i), then no other agent is nested between μT (i) and μB(i),

(iv) if i /∈ [μ, μ̃]R̄i
, then [μT , μB]R̄i

= {μT (i), i, μB(i)}, i.e., if i is not nested between

μ(i) and μ̃(i), then i is the only other agent nested between μT (i) and μB(i).

Note that by monotonicity for problems P and P̄ , we have δP (μ, μ̃) = δP̄ (μ, μ̃). Also,
δBorda
P (μ, μ̃) = δBorda

P̄
(μ, μ̃). Hence, it is sufficient to show δP̄ (μ, μ̃) = σ ×δBorda

P̄
(μ, μ̃) for

σ = 1
2α11.

Note that [μT − μB − μ− μ̃] are on a line in problem P̄ , therefore, betweenness im-
plies δP̄ (μT , μ̃) = δP̄ (μT , μB ) + δP̄ (μB, μ) + δP̄ (μ, μ̃), and hence,

δP̄ (μ, μ̃) = δP̄
(
μT , μ̃

) − δP̄
(
μT , μB

) − δP̄
(
μB, μ

)
. (19)
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In the next three steps, we show that the distance between each of the three pairs
of matchings on the right-hand side of equation (19) equals the scaled Borda distance
for some σ > 0. By betweenness of scaled Borda distances, this in return shall imply
δP̄ (μ, μ̃) = σ × δBorda

P̄
(μ, μ̃) for some σ > 0.

Step 1. (Proving that δP̄ (μT , μ̃) equals the scaled Borda distance for some σ > 0.) By
construction of P̄ , [μT − μI − μ̃] are on a line. Then by betweenness and Theorem 1,
δP̄ (μT , μ̃) = σ × δBorda

P̄
(μT , μ̃) for σ = 1

2α11.

Step 2. (Proving that δP̄ (μB, μ) equals the scaled Borda distance for some σ > 0.)

By construction of P̄ , we can consider any problem ¯̄P where [μB − μ − μI ] are on a
line, and the intervals of μB and μ are unchanged, i.e., [μB, μ]R̄i

= [μB, μ] ¯̄Ri
for all i ∈

N̄ , therefore, by monotonicity the distance is unchanged. Then by betweenness and
Theorem 1, δP̄ (μB, μ) = σ × δBorda

P̄
(μB, μ) for σ = 1

2α11.

Step 3. (Proving that δP̄ (μT , μB ) equals the scaled Borda distance for some σ > 0.)
Consider the partition of N̄ into the following subsets of agents T1 = {1, 2, 1′, 2′}, T2 =
{3, 4, 3′, 4′}, � � � , Tn

2
= {n−1, n, (n−1)′, n′} where N̄ = ⋃ n

2
l=1 Tl. Let μTl denote a matching

where μTl (i) = μT (i) for all i ∈ Tl, and μTl (i) = μB(i) for all i ∈ N̄ \ Tl. By construction,
for all l ∈ {1, � � � , n

2 }, μTl is between μT and μB. By the decomposition lemma, we have

δP̄
(
μT , μB

) =
n
2∑

l=1

δP̄
(
μTl , μB

)
. (20)

To simplify notation, we denote a generic μTl simply by μS . Based on the construc-
tion of μT and μB, each of these matchings, μS , will have one of the following three
structures: (1) no singleton is nested between μS and μB (see Figure 21), or (2) one sin-
gleton is nested between μS and μB (see Figures 22 and 25), or (3) two singletons are
nested between μS and μB (see Figure 26). In the sequel, we shall show that for each
of the three possible structures, δP̄ (μS , μB ) = σ × δBorda

P̄
(μS , μB ) for σ = 1

2α11, i.e., the
distance is a scaled Borda distance.

• Case 1. (no singleton) Consider the case in which no singleton is nested between

μS and μB (Figure 21). By construction of P̄ , we can consider any problem ¯̄P where
[μS − μB − μI ] are on a line, and the intervals of μS and μB are unchanged, i.e.,
[μS , μB]R̄i

= [μS , μB] ¯̄Ri
for all i ∈ N̄ , therefore, by monotonicity the distance is un-

changed. Then by betweenness and Theorem 1, δP̄ (μS , μB ) = σ ×δBorda
P̄

(μS , μB ) for

σ = 1
2α11.

Figure 21. The no singleton structure.
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Figure 22. The one singleton structure with i as the singleton.

• Case 2. (one singleton) Consider the case in which one singleton is nested between
μS and μB. By construction of μT and μB the singleton is either i or i+ 1. Therefore,
two situations are plausible:

I. i is the singleton nested (see Figure 22). Consider the four agent problem P

in Proposition 3, and rename the agents as 2 = i, 4 = i + 1, 3 = i′, and 1 =
(i + 1)′. Let P̂ be an extension of this problem P , by the set of agents A =
N̄ \ {i, i′, (i + 1), (i + 1)′}, and μ̂1 and μ̂2 be the extension of μ1 and μ2 by the
set A, respectively (see Figure 23). By Remark 2,

δP
(
μ1, μ2) = δP̂

(
μ̂1, μ̂2). (21)

Now, consider another problem P ′ shown in Figure 24. Monotonicity implies

δP̂
(
μ̂1, μ̂2) = δP ′

(
μ̂1, μ̂2). (22)

Note that the structure of the four matchings, μ̂1, μ̂2, μSμ, in problem P ′ cor-
responds to the four matchings in Figure 3 (to μ̄, μ̄S , μS , μB, respectively).
Therefore, by equation (7) in the decomposition lemma we have

δP ′
(
μ̂1, μ̂2) = δP ′

(
μS , μB

)
. (23)

Putting equations (21), (22), and (23) together results in δP (μ1, μ2 ) = δP ′(μS ,
μB ). Note that by monotonicity for problems P ′ and P̄ , we have δP ′(μS , μB ) =
δP̄ (μS , μB ). Combining these two equations yield

δP
(
μ1, μ2) = δP̄

(
μS , μB

)
. (24)

By Proposition 3, we have δP (μ1, μ2 ) = σ × δBorda
P (μ1, μ2 ) for σ = 1

2α11,
which also equals σ ×δBorda

P̄
(μS , μB ) for σ = 1

2α11. Plugging the last term back

into the left-hand side of equation (24) yields δP̄ (μS , μB ) = σ × δBorda
P̄

(μS , μB )

for σ = 1
2α11.

Figure 23. The four agents problem P of Proposition 3 after adding the set of agents
A= N̄ \ {i, i′, (i+ 1), (i+ 1)′}, as irrelevant newcomers.
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Figure 24. The problem P ′.

II. (i + 1) is the singleton nested (see Figure 25). Renaming the agents in Propo-
sition 3 as 4 = i, 2 = i + 1, 1 = i′, and 3 = (i + 1)′ and using a similar argument
as above yield δP̄ (μS , μB ) = σ × δBorda

P̄
(μS , μB ) for σ = 1

2α11.

• Case 3. (two singletons) Consider the case in which two singletons are nested be-
tween μS and μB. By the construction of μT and μB, only i and i + 1 can be the
singletons (see Figure 26). Renaming the agents in Proposition 4 as 1 = i, 2 = i + 1,
3 = i′, 4 = (i + 1)′, and using a similar argument as above, where only i was single,
yield δP̄ (μS , μB ) = σ × δBorda

P̄
(μS , μB ) for σ = 1

2α11.

Plugging the results of the three cases above into equation (20) yield

δP̄
(
μT , μB

) = σ ×
n
2∑

l=1

δBorda
P̄

(
μTl , μB

)
for σ = 1

2
α11. (25)

As Borda distance satisfies the conditions, and by the decomposition lemma the right-
hand side of equation (25) can be rearranged as

δP̄
(
μT , μB

) = σ × δBorda
P̄

(
μT , μB

)
for σ = 1

2
α11.

Finally, combining all three steps for δP̄ (μT , μ̃), δP̄ (μT , μB ), and δP̄ (μB, μ) into
equation (19) yield

δP̄ (μ, μ̃) = σ × (
δBorda
P̄

(
μT , μ̃

) − δBorda
P̄

(
μT , μB

) − δBorda
P̄

(
μB, μ

))
for σ = 1

2
α11.

By betweenness of scaled Borda distances and symmetry, the right-hand side of the
equation above reduces to σ × δBorda

P̄
(μ, μ̃), and hence, δP̄ (μ, μ̃) = σ × δBorda

P̄
(μ, μ̃) for

σ = 1
2α11.

Note that by monotonicity for problems P and P̄ , we have δP (μ, μ̃) = δP̄ (μ, μ̃). Also,
δBorda
P (μ, μ̃) = δBorda

P̄
(μ, μ̃). Therefore, with respect to the previous equation, we have

δP (μ, μ̃) = σ × δBorda
P (μ, μ̃) for σ = 1

2α11.

Figure 25. The one singleton structure with i+ 1 as the singleton.
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Figure 26. The two-singleton structure with both i and i+ 1 as the singleton agents.

Appendix D: Logical independence of the conditions

In this section, we discuss the logical independence of the conditions used in the char-
acterization, by presenting different distances, which satisfy every condition except one
of them.

D.1 Betweenness

For any N and for any P ∈ P(N ), the following rule satisfies everything except between-
ness:

δBP (μ, μ̄) = ∣∣{i ∈N : μ(i) �= μ̄(i)
}∣∣

The example in Figure 27 shows δB violates the betweenness condition.
It is easy to verify that δBP (μ, μ̄) = 2, δBP (μ̄, ¯̄μ) = 4, and δBP (μ, ¯̄μ) = 4; however, accord-

ing to betweenness, we must have δBP (μ, ¯̄μ) = 6. It is easy to see that this rule satisfies
anonymity, monotonicity, independence of irrelevant newcomers, and standardization.

D.2 Anonymity

Let the set of potential agents N equal to natural numbers that is N, then for any N and
for any P ∈ P(N ) the following rule satisfies everything except anonymity:

δAP (μ, μ̄) = 2 ×
∑
i∈O

|μ, μ̄|Ri +
∑
i∈E

|μ, μ̄|Ri ,

where O denotes the set of odd numbered agents and E denotes the set of even num-
bered agents.

Figure 27. An example of violation of betweenness condition by δB.
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Figure 28. An example of violation of anonymity condition by δA.

The example shown in Figure 28 shows δA violates the anonymity condition.
It is easy to check that δMP (μ, μ̄) = 2(1 + 1) + (2 + 2) = 8; however, after applying the

permutation π = (12)(34), we have δAPπ (μ, μ̄) = 2(2 + 2) + (1 + 1) = 10. It is easy to see
that this rule satisfies betweenness, monotonicity, independence of irrelevant newcom-
ers, and standardization.

D.3 Monotonicity

For any N and for any P ∈ P(N ), the following rule satisfies everything except mono-
tonicity:

δMP (μ, μ̄) =
∑
i∈N

∣∣2rank(μ(i),Ri ) − 2rank(μ̄(i),Ri )
∣∣

The example shown in Figure 29 shows δM violates the monotonicity condition.
It is obvious that [μ, μ̄]Ri ⊆ [μ, μ̄]R̂i

, for i ∈ {1, 2, 3}; however, δMP (μ, μ̄) = 3 × |22 −
23| = 12 and δM

P̂
(μ, μ̄) = |21 −23| + |21 −22| + |21 −22| = 10, which violates monotonicity.

To see that δM satisfies betweenness, let P be a problem and μ̄ be such that it is
between μ and ¯̄μ. We have

δMP (μ, μ̄) + δMP (μ̄, ¯̄μ) =
∑
i∈N

∣∣2rank(μ(i),Ri ) − 2rank(μ̄(i),Ri )
∣∣ +

∑
i∈N

∣∣2rank(μ̄(i),Ri ) − 2rank( ¯̄μ(i),Ri )
∣∣

=
∑
i∈N

(∣∣2rank(μ(i),Ri ) − 2rank(μ̄(i),Ri )
∣∣ + ∣∣2rank(μ̄(i),Ri ) − 2rank( ¯̄μ(i),Ri )

∣∣)

=
∑
i∈N

(∣∣2rank(μ(i),Ri ) − 2rank( ¯̄μ(i),Ri )
∣∣)

= δMP (μ, ¯̄μ)

Note that the third equality is due to the fact that for each i ∈ N we have either
μ(i)Riμ̄(i) or μ̄(i)Riμ(i). Therefore, rank(μ(i), Ri ) ≤ rank(μ̄(i), Ri ) ≤ rank( ¯̄μ(i), Ri ), or

Figure 29. An example of violation of monotonicity condition by δM .
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Figure 30. An example of violation of independence of irrelevant newcomers condition by δI .

rank(μ(i), Ri ) ≥ rank(μ̄(i), Ri ) ≥ rank( ¯̄μ(i), Ri ). Hence, in the second equation both ab-
solute values have the same sign, which allows to conclude the third equation. It is easy
to see that this rule satisfies anonymity, independence of irrelevant newcomers, and
standardization.

D.4 Independence of irrelevant newcomers

To show that the independence of irrelevant newcomers is logically independent from
other conditions, we first define the set of matchings that are between two given match-
ings.

The following rule satisfies everything except independence of irrelevant newcom-
ers:

δIP (μ, μ̄) =

⎧⎪⎪⎨
⎪⎪⎩

3, if |N| = 3 and μ, μ̄ are disjoint and

there is no matching between μ, μ̄

δBorda
P (μ, μ̄), otherwise

The example shown in Figure 30 shows δI violates the independence of irrelevant new-
comers condition.

As |N| = 3, and μ and μ̄ are disjoint and there is no other matching between them, we
have δIP (μ, μ̄) = 3. Now assume that an irrelevant newcomer joins, and hence, |N| = 4,
which results in δIP (μ, μ̄) = δBorda

P (μ, μ̄) = 4. It is easy to verify that the rule satisfies
anonymity, monotonicity, betweenness, and standardization.

D.5 Standardization

Let N be any set of agents and P ∈ P(N ). First, we define the following sets for any two
matchings μ, μ̄ ∈ M(N ). Let � be the set of agents such that they are single in only one
of the matchings, i.e., �(μ, μ̄) = {i ∈ N|[μ(i) = i or μ̄(i) = i] and [μ(i) �= μ̄(i)]}. Also, let
	 be the set of agents that are single in the strict interval between μ and μ̄. Formally,
	(μ, μ̄) = {i ∈N|i ∈ [μ, μ̄]Ri and i �= μ(i) and i �= μ̄(i)}. Consider the following rule:

δSP (μ, μ̄) = δBorda
P (μ, μ̄) − 1

2

∣∣�(μ, μ̄)
∣∣ − ∣∣	(μ, μ̄)

∣∣.
To show that δS violates standardization, let N = {1, 2, 3, 4} and consider the match-

ings μ= {(1, 4), (3, 2)}, μ̄= {(1, 2), (3, 4)}. By the above distance, minP∈P(N ) δ
S
P (μ, μ̄) = 4

and minP∈P(N ) δ
S
P (μ, μI ) = 2. Hence, standardization fails.

To show that δS satisfies betweenness, let μ, μ̄, ¯̄μ ∈ M(N ) be such that μ̄ is between
μ and ¯̄μ. Let s̄ be the number of agents that are single in μ̄ but not in μ or ¯̄μ. Then the
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following equation holds:∣∣	(μ, ¯̄μ)
∣∣ = s̄ + ∣∣	(μ, μ̄)

∣∣ + ∣∣	(μ̄, ¯̄μ)
∣∣ (26)

That is the number of agents that are single in the strict interval of μ and ¯̄μ equals to
the number of agents that are single in the strict interval of μ and μ̄ plus the number
of agents that are single in the strict interval of μ̄ and ¯̄μ plus those agents that are only
single in μ̄. Also, it is straightforward to see that∣∣�(μ, μ̄)

∣∣ + ∣∣�(μ̄, ¯̄μ)
∣∣ = ∣∣�(μ, ¯̄μ)

∣∣ + 2s̄ (27)

We have

δSP (μ, μ̄) + δSP (μ̄, ¯̄μ)

= δBorda
P (μ, μ̄) − 1

2

∣∣�(μ, μ̄)
∣∣ − ∣∣	(μ, μ̄)

∣∣ + δBorda
P (μ̄, ¯̄μ) − 1

2

∣∣�(μ̄, ¯̄μ)
∣∣ − ∣∣	(μ̄, ¯̄μ)

∣∣
= δBorda

P (μ, ¯̄μ) − 1
2

∣∣�(μ, μ̄)
∣∣ − 1

2

∣∣�(μ̄, ¯̄μ)
∣∣ − ∣∣	(μ, μ̄)

∣∣ − ∣∣	(μ̄, ¯̄μ)
∣∣

by=
(27)

δBorda
P (μ, ¯̄μ) − 1

2

∣∣�(μ, ¯̄μ)
∣∣ − s̄ − ∣∣	(μ, μ̄)

∣∣ − ∣∣	(μ̄, ¯̄μ)
∣∣

by=
(26)

δBorda
P (μ, ¯̄μ) − 1

2

∣∣�(μ, ¯̄μ)
∣∣ − s̄ − ∣∣	(μ, ¯̄μ)

∣∣ + s̄

= δBorda
P (μ, ¯̄μ) − 1

2

∣∣�(μ, ¯̄μ)
∣∣ − ∣∣	(μ, ¯̄μ)

∣∣
= δSP (μ, ¯̄μ)

where the second equation holds as δBorda satisfies betweenness. It is easy to see that δS

satisfies anonymity, monotonicity, and independence of irrelevant newcomers.
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Özkal-Sanver, İpek (2010), “Impossibilities for roommate problems.” Mathematical So-
cial Sciences, 59, 360–363. [600]

Saari, Donald G. (1990), “The Borda dictionary.” Social Choice and Welfare, 7, 279–317.
[607]

Sasaki, Hiroo and Manabu Toda (1992), “Consistency and characterization of the core of
two-sided matching problems.” Journal of Economic Theory, 56, 218–227. [600]

Thomson, William (2011), “Consistency and its converse: An introduction.” Review of
Economic Design, 15, 257–291. [603]

Young, H. Peyton and Arthur Levenglick (1978), “A consistent extension of Condorcet’s
election principle.” SIAM Journal on Applied Mathematics, 35, 285–300. [598]

Co-editor Federico Echenique handled this manuscript.

Manuscript received 17 May, 2021; final version accepted 30 May, 2022; available online 13 June,
2022.

https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:23/ozkal2010impossibilities&rfe_id=urn:sici%2F1933-6837%282023%2918%3A2%3C597%3ADOMAAA%3E2.0.CO%3B2-1
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:24/saari1990borda&rfe_id=urn:sici%2F1933-6837%282023%2918%3A2%3C597%3ADOMAAA%3E2.0.CO%3B2-1
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:25/sasaki1992consistency&rfe_id=urn:sici%2F1933-6837%282023%2918%3A2%3C597%3ADOMAAA%3E2.0.CO%3B2-1
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:26/thomson2011consistency&rfe_id=urn:sici%2F1933-6837%282023%2918%3A2%3C597%3ADOMAAA%3E2.0.CO%3B2-1
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:27/young1978consistent&rfe_id=urn:sici%2F1933-6837%282023%2918%3A2%3C597%3ADOMAAA%3E2.0.CO%3B2-1
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:23/ozkal2010impossibilities&rfe_id=urn:sici%2F1933-6837%282023%2918%3A2%3C597%3ADOMAAA%3E2.0.CO%3B2-1
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:25/sasaki1992consistency&rfe_id=urn:sici%2F1933-6837%282023%2918%3A2%3C597%3ADOMAAA%3E2.0.CO%3B2-1
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:26/thomson2011consistency&rfe_id=urn:sici%2F1933-6837%282023%2918%3A2%3C597%3ADOMAAA%3E2.0.CO%3B2-1
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:27/young1978consistent&rfe_id=urn:sici%2F1933-6837%282023%2918%3A2%3C597%3ADOMAAA%3E2.0.CO%3B2-1

	Introduction
	Notation
	Model
	Results
	Comparing any matching with the identity matching
	Comparing any two nonidentity matching

	Appendix A: Proofs of Lemma 1
	Appendix B: Proofs of Section 4.1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1

	Appendix C: Proofs of Section 4.2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Theorem 2

	Appendix D: Logical independence of the conditions
	Betweenness
	Anonymity
	Monotonicity
	Independence of irrelevant newcomers
	Standardization

	References

