
Theoretical Economics 18 (2023), 707–748 1555-7561/20230707

On rank dominance of tie-breaking rules

Maxwell Allman
Department Management Science and Engineering, Stanford University

Itai Ashlagi
Department Management Science and Engineering, Stanford University

Afshin Nikzad
Department of Economics, University of Southern California

Lotteries are a common way to resolve ties in assignment mechanisms that ration

resources. We consider a model with a continuum of agents and a finite set of re-

sources with heterogeneous qualities, where the agents’ preferences are generated

from a multinomial-logit (MNL) model based on the resource qualities. We show

that all agents prefer a common lottery to independent lotteries at each resource if

every resource is popular, meaning that the mass of agents ranking that resource

as their first choice exceeds its capacity. We then prove a stronger result where the

assumption that every resource is popular is not required and agents’ preferences

are drawn from a (more general) nested MNL model. By appropriately adapting

the notion of popularity to resource types, we show that a hybrid tie-breaking rule

in which the objects in each popular type share a common lottery dominates in-

dependent lotteries at each resource.
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1. Introduction

Lotteries are often used to allocate scarce resources without monetary transfers. How

lotteries are conducted naturally affects distributional outcomes. This problem arises,

for example, in the assignment of students to schools, when ties must be resolved in

overdemanded schools (Erdil and Ergin (2008a)) or in on-campus housing where stu-

dents list residences or categories of housing to which they wish to be assigned to.1
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1For example, lottery numbers are used to determine the housing assignments on Stanford and
Columbia campuses. (See https://rde.stanford.edu/studenthousing/assignment-rounds#lottery and
https://housing.columbia.edu/content/point-values-lottery-numbers-selection-appointments.)
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A common way to allocate resources applies the Deferred Acceptance (DA) algo-
rithm of Gale and Shapley (1962) after resolving ties using lottery numbers. This ap-
proach is strategy-proof and creates assignments without justified envy2 and, in partic-
ular, provides a transparent reference for explaining the (potentially) unequal assign-
ments of equals.

We consider allocation problems where a set of resources is allocated to unit-demand
agents. In these problems, there are two common types of lotteries used along with DA:
the single tie-breaking (STB) and the multiple tie-breaking (MTB) rules. The STB rule
assigns each agent a single random number, which is used to break the ties between
agents at every resource, whereas the MTB rule assigns each agent a different, inde-
pendently drawn, random number at each resource. These lotteries naturally result in
different assignments. This paper uncovers distributional properties of agents’ ranks in
stable assignments under these lotteries when resources have heterogeneous qualities
and agents have random multinomial-logit-based preferences.

Previous empirical (Abdulkadiroğlu, Pathak, and Roth (2009), De Haan, Gautier,
Oosterbeek, and Van der Klaauw (2015)) and theoretical (Arnosti (2015), Ashlagi, Nikzad,
and Romm (2019)) studies in the setting of school choice find that a single lottery as-
signs more students to their top-ranked choices, but also more students to lower-ranked
choices. Ashlagi and Nikzad (2016) further identify that in random markets with short
supply, this trade-off vanishes and STB is in fact preferable to MTB in the sense of “ap-
proximate” first-order stochastic dominance. Their stylized model assumes that stu-
dents’ preference lists are generated independently and uniformly at random and every
school has one seat.

This paper considers a general model for rationing resources using lotteries, where
resources have heterogeneous qualities and capacities and agents have a rich model of
random preferences that takes into account resource qualities. Note that if resources
have identical qualities, preferences are generated uniformly at random as in Ashlagi
and Nikzad (2016). We are interested in comparing agents’ rank distributions at each
resource (and not just in the entire market as done in previous studies).

In the setup, we consider there are n resources and a continuum of agents (Abdulka-
diroğlu, Che, and Yasuda (2015), Azevedo and Leshno (2016)). Each resource j has a
fixed quality μj > 0 and capacity qj > 0. Agents have complete and strict preference
orders over resources, drawn independently from a multinomial-logit (MNL) model in-
duced by the resource qualities. That is, an agent’s top choice is resource j with proba-
bility

μj∑n
k=1 μk

; more generally, the probability that resource j is an agent’s most preferred

resource from a subset of resources S � j equals
μj∑
k∈S μk

.3 It is assumed (for simplicity

and tractability) that resources are indifferent between all agents, so priorities of agents

2No justified envy means that no individual prefers another assignment over her assignment and has a
higher priority than someone else assigned to the preferred assignment.

3Such preferences were also used in Kojima and Pathak (2009) and also referred to as popularity-based
preferences, for example, in Gimbert, Mathieu, and Mauras (2019). Moreover MNL preferences are often
used to estimate demand in school choice problems (e.g., Shi (2015), Agarwal and Somaini (2018), Pathak
and Shi (2013)).
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at each resource are solely determined by lotteries. We compare agent-optimal stable
matchings under the STB and MTB lotteries.

A key notion in the results is related to the demand for a resource. A resource is
popular if the mass of agents who rank it as their first choice exceeds its capacity. For
example, when all resources have the same capacity and also the same quality, then any
resource is popular if and only if the mass of agents is larger than the sum of the ca-
pacities of the resources. This is an adaptation of the notion of popularity for uniformly
generated preferences from Ashlagi and Nikzad (2016) to the continuum setup here with
MNL preferences.4 We first consider the case where all resources are popular, and find
that every agent prefers STB to MTB in the sense of first-order stochastic dominance
(Theorem 1, Part 1). Moreover, every resource admits agents that rank it higher under
STB than under MTB in a first-order stochastic dominance sense (Theorem 1, Part 2).

When the market also includes nonpopular resources, the first part of the theorem
no longer holds, which is consistent with empirical evidence. However, we show that,
when the agents’ preferences are (more generally) drawn from a nested MNL model,5

a hybrid tie-breaking rule that uses the same lottery number within each popular re-
source type dominates MTB in the sense of first-order stochastic dominance. This leads
to a strengthening of the theorem applicable to settings where there is excess supply, as
detailed next.

In the more general setup with the nested MNL model, the set of resources is parti-
tioned to different types, and the resources of the same type are ranked consecutively by
every agent (but not necessarily in the same order). An agent’s ordering over the resource
types is drawn from an arbitrary distribution, and her ordering over the resources within
each type is drawn from a type-specific MNL model. Under an appropriate adaptation
of the notion of popularity to resource types, in Proposition 1 we show that a hybrid
tie-breaking rule, in which the resources in each popular type share the same lottery
number, dominates MTB. That is, every agent prefers a hybrid tie-breaking rule to MTB,
and every resource is assigned to agents that rank it higher, in the sense of first-order
stochastic dominance (as in the first and second parts of Theorem 1).

The adapted notion defines popular resource types as follows. The demand for a
resource type is the set of agents who are assigned to that type or prefer a resource of
that type to their assignment, under MTB.6 A type t is popular if, for every resource of
type t, the mass of agents who demand t and rank the resource first among the resources
of type t is no less than the capacity of the resource. For example, when all resources of

4In the setup of Ashlagi and Nikzad (2016), there are a finite number of schools and students, and a stu-
dent’s preference order is drawn independently and uniformly at random from the set of all strict orderings
of schools. There, when the number of schools is less than the number of students, the expected number
of students that rank a fixed school as their first choice is larger than one, the capacity of the school. In
our continuum model, this expectation equals the realized value, and a school is popular when the realized
value exceeds the school’s capacity.

5So, an agent’s preferences can be interpreted as if there are two levels of choice, with the first level being
the choice of the category (or type) and the second level the choice within the category.

6We show that the notion of demand is in fact invariant to the choice of the tie-breaking rules that
Proposition 1 concerns with.
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a given type have the same capacity and quality, that type is popular if the demand for it
is more than the sum of the capacities of its resources.

A rough intuition for Theorem 1 is that when resources are sufficiently popular, a co-
ordinated lottery essentially determines which agents will be assigned, and among these
agents the allocation is efficient. A separate lottery for each resource results in ineffi-
ciencies among assigned agents who may wish to trade their assignments. For further
intuition consider the following simple example. Consider a market with two resources
that have qualities μ1 ≥ μ2. In the execution of the DA, at each round every unassigned
agent applies to her favorite choice to which she has not yet applied. Observe that, under
STB, an agent who is rejected from resource 2 cannot be admitted to resource 1, because
her lottery number did not suffice to allow her to be admitted to a resource in lower de-
mand. This implies that, under STB, agents assigned to the first resource must rank it
as their first choice. Moreover, under both lotteries, the same mass of agents whose first
choice is resource 1 are rejected from that resource after all agents apply to their first
choice. But more of these agents will be admitted to their second choice under MTB
than under STB, because under MTB they receive a new lottery number for resource 2.
DA will terminate after 2 rounds for STB, but for MTB the process will continue, with
each round assigning more agents to resources that they rank second. Observe that the
outcome satisfies the results in Theorem 1.7

A direct analysis is already challenging with only three resources, and more subtle
arguments are required that build on the cutoff characterization of stable matchings.
Under a single lottery and MNL preferences, the outcome has a simple structure and
cutoffs have a closed form (Ashlagi and Shi (2014)). Under MTB, however, the cutoffs do
not have a closed-form expression. We compare the two tie-breaking rules by develop-
ing bounds on the distribution of agents’ ranks.

This paper contributes to the analysis of rank distributions in matching markets
where agents’ preferences are generated from a rich and empirically relevant model
(Agarwal and Somaini (2018)). Techniques and intermediate results, which establish
properties about the cutoff structures, may be of independent interest.

1.1 Related literature

Abdulkadiroğlu and Sönmez (2003), Abdulkadiroğlu, Pathak, and Roth (2009), Abdulka-
diroğlu, Pathak, Roth, and Sönmez (2005) apply matching theory to develop strategy-
proof mechanisms for school choice. Policy decisions surrounding school choice also
involve resolving tie-breaking (Erdil and Ergin (2008b), Abdulkadiroğlu, Pathak, and
Roth (2009), Feigenbaum, Kanoria, Lo, and Sethuraman (2020)), design of menus and
priorities (Ashlagi and Shi (2016), Dur, Duke Kominers, Pathak, and Sönmez (2013), Shi
(2021)) and diversity-related constraints (Ehlers, Hafalir, Yenmez, and Yildirim (2014),
Echenique and Bumin Yenmez (2015), Duke Kominers and Sönmez (2016)).

Several papers analyze trade-offs between STB and MTB in addition to those dis-
cussed above. Arnosti (2019) compares single and multiple lotteries in a model in which

7In fact, in this simple example, the result holds true even if the second resource is not popular.
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there is a continuum of schools, each of which has capacity for a finite number of stu-
dents. The paper analyzes the effect of students having preference lists of varying length,
and establishes a single crossing property between the cumulative rank distribution of
students under STB and MTB (see also Ashlagi, Nikzad, and Romm (2019), which ex-
plains why STB assigns more students to their top choices in a model with random pref-
erences).8 Additionally, he shows that among students who submit short lists, the rank
distribution under a single lottery stochastically dominates the corresponding distribu-
tion under independent lotteries. Our paper assumes a rich preference model over qual-
ities but distinguishes between popular and nonpopular schools to explain the source
of these trade-offs.

Shi (2021) optimizes over the space of all priority-based mechanisms and finds that
a single lottery maximizes the total utility of students when the utilities follow an MNL
model. Our paper in contrast looks at the rank distributions under common and in-
dependent lotteries and identifies when these distributions exhibit a rank dominance
relation.

Arnosti and Shi (2020) compare common and multiple lotteries in a dynamic model
where agents have heterogeneous values for distinct items and heterogeneous outside
options. They show that using independent lotteries for each item is equivalent to us-
ing a waitlist in which agents lose priority when they reject an offer, and that using a
common lottery for each item improves the quality of matches.

2. Model

We study a large matching model based on the framework in Azevedo and Leshno
(2016). There is a finite set of resources S = {1, � � � , n} and a continuum of agents with
mass N . Each agent demands to be allocated a resource, and each resource j ∈ S has ca-
pacity qj > 0, meaning that it can be allocated to a mass of at most qj agents. Each agent
has a strict preference ranking, which is a linear order over all resources. Let �n be the
set of all permutations of n elements. A matching market is given by C = (m, q, N ) where
m is a probability measure over �n and q = (q1, � � � , qn ) is the vector of the capacities of
the resources.

Tie breakers For tractability, we assume that resources do not have any exogenous pri-
orities over the agents; rather, their priorities are solely determined by lotteries. Each
agent i is assigned a vector of lottery numbers Li ∈ [0, 1]n, where Li

j is agent i’s lottery
number at resource j. Each resource j is assumed to prefer agents in decreasing or-
der of their lottery number at j. To generate lottery numbers for agents, the following
definition will be helpful.

Definition 1. A tie-breaking rule is a probability measure ν defined on [0, 1]n where
each marginal of ν is nonatomic.9

8Abdulkadiroğlu, Che, and Yasuda (2015) analyze the cutoffs that clear the market in a continuum model
and establish that STB is ordinally efficient (see also Che and Kojima (2010), Liu and Pycia (2012), and
Ashlagi and Shi (2014)).

9where ν is defined on the Lebesgue σ-algebra on [0, 1]n
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Requiring that the marginals of a tie-breaking rule are nonatomic ensures that each
resource has strict preferences over agents. A tie-broken market is given by E = (C, ν),
where C is a matching market and ν is a tie-breaking rule.

Two commonly applied tie-breaking rules are studied, Single Tie-Breaking (STB) and
Multiple Tie-Breaking (MTB). Under STB each agent receives the same lottery number
for all resources, uniformly distributed on [0, 1]. So, STB is the uniform measure on the
line {(x, x, � � � , x) : x ∈ [0, 1]}. Under MTB each agent receives a lottery number indepen-
dently for each resource, where each number is chosen uniformly on [0, 1]. So, MTB is
the uniform measure on [0, 1]n.

Matching, stability, and cutoffs Consider a tie-broken market E = (m, q, N , ν) with tie-
breaking ν. Let � = �n × [0, 1]n be the set of all pairs of agent preferences and lottery
numbers. A matching is a function f : S ∪� → 2� ∪ S ∪ {∅} such that:

i. For all i ∈�, f (i) ∈ S ∪ {∅}.

ii. For all j ∈ S, f (j) ⊆ � is (m× ν)-measurable and (m× ν)(f (j)) ≤ qj/N , where (m×
ν) is the product measure between m and ν.

iii. For all i ∈� and j ∈ S, j = f (i) if and only if i ∈ f (j).

iv. For any sequence ik = (Pk, Lk ) ∈ � and i = (P , L) ∈ �, with Lk converging to
L and weakly decreasing with k in each component, there is some K such that
f (ik ) = f (s) for all k>K.

The first condition ensures that an agent is assigned either to a resource (and thus
matched) or to the empty set (remaining unmatched). The second condition ensures
that the mass of agents assigned to each resource does not exceed its capacity. The third
condition ensures that if an agent is assigned to a resource, the resource is matched to
the agent. The fourth technical condition eliminates multiplicities of matchings that
differ by a set of measure 0 (Azevedo and Leshno (2016)).

A matching f is stable if there is no agent i and resource j such that i strictly prefers
j to f (i), and either there is some i′ ∈ f (j) such that Ls

j > Li′
j or j has excess capacity.

Azevedo and Leshno (2016) show that every stable matching corresponds to a set of
cutoffs c = (c1, � � � , cn ) ∈ [0, 1]n, where every agent i is matched to her most preferred
resource j for which her lottery number exceeds the cutoff (Li

j ≥ cj). Furthermore,
they show that there exists a unique agent-optimal stable match, wherein each agent
is matched to their most preferred resource that they can be matched to in any stable
match.10

Denote by f ν the agent-optimal stable matching for the tie-broken market. So, f STB

and fMTB denote that agent-optimal matching when the tie-breaking rules are STB and
MTB, respectively. When it is clear from the context we denote by α = (α1, � � � , αn ) and
β = (β1, � � � , βn ), the cutoffs under the matchings f STB and fMTB, respectively.

10Azevedo and Leshno (2016) also show that under some regularity conditions the stable matching is
unique.
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The STB cutoffs can be calculated in closed form (Ashlagi and Shi (2014)). This is not
the case for the MTB cutoffs, but these can be computed through an iterative algorithm,
which progressively increases the cutoffs to clear the market and converges to β.

Ranks and dominance For a given matching, the rank of an agent is the position on the
agent’s preference list of the resource to which the agent is assigned. For example, if an
agent is matched to her second choice, then her rank is two.

Consider a matching market and a tie-breaking rule ν ∈ {STB, MTB}. Denote by Rν
j

the distribution of agent ranks at resource j in the stable matching f ν . That is, Rν is
the n-dimensional vector in which its kth element is the fraction of agents assigned to
resource j with rank k in f ν .

For a preference order P ∈ �n, let Rν
P denote the distribution of ranks of agents with

preference P who are matched in f ν . That is, Rν
P is the n-dimensional vector in which

its kth element is the fraction of agents with preference order P who are assigned their
kth-ranked resource in f ν .

Observe that for any j ∈ S and P ∈ �n the vectors Rν
j and Rν

P are stochastic vectors,
that is, vectors with nonnegative entries that sum to 1.

Definition 2. If v = (v1, � � � , vn ) and w = (w1, � � � , wn ) are stochastic vectors with equal
length n, v rank-dominates w, indicated by v �w if for all k ∈ {1, � � � , n},

k∑
j=1

vj ≥
k∑

j=1

wj .

Observe that rank dominance is equivalent to first-order stochastic dominance but
with the order of the two vectors reversed. This definition is adopted for clarity of expo-
sition, since in this setting lower agent ranks are preferable to higher ranks in terms of
welfare.

Definition 3. STB dominates MTB for agents with preference order P ∈�n if

RSTB
P �RMTB

P .

Definition 4. STB dominates MTB at resource j if

RSTB
j �RMTB

j .

3. Main results

We first consider a setting where there is excess demand and the agents’ preferences are
drawn from a multinomial-logit (MNL) model. We then extend this setting to one with a
nested MNL preference model for the agents, where there can be an excess of resources.
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3.1 MNL preferences

We suppose that each resource j has quality μj > 0. Informally, an agent’s first choice
(most preferred resource) is drawn independently from the multinomial distribution
with a weight for each resource that equals its quality. The agent’s second choice is then
drawn similarly from all remaining resources, and so forth.

Definition 5. A matching market C = (m, q, N ) has MNL preferences with resource
qualities μ1, � � � , μn if for any preference order P = (r1, � � � , rn ) ∈�n,

m(P ) =
n∏

k=1

μrk
n∑

j=k

μrj

.

When clear from the context, we sometimes say that agents have MNL preferences.

We note that this definition is just multiplying the chance that r1 is the agent’s first
choice by the chance that r2 is the agent’s second choice, and so on. Throughout the
paper, when a matching market has MNL preferences, we assume that resources are
indexed such that

μ1

q1
≥ · · · ≥ μn

qn
.

We also assume without loss of generality that the qualities sum to one.

Definition 6. A resource j is popular if the mass of agents who rank it as their first
choice is at least the capacity of j.

Note that under MNL preferences, resource j ∈ S is popular if and only if Nμj ≥ qj .

Theorem 1. Consider a matching market that has MNL preferences and every resource
is popular. Then:

i. STB dominates MTB for agents with any preferences.

ii. STB dominates MTB at every resource.

The assumption that all resources are popular can be natural in some applications
such as housing allocation, but unrealistic in other applications such as school choice.
In Section 3.2, we relax this limitation by considering a more general model with multi-
ple resource types and adapt the notion of popularity to resource types.

The intuition for the dominance of STB over MTB when there are only two resources
is relatively simple. Under STB, agents who first apply to resource 2 but are rejected
remain unassigned, whereas under MTB these agents have a chance to apply to resource
1 and displace agents who otherwise would have been assigned there. So, agents are
more likely to receive their second choice resource under MTB, and thus are less likely



Theoretical Economics 18 (2023) On rank dominance of tie-breaking rules 715

to receive their first choice. In fact, Theorem 1 applies when there are only two resources
even if the resources are not popular.

When there are at least three resources, this intuition breaks down, and even proving
the theorem for when there are three resources is nontrivial. We were unable to find a
simple or inductive proof of the theorem, as adding an additional resource to a matching
market has a complicated effect on the resources and the agents of different types.

In Appendix B, we demonstrate the necessity of the conditions in Theorem 1 through
Example 1, which shows that STB may not dominate MTB at resources that are nonpop-
ular.11 In general, it is possible that neither STB nor MTB would dominate the other
at a nonpopular resource. Moreover, when there are both popular and nonpopular re-
sources, the theorem does not imply that STB dominates MTB in every popular resource.

3.2 Nested MNL preferences

We now generalize the MNL preference model of Section 3.1 to a nested preference
model in which resources are of multiple types. There are t̄ resource types, with T =
{1, � � � , t̄} denoting the set of all types. Each resource j ∈ {1, � � � , n} has a type tj ∈ T . De-
note by nt the number of resources of type t. Every agent has a complete strict preference
order over resource types. The agent prefers a resource of type t to a resource of type t ′
if she prefers the resource type t to t ′. Thus, if P ∈ �n is the preference order of an agent
over resources, then resources of the same type are ranked consecutively on P .

As in Section 3.1, a resource j has a quality μj . An agent’s preference order over the
resources of the same type are defined by a type-specific MNL model, as formalized next.
This model first draws a preference order over the resource types for an agent from an
arbitrary distribution m̄, and then ranks the resources within each type independently,
according to a MNL model based on the corresponding qualities.

Definition 7. A matching market C = (m, q, N ) with resource types 1, � � � , t̄ specified
as above and resource qualities μ1, � � � , μn has nested MNL preferences over the resource
types if it satisfies the following conditions. For all preference orders P ∈ �n, if P does
not rank all resources of the same type consecutively, then m(P ) = 0. Otherwise, let m̄(P )
denote the probability that an agent ranks the resource types in the order that they are
ranked in P . For each t ∈ T , let mt(P ) denote the probability that an agent with MNL
preferences would rank the resources of type t in the order that they are ranked in P , as
in Definition 5. Then

m(P ) = (m̄×m1 × · · · ×mt̄ )(P ).

Without loss of generality, we will assume that the qualities of the resources of the
same type sum to one. We will extend Theorem 1 to this multitype setting, proving that
when the resources of a given type are at sufficiently high demand, then using a common
lottery for resources of that type (HTB) dominates MTB. First, we give some preliminar-
ies formalizing what we mean by sufficiently high demand.

11In the example, MTB dominates STB at a nonpopular resource, even though that resource is fully allo-
cated by the end of DA.
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Definition 8. For a given matching market and tie-breaking rule, the demand for a
subset R of the resources is the mass of agents in the agent-optimal stable assignment
who are either assigned to a resource in R or who prefer a resource in R to their assign-
ment. When R is the set of resources of the same type t, we use Dt to denote the demand
for R.

Definition 9. In a given matching market with nested MNL preferences and tie-
breaking rule ν, a resource type t is popular if for every resource j of that type,

μjDt ≥ qj ,

where Dt is the demand for the set of resources of type t.

The left-hand side of the above inequality μjDt is the mass of agents who demand
type t and rank j first among resources of type t. To see why, let St denote the set of
resources of type t. As the agents’ preferences over the resources of type t are drawn
from a MNL model, then

μj∑
j′∈St μj′

Dt equals the mass of agents who demand type t and

rank j first among resources of type t. Recall that we normalized the qualities of the
resources of the same type so that they sum to one. Thus, μjDt is the mass of agents
who demand type t and rank j first among resources of type t. The above inequality
asserts that this mass is at least the capacity of j. Notably, if all resources have the same
type, then that type is popular if and only if all of the resources are popular in the sense
of Definition 6.

We next describe a natural class of hybrid tie-breaking rules that interpolate between
STB and MTB, and then show a dominance relation between them.

Definition 10. For a subset of resource types X ⊆ T , we denote by HTB(X ) the hybrid
tie-breaking rule that (i) for each t ∈ X , assigns to each agent the same independently
drawn lottery number at all resources of type t, and (ii) at each resource with type not
belonging to X assigns to each agent an independently drawn lottery number.12

We note that, according to this definition, an agent is assigned the same lottery num-
ber at two resources if they belong to the same popular resource type, but she is as-
signed independently drawn lottery numbers at resources that belong to different pop-
ular types. The next lemma shows that the set of popular resource types under HTB(X )
is invariant to the choice of X , as the demand for a resource type does not depend on X .

Lemma 1. For a matching market with set T of resource types and nested MNL preferences
over T , for every T1, T2 ⊆ T , a resource type is popular under HTB(T1 ) if and only if it is
popular under HTB(T2 ).

12As in the previous tie-breaking rules, every lottery number is distributed uniformly over the unit inter-
val.
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Proof. Fix a subset of types X ⊆ T and consider the assignment of agents under
HTB(X ). For resource type t, let Qt be the sum of the capacities of resources of type
t. Conditional on an agent demanding resource type t, regardless of her preferences she
has the same probability of being assigned to a resource of type t. This holds because
the tie-breakers for resources of type t are independent of the tie-breakers for the other
resources. Call this probability pt . See that then each agent has an independent proba-
bility pt of having at least one resource of type t available to her, and each agent will be
assigned to a resource of her most preferred type among the resource types for which at
least one resource is available to her. Now, consider the assignment of the agents to re-
source types, where the capacity of each type is Qt and types have independent random
preferences over the agents. In this assignment, the cutoffs of the types as defined in
Azevedo and Leshno (2016) must be unique. The values pt must satisfy the same set of
“market clearing” conditions as these cutoffs, namely that the expected mass of agents
assigned to any type t does not exceed Qt , and for any type t if the expected mass of
agents assigned to t is strictly less than Qt then pt = 1. So, the values pt must equal the
cutoff values, which are unique and do not depend on X .

Proposition 1. Consider a matching market with a set T of resource types and nested
MNL preferences over T . Let T1 ⊆ T2 ⊆ T , where every type in T2 is popular. Then:

i. HTB(T2 ) dominates HTB(T1 ) for agents with any preferences.

ii. HTB(T2 ) dominates HTB(T1 ) at every resource.

We remark that the above proposition is a generalization of Theorem 1, as HTB(∅)
coincides with MTB, and HTB(T ) coincides with STB when T contains a single type
t̄ = 1. Nevertheless, the two latter properties alone do not imply Proposition 1. In
Example 4, we discuss other hybrid rules that satisfy these two properties, but not the
properties described in Proposition 1.

We next discuss two examples and then present the proof of the proposition.

Example: Student housing Consider a student housing problem where there are h

housing options available (such as low-rise and mid-rise apartments, and houses), each
with limited capacity. Each housing option is available either on campus or off cam-
pus. A student first determines whether she prefers an on-campus type of housing or
an off-campus type. The options in each type are ranked for her according to a type-
specific MNL preference model. When on-campus housing is a popular type of hous-
ing, Proposition 1 implies that the same lottery numbers should be used in all housing
options of that type to break ties between students.

Example: School choice Consider a school choice problem, where each school is a re-
source and is associated with a specific type (which could represent the school’s aca-
demic focus or language immersion program, for example). Each student ranks the
types according to a complete strict preference order. If two schools are of distinct types,
then the student prefers one over the other if and only if she prefers its type to the other
one’s type. The student ranks the schools of the same type according to a type-specific
MNL preference model.
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Proof of Proposition 1. Fix T1 ⊆ T2 ⊆ T where every type in T2 is popular. It suf-
fices to prove the result for the case that |T2\T1| = 1, since the result for this case can be
used iteratively to prove the general case. So, assume that |T2\T1| = {t} for some type t.
Then each agent has the same probability of being assigned to a resource of type t un-
der HTB(T1 ) and under HTB(T2 ), because of the uniqueness of the pt values described
in the proof of Lemma 1. So, we can create a coupling between the assignments un-
der HTB(T1 ) and under HTB(T2 ) as follows. Each agent is assigned to a resource of the
same type under the two tie-breaking rules, and for each type t ′ �= t, agents assigned to
a resource of type t ′ are assigned to the same resource under the two tie-breaking rules.
Finally, agents assigned to a resource of type t are assigned independently according to
the respective tie-breaking rules.

Considering this coupling between the two assignments, in both assignments the
same set of agents are assigned to a resource of type t; denote this set by St . Moreover,
the distribution of ranks under the two tie-breaking rules only differs for agents in St and
for resources of type t. So, HTB(T2 ) would dominate HTB(T1 ) for agents with any pref-
erences if and only if HTB(T2 ) dominates HTB(T1 ) for agents in St with any preferences.
Similarly, HTB(T2 ) would dominate HTB(T1 ) at every resource if and only if HTB(T2 )
dominates HTB(T1 ) at every resource of type t. We will complete the proof by showing
that these equivalent conditions hold.

Consider the assignment of agents under HTB(T1 ). Let the random variable X1
P de-

note the number of resources that an agent with preference order P over resources of
type t prefers to all resources in t, conditional on the agent being in St . (The random
elements are the agent’s tie-breaking lottery numbers in the coupled process and the
order that the agent prefers the resource types.) Also, let the random variable Y 1

P denote
the number of resources of type t that the agent weakly prefers to her assigned resource.
Then the rank of the agent can be written as

Z1
P =X1

P +Y 1
P .

Similarly, we can write Z2
P =X2

P +Y 2
P under HTB(T2), where each variable with a super-

script 2 corresponds to its counterpart variable with superscript 1 but under HTB(T2).
From the definition of the coupling, it follows that X1

P and X2
P have the same dis-

tribution. We thus have reduced the problem to the single-type setting: consider the
matching market C with MNL preferences containing only the resources of type t, and
a total mass of Dt agents. Then Y 1

P and Y 2
P , respectively, have the same distribution as

the rank distributions for an agent in C with preferences P , under MTB and STB. Since
type t is popular, every resource is popular in C, and so Theorem 1 implies that the dis-
tribution of Y 2

P rank dominates the distribution of Y 1
P for every P . Thus, the distribution

of Z2
P rank dominates the distribution of Z1

P for every P , which concludes the proof of
point 1 of the proposition. Similarly, point 2 follows from the fact that the ranks of agents
assigned to the resources of type t are equal to the ranks of the agents assigned to the
resources in C plus values drawn from the distribution of X1

P .
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4. Analysis

4.1 Preliminary results

This section presents preliminary results that will be useful in our proofs. Consider
a matching market C = (m, q, N ) that has MNL preferences with resource qualities
μ1, � � � , μn. The next result shows that agents’ (MNL) preferences can be generated
equivalently using a stochastic process involving exponential clocks.

Claim 1. Consider drawing an agent’s preferences by the following process. For each re-
source j, let Xj be an independent exponential random variable with rate μj . For each
k ∈ [n], let X(k) be the kth-smallest value in X1, � � � , Xn. For each resource j, if Xj = X(k)

then set resource j as the agent’s kth-ranked resource. The distribution of preferences gen-
erated by this process is equivalent to the distribution of preferences generated by the MNL
preference model.

The above process can be interpreted as n exponential clocks, where Xj is the time
that clock j rings, and the agent ranks the resources in the order of the time the clocks
ring. We call this method of drawing agent preferences the clock process.

Proof. For an agent i and resource j, the probability that i ranks resource j as her first
choice in the clock process is

P
{
Xj =X(1)} = P

{
Xj = min(X1, � � � , Xn )

} = μj

n∑
p=1

μp

.

Thus, the distribution of i’s first choice is the same in both the clock process and the
MNL preference model. Now suppose that in the clock process, clock k is the first clock
to ring and Xk = t. Conditional on this event, by the memoryless property of expo-
nential random variables, for each resource k′ �= k we see that Xk′ − t is exponentially
distributed with rate μk′ . So, the probability that resource k′ �= k is the next clock to ring
is

μk′(
n∑

p=1

μp

)
−μk

,

which is the same as in the MNL preference model. Continuing this reasoning induc-
tively proves the claim.

Next, we provide properties of the STB and MTB cutoffs.

Proposition 2 (Ashlagi and Shi (2014)). The STB cutoffs α = (α1, � � � , αn ) are the fol-
lowing:

αk = 1 − min

{
k−1∑
j=1

qj

N
+ rkqk

Nμk
, 1

}
, k = 1, � � � , n, (1)

where rk = ∑n
j=k μj .
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Note that the αk values are decreasing in k.

Proposition 3. Suppose all resources are popular. Then for all k ∈ [n] the MTB cutoffs
β = (β1, � � � , βn ) satisfy

k∏
j=1

βj ≥ 1 −

k∑
j=1

qj

N
·

n∑
j=1

μj

k∑
j=1

μj

.

Proof. Fix a randomly chosen agent i. For a subset of resources G ⊆ S, let ZG be the
event that i is not assigned to a resource in G. Let L= [k].

Since ZL∩ZS\L is the event that i is unassigned, P(ZL∩ZS\L ) = ∏n
j=1 βj . Moreover, i

will not be assigned to a resource in S \L if her lottery number at each of these resources
does not exceed the cutoff. Therefore, P(ZS\L ) ≥ ∏n

j=k+1 βj . By Bayes’ rule,

P(ZL|ZS\L ) ≤
k∏

j=1

βj . (2)

Let M be the mass of agents that are not assigned to resources in S\L. Since the total
capacity of the resource in L is

∑k
j=1 qj ,

M =N −
n∑

j=k+1

qj and M
(
1 − P(ZL|ZS\L )

) =
k∑

j=1

qj . (3)

Since all resources are popular, Nμj ≥ qj for all j ∈ [n], implying that

n∑
j=k+1

qj ≤N

n∑
j=k+1

μj . (4)

By (2), (3), and (4), we obtain that

k∏
j=1

βj ≥ 1 −

k∑
j=1

qj

M
= 1 −

k∑
j=1

qj

N −
n∑

j=k+1

qj

≥ 1 −

k∑
j=1

qj

N

(
1 −

n∑
j=k+1

μj

) = 1 −

k∑
j=1

qj

N

k∑
k=1

μj

.

The next property is a simple observation about stochastic vectors. For convenience,
define the notation [n] = {1, � � � , n}.

Definition 11. Let v and w be stochastic vectors of length n. Vector v crosses under w

if there is some k ∈ [n] such that v(p) ≤ w(p) when 1 ≤ p ≤ k, and v(p) ≥ w(p) when
k< p ≤ n.
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Claim 2. Let v and w be stochastic vectors and suppose v crosses under w. Then w � v.

Proof. Suppose that v crosses under w, and k ∈ [n] satisfies v(p) ≤w(p) for all 1 ≤ p ≤
k and v(p) ≥w(p) for all k< p ≤ n. If t ≤ k, then

t∑
p=1

v(p) ≥
t∑

p=1

w(p).

If t ≥ k, then

t∑
p=1

v(p) = 1 −
n∑

p=t+1

v(p) ≤ 1 −
n∑

p=t+1

w(p) =
t∑

p=1

w(p).

4.2 Proof of Theorem 1, Part 1

Consider a matching market C = (m, q, N ) with n resources, satisfying MNL preferences,
with resource qualities μ. Without loss of generality, assume

∑n
j=1 μj = 1. Fix an agent

i with preferences P = (r1, � � � , rn ). Let (RSTB
P )≤k denote the probability that i will be

assigned to one of her top k choices under STB, and let (RMTB
P )≤k denote the same under

MTB. Then RSTB
P �RMTB

P if and only if for all k ∈ [n],(
RSTB
P

)
≤k

≥ (
RMTB
P

)
≤k

.

Fix an arbitrary integer k, where 1 ≤ k ≤ n, and let mk = max{r1, � � � , rk}. Since the STB
cutoffs are weakly decreasing in the index (of resources), i will be assigned to a resource
in {r1, � � � , rk} if and only if she has lottery number at least αmk

, so(
RSTB
P

)
≤k

= 1 − αmk
.

Under MTB, i will not be assigned to a resource in {r1, � � � , rk} if and only if for each
resource j ∈ {r1, � � � , rk} her lottery number for j is below βj . So,

(
RMTB
P

)
≤k

= 1 −
∏

j∈{r1, ���,rk}

βj .

Since k is chosen arbitrarily, it is sufficient to show that∏
j∈{r1, ���,rk}

βj ≥ αmk
. (5)

Since mk ≥ k, then αmk
≤ αk. Therefore, it is sufficient to show that

k∏
j=1

βj ≥ αk. (6)

This will be done by comparing the cutoffs for the matching market C to the cutoffs for
another matching market C ′, which is similar to C but contains additional resources and
a larger mass of agents.
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Let C ′ = (m′, q′, N ′ ) be a matching market with n′ > n resources, where agents have
MNL preferences. Let μ′

1, � � � , μ′
n be the resource qualities in C ′. For j ∈ [n], let q′

j = qj
and μ′

j = μj , and assume that

μn

qn
≥ μ′

n+1

q′
n+1

≥ · · · ≥ μ′
n′

q′
n′

.

Let N ′ = N
∑n′

j=1 μ
′
j . Note that for each resource j ∈ [n], the mass of agents who rank

j as their top choice in C is equal to the mass of agents who rank j as their top choice
in C ′. Let α′ = (α′

1, � � � , α′
n′ ) and β′ = (β′

1, � � � , β′
n′ ) be the STB and MTB cutoffs for C ′,

respectively. For each j ∈ [n], let

γj =
j∏

p=1

βp

and for each j ∈ [n′], let

γ′
j =

j∏
p=1

β′
p.

Then we must show that γk ≥ αk. Note that since αn and γn are the probabilities that
an agent will be assigned to any resource under STB and MTB, respectively, we have

αn = γn = 1 −

n∑
j=1

qj

N
. (7)

So, assume k < n. In the remainder of the proof, we present two lemmas, show how the
lemmas imply the theorem, and finally prove the lemmas.

Lemma 2. For all j ∈ [n], α′
j ≤ αj .

Lemma 3. γ′
n ≥ γn.

We apply the two lemmas to complete the proof. The lemmas essentially say that
when resources are added to a matching market and the mass of agents is increased ac-
cordingly, the STB cutoffs decrease while the MTB cutoffs increase. We will use this fact
in reverse: when resources are removed and the mass of agents decreased accordingly,
the STB cutoffs increase while the MTB cutoffs decrease.

Consider the matching market C ′′ = (m′′, q′′, N ′′ ) satisfying MNL preferences, con-
taining k< n resources with qualities μ1, � � � , μk. For all j ∈ [k], let q′′

j = qj , and let

N ′′ =N

k∑
j=1

μj .

We know α′′
k = γ′′

k since C ′′ has k resources; thus, Lemmas 2 and 3 imply that γk ≥ αk,
which completes the proof.
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In the remainder of this section, we prove the two lemmas.

Proof of Lemma 2. For a given matching market with n resources satisfying MNL pref-
erences, consider computing the α values by the following “water-filling algorithm.” Let
each resource j be able to hold a mass qj of water, and a total mass N of water needs
to be poured. The algorithm starts at time 0 and in stage 1. At time 0, all resources are

empty. During stage 1, water is poured into each resource j at a rate of
Nμj

μ1+···+μn
. Stage

1 concludes when resource 1 is filled to capacity. Then the next stage begins. During
stage k, resources k − 1 have already been filled to capacity, and the water poured into
them “spills over” into resources k, � � � , n: during stage k each resource j ∈ {k, � � � , n} fills

at a rate of
Nμj

μk+···+μn
. It can be shown that for each resource j, 1 − αj is the time that j

becomes full (i.e., the time that stage j + 1 begins).
Now, consider using the water-filling algorithm on C and C ′ to compute α and α′.

We prove the lemma inductively over k, showing that α′
k ≤ αk for all 1 ≤ k ≤ n. As a base

case, in both problems resource 1 fills at a rate of Nμ1, so α′
1 = α1. Now for the inductive

step, assume for some k < n, α′
k ≤ αk. Note that for both problems, before time 1 − αk

the ratio of the rate that resource k+ 1 fills to the rate that resource k fills is

μk+1

μk +μk+1
.

Furthermore, at the end of stage k, resource j has been filled with mass qk. Thus, in both
problems, at the end of stage k resource k+ 1 has been filled with mass

qkμk+1

μk +μk+1
.

For C, stage k concludes at time 1 − αk, and in stage k+ 1 resource k+ 1 fills at rate

r =N

k∑
j=1

μj
μk+1

μk+1 + · · · +μn
+Nμk+1.

In C ′, stage k concludes at time 1 −α′
k, and then in stage k+ 1 resource k+ 1 fills at rate

r′ = N(μ1 + · · · +μn′ )
k∑

j=1

μj
μk+1

μk+1 + · · · +μn′
+Nμk+1.

Observe that r ′ < r since

μ1 + · · · +μn′

μk+1 + · · · +μn′
≤ 1

μk+1 + · · · +μn
,

which follows from the following inequality: if a, b, c > 0, and b ≤ a, then

a+ c

b+ c
≤ a

b
.

Now, by assumption α′
j ≤ αj , so for C ′ stage k+ 1 begins at a later time than stage k+ 1

begins for C. Furthermore, since r ≥ r ′, during stage k+ 1 resource k+ 1 fills at a slower
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rate for C ′ than for C. Thus, 1 − α′
k+1 ≥ 1 − αk+1, so α′

k+1 ≤ αk+1. This concludes the
induction and the proof of the lemma.

Proof of Lemma 3. Observe that αn is the probability that an agent is not assigned to
any resource under STB, and γn is the same under MTB. Thus,

γn = αn = 1 −

n∑
j=1

qj

N
.

Proposition 3 gives

γ′
n ≥ 1 −

n∑
j=1

q′
j

N ′ ·

n′∑
j=1

μ′
j

n∑
j=1

μ′
j

= 1 −

n∑
j=1

qj

N
= γn,

where the last equality follows from equation (7).

4.3 Proof of Theorem 1, Part 2

The proof uses an auxiliary assignment process, referred to as virtual MTB (VMTB),
which assigns (or leaves unassigned) each agent independently as follows.

VMTB independent assignment process

Input: vector of cutoffs β′ = (β′
1, β′

2, � � � , β′
n ). Initialize: k= 1.

Step k: Let j be the resource that is the agent’s kth rank. The agent applies to re-
source j. With probability 1 − β′

j , the resource admits the agent and the process
ends. Otherwise, the agent is rejected from j. If k = n, the agent remains unas-
signed and the process terminates. Otherwise, increase k by one, and go to the
next step.

We refer to the VMTB assignment process with inputs β′ simply as VMTB(β′). Note
that the VMTB process may violate resources’ capacities. However, due to a result by
Azevedo and Leshno (2016), the process generates the MTB assignment with the “cor-
rect” input:13 Observe that by construction, if β are the MTB cutoffs, then the assign-
ment under VMTB(β) is equivalent to the assignment under MTB.

We fix the notation for the distribution of agent ranks under VMTB. Let β′ be a vector

of cutoffs, and C = (m, q, N ) be a matching market. Let qβ
′ = (qβ

′
1 , � � � , qβ

′
n ), where q

β′
j is

the mass of agents assigned to resource j under VMTB(β′). For each resource j ∈ S, let

R
β′
j denote the value of RMTB

j for the matching market Cβ′ = (m, qβ
′
, N ). That is, Rβ′

j is

13Azevedo and Leshno (2016) show that a stable matching corresponds to a set of cutoffs where each
agent is assigned to her most preferred resource, in which her lottery number exceeds the cutoff.
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the value of RMTB
j when the agents are assigned according to VMTB(β′). So, Rβ

j = RMTB
j

for every resource j.
Consider a matching market C = (m, q, N ) with n resources, satisfying MNL pref-

erences, with resource qualities μ. Without loss of generality, assume
∑n

k=1 μk = 1.
Fix a resource j; we will show that RSTB

j � RMTB
j . Let β be the market-clearing cut-

offs for C under MTB, let β0 = (β1, � � � , βj , 0, � � � , 0), and let Vj = R
β0

j . The proof of the

theorem proceeds by first showing that RSTB
j � Vj in Lemma 4, and then showing that

Vj � RMTB
j in Lemma 5. By the transitivity of the rank dominance relation, it will follow

that RSTB
j �RMTB

j . Here, we briefly sketch the proofs of these two lemmas, and leave the
full proofs for the Appendix.

Lemma 4. RSTB
j � Vj .

Proof sketch for Lemma 4. The proof of the lemma proceeds by constructing a
stochastic vector W of length n, and then showing that both RSTB

j � W and W � Vj .

These relations are shown by proving that W crosses under RSTB
j and that Vj crosses

under W as in Definition 11, and then applying Claim 2.
Observe that under both VMTB(β0) and STB, an agent can only be assigned to re-

source j if she prefers j to all resources j′ > j. Let Aj denote the set of agents who prefer
j to all resources j′ > j. We construct W by setting W (1) = RSTB

j (1), and for k ≥ 2 we set
W (k) to be proportionate to the mass of agents who rank resource j their kth choice and
are in Aj . Note that for k> j, this results in W (k) = 0.

We show that W crosses under RSTB
j by proving that for k ≥ 2, conditional on an

agent being in Aj and ranking j her kth choice, the probability that the agent is assigned
to j is weakly decreasing in k. But W (1) = RSTB

j (1), and for k ≥ 2 the W (k) values were
chosen as if conditional on an agent being in Aj and ranking j her kth choice, the prob-
ability she is assigned to j is equal over k. Since W and RSTB

j are normalized to have the

same sum, it is straightforward to show that then W crosses under RSTB
j .

To complete the proof of the lemma, we show that Vj crosses under W by proving
that W (1) ≥ Vj(1), proving a lower bound on Vj(k) for k ≥ 2, and finally showing that
W (k) does not exceed this lower bound for k≥ 2.

To complete the proof of the theorem, it remains to show that Vj �RMTB
j . Recall that

β are the MTB cutoffs, and β0 = (β1, � � � , βj , 0, � � � , 0). Recall that we have RMTB
j = R

β
j ,

and we defined Vj = R
β0

j . Since βk ≥ β0
k for all k ∈ [n], the following lemma implies that

Vj �RMTB
j .

Lemma 5. Let β and β′ be vectors of cutoffs such that βk ≤ β′
k for all k ∈ [n]. Then R

β
j �

R
β′
j .

Proof sketch for Lemma 5. To prove the lemma, we fix a resource j′ �= j and show

that Rβ
j � R

β′
j when β′

k = βk for all k �= j′. This would prove the claim because this spe-
cial case can be applied successively. Let β and β′ be sets of cutoffs such that βk = β′

k
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for all k �= j′, and βj′ ≤ β′
j′ . The major step in the proof is to show that Rβ′

j � R
β
j when

βj′ = 0 and β′
j′ = 1. Intuitively, if the cutoff for j′ is reduced from 1 to 0, then the mass

of agents who would be assigned to j who prefer j′ will now be assigned to j′ instead.
We show that this mass of agents is rank-dominated by the rest of the agents who are
assigned to j, so reducing the cutoff for j′ improves the rank distribution of agents at j.

Finally, we show how this fact can be used to prove R
β′
j �R

β
j for general values of β′

j′ , by

interpolating between R
β′
j when βj′ = 0, and R

β′
j when βj′ = 1.

5. Experiments

We ran simulations to verify whether our results hold in small discrete markets involv-
ing finite numbers of agents and resources. We focused on the setting of Theorem 1,
and considered discrete markets with 3 resources, each of the same capacity q and
N = 3q + k agents. The markets had excess demand, that is, k > 0. Setting q = k = 50,
we performed 100 simulations as follows. (In the end, we repeated these simulations for
other parameterizations as well.)

In each simulation, first the resource qualities μ1, μ2, μ3 were drawn independently
from the uniform distribution over the unit interval. If there was a resource i that is not
popular (i.e., μi

μ1+μ2+μ3
N < q), then we redrew all resource qualities. This was repeated

until all of the resources were popular according to the drawn qualities. Then the next
step of the simulation proceeded as follows. For each tie-breaking rule τ ∈ {MTB, STB},
we constructed 100,000 tie-broken matching markets (i.e., samples) by drawing the
agents’ preferences and the tie-breakers according to the setup of Section 3.1. Then
we computed the outcome of DA in each sample. For a tie-breaking rule τ ∈ {MTB, STB}
and each rank r, we computed the average number of agents assigned to a rank at least
as good as r in the outcome of DA, where the average is taken over the 100,000 samples
associated with the tie-breaking rule τ. Denote this average by Aτ

r . We observed that
AMTB

r ≤ ASTB
r + 0.001 holds for every rank r, in all of the 100 simulations that we per-

formed. (The second summand on the right-hand side is a slack variable, which can be
reduced to a smaller constant with a larger number of samples.)

This observation confirms the predictions of Theorem 1 in reasonably small mar-
kets. We also repeated the same set of simulations for two other parameterizations
q = 50 and k= 10, and q = 20 and k= 1, and observed the same result.

6. Extensions

The result of the first part of Theorem 1 can be extended to apply to a much broader set
of distributions of agent preferences, when the mass of agents relative to the capacity
of the resources is sufficiently large. The distribution of agent preferences needs only to
satisfy a minor technical condition we call nonordered.

Definition 12. A matching market has nonordered agent preferences if there is no re-
source j < n such that the full mass of agents prefer j to all resources j′ > j.
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Theorem 2. For any matching market C = (m, q, N ) with nonordered agent preferences,
there exists N ′ ∈R such that if N ≥N ′, STB dominates MTB for agents with any preference
order.

The following corollary relaxes the nonordered condition of Theorem 2 at the ex-
pense of a slightly weaker result. First, a few definitions are needed. For fixed measure m

and capacities q, define RMTB
P (N ) to be RMTB

P for matching market C = (m, q, N ). Define

DP = lim
N ′→∞

RMTB
P

(
N ′),

which is the distribution of ranks of agents with preferences P under MTB in the limit as
the mass of agents approaches infinity.

Corollary 2.1. For any matching market with n resources, for all P ∈�n,

RSTB
P �DP .

The proofs of Theorem 2 and Corollary 2.1 appear in Appendices A.3 and A.4.

7. Conclusion

This paper considered the problem of resolving ties when assigning agents to resources
with heterogeneous qualities using the deferred acceptance mechanism. It is shown
that when resources are “popular,” a single lottery used by all resources is preferable to
having each resource use a separate lottery, in a first stochastic order sense, for all agents
and resources.

The above result also extends to scenarios where there is excess supply. In particular,
when the set of resources is partitioned into different types and the agents have nested
MNL preferences over resources, we adapt the notion of popularity to resource types
and show that a hybrid rule in which resources in each popular type use the same lottery
number dominates the multiple tie-breaking rule.

The notion of popularity defined for resources types exploits the nested MNL struc-
ture of the preferences. It remains an interesting direction to develop well-grounded
measures for popularity that relax this assumption on preferences. For more general
preference structures, our theory is silent and it is unknown, for example, whether there
are tie-breaking rules that dominate MTB. Moreover, in some markets agents are given
priorities at different resources and lotteries are used to resolve ties between agents with
equal priorities. Defining the notion of popularity becomes more involved in such set-
tings, as the notion would depend also on the priority structure.14

14Consider, for example, a school choice problem where a subset of the students are given priority at
every school. If no school is ranked first by more students with high priority than its capacity, then the
results here are applicable after assigning prioritized students to their first choices. Otherwise, while the
problem can still be approached sequentially, the challenge is that the choice of lotteries for the prioritized
group affects which schools are popular in the residual problem.
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Appendix A: Proofs

A.1 Proof of Lemma 4

Let Aj be the set of agents who prefer j to all resources k > j, and see that all agents
assigned to j under both VMTB(β0) and STB are in Aj . Recall that m(Aj ) denotes the
probability that a randomly chosen agent is in Aj . For k ∈ [n], let Qk

j denote the set of
agents for whom j is their kth choice. We construct a stochastic vector W of length j as
follows. Let W (1) = RSTB

j (1). For each k ∈ [2, � � � , j], let

W (k) = d ·m(
Aj ∩Qk

j

)
,

for some constant d, and for k> j, let W (k) = 0.
First, we show that RSTB

j � W . For a stochastic vector D of length n and constant
k ∈ [n], we define the simplifying notation

P(D ≥ k) =
n∑

p=k

D(p).

We also define

Q̃k
j =

n⋃
p=k

Qk
j .

Let Mj be the set of agents assigned to j under STB. Since Mj ⊆ Aj , for any k ∈ [j] we
have

P
(
RSTB
j ≥ k

) =
m

(
Mj ∩ Q̃k

j

)
m(Mj )

= m
(
Mj|Aj ∩ Q̃k

j

)
m

(
Aj ∩ Q̃k

j

)
m(Mj )

, (8)

and

P(W ≥ k) = d

j∑
p=k

m
(
Aj ∩Q

p
j

) = d ·m(
Aj ∩ Q̃k

j

)
. (9)

Next, since W (1) = RSTB
j (1) we have P(W ≥ 2) = P(RSTB

j ≥ 2), so

d ·m(
Aj ∩ Q̃2

j

) = m
(
Aj ∩ Q̃2

j

)
m

(
Mj|Aj ∩ Q̃2

j

)
m(Mj )

,

and thus

d = m
(
Mj|Aj ∩ Q̃2

j

)
m(Mj )

. (10)

Then from equations (8), (9), and (10), we get

P(W ≥ k)

P
(
RSTB
j ≥ k

) = d ·m(Mj )

m
(
Mj|Aj ∩ Q̃k

j

) = m
(
Mj|Aj ∩ Q̃2

j

)
m

(
Mj|Aj ∩ Q̃k

j

) .
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The following claim then implies that P(W ≥ k) ≥ P(RSTB
j ≥ k) for all k ∈ [n], and hence

RSTB
j � W .

Claim 3. For any k ∈ [2, � � � , j],

m
(
Mj|Aj ∩ Q̃k

j

) ≤ m
(
Mj|Aj ∩ Q̃2

j

)
.

Proof. Fix a value of k ∈ [2, � � � , j]. Fix a lottery number L ≥ αj , and let i be a randomly

chosen agent with lottery number L. Let P = (r1, � � � , rn ) denote the preferences of i. Let

i′ be a randomly chosen agent in Aj with lottery number L, who does not rank j her top

choice. Let BL be the set of resources in [j − 1] with STB cutoffs above L. Then for each

resource s ∈ [j − 1],

P
(
P ′

1 = s
) = P

(
r1 = s|i ∈Aj ∩ Q̃2

j

) = P
(
i ∈Aj ∩ Q̃2

j |r1 = s
)
P(r1 = s)

P
(
i ∈Aj ∩ tildeQ2

j

)
= P(i ∈Aj|r1 = s)P(r1 = s)

P
(
i ∈Aj ∩ Q̃2

j

)
= P(i ∈Aj|r1 = s)P(r1 = s)

j−1∑
p=1

P(i ∈Aj|r1 = p)P(r1 = p)

. (11)

The value of P(i ∈ Aj ) and P(i ∈ Aj|P ′
1 = p) can be determined as follows. When an

agent’s preferences are being drawn from the MNL model, her first choice is drawn first,

then her second choice, and so on. When a resource in {j, � � � , n} is first drawn, the prob-

ability that resource j is drawn is

μj

n∑
p=j

μp

.

Thus,

P(i ∈ Aj ) = μj

n∑
p=j

μp

, (12)

and by the same argument, for any resource k′ ∈ [j − 1],

P
(
i ∈Aj|r1 = k′) = μj

n∑
p=j

μp

.
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So, from (11) we get

P
(
r′1 = s

) = P(r1 = s)
j−1∑
p=1

P(r1 = p)

= μs

j−1∑
p=1

μp

. (13)

Observe that for any p ∈ BL,

P
(
i′ ∈Mj|P

′
1 = p

) = P(i ∈Mj|i ∈Aj ). (14)

This follows from the independence of irrelevant alternatives of the MNL preference
model. So, from (13) and (14) we get

P
(
i′ ∈Mj

) =
∑
p∈BL

P
(
i′ ∈Mj|P

′
1 = p

)
P

(
P ′

1 = p
)

=
∑
p∈BL

P(i ∈Mj|i ∈Aj )P
(
P ′

1 = p
)

= P(i ∈Mj|i ∈Aj )

∑
p∈BL

μp

j−1∑
p=1

μp

. (15)

Now, let i∗ be a randomly chosen agent in Aj∩Q̃k
j with lottery number L and preferences

P∗ = (r∗1 , � � � , r∗n ). We define the notation

r[p] = {r1, � � � , rp}

for p ∈ [n]. See that if i∗ ∈ Mj , then r[k−1] ⊆ BL. So,

P
(
i∗ ∈Mj

) = P
(
i ∈Mj|i ∈Aj ∩ Q̃k

j

)
= P

(
r[k−2] ⊆ BL|i ∈Aj ∩ Q̃k

j

)
× P

(
r[k−1] ∈ BL|i ∈Aj ∩ Q̃k

j , r[k−2] ⊆ BL

)
× P(i ∈ Mj|i ∈Aj ). (16)

For every set G⊆ BL such that |G| = k− 2, let

p(G) = P
(
P∗

[k−2] = G|P∗
[k−2] ⊆ BL

)
.
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Then

P
(
r[k−1] ∈ BL|i ∈Aj ∩ Q̃k

j , r[k−2] ⊆ BL

) =
∑

G⊆BL, |G|=k−2

p(G)

∑
p∈BL

μp −
∑
p∈G

μp

j−1∑
p=1

μp −
∑
p∈G

μp

≤
∑

G⊆BL

p(G)

∑
p∈BL

μp

j−1∑
p=1

μp

=

∑
p∈BL

μp

j−1∑
p=1

μp

, (17)

and thus from (16),

P
(
i∗ ∈Mj

) ≤ P
(
r[k−2] ⊆ BL|i ∈Aj ∩ Q̃k

j

)
∑
p∈BL

μp

P(i ∈Mj|i ∈Aj )

j−1∑
p=1

μp,

≤ P(i ∈Mj|i ∈Aj )

∑
p∈BL

μp

j−1∑
p=1

μp

. (18)

By (15) and (18), we obtain

P
(
i∗ ∈Mj

) ≤ P
(
i′ ∈Mj

)
. (19)

Finally, if L< αj , then

P
(
i′ ∈Mj

) = P
(
i∗ ∈Mj

) = 0.

So, P(i′ ∈Mj ) ≤ P(i∗ ∈Mj ) for all L ∈ [0, 1], and we have proven Claim 3.

Next, it needs to be shown that W � Vj . Fix an agent i with preferences P =
(r1, � � � , rn ). If i ∈ Aj , rj = j and j ∈ Mj , then r[j−1] = [j − 1] so i must have been rejected
by every resource in [j − 1]. Let

K = Vj(j)

P
(
Aj ∩Q

j
j

) j−1∏
p=1

βp

,
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so

Vj(j) = K · P(
Aj ∩Q

j
j

) j−1∏
p=1

βp.

If i ∈ Aj and rk = j for some k ≤ j, then i only needs to be rejected by a subset of the
resources in [j − 1] for her to apply to resource j. Therefore, for k ∈ [j − 1],

Vj(k) ≥K · P(
Aj ∩Qk

j

) j−1∏
p=1

βp.

Recall that for all p ∈ {2, � � � , j},

W (p)

P
(
Aj ∩Q

p
j

) = d.

Thus, if it is shown that

d ≤K ·
j−1∏
p=1

βp, (20)

then W (k) ≤ Vj(k) for all 2 ≤ k ≤ j. It will then follow that W � Vj by Claim 2. So, it
remains to show that inequality (20) holds. For all k ∈ [j − 1], we have

Vj(k) ≤K ·m(
Aj , Q

k
j

)
and

j∑
p=1

Vj(p) = 1.

So,

1 =
j∑

p=1

Vj(p) ≤K

j∑
p=1

m
(
Aj ∩Q

p
j

) =K ·m(Aj ),

and thus

K ≥ 1
m(Aj )

.

Proposition 3 gives that

j−1∏
p=1

βp ≥ 1 −

j−1∑
i=1

qp

N

j−1∑
p=1

μp

,
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and so

K ·
j−1∏
p=1

βp ≥ 1
m(Aj )

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −

j−1∑
i=1

qp

N

j−1∑
p=1

μp

⎞
⎟⎟⎟⎟⎟⎟⎠

. (21)

Next, we need an upper bound for d. Observe that

1 =
j∑

p=1

W (p)

=W (1) +
j∑

p=2

W (p)

=RSTB
j (1) + d

j∑
p=2

m
(
Aj ∩Q

p
j

)
. (22)

The mass of agents who rank resource j as their first choice is Nμj , and these agents are
accepted to resource j with probability 1 −αj . Since the total mass of agents assigned to
resource j is qj , we have

RSTB
j (1) = Nμj(1 − αj )

qj
. (23)

Moreover,

j∑
p=2

m
(
Aj ∩Q

p
j

) =m
(
Aj , Q̃

2
j

)

=m(Aj ) −m
(
Aj ∩Q1

j

)
=m(Aj ) −μj . (24)

Then (22), (23), and (24) give

1 = N
μj

qj
(1 − αj ) + (

m(Aj ) −μj

)
d. (25)

Let rj = ∑n
p=j μp. Then by (12),

m(Aj ) = μj

rj
.

From Proposition 1,

1 − αj = 1
N

( j−1∑
p=1

qp + rjqj

μj

)
.
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Thus, equation (25) becomes

1 = μj

qj

j−1∑
p=1

qp + rj +
(
μj

rj
−μj

)
d

= μj

qj

j−1∑
p=1

qp + rj + μj

rj
(1 − rj )d,

which implies

d = rj

μj
· 1

1 − rj

(
1 − rj − μj

qj

j−1∑
p=1

qp

)

= rj

μj

(
1 − μj

qj(1 − rj )

j−1∑
p=1

qp

)
.

Since resource j is popular, Nμj ≥ qj , so

d ≤ rj

μj

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −

j−1∑
p=1

qp

N(1 − rj )

⎞
⎟⎟⎟⎟⎟⎟⎠

= 1
m(Aj )

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −

j−1∑
p=1

qp

N(1 − rj )

⎞
⎟⎟⎟⎟⎟⎟⎠

. (26)

By (21) and (26), we obtain (20), which gives Vj � W . This concludes the proof of
Lemma 4.

A.2 Proof of Lemma 5

The proof makes use of the following definitions. Recall that we fixed a randomly chosen
agent i with preferences (r1, � � � , rn ).

Definition 13. For a set of cutoffs β∗ and k ∈ [n], let Hβ∗
k be the event that agent i is

assigned to resource k under VMTB(β∗).

Definition 14. For k ∈ [n], let qik be the rank of resource k in agent i’s preference order.

Now, suppose that βj′ = 0 and β′
j′ = 1. The following claim shows a convenient re-

formulation of the problem.
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Claim 4. Suppose that for all k ∈ [n],

P
(
qij′ < qij|H

β′
j , qij ≥ k

) ≥ P
(
qij′ < qij|H

β′
j

)
. (27)

Then R
β
j �R

β′
j .

Proof. Suppose inequality (27) holds for all k ∈ [n]. It needs to be shown that for all
k ∈ [n],

n∑
p=k

R
β′
j (p) ≥

n∑
p=k

R
β
j (p).

Consider initially assigning agents according to VMTB(β′). This initial assignment can
be transformed to an assignment according to VMTB(β), by lowering the cutoff for re-
source j′ to 0, and any agent who prefers j′ to her initial assignment becomes reassigned
to j′. Then if i was initially assigned to resource j with rank p, she will be reassigned to
resource j′ with probability

P
(
qij′ < qij|H

β′
j , ij = p

)
.

Thus, for all p ∈ [n],

R
β
j (p) = C · (1 − P

(
qij′ < qij|H

β′
j , ip = j

)) ·Rβ′
j (p),

where C is a normalizing constant so that Rβ
j has a total mass of one. For k ∈ [n], condi-

tioned on i being assigned to resource j and having rank no better than k, we have

n∑
p=k

R
β
j (p) = C · (1 − P

(
qij′ < qij|H

β′
j , qij ≥ k

)) ·
n∑

p=k

R
β′
j (p).

Setting k= 1 in the above equation, we get

n∑
p=1

R
β
j (p) = C · (1 − P

(
qij′ < qij|H

β′
j

)) ·
n∑

p=1

R
β′
j (p).

Since
n∑

p=1

R
β
j (p) =

n∑
p=1

R
β′
j (p) = 1,

this gives

C = 1

1 − P
(
qij′ < qij|H

β′
j

) .

So, for k ∈ [n], by inequality (27),

n∑
pkm

R
β
j (p) =

1 − P
(
qij′ < qij|H

β′
j , qij ≥ k

)
1 − P

(
qij′ < qij|H

β′
j

) ·
n∑

p=k

R
β′
j (p)
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≥
n∑

p=k

R
β′
j (p).

Thus, Rβ
j �R

β′
j .

The next step is to prove that inequality (27) holds for all k ∈ [n]. Consider the expo-
nential clock process of drawing agent preferences described in Claim 1, where for each
p ∈ [n], Xp is the time that clock p rings and X(p) is the pth earliest clock to ring. Then
inequality (27) is equivalent to

P
(
Xj′ <Xj|H

β′
j , Xj ≥X(k)) ≥ P

(
Xj′ <Xj|H

β′
j

)
. (28)

We will now show that inequality (28) holds for all k ∈ [n]. For k ∈ [n − 1] and S′ ⊆ S

where |S′| = k and j, j′ /∈ S′, let

p
(
S′) = P

(
i[k] = S′|Hβ′

j , qij ≥ k+ 1
)
.

That is, p(S′ ) is the probability that i’s top k ranked resources are S′, conditional on i

being assigned to j with rank k+ 1. For a set of resources B ⊆ S where j′, j /∈ B, we define
a set of cutoffs βB as follows: for all resources p ∈ B, (βB )p = 1, and for all resources
p /∈ B, (βB )p = β′

p. Note that VMTB(βB) is equivalent to VMTB(β′) where resources in B

have been removed from the matching market. Let

PB = P
(
Xj′ <Xj|H

βB

j

)
.

Observe that if i is assigned to j with rank no better than k, then she must have been
rejected by each resource in i[k−1]. If j′ ∈ i[k−1], then the probability that i prefers j′ to j

is one. Otherwise, the probability that i prefers j′ to j will be Pi[k−1] . Let

bk = P
(
j′ ∈ i[k−1]|H

β′
j , Xj ≥X(k)).

Then

P
(
Xi <Xj|H

β′
j , Xj ≥X(k)) = bk + (1 − bk )

( ∑
S′⊆S:|S′|=k−1,j,j′ /∈S′

p
(
S′)PS′

)
. (29)

The following proposition, along with equation (29) gives inequality (28).

Proposition 4. For all S′ ⊆ S where j, j′ /∈ S′,

PS′ ≥ P
(
Xj′ <Xj|H

β′
j

)
.

Proof. Let X̃j be a random variable with distribution equal to the distribution of Xj

conditional on H
β′
j . Since Xj′ is an exponential random variable with rate μj′ , the CDF

of Xj′ is

F(x) = 1 − e−μj′x.
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Since β′
j′ = 1, the value of Xj′ does not affect the assignment of i, so Xj′ is independent

of Hβ′
j . Furthermore, since Xj′ is independent of Xj , we have

P
(
Xi <Xj|H

β′
j

) = P(Xi < X̃j ) =EX̃j

[
F(x)

]
.

For a set of resources B ⊆ S where j, j′ /∈ B, let X̃B
j be a random variable with distribution

equal to the distribution of Xj conditional on H
βB

j . Then

PS′ = P
(
Xi < X̃S′

j

) = E
X̃S′

j

[
F(x)

]
.

Since F(x) is an increasing function, if X̃j � X̃S′
j then this will imply

E
X̃S′

j

[
F(x)

] ≥ EX̃j

[
F(x)

]
,

which gives the proposition. So, it remains to show X̃j � X̃S′
j , which will follow from the

next claim. The claim implies that for any B1 ⊆ B2 ⊆ S where j, j′ ∈ B1 ∩ B2, we have
X̃B1

j � X̃B2
j . First, fix an indexing of the resources excluding j and j′,

S \ {i, j} = {a1, a2, � � � , an−2}.

For p ∈ {0, 1, � � � , n− 2}, let

X̃
p
j = X̃

{a1, ���,ap}
j .

Claim 5.

X̃0
j � X̃1

j � · · · � X̃n−2
j .

Proof. For p ∈ {0, 1, � � � , n − 2}, let fp(x) be the PDF of X̃p
j . Consider assigning i by

VMTB(β{a1, ���,an−2}). Since β
{a1, ���,an−2}
p = 1 for all resources p �= j, conditional on any

value of Xj we have that i will be assigned to resource j with probability 1 − β′
j . Thus,

the distribution of X̃n−2
j is equal to the distribution of Xj , so

fn−2(x) = μje
−μjx.

Hence, f (x) is decreasing over x ≥ 0. Now, as an inductive hypothesis, assume that for
some p ∈ {1, 2, � � � , n − 2}, fp(x) is decreasing over x ≥ 0. We will show that this implies

that both fp−1(x) is decreasing over x ≥ 0 and that X̃p−1
j � X̃

p
j . Now, suppose that i is

assigned to j by VMTB(β{a1, ���,ap}, and Xj = x. Since β
{a1, ���,ap}
ap = 1, the probability that i

prefers resource ap to j is

Fp(x) = P(Xap < x) = 1 − e−μapx.

Consider now lowering the cutoff for resource ap to β′
ap

, and reassigning agents with
high enough lottery numbers to resource ap if they prefer it to their initial assignment.
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Observe that this process will result in the assignment under VMTB(β{a1, ���,ap−1} ). Then
for some positive normalizing constant K′ > 0,

fp−1(x) = K′fp(x)
[
Fp−1(x)

(
1 −β′

ap−1

) + (1 − Fp−1(x)
]
.

Since 1 −β′
ap−1

≤ 1 and Fp−1(x) is increasing in x, we have that

K′[Fp−1(x)
(
1 −β′

ap−1

) + (
1 − Fp−1(x)

)]
is decreasing in x for x ≥ 0. Since by hypothesis fp(x) is decreasing for x ≥ 0, we have

fp−1(x) is decreasing for x≥ 0. To show X̃
p−1
j � X̃

p
j , we need the following claim.

Claim 6. Let Y be a nonnegative random variable with decreasing PDF f (x), and Z be
a nonnegative random variable with PDF h(x) = f (x)g(x), where g(x) is a nonnegative
decreasing function. Then Z � Y .

Proof. By definition, Z � Y is equivalent to∫ t

0
f (x)dx ≤

∫ t

0
h(x)dx, ∀t ≥ 0. (30)

Since ∫ ∞

0
f (x)dx =

∫ ∞

0
h(x)dx = 1,

we get that (30) is equivalent to∫ ∞

t
f (x)dx ≥

∫ ∞

t
h(x)dx, ∀t ≥ 0. (31)

By (30) and (31), we obtain that Y �Z if∫ t

0
f (x)dx∫ ∞

t
f (x)dx

≤

∫ t

0
h(x)dx∫ ∞

t
h(x)dx

.

Since g(x) is decreasing,∫ t

0
h(x)dx∫ ∞

t
h(x)dx

=

∫ t

0
f (x)g(x)dx∫ ∞

t
f (x)g(x)dx

≥

∫ t

0
f (x)g(t )dx∫ ∞

t
f (x)g(t )dx

=

∫ t

0
f (x)dx∫ ∞

t
f (x)dx

,

which gives Claim 6.

Using Claim 6 with Y = X̃
p
j , Z = X̃

p−1
j , f (x) = fp(x), and

g(x) = K
[
Fp−1(x)(1 −βak+1 ) + (1 − Fp−1(x)

]
,



Theoretical Economics 18 (2023) On rank dominance of tie-breaking rules 739

we get that if X̃p
j has a decreasing PDF, then X̃

p−1
j � X̃

p
j . This completes the proof of

Claim 5, and the proof of Proposition 4.

Lemma 5 has now been proven in the special case that βj′ = 0 and β′
j′ = 1. It remains

to show that the lemma holds in the general case. Now, suppose β and β′ satisfy βj′ ≤ β′
j′

and βp = β′
p for all p �= j′. Let ei be the vector with one in the ith entry and zero in the

other entries. See that β−βiei is equal to β, but with the ith entry set to zero. Similarly,
β+ (1 −βi )ei is equal to β but with the ith cutoff set to one. Let

E = R
β−βiei
j

and

F = R
β+(1−βi )ei
j .

By the special case of the lemma, we have that E � F . Now, consider assigning agents
by VMTB(β) according to the following equivalent process. Each agent is indepen-
dently put into case 1 with probability βj′ , and put into case 2 with probability 1 − βj′ .
Then agents in case 1 are assigned according to VMTB(β − βiei), and agents in case 2
are assigned according to VMTB(β + (1 − βi )ei). The case 1 agents correspond to the
agents who have a lottery number for resource j′ below βj′ , and the case 2 agents to the
agents who have a lottery number above βj′ . Thus, this process is indeed equivalent to
VMTB(β). Let c1 be the probability that a randomly chosen case 1 agent is assigned to
resource j, and let c2 be the probability that a randomly chosen case 2 agent is assigned
to resource j. Then, for some normalizing constant C ′ > 0,

R
β
j = C ′[(1 −βj′ )c1E +βj′c2F

]
. (32)

See that for some λ1 ∈ [0, 1],

R
β
j = λ1E + (1 − λ1 )F . (33)

To solve for λ1, from (32) we obtain

λ1 = C ′(1 −βj′ )c1

and

1 − λ1 = C ′βj′c2.

Adding the above two equations together and solving for C ′ gives

C ′ = 1

(1 −βj′ )c1 +βj′c2
.

Thus,

λ1 = (1 −βj′ )c1

(1 −βj′ )c1 +βj′c2
.
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Similarly, for some normalizing constant C ′′,

R
β′
j = C ′′[(1 −β′

j′
)
c1E +β′

j′c2F
]
,

and so

R
β′
j = λ2E + (1 − λ2 )F , (34)

where

λ2 =
(
1 −β′

j′
)
c1(

1 −β′
j′
)
c1 +β′

j′c2
.

Since β′
j′ ≥ βj′ , we then have that λ1 ≥ λ2. Finally, from (33) and (34) we get that for any

k ∈ [n],

k∑
p=1

R
β
j (p) −

k∑
p=1

R
β′
j (p) = (λ1 − λ2 )

m∑
p=1

E(p) + (λ2 − λ1 )
m∑

p=1

F(p)

= (λ1 − λ2 )

[
m∑

p=1

E(p) −
m∑

p=1

F(p)

]

≤ 0,

where the inequality follows from λ1 ≥ λ2 and E � F . Thus, Rβ
j � R

β′
j as desired, which

concludes the proof of Lemma 5.

A.3 Proof of Theorem 2

Consider a matching market C = (m, q, N ). Fix a preference order P = (r1, � � � , rn ) ∈ �n

such that m(P ) > 0, and fix a rank k ∈ [n]. If j = rp, we write P−1(j) = p. Index the
resources such that for all resources j and j′, if αj = αj′ and P−1(j) <P−1(j′ ), then j > j′.
Let

RSTB
P ,k =

k∑
p=1

RSTB
P (p)

and

RMTB
P ,k =

k∑
p=1

RMTB
P (p).

We need to show that

RMTB
P ,k ≤RSTB

P ,k

for any sufficiently large N . First, we show an upper bound for RMTB
P ,k (P , N ). Let Q =∑n

j=1 qj . Observe that

RMTB
P ,n =RSTB

P ,n = Q

N
,
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so we assume that k < n. Let βN = (βN
1 , � � � , βN

n ) be the MTB cutoffs for C. Since∏n
j=1 β

N
j = 1 − Q

N , it must be that for all j ∈ [n],

lim
N→∞

βN
j = 1.

Now, for a fixed agent i, we say that resource j is available to i if i has priority for j at
least as large as the cutoff for j. Then i will be assigned to a resource if and only if at least
one resource is available for her. For each resource j, let BN

j be the event that j is the

only resource available to i, as a function of N . Let AN be the event that no resource is
available to i, as a function of N . Then

P
(
AN

) = 1 − Q

N

and for all j ∈ [n],

P
(
BN
j

) ≥ (
1 −βN

j

)
P

(
AN

)
. (35)

During the DA algorithm at most a mass of N agents will apply to any given resource.
For N sufficiently large, every resource will be filled to capacity. This implies that for all
j ∈ [n],

1 −βN
j ≥ qj

N
. (36)

Then by (35) and (36), we get

P
(
BN
j

) ≥ qj

N
P

(
AN

)
. (37)

Note that if the event BN
j occurs, then i will be assigned to j regardless of her preferences.

Let

E = ĀN\
(

k⋃
j=1

BN
j

)
,

that is, E is the event that at least two resources are available to i. Because the events
BN

1 , � � � , BN
n are all disjoint and contained in AN ,

P(E) = P
(
ĀN

) −
n∑

j=1

P
(
BN
j

)

≤ Q

N
−

n∑
j=1

qi
N

P
(
AN

) = Q

N

(
1 − P

(
AN

)) = Q2

N2 ,

where the inequality follows from (37). Since a mass of N − Q agents is unassigned, at
least N −Q agents apply to every resource. So, for all j ∈ [n],

(N −Q)
(
1 −βN

j

) ≤ qj ,
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and thus

1 −βN
j ≤ qi

N −Q
. (38)

For all j ∈ [n],

P
(
BN
j

) ≤ 1 −βN
j . (39)

Then (38) and (39) give that

P
(
BN
j

) ≤ qj

N −Q
.

Letting Qk = ∑k
j=1 qrj , we have

RMTB
P ,k ≤

k∑
j=1

P
(
BN
rj

) + P(E)

≤ Qk

N −Q
+ Q2

N2 .

Let rNk = Qk
N . Then we obtain the upper bound

RMTB
P ,k ≤ rNk · N

N −Q
+ Q2

N2 . (40)

Therefore,

RMTB
P ,k ≤ rNk +O

(
1

N2

)
.

Next, we need to show a lower bound for RSTB
P ,k . If an agent is picked at random,

she will be assigned to a resource in {r1, � � � , rk} with probability rNk . For any P ′ ∈ �n, let
gNk (P , P ′ ) be the probability that an agent with preferences P ′ is assigned to a resource
in {r1, � � � , rk}. Because in the DA algorithm it is a dominant strategy for the agents to
submit their true preferences,

gNk (P , P ) ≥ gNk
(
P , P ′), ∀P ′ ∈�n. (41)

See that

rNk =
∑

P ′∈�n

m
(
P ′, [0, 1]n

)
gNk

(
P , P ′) ≤ gk(P , P ) =RSTB

P ,k . (42)

Let mk = max{r1, � � � , rk}. We know

RSTB
P ,n = 1 − αn = Q

N
,

which for sufficiently large N is smaller than the upper bound for RMTB
P ,k given by (40),

since Qk < Q. Now assume mk < n. Because agents’ preferences are nonordered, there
is some P∗ ∈�n and resource some p>mk such that m(P∗, [0, 1]n ) > 0 and (P∗ )−1(p) <
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(P∗ )−1(mk ). Note that by the definition of mk, P−1(mk ) < P−1(p) and s /∈ {r1, � � � , rk}.
Furthermore, by our indexing of the resources, for all resources j such that αj = αmk

,
P−1(mk ) <P−1(j). Thus, an agent with preferences P has a nonzero probability of being
assigned to mk under STB. That is,

RSTB
P

(
P−1(mk )

)
> 0.

Assume that N ≥Q. Then under STB, only agents with a lottery number of at least Q
N are

assigned to a resource. For a given agent i, conditional on i having a lottery number of
at least Q

N , the probability that i is assigned to any given resource is independent of N .
Thus, for some positive constant c,

RSTB
P

(
P−1(mk )

) = cQ

N
.

Now, consider two agents i and i′, where i has preferences P and i′ has preferences P∗,
and both agents receive the same lottery number. Suppose their lottery number is such
that i will be assigned to mk, which happens with probability cQ

N . Then i′ will not be
assigned to mk or any other resource in {r1, � � � , rk}, since i′ prefers p to mk and αp ≤ αmk

.
If the agents receive a lottery number such that i is not assigned to mk, i is still at least as
likely as i′ to be assigned to a resource in {r1, � � � , rk}. Thus,

gNk
(
P , P∗) ≤ gNk (P , P ) − cQ

N
. (43)

Combining (41), (42), and (43) we get the desired lower bound

RSTB
P ,k ≥ rNk + cQ

N

(
P−1(mk )

) ·m(
P∗, [0, 1]n

)
. (44)

The two bounds (40) and (44) give that RMTB
P ,k ≤RSTB

P ,k for N sufficiently large, which con-
cludes the proof.

A.4 Proof of Corollary 2.1

Consider a matching market C = (m, q, N ). Fix a preference order P = (r1, � � � , rn ) ∈ �n

such that m(P ) > 0, and fix a rank k ∈ [n]. Let

RSTB
P ,k =

k∑
j=1

RSTB
P (k)

and

DP ,k =
k∑

j=1

DP (k).

Then to prove the theorem it needs to be shown that

DP ,k ≤RSTB
P ,k (45)
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for all N . Let Q = ∑n
j=1 qj , and Qk = ∑k

j=1 qrj . From the proof of Theorem 2, inequality
(44) gives that

RSTB
P ,k ≥ Qk

N
.

On the other hand, (40) gives that

DP ,k ≤ 1
N

lim
N ′→∞

N ′
(
Qk

N ′ · N ′

N ′ −Q
+ Q2(

N ′)2

)
= Qk

N
.

So, DP ,k ≤RSTB
P ,k , which completes the proof.

Appendix B: Tightness of results

The examples presented here demonstrate the necessity of the conditions in our the-
orems. Example 1 shows the necessity of each resource being popular for Theorem 1.
In this example, resources 1 and 2 are popular, while resource 3 is competitive but not
popular.

Example 1 (Necessity of popularity condition). Consider the following matching mar-
ket with n = 3 and satisfying MNL preferences. Let N = 4, μ = (3, 2, 1), and q =
(1/3, 1/3, 1/3). ♦

Claim 7. In Example 1, STB does not dominate MTB at resource 3.

Proof. Observe that resources 1 and 2 are popular, but resource 3 is nonpopular. Be-
cause N >

∑n
j=1 qj , resource 3 is competitive. We compute the rank distributions at the

resources to be (rounded to the nearest tenth)

RSTB
1 = (1, 0, 0), RSTB

2 = (0.8, 0.2, 0), RSTB
1 = (0.5, 0.2, 0.3),

RMTB
1 = (0.9, 0.1, 0), RMTB

2 = (0.7, 0.3, 0), RMTB
1 = (0.5, 0.3, 0.2).

So, STB dominates MTB at resources 1 and 2, but not at resource 3.

The next example shows why the nonordered condition is necessary for Theorem 2.

Example 2 (Necessity of nonordered condition). Consider the following matching mar-
ket C = (m, q, N ) with n = 3. Let N ≥ ∑n

j=1 qj , and let m be given by

m
(
(1, 2, 3)

) = p, m
(
(2, 3, 1)

) = 1 −p,

where p and q are any values such that α1 >α2 >α3. ♦

Claim 8. In Example 2, STB does not dominate MTB for agents with preferences (1, 2, 3).
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Proof. Let (RSTB
P )≤k be the probability that an agent with preferences P is assigned to

a resource in her top k choices under STB. Let (RMTB
P )≤k be the same under MTB, and

let P∗ = (1, 2, 3). We will show that(
RSTB
P∗

)
≤2 <

(
RMTB
P∗

)
≤2, (46)

which gives that RSTB
P∗ �RMTB

P∗ . Under both STB and MTB, a randomly chosen agent will
be assigned to resources 1 or 2 with probability

r = q1 + q2

N
.

Under STB, an agent will be assigned to resources 1 or 2 if and only if she has a lot-
tery number of at least α2, regardless of her preferences. So, (RSTB

P∗ )≤2 = r. Now, fix a
randomly chosen agent i. Under MTB, there is a nonzero probability that i has high
enough lottery numbers to be accepted to both resources 1 and 3, but not 2, in which
case, i will be assigned to resources 1 or 2 if and only if she has preferences P∗. Thus, an
agent with preferences P∗ is strictly more likely to be assigned to resources 1 or 2 than
an agent with preferences (2, 3, 1). Therefore, agents with preferences P∗ are assigned
to one of their top two resources with probability strictly greater than r, which shows
(46) as desired.

The next example shows that dominance of STB over MTB at every resource does
not hold for arbitrary distributions of agent preferences, even in the limit as the mass of
agents grows.

Example 3 (No dominance at resource in the limit). Consider the following matching
market C = (m, q, N ) with n= 4. Let N > 1 and q = ( 1

4 , 1
4 , 1

4 , 1
4 ). Let m be given by

m
(
(1, 2, 3, 4)

) = p, m
(
(4, 3, 2, 1)

) = 1 −p,

where p< 1 is a constant sufficiently close to one so that α1 ≥ α2 ≥ α3 ≥ α4. ♦

Claim 9. In Example 3,

RSTB
3 (N ) �RMTB

3 (N ).

Proof. Because α1 ≥ α2 ≥ α3 ≥ α4, an agent can only be assigned to resource 3 under
STB if the agent has preferences (1, 2, 3, 4). So,

RSTB
3 (N ) = (0, 0, 1, 0)

Since all agents rank resource 3 as their second or third choice, only agents of rank two
or three are assigned to resource 3 under MTB. Because N > 1, under MTB a nonzero
mass of agents will be rejected from all resources, so every MTB cutoff is strictly greater
than zero. Thus, a nonzero mass of agents with a rank of 2 will be assigned to resource 3
under MTB, and so

RMTB
3 = (0, c, 1 − c, 0)

for some constant c > 0. Thus, RSTB
3 �RMTB

3 .
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The final example shows that a different version of the hybrid tie-breaking rule that
uses the same lottery number for an agent at all popular resource types does not always
dominate MTB. We will denote such a hybrid tie-breaking rule by HBT′. To be more
precise, HTB′ assigns the same (independently drawn) lottery number to an agent at
every resource that belongs to a popular resource type, and assigns her independently
drawn lottery numbers at every other resource.

Example 4 (Nondominance of common lottery for popular resources). Consider the
following matching market with n = 3 and satisfying MNL preferences. Let N = 1, μ =
(1, 1, 1), and q = (1/4, 1/4, 1/2). ♦

Claim 10. In Example 4,

RHTB′
(1,2,3) �RMTB

(1,2,3).

Proof. We will show (
RHTB′

(1,2,3)

)
≤2 <

(
RMTB

(1,2,3)

)
≤2, (47)

which implies the claim. Under both MTB and HTB′, resource 3 will have a cutoff of zero.
Since resources 1 and 2 are symmetric, let α be the cutoff of these resources under HTB′
and β the cutoff under MTB. Let type 1 agents be the agents with preferences (1, 2, 3) or
(2, 1, 3), and type 2 agents be the agents with preferences (1, 3, 2) or (2, 3, 1). See that
only type 1 and type 2 agents will be assigned to resources 1 or 2, and that under HTB′,
both type 1 and type 2 agents will be assigned to resources 1 or 2 with probability (1−α).
On the other hand, under MTB, type 1 agents will be assigned to resources 1 or 2 with
probability

(1 −β) +β(1 −β) = (1 +β)(1 −β)

and type 2 agents will be assigned to resources 1 or 2 with probability (1 − β). Let m1

be the mass of type 1 agents, and m2 the mass of type 2 agents. Then the capacity con-
straints of the resources give that

(m1 +m2 )(1 − α) = 1
2

and

m1(1 +β)(1 −β) +m2(1 −β) = 1
2

.

Since (1+β)(1−β) > (1−β), we get that (1+β)(1−β) > (1−α), which proves (47).
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