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Optimal assignment mechanisms with imperfect verification
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Objects of different quality are to be allocated to agents. Agents can receive at
most one object, and there are not enough high-quality objects for every agent.
The value to the social planner from allocating objects to any given agent depends
on that agent’s private information. The social planner is unable to use transfers to
give incentives for agents to convey their private information. Instead, she is able
to imperfectly verify their reports through signals that are positively affiliated with
each agent’s type. We characterize mechanisms that maximize the social planner’s
expected payoff. In the optimal mechanism, each agent chooses one of various
tracks, which are characterized by two thresholds. If the agent’s signal exceeds the
upper threshold of the chosen track, the agent receives a high-quality object, if it
is between the two thresholds, he receives a low-quality object, and if it is below
the lower threshold, he receives no object.
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1. Introduction

Hylland and Zeckhauser (1979) and the ensuing literature study mechanisms that ef-
ficiently allocate objects to agents with private preferences. Agents are not allowed to
make or receive monetary transfers and cannot be assigned more than one object. Clas-
sic examples include the allocation rule of public houses to families who cannot afford
one, dorms to college students, offices to workers, and seats at colleges/schools to stu-
dents.

In some of these examples, it is natural to think that the agents’ ordinal prefer-
ences are quite similar. In general, everyone prefers houses in better neighborhoods,
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offices with a window, and schools with better reputations.1 While finding the set of
ex post (Pareto) efficient allocation rules in settings where objects have different qual-
ity is straightforward (any non-wasteful allocation rule is ex post efficient), the problem
of finding ex ante efficient allocation rules is more complicated. Even though agents
have the same ordinal preferences over objects, the fact that they have different cardinal
preferences leads to them having different preferences over lotteries of objects. Building
on this insight, several authors have used mechanism design techniques to study the
problem of finding welfare maximizing incentive compatible allocation rules in settings
where agents have common ordinal preferences (Miralles (2012), Hafalir and Miralles
(2015), Dogan and Uyanik (2020), Ortoleva, Safonov, and Yariv (2021)).

We observe that, in many of these settings, even though the agents’ (cardinal) pref-
erences may be private, there is correlated information available. For example, in the
college assignment setting, it seems natural to think that a student’s grade on his SAT
(Scholastic Assessment Test) or GRE (Graduate Record Exam) is positively correlated
with that student’s valuation for college quality. Presumably, a student who values col-
lege quality a lot will put more effort and resources into his preparation, which is likely
to lead to a better grade. Another example is the problem the state faces when admin-
istering natural disaster funds. In general, the state is able to obtain information about
the damages suffered by each person interested in receiving help.2 This information is
correlated with how each person values the objects being assigned by the state, as one
would think that those who have suffered more damages would have higher valuations.
Similarly, in the public housing problem, the state routinely goes through a screening
process of the applicants that may involve requiring references, interviews, and back-
ground checks.3

In this paper, we consider the mechanism design problem of finding the mechanism
that maximizes total welfare when agents value quality differently, and the designer is
able to costlessly observe a signal that is correlated with those valuations. We assume
that there is a continuum of agents and a continuum of objects of high and low qual-
ity such that the measure of agents exceeds the measure of high-quality objects. Even
though all agents prefer high-quality objects over low-quality objects, different agents
might have different valuations over quality (their valuations are their type). The de-
signer is not able to observe each agent’s valuation; instead she observes a positively
affiliated exogenous signal.

We characterize optimal incentive compatible allocation rules and show that they
can be implemented as follows. Initially, agents are asked to choose one of many
“tracks.” After that, signals, which are correlated with the agents’ types, are realized. The

1For the school assignment problem, there is empirical evidence that parents’ ordinal preferences are
indeed correlated (Abdulkadiroglu, Che, and Yasuda (2011)) and that parents value similar things (Bosetti
(2004)).

2For example, part of the process of obtaining housing assistance from the Federal Emergency Manage-
ment Agency (FEMA) involves a house inspection (see https://www.fema.gov/fact-sheet/individual-and-
households-program-exterior-and-remote-inspections).

3See, for example, the link to apply for public housing in Providence (https://provhousing.org/
housing/public-housing-admissions/public-housing-application/) and Oklahoma (http://www.oakha.
org/Residents/Housing%20choice-voucher-residents/Pages/Eligibility-Screening.aspx).

https://www.fema.gov/fact-sheet/individual-and-households-program-exterior-and-remote-inspections
https://provhousing.org/housing/public-housing-admissions/public-housing-application/
https://provhousing.org/housing/public-housing-admissions/public-housing-application/
http://www.oakha.org/Residents/Housing%20choice-voucher-residents/Pages/Eligibility-Screening.aspx
http://www.oakha.org/Residents/Housing%20choice-voucher-residents/Pages/Eligibility-Screening.aspx
https://www.fema.gov/fact-sheet/individual-and-households-program-exterior-and-remote-inspections
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Figure 1. The optimal mechanism when there are only three types. In equilibrium, if the agent’s
type is the highest one (θ3), he chooses the upper track; if it is second highest one (θ2), he chooses
the middle track; if it is smallest one (θ1), he chooses the bottom track. Once a track has been
chosen, the agent is assigned the high-quality object if his signal s lands on the dotted line, a
low-quality object if it lands on the dashed line, and no object if it lands on the solid line.

object the agent is awarded, if any, depends on the track he chose and on the signal that
is realized. Specifically, each track is characterized by two thresholds for the signal: an
upper threshold and a lower threshold. If the agent’s signal exceeds the upper threshold,
the agent is assigned a high-quality object; if his signal is between the two thresholds,
he is assigned a low-quality object; finally, if his signal is below the lower threshold, he
is not assigned any object. Different tracks have different pairs of thresholds; for some
tracks, the two thresholds are very close, while for some others, they are very far apart.
Figure 1 illustrates.4

By the revelation principle, the problem of finding an optimal mechanism reduces
to finding the set of optimal incentive compatible allocation rules. In our setting, an
allocation rule is simply a probability distribution for each agent over the objects being
assigned given his private type and signal. An allocation rule is incentive compatible
if every agent, knowing only his type (but not his signal), prefers to report truthfully.
Different types may have different incentives over what to report due to having different
beliefs over which signals will be realized.

The main challenge of finding optimal incentive compatible allocation rules is that
the standard Myerson approach of mechanism design with transfers does not apply
(Myerson (1981), Myerson and Satterthwaite (1983)). In particular, the incentive con-
straints alone are not sufficient to determine which types receive larger probabilities of
receiving either objects. For example, it is easy to construct incentive compatible allo-
cation rules where lower types—types who value quality less—have a larger probability
of receiving a high-quality object than higher types.

To find the set of optimal allocation rules, we start by defining a family of allocation
rules that we call ordered allocation rules. Ordered allocation rules (represented in Fig-
ure 1) are induced by the mechanism described above, and are such that (i) conditional

4Not being assigned any object can alternatively be interpreted as receiving an object with even lesser
quality, provided there is enough supply of that object. Throughout the paper, we use dotted lines to rep-
resent the allocation of high-quality objects, dashed lines to represent the allocation of low-quality objects,
and solid lines to represent not being allocated any object just as in Figure 1.
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on each agent’s type and signal, there is no randomness in which object is assigned to
which agent and (ii) the quality of the object received by each agent is increasing with
his signal. Ordered allocation rules are convenient because they can simply be char-
acterized by two thresholds for each type: an upper threshold and a lower threshold.
Moreover, in a manner similar to Myerson (1981), Myerson and Satterthwaite (1983),
and the papers that follow, incentive compatibility alone is sufficient to determine how
the two thresholds vary according to each agent’s type; specifically, higher types, who
are more confident that their signal will be high, are associated with lower upper thresh-
olds, while lower types, who believe that lower signals are more likely, are associated
with lower lower thresholds. This property allows us to find the optimal ordinal alloca-
tion rule using “local” incentive constraints.

The final part of the argument is to show that ordered allocation rules are indeed op-
timal. To do that, we first demonstrate that the binding incentive constraints are those
that prevent lower types from mimicking higher types. The intuition comes from the
designer’s first best allocation rule: if the designer knew the agents’ types, she would
simply ignore the signals and assign the higher quality objects to the agents with the
higher types, because these agents value quality more (Becker (1973)). The first best al-
location rule is clearly not incentive compatible because lower types would rather claim
to having larger valuations. Then we prove that ordered allocation rules minimize the
deviation payoffs of low types who mimic higher types. The intuition for this is that the
positive affiliation between each agent’s type and his signal means that it is relatively
more likely for a higher type to generate a higher signal than it is for a lower type. As a
result, the best way to deter deviations from lower types is to stack the better rewards at
the top of the signal distribution, i.e., for each type, the higher is the signal, the higher
should be the reward.

In general, the designer does strictly better in the optimal mechanism than by simply
ignoring the agents and assigning the objects based exclusively on the signals, because
even though the optimal mechanism does not perfectly discriminate in favor of agents
with higher types (as the first best mechanism would), it does so partially. Higher types,
who are more confident that their signal will be high, select tracks with lower upper
thresholds, which increases their chances of receiving a high quality object compared to
the tracks that lower types choose, which have lower lower thresholds but higher upper
thresholds (see Figure 1).

The paper proceeds as follows. In the next section, we discuss the related literature.
In Section 3, we discuss the model. In Section 4, we characterize the optimal mechanism
and in Section 5, we discuss several extensions. All proofs are provided in the Appendix.

2. Related literature

As discussed in the Introduction, the paper considers an allocation problem without
transfers similar to the problem considered in the literature that followed Hylland and
Zeckhauser (1979). This literature has focused on finding mechanisms with various
desirable properties like efficiency, incentive compatibility, or fairness (Zhou (1990),
Svensson (1999), Papai (2000)). A branch of this literature concentrates on ordinal mech-
anisms, which only require that the agents provide their ordinal preferences, which
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are public in our paper (Abdulkadiroglu and Sonmez (1998), Bogomolnaia and Moulin
(2001), McLennan (2002), Kojima and Manea (2010)). A separate branch of this literature
studies pseudo-market mechanisms, where agents are endowed with points and have to
assign them to “buy” probabilities of getting each object (Hylland and Zechauser (1979),
Miralles and Pycia (2021)).5

Our work is different not only because we allow the designer to observe signals that
are correlated with the agents’ private information, but also because of a different ap-
proach. Rather than specifying what properties are desirable and then looking for mech-
anisms with those properties, we find the optimal mechanism relative to an exogenously
given objective function. Indeed, we find that several of the properties considered desir-
able in this literature are violated in the optimal mechanism. Most importantly, we find
that the optimal mechanism might not even be ex post efficient, because there might be
low-quality objects left unassigned and agents who are not given any object.

There are a few papers that have followed a mechanism design approach similar to
allocation problems. Miralles (2012) considers a setting with two objects and two agents,
and finds that, in the optimal non-wasteful allocation rule, objects are randomly allo-
cated when the agents’ reported (ordinal) preferences are the same. We find the anal-
ogous result in our model with signals: if one imposes that all agents be assigned one
object, the best the designer can do is to assign objects based exclusively on the signals.
Dogan and Uyanik (2020) study a simplified version of Miralles (2012) and, like us, find
that wasteful allocation rules might be optimal. Hafalir and Miralles (2015) and Ortol-
eva, Safonov, and Yariv (2021) consider models with a continuum of agents and find op-
timal mechanisms that have features similar to ours. Specifically, agents who have high
valuations receive lotteries over objects where there is a large probability of receiving
high-quality objects, but also a high probability of receiving low-quality objects, while
agents with low valuations receive lotteries with a high probability of receiving average
quality objects. We obtain the same qualitative results, because not receiving an object
is equivalent to receiving an object of even lower quality.

The main difference from our work is the addition of exogenous public signals and
the characterization of how to best use these signals to maximize welfare. In this lit-
erature, the reason why different types choose different lotteries is because they have
different cardinal preferences over objects, which leads to evaluating lotteries over ob-
jects of different quality differently. Instead, in our model, what leads to the separation
is the fact that different types have different beliefs about which signals are more likely.
Indeed, the optimal mechanism described is still optimal when agents are assumed to
have the same preferences over lotteries of objects, as we illustrate in the next section.
Moreover, adding signals makes the mechanism design problem fundamentally differ-
ent as it prevents direct use of Myerson-like techniques that are standard in mechanism
design (Myerson (1981), Myerson and Satterthwaite (1983)) as discussed in the Intro-
duction.

5There is also a related literature, where agents have initial property rights, which follows the same ap-
proach of finding mechanisms with desirable properties (Shapley and Scarf (1974), Abdulkadiroglu and
Sonmez (1998), Sonmez and Unver (2010), Pycia and Unver (2017)).
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Our paper is not the first to consider a mechanism design problem where the prin-
cipal has access to exogenous signals correlated with the agents’ private information. In
settings with transfers, the availability of correlated signals generally allows the principal
to implement the first best (Cremer and McLean (1988), Riordan and Sappington (1988),
McAfee and Reny (1992), Bose and Zhao (2007)) unless transfers are bounded (Demou-
gin and Garvie (1991), Kessler et al. (2005), Gary-Bobo and Spiegel (2006)). Indeed, if
transfers were allowed in our model, an example of an optimal mechanism would be
the first price auction. In equilibrium, agents with higher valuations would bid more
for the higher quality objects and the first best allocation would be implemented. More
recently, this literature has expanded to consider settings without transfers. In most of
these papers, the focus has been on showing how exogenous signals help the principal
even when the agents have type-independent preferences (see Kattwinkel (2020), Silva
(2019a, 2021), Siegel and Strulovici (2021)). Closest to our paper is Silva (2019b), who
considers a setting with multiple agents similar to ours but without a resource constraint
(instead, agents’ types are correlated).6

The addition of these exogenous signals to the mechanism design problem allows
the principal to (imperfectly) verify the agents’ reports. The costly verification literature
considers similar settings, but assumes that the verification is perfect but costly (Ben-
Porath, Dekel, and Lipman (2014), Li (2020), Chua, Hu, and Liu (2019)). In these papers,
the principal assigns objects with the same quality. In our model of costless imperfect
verification, if we were also to assume that all objects were homogeneous, the optimal
mechanism would be for the principal to ignore the agents and simply assign the objects
based on the public signals.7

Finally, this paper is also related to the literature on disclosure, where agents may
provide evidence for the statements they make. Earlier work assumed that agents were
able to provide “hard” evidence (Dye (1985), Green and Laffont (1986), Lipman and
Seppi (1995), Glazer and Rubinstein (2004, 2006), Bull and Watson (2007), Deneckere
and Severinov (2008), Sher (2011), Hart, Kremer, and Perry (2017), Ben-Porath, Dekel,
and Lipman (2019)). Recently, models of probabilistic verification have emerged, where
the evidence provided by the agents may not be perfectly accurate (Caragiannis et al.
(2012), Ball and Kattwinkel (2019), Silva (2020)). Our model is similar to Ball and Kat-
twinkel (2019) and to Silva (2020) except that the technology to verify the agents’ re-
ports is independent of each agent’s actions.8 We expand on these papers by character-
izing optimal mechanisms (Ball and Kattwinkel (2019) focuses on discussing versions of

6Recently, we became aware of Bloch, Dutta, and Dziubinski (2021), who study a model similar to Silva
(2019b) with a resource constraint and independent types, but assume only two types for each agent who
each generate only binary signals. In such a model, if there were many agents (or a continuum in our case),
the optimal mechanism would be for the designer to ignore the agents and make decisions using the signals
exclusively.

7Related costly verification papers include Epitropou and Vohra (2019), Erlanson and Kleiner (2020),
Halac and Yared (2020), and Li (2021). Mylovanov and Zapechelnyuk (2017) is also related even though the
verification is costless, because of the restrictions on punishments for those agents who are caught lying.

8Specifically, it is as if (i) the set of tests (in Ball and Kattwinkel (2019)) and documents (in Silva (2020))
is a singleton and (ii) agents always have to exert effort. Conditions (i) and (ii) ensure that the distribution
of the principal’s signal only depends on the agents’ type and not on their possible report (in particular, (ii)
ensures that agents cannot have a “bad” signal on purpose). We note, however, that a constraint that forces
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the revelation principle, while Silva (2020), discusses the extent to which commitment
power is important when disclosure is probabilistic).

3. An illustrative example

There is a continuum of agents who have preferences over two objects, a high-quality
object (h) and a low-quality object (l). The principal only has enough high-quality ob-
jects for 50% of the agents, but has enough low-quality objects for everyone (this is gen-
eralized in the text). Each agent’s preferences over objects depend on the quality of the
object and also on a privately observed random variable θ (the agent’s type). In this ex-
ample, we assume that θ ∈ {θL, θH } with 0 < θL < θH and where each θ is equally likely.
Each agent’s willingness to pay for each object is denoted by u(θ, j) for j = l, h, where

u(·, l) u(·, h)

θL 1 2
θH 2 4

Notice that not only does every agent have the same ordinal preferences over the
two objects, it is also the case that every agent has the same preferences over lotteries
of the two objects, because u(·,h)

u(·,l) is constant. Indeed, contrary to what is standard in

the literature on allocation problems, each agent’s preferences are type-independent.9

Nevertheless, the two types of agents value having these two objects differently; high-
type agents value quality more than low-type agents in the sense that their willingness to
pay for quality is higher (a high-type agent is willing to pay 2 for each increase in quality,
while a low-type agent is only willing to pay 1). Indeed, if transfers were possible, a
principal who wishes to maximize the sum of the agents’ payoffs could achieve her first
best in a number of ways: she could run a first price auction or simply charge a price of
4 for object h and of 1 for object l, and then share the revenue equally among the agents.
In either case, in equilibrium, high-type agents would be assigned object h and low-type
agents would be assigned object l. The ex ante expected payoff of each agent would be
2.5.

In this paper, we study the same problem, but instead of allowing for transfers, we as-
sume that the principal has access to a (verifiable) signal s ∈ [0, 1] for each agent, which
is correlated with θ. For this example, we assume that

p(s|θ) =
{

2s if θ = θH ,

2(1 − s) if θ = θL,

agents to exert effort would not bind, as in the optimal mechanism each agent has an incentive to always
have as high a signal as possible.

9In the text, we do allow agents to have type-dependent preferences over lotteries. We chose an example
where agents have type-independent preferences to highlight one of the novelties of our work.
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Figure 2. If objects are assigned based exclusively on the agents’ signals, each agent is assigned
a high-quality object if his signal is above the threshold at 0.5 and is assigned a low-quality object
otherwise.

so that s and θ are positively affiliated (intuitively, it is more likely that s is high when
θ = θH ). The goal of the principal is to find the symmetric mechanism that maximizes
the ex ante payoff of each agent.

A simple alternative for the principal is to assign objects according to each agent’s
signal, relying on the positive correlation between signals and types. Specifically, the
optimal mechanism that depends exclusively on the signals is such that each agent is
assigned a high-quality object if s ≥ 1

2 and a low-quality object if s < 1
2 . This would return

an ex ante expected payoff of

1
2

∗
(

3
4

∗ 4 + 1
4

∗ 2
)

+ 1
2

∗
(

1
4

∗ 2 + 3
4

∗ 1
)

= 19
8

for each agent. This mechanism is not optimal though, as the principal is able to use the
fact that different types of agents have different beliefs over the realization of the signals
to partially discriminate in favor of high-type agents.

We find that the optimal mechanism is as follows: each agent may choose between
tracks A and B. If track A is chosen, the agent guarantees that he will be assigned at
least a low-quality object and will be assigned a high-quality object if s ≥ sA � 0.64. If
track B is chosen, the agent is assigned a high-quality object if s ≥ sA � 0.36 (so that it is
easier to get the high-quality object), but will not be assigned any object if s < sB ≡ 0.15.

The key reason why the optimal mechanism does strictly better than assigning ob-
jects according exclusively to signals has to do with the way agents self-select. By design,
high-type agents, who are more confident that their signal will be high, prefer track B,
while low-type agents choose track A (despite being indifferent). As a result, the prob-
ability that each agent receives each object ultimately depends on both the agent’s type
and signal.

Figure 2 displays the allocation rule induced by the initial mechanism and the arrows
represent what changes in the optimal mechanism. Two things happen. On the one
hand, the threshold to obtain high-quality objects goes up for low-type agents (from 0.5
to 0.64) and down for high-type agents (from 0.5 to 0.36). The principal is made better
off by this change because she prefers to assign the high-quality objects to the agents
with higher valuations. On the other hand, the threshold to get low-quality objects goes
up (from 0 to 0.15) for the high-type agents. While this second effect is necessary to
prevent the low-type agents from mimicking the high-type agents and choosing track B,
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it makes the principal worse off (and is inefficient). Overall though, the ex ante payoff of
any agent is higher; it is equal to 2.415 > 19

8 . Specifically, a high-type agent now has an
87% chance of receiving a high-quality object, an 11% chance of being assigned a low-
quality object, and only a 2% chance of receiving no object, while for low-type agents,
those numbers are 13%, 87%, and 0%, respectively.

To prove that the allocation rule induced by the mechanism described is optimal,
we start by considering a relaxed problem, where the incentive constraint that prevents
high-type agents from mimicking low-type agents is ignored. Then we prove that any al-
location rule that solves the relaxed problem is such that there are two thresholds sH and
sH such that type θH receives the high-quality object if s ≥ sH , receives the low-quality
object if s ∈ [sH , sH ), and receives no object if s < sH . This has to do with distribution
p(s|θ): by stacking the best rewards at the top of interval [0, 1], one minimizes the de-
viation payoff of lower types. There is more flexibility with respect to the distribution of
rewards that type θL receives. What is important is that (i) type θH does not mimic and
(ii) type θL is indifferent (i.e., the low-type incentive constraint binds). Therefore, it is
optimal for the threshold structure to also apply to type θL with thresholds sL and sL,
provided sL ≤ sH ≤ sH ≤ sL. The reason why type θL must be indifferent is because, if
not, one could always rearrange vector (sL, sL, sH , sH ) in some way that increases the ex
ante utility of the agents (and, consequently, of the principal) without violating any in-
centive constraint and without more objects being assigned than those available (for ex-
ample, if sH > 0 and type θL is not indifferent, one could lower sH and increase welfare).
Finally, one can find the optimal mechanism by simply choosing vector (sL, sL, sH , sH )
optimally given two constraints: that type θL is indifferent and that sL ≤ sH . In this ex-
ample, it follows that sL = 0 (which is always the case when there are enough low-quality
objects for every agent), sL = sA, sH = sB, and sH = sB.

4. Model

4.1 Fundamentals

There is a continuum of agents of mass 1 and a continuum of objects to be allocated
to the agents. Each object can be of high (h) or low (l) quality. There is a measure
αh ∈ (0, 1) of high-quality objects and a measure αl ∈ (0, 1) of low-quality objects. Each
agent has a private type θ ∈ �, where � = {θ1, � � � , θJ } ⊂ R. Each θ is independent and
identically distributed across agents and the prior probability of each type θ ∈ � is de-
noted by q(θ) ∈ (0, 1).10 Without loss of generality, we assume that θj+1 > θj for all
j = 1, � � � , J − 1. Each agent generates a public signal s ∈ [0, 1], which is only correlated
with that agent’s type θ. Denote the conditional density of s by p(s|θ) and assume it is
continuous. Assume further that p(s|θ) > 0 for all s ∈ (0, 1) and θ ∈ �, and that den-
sities {p(·, θ) : θ ∈ �} have the monotone likelihood ratio property (MLRP), i.e., for any

θ, θ′ ∈� and s, s′ ∈ (0, 1) such that θ′ > θ and s′ > s, p(s′|θ′ )
p(s|θ′ ) >

p(s′|θ)
p(s|θ) . This guarantees that

larger types are the ones that are more likely to generate larger signals.

10We also interpret q(θ) as the fraction of agents of type θ. We rely on the argument of Judd (1985) to
identify probabilities with fractions when the population is a continuum.
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Each agent’s payoff depends on his type and on the quality of the object that he
receives. When an agent of type θ receives a high-quality object, his payoff is denoted by
u(θ, h); if he receives a low-quality object it is u(θ, l). If the agent does not receive any
object, his payoff is u(θ, ∅) = 0 for all θ ∈�.

We make the following three assumptions. First, we assume that all agents have the
same ordinal preferences: u(θ, h) > u(θ, l) > 0 for every θ ∈ �. 11 Second, we assume
that the preference for lotteries that place a large probability on high-quality objects
relative to low-quality objects is weakly increasing with each agent’s type. Specifically,
notice that each agent’s expected payoff is given by

u(θ, h) Pr{receiving the h object} + u(θ, l) Pr{receiving the l object},

which is proportional to

u(θ, h)
u(θ, l)

Pr{receiving the h object} + Pr{receiving the l object}.

Our second assumption is that u(θ,h)
u(θ,l) is weakly increasing with θ. If u(θ,h)

u(θ,l) is constant for
all θ (as in the example), then agents have the same preferences over lotteries of objects.

Finally, our third assumption is that higher types value jumps in quality more than
lower types. Formally, we assume that (u(θ, l) − u(θ, ∅)) and (u(θ, h) − u(θ, l)) are both
strictly increasing in θ.12 Essentially, the reader might want to think of our setting as an
auction setting without monetary transfers, where agents with higher types have higher
valuations for quality. In particular, the third assumption implies that the symmetric
allocation rule that maximizes the ex ante payoff of the agents under complete infor-
mation is to assign the better quality objects to the agents with the higher types (Becker
(1973)).

4.2 Definitions

Our goal is to find the optimal symmetric mechanism that maximizes the ex ante ex-
pected payoff of each agent. By the revelation principle, it is enough to consider only
revelation mechanisms, i.e., allocation rules that are incentive compatible.13 A sym-
metric allocation rule (henceforth, simply allocation rule) is a mapping x = (xh, xl ) :
�× [0, 1] → [0, 1]2 such that

xh(θ, s) + xl(θ, s) ≤ 1

11A similar assumption is made in Troyan (2012), Chade, Lewis, and Smith (2014), Hafalir and Mirales
(2015), Lien, Zheng, and Zhong (2017), Hafalir et al. (2018), Akin (2019), Akbarpour, Kapor, Neilson, and
Van Dijk (2022), Dogan and Uyanik (2020), and Ortoleva et al. (2021) among others.

12Notice that if (u(θ, l) − u(θ, ∅)) is strictly increasing and u(θ,h)
u(θ,l) is weakly increasing, (u(θ, h) − u(θ, l))

is strictly increasing, so we only really need to assume the first two.
13In line with the more recent models on probabilistic verification (e.g., Ball and Kattwinkel (2019) and

Silva (2020)), the revelation principal applies. To see why that is, suppose that the agents play a game
with the principal before signals are realized. At the end of that game, and as a function of everyone’s
strategy, each agent is assigned a lottery of rewards based on the possible future realizations of s. Therefore,
the social planner could instead simply ask each agent to report his/her true type and then assign those
lotteries accordingly.
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for all θ ∈ � and s ∈ [0, 1], where xh(θ, s) and xl(θ, s) represent the probability that an
agent with type θ and signal s is assigned object h and object l, respectively.

An allocation rule x is feasible if the measure of assigned objects does not exceed the
measure of available objects, i.e., if

∑
θ∈�

q(θ)
∫ 1

0
p(s|θ)xh(θ, s)ds ≤ αh (1)

and ∑
θ∈�

q(θ)
∫ 1

0
p(s|θ)xl(θ, s)ds ≤ αl. (2)

An allocation rule x is incentive compatible (IC) if each agent prefers to report truth-
fully, i.e., for all θ ∈�,

θ ∈ arg max
θ′∈�

U
(
θ, X

(
θ′)),

where X(θ′ ) is the function that, for each signal s, returns the probability with which an
agent who reports type θ′ is assigned each object. That is,

X
(
θ′) ≡ x

(
θ′, ·) : [0, 1] → [0, 1]2

for each θ′ ∈� and

U
(
θ, X

(
θ′)) ≡

∫ 1

0
p(s|θ)

(
xh

(
θ′, s

)
u(θ, h) + xl

(
θ′, s

)
u(θ, l)

)
ds.

Notice that each agent reports his type before observing his signal. That is how incen-
tives are given to the agents; different types have different beliefs over signal s.

An allocation rule x is ordered if, for all θ ∈ �, there is a pair sθ, sθ such that 0 ≤ sθ ≤
sθ ≤ 1 and

xh(θ, s) =
{

1 if s ≥ sθ,

0 if s < sθ,
and xl(θ, s) =

{
1 if s ∈ [sθ, sθ],

0 if s /∈ [sθ, sθ].

In an ordered allocation rule, the only randomness an agent of some type θ faces
comes from the signal s, i.e., conditional on his type and on the signal, there is no ran-
domization. Furthermore, the agent always prefers to have a larger signal than a lower
signal; the rewards are at the top. Figure 3 presents an example of an ordered allocation
rule. Notice that an ordered allocation rule is completely characterized by its thresholds
{(sθ, sθ )}θ∈�.

Finally, we let

W (x) ≡
∑
θ∈�

q(θ)U
(
θ, X(θ)

)
denote the ex ante expected payoff of any agent given allocation rule x. An allocation
rule x is optimal if it maximizes W .
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Figure 3. An example of an ordered allocation rule. This particular ordered allocation rule is
not IC because type θ1 would prefer to report being type θ2.

5. Optimal allocation rules

In this section, we characterize optimal allocation rules. We find that ordered allocation
rules are optimal and describe their properties in the following theorem. Moreover, we
show that every optimal allocation rule is essentially an ordered allocation rule. By this
we mean that any optimal allocation rule is equal to some optimal ordered allocation
rule almost everywhere, except possibly for the allocation of type θ1 (the lowest type),
who still receives the same probability of being assigned any of the two objects.

Theorem 1 (Optimality of ordered allocation rules). (A) There is an ordered allocation
rule {(sθ, sθ )}θ∈� that is an optimal allocation rule. It has the following properties:
(i) sθ is weakly decreasing; (ii) sθ is weakly increasing; (iii) type θj is indifferent to
reporting being type θj+1 for all j < J.

(B) For any optimal allocation rule x, there is an optimal ordered allocation rule x̂ such
that X(θ) =a.e. X̂(θ) for all θ > θ1 and∫ 1

0
p(s|θ1 )xk(θ1, s)ds =

∫ 1

0
p(s|θ1 )x̂k(θ1, s)ds

for k= h, l.

Figure 1 in the Introduction displays the optimal allocation rule when there are three
types. In Sections 5.1–5.3, we guide the reader through the argument of part (A) of the
theorem (the formal proofs are provided in the Appendix). In Section 5.4, we prove part
(B).

5.1 The single-crossing problem and ordered allocations

At first glance, the problem of finding optimal allocation rules might appear relatively
standard. Recall that each agent’s expected utility is given by

u(θ, h) Pr{receiving the h object} + u(θ, l) Pr{receiving the l object},

where the two goods—the probability of being assigned a high-quality object and the
probability of being assigned a low-quality object—enter linearly. Furthermore, the con-
dition that u(θ,h)

u(θ,l) is increasing (we only assume it is weakly increasing, but, for the sake
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of argument, say it is strictly increasing) looks a lot like the typical single-crossing condi-
tion that is standard in mechanism design. So the problem appears to be a variation of
Myerson (1981) and Myerson and Satterthwaite (1983). However, unlike standard mech-
anism design, the fact that the allocation rules depend on exogenous signals makes it
so that the probability of receiving each good depends not only on each agent’s report,
but also on his true type (the probability that each agent receives a high-quality object,
for example, might depend on the signal that is realized, whose distribution depends on
that agent’s true type). As it turns out, this complicates matters considerably, because in-
centive compatibility no longer implies that types that are closer together receive distri-
butions of goods that are also closer. For example, in Myerson and Satterthwaite (1983),
who study bilateral trade, and in much of the literature that followed, larger types are
more likely to receive the object that is being traded than lower types in every incentive
compatible allocation rule. By contrast, in our setting, there are incentive compatible
allocation rules where the probability of receiving a high-quality object is not monotone
with the agent’s type.14

To overcome this difficulty, we first show that we would not have this problem if we
were to restrict attention to the class of ordered allocation rules and then show that there
are ordered allocation rules that are optimal.

In ordered allocation rules, we can reinterpret the problem by thinking of the two
goods as being the two thresholds s and s (instead of the probability of receiving a high-
quality object and a low-quality object, respectively). The advantage of framing the
problem in this manner is that the thresholds s and s each agent is assigned depend
only on his report and not on his true type. Specifically, in any ordered allocation rule,
the expected utility of any type θ agent who reports being type θ′ is given by Û(θ, sθ′ , sθ′ ),
where Û(θ, s, s) represents the expected payoff of any agent of type θ when assigned
thresholds s and s:

Û(θ, s, s) ≡ u(θ, h)
∫ 1

s
p(s|θ)ds + u(θ, l)

∫ s

s
p(s|θ)ds.

Notice that Û(θ, s, s) is decreasing with both s and s, so if we were to draw indiffer-
ence curves of the different types on the space (s, s), they would be downward sloping.
Using the MLRP of p, we are able to show that those indifference curves cross at most
once as Figure 4 illustrates. The intuition is that larger types are more confident that
their signals will be above the upper thresholds. Thus, as we show in the next lemma, if
a type is indifferent between two tracks (i.e., two pairs of thresholds) (s′, s′ ) and (s′′, s′′ ),
such that s′ > s′′ ≥ s′′ > s′, then all lower types prefer the first pair, while all higher types
prefer the second pair.

Formally, we have the following lemma.

Lemma 1. Take any ordered allocation rule x, and any two types θ′ ∈ � and θ′′ ∈ � such
that such that sθ′ > sθ′′ ≥ sθ′′ > sθ′ . It follows that for all θ ∈�,

U
(
θ, X

(
θ′)) ≥U

(
θ, X

(
θ′′)) ⇒ U

(
θ̂, X

(
θ′))>U

(
θ̂, X

(
θ′′))

14We provide such an example in the Appendix.
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Figure 4. Indifference curves for three types that only cross once. Note that pairs nearer the
origin are preferred to pairs away from the origin.

for all θ̂ < θ and

U
(
θ, X

(
θ′′)) ≥U

(
θ, X

(
θ′)) ⇒ U

(
θ̂, X

(
θ′′))>U

(
θ̂, X

(
θ′))

for all θ̂ > θ.

The previous lemma makes it much easier to deal with ordered allocation rules (as
compared to general allocation rules) because it implies that one only needs to be con-
cerned with “local” incentive constraints. Indeed, the way to find the optimal ordered
allocation rule is precisely through a series of arguments of a local nature. Of course, one
still has to show that ordered allocation rules are optimal, which we do in the following
sections.

The outline for the proof of part (A) of Theorem 1 is as follows. In Section 5.2, we de-
fine a relaxed problem, where we relax some of the incentive constraints. In particular,
in the relaxed problem, we maximize W subject to the feasibility constraints (conditions
(1) and (2)) and the upper incentives constraints only (which prevent each type from
mimicking higher types). Second, we show that, for any solution of the relaxed prob-
lem, there is an ordered allocation rule that is also a solution of the relaxed problem
(Lemma 2). Third, we prove that the relaxed problem has a solution (Lemma 3), which,
combined with Lemma 2, ensures that there is an ordered allocation rule that is a so-
lution to the relaxed problem. Fourth, in Section 5.3, we show that, for any ordered
allocation rule that solves the relaxed problem, upper thresholds are decreasing with
the agent’s type, lower thresholds are increasing, and any type is indifferent between
reporting his type and the next largest type (Lemma 4). Finally, we demonstrate that
any ordered allocation rule that solves the relaxed problem satisfies the lower incentive
constraints (i.e., is IC) and, therefore, is an optimal allocation rule (Lemma 5).

5.2 The relaxed problem

The optimal allocation rule maximizes W (x) subject to the (i) feasibility constraints, (ii)
upper incentive constraints, i.e., for all θ,

U
(
θ, X(θ)

) ≥U
(
θ, X

(
θ′)) for all θ′ > θ,
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and (iii) lower incentive constraints, i.e., for all θ,

U
(
θ, X(θ)

) ≥U
(
θ, X

(
θ′)) for all θ′ < θ.

We define the relaxed problem as maximizing W (x) subject only to (i) and (ii). We start
by showing that, for any feasible allocation rule that satisfies the incentive constraints
of the relaxed problem, there is a feasible ordered allocation rule with the same ex ante
payoff for each agent that also satisfies the same incentive constraints.

Lemma 2. Let x be any allocation rule that satisfies all the incentive constraints of the
relaxed problem. Define x̂ to be an ordered allocation rule with thresholds {(sθ, sθ )}θ∈�
such that ∫ 1

sθ

p(s|θ)ds =
∫ 1

0
xh(θ, s)p(s|θ)ds

and ∫ sθ

sθ

p(s|θ)ds =
∫ 1

0
xl(θ, s)p(s|θ)ds

for all θ ∈�. It follows that x̂ satisfies all the incentive constraints of the relaxed problem.

Allocation rule x̂ in Lemma 2 is such that the probability that each type receives each
object is the same as in allocation rule x. The only difference is that the rewards are all
“brought up to the top.” Therefore, by definition, W (x) = W (x̂). To see why alloca-
tion rule x̂ satisfies all upper incentive constraints, it might be convenient to go through
the finite steps of transforming allocation rule x into allocation rule x̂. Take allocation
rule x and reorder only type θ1’s track as described in Lemma 2; call that allocation rule
x1. It follows that allocation rule x1 satisfies all incentive constraints, because the only
incentive constraints considered that involve type θ1 are those that prevent him from
mimicking higher types. Seeing as his expected utility is the same under allocation rules
x1 and x, those incentive constraints are satisfied.

Now do the same reordering with type θ2 and call the corresponding allocation rule
x2. Once again, by the same reasoning, type θ2 does not want to mimic any larger type
under allocation rule x2, so we only need to show that type θ1 does not want to mimic
type θ2. That is the case because lower types are less likely to draw large signals; there-
fore, if type θ2 is made indifferent by bringing all his rewards up, lower types would be
made worse off as a result. Continuing with this logic for all the J types, we get to allo-
cation rule x̂.

The following lemma shows that a solution to the relaxed problem exists.

Lemma 3. There exists an allocation rule that solves the relaxed problem.

By combining the two previous lemmas, we get that there are ordered allocation
rules that solve the relaxed problem. In Section 5.3, we are able to characterize them
because of the single-crossing property that ordered allocation rules have; in particular,
our arguments are all of a local nature as we describe next.
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5.3 The optimal ordered allocation rule of the relaxed problem

Lemma 4. Any ordered allocation rule x that solves the relaxed problem is such that (i)
sθ is weakly decreasing; (ii) sθ is weakly increasing; (iii) type θj is indifferent to reporting
being type θj+1 for all j < J.

To gain some intuition for this result, let us assume that J = 2 just as in the example
in Section 3. Property (iii) states that the low type must be indifferent to the high type,
i.e., the (only) incentive constraint of the relaxed problem binds. This follows because,
if not, it would be possible to manipulate the thresholds of both types in such a way that
each agent’s ex ante payoff would increase without violating the incentive constraint or
assigning more objects than those available. Property (iii) implies that either (a) s1 ≥
s2 ≥ s2 ≥ s1 or (b) s2 ≥ s1 ≥ s1 ≥ s2. Properties (i) and (ii) confirm that (a) must be true.
The idea is that if one must assign a pair of thresholds to each type with the constraint
that the low type must be indifferent, one would rather assign the pair of thresholds with
the smaller gap to the high type. That pair of thresholds has the lowest upper threshold,
which is more valued by high-type agents, who value going from a low-quality object to
a high-quality object more than low-type agents.

In the final step of the proof of part (A), we show that any ordered allocation rule that
solves the relaxed problem satisfies the relaxed incentive constraints.

Lemma 5. Let x be an ordered allocation rule that solves the relaxed problem. Then x is
also an optimal allocation rule.

Lemma 5 directly follows from the previous lemmas as can be seen by considering
Figure 1. If type θ1 is indifferent to mimicking type θ2, it follows by Lemma 1 that type θ2,
who is more confident that his signal will be high, strictly prefers to report θ2 over mim-
icking type θ1. By the same reasoning, type θ3 strictly prefers to report θ3 over reporting
θ2 and strictly prefers that over reporting θ1.

5.4 Uniqueness

Part (B) of Theorem 1 states that ordered allocation rules are essentially the unique op-
timal allocation rules. The proof is as follows. Consider any optimal allocation rule x

and ordered allocation rule x̂ as defined in Lemma 2. By Lemmas 4 and 5, it follows that
allocation rule x̂ is an optimal allocation rule such that type θj is indifferent to reporting
being type θj+1 for all j ≥ 1. This implies that X(θ) =a.e. X̂(θ) for all θ > θ1; if not, there
would be some θj who would strictly prefer to report truthfully over reporting being type
θj+1 under allocation rule x̂, which would be a contradiction (we show this in the proof
of Lemma 2). Finally, in regard to type θ1, by definition of x̂, it follows that∫ 1

0
p(s|θ1 )xz(θ1, s)ds =

∫ 1

0
p(s|θ1 )x̂z(θ1, s)ds

for z = h, l.
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6. Discussion

In this section, we start by discussing non-wasteful allocations and whether they are
optimal. We then discuss an extension to the model that allows for multiple quality
levels for the objects being assigned (rather than only two). In Section 6.3, we discuss
how the results extend to the case where there are many finite agents (rather than a
continuum). Finally, in Section 6.4, we briefly discuss the issue of fairness of the optimal
mechanism.

6.1 On wasteful allocation rules

The fact that agents have the same ordinal preferences over objects implies that the set
of ex post Pareto efficient allocation rules is the set of non-wasteful allocation rules. An
allocation rule is wasteful if there are agents who are not assigned any object despite
objects being available. Formally, an allocation rule x is non-wasteful if and only if

∑
θ∈�

q(θ)
∫ 1

0
p(s|θ)xh(θ, s)ds = αh

and

∑
θ∈�

q(θ)
∫ 1

0
p(s|θ)xl(θ, s)ds = min{αl, 1 − αh}.

Wasteful allocation rules might be considered undesirable, as the principal might be
unable to commit not to assign all the objects she has available. Indeed, the common
assumption in the literature that has studied these assignment problems has been to
only consider ex post efficient allocation rules. Thus, it is natural to wonder what is the
optimal non-wasteful allocation rule. It can be shown by following essentially the same
steps as the proof of Theorem 1 in the previous section that the optimal non-wasteful
allocation rule is an ordered allocation rule such that properties (i), (ii), and (iii) of part
(A) of Theorem 1 hold. Below, we show that if the measure of low-quality objects is suffi-
ciently large, that allocation rule is not optimal, i.e., we find that any optimal allocation
rule is wasteful. In particular, we find that even though all high-quality objects are as-
signed, there are low-quality objects that are not assigned despite there being agents
who receive no object.

Proposition 1. Assume that p(0|θ1 ) > p(0|θj ) = 0 for all j > 1. Then, for every αh ∈
(0, 1), there are thresholds αl ∈ (0, 1 − αh ) and αl ∈ (0, αl ) such that the following state-
ments hold:

(i) For all αl ≤ αl, every optimal allocation rule is non-wasteful.
(ii) For all αl > αl, every optimal allocation rule is wasteful, because even though every

high-quality object is assigned, there are agents who receive no objects despite there being
low-quality objects available.
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The condition that p(0|θ1 ) >p(0|θj ) = 0 is rather innocuous (and not necessary). It
states that the lowest type is infinitely more likely to generate signals close to 0. More-
over, we show in the Appendix that αl = αl when a unique optimal ordered allocation
rule can be guaranteed to exist.15 In that case, Proposition 1 simply states that the opti-
mal allocation rule is wasteful if and only if αl is sufficiently high.

The argument builds on what happens when there are enough objects for every
agent (αh + αl ≥ 1). In that case, the only incentive compatible ordered allocation rule
that is not wasteful is such that (sθ, sθ ) = (0, s∗ ) for all θ ∈�, where s∗ ∈R is such that

∑
θ∈�

q(θ)
∫ 1

s∗
p(s|θ)ds = αh.

This is exactly the allocation rule where objects are assigned exclusively according to
the agents’ signals. As we illustrate in the example in Section 3, that allocation rule is
not optimal if p(0|θ1 ) > p(0|θj ) = 0 (which holds in the example). The intuition can
be grasped by revisiting Fig. 2 and the discussion that follows. With ordered allocation
rules, the only way the principal is able to get agents to self-select is by introducing in-
efficiencies; in Fig. 2, high types have a (small) probability of being assigned no object.
Assuming that p(0|θ1 ) > p(0|θj ) = 0 ensures that it is always preferable to have at least
an infinitesimally small level of inefficiency (when s → 0), because the probability that
a high-type agent generates a signal that is close to 0 is infinitely smaller than the same
probability for a mimicking agent with the lowest type.

Let the measure of assigned low-quality objects in the optimal mechanism when
αh + αl ≥ 1 be denoted by α∗

l < 1 − αh. The proposition follows directly by setting αl =
αl = α∗

l : if αl ≥ α∗
l , the optimal mechanism is the same as if αh + αl ≥ 1, while if αl <

α∗
l , the resource feasibility constraint associated with low-quality objects binds, which

directly implies that there is no waste of low-quality objects.
The fact that optimal mechanisms need not be efficient is not only interesting in

and of itself, but also because it suggests that decentralized systems for object provision
might not be optimal. Consider the discussion over whether college assignment sys-
tems should be decentralized. While one could argue that mechanisms that are efficient
could be implemented through decentralized systems, where each university decides
independently what students to accept, it is much harder to see how a wasteful mech-
anism like the one we discuss could be implemented in this way (surely, the university
with unassigned vacancies would contact the unassigned students to have them attend
the university).16

15Indeed, it is sufficient that there is a unique optimal ordered allocation rule when αh + αl ≥ 1.
16Decentralized school choice systems have been studied by Avery and Levin (2010) and Chade, Lewis,

and Smith (2014). In the latter paper, the low-quality school might end up with vacancies in equilibrium,
but that is a product of assuming that schools are able to commit to an acceptance threshold before stu-
dents choose whether to accept their offers. If schools were unable to commit, there would be no student
left unassigned.
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6.2 Multiple quality levels

In this section, we extend the model to allow for objects of K different levels of quality,
each with measure αk, where k = 1, � � � , K and

∑K
k=1 αk < 1. As before, each agent’s

payoff depends on his type θ and on the object k received, and is denoted by u(θ, k),
where u(θ, 0) represents the payoff of type θ when he receives no object. We extend the
assumptions from before: u(θ, k+1)−u(θ, k) is increasing with θ for allk= 0, 1, � � � , K−
1 and u(θ,k+1)−u(θ,k)

u(θ,k)−u(θ,k−1) is also increasing with θ for all k= 1, � � � , K − 1.
In Section 5, we characterized the optimal allocation rule when K = 2. When K = 1,

it is straightforward to show that it is optimal to ignore the agents and assign the objects
according to the agents’ signals: there is a single threshold and every agent whose signal
is above the threshold receives the object.17 The problem becomes more complicated
when K > 2 and a characterization of optimal allocation rules is not available. The issue
is that ordered allocation rules no longer solve the single crossing problem described
in Section 5.1. The fact that in any ordered allocation rule there are K > 2 thresholds
associated with each type prevents the use of the methods discussed in Section 5 to de-
termine the optimal ordered allocation rules (essentially, local arguments are no longer
enough).

Instead of characterizing optimal mechanisms when K > 2, we discuss a specific
family of mechanisms called binary mechanisms. Binary mechanisms are similar to
that presented in the example in Section 3: each agent must choose one of two tracks
(A and B). Each track is composed on K thresholds labeled {sAk }Kk=1 and {sBk }Kk=1, re-
spectively, and each agent who selects track j = A, B is assigned an object of quality k if
s ∈ (s

j
k, sjk+1], where s

j
K+1 ≡ 1 for j =A, B.

Binary mechanisms are appealing because they are simple. In general, optimal
mechanisms require agents to choose many tracks (even when K = 2, there might be
the need to have as many tracks as there are types), which may make the implemen-
tation of the mechanism complicated. We prove in this section that there is a class of
binary mechanisms called ordered binary mechanisms that perform strictly better (in
terms of ex ante payoffs) than simply assigning agents according exclusively to their sig-
nals. Ordered binary mechanisms are such that there are two critical levels k and k such
that 1 ≤ k < k ≤ K, and (i) sAk ≤ sBk for all k ≤ k, (ii) sAk = sBk for all k ∈ (k, k), and (iii)
sAk ≥ sBk for all k ≥ k. Figure 5 illustrates.

The idea is that there are three tiers of objects: a top tier, composed of objects of
quality above level k, a middle tier of objects of quality between levels k and k, and a
lower tier, composed of objects of quality level below k, which includes receiving no
object. By choosing track A, an agent increases his chances of receiving a middle tier
object, but lowers his chances of receiving a top tier object compared to track B. In this
way, ordered binary mechanisms are the natural extension of the optimal mechanism
characterized in Theorem 1, but with the restriction that there are only two tracks.

Proposition 2. In any ordered binary mechanism, there is some type θ̂ ∈ � such that the
agent chooses track A if θ < θ̂ and chooses track B if θ > θ̂.

17The problem of finding the optimal allocation rule when K = 1 is analogous to finding the optimal
non-wasteful allocation rule when K = 2 and α1 + α2 ≥ 1, which we discussed in the previous section.
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Figure 5. The figure shows the changes from a one-track mechanism, where objects are as-
signed as a function of the agents’ signals, to an ordered binary mechanism when K = 5. The top
tier is composed of objects of qualities 5 and 4, the middle tier is composed of objects of qualities
3 and 2, and the lower tier is composed of the lowest quality objects and receiving no object.

As expected from the previous sections, the fact that signals have the MLRP leads to
agents with higher types preferring track B, because they are more confident that their
signal will be high; the downside of not receiving a middle tier object in the event of
getting a lower signal is less important to them, because such an event is unlikely.

The following proposition confirms that ordered binary mechanisms are sufficient
to improve upon simply assigning objects according to the agents’ signals. Let the allo-
cation rules induced by ordered binary mechanisms be called ordered binary allocation
rules.

Proposition 3. For any pair of critical levels (k, k) such that 1 ≤ k < k ≤ K, there is an
ordered binary allocation rule that generates a larger ex ante payoff than that generated
by assigning objects according exclusively to the agents’ signals.

6.3 Finite number of agents

One of the assumptions of the paper is that there is a continuum of agents and of objects.
This assumption is convenient because it implies that there is no aggregate uncertainty
due to the proportion of the population with the various types and signals being certain
and known by everyone. Each agent is only uncertain about whether his signal will re-
flect his type, and not about how large his type and/or signal are/is relative to others.
Even though assuming a continuum of agents is relatively standard (see Avery and Levin
(2010), Chade, Lewis, and Smith (2014), and Li (2021), for example), the reader might
wonder whether the results presented in Section 5 extend to a model with finitely many
objects and agents.

With a finite population, the problem of finding the optimal mechanism becomes
more complicated because the number of agents with each type and signal is uncertain.
As a result, an allocation for each agent no longer depends exclusively on that agent’s
type and signal, but must also depend on every other agent’s type and signal.

Let us rewrite the model for the case when there are N agents. Each agent i =
1, � � � , N has an independent private type θi ∈� and generates a conditionally indepen-
dent signal si ∈ [0, 1], with the same distributions as in the main text. There is a total
number of τH and τL high- and low-quality objects, respectively. An allocation rule is
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x= (x1, � � � , xN ), where

xi = (
xih, xil

)
: �N × [0, 1]N → [0, 1] × [0, 1]

such that

xih(θ, s) + xil(θ, s) ≤ 1

for all vectors θ ∈ �N and s ∈ [0, 1]N , and for all i = 1, � � � , N . An allocation rule x is
feasible if

N∑
i=1

xih(θ, s) ≤ τH

and

N∑
i=1

xil(θ, s) ≤ τL

for all θ ∈�N and s ∈ [0, 1]N .
An allocation rule x is incentive compatible if, conditional on θi,

Eθ−i ,s
(
u(θi, h)xih

(
(θi, θ−i ), s

) + u(θi, l)x
i
l

(
(θi, θ−i ), s

))
≥ Eθ−i ,s

(
u(θi, h)xih

((
θ′
i, θ−i

)
, s

) + u(θi, l)x
i
l

((
θ′
i, θ−i

)
, s

))
for all θ′

i ∈ �, θi ∈ �, and i = 1, � � � , N . Finally, the value for the principal of allocation
rule x is given by

W (x) = 1
N

N∑
i=1

E
(
u(θi, h)xih(θ, s) + u(θi, l)x

i
l(θ, s)

)
.

Let us momentarily go back to the main model with a continuum of agents. Fix any
parameters α = (αH , αL ) ∈ (0, 1)2 and define the value for the principal of implementing
the optimal allocation rule to be W ∗. We show that it is possible to construct feasible IC
allocation rules in the finite version of the model whose value for the social planner
converges to W ∗ as N goes to infinity when the availability of objects is the same in both
versions of the model. To do that, consider the floor function 
� : R → Z, such that 
x�
denotes the largest integer smaller than or equal to x. Assume that τH = 
NαH� and
τL = 
NαL�.

Proposition 4. For every δ > 0, there is an allocation rule x = (x1, � � � , xN ) such that

lim
N→∞

W (x) ≥ W ∗ − δ.
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6.4 On fairness

One final concern we wish to address has to do with the preferential treatment given to
agents who, for reasons not directly considered by the model, are more predisposed to
risk receiving no object. The concern is not so much with risk aversion per se, but with
what might correlate with that risk aversion. For example, there is suggestive evidence
that low-income students tend to be more risk averse (see, for example, Calsamiglia and
Guell (2018) and Calsamiglia, Martinez-Mora, and Miralles (2021) for a theoretical anal-
ysis). As a result, when we thinkin about our model to assign students to schools or
colleges, a reasonable concern is that the optimal mechanism further increases income
inequality. However, this problem can be mitigated by adding discriminatory clauses
to the mechanism, provided that the students’ income is known by the mechanism de-
signer. The idea would be that the set of tracks an agent has available would depend on
his socioeconomic status. In the simpler case where all agents are either high or low in-
come, and all high-income (low-income) agents have the same risk aversion level, that
would actually be optimal, as it is easy to see that one could find the optimal mechanism
by treating each set of agents independently.

Appendix

A.1 Example mentioned in Section 5.1

Consider the following example. Say that θ belongs to {θ1, θ2, θ3} with θi = i for i =
1, 2, 3, u(θ, h) = 2θ, u(θ, l) = θ, and

p(s|θ) =

⎧⎪⎪⎨⎪⎪⎩
2s if θ = θ3,

1 if θ = θ2,

2(1 − s) if θ = θ1.

Notice that p trivially satisfies our assumptions (its support is the interval [0, 1] and
the MLRP is satisfied). Consider the allocation rule illustrated in Figure 6:

xh(θ1, s) =
{

1 if s ≤ 0.4,

0 if s > 0.4,
and xl(θ1, s) =

{
1 if 0.4 ≤ s ≤ 0.6,

0 if s > 0.6,

xl(θ2, s) = 1 for all s ∈ [0, 1],

xh(θ3, s) =
{

1 if s ≥ 0.6,

0 if s < 0.6,
and xl(θ3, s) =

{
1 if 0.4 ≤ s ≤ 0.6,

0 if s < 0.4.

It is straightforward to check that not only is this allocation rule incentive compat-
ible, but also that the distribution of objects that are assigned to type θ1 is exactly the
same as type θ3 (both types have a 64% probability of receiving a high-quality object
and a 20% probability of receiving a low-quality object), but very different than type θ2

(type θ2 receives a low-quality object with certainty).
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Figure 6. Example of an incentive compatible allocation rules where types θ1 and θ3 have the
same probability of being assigned the high-quality object and the same probability of being
assigned the low-quality object, while type θ2 is assigned the low-quality object with certainty.

A.2 Proof of part (A) of Theorem 1

Part (A) of Theorem 1 follows by combining Lemmas 1–5. Below, we show Lemmas 1–4.
Lemma 5 directly follows from Lemmas 1 and 4 as described in the text.

Proof of Lemma 1. Take any θ ∈� and notice that

U
(
θ, X

(
θ′)) ≥U

(
θ, X

(
θ′′)) ⇔

∫ sθ′′

sθ′
p(s|θ)ds∫ sθ′

sθ′′
p(s|θ)ds

≥ u(θ, h)
u(θ, l)

− 1.

The statement of the lemma follows because u(θ,h)
u(θ,l) is (weakly) increasing with θ and,

as we prove in the following paragraph, the left-hand side of the final inequality is strictly
decreasing with θ.

Consider any two types θ and θ̂, with θ > θ̂. We will show that∫ sθ′′

sθ′
p(s|θ)ds∫ sθ′

sθ′′
p(s|θ)ds

<

∫ sθ′′

sθ′
p(s|θ̂)ds∫ sθ′

sθ′′
p(s|θ̂)ds

. (3)

We know that densities {p(·|θ) : θ ∈ �} have the MLRP. Then, by Proposition 4 in
Milgrom (1981), it follows that signal {s ∈ [s̄θ′′ , s̄θ′ ]} is “more favorable” than signal {s ∈
[sθ′ , sθ′′ ]}. By definition, this implies that for every nondegenerate prior distribution G

for θ, the posterior distribution G(·|{s ∈ [s̄θ′′ , s̄θ′ ]}) first order stochastically dominates
G(·|{s ∈ [sθ′ , sθ′′ ]}).

Consider G such that it assigns positive and equal probability only to θ and θ̂. First
order stochastic dominance implies18

P
(
θ|s ∈ {

s ∈ [s̄θ′′ , s̄θ′ ]
})>

P
(
θ|s ∈ {

s ∈ [sθ′ , sθ′′ ]
})

,

18Given G, there are only two types that have positive probability; as a result, first order stochastic dom-
inance implies that G(·|{s ∈ [s̄θ′′ , s̄θ′ ]}) should put more probability than G(·|{s ∈ [sθ′ , sθ′′ ]}) on the high type
and vice versa with respect to the low type.
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P
(
θ̂|s ∈ {

s ∈ [s̄θ′′ , s̄θ′ ]
})<

P
(
θ̂|s ∈ {

s ∈ [sθ′ , sθ′′ ]
})

.

Then

P
(
θ|s ∈ {

s ∈ [s̄θ′′ , s̄θ′ ]
})

P
(
θ|s ∈ {

s ∈ [sθ′ , sθ′′ ]
}) >

P
(
θ̂|s ∈ {

s ∈ [s̄θ′′ , s̄θ′ ]
})

P
(
θ̂|s ∈ {

s ∈ [sθ′ , sθ′′ ]
})

or, equivalently,

P
(
θ|s ∈ {

s ∈ [s̄θ′′ , s̄θ′ ]
})

P
(
θ̂|s ∈ {

s ∈ [s̄θ′′ , s̄θ′ ]
}) >

P
(
θ|s ∈ {

s ∈ [sθ′ , sθ′′ ]
})

P
(
θ̂|s ∈ {

s ∈ [sθ′ , sθ′′ ]
}) .

By Bayes’ theorem,

P
(
s ∈ {

s ∈ [s̄θ′′ , s̄θ′ ]
}|θ)

P
(
s ∈ {

s ∈ [s̄θ′′ , s̄θ′ ]
}|θ̂) >

P
(
s ∈ {

s ∈ [sθ′ , sθ′′ ]
}|θ)

P
(
s ∈ {

s ∈ [sθ′ , sθ′′ ]
}|θ̂) .

Then we have

P
(
s ∈ {

s ∈ [sθ′ , sθ′′ ]
}|θ̂)

P
(
s ∈ {

s ∈ [s̄θ′′ , s̄θ′ ]
}|θ̂) >

P
(
s ∈ {

s ∈ [sθ′ , sθ′′ ]
}|θ)

P
(
s ∈ {

s ∈ [s̄θ′′ , s̄θ′ ]
}|θ) .

Finally, the last relation implies∫ sθ′′

sθ′
p(s|θ̂)ds∫ s̄θ′

s̄θ′′
p(s|θ̂)ds

>

∫ sθ′′

sθ′
p(s|θ)ds∫ s̄θ′

s̄θ′′
p(s|θ)ds

.

Proof of Lemma 2. 19 Take any θ, θ′ ∈� such that θ′ > θ. We want to show that

U
(
θ, X̂

(
θ′)) ≤U

(
θ, X̂(θ)

)
.

Allocation rule x satisfies the upper incentives constraints, so we know that U(θ,
X(θ′ )) ≤ U(θ, X(θ)). Also, by the definition of x̂ we have that U(θ, X̂(θ)) = U(θ, X(θ)).
Therefore, it is enough to prove that

U
(
θ, X̂

(
θ′)) ≤U

(
θ, X

(
θ′)).

Define the two density functions

Ŷ (s) = 1
ς̂
p

(
s|θ′)(x̂h(

θ′, s
)
u(θ, h) + x̂l

(
θ′, s

)
u(θ, l)

)
and

Y (s) = 1
ς
p

(
s|θ′)(xh(

θ′, s
)
u(θ, h) + xl

(
θ′, s

)
u(θ, l)

)
19We are very grateful to an an anonymous referee who made several suggestions that led to a simplifi-

cation of the original proof.
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for all s ∈ [0, 1], where

ς̂ =
∫ 1

0
p

(
s|θ′)(x̂h(

θ′, s
)
u(θ, h) + x̂l

(
θ′, s

)
u(θ, l)

)
ds

and

ς =
∫ 1

0
p

(
s|θ′)(xh(

θ′, s
)
u(θ, h) + xl

(
θ′, s

)
u(θ, l)

)
ds.

Notice that ∫ 1

0
p

(
s|θ′)x̂z(θ′, s

)
ds =

∫ 1

0
p

(
s|θ′)xz(θ′, s

)
ds

for z = l, h, which implies that ς = ς̂ and that∫ 1

y
Ŷ (s)ds ≥

∫ 1

y
Y (s)ds (4)

for every y ∈ [0, 1]. Indeed, unless X̂(θ′ ) =a.e. X(θ′ ), it will be the case that Ŷ first order
stochastically dominates Y .

Finally, notice that

U
(
θ, X̂

(
θ′)) =

∫ 1

0

p(s|θ)

p
(
s|θ′) Ŷ (s)ds ≤

∫ 1

0

p(s|θ)

p
(
s|θ′)Y (s)ds =U

(
θ, X

(
θ′)),

where the inequality follows by (4) and because p(·|θ)
p(·|θ′ ) is strictly decreasing. It holds

strictly if Ŷ first order stochastically dominates Y .

Proof of Lemma 3. We first show the existence of an ordered allocation rule that solves
the relaxed problem. Then we use Lemma 2 to prove the existence of a solution of the
relaxed problem.

The problem of finding a solution to the relaxed problem within the set of ordered
allocation rules can be written as

max
(sθ, s̄θ )θ∈�

∑
θ∈�

q(θ)

[
u(θ, l)

∫ s̄θ

sθ

p(s|θ)ds + u(θ, h)
∫ 1

s̄θ

p(s|θ)ds
]

,

where for all θ,

sθ ∈ [0, 1], s̄θ ∈ [0, 1],

such that ∑
θ∈�

q(θ)
∫ 1

s̄θ

p(s|θ)ds − αh ≤ 0,

∑
θ∈�

q(θ)
∫ s̄θ

sθ

p(s|θ)ds − αl ≤ 0,
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and, for each pair (θ, θ′ ) with θ′ > θ,

u(θ, l)

[∫ s̄θ

sθ

p(s|θ)ds −
∫ s̄θ′

sθ′
p(s|θ)ds

]
+ u(θ, h)

[∫ 1

s̄θ

p(s|θ)ds −
∫ 1

s̄θ′
p(s|θ)ds

]
≥ 0.

Note that all functions are continuous and the domain is the compact set ([0, 1] ×
[0, 1])J . Therefore, there is a solution to the problem. Denote the ordered allocation rule
that solves the relaxed problem as xO .

Now suppose the relaxed problem does not have a solution when we consider the
general set of allocation rules. This implies that there is a non-ordered allocation rule
x such that W (x) > W (xO ). By Lemma 2, we can construct an ordered allocation rule
x̃ such that it satisfies all previous constraints and W (x̃) = W (x) > W (xO ), which is a
contradiction.

Proof of Lemma 4. Consider any ordered allocation rule x̂ that solves the relaxed
problem. Let the associated thresholds be denoted by (sj , sj )Jj=1. Consider any type
θj ∈�. We proceed by induction. Assume that, for all k> 0,

sj+k ≥ sj+k+1 ≥ sj+k+1 ≥ sj+k

and

U
(
θj+k, X̂(θj+k )

) =U
(
θj+k, X̂(θj+k+1 )

)
.

We complete the proof by showing that

sj ≥ sj+1 ≥ sj+1 ≥ sj

and

U
(
θj , X̂(θj )

) = U
(
θj , X̂(θj+1 )

)
.

Notice that, in doing this, we also prove the induction base; that is,

sJ−1 ≥ sJ ≥ sJ ≥ sJ−1 and U
(
θJ−1, X̂(θJ−1 )

) = U
(
θJ−1, X̂(θJ )

)
.

Let j′ ≥ j + 1 be such that θj′ ∈ � is the largest type such that sj+1 = sj′ . Then, be-
tween θj+1 and θj′ , all upper thresholds are equal, which, in turn, implies that the lower
thresholds are also equal (so that the indifference condition for type θj+1 holds).

Let

q̂(θj+1 ) ≡
j′∑

i=j+1

q(θi )

and

p̂(s|θj+1 ) ≡
j′∑

i=j+1

q(θi )
q̂(θj+1 )

p(s|θi ).
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Notice that for any s′ > s,

p
(
s′|θ′)

p
(
s|θ′) >

p
(
s′|θj′

)
p(s|θj′ )

≥ p̂
(
s′|θj+1

)
p̂(s|θj+1 )

≥ p
(
s′|θj+1

)
p(s|θj+1 )

>
p

(
s′|θ′′)

p
(
s|θ′′) (5)

for any θ′ > θj′ ≥ θj+1 > θ′′, where the second and third inequalities are strict whenever
j′ > j + 1.

Indeed,

p̂
(
s′|θj+1

)
p̂(s|θj+1 )

=

j′∑
i=j+1

q(θi )p
(
s′|θi

)
j′∑

i=j+1

q(θi )p(s|θi )

.

We know that p(s′|θi )
p(s|θi ) ≤ p(s′|θj′ )

p(s|θj′ ) for every i = j + 1, � � � , j′. Then

p̂
(
s′|θj+1

)
p̂(s|θj+1 )

≤

j′∑
i=j+1

q(θi )
p

(
s′|θj′

)
p(s|θj′ )

p(s|θi )

j′∑
i=j+1

q(θi )p(s|θi )

= p
(
s′|θj′

)
p(s|θj′ )

,

where the first inequality is strict whenever j′ > j + 1. By the same reasoning, we can

show that
p̂(s′|θj+1 )
p̂(s|θj+1 ) ≥ p(s′|θj+1 )

p(s|θj+1 ) .

The argument is as follows. We first show that allocation rule x̂ is such that there
is some type θj̃ < θj+1 who is indifferent to reporting θj+1 (Claim 1). Then we show
that if sj > sj+1, there would be no such type θj̃ < θj+1 who would be indifferent to θj+1

(Claim 2). Claims 1 and 2 imply that sj ≤ sj+1, which, in turn, implies that type θj is the
one who is indifferent to type θj+1 by Lemma 1. It then directly follows that sj ≥ sj+1;
otherwise type θj would not be indifferent.

Claim 1 There is some type θj̃ < θj+1 such that U(θj̃ , X̂(θj̃ )) =U(θj̃ , X̂(θj+1 )).

Proof. Suppose not, so that U(θ, X̂(θ)) >U(θ, X̂(θj+1 )) for all θ < θj+1. Notice that

U
(
θj+1, X̂(θj+1 )

) ≥U
(
θj+1, X̂(θj+k )

) ⇒U
(
θ, X̂(θj+1 )

) ≥U
(
θ, X̂(θj+k )

)
for all k> 1 and θ < θj+1 by the induction hypothesis and Lemma 1. As a result, it follows
that no type θ < θj+1 is indifferent to reporting any type larger than θj+1. There are three
cases to consider.

Case 1: sj < 1 and sj+1 > sj+1. Consider the following alternative ordered allocation
rule x′, where x′ is equal to x̂ except that s′j = sj + ε and s′j+1 = sj+1 − δ(ε), where ε > 0
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and δ(ε) is such that the measure of each object assigned is the same as with allocation
rule x̂, i.e.,

q(θj )
∫ sj+ε

sj

p(s|θj )ds = q(θj+1 )
∫ sj+1

sj+1−δ(ε)
p(s|θj+1 )ds.

If ε is sufficiently small, allocation rule x′ is feasible and satisfies all the considered
incentive constraints, because one is slightly improving the payoff of reporting θj+1 and
reducing the payoff of reporting θj . Provided ε is sufficiently small, low types will not
mimic type θj+1 (because they were not indifferent in x̂) or type θj will not mimic some
type θ > θj+1 (because he was not indifferent in x̂). Finally, W (x′ ) >W (x̂) because

u(θj+1, h) − u(θj+1, l) > u(θj , h) − u(θj , l),

which means that x̂ does not solve the relaxed problem: a contradiction.
Case 2: sj = 1 and both 1 > sj > sj and sj+1 = sj+1. Whereas this case applies to two

sets of conditions (when sj = 1 and when both 1 > sj > sj and sj+1 = sj+1), the alter-
native ordered allocation rule is x′′, where x′ is equal to x̂ except that s′′j = sj + ε and
s′′j+1 = sj+1 − δ(ε), and where ε > 0 and δ(ε) is such that the measure of each object
assigned is unchanged. By the same logic as before, allocation rule x′′ is feasible, sat-
isfies the considered incentive constraints, and is such that W (x′′ ) > W (x̂), which is a
contradiction.

Case 3: sj = sj < 1 and sj+1 = sj+1. In this case, the alternative ordered allocation rule
is x′′′, whose only difference from x̂ is that s′′j = s′′j = sj + ε and s′′j+1 = s′′j+1 = sj+1 − δ(ε),
where ε > 0 and δ(ε) is such that the measure of each object assigned is unchanged. As
before, by letting ε be sufficiently small, we get a contradiction.

Claim 2 If sj > sj+1, then U(θ, X̂(θ)) >U(θ, X̂(θj+1 )) for all θ < θj+1.

Proof. Suppose the statement is false and let θj̃ be the largest type smaller than θj+1

such that U(θj̃ , X̂(θj̃ )) = U(θj̃ , X̂(θj+1 )). Consider the following ordered allocation rule
x′, where x′ is equal to x except that s′j = sj + ε, s′j = sj − β(ε), s′i = sj+1 − δ(ε), and
s′i = sj+1 + γ(ε) for all i such that j + 1 ≤ i ≤ j′, where ε > 0, and δ(ε), β(ε), and γ(ε)
are such that the measure of each object assigned is the same and that type θj̃ is kept
indifferent. Formally, we have that

q̂(θj+1 )
∫ sj+1

sj+1−δ(ε)
p̂(s|θj+1 )ds = q(θj )

∫ sj+ε

sj

p(s|θj )ds,

q̂(θj+1 )
∫ sj+1+γ(ε)

sj+1

p̂(s|θj+1 )ds = q(θj )
∫ sj

sj−β(ε)
p(s|θj )ds,

(
u(θj̃ , h) − u(θj̃ , l)

) ∫ sj+1

sj+1−δ(ε)
p(s|θj̃ )ds = u(θj̃ , l)

∫ sj+1+γ(ε)

sj+1

p(s|θj̃ )ds.
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Functions δ, β, and γ are all differentiable and all converge to 0 when ε → 0. Using the
three previous equations, we have that

δ′(0) = q(θj )

q̂(θj+1 )

p(sj|θj )

p̂(sj+1|θj+1 )
, (6)

β′(0) =
(
u(θj̃ , h) − u(θj̃ , l)

)
u(θj̃ , l)

p̂(sj+1|θj+1 )

p̂(sj+1|θj+1 )

p(sj+1|θj̃ )

p(sj+1|θj̃ )

p(sj|θj )
p(sj|θj )

, (7)

γ′(0) = q(θj )

q̂(θj+1 )

(
u(θj̃ , h) − u(θj̃ , l)

)
u(θj̃ , l)

p(sj+1|θj̃ )

p(sj+1|θj̃ )

p(sj|θj )

p̂(sj+1|θj+1 )
. (8)

We complete the proof by showing that if ε → 0, then W (x′ ) >W (x̂), and x′ is feasi-
ble and satisfies all the considered incentive constraints, which is a contradiction.

That x′ is feasible if ε → 0 follows by construction. Let V (ε) ≡W (x′(ε)) for any given
ε > 0 and notice that

V (ε) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
j′∑

i=j+1

q(θi )

(
u(θi, h)

∫ 1

sj+1−δ(ε)
p(s|θi )ds + u(θi, l)

∫ sj+1−δ(ε)

sj+1+γ(ε)
p(s|θi )ds

)
+q(θj )

(
u(θj , h)

∫ 1

sj+ε
p(s|θj )ds + u(θj , l)

∫ sj+ε

sj−β(ε)
p(s|θj )ds−

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Let

V̂ (ε) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q̂(θj+1 )

(
u(θj+1, h)

∫ 1

sj+1−δ(ε)
p̂(s|θj+1 )ds + u(θj+1, l)

∫ sj+1−δ(ε)

sj+1+γ(ε)
p̂(s|θj+1 )ds

)
+q(θj )

(
u(θj , h)

∫ 1

sj+ε
p(s|θj )ds + u(θj , l)

∫ sj+ε

sj−β(ε)
p(s|θj )ds−

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

and notice that V (ε) ≥ V̂ (ε) because both u(θ, h) and u(θ, l) are increasing with θ. Using
(6), (7), and (8), we get that V̂ ′(0) > 0 if and only if

u(θj+1, h) − u(θj+1, l) − u(θj , h) + u(θj , l)

>
(
u(θj+1, l) − u(θj , l)

)(
u(θj̃ , h) − u(θj̃ , l)

)
u(θj̃ , l)

p̂(sj+1|θj+1 )

p̂(sj+1|θj+1 )

p(sj+1|θj̃ )

p(sj+1|θj̃ )
.

Notice that

p(sj+1|θj̃ )

p(sj+1|θj̃ )
<

p̂(sj+1|θj+1 )
p̂(sj+1|θj+1 )

.

Therefore, to show that V̂ ′(0) > 0, it is enough to show that

u(θj+1, h) − u(θj+1, l) − u(θj , h) + u(θj , l) ≥ (
u(θj+1, l) − u(θj , l)

)(
u(θj̃ , h) − u(θj̃ , l)

)
u(θj̃ , l)

,



822 Pereyra and Silva Theoretical Economics 18 (2023)

which is equivalent to

u(θj+1, l)
u(θj , l)

(
u(θj+1, h)
u(θj+1, l)

− u(θj̃ , h)

u(θj̃ , l)

)
≥ u(θj , h)

u(θj , l)
− u(θj′ , h)

u(θj′ , l)
,

which is true, because
u(θj+1,l)
u(θj ,l) > 1 and u(θ,h)

u(θ,l) is increasing with θ. This proves that if ε is

sufficiently small, W (x′ ) >W (x̂).

Finally, we turn to the incentive constraints. There are only three type of deviations

that have to be ruled out: deviations to reporting some type θ > θj′ , deviations to report-

ing θj+1, and deviations to reporting θj .

Let us start with the deviations to reporting types larger than θj′ . Let B(ε) ≡
U(θj+1, X ′(θj+1 )) −U(θj+1, X̂(θj+1 )) denote the payoff increase for type θj+1 as a func-

tion of ε, i.e.,

B(ε) = (
u(θj+1, h) − u(θj+1, l)

) ∫ sj+1

sj+1−δ(ε)
p(s|θj+1 )ds − u(θj+1, l)

∫ sj+1+γ(ε)

sj+1

p(s|θj+1 )ds.

It follows that B′(0) > 0, because(
u(θj+1, h) − u(θj+1, l)

)
u(θj+1, l)

p(sj+1|θj+1 )
p(sj+1|θj+1 )

>

(
u(θj̃ , h) − u(θj̃ , l)

)
u(θj̃ , l)

p(sj+1|θj̃ )

p(sj+1|θj̃ )

(which follows because u(θ,h)−u(θ,l)
u(θ,l) is weakly increasing with θ and because

p(sj+1|θ)
p(sj+1|θ) is

strictly increasing with θ). Therefore, if ε is small enough, type θj+1 gets better and,

as a result, does not want to deviate. By Lemma 1, it also follows that U(θi, X ′(θi )) >

U(θi, X̂(θi )) for all i such that j + 1 ≤ i ≤ j′ when ε is sufficiently small, so neither of

those types deviates either. Finally, notice that U(θj , X̂(θj )) >U(θj , X̂(θi )) for all i > j′

by Lemma 1 and by the induction hypothesis. As a result, type θj will not want to deviate

to any type larger than θj′ provided ε is sufficiently small.

Now we turn to deviations to reporting θj . Because there is some type θj̃ who is

indifferent to reporting θj+1, it must be that sj+1 > sj ≥ sj > sj+1. This plus Lemma 1

imply that any type θi < θj̃ is such that

U
(
θi, X̂(θi )

) ≥U
(
θi, X̂(θj+1 )

)
>U

(
θi, X̂(θj )

)
.

As a result, they will not deviate provided ε is sufficiently small. Next consider type θj̃ .

Let C(ε) represent the payoff difference when type θj̃ reports θj between allocation rules

x′ and x̂:

C(ε) ≡ u(θj̃ , l)
∫ sj

sj−β(ε)
p(s|θj̃ )ds − (

u(θj̃ , h) − u(θj̃ , l)
) ∫ sj+ε

sj

p(s|θj̃ )ds.
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It follows that C ′(0) < 0 if and only if

p(sj|θj )
p(sj|θj )

p(sj|θj̃ )

p(sj|θj̃ )

<

p̂(sj+1|θj+1 )

p̂(sj+1|θj+1 )

p(sj+1|θj̃ )

p(sj+1|θj̃ )

,

which is indeed true because

p̂(sj+1|θj+1 )

p̂(sj+1|θj+1 )

p(sj+1|θj̃ )

p(sj+1|θj̃ )

=

p̂(sj|θj+1 )

p̂(sj|θj+1 )

p(sj|θj̃ )

p(sj|θj̃ )

p̂(sj+1|θj+1 )

p̂(sj|θj+1 )
p(sj+1|θj̃ )

p(sj|θj̃ )

p̂(sj|θj+1 )

p̂(sj+1|θj+1 )

p(sj|θj̃ )

p(sj+1|θj̃ )

>

p̂(sj|θj+1 )

p̂(sj|θj+1 )

p(sj|θj̃ )

p(sj|θj̃ )

>

p(sj|θj )
p(sj|θj )

p(sj|θj̃ )

p(sj|θj̃ )

.

This means that if ε is small enough, type θj̃ does not want to deviate. Finally, Lemma 1

also implies that U(θi, X ′(θj )) <U(θi, X̂(θj )) for all i such that j̃ < i < j, so that none of
those types will want to deviate either.

Finally, we consider deviations to reporting θj+1. By construction, type θj̃ does not

want to deviate (because he is indifferent). As for any type θi such that j̃ < i < j + 1,
notice that U(θi, X̂(θi )) >U(θi, X̂(θj+1 )), which implies that none of them will deviate
provided ε is sufficiently small. Finally, notice that because C ′(0) < 0, U(θj̃ , X

′(θj+1 )) ≤
U(θj̃ , X̂(θj+1 )), which implies that U(θi, X ′(θj+1 )) <U(θi, X̂(θj+1 )) for any type θi < θj̃ ,
which means those types will not deviate either.

A.3 Proofs for Section 6

Proof of Proposition 1. As we discuss in the text, the proof builds on a character-
ization of optimal allocation rules when αh + αl ≥ 1. We refer to this problem as the
canonical problem. Let allocation rule x∗ be such that objects are assigned to agents ac-
cording exclusively to their signals. Formally, x∗ is an ordered allocation rule such that
(sθ, sθ ) = (0, s∗ ) for all θ ∈�, where s∗ ∈R is such that

∑
θ∈�

q(θ)
∫ 1

s∗
p(s|θ)ds = αh.

In the following two lemmas, we prove that allocation rule x∗ is not an optimal allocation
rule of the canonical problem whenever p(0|θ1 ) > p(0|θj ) = 0 for all j > 1 (Lemma 6)
despite being an optimal non-wasteful allocation rule (Lemma 7).

Lemma 6. If p(0|θ1 ) > p(0|θj ) = 0 for all j > 1, then allocation rule x∗ is not an optimal
allocation rule of the canonical problem.
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Proof. Consider the following ordered allocation rule x′, where s′1 = s∗ + ε, s′j = s∗ −
δ(ε) for all j > 1, and s′j = γ(ε) for all j > 1, where

q(θ1 )
∫ s∗+ε

s∗
p(s|θ1 )ds = q̂(θ2 )

∫ s∗

s∗−δ(ε)
p̂(s|θ2 )ds

and

−(
u(θ1, h) − u(θ1, l)

) ∫ s∗+ε

s∗
p(s|θ1 )ds

= (
u(θ1, h) − u(θ1, l)

)∫ s∗

s∗−δ(ε)
p(s|θ1 )ds − u(θ1, l)

∫ γ(ε)

0
p(s|θ1 )ds.

In words, we are perturbing allocation rule x∗ by shifting some of the high-quality ob-
jects from type θ1 to the higher types, while keeping constant the measure of high-
quality objects being assigned (but reducing the measure of low-quality objects as-
signed) and keeping type θ1 indifferent.

Notice that

δ′(0) = q(θ1 )
q̂(θ2 )

p
(
s∗|θ1

)
p̂

(
s∗|θ2

)
and

γ′(0) =
(
u(θ1, h) − u(θ1, l)

)
u(θ1, l)

p
(
s∗|θ1

)
p(0|θ1 )

(
q(θ1 )
q̂(θ2 )

p
(
s∗|θ1

)
p̂

(
s∗|θ2

) + 1
)

.

Once again, let V (ε) ≡W (x′(ε)) for any given ε > 0 and notice that

V (ε) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
J∑

i=2

q(θi )

(
u(θi, h)

∫ 1

s∗−δ(ε)
p(s|θi )ds + u(θi, l)

∫ s∗−δ(ε)

γ(ε)
p(s|θi )ds

)
+q(θ1 )

(
u(θ1, h)

∫ 1

s∗+ε
p(s|θ1 )ds + u(θ1, l)

∫ s∗+ε

0
p(s|θ1 )ds−

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Moreover, notice that V (ε) ≥ V̂ (ε) for all ε > 0, where

V̂ (ε) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q̂(θ2 )

(
u(θ2, h)

∫ 1

s∗−δ(ε)
p̂(s|θ2 )ds + u(θ2, l)

∫ s∗−δ(ε)

γ(ε)
p̂(s|θ2 )ds

)
+q(θ1 )

(
u(θ1, h)

∫ 1

s∗+ε
p(s|θ1 )ds + u(θ1, l)

∫ s∗+ε

0
p(s|θ1 )ds−

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Finally, notice that V̂ ′(0) > 0 if and only if

u(θ2, h) − u(θ2, l) − u(θ1, h) + u(θ1, l)

>
q̂(θ2 )
q(θ1 )

u(θ2, l)

(
u(θ1, h) − u(θ1, l)

)
u(θ1, l)

p̂(0|θ2 )
p(0|θ1 )

(
q(θ1 )
q̂(θ2 )

p
(
s∗|θ1

)
p̂

(
s∗|θ2

) + 1
)

,

which holds whenever p̂(0|θ2 )
p(0|θ1 ) = 0.
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We can then conclude that if ε > 0 is sufficiently small, allocation rule x′ will gen-
erate a larger ex ante payoff than allocation rule x∗, while being feasible and incentive
compatible (type θ1 is indifferent by construction, while higher types do not deviate by
Lemma 1).

Lemma 7. Allocation rule x∗ is an optimal non-wasteful allocation rule of the canonical
problem.

Proof. Consider the same relaxed problem as in the proof of part (A) of Theorem 1,
where the only incentive constraints considered are the upward ones, and add to it
an additional constraint that states that every agent must be assigned an object. By
Lemma 2, it follows that there is an ordered allocation rule x1 that solves the relaxed
problem with thresholds {sθ, sθ} (it is straightforward to see that a solution exists by fol-
lowing the same steps as in Lemma 3). It also directly follows that sθ = 0 (because only
non-wasteful allocation rules are considered) and that sθ is weakly increasing with θ

(for the incentive constraints that are considered to hold). The proof is completed by
showing that sθ must be constant with θ.

Suppose not, so that there is some j such that sθj < sθj+1 . Consider alternative allo-
cation rule x′ that is equal to allocation rule x1 except that

s′θj = sθj + ε and s′θj+1
= sθj − δ(ε)

for some small enough ε > 0, where δ(ε) is such that the total proportion of high-quality
objects assigned is the same as under allocation rule x1. It follows that allocation rule x′
would generate a strictly larger ex ante payoff because

u(θj+1, h) − u(θj+1, l) > u(θj , h) − u(θj , l).

Furthermore, provided ε > 0 is small enough, no type ĵ < j + 1 would like to mimic type
j + 1, because

U
(
θĵ , X

1(θj )
)
>U

(
θĵ , X

1(θj+1 )
)

for all ĵ < j + 1, which is a contradiction.

We can now use Lemmas 6 and 7 to complete the proof of Proposition 1.
Consider the problem of finding the optimal allocation rule for some (αl, αh ). In

that linear problem, in addition to the incentive constraints we have two feasibility con-
straints; the h-feasibility constraint and the l-feasibility constraint. Let us call that prob-
lem P . Consider a relaxed version of problem P (called Rh), where the h-feasibility con-
straint is not considered. The unique solution of that problem is not feasible, as it would
assign a high-quality object to every agent. Because any solution of Rh violates the h-
feasibility constraint (and because both P and Rh are linear problems), any solution of
P is such that the h-feasibility constraint holds with equality, so that there is no waste of
h-quality objects.
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Now let us do the same for the l-feasibility constraint. Consider a relaxed version of
problem P (called Rl) where the l-feasibility constraint is not considered. Let x be any
ordered allocation rule that solves Rl and let its corresponding thresholds be denoted by
{(sθ, sθ )}θ∈�. For each such x, let

ρ(x) ≡
∑
θ∈�

q(θ)
∫ sθ

sθ

p(s|θ)ds

denote the measure of l-quality objects assigned to agents. Define

αl = max
{
ρ(x) ∈ [0, 1] : x solves Rl

}
and

αl = min
{
ρ(x) ∈ [0, 1] : x solves Rl

}
.

Notice that problem Rl does not depend on αl, so any solution x of Rl must also be
the solution P whenever αl ≥ 1 − αh, which would imply that x would be wasteful (by
Lemmas 6 and 7). Hence, it follows that αl < 1 −αh. Moreover, notice that if the solution
to P when αl ≥ 1 − αh is unique, then αl = αl.

By construction, whenever αl ≥ αl, the set of solutions of P is equal to the set of
solutions x of Rl such that ρ(x) ≥ αl. As a result, if αl > αl, then all solutions of P waste
l-quality objects. By contrast, if αl < αl, none of the solutions of Rl solves P . Therefore,
because both P and Rl are linear problems, it follows that any solution of P is such that
the l-feasibility constraint holds with equality, which implies that there is no waste.

Proof of Proposition 2. Take any ordered binary mechanism. Denote as S the set of
all thresholds of the corresponding ordered binary allocation rule. That is,

S ≡ {
s ∈ [0, 1] : ∃k= 1, � � � , K, t = A, B : s = stk

}
,

and let i = 1, � � � , |S| denote the ith smallest element of S. The element that corresponds
to sB

k
is denoted by i and the element that corresponds to sBk is denoted by i < i. Let

F(i|θ) ≡
∫ i

0
p(s|θ)ds

for all i ∈ [0, 1].
Let the difference between reporting B and A as a function of θ be denoted by 
(θ).

Notice that one can write


(θ) = 
+(θ) −
−(θ)

for some 
+(θ) > 0 and 
−(θ) > 0.
It follows that


+(θ) =
|S|∑

i=i+1


i+(θ)
(
F(i|θ) − F(i− 1|θ)

)
,
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where, for all i ≥ i+ 1,


i+(θ) = (
u
(
θ, k′(i)

) − u
(
θ, k(i)

))
for some (k(i), k′(i)) such that k≤ k(i) ≤ k′(i) ≤K. Likewise, it also follows that


−(θ) =
i∑

i=1


i−(θ)
(
F(i|θ) − F(i− 1|θ)

)
,

where, for all i ≤ i,


i−(θ) = (
u
(
θ, k′(i)

) − u
(
θ, k(i)

))
for some (k(i), k′(i)) such that 1 ≤ k(i) ≤ k′(i) ≤ k.

Notice that

i+(θ)


i′−(θ)
is weakly increasing with θ whenever i ≥ i+ 1 and i′ ≤ i because

u(θ, k) − u(θ, k− 1)

u
(
θ, k′) − u

(
θ, k′ − 1

)
is weakly increasing with θ for all k ≥ k′. Notice also that

F(i|θ) − F(i− 1|θ)

F
(
i′|θ

) − F
(
i′ − 1|θ

)
is strictly increasing with θ whenever i > i′ because of the MLRP of p(s|θ) (see (3) in the
proof of Lemma 1). Therefore, it follows that

θ′ > θ ⇒ 
+
(
θ′)


−
(
θ′) >


+(θ)

−(θ)

for any θ, θ′ ∈ �. The result follows by defining θ̂ as follows: if 
+(θJ )

−(θJ ) < 1, then θ̂ = θJ ; if

not, then

θ̂ ∈ arg min
θ∈�


+(θ)

−(θ)

such that

+(θ)

−(θ)

≥ 1.

Proof of Proposition 3. Notice that, for any s′ > s,

p
(
s′|θJ

)
p(s|θJ )

>
p̂

(
s′|θ2

)
)

p̂(s|θ2 )
>

p
(
s′|θ2

)
p(s|θ2 )

>
p

(
s′|θ1

)
p(s|θ1 )

.

Let {sk}K+1
k=1 denote the allocation rule where objects are assigned according exclusively

to the agents’ signals (with sK+1 = 1) and consider the following alternative ordered
binary allocation rule {sAk , sBk }K+1

k=1 , where sA
k

= sk + ε, sB
k

= sk − δ(ε), sAk = sk − β(ε),

sBk = sk + γ(ε), and stk = sk for all other k and t ∈ {A, B}, and where ε > 0 is small and
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Figure 7. Perturbing the allocation rule.

(δ(ε), β(ε), γ(ε)) ∈ (0, 1)3 are such that

q(θ1 )
∫ sk+ε

sk

p(s|θ1 )ds = q̂(θ2 )
∫ sk

sk−δ(ε)
p̂(s|θ2 )ds, (9)

q(θ1 )
∫ s∗k

s∗k−β(ε)
p(s|θ1 )ds = q̂(θ2 )

∫ s∗k+γ(ε)

s∗k
p̂(s|θ2 )ds (10)

and

(
u(θ1, k) − u(θ1, k− 1)

)∫ s∗k+γ(ε)

s∗k−β(ε)
p(s|θ1 )ds

= (
u(θ1, k) − u(θ1, k− 1)

) ∫ sk+ε

sk−δ(ε)
p(s|θ1 )ds. (11)

In words, we are perturbing the original allocation rule slightly as indicated in Figure 7

while keeping the lowest type indifferent and the measure of assigned objects constant

for each quality; there is merely a change in the composition of the types of agents

who receive objects of levels k, k − 1, k, and k − 1. Provided ε is sufficiently small, the

new allocation rule is feasible and such that the object assigned to type θ1 depends on

thresholds {sAk }K+1
k=1 , while the objects assigned to every other type depend on thresholds

{sBk }K+1
k=1 .

Let V (ε) denote the welfare of this new allocation rule as a function of ε. We com-

plete the proof by showing that limε→0 V (ε) > 0. By combining (9), (10), and (11), we get

that

δ′(0) = q(θ1 )
q̂(θ2 )

p(sk|θ1 )

p̂(sk|θ2 )
,

γ′(0) = q(θ1 )
q̂(θ2 )

p(sk|θ1 )

p̂(sk|θ2 )

(
u(θ1, k) − u(θ1, k− 1)

)(
u(θ1, k) − u(θ1, k− 1)

) p(sk|θ1 )

p(sk|θ1 )

(
1 + q(θ1 )

q̂(θ2 )

p(sk|θ1 )

p̂(sk|θ2 )

)
(

1 + q(θ1 )
q̂(θ2 )

p(sk|θ1 )

p̂(sk|θ2 )

)
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and

β′(0) =
(
u(θ1, k) − u(θ1, k− 1)

)(
u(θ1, k) − u(θ1, k− 1)

) p(sk|θ1 )

p(sk|θ1 )

(
1 + q(θ1 )

q̂(θ2 )

p(sk|θ1 )

p̂(sk|θ2 )

)
(

1 + q(θ1 )
q̂(θ2 )

p(sk|θ1 )

p̂(sk|θ2 )

) .

We also have that

V (ε) = q(θ1 )

⎡⎢⎢⎢⎣
u(θ1, k)

∫ sk+1

sk+ε
p(s|θ1 )ds + u(θ1, k− 1)

∫ sk+ε

sk−1
p(s|θ1 )ds+

u(θ1, k)
∫ sk+1

sk−β(ε)
p(s|θ1 )ds + u(θ1, k− 1)

∫ sk−β(ε)

sk−1

p(s|θ1 )ds

⎤⎥⎥⎥⎦

+
J∑

j=2

q(θj )

⎡⎢⎢⎢⎣
u(θj , k)

∫ sk+1

sk−δ(ε)
p(s|θj )ds + u(θj , k− 1)

∫ sk−δ(ε)

sk−1
p(s|θj )ds

+ u(θj , k)
∫ sk+1

sk+γ(ε)
p(s|θj )ds + u(θj , k− 1)

∫ sk+γ(ε)

sk−1

p(s|θj )ds

⎤⎥⎥⎥⎦
+ c,

where c is some expression that does not depend on ε. Define

V̂ (ε) = q(θ1 )

⎡⎢⎢⎢⎣
u(θ1, k)

∫ sk+1

sk+ε
p(s|θ1 )ds + u(θ1, k− 1)

∫ sk+ε

sk−1
p(s|θ1 )ds

+ u(θ1, k)
∫ sk+1

sk−β(ε)
p(s|θ1 )ds + u(θ1, k− 1)

∫ sk−β(ε)

sk−1

p(s|θ1 )ds

⎤⎥⎥⎥⎦

+ q̂(θ2 )

⎡⎢⎢⎢⎣
u(θ2, k)

∫ sk+1

sk−δ(ε)
p̂(s|θ2 )ds + u(θ2, k− 1)

∫ sk−δ(ε)

sk−1
p̂(s|θ2 )ds

+ u(θ2, k)
∫ sk+1

sk+γ(ε)
p̂(s|θ2 )ds + u(θ2, k− 1)

∫ sk+γ(ε)

sk−1

p̂(s|θ2 )ds

⎤⎥⎥⎥⎦
+ c

and notice that V (ε) ≥ V̂ (ε) for all ε > 0 because u(θj , k) > u(θ2, k) for all j > 2. Notice
also that V̂ ′(0) > 0 if and only if

�2 −�1

�1
>

�2 −�1

�1

(
1 + q(θ1 )

q̂(θ2 )

p(sk|θ1 )

p̂(sk|θ2 )

)
(

1 + q(θ1 )
q̂(θ2 )

p(sk|θ1 )

p̂(sk|θ2 )

) ,

where

�j ≡ u(θj , k) − u(θj , k− 1)
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and

�j ≡ u(θj , k) − u(θj , k− 1)

for j = 1, 2, which is true because(
1 + q(θ1 )

q̂(θ2 )

p(sk|θ1 )

p̂(sk|θ2 )

)
(

1 + q(θ1 )
q̂(θ2 )

p(sk|θ1 )

p̂(sk|θ2 )

) < 1

and

�2 −�1

�1
>

�2 −�1

�1
.

This means that

lim
ε→0

V (ε) ≥ lim
ε→0

V̂ (ε) > 0.

Proof of Proposition 4. To construct allocation rule x, let us first go back to the
model with a continuum of agents and consider the optimal ordered allocation rule
when the parameters of the model are α= (αH −ε, αL−ε) for some ε ∈ (0, min{αL, αH }).
Let the thresholds of that allocation rule be denoted by {sθ(ε), sθ(ε)}θ∈� and denote the
value for the principal of implementing it by Wε. Notice that by continuity of the objec-
tive function of the principal and of all the incentive constraints considered, it follows
that limε→0 Wε = W ∗. As a result, to prove the proposition, it is enough to construct an
allocation rule x such that limN→∞ W (x) = Wε and then, for each δ > 0, select a small
enough ε.

To construct said allocation rule, let us start by defining

zhi =
{

1 if si ∈
[
sθi(ε), 1

]
,

0 if si /∈
[
sθi(ε), 1

]
,

and

zli =
{

1 if si ∈
(
sθi(ε), sθi(ε)

)
,

0 if si /∈
(
sθ(ε), sθ(ε)

)
for all i = 1, � � � , N .

Construct each xi : �N × [0, 1]N → [0, 1]× [0, 1] of allocation rule x= (x1, � � � , xN ) as
follows: (i) for all θ ∈ �N and s ∈ [0, 1]N such that either∑

j �=i

zhj ≥ 
NαH�
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or ∑
j �=i

zlj ≥ 
NαL�,

then xih(θ, s) = xil(θ, s) = 0; (ii) if not, then xih(θ, s) = zhi and xil(θ, s) = zli .
The logic of the mechanism is to assign the objects as they would have been assigned

if there was a continuum of agents (part (ii)) of the definition of x) unless not enough
objects are available. In that case (part (i) of the definition of x), which is increasingly
rare as the number of agents grows as we show below, one has to select an assignment
that is both feasible and does not alter the agents’ incentives. The simplest way to do this
(but not the only one) is by not assigning any object to any agent; basically, it is as if the
system breaks down in those circumstances. Alternatively, when possible, the principal
might simply break the feasibility constraint and simply provide those extra objects even
if that requires a larger financial effort (something that is routinely done in the college
assignment problem for example and is known as over-enrollment; see Avery, Fairbanks,
and Zeckhauser (2009)).

To complete the proof, we note that, by construction, allocation rule x is feasible and
incentive compatible for any N ≥ 1, and that the probability that condition (i) is realized
converges to 0 as N → ∞. To see why that is, notice that condition (i) can be written
as ∑

j �=i

zhj

N
≥ 
NαH�

N

and ∑
j �=i

zlj

N
≥ 
NαL�

N
.

Notice that both zhj and zlj are independent across j = 1, � � � , N , so, by the weak law of
large numbers, we have that

∑
j �=i

zhj

N
≤

N∑
j=1

zhj

N
→p

∑
θ∈�

q(θ)
∫ 1

sθ(ε)
p(s|θ)ds ≤ αH − ε <


NαH�
N

,

and

∑
j �=i

zlj

N
≤

N∑
j=1

zlj

N
→p

∑
θ∈�

q(θ)
∫ sθ(ε)

sθ(ε)
p(s|θ)ds ≤ αL − ε <


NαL�
N

,

where both final inequalities hold if N is sufficiently large.
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This means that each agent is assigned the same lottery of rewards as in the case
of the ordered allocation rule {sθ(ε), sθ(ε)}θ∈� of the model with a continuum of agents
with probability 1, which implies that limN→∞W (x) =Wε.
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