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All sequential allotment rules are obviously strategy-proof

R. Pablo Arribillaga
Instituto de Matemática Aplicada San Luis, Universidad Nacional de San Luis, and CONICET

Jordi Massó
Departament d’Economia i d’Història Econòmica, Universitat Autònoma de Barcelona, and Barcelona

School of Economics

Alejandro Neme
Instituto de Matemática Aplicada San Luis, Universidad Nacional de San Luis, and CONICET

For division problems with single-peaked preferences, we show that all sequential
allotment rules, a large subfamily of strategy-proof and efficient rules, are also
obviously strategy-proof. Although obvious strategy-proofness is, in general, more
restrictive than strategy-proofness, this is not the case in this setting.
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1. Introduction

We consider the class of division problems where k indivisible units of a good have to be
allotted among a set of agents. Each agent has single-peaked preferences over the set of
its possible assignments {0, � � � , k}: There is a preferred or top assignment: up the top,
more is preferred to less; beyond the top, the opposite holds. Monetary transfers are not
possible.

Different real-world problems can be framed within this model. These include situa-
tions where a set of agents must share a good, or a task like the surplus of a joint venture,
the cost of a public good, the division of a job, or a rationed good traded at a fixed price.
For example, agents could be investors with different risk preferences and wealth, and
the units of the good could be shares in a risky project. Agents’ risk attitudes and wealth
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induce single-peaked preferences over their assigned shares. Agents could also be work-
ers who have collectively agreed to complete a project requiring a given number of hours
paid at a fixed wage. Agents’ quasi-concave preferences over money and hours of leisure
induce single-peaked preferences over their assigned number of working hours. Finally,
the good might be a plot of land that needs to be fully divided among hobby gardeners,
each of whom wishes to cultivate some land, but not necessarily all of it.1

A solution to division problems is a rule that, for a fixed positive integerk, chooses an
allotment for each profile of single-peaked preferences over {0, � � � , k}. But preferences
are agents’ private information and they have to be elicited. A rule is strategy-proof if,
for each agent, truth-telling is always optimal, regardless of the preferences declared by
the other agents. A rule is efficient if the chosen allotment is Pareto optimal at each
profile of single-peaked preferences. A rule is replacement monotonic if it satisfies a
weak solidarity principle requiring that if an agent obtains a different assignment by
changing the reported preference, then all other agents’ assignments should change in
the opposite direction.

Barberà, Jackson, and Neme (1997) consider the class of continuous division prob-
lems where agents might begin with natural claims to minimal or maximal assignments,
or might be treated with different priorities, due, for example, to their seniorities, and
these initial entitlements should be attended as far as possible. They characterize the
class of strategy-proof, efficient and replacement monotonic rules on the domain of
single-peaked preferences as the family of sequential allotment rules.

Sequential allotment rules are complex and agents may have difficulties identifying
that a strategy is dominant, particularly if they have limited contingent reasoning capa-
bilities. In this paper we ask, “How might efficient allotments be implemented and, at
the same time, promote solidarity among agents who may have problems with contin-
gent reasoning?” Li (2017) proposes the stronger incentive notion of obvious strategy-
proofness for general settings where agents’ types (that coincide with single-peaked
preferences in the division problem) are private information. Given a rule, this notion
requires that there exist an extensive game form and a type-strategy profile (a behavioral
strategy for each agent and for each of its types) that induce the rule. Namely, for every
profile of types, when each agent plays the strategy that corresponds to its type, the out-
come of the game is the outcome the rule would have chosen at this profile. Moreover,
for each agent and for each of its types, the strategy that corresponds to its type is ob-
viously dominant. This means that whenever the agent has to take a decision in the
game in extensive form, it evaluates the consequence of the strategy that corresponds
to its type in a pessimistic way (thinking that the worst possible outcome will follow)
and the consequence of deviating in an optimistic way (thinking that the best possible
outcome will follow); moreover, the pessimistic outcome associated with the strategy
that corresponds to its type is at least as good as the optimistic outcome associated with
deviating. Hence, whenever an agent plays, the decision prescribed by the strategy that
corresponds to its type appears as unmistakably optimal, i.e., obviously dominant. The

1The continuous version of this model, when the good is perfectly divisible and k is a strictly positive
real number, was first studied by Sprumont (1991).
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difficulty of establishing whether a rule is obviously strategy-proof lies in the fact that its
implementation in obviously dominant strategies must be through an extensive game
form. But now the extensive game form is not given by a general revelation principle as
it is for strategy-proofness in the form of the direct revelation mechanism. The main dif-
ficulty lies then in identifying, for each rule, the extensive game form that implements
the rule in obviously dominant strategies.

The result of this paper is the following: Any efficient and replacement monotonic
rule that can be implemented in dominant strategies can, moreover, be done so in obvi-
ously dominant strategies. That is, in the implementation, we can accommodate agents
who have troubles with contingent reasoning because obvious strategy-proofness is no
more restrictive than strategy-proofness. Namely, we show that all sequential allotment
rules (a quite large class of rules) are obviously strategy-proof. Moreover, our proof is
constructive: For each sequential allotment rule, we explicitly show how to construct, by
means of the monotonous and individualized algorithm (MIA), the extensive game form
that implements the rule in obviously dominant strategies. In addition, our extensive
game forms provide full implementation of all sequential allotment rules in obviously
dominant strategies (the games in extensive form have the property that all equilibria in
obviously dominant strategies induce the same allotment).

In light of the extreme behavioral criterion on which the notion of obviously domi-
nance is founded, it is not surprising that the literature has already identified settings
for which just a few, if any, and very special strategy-proof rules satisfy the stronger
requirement. Li (2017) already shows that the rule associated to the top-trading cy-
cles algorithm in the house allocation problem of Shapley and Scarf (1974) is not ob-
viously strategy-proof, and Troyan (2019) identifies a domain of acyclic preferences that
is necessary and sufficient for that rule to be obviously strategy-proof. Ashlagi and
Gonczarowski (2018) show that the rule associated to the deferred acceptance algorithm
is not obviously strategy-proof for the agents belonging to the offering side, but it is on
the domain of acyclic preferences defined by Ergin (2002). Li (2017) also contains a pos-
itive result in which monotone price mechanisms (generalizations of ascending auc-
tions) are characterized as those implementing all obviously strategy-proof rules on the
domain of quasi-linear preferences for a general binary allocation problem that encom-
passes, for example, private-valued auctions with unit demand or binary public goods.
Specifically, he shows that the rule induced by the mechanism that selects the efficient
allocation and the Vickrey–Clarke–Groves payment is obviously strategy-proof.

Our paper contributes to the possibility strand of this literature by showing that, de-
spite the fact that in many settings, obvious strategy-proofness becomes significantly
more restrictive than just strategy-proofness, for division problems with single-peaked
preferences, each sequential allotment rule (i.e., each strategy-proof, efficient, and re-
placement monotonic rule) is indeed obviously strategy-proof, and, as we have already
said, we show it by exhibiting an extensive game form that implements each sequential
allotment rule in obviously dominant strategies.

The paper is organized as follows. Section 2 contains the preliminaries. Section 3
presents the notion of obvious strategy-proofness adapted to our setting. Section 4 con-
tains Theorem 1, stating that all sequential allotment rules are obviously strategy-proof,
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and the description of the algorithm that, for each sequential allotment rule, defines an
extensive game form that implements the rule in obviously dominant strategies. Sec-
tion 5 contains the proof of Theorem 1. Section 6 contains four final remarks. The Ap-
pendix collects omitted proofs.

2. Preliminaries

Agents are the elements of a finite set N = {1, � � � , n}, where n ≥ 2. They have to share
k indivisible units of a good, where k≥ 1 is a positive integer.2 An allotment is a vector
x = (x1, � � � , xn ) ∈ {0, � � � , k}N such that

∑n
i=1 xi = k. We refer to xi ∈ {0, � � � , k} as agent

i’s assignment. Let X be the set of allotments. Each agent i ∈N has a (weak) preference
Ri over {0, � � � , k}, the set of i’s possible assignments. Let Pi be the strict preference as-
sociated with Ri. The preference Ri is single-peaked if (i) it has a unique most preferred
assignment τ(Ri ), the top of Ri, such that for all xi ∈ {0, � � � , k} \ {τ(Ri )}, τ(Ri ) Pi xi, and
(ii) for any pair xi, yi ∈ {0, � � � , k}, yi < xi < τ(Ri ) or τ(Ri ) < xi < yi implies xi Ri yi. We
assume that agents have single-peaked preferences. Often, only τ(Ri ) about Ri will be
relevant and if Ri is understood, we will refer to its top as τi. We denote by 0, 1, and k
the vectors (0, � � � , 0), (1, � � � , 1), (k, � � � , k) ∈ {0, � � � , k}N and, given S ⊂N , denote by 0S ,
1S , and kS the corresponding subprofiles of assignments where all agents in S receive 0,
1, or k, respectively. Given x= (x1, � � � , xn ), we denote (xi )i∈S and (xi − 1)i∈S by xS and
(x− 1)S , respectively.

Let R be the set of all single-peaked preferences. Profiles, denoted by R =
(R1, � � � , Rn ) ∈ RN , are n-tuples of single-peaked preferences. To stress the role of agent
i or agents in S, we will represent a profile R by (Ri, R−i ) or by (RS , R−S ), respectively.

A (discrete) division problem is a pair (k,N ), where k is the number of units of the
good that have to be allotted among the agents inN with single-peaked preferences over
{0, � � � , k}.3

A solution of the division problem (k,N ) is a rule � : RN →X that selects, for each
profile R ∈ RN , an allotment �(R) ∈X . We now present several desirable properties of
rules.

A rule � : RN →X is efficient if, for each R ∈ RN , there is no y ∈X such that yi Ri
�i(R) for all i ∈N and yj Pj �j(R) for at least one j ∈N .

A rule � : RN →X satisfies same-sidedness if, for all R ∈ RN ,∑
j∈N

τ(Rj ) ≥ k implies �i(R) ≤ τ(Ri ) for all i ∈N (1)

∑
j∈N

τ(Rj ) ≤ k implies �i(R) ≥ τ(Ri ) for all i ∈N . (2)

2For simplicity, and to circumvent the technical difficulties that arise in games in extensive form where
agents play in a continuous way (see, for instance, Alós-Ferrer and Ritzberger (2013)), we consider the dis-
crete division problem, first studied by Herrero and Martínez (2011).

3Division problems have been studied intensively; see, for instance, Thomson (1994a, 1994b, 1997), Bar-
berà’s (2011) survey on strategy-proofness, and, more recently, Moulin (2017), Wakayama (2017), Juarez
and You (2019), Bochet and Tumennassan (2020), Bochet, Sakai, and Thomson (2021), or Thomson’s (2021)
survey.
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Namely, all agents are rationed in the same side of the top, i.e., below the tops when
there is scarcity and above the tops when there is excess. It is easy to check that under
single-peakedness, efficiency is equivalent to same-sidedness.

A rule � : RN →X is strategy-proof if for all R ∈ RN , i ∈N , and R′
i ∈ R,

�i(Ri, R−i )Ri �i
(
R′
i, R−i

)
.

Rules require agents to report single-peaked preferences. A rule is strategy-proof if it
is always in the best interest of agents to truthfully report their preferences (i.e., truth-
telling is a weakly dominant strategy in the game in normal form obtained from the rule
at each profile). If �i(R′

i, R−i ) Pi �i(Ri, R−i ), we say that i manipulates � : RN →X at
R ∈ RN via R′

i ∈ R. Clearly,� : RN →X is strategy-proof if no agent can manipulate it.
A rule � : RN →X is replacement monotonic if for all R ∈ RN , i ∈N , and R′

i ∈ R,

�i(Ri, R−i ) ≤�i
(
R′
i, R−i

)
implies �j(Ri, R−i ) ≥�j

(
R′
i, R−i

)
for all j �= i.

Replacement monotonicity is a weak solidarity property (see Thomson (1997)). It re-
quires that if an agent obtains a different assignment by changing the reported prefer-
ence, then all other agents’ assignments should change in the opposite direction.4

A rule � : RN →X is individually rational with respect to an allotment q ∈X if for
all R ∈ RN and i ∈N ,

�i(R)Ri qi.

Individual rationality with respect to an allotment q ∈ X guarantees that each agent i
receives an assignment that is weakly preferred to qi.

A rule � : RN → X is tops-only if for all R, R′ ∈ RN such that τ(Ri ) = τ(R′
i ) for all

i ∈N ,

�(R) =�(
R′).

Tops-onlyness is a basic requirement of simplicity. In the division problem, it follows
from efficiency and strategy-proofness. Abusing notation, a tops-only rule � : RN →X

can be written as� : {0, � � � , k}N →X , and so we will often interchange�(τ1, � � � , τn ) and
�(R1, � � � , Rn ).

Barberà, Jackson, and Neme (1997) consider the class of continuous division prob-
lems where agents might begin with natural claims to minimal or maximal assignments,
or might be treated with different priorities, due, for example, to their seniorities, and
these initial entitlements should be attended as far as possible. They characterize the
class of strategy-proof, efficient, and replacement monotonic rules on the domain of
single-peaked preferences as the family of sequential allotment rules.

4As Barberà, Jackson, and Neme (1997) argue, the normative justification for this property relies on ef-
ficiency and single-peakedness. The condition has a clear solidarity-based normative content and it is
equivalent to a weakening of the welfare version called one-sided welfare domination under preference
replacement Thomson (1997). It is a form of non-bossiness: An agent, without affecting its assignment,
cannot transfer units among the other agents. A rule � : RN → X is non-bossy if for all R ∈ RN , i ∈ N ,
andR′

i ∈ R,�i(Ri, R−i ) =�i(R′
i, R−i ) implies�(Ri, R−i ) =�(R′

i, R−i ). Replacement monotonicity implies
non-bossiness.
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A sequential allotment rule may be understood as a process (or calculation proce-
dure) that starts from two reference allotments: The scarcity-guaranteed allotment q, to
be used whenever the sum of agents’ tops is larger than k, and the excess-guaranteed
allotment q, to be used whenever the sum of agents’ tops is smaller than k. Fix a prefer-
ence profile. If the corresponding guaranteed allotment is not efficient, the rule corrects
it to select an efficient one. An important feature of any of these rules is that if an agent’s
declared top is at the same time larger than its assignment at the excess-guaranteed al-
lotment and smaller than its assignment at the scarcity-guaranteed allotment, then the
agent receives its top; we refer to such agent as an agent with inordinate power. Rules
within this class differ on the two guaranteed allotments and on how the efficient correc-
tion takes place (the correction has to be monotonic for the rule to satisfy replacement
monotonicity). Barberà, Jackson, and Neme (1997) also show that an individually ra-
tional sequential allotment rule with respect to an allotment has the property that the
two guaranteed allotments are equal to this allotment and, hence, agents whose top
coincides with their assignments at this allotment receive their top.

Sequential allotment rules allot the k units sequentially, using temporarily guaran-
teed assignments for the agents that evolve throughout the process and that are com-
pared to agents’ tops. To start with the definition of a sequential allotment rule �, let q
and q, respectively, be its initial excess- and scarcity-guaranteed allotments.5 Namely,
select q, q ∈X , and define �(0) = q and �(k) = q. Let τ = (τ1, � � � , τn ) ∈ {0, � � � , k}N be
an arbitrary vector of tops and define �(τ) as follows.

Suppose
∑n
i=1 τi = k. Then, since τ is the unique efficient allotment at τ,�(τ) = τ.

Suppose
∑n
i=1 τi > k (the case

∑n
i=1 τi < k is symmetric, using q instead of q). If

τj ≥ qj for all j, then �(τ) = q. Otherwise, each j with τj ≤ qj receives τj and leaves the
process with τj units (and so τj becomes the definite assignment of j), while the other
agents remain. The temporarily guaranteed assignments of the remaining agents are
weakly increased by distributing among them the remaining units, those that have not
become definite yet.6 Agents with a top smaller than or equal to the new temporarily
guaranteed assignment receive the top and leave the process, while the others remain.
The process proceeds this way until all units have been already allotted, with the re-
maining agents receiving their last temporarily guaranteed assignments.

At the end of the process, each agent j receives either τj or j’s final temporarily guar-
anteed assignment, which has been moving toward τj throughout the process. Hence,
by single-peakedness, at all profiles with scarcity, each agent is at least as well off as at
the scarcity-guaranteed assignment, and the analogous statement holds for the excess-
guaranteed assignment. Note that by definition, �(0) = q and �(k) = q. Moreover,

if q
j
≤ τj ≤ qj then�j(τj , τ−j ) = τj for all τ−j ; (3)

this means that if q
j

≤ qj , agent j can guarantee the assignment xj ∈ {q
j
, � � � , qj } by

declaring it as its top, and this property will play an important role in the sequel. If

5For a formal definition of a sequential allotment rule, see Barberà, Jackson, and Neme (1997). Our
results will be based on the properties characterizing the class, without explicitly using this definition.

6The unique condition imposed on how temporarily guaranteed assignments evolve is that they have to
be weakly increasing; otherwise, the rule would not satisfy replacement monotonicity.
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q := q= q, then for every τ and j,�j(τ) lies between τj and qj , and by single-peakedness,
� is individually rational with respect to q. The process ends with an efficient allotment
because, under scarcity, all agents receive less than their tops and, under excess, all re-
ceive more. Replacement monotonicity requires that the temporarily guaranteed as-
signments evolve monotonically. Since the sequential procedure depends on the profile
of tops, strategy-proofness imposes some restrictions on the process; for instance, if the
temporarily guaranteed assignment of an agent is smaller than its top, then it should re-
main the same with an even larger announced top. The differences in temporarily guar-
anteed assignments allow the rule to treat agents differently according to asymmetries
that one wishes to respect.

For further reference, we state Barberà, Jackson, and Neme’s (1997) characterization
for the continuous division problems where k ∈R++.

Proposition 1 (Barberà, Jackson, and Neme (1997)). Let (k,N ) be a division problem.
A rule � : RN →X is strategy-proof, efficient, and replacement monotonic if and only if
� is a sequential allotment rule. Moreover, a rule � : RN →X is strategy-proof, efficient,
replacement monotonic, and individually rational with respect to q if and only if � is a
sequential allotment rule such that�(0) =�(k) = q.

The proof of their characterization can be adapted to discrete division problems. In
discrete division problems, it also holds that if � is strategy-proof and efficient, then no
agent can affect its own assignment by changing to a new preference with the same top.
If, in addition, � is replacement monotonic, then none of the assignments is affected.
Hence, � is tops-only and then the proof of the characterization for discrete division
problems proceeds as in the continuous case.

3. Obviously strategy-proof implementation

We briefly describe the notion of obvious strategy-proofness adapted to our setting.
Li (2017) proposes this notion with the aim of reducing the contingent reasoning that
agents have to carry out to identify that, given a rule, a strategy is weakly dominant.
A rule � is obviously strategy-proof if there exists an extensive game form � and a type-
strategy profile (sRii )Ri∈R,i∈N for � with the following two properties.7 First, for every
preference profile R= (R1, � � � , Rn ) ∈ RN , if each agent i plays � according to the corre-
sponding strategy sRii , the outcome of the game is �(R), the allotment selected by the

rule � at R; that is, the pair (�, (sRii )Ri∈R,i∈N ) induces�. Second, whenever agent i with
preference Ri has to play in �, i evaluates the consequence of choosing the action pre-
scribed by i’s strategy sRii according to the worst possible outcome among all outcomes
that may occur as an effect of later actions made by agents throughout the rest of the
game. In contrast, i evaluates the consequence of choosing an action different from
that prescribed by i’s strategy sRii according to the best possible outcome among all out-
comes that may occur again as an effect of later actions throughout the rest of the game.

7The behavioral strategy sRii selects at each node where i has to play one of i’s available actions at that
node.
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Then sRii is obviously dominant in the game in extensive form (�, R) if, whenever i has to
play, its pessimistic outcome is at least as good as the optimistic outcome associated to
any deviation. If the pair (�, (sRii )Ri∈R,i∈N ) induces � and, for each profile R ∈ RN and

each agent i ∈ N , the strategy sRii is obviously dominant in (�, R), then � is obviously
strategy-proof.

For our context, two important simplifications related to obvious strategy-proofness
have been identified in the literature that follows Li (2017). First, without loss of gen-
erality, we can assume that the extensive game form that induces the rule has perfect
information.8 Second, the new notion of obvious strategy-proofness can be fully cap-
tured by the classical notion of strategy-proofness applied to games in extensive form
with perfect information. This last observation follows from the fact that the worst pos-
sible outcome obtained when agent i chooses the action prescribed by i’s type-strategy
and the best possible outcome obtained when agent i chooses an action different from
that prescribed by i’s type-strategy are both obtained with only one behavioral strategy
profile of the other agents, because the perfect information implies that all informa-
tion sets are singleton sets (and each one belongs either to the subgame that follows the
type-strategy choice or else to the subgame that follows the alternative choice).9 Then,
for easy presentation and following this literature, we will say that a rule is obviously
strategy-proof if it is implemented by an extensive game form with perfect information
for which each corresponding type-strategy is a weakly dominant strategy (even when
the opponent strategy profiles considered include those that are not consistent with any
type-strategy profile).

Our approach is based on the MIA that defines an extensive game form for each
sequential allotment rule. Namely, given a sequential allotment rule, the MIA gives pre-
cise instructions on how to identify at each step (associated to a nonterminal node of
the tree) the agent who plays and the set of its available actions, and when to stop (asso-
ciated to terminal nodes of the tree). We omit here the formal and well known definition
of an extensive game form with perfect information.

Fix a division problem given by the integer k and the set of agents N . Let G be the
class of all (finite) extensive game forms with perfect information, whose set of players
is N and the results attached to its terminal nodes are allotments in X . Fix an extensive
game form � ∈ G and an agent i ∈ N . A (behavioral and pure) strategy of i in � is a
function σi that selects at each node where i has to play one of i’s available actions at
that node. Let �i be the set of i’s strategies in �. A strategy profile σ = (σ1, � � � , σn ) ∈

8Ashlagi and Gonczarowski (2018), Bade and Gonczarowski (2017), Mackenzie (2020), and Pycia and
Troyan (2022) contain results identifying general features of extensive game forms that could be used to
implement rules in obviously dominant strategies in different environments. We will follow Ashlagi and
Gonczarowski (2018) and Mackenzie (2020) to restrict ourselves to extensive game forms with perfect infor-
mation. See Mackenzie (2020) for a detailed description and discussion of the differences, similarities, and
nuances between the proposals of those four papers. For other partially positive or revelation-principle-
like results, see also Arribillaga, Massó, and Neme (2020), Bade and Gonczarowski (2017), Pycia and Troyan
(2022), and Troyan (2019); note that although the first two papers also consider single-peaked preferences,
they do so in the context of a public good (i.e., voting), while here the context is of private goods.

9Mackenzie (2020) proves this for a class of extensive game forms with perfect information, called round
table mechanisms, but the proof can be adapted to any extensive game form with perfect information.
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�1 × · · · × �n = � is an ordered list of strategies, one for each agent. Given i ∈N , σ ∈ �
and σ ′

i ∈ �i we often write (σ ′
i , σ−i ) to denote the strategy profile where σi is replaced

in σ by σ ′
i . Let g : �→ X be the outcome function of �. Hence, g(σ ) is the allotment

attached to the terminal node that results when agents play � according to σ ∈ �; in
particular,

∑n
i=1 gi(σ ) = k for all σ ∈ �.

Fix an extensive game form � ∈ G and a preference profile R ∈RN . Let (�, R) denote
the game in extensive form where each agent i ∈ N compares pairs of strategy profiles
in � by comparing their outcomes according to Ri. A strategy σi is weakly dominant in
(�, R) if, for all σ−i and all σ ′

i ,

gi(σi, σ−i )Ri gi
(
σ ′
i , σ−i

)
.

A type-strategy for agent i in �, (sRii )Ri∈R, specifies for every preference (or type)Ri of

agent i a strategy sRii ∈ �i of i in �. We refer to sRii as the strategy associated to Ri. A type-

strategy profile (sRii )Ri∈R,i∈N for � is a type-strategy for every agent i ∈ N in �. Given a

type-strategy profile (sRii )Ri∈R,i∈N for � and a profile R ∈ RN , we denote by sR ∈ � the

strategy profile (sRii )i∈N specified by the type-strategy profile at R. We are now ready to
define obvious strategy-proofness in the context of division problems.

Definition 1. Let (k,N ) be given. A rule� : RN →X is obviously strategy-proof (OSP)
if there are an extensive game form � ∈ G and a type-strategy profile (sRii )Ri∈R,i∈N for �
such that, for all R ∈ RN ,

(i) g(sR ) =�(R),

(ii) for all i ∈N , sRii is weakly dominant in (�, R).10

When (i) holds, we say that (�, (sRii )Ri∈R,i∈N ) induces �. When (i) and (ii) hold, we
say that � OSP-implements �.

4. The result and the algorithm

4.1 The result

The main result of this paper states that all sequential allotment rules are obviously
strategy-proof. Namely, in the implementation of any sequential allotment rule, we can
accommodate agents who may have troubles with contingent reasoning because we can
find an extensive game form and a type-strategy profile that induce the rule and agents’
type-strategies to appear as being undoubtedly optimal.

Theorem 1. All sequential allotment rules are obviously strategy-proof.11

10Recall that, by Mackenzie (2020), requiring weak dominance is equivalent to requiring obvious domi-
nance.

11Namely, all sequential allotment rules are OSP-implementable. In a remark at the end of the paper, we
comment that this OSP implementation is full.
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4.2 The MIA: A general description

The proof of our result is constructive. For each sequential allotment rule �, we con-
struct the extensive game form �� ∈ G that OSP-implements �. This construction is
done by means of the monotonous and individualized algorithm (MIA) that depends on
�. Each step of the MIA corresponds to a node of ��; its first step corresponds to the
initial node of �� and the MIA generates all possible plays, that is, the entire extensive
game form ��.

At each step of the MIA, an agent i and an interval of integer assignments Ii =
{αi, � � � , βi} are selected, where 0 ≤ αi ≤ βi ≤ k. These selections depend on �. The in-
terval {αi, � � � , βi} will often be denoted by [[αi, βi]] and it may be a singleton set because
αi could be equal to βi. To deal with the possibility that αi or βi are, respectively, equal
to 0 or to k, or both, we define β+

i = min{βi + 1, k} and α−
i = max{ai − 1, 0}. Namely,

β+
i = k if βi = k and β+

i = βi + 1 if βi < k; α−
i = 0 if αi = 0 and α−

i = αi − 1 if αi > 0.
We will consider three (expanded) intervals of Ii = [[αi, βi]], denoted by I+i = [[αi, β

+
i ]],

I−i = [[α−
i , βi]], and I±i = [[α−

i , β+
i ]]. Each assignment in [[αi, βi]] is offered to i as a guar-

anteed assignment, together with the possibility of asking for more (identified with β+
i )

or asking for less (identified with α−
i ), or both. Depending on i’s choice, which becomes

i’s tentative assignment, i will be classified according to i’s wish. If i chooses one of the
guaranteed assignments in Ii, then i enters into the set of agents who are satisfied and
want to “stop,” denoted by Ns , i will not play any more, and this chosen guaranteed as-
signment will become i’s definitive assignment. If i choosesβ+

i (i.e., i asks (and waits) for
more), then i enters into—or remains in—the set of agents who want to go “up,” denoted
byNu, i’s tentative assignment isβi (the largest guaranteed assignment that i could have
chosen), and imay have the opportunity to play again but without the possibility of ask-
ing for less. If i chooses α−

i (i.e., i asks (and waits) for less), then i enters into—or remains
in—the set of agents who want to go “down,” denoted by Nd , i’s tentative assignment is
αi (the smallest guaranteed assignment that i could have chosen), and i may have the
opportunity to play again but without the possibility of asking for more.12 We will de-
note by Np = Ns ∪ Nu ∪ Nd the set of agents who have already played and denote by
Nw =N \Np the set of agents who have not played yet (and they are waiting to do it for
the first time).

The MIA has three stages. It starts at Stage A by eliciting information from agents
who have inordinate power to eventually identify an allotment q of tentative assign-
ments. Stage B completes this classification by asking for information from agents who
did not play at Stage A. At the end of Stage B, if one of the two sets of unsatisfied agents
is empty, the MIA stops and the vector of tentative assignments becomes the final allot-
ment. Otherwise, the MIA moves to Stage C where Pareto improvements are carried out
by transferring one unit from one of the agents who asks for less to one of the agents who
asks for more. The MIA ends when no such Pareto improvement is available and then
the tentative allotment becomes definitive. Since each step in the MIA can be identi-

12We will show in Lemma 1 that the intervals of guaranteed assignments evolve monotonically through-
out the MIA (increasing for agents who ask for more and decreasing for agents who ask for less) in a manner
that ensures that all tentative assignments are feasible.
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fied with a nonterminal node in the tree, the MIA defines an extensive game form whose
players are the set of agents and the results attached to terminal nodes are allotments.
We shall show that such an extensive game form together with an obviously dominant
type-strategy profile induces the rule.

Before formally defining the MIA, two comments are in order. First, at some steps,
there may be more than one agent who can be selected to play; our results are invari-
ant with respect to the agent who is eventually selected. Second, our results will show
(particularly, Lemma 1) that all features of the MIA are indeed well defined.

4.3 The MIA: A formal definition

Let � be a sequential allotment rule.

Begin: Set t = 1 and go to Stage A.
Stage A. [Call agents with multiple guarantees]

Step A.t (t ≥ 1). Input : Ns =Nu =Nd = ∅ if t = 1 or Ns, Nu, Nd , and q = (qi )i∈Ns∪Nu∪Nd
output of Step A.(t − 1), if t > 1.

SetNp =Ns ∪Nu ∪Nd ,Nw =N\Np, and define

q :=�(0Nw∪Nd , qNs∪Nu ), q :=�(kNw∪Nu , qNs∪Nd ) and S := {i ∈N | q
i
< qi}.

(i) If S = ∅, let Ns, Nu, Nd , and q := (qNp , q
Nw

) be the output of Stage A and go to
Stage B.

(ii) If S �= ∅, choose any j ∈ S:

(ii.1) If j ∈Nw, define Ij = [[q
j
, qj ]]. Agent j has to choose an action aj from the set

Aj = I±j .

(ii.2) If j ∈Nu, define Ij = [[q
j
+ 1, qj ]]. Agent j has to choose an action aj from the

set

Aj = I+j .

(ii.3) If j ∈Nd , define Ij = [[q
j
, qj − 1]]. Agent j has to choose an action aj from the

set

Aj = I−j .

Set

Nu :=
{
Nu ∪ {j} if aj = q+

j �= qj
Nu \ {j} if aj ∈ Ij ,

Nd :=
⎧⎨⎩Nd ∪ {j} if aj = q−

j
�= q

j

Nd \ {j} if aj ∈ Ij ,

Ns :=
{
Ns ∪ {j} if aj ∈ Ij
Ns otherwise,

qj :=

⎧⎪⎪⎨⎪⎪⎩
aj if aj ∈ Ij
q
j

if aj = q−
j

qj if aj = q+
j .
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LetNs,Nu,Nd , and q= (qi )i∈Np be the output of Step A.t and go to Step A.(t + 1).

Stage B. [Ask agents who have not yet played to commit to stop, up, or down]

Step B.t (t ≥ 1). Input : Ns, Nu, Nd , and q = (qi )i∈N , output of Stage A if t = 1 or Step
B.(t − 1) if t > 1.

(i) IfNw = ∅,

(i.1) and if Nu �= ∅ and Nd �= ∅, let Ns, Nu, Nd , and q = (qi )i∈N be the output of
Stage B and go to Stage C;

(i.2) and ifNu = ∅ orNd = ∅, stop, and the outcome of the MIA is the allotment q.

(ii) IfNw �= ∅, choose j ∈Nw. Define Ij = {qj }. Agent j has to choose an action aj from
the set

Aj = I±j .

Set

Nu :=
{
Nu ∪ {j} if aj = q+

j �= qj
Nu otherwise,

Nd :=
{
Nd ∪ {j} if aj = q−

j �= qj
Nd otherwise,

Ns :=
{
Ns ∪ {j} if aj = qj
Ns otherwise.

LetNs,Nu,Nd , and q := (qi )i∈N be the output of Step B.t, and go to Step B.(t + 1).

Stage C. [Identify Pareto improvements after gathering commitments]

Step C.t (t ≥ 1). Input : Ns , Nu, Nd , and q, output of Stage B if t = 1 or Stage C.(t − 1) if
t > 1.

Choose agents j ∈Nu and r ∈Nd among those for whom

�j
(
kNu , (q− 1)Nd , qNs

) ≥ qj + 1 and �r(qj + 1, 0Nd , qNs∪(Nu\{j}) ) ≤ qr − 1.

Step C.t.a. Define Ij = {qj + 1}. Agent j has to choose an action aj from the set

Aj = I+j .

Step C.t.b. Define Ir = {qr − 1}. Agent r has to choose an action ar from the set

Ar = I−r .

Set

Nu :=
{
Nu \ {j} if aj = qj + 1

Nu if aj �= qj + 1,
Nd :=

{
Nd \ {r} if ar = qr − 1

Nd if ar �= qr − 1,
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Ns :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ns ∪ {j} if aj = qj + 1 and ar �= qr − 1

Ns ∪ {r} if aj �= qj + 1 and ar = qr − 1

Ns ∪ {j, r} if aj = qj + 1 and ar = qr − 1

Ns if aj �= qj + 1 and ar �= qr − 1,

qj := qj + 1 and qr := qr − 1.

LetNs ,Nu,Nd , and q= (qi )i∈N be the output of Step C.t.

(i) IfNu �= ∅ andNd �= ∅, go to Step C.(t + 1).

(ii) If Nu = ∅ or Nd = ∅, stop, and let Ns, Nu, Nd and q = (qi )i∈N be the output of
Stage C. The outcome of the MIA is the allotment q.

End.

Denote by �� the extensive game form defined by the MIA, where each of its steps
corresponds to a nonterminal node of �� and every terminal node of �� has an as-
sociated allotment q, the outcome of the MIA. Fix a behavioral strategy σ ∈ � in ��.
The play of �� when agents behave according to σ will be named the σ-path of the
MIA. We will refer to the partition Ns, Nu, Nd and allotment q = (qi )i∈N as the out-
put of the MIA when it stops at either Stage B or Stage C, and refer to q as the out-
come of the MIA.13 Observe that q = g(σ ), where g : �→ X , is the outcome function
of ��.

In contrast to the implementation in dominant strategies of sequential allotment
rules through the direct revelation mechanism, our implementation in obviously domi-
nant strategies requires that agents reveal their types (i.e., top assignments) sequentially
and only partially, without necessarily providing sufficient information to determine
whether the profile of tops exhibits excess or scarcity.14 Our implementation identifies
a sequence of agents with inordinate power (one by one), tentatively guaranteeing their
wishes until an allotment is identified where no agent has inordinate power, and from
there it performs efficiency improvements, pair by pair and unit by unit. The MIA does
all this sequentially and making sure that although the process is monotonous toward
the (unknown) tops of the agents, they are not surpassed.

Given a sequential allotment rule, one can view the MIA as a calculation procedure
to obtain the allotment selected by the rule at each preference profile. However, this pro-
cedure differs very much from the calculation procedure used in Barberà, Jackson, and
Neme (1997) to define sequential allotment rules. While our procedure only needs par-
tial information about agents’ tops to identify the ordering under which agents play and
the sequence of intervals of guaranteed assignments from which they have to choose,
Barberà, Jackson, and Neme’s (1997) procedure requires that agents’ tops are known
from the very beginning to determine whether the profile of tops exhibits scarcity or
excess.

Before continuing, we highlight four fundamental features of ��.

13Since σ will always be clear from the context, we omit its reference to denote the outcome q.
14Mackenzie (2020) identifies general conditions under which this is the case and defines round table

mechanisms as the class of extensive game forms that allow agents to sequentially reveal their types in an
obviously dominant way.
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First, the game �� can be seen as a round table mechanism (see Mackenzie (2020))
after making the following observations.15 Whenever agent i has to choose an action
from Ai ⊇ Ii = [[αi, βi]], each choice can be identified with a subset of R: action ai ∈ Ii
with {Ri ∈ R | τ(Ri ) = ai}, action β+

i with {Ri ∈ R | τ(Ri )> βi}, and action α−
i with {Ri ∈

R | τ(Ri ) < αi}. Hence, if i ∈ Nw is playing for the first time, either at some Step A.t or
Step B.t, Ai can be seen as a partition of R. If i ∈ Np has already played before and is
playing either at some Step A.t or Step C.t, Ai can be seen as a partition of the subset
of preferences induced by i’s last previous choice. The next three features of �� follow
from Lemma 1 and play an important role in the proof of Theorem 1.

Second, the evolution of the subsetsNs,Nu, andNd throughout the MIA is as follows.
Once agent i enters the subset Ns at some step, i remains in Ns at all further steps and i
is not selected to play again. Once agent i enters the subset Nu at some step, i can only
move toNs or remain inNu at further steps. Similarly, once agent i enters the subsetNd
at some step, i can only move toNs or remain inNd at further steps.

Third, the sets of guaranteed assignments Ii = [[αi, βi]] that are offered to agent i
evolve monotonically as follows. If i chooses β+

i ∈Ai at some step, then at the next step
(if any) at which i has to play, i ∈N ′

u and I ′i = [[βi + 1, β′
i]], where βi + 1 ≤ β′

i. Similarly, if
i chooses α−

i ∈Ai at some step, then at the next step (if any) at which i has to play, i ∈N ′
d

and I ′i = [[α′
i, αi − 1]], where α′

i ≤ αi − 1.
Fourth, along the steps in Stage A, the intervals of assignments Ii = [[q

i
, qi]] offered to

i are in fact guaranteed for the following reason. If i plays at some Step A.t, it is because
q
i
< qi and this means, by condition (3), that if t = 1 or, by an equivalent condition that

follows from Lemma 1, if t > 1, that agent i’s final assignment is ai if ai ∈ [[q
i
, qi]].

In Section 5.1, we formally establish that the MIA is well defined.

4.4 Truth-telling strategies

Let � be a sequential allotment rule and let �� be the extensive game form defined by
the MIA.

For i ∈ N , the truth-telling type-strategy for agent i in �� is i’s type-strategy
(σRii )Ri∈R, where, for every preferenceRi ∈ R, the truth-telling strategy σRii is defined as
follows: whenever agent i is selected to play, i chooses the best action inAi according to
Ri. Denote this choice by maxRi Ai. By single-peakedness, i selects τ(Ri ) if τ(Ri ) ∈Ai,
maxAi if τ(Ri )>maxAi, and minAi if τ(Ri )<minAi.

Then the truth-telling type-strategy profile (σRii )Ri∈R,i∈N for �� specifies the truth-
telling type-strategy for every i ∈N . Section 5.2 contains the statement and proof that,
for all R ∈ RN and all i ∈ N , σRii is a weakly (i.e., obviously) dominant strategy in the
game in extensive form (��, R).16 Given a profile R= (R1, � � � , Rn ) ∈ RN with the vector
of tops τ = (τ1, � � � , τn ) ∈ {0, � � � , k}N , we often denote the profile σR by στ .

15A round table mechanism is an extensive game form where the sets of actions are nonempty subsets
of preferences satisfying the following properties: (a) the actions at any node are disjoint subsets of pref-
erences, (b) when a player has to play for the first time, the set of actions is a partition of R, and (c) later,
at a node ν, the union of actions is the intersection of the actions taken by the agent assigned to ν at all
predecessor nodes that lead to ν.

16The extensive game form �� is a menu mechanism (see Mackenzie and Zhou (2022)) because agents
select from a menu of possible assignments (identified with a corresponding set of actions) and truth-telling
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The reason why truth-telling strategies are obviously dominant in (��, R) is roughly
as follows. Fix a nonterminal node in the tree (or a step in the MIA) and consider agent i
with a single-peaked preference that plays at this node, at which an interval Ii = [[αi, βi]]
of guaranteed assignments is offered to i. If i’s top is one of those guaranteed assign-
ments, choosing it is optimal, since the worst that might happen to i is to be assigned to
its top. If i’s top is strictly above βi, the worst that might happen to i if i asks for more
(if available as β+

i and i truth-tells by choosing it) is to receive its tentative assignment
βi. This is because i might still be able to choose from intervals with larger guaranteed
assignments, up to i’s top, along the monotonic path of later intervals that move toward
i’s top. In contrast, if i does not ask for more (i.e., does not truth-tell), the best that
might happen to i is to receive either the guaranteed assignment βi or strictly less, all
weakly worse than the assignment obtained by truth-telling. Symmetrically, if i’s top is
strictly below αi. The key feature of the MIA is that, given i’s top and the offered interval
Ii = [[αi, βi]] of guaranteed assignments, i can either choose its top or push forward the
interval of guaranteed assignments toward its top, without surpassing it, by asking for
more (if the top is strictly above βi) or asking for less (if the top is strictly below αi). Then
single-peakedness guarantees that truth-telling is obviously dominant.

4.5 An example

In Example 1 below, we describe, given a sequential allotment rule� and a profile of tops
τ with excess, the στ path of the MIA obtained from � when agents play the extensive
game form �� according to the truth-telling strategy στ .17 Note that any play of the
extensive game form �� can be obtained as a σ-path of the algorithm by letting agents
play �� according to the strategy σ .

Example 1. Let N = {1, 2, 3, 4}, let k = 7, and let � be the sequential allotment rule
partially described in Table 1.18

Begin: Set t = 1 and go to Stage A.

Stage A.

Step A.1. Input : Ns =Nu =Nd = ∅. SetNp = ∅ andNw = {1, 2, 3, 4}, and define

q=�(0, 0, 0, 0) = (4, 0, 2, 1), q=�(7, 7, 7, 7) = (0, 1, 1, 5), and

requires choosing the most preferred one. This requires no information about any previous actions during
the game; the agent only needs to know the actions that are currently available and its own preference
relation. Therefore, these truth-telling strategies remain available if the perfect information is removed
by thickening information sets in any way; for example, if each agent knows only its previous sequence
of menus and choices from those menus, together with its current menu, but knows nothing about the
choices made by others. After removing the perfect information, truth-telling is still obviously dominant.
This is important because it means that the rule could be implemented with agents playing remotely, say
through a website.

17That is, at each step where i has to choose an action in Ai , i chooses the closest assignment to i’s top
(i.e., the most preferred one).

18Observe that Table 1, which will be used in what follows, is consistent with the existence of a rule
satisfying strategy-proofness, efficiency, and replacement monotonicity, and with the description of a se-
quential allotment rule made in Section 2.
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Table 1. Example 1.

�(0, 0, 0, 0) = (4, 0, 2, 1) �(7, 7, 7, 7) = (0, 1, 1, 5)
�(0, 1, 0, 0) = (3, 1, 2, 1) �(7, 1, 7, 7) = (0, 1, 1, 5)
�(0, 1, 3, 0) = (2, 1, 3, 1) �(7, 1, 7, 1) = (3, 1, 2, 1)

�(2, 1, 7, 0) = (2, 1, 4, 0)

S = {i ∈N | q
i
< qi} = {2, 4}.

Choose j = 2 and, since 2 ∈Nw, set I2 = [[0, 1]] and A2 = {0, 1, 2}. Assume τ2 = 1 and so
2 chooses a2 = 1. Output : Ns = {2},Nd =Nu = ∅, and q2 = 1. Go to Step A.2.

Step A.2. Input : Output of Step A.1. SetNp = {2} andNw = {1, 3, 4}, and define

q=�(0, 1, 0, 0) = (3, 1, 2, 1), q=�(7, 1, 7, 7) = (0, 1, 1, 5), and

S = {i ∈N | q
i
< qi} = {4}.

Choose j = 4 and, since 4 ∈Nw, set I4 = [[1, 5]] andA4 = {0, 1, 2, 3, 4, 5, 6}. Assume τ4 = 0
and so 4 chooses a4 = 0. Output : Ns = {2}, Nu = ∅, Nd = {4}, q2 = 1, and q4 = 1. Go to
Step A.3.

Step A.3. Input : Output of Step A.2. SetNp = {2, 4} andNw = {1, 4}, and define

q=�(0, 1, 0, 0) = (3, 1, 2, 1), q=�(7, 1, 7, 1) = (3, 1, 2, 1) and

S = {i ∈N | q
i
< qi} = ∅.

Output : Ns = {2},Nu = ∅,Nd = {4}, and q= (3, 1, 2, 1). Go to Stage B.

Stage B.

Step B.1. Input : Output of Stage A. Since Nw �= ∅, choose j = 1 ∈Nw and, since I1 = [[3]],
set A1 = {2, 3, 4}. Assume τ1 = 1 and so 1 chooses a1 = 2. Output : Ns = {2}, Nu = ∅,
Nd = {1, 4}, and q= (3, 1, 2, 1). Go to Step B.2.

Step B.2. Input : Output of Step B.1. SinceNw �= ∅, choose j = 3 ∈Nw and, since I3 = [[2]],
set A3 = {1, 2, 3}. Assume τ3 = 3 and so 3 chooses a3 = 3. Output : Ns = {2}, Nu = {3},
Nd = {1, 4}, and q= (3, 1, 2, 1). Go to Step B.3.

Step B.3. Input : Output of Step B.2. Since Nw = ∅, Nu �= ∅, and Nd �= ∅, let Ns = {2},
Nu = {3},Nd = {1, 4}, and q= (3, 1, 2, 1) be the output of Stage B. Go to Stage C.

Stage C.

Step C.1. Input : Output of Stage B. Set �(2, 1, 7, 0) = (2, 1, 4, 0) and choose j = 3 ∈ {i ∈
Nu | �i(2, 1, 7, 0) ≥ qi + 1}. Set �(0, 1, 3, 0) = (2, 1, 3, 1) and choose r = 1 ∈ {i ∈ Nd |
�i(0, 1, 3, 0) ≤ qi−1}. Define I3 = [[3]] and I1 = [[2]]. Agent 3 chooses a3 = 3 inA3 = {3, 4}
and agent 1 chooses a1 = 1 in A1 = {1, 2} because, as we have already assumed, τ3 = 3
and τ1 = 1. Let Ns = {2, 3}, Nu = ∅, Nd = {1, 4}, and q = (2, 1, 3, 1). Since Nu = ∅, stop.
The allotment q = (2, 1, 3, 1) is the outcome of the extensive game form �� defined by
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Figure 1. The path of �� when agents play it according to στ , where agents are denoted by bold
numbers.

the MIA obtained from�when agents play it according to the truth-telling strategy pro-
file στ , where τ = (1, 1, 3, 0).

Figure 1 represents the στ path of the MIA when agents play �� according to στ . ♦

5. Proof of Theorem 1

Let � be a sequential allotment rule. Proposition 2 in Section 5.2 establishes that, for
each profile R ∈ RN and each agent i ∈N , the truth-telling strategy σRii is weakly domi-
nant in the game in extensive form (��, R). Proposition 3 in Section 5.3 establishes that
the pair (��, (σRii )Ri∈R,i∈N ) induces �. Before moving to their statements and proofs,
we argue in Section 5.1 that the MIA is well defined and that it delivers an allotment.

5.1 The MIA is well defined and delivers an allotment

We establish three facts. First, the MIA finishes after a finite number of steps. Second,
agents j and r, selected to play at any step in Stage C, are well defined.19 Third, the
outcome of the MIA is an allotment.

We start with a preliminary observation about the bounds of agents’ tentative as-
signments. In particular, we establish in Remark 1 below that, at any step of the MIA, (i)
if i ∈ Nu, then qi < k, and (ii) if i ∈ Nd , then 0 < qi, where qi is i’s tentative assignment
(part of the output of the step). Properties (i) and (ii) are important to guarantee that the
MIA finishes in a finite number of steps, and that agents j and r, selected to play at any
step in Stage C, are well defined.

Remark 1. Let i ∈ N be the agent who is selected to play at any Step X.t of the MIA,
where X ∈ {A, B, C}. Let Ii be the interval of guaranteed assignments offered to i, let

19Agent j, selected to play at any step in Stage A or Stage B, is trivially well defined.



1040 Arribillaga, Massó, and Neme Theoretical Economics 18 (2023)

ai ∈ Ai be i’s choice, and let Ns, Nu, Nd , and qNp be the output of Step X.t. Then the
following statements hold.

(R1.1) If i ∈Ns, then qi = ai and 0 ≤ qi ≤ k. To see that, note that by the definition of
the MIA, ai ∈ Ii. Then 0 ≤ ai ≤ k. By definition, qi := ai. Therefore, 0 ≤ qi ≤ k.

(R1.2) If i ∈Nu, then qi = ai − 1 and 0 ≤ qi < k. To see that, note that by the definition
of the MIA, ai ∈ I+i \Ii. We distinguish among three cases. First, X = A; then Ii =
[[q′
i
, q′
i]] or Ii = [[q′

i
+ 1, q′

i]], where, here and in (R1.3), q′
i

and q′
i are computed at

the beginning of Step A.t. As ai ∈ I+i \ Ii, 0< ai = q′
i + 1 ≤ k. By definition, qi :=

q′
i. Therefore, qi = ai − 1 and 0 ≤ qi < k. Second, X = B; then Ii = [[q′

i]], where,
here and in (R1.3), q′

i is an input of Step B.t. As ai ∈ I+i \ Ii, 0< ai = q′
i + 1 ≤ k.

By definition, qi := q′
i. Therefore, qi = ai − 1 and 0 ≤ qi < k. Third, X = C; then

Ii = [[q′
i + 1]], where, here and in (R1.3), q′

i is an input of Step C.t. As ai ∈ I+i \ Ii,
0< ai = (q′

i + 1) + 1 ≤ k. By definition, qi := q′
i + 1. Therefore, qi = ai − 1 and

0 ≤ qi < k.

(R1.3) If i ∈Nd , then qi = ai + 1 and k≥ qi > 0. To see that, note that by the definition
of the MIA, ai ∈ I−i \ Ii. We distinguish among three cases. First, X = A; then
Ii = [[q′

i
, q′
i]] or Ii = [[q′

i
, q′
i − 1]]. As ai ∈ I−i \ Ii, k> ai = q′

i
− 1 ≥ 0. By definition,

qi := q′
i
. Therefore, qi = ai + 1 and k≥ qi > 0. Second, X = B; then Ii = [[q′

i]]. As

ai ∈ I−i \ Ii, k> ai = q′
i − 1 ≥ 0. By definition, qi := q′

i. Therefore, qi = ai + 1 and
k≥ qi > 0. Third, X = C; then Ii = [[q′

i− 1]]. As ai ∈ I−i \ Ii, k> ai = (q′
i− 1) − 1 ≥

0. By definition, qi := q′
i − 1. Therefore, qi = ai + 1 and k≥ qi > 0.

Lemma 1 below (whose proof can be found in the Appendix) is key to assure that the
MIA stops after a finite number of steps and that the pair (��, (σRii )Ri∈R,i∈N ) induces�.

Lemma 1. Let � : RN →X be a sequential allotment rule. Let Ns, Nu, Nd , and (qi )i∈Np
be the input of any Step A.t of the MIA, and let

q=�(0Nw∪Nd , qNs∪Nu ) and q=�(kNw∪Nu , qNs∪Nd ). (4)

Then the following four conditions hold.

(L1.1) We have
∑
i∈Np qi ≤ k.

(L1.2) If i ∈Ns, then qi = qi = qi.
(L1.3) If i ∈Nu, then qi = qi ≤ qi.
(L1.4) If i ∈Nd , then q

i
≤ qi = qi.

The vector (qi )i∈Np of tentative assignments is considered as the assignments provi-
sionally allotted to agents that have already played. We state below four remarks about
(qi )i∈Np and the evolution of the subsets Ns, Nu, and Nd throughout the MIA that par-
tially follow from Lemma 1.



Theoretical Economics 18 (2023) Sequential allotment rules 1041

Remark 2. The following four features of the MIA hold.

(R2.1) Inequality (L1.1) in Lemma 1 states that (qi )i∈Np , part of the input of any Step
A.t, can be completed as a feasible allotment by assigning to agents in Nw the
leftover units not provisionally assigned yet to agents inNp.

(R2.2) Consider the step (if any) of the MIA at which i enters into Ns after choosing
ai and let qi := ai. Then, by the definition of the MIA and (L1.2), the tentative
assignment qi becomes the final assignment to i at the outcome q of the MIA.
Therefore, once agent i enters intoNs at some step, i remains inNs at all further
steps and i is not selected to play any more.

(R2.3) Consider the input Ns, Nu, Nd , and (qi )i∈Np of a generic Step X.t, where X ∈
{A, C}, and assume i ∈Nu is selected to play and has to choose an action ai in
Ai. Then, if X = A, by (L1.3), Ai = I+i = [[q

i
+ 1, q+

i ]] = [[qi + 1, q+
i ]], and if X =

C,Ai = I+i = {qi + 1, (qi + 1)+}. Then agent i’s updated tentative assignment qi
in the output of Step X.t increases by definition in both cases: if X = A because
either qi := ai if ai ∈ Ii or qi := qi if ai /∈ Ii, and if X = C because qi := qi + 1.
Furthermore, once agent i enters into Nu at some step, i can only move to Ns
or remain inNu at later steps.

(R2.4) Consider the input Ns, Nu, Nd , and (qi )i∈Np of a generic Step X.t, where X ∈
{A, C}, and assume i ∈Nd is selected to play and has to choose an action ai in
Ai. Then, if X = A, by (L1.4), Ai = I−i = [[q−

i
, qi − 1]] = [[q−

i
, qi − 1]], and if X =

C,Ai = I−i = {(qi − 1)−, qi − 1}. Then agent i’s updated tentative assignment qi
in the output of Step X.t decreases by definition in both cases: if X = A because
either qi := ai if ai ∈ Ii or qi := q

i
if ai /∈ Ii, and if X = C because qi := qi − 1.

Furthermore, once agent i enters into Nd at some step, i can only move to Ns
or remain inNd at later steps.

Remark 2 assures that the MIA finishes in a finite number of steps because eitherNu
or Nd will be empty at some step since (a) the sequences of tentative allotments offered
to agents inNu orNd are, respectively, increasing or decreasing, and (b) as soon as qi = k,
agent i moves fromNu toNs, and as soon as qi = 0, agent i moves fromNd toNs.20

Lemma 2 and Lemma 3 (whose proofs can be found in the Appendix) guarantee
that (i) q = (qNp , q

Nw
), part of the output of Stage A, is a feasible allotment and (ii)

�(0Nd , qNs , qNu ) = �(kNu , qNs , qNd ) = q, part of the output of Stage B, is a feasible al-
lotment as well. Moreover, by the actualization of qj and qr along the steps in Stage C,
we can conclude that the final outcome of the MIA q is a feasible allotment.

20To make (a) more transparent, let Ns , Nu, Nd , and qNp be the output of a step at which i plays, let
Ii = [[αi, βi]] be the interval of guaranteed assignments offered to i at this step, let N ′

s , N
′
u, N ′

d , and q′
N ′
p

be the input of the later step at which i plays again for the first time, and let I ′i = [[α′
i, β

′
i]] be the interval

of guaranteed assignments offered to i at this step. If i ∈ Nu (and according to the definition of the MIA,
ai ∈ I+i \ Ii), then qi + 1 = βi + 1 = α′

i . If i ∈Nd (and according to the definition of the MIA, ai ∈ I−i \ Ii), then
qi − 1 = αi − 1 =β′

i .
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Lemma 2. Let � : RN → X be a sequential allotment rule and let Ns, Nu, Nd , and q =
(qNp , q

Nw
) be the output of Stage A of the MIA. Then �(0Nw∪Nd , qNs∪Nu ) = �(kNw∪Nu ,

qNs∪Nd ) = q.

Lemma 3. Let � : RN →X be a sequential allotment rule, and let Ns, Nu, Nd , and q be
the output of Stage B of the MIA. Then �(0Nd , qNs , qNu ) =�(kNu , qNs , qNd ) = q.

We now argue that agents j and r, selected, respectively, at Step C.t.a and Step C.t.b,
are well defined. Throughout Stage A and Stage B, each agent j is classified according
to whether j prefers to receive the tentative assignment qj (those in Ns), strictly more
than qj (those in Nu), or strictly less than qj (those in Nd). If the MIA moves to Stage C
it is because Nu �= ∅ and Nd �= ∅ in the output of Stage B. But this means that q is not
efficient. At each Step C.t, agents j ∈ Nu and r ∈ Nd are selected to carry out a Pareto
improvement upon q, input of this step, by increasing j’s tentative assignment by one
unit and decreasing r’s tentative assignment by one unit. Agents j and r are sequentially
identified by looking at the image of � at two somehow extreme profiles, both with all
agents inNs having their tops at qNs . First, j is one of the agents inNu whose assignment
is larger or equal to qj + 1 at the scarcity profile (kNu , (q− 1)Nd , qNs ). Therefore, by (1)
in the definition of same-sidedness, agents inNd ∪Ns receive at most their tops and, by
feasibility of q, one agent j in Nu has to receive at least qj + 1. Once j is identified, r is
one of the agents inNd whose assignment is smaller than or equal to qj − 1 at the excess
profile (qj + 1, 0Nd , qNs∪(Nu\{j}) ). Therefore, by (2) in the definition of same-sidedness,
agents inNu ∪Ns receive at least their tops and, by feasibility of q, one agent r inNd has
to receive at most qr − 1.

We now formally prove that at each Step C.t, agents j ∈ Nu and r ∈ Nd are well de-
fined. LetNs,Nu,Nd , and q be the input of Step C.t. This means thatNu �= ∅ andNd �= ∅.
By (R1.3) in Remark 1, i ∈ Nd implies 0 < qi. Therefore, x = (kNu , (q − 1)Nd , qNs ) is a
well defined profile of tops and

∑
i∈N xi ≥ k. Hence, by (1) in the definition of same-

sidedness,Nd �= ∅ andNu =N \ (Nd ∪Ns ), it holds that∑
i /∈Nu

�i
(
kNu , (q− 1)Nd , qNs

) ≤
∑
i∈Nd

(qi − 1) +
∑
i∈Ns

qi <
∑
i /∈Nu

qi.

By feasibility of q, ∑
i∈Nu

�i
(
kNu , (q− 1)Nd , qNs

)
>

∑
i∈Nu

qi.

Hence, there exists j ∈ Nu such that �j(kNu , (q − 1)Nd , qNs ) ≥ qj + 1. By (R1.2) in Re-
mark 1, i ∈ Nu implies qi < k. Therefore, y = (qj + 1, 0Nd , qNs∪(Nu\{j}) ), where j is the
agent identified just above and the one selected to play at Step C.t.a, is a well defined
profile of tops and

∑
i∈N yi ≤ k. Hence, by (2) in the definition of same-sidedness and

j /∈Nd , it holds that∑
i /∈Nd

�i(qj + 1, 0Nd , qNs∪(Nu\{j}) ) ≥ qj + 1 +
∑

i /∈Nd∪{j}

qi >
∑
i /∈Nd

qi.
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By feasibility of q, ∑
i∈Nd

�i(qj + 1, 0Nd , qNs∪(Nu\{j}) )<
∑
i∈Nd

qi.

Hence, there exists r ∈Nd such that�r(qj + 1, 0Nd , qNs∪(Nu\{j}) ) ≤ qr − 1.
We can now proceed with the two results that guarantee that� is obviously strategy-

proof.

5.2 Truth-telling is obviously dominant in ��

Let �� be the extensive game form defined by the MIA after identifying each step of the
MIA with a nonterminal node of ��. Fix a preference profile R ∈ RN with top profile τ.
Let (��, R) be the game in extensive form. For i ∈ N and Ri ∈ R, recall that the truth-
telling strategy σRii is the strategy where, whenever agent i is selected to play, i chooses
the best action inAi according to Ri, denoted by maxRi Ai.

21

Proposition 2. Let �� be the extensive game form defined by the MIA and letR ∈ RN be
a profile. Then, for each agent i, the truth-telling strategy σRii is weakly dominant in the
game in extensive form (��, R).

Proof. Let �� be the extensive game form defined by the MIA. Fix i ∈ N , Ri ∈ R, and
σ−i, and consider any σ̂i �= σ

Ri
i . Let Ns, Nu, Nd , and (qi )i∈N be the output of the MIA

when agents play according to (σRii , σ−i ), and let N̂s , N̂u, N̂d , and (q̂i )i∈N be the output
of the MIA when agents play according to (σ̂i, σ−i ). We verify that qi Ri q̂i. If qi = q̂i,
the statement is trivially true. Assume qi �= q̂i. To proceed, we need to introduce the
following notation.

(i) Let N ′
s, N

′
u, N ′

d , and q′
N ′
p

be the input of the last step of the MIA at which i is

selected to play when agents play according to (σRii , σ−i ), and let a′
i be i’s chosen action

and let I′i be the interval of guaranteed assignments offered to i at this last step.

(ii) For the (σRii , σ−i ) path and the (σ̂i, σ−i ) path in ��, consider the step of the MIA

at which, for the first time, σRii and σ̂i select different actions. Since qi �= q̂i, such a step
does exist. LetA∗

i be the set of actions available to i and let I∗i be the interval of guaran-
teed assignments offered to i at this step. Let a∗

i and â∗
i be, respectively, the choices of i

according to σRii and σ̂i. By how the step has been chosen, a∗
i �= â∗

i . Let q∗
i and q̂∗

i be the
immediate updated tentative assignments for agent i at this step that follow after a∗

i and
â∗
i , respectively.

We now proceed by distinguishing among three cases.
Case 1: Assume i ∈Ns. We show that τ(Ri ) = qi. By definition of the MIA, qi = a′

i ∈ I ′i ,
and by the definition of σRii , τ(Ri ) = a′

i. Hence, τ(Ri ) = qi and so, qi Ri q̂i holds.
Case 2: Assume i ∈Nu. We first show that τ(Ri )> qi. By definition of the MIA, i ∈Nu

implies qi < a′
i ∈ I ′+i \ I ′i . By the definition of σRii , τ(Ri ) ≥ a′

i. Hence, τ(Ri )> qi. We now

21Recall again that, according to Mackenzie (2020), being obviously dominant in (��, R) is equivalent to
being weakly dominant in (��, R).
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show that qi Ri q̂i holds indeed. By the definition of σRii ,

a∗
i = maxA∗

i ≤ τ(Ri ). (5)

By (R1.2), a∗
i − 1 = q∗

i . Furthermore, iteratively applying (L1.3) and the definition of the
MIA, q∗

i ≤ qi. Then, by (5),

maxA∗
i − 1 ≤ qi < τ(Ri ). (6)

Similarly, and as a∗
i �= â∗

i ,

â∗
i ≤ maxA∗

i − 1. (7)

Since i ∈ Nu, either A∗
i = (I∗i )+ or A∗

i = (I∗i )±. If â∗
i ∈ (I∗i )+, then â∗

i < a
∗
i because a∗

i =
maxA∗

i ; but then i enters into the set of agents who want to stop and, by (R1.1), â∗
i = q̂∗

i .
If â∗

i /∈ (I∗i )+, then A∗
i = (I∗i )± and â∗

i = minA∗
i ∈ (I∗i )− \ I∗i . Therefore, |A∗

i | ≥ 3 and so
â∗
i = minA∗

i <maxA∗
i − 1, and, by (R1.3), â∗

i + 1 = q̂∗
i . Then, in all cases,

q̂∗
i ≤ maxA∗

i − 1. (8)

Furthermore, by (8) and (6),

q̂∗
i ≤ qi < τ(Ri ). (9)

By iterated applications of (L1.4) and the definition of the MIA, q̂i ≤ q̂∗
i . Therefore, q̂i ≤

qi < τ(Ri ). By single-peakedness, qi Ri q̂i.
Case 3: Assume i ∈Nd . We first show that τ(Ri )< qi. By definition of the MIA, i ∈Nd

implies qi > a′
i ∈ I ′−i \ I ′i . By the definition of σRii , τ(Ri ) ≤ a′

i. Hence, τ(Ri )< qi. We now

show that qi Ri q̂i holds indeed. By the definition of σRii ,

τ(Ri ) ≤ minA∗
i = a∗

i . (10)

By (R1.3), a∗
i + 1 = q∗

i . Furthermore, iteratively applying (L1.4) and the definition of the
MIA, qi ≤ q∗

i . Then, by (10),

τ(Ri )< qi ≤ minA∗
i + 1. (11)

Similarly, and as a∗
i �= â∗

i ,

minA∗
i + 1 ≤ â∗

i .

Since i ∈ Nd , either A∗
i = (I∗i )− or A∗

i = (I∗i )±. If â∗
i ∈ (I∗i )−, then â∗

i > a
∗
i because a∗

i =
minA∗

i ; but then i enters into the set of agents who want to stop and, by (R1.1), â∗
i = q̂∗

i .
If â∗

i /∈ (I∗i )−, then A∗
i = (I∗i )± and â∗

i = maxA∗
i ∈ (I∗i )+ \ I∗i . Therefore, |A∗

i | ≥ 3 and so
minA∗

i + 1<maxA∗
i = â∗

i and, by (R1.2), â∗
i − 1 = q̂∗

i . Then, in all cases,

minA∗
i + 1 ≤ q̂∗

i . (12)

Furthermore, by (12) and (11),

τ(Ri )< qi ≤ q̂∗
i . (13)
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By iterated applications of (L1.3) and the definition of the MIA, q̂∗
i ≤ q̂i. Therefore,

τ(Ri )< qi ≤ q̂i. By single-peakedness, qi Ri q̂i.
Hence, for all σ−i and σ̂i, gi(σ

Ri
i , σ−i ) Ri gi(σ̂i, σ−i ), which means that σRii is weakly

dominant in (��, R).

5.3 The pair (��, (σRii )Ri∈R,i∈N ) induces�

Lemma 1 says that the sequences of qs, qs, and qs generated by a non-individually ra-
tional rule � in Stage A are monotonous (in the right direction) and the sum of the
components of each (qi )i∈Np in the sequence is smaller than or equal to k. Lemma 2
and Lemma 3 say, respectively, that, at the end of Stage A, q = q = q, and at the end of
Stage B, �(0Nd , qNs , qNu ) = �(kNu , qNs , qNd ) = q. Both imply that q is a feasible allot-
ment and the former says that the process somehow converges, while the latter is also
an intermediate result for the proof of Lemma 4 about Stage B. In turn, Lemma 4 is re-
quired to prove Lemma 5, presented below. The statement and proof of Lemma 4 and
the proof of Lemma 5 can be found in the Appendix.

Lemma 5. Let � : RN →X be a sequential allotment rule, and let Ns, Nu, Nd , and q be
the output of the MIA. Then the following two conditions hold.

(L5.1) IfNu = ∅, then �(0Nd , qNs ) = q.

(L5.2) IfNu �= ∅, thenNd = ∅ and �(kNu , qNs ) = q.

We now state and prove that the pair (��, (σRii )Ri∈R,i∈N ) induces �.

Proposition 3. Let � be a sequential allotment rule. Then (��, (σRii )Ri∈R,i∈N ) in-
duces �.

Proof. Let R ∈ RN be an arbitrary profile of preferences, and let Ns , Nu, Nd , and q be
the output of the MIA when agents play �� according to σR. This means that q= g(σR ).
We show that�(R) = q holds by distinguishing between two cases.

Case 1: Nu = ∅. By (L5.1) in Lemma 5, �(0Nd , qNs ) = q. By (R1.1) in Remark 1,
qi = τ(Ri ) for all i ∈ Ns , and with the abuse of notation of mixing a profile of prefer-
ences and a profile of tops, �(0Nd , RNs ) = q. Let i ∈Nd . By (R1.3) and the definition of
the MIA, the last step where iwas selected to play i has chosen ai ∈ I−i \ Ii and ai = qi−1.

By the definition of σRii , τ(Ri ) ≤ ai. Hence, τ(Ri )< qi. By strategy-proofness and single-
peakedness,�i(0Nd\{i}, RNs∪{i} ) = qi =�i(0Nd , RNs ). Since� is replacement monotonic,
�(0Nd\{i}, RNs∪{i} ) = q =�(0Nd , RNs ). Successively using the same argument for the re-
maining agents inNd \ {i}, we obtain that �(R) = q=�(RNd , RNs ).

Case 2: Nu �= ∅. By (L5.2) in Lemma 5, Nd = ∅ and �(kNu , qNs ) = q. By (R1.1) in
Remark 1, qi = τ(Ri ) for all i ∈Ns, and again with an abuse of notation,�(kNu , RNs ) = q.
Let i ∈Nu. By (R1.2) and the definition of the MIA, the last step where i was selected to
play i has chosen ai ∈ I+i \ Ii and ai = qi + 1. By the definition of σRii , τ(Ri ) ≥ ai. Hence,
τ(Ri )> qi. Therefore, by an argument symmetric to that used in Case 1, we obtain that
�(R) = q=�(RNu , RNs ).

This completes the proof of Theorem 1.
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6. Final remarks

We finish the paper with four remarks.
First, our implementation result requires that the rule be replacement monotonic.

Example 2 contains a division problem where there is a strategy-proof, efficient and
non-replacement monotonic rule that is not obviously strategy-proof.

Example 2. Consider the division problem whereN = {1, 2, 3} and k= 2. Let� : RN →
X be the tops-only rule that, for every τ = (τ1, τ2, τ3 ) ∈ {0, 1, 2}N , �(τ) is determined
sequentially. The top of agent 1 determines the order in which agents 2 and 3 have to
successively choose their most preferred assignments (among those left available by the
predecessor, if any). If agent 1 chooses 0 or 1, then agent 2 plays before 3. If agent 1
chooses 2, then agent 3 plays before 2. Agent 1’s assignment is equal to the remainder;
namely,

�(τ1, τ2, τ3 ) =
{(

2 − τ2 − min{2 − τ2, τ3}, τ2, min{2 − τ2, τ3}
)

if τ1 ∈ {0, 1}(
2 − τ3 − min{2 − τ3, τ2}, min{2 − τ3, τ2}, τ3

)
if τ1 = 2.

It is easy to check that � is strategy-proof and efficient. To see that � is not re-
placement monotonic, consider τ = (τ1, τ2, τ3 ) = (0, 1, 2) and τ′ = (τ′

1, τ2, τ3 ) = (2, 1, 2).
Then �(τ) = (0, 1, 1) and �(τ′ ) = (0, 0, 2). Since �1(τ) = �1(τ′ ), �2(τ) > �2(τ′ ) and
�3(τ)<�3(τ′ ),� is not replacement monotonic.

To obtain a contradiction, assume � is obviously strategy-proof. Let � be the exten-
sive game form that OSP-implements �. By Mackenzie (2020), we can assume with-
out loss of generality that � has perfect information. Given a profile of tops τ, let
στ = (στ1

1 , στ2
2 , στ3

3 ) be a strategy profile such that �(τ) = g(στ ). As (��, (σRii )Ri∈R,i∈N )
induces�, there must exists a nonterminal node ν such that (i) the agent who plays at ν
has at least two available actions (denoted by a1 and a2) and (ii) at all nodes preceding
ν (if any), the agents who play have only one available action. Suppose agent 1 is the
player who plays at ν. Consider the two profiles of tops τ = (1, 0, 0) and τ′ = (2, 1, 0). As
(��, (σRii )Ri∈R,i∈N ) induces �, g1(στ ) =�1(τ) = 2 and g1(στ

′
) =�1(τ′ ) = 1. Consider

σ2 and σ3 with the properties that (i) they respectively coincide with στ2
2 and στ3

3 at all

nodes that follow ν after agent 1 chooses a1, and (ii) they respectively coincide with σ
τ′

2
2

and σ
τ′

3
3 at all nodes that follow ν after agent 1 chooses a2. Note that by its definition,

node ν is reached regardless of the strategy profile used by the agents, and since � has
perfect information, σ2 and σ3 are well defined. Because there exists R1 ∈ R such that
τ(R1 ) = 1 and

g1
(
σ
τ′

1
1 , σ2, σ3

) = 1P12 = g1
(
στ1

1 , σ2, σ3
)
,

strategy στ1
1 is not weakly dominant in �, a contradiction with the assumption that �

OSP-implements �. Suppose agent 2 is the player who plays at ν. Consider the two
profiles of tops τ = (2, 1, 2) and τ′ = (1, 1, 2). As (��, (σRii )Ri∈R,i∈N ) induces�, g2(στ ) =
�2(τ) = 0 and g2(στ

′
) =�2(τ′ ) = 1. Consider σ1 and σ3 with the properties that (i) they

respectively coincide with στ1
1 and στ3

3 at all nodes that follow ν after agent 2 chooses a1,
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and (ii) they respectively coincide with σ
τ′

1
1 and σ

τ′
3

3 at all nodes that follow ν after agent 2
chooses a2. Note that by its definition, node ν is reached regardless of the strategy profile
used by the agents, and since � has perfect information, σ1 and σ3 are well defined.
Because there exists R2 ∈ R such that τ(R2 ) = 1 and

g2
(
σ1, σ

τ′
2

2 , σ3
) = 1P20 = g2

(
σ1, στ2

2 , σ3
)
,

strategy στ2
2 is not weakly dominant in �, a contradiction with the assumption that �

OSP-implements�. A similar argument can be used to obtain a contradiction when 3 is
the agent who plays at ν. ♦

Second, there are strategy-proof and efficient rules that are not replacement mono-
tonic (and so, they are not sequential), but they are obviously strategy-proof. Example 3
illustrates this possibility.

Example 3. Consider the division problem whereN = {1, 2, 3} and k= 2. Let ϕ : RN →
X be the tops-only rule that, for every τ = (τ1, τ2, τ3 ) ∈ {0, 1, 2}N , ϕ(τ) is determined
sequentially. Agent 1 receives its top. If τ1 = 0, agent 2 receives τ2 and agent 3 receives
2 − τ2. If τ1 ∈ {1, 2}, agent 3 receives its best assignment in [[0, 2 − τ1]], denoted by τrest

3 ,
and agent 2 receives 2 − τ1 − τrest

3 . Namely,

ϕ(τ1, τ2, τ3 ) =
{

(0, τ2, 2 − τ2 ) if τ1 = 0(
τ1, 2 − τ1 − τrest

3 , τrest
3

)
if τ1 ∈ {1, 2}.

It is easy to check that ϕ is strategy-proof and efficient. To see that ϕ is not re-
placement monotonic, consider τ = (τ1, τ2, τ3 ) = (0, 2, 2) and τ′ = (τ′

1, τ2, τ3 ) = (1, 2, 2).
Then ϕ(τ) = (0, 2, 0) and ϕ(τ′ ) = (1, 0, 1). Since ϕ1(τ) < ϕ1(τ′ ), ϕ2(τ) > ϕ2(τ′ ), and
ϕ3(τ)<ϕ3(τ′ ), ϕ is not replacement monotonic.

However, ϕ is obviously strategy-proof. The extensive game form depicted in Fig-
ure 2 OSP-implements ϕ, where agents are shown in bold numbers. Together, Exam-
ples 2 and 3 show that while replacement monotonicity is indispensable for our main
result to hold, it is not necessary.

Third, Pycia and Troyan (2022) propose a family of simplicity standards that depend
on agents’ ability to foresee further down in the game and that strengthen the notion

Figure 2. The extensive game form that OSP-implements ϕ.
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of obvious strategy-proofness. Each standard brings about a notion of dominance and
its correspondent of strategy-proofness. The simpler standard is that in which agents
cannot plan for any moves in the future, referred to as strong obvious strategy-proofness
(SOSP). In our context, a rule � : RN → X is strongly obviously strategy-proof if there
are an extensive game form � ∈ G, associated to k and N , and a type-strategy profile
(sRii )Ri∈R,i∈N ) for � such that the pair (�, (sRii )Ri∈R,i∈N ) induces �, and, for each profile

R ∈ RN and agent i ∈N , the corresponding strategy sRii is strongly obviously dominant
in (�, R).

Strongly obvious domination requires that, for each i and each Ri, when comparing
the worst possible outcome of the choice prescribed by sRii at an earliest point of de-

parture ν with any other si, the choices made by i at all nodes that follow s
Ri
i (ν) do not

have to necessarily follow s
Ri
i any more since imay now choose, at a node γ that follows

s
Ri
i (ν), a different action than sRii (γ). Therefore, the worst possible outcome associated

to the stronger OSP notion could be strictly worse than the one obtained when agent i
is required to stay with the strategy sRii , as required by Li’s (2017) original OSP notion.
Example 4 below shows that not all sequential allotment rules are strongly obviously
strategy-proof. However, the subclass of serial dictator rules (that can be described as se-
quential allotment rules) satisfy the stronger requirement since agents play only once.22

The less simple standard is that in which agents can plan all their moves in the future,
and it corresponds to Li’s (2017) original OSP notion. Pycia and Troyan (2022) also focus
on the standard of one-step dominance in which agents are able to plan at most one
move ahead at a time, referred to as one-step simple. Given any sequential allotment
rule �, let us consider i’s plan in �� of choosing today the best available assignment ai
in Ai ⊇ [[αi, βi]] and choosing next time (if any) a′

i in A′
i ⊇ [[α′

i, β
′
i]] according to the fol-

lowing two possibilities: if ai = β+
i , then a′

i = α′
i, while if ai = α−

i , then a′
i = β′

i (note that
if ai ∈ [[αi, βi]], i does not move again). This plan defines a type-strategy profile that is
one-step dominant and together with �� induce�; hence, all sequential allotment rules
are one-step simple. ♦

Example 4. Consider the division problem where N = {1, 2, 3} and k = 3. Let ψ :
RN → X be any individually rational sequential allotment rule with respect to the al-
lotment q = (1, 1, 1).23 To obtain a contradiction, assume that � is an extensive game
form that together with a type-strategy profile (σRii )Ri∈R,i∈N induce ψ and that � SOSP-
implements ψ. Let ν be the node in � at which, for the first time, an agent has at least
two actions available. Without loss of generality, let 1 be such an agent. Fix an arbitrary
R1 ∈ R and let a� be the action such that σR1

1 (ν) = a� with τ(R1 ) = �. Sinceψ is tops-only,
it is sufficient to distinguish between two different general cases.

Case 1: Assume a2 �= a3. Since ϕ is efficient, ψ(2, 1, 0) = (2, 1, 0) and, because
(�, (σRii )Ri∈R,i∈N ) induces ψ, the allotment (2, 1, 0) is possible after 1 chooses a2 at
ν. Since ψ is efficient, ψ(1, 1, 1) = (1, 1, 1) and, by individual rationality, ψ(3, 1, 1) =
(1, 1, 1). Then the allotment (1, 1, 1) is possible after the choice a3. However, for all
single-peaked preference R1 ∈ R with τ(R1 ) = 3, 2P11. Hence, ψ is not SOSP.

22Observe that SOSP is more restrictive than OSP plus replacement monotonicity.
23Note that this implies that ψ is not a serial dictator rule.
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Case 2: Assume a2 = a3. We refer to this action as a2,3. We distinguish between two
subcases.

Case 2.1: Assume a1 �= a2,3. Then, using similar arguments to those used in Case 1,
the allotment (1, 1, 1) is possible after 1 chooses a1 and the allotment (3, 0, 0) is possible
after 1 chooses a2,3. However, there is a single-peaked preference R1 ∈ R with τ(R1 ) = 2
for which 1P13. Hence, ψ is not SOSP.

Case 2.2: Assume a1 = a2,3. We refer to this action as a1,2,3. We distinguish between
two further subcases.

Case 2.2.1: Assume a0 �= a1,2,3. Then, using similar arguments to those used in Case
1, the allotment (0, 3, 0) is possible after 1 chooses a0, while the allotment (3, 0, 0) is
possible after 1 chooses a1,2,3. However, there is a single-peaked preferenceR1 ∈ R with
τ(R1 ) = 2 for which 0P13. Hence, ψ is not SOSP.

Case 2.2.2: Assume a0 = a1,2,3. But this means that agent 1 has a unique available
action at ν. A contradiction. ♦

Fourth, Barberà, Jackson, and Neme (1997) observe that each sequential allotment
rule is fully implementable in dominant strategies by the direct revelation mechanism.
Our extensive game forms provide full OSP-implementation of all sequential allotment
rules. Namely, for each sequential allotment rule, the extensive game form defined
by the MIA obtained from the rule has the property that, for each preference profile,
each obviously dominant strategy profile leads to the allotment specified by the rule for
that preference profile. In fact, at every node of ��, no departing strategy is obviously
dominant—or even dominant or even a best reply to some strategy profile of the other
agents—unless it leads to the same outcome. Hence, �� provides full subgame perfect
implementation (see Moore and Repullo (1988)) and ex post perfect implementation
(see Ausubel (2004)) of the rule �. Interestingly, the two hold without following from
Mackenzie and Zhou (2022) because our setting, by assuming agents’ preferences are
single-peaked, violates their richness and strictness conditions.

Appendix

This Appendix contains the proofs of Lemmas 1, 2, 3, 4, and 5, used in the proof of The-
orem 1. However, we start with a remark (intensively used in the proofs that follow)
that states that if an agent can receive a particular assignment by lying, then by truth-
fully reporting its top, it will receive something in the interval between its top and this
assignment.

Remark 3. Let � : {0, � � � , k}N → X be a sequential allotment rule. Then, for all τ ∈
{0, � � � , k}N , i ∈N , and τ′

i ∈ {0, � � � , k}, the following two statements hold.

(R3.1) If �i(τ) ≥ τ′
i, then �i(τ) ≥ �i(τ′

i, τ−i ) ≥ τ′
i and �j(τ) ≤ �j(τ′

i, τ−i ) for all
j ∈N \ {i}.

To see that (R3.1) holds, assume first that �i(τ) = τ′
i. Then, by strategy-

proofness, �i(τ) = �i(τ′
i, τ−i ), and by replacement monotonicity, �j(τ) =



1050 Arribillaga, Massó, and Neme Theoretical Economics 18 (2023)

�j(τ′
i, τ−i ) for all j ∈ N \ {i}. Assume now that �i(τ) > τ′

i. To obtain a con-
tradiction, suppose that either (i) �i(τ′

i, τ−i ) > �i(τ) > τ′
i or (ii) �i(τ) > τ′

i >

�i(τ′
i, τ−i ) holds. By single-peakedness, (i) contradicts the notion that � is

strategy-proof. Suppose (ii) holds. Then there is R′′
i ∈ R such that τ(R′′

i ) = τ′′
i =

τ′
i and �i(τ) P ′′

i �i(τ
′
i, τ−i ). By tops-onlyness, �i(τ) P ′′

i �i(τ
′′
i , τ−i ) holds, which

contradicts the notion that � is strategy-proof. Hence, �i(τ) ≥�i(τ′
i, τ−i ) ≥ τ′

i.
By replacement monotonicity, �j(τ) ≤�j(τ′

i, τ−i ) for all j ∈N \ {i}.

(R3.2) If �i(τ) ≤ τ′
i, then �i(τ) ≤ �i(τ′

i, τ−i ) ≤ τ′
i and �j(τ) ≥ �j(τ′

i, τ−i ) for all
j ∈N \ {i}.

An argument symmetric to that used in (R3.1) shows that (R3.2) holds.
We now state and prove Lemma 1, a key result for the proof of Theorem 1.

Lemma 1. Let � : RN →X be a sequential allotment rule. Let Ns, Nu, Nd , and (qi )i∈Np
be the input of Step A.t of the MIA, and let

q=�(0Nw∪Nd , qNs∪Nu ) and q=�(kNw∪Nu , qNs∪Nd ). (14)

Then the following four conditions hold.

(L1.1) We have
∑
i∈Np qi ≤ k.

(L1.2) If i ∈Ns, then qi = qi = qi.
(L1.3) If i ∈Nu, then qi = qi ≤ qi.
(L1.4) If i ∈Nd , then q

i
≤ qi = qi.

Proof. We proceed by induction on t. When t = 1, the four statements hold trivially
becauseNs =Nu =Nd =Np = ∅. Suppose t ≥ 2.
Induction Hypothesis (IH). LetN ′

s ,N
′
u,N ′

d , and (q′
i )i∈N ′

p
be the input of Step A.(t− 1)

of the MIA, and let

q′ =�(
0N ′

w∪N ′
d

, q′
N ′
s∪N ′

u

)
and q′ =�(

kN ′
w∪N ′

u
, q′
N ′
s∪N ′

d

)
. (15)

Then the following four conditions hold.

(IH.L1.1) We have
∑
i∈N ′

p
q′
i ≤ k.

(IH.L1.2) If i ∈N ′
s, then q′

i = q′
i
= q′

i.

(IH.L1.3) If i ∈N ′
u, then q′

i = q′
i
≤ q′

i.

(IH.L1.4) If i ∈N ′
d , then q′

i
≤ q′

i = q′
i.

Let j ∈ S′ = {i ∈ N | q′
i
< q′

i} be the agent who was selected to play at Step A.(t − 1),
and letNs,Nu,Nd , and (qi )i∈Np be the output of Stage A.(t − 1) and input of Step A.t. By
the definition of the MIA and the IH,

Np =N ′
p ∪ {j} and qi = q′

i for all i ∈Np \ {j}. (16)
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As j ∈ S′,

q′
j
< q′

j . (17)

First, we show that (L1.1) holds. By the IH and (16), qi ≤ q′
i for all i ∈Np \ {j}. Now

we show that qj ≤ q′
j . To see that, let aj be j’s choice at Step A.(t − 1). According to the

definition of qj , three cases are possible. First, aj ∈ {q′
j
, � � � , q′

j }, in which case qj = aj ≤
q′
j . Second, aj = q′−

j
, in which case qj = q′

j
≤ q′

j . Third, aj = q′+
j , in which case, qj = q′

j .

Therefore, qi ≤ q′
i for all i ∈Np. Then, by feasibility of q′,∑

i∈Np
qi ≤

∑
i∈Np

q′
i ≤ k,

which is (L1.1).
By (IH.L1.2) and (17), j /∈N ′

s. Then, to prove that the other three statements hold,
we consider three cases, depending on whether j belongs to N ′

u, N ′
d , or N ′

w. But before
doing so, we state two general observations. By the IH, q′

i
≤ q′

i for all i ∈ N ′
p. Then, by

(17) and the feasibility of q′ and q′, there exists k �= j such that q′
k < q

′
k

. Then k ∈ N ′
w

and Np = N ′
p ∪ {j} �= N . Accordingly, Ns ∪Nu �= N and Ns ∪Nd �= N . Furthermore, we

have just shown that
∑
i∈Np qi ≤ k in (L1.1) holds. Then, by (14), and (1) and (2) in the

definition of same-sidedness,

qi ≤�i(0Nw∪Nd , qNs∪Nu ) = q
i

for all i ∈Ns ∪Nu (18)

and

qi =�i(kNw∪Nu , qNs∪Nd ) ≤ qi for all i ∈Ns ∪Nd . (19)

Case 1: j ∈N ′
u. Then, by definitions of Ij and qj ,

qj ∈ {
q′
j
+ 1, � � � , q′

j

}
. (20)

Hence,

qj ≤ q′
j . (21)

By (IH.L1.3),

q′
j = q′

j
≤ q′

j

j ∈Ns ∪Nu =N ′
s ∪N ′

u and j /∈N ′
s ∪N ′

d .
(22)

Claim 1. We have (a.1) qj ≤ q′
j , (b.1) qi ≥ q′

i for all i �= j, and (c.1) qi = q′
i for all i ∈ (Ns ∪

Nd ) \ {j}.

Proof. We distinguish between two cases.
Case C1.1: j ∈ Nu. Then j /∈ Ns ∪ Nd = N ′

s ∪ N ′
d and, by (16), (kNw∪Nu , qNs∪Nd ) =

(kN ′
w∪N ′

u ), q′
N ′
s∪N ′

d
). Therefore, by (14) and (15), q = q′, which means that the statement

of Claim 1 holds in this case.
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Case C1.2: j ∈Ns . To show (a.1), we first argue that

qj =�j(kNw∪Nu , qNs∪Nd ) ≤�j
(
kN ′

w∪N ′
u

, q′
N ′
s∪N ′

d

) = q′
j

holds. The first equality follows from (14) and the second equality follows from (15).
To check that the inequality holds as well, observe that (i) since j ∈ N ′

u and j /∈ N ′
s ∪

N ′
d , so (kN ′

w∪N ′
u

, q′
N ′
s∪N ′

d
)j = k, (ii) since j ∈ Ns, (kNw∪Nu , qNs∪Nd )j = qj , (iii) by (16),

for all i �= j, (kN ′
w∪N ′

u
, q′
N ′
s∪N ′

d
)i = (kNw∪Nu , qNs∪Nd )i, and (iv) by (21), qj ≤ q′

j . Hence,

we have qj ≤ �j(kN ′
w∪N ′

u
, q′
N ′
s∪N ′

d
) = q′

j . Finally, by (R3.1), qj ≤ �j(kNw∪Nu , qNs∪Nd ) ≤
�j(kN ′

w∪N ′
u

, q′
N ′
s∪N ′

d
) whose second inequality is the one that we wanted to check whether

it holds. Thus, (a.1) holds. Also, by (R3.1), qi = �i(kNw∪Nu , qNs∪Nd ) ≥ �i(kN ′
w∪N ′

u
,

q′
N ′
s∪N ′

d
) = q′

i for all i �= j, which is (b.1). To see that (c.1) is true, observe that qi ≥ q′
i = q′

i =
qi ≥ qi holds for all i ∈ (Ns ∪Nd ) \ {j}, where the first inequality follows from (b.1), the
first equality follows from (IH.L1.2) and (IH.L1.4), the second equality from (16), and
the second inequality from (19). Thus, the statement of Claim 1 holds in this case.

By (20), q′
j
< qj . Since j ∈Ns ∪Nu, (18) implies qj ≤ q

j
. Hence,

q′
j
< qj ≤ q

j
. (23)

By replacement monotonicity, (14), (15), and (16),

q′
i
≥ q

i
for all i ∈N \ {j}. (24)

By (16), (IH.L1.2), (IH.L1.3), (IH.L1.4), and Claim 1,

qi = q′
i = q′

i = qi if i ∈ (Ns ∪Nd ) \ {j}

qi = q′
i ≤ q′

i ≤ qi if i ∈Nu \ {j}.

By (16), (IH.L1.2), (IH.L1.3), (IH.L1.4), (24), and (18),

qi = q′
i = q′

i
≥ q

i
≥ qi and so qi = qi if i ∈ (Ns ∪Nu ) \ {j}

qi = q′
i ≥ q′

i
≥ q

i
if i ∈Nd .

Therefore, (L1.2), (L1.3), and (L1.4) in Lemma 1 hold for all i �= j. Now we show that they
also hold for j.

First, we show that q
j
= qj . Since j ∈ Ns ∪ Nu, by (18), q

j
≥ qj . To obtain a con-

tradiction, assume q
j
> qj . By (22), q′

j
= q′

j and j ∈ Ns ∪ Nu = N ′
s ∪ N ′

u. By (15) and

(16), �j(0Nw∪Nd , q(Ns∪Nu )\{j}, q′
j ) = q′

j
= q′

j . By (23), q′
j < qj . Then there is Rj ∈ R with

t(Rj ) = qj and q′
jPj�j(0Nw∪Nd , q(Ns∪Nu )\{j}, qj ) = qj , which means that j could manipu-

late � at (0Nw∪Nd , q(Ns∪Nu )\{j}, qj ) via q′
j . Hence,

�j(0Nw∪Nd , q(Ns∪Nu )\{j}, qj ) = qj , (25)
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and by the definition of q in (14), we have that

q
j
= qj . (26)

We distinguish between two cases.
Case 1.1: j ∈Nu. As in the proof of Case C1.1 in Claim 1, we obtain that qj = q′

j holds.
Then, by (21), qj ≤ q′

j . Hence, by (26), qj = q
j
≤ qj , which is (L1.3).

Case 1.2: j ∈ Ns. By (21) and (15) in the IH, qj ≤ q′
j = �j(kN ′

w∪N ′
u

, q′
N ′
s∪N ′

d
), which

together with (14), j /∈N ′
s ∪N ′

d , (16), and (R3.1) imply

qj =�j(kNw∪Nu , qNs∪Nd ) =�j
(
kN ′

w∪(N ′
u\{j}), q′

N ′
s∪N ′

d
, qj

) ≥ qj .

Hence, by (26), qj = q
j
≤ qj , which is (L1.3).

Case 2: j ∈N ′
d . The proof that (L1.2), (L1.3), and (L1.4) hold in this case is symmetric

to that used in Case 1 (when j ∈ N ′
u), after replacing Claim 1 by Claim 2 below, whose

proof is also symmetric to the proof of Claim 1; therefore, it is omitted.

Claim 2. We have (a.2) q
j
≥ q′

j
, (b.2) q

i
≤ q′

i
for all i �= j, and (c.2) q

i
= q′

i
for all i ∈ (Ns ∪

Nu ) \ {j}.

Case 3: j ∈N ′
w. By the definition of the MIA and (15) in the IH,

qj ≥ q′
j
=�j

(
0N ′

w∪N ′
d

, q′
N ′
s∪N ′

u

)
. (27)

Claim 3. We have (a.3) qj ≤ q′
j , (b.3) qi ≥ q′

i for all i �= j, and (c.3) qi = q′
i for all i ∈ (Ns ∪

Nd ) \ {j}.

The proof follows similar arguments to those already used in the proof of Claim 1
and, therefore, it is omitted.

Now we show that q′
i
≥ q

i
if i ∈N \ {j}. Suppose j ∈Nd . By (16), the inequality follows

because it holds with equality. Suppose j ∈Ns ∪Nu. By (16), (27), and (R3.2),

�j
(
0N ′

w∪N ′
d

, q′
N ′
s∪N ′

u

) = q′
j
≤�j(0Nw∪Nd , qNs∪Nu ) ≤ qj . (28)

Hence, by (14), �j(0N ′
w∪N ′

d
, q′
N ′
s∪N ′

u
) = q′

j
≤ q

j
= �j(0Nw∪Nd , qNs∪Nu ). By replacement

monotonicity, �i(0N ′
w∪N ′

d
, q′
N ′
s∪N ′

u
) ≥ �i(0Nw∪Nd , qNs∪Nu ) for all i �= j. Hence, by (15) in

the IH and (14),

q′
i
≥ q

i
if i ∈N \ {j}. (29)

By (16), (IH.L1.2), (IH.L1.3), (IH.L1.4), and Claim 3,

qi = q′
i = q′

i = qi if i ∈ (Ns ∪Nd ) \ {j}

qi = q′
i ≤ q′

i ≤ qi if i ∈Nu \ {j}.
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By (16), (IH.L1.2), (IH.L1.3), (IH.L1.4), and (29),

qi = q′
i = q′

i
≥ q

i
if i ∈ (Ns ∪Nu ) \ {j}

qi = q′
i ≥ q′

i
≥ q

i
if i ∈Nd \ {j}.

Therefore, by (18), (L1.2), (L1.3), and (L1.4) in Lemma 1 hold for all i �= j. Now we show
that they also hold for j.

We first show that qj = q
j
. If j ∈ Ns ∪ Nu, by (28) and (14), q′

j
≤ q

j
≤ qj , and by

(1) in same-sidedness, qj ≤ q
j
. Hence, qj = q

j
. If j ∈ Nd , by definition of qj , qj =

q′
j
. By (16) and (0N ′

w∪N ′
d

, q′
N ′
s∪N ′

u
)j = (0Nw∪Nd , qNs∪Nu )j , �j(0N ′

w∪N ′
d

, q′
N ′
s∪N ′

u
) = q′

j
= q

j
=

�j(0Nw∪Nd , qNs∪Nu ). Hence,

qj = q
j
. (30)

We now proceed by distinguishing between two possibilities, depending on the set
of agents in the output of Step A.(t − 1) to which j belongs.

Case 3.1: j ∈Nu. By using a similar argument to that used in the proof of Case C1.1
in Claim 1, qj = q′

j . Moreover, by the definition of qj , qj = q′
j . By (30), qj = q

j
= qj , which

implies (L1.3).
Case 3.2: j ∈ Ns ∪ Nd . By definition of qj and (15) in the IH, qj ≤ q′

j = �j(kN ′
w∪N ′

u
,

q′
N ′
s∪N ′

d
). By (R3.1), (14), (16), and the fact that j /∈N ′

s ∪N ′
d ,

qj ≤�j
(
k(N ′

w∪N ′
u )\{j}, q

′
N ′
s∪N ′

d
, qj

) =�j(kNw∪Nu , qNs∪Nd ) = qj . (31)

Then (19) implies qj = qj , which together with (30) implies qj = q
j
= qj . But this is (L1.2)

if j ∈Ns or implies (L1.4) if j ∈Nd .

Lemma 2. Let � : RN → X be a sequential allotment rule, and let Ns, Nu, Nd , and q =
(qNp , q

Nw
) be the output of Stage A of the MIA. Then �(0Nw∪Nd , qNs∪Nu ) = �(kNw∪Nu ,

qNs∪Nd ) = q.

Proof. Let Ns, Nu, Nd ,and q = (qNp , q
Nw

) be the output of Stage A of the MIA, and

let Step A.t, be the last step of Stage A. By the definition of the MIA, Ns, Nu, Nd ,
and (qi )i∈Np are the input of Step A.t and S = {i ∈ N | q

i
< qi} = ∅. Since q and q

are feasible allotments, �(0Nw∪Nd , qNs∪Nu ) = q = q = �(kNw∪Nu , qNs∪Nd ). Therefore, by
Lemma 1, qi = qi = qi for all i ∈Np. Then, by definition of q, q= (qNp , q

Nw
) = q. Hence,

�(0Nw∪Nd , qNs∪Nu ) =�(kNw∪Nu , qNs∪Nd ) = q.

Lemma 3. Let � : RN →X be a sequential allotment rule and let Ns , Nu, Nd , and q be
the output of Stage B of the MIA. Then �(0Nd , qNs , qNu ) =�(kNu , qNs , qNd ) = q.

Proof. LetN ′
s ,N

′
u,N ′

d , and q′ be the output of Stage A of the MIA. By Lemma 2,

�
(
0N ′

w∪N ′
d

, q′
N ′
s∪N ′

u

) =�(
kN ′

w∪N ′
u

, q′
N ′
s∪N ′

d

) = q′. (32)
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By the definition of the MIA, q= q′,Np =N ,Ns ∪Nu ⊃N ′
s ∪N ′

u,Ns ∪Nd ⊃N ′
s ∪N ′

d ,Nd =
N\(Ns ∪Nu ), and Nu = N \ (Ns ∪Nd ). By (32) and an iterated application of strategy-
proofness, �(0Nd , qNu , qNs ) =�(kNu , qNd , qNs ) = q.

Lemma 4. Let � : RN → X be a sequential allotment rule. Let Ns, Nu, Nd , and q be
the output of Step C.t of the MIA, and let q′be one of its inputs. Then the following two
conditions hold.

(L4.1) We have�(0Nd , qNs , qNu ) = q.

(L4.2) IfNu �= ∅, then

�i
(
kNu ,

(
q′ − 1

)
Nd

, qNs
) =

{
q′
i − 1 if i ∈Nd
qi if i ∈Ns.

Proof. Let N ′
s, N

′
u, N ′

d , and q′ be the input of Step C.t, andlet j ∈ N ′
u and r ∈ N ′

d be,
respectively, the agents that are selected to play at Step C.t.a and Step C.t.b. By the defi-
nition of the MIA,

qi =

⎧⎪⎪⎨⎪⎪⎩
q′
i + 1 if i= j
q′
i − 1 if i= r
q′
i if i ∈N \ {j, r}.

(33)

We now prove that (L4.1) and (L4.2) hold.
(L4.1) If Nd = ∅, the statement follows by the efficiency of �. Assume Nd �= ∅. We

proceed by induction on t. Suppose t = 1. LetN ′
s,N

′
u,N ′

d , and q′ be the input of Step C.1.
ThenN ′

u,N ′
d ,N ′

s, and q′ is the output of Stage B. By Lemma 3,

�
(
0N ′

d
, q′
N ′
s
, q′
N ′
u

) = q′. (34)

By (R3.2) and (34),

�j
(
0N ′

d
, q′
N ′
u\{j}, q

′
N ′
s
, q′
j + 1

) ≤ q′
j + 1 (35)

and

�i
(
0N ′

d
, q′
N ′
u\{j}, q

′
N ′
s
, q′
j + 1

) ≤ q′
i for all i ∈N \ {j}. (36)

By the definition of agent r,

�r
(
0N ′

d
, q′
N ′
u\{j}, q

′
N ′
s
, q′
j + 1

) ≤ q′
r − 1. (37)

Since q′ is feasible, the inequalities in (35), (36), and (37) can be replaced by equali-
ties. By (33) and since r ∈ N ′

d , �(0N ′
d

, qN ′
s
, qN ′

u
) = q. Either Nd = N ′

d , in which case
�(0Nd , qNs , qNu ) = q follows, orNd �=N ′

d , in which case r ∈Ns . Then condition (37) with
equality, (33), and strategy-proofness imply�(0Nd , qNs , qNu ) = q. This finishes the proof
of (L4.1) for the case t = 1. Suppose t ≥ 2.

Induction hypothesis (IH.L4.1). Let N ′
s, N

′
u, N ′

d , and q′ be the output of Step C.(t −
1). Then

�
(
0N ′

d
, q′
N ′
s
, q′
N ′
u

) = q′. (38)
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Observe that in the proof for the case t = 1, (34) can be replaced by (38) and, with the
same argument used there, we can show that�(0Nd , qNs , qNu ) = q. This proves (L4.1).

(L4.2) Assume Nu �= ∅. We proceed by induction on t. Suppose t = 1. Let N ′
u, N ′

d ,
N ′
s, and q′ be the input of Step C.1. Then N ′

s , N
′
u, N ′

d , and q′ is the output of Stage B. By
Lemma 3,

�
(
kN ′

u
, q′
N ′
d

, q′
N ′
s

) = q′. (39)

By the definition of the MIA,N ′
d �= ∅. Let i1 ∈N ′

d . By (R3.1) and (39),

�i1
(
kN ′

u
, q′
N ′
d\{i1}, q

′
i1

− 1, q′
N ′
s

) ≥ q′
i1

− 1

�i
(
kN ′

u
, q′
N ′
d\{i1}, q

′
i1

− 1, q′
N ′
s

) ≥ q′
i for all i ∈N \ {i1}.

Proceeding similarly for each remaining agent inN ′
d \ {i1}, we obtain that

�i
(
kN ′

u
,
(
q′ − 1

)
N ′
d

, q′
N ′
s

) ≥
{
q′
i − 1 if i ∈N ′

d

q′
i if i ∈N ′

s .
(40)

Furthermore, by the definition of agent j ∈N ′
u, who plays at Step C.1.a,

�j
(
kN ′

u
,
(
q′ − 1

)
N ′
d

, q′
N ′
s

) ≥ q′
j + 1. (41)

From (40), (41), and (33),

�i
(
kN ′

u
,
(
q′ − 1

)
N ′
d

, qN ′
s

) ≥
{
q′
i − 1 if i ∈N ′

d

qi if i ∈N ′
s ∪ {j, r}.

(42)

We now look at the different possibilities, depending on the subsets of agents to which r
and j enter in this Step C.1.

First, j ∈Nu and r ∈Nd . ThenNu =N ′
u,Nd =N ′

d , andNs =N ′
s. By (42),

�i
(
kNu ,

(
q′ − 1

)
Nd

, qNs
) ≥

{
q′
i − 1 if i ∈Nd
qi if i ∈Ns .

Second, j ∈Nu and r /∈Nd . Then Nu =N ′
u, Nd =N ′

d \ {r} and Ns =N ′
s ∪ {r}. By (33),

(kNu , (q′ − 1)Nd , qNs ) = (kN ′
u

, (q′ − 1)N ′
d

, qN ′
s
). Then, by (42),

�i
(
kNu ,

(
q′ − 1

)
Nd

, qNs
) ≥

{
q′
i − 1 if i ∈Nd
qi if i ∈Ns .

Third, j /∈Nu and r ∈Nd . ThenNu =N ′
u \ {j},Nd =N ′

d , andNs =N ′
s ∪ {j}. By (42) and

(R2.1),

�j
(
kNu ,

(
q′ − 1

)
Nd

, qNs
) ≥ qj and �i

(
kNu ,

(
q′ − 1

)
Nd

, qNs
) ≥

{
q′
i − 1 if i ∈Nd
qi if i ∈Ns \ {j}.
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Fourth, j /∈Nu and r /∈Nd . ThenNu =N ′
u \ {j},Nd =N ′

d \ {r}, andNs =N ′
s ∪ {j, r}, and

by (33), (kN ′
u

, (q′ − 1)Nd , qNs\{j} ) = (kN ′
u

, (q′ − 1)N ′
d

, qN ′
s
). By (42) and (R3.1),

�j
(
kNu ,

(
q′ − 1

)
Nd

, qNs
) ≥ qj and �i

(
kNu ,

(
q′ − 1

)
Nd

, qNs
) ≥

{
q′
i − 1 if i ∈Nd
qi if i ∈Ns \ {j}.

Then, in all four cases, we have

�i
(
kNu ,

(
q′ − 1

)
Nd

, qNs
) ≥

{
q′
i − 1 if i ∈Nd
qi if i ∈Ns.

Hence, by (1) in the definition of same-sidedness and the fact thatNu �= ∅,

�i
(
kNu ,

(
q′ − 1

)
Nd

, qNs
) =

{
q′
i − 1 if i ∈Nd
qi if i ∈Ns .

(43)

This finishes the proof of (L4.2) for the case t = 1. Suppose t ≥ 2.

Induction hypothesis (IH.L4.2) . LetN ′
s,Nu,

N ′
d , and q′ be the output of Step C.(t − 1), and let N ′′

s , N ′′
u , N ′′

d , and q′′ be its input;
observe that ∅ �=N ′

u ⊂N ′′
u holds. Then

�i
(
kN ′

u
,
(
q′′ − 1

)
N ′
d

, q′
N ′
s

) =
{
q′′
i − 1 if i ∈N ′

d

q′
i if i ∈N ′

s .
(44)

We first prove that (44) implies (40). Then, to obtain (43), the proof follows from (40)
with the same argument used in the case t = 1.

Let j′ ∈N ′′
u and r′ ∈N ′′

d be the agents who play at Step C.(t− 1).If r ′ /∈N ′
d , then q′

i = q′′
i

for all i ∈ N ′
d . Therefore, (44) implies (40) and the proof follows as in the case t = 1. If

r ′ ∈ N ′
d , then q′

i = q′′
i for all i ∈ N ′

d \ {r′} and q′
r′ = q′′

r′ − 1. Then, as q′′
r′ − 1 > q′

r′ − 1, by
(R3.1) and (44),

�r′
(
kN ′

u
,
(
q′ − 1

)
N ′
d

, q′
N ′
s

) ≥ q′
r′ − 1 (45)

�i
(
kN ′

u
,
(
q′ − 1

)
N ′
d

, q′
N ′
s

) ≥
{
q′
i − 1 if i ∈N ′

d \ {
r ′

}
q′
i if i ∈N ′

s.
(46)

Then (45) and (46) imply (40), and the proof of (L4.2) follows as in the case t = 1.

Lemma 5. Let � : RN →X be a sequential allotment rule, and let Ns, Nu, Nd , and q be
the output of the MIA. Then the following two conditions hold.

(L5.1) IfNu = ∅, then �(0Nd , qNs ) = q.

(L5.2) IfNu �= ∅, thenNd = ∅ and �(kNu , qNs ) = q.
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Proof. Suppose the output of the algorithm is the output of Stage B. Then, by Lemma 3,

�(kNu , qNs , qNd ) =�(0Nd , qNs , qNu ) = q. (47)

Assume Nu = ∅. Then (L5.1) follows from (47). Assume Nu �= ∅. Since the MIA does not
move to Stage C,Nd = ∅. Then (L5.2) follows from (47).

Now suppose the output of the MIA is the output of Stage C. Then (L5.1) follows from
(L4.1). To show (L5.2), assume Nu �= ∅. As Ns, Nu, Nd , and q is the output of the MIA,
Nd = ∅. By (L4.2), for all i ∈Ns,

�i(kNu , qNs ) = qi. (48)

Let j ∈Nu be arbitrary. We first show that �j(kNu , qNs ) ≥ qj holds by distinguishing be-
tween two cases.

Case 1: Suppose j has not played throughout Stage C. Let N∗
s , N∗

u , N∗
d , and q∗ be the

output of Stage B in the path to the final output Ns, Nu, Nd , and q of the MIA. Hence,
N∗
d �= ∅, j ∈Nu ⊂N∗

u , q∗
i = qi for all i ∈N∗

s ∪ {j}, and q∗
i ≥ qi for all i ∈N∗

d . By Lemma 3,
�(kN∗

u
, q∗
N∗
s

, q∗
N∗
d

) = q∗. Hence, �i(kN∗
u

, qN∗
s

, q∗
N∗
d

) = qi for all i ∈N∗
s ∪ {j}.

Let i ∈ N∗
d . Then �i(kN∗

u
, qN∗

s
, q∗
N∗
d

) ≥ qi. By (R3.1), �i(kN∗
u

, qN∗
s

, q∗
N∗
d\{i}, qi ) ≥ qi,

�j(kN∗
u

, qN∗
s

, q∗
N∗
d\{i}, qi ) ≥ qj , and�i′(kN∗

u
, qN∗

s
, q∗
N∗
d\{i}, qi ) ≥ qi′ for all i′ ∈N∗

d \ {i} (if any).

By iteratively applying (R3.1) to all remaining agents in N∗
d \ {i} (if any), we obtain that

for the arbitrarily fixed agent j ∈Nu,

�j(kN∗
u

, qN∗
s

, qN∗
d

) ≥ qj . (49)

Let i ∈ N∗
u \Nu. By strategy-proofness, �i(kN∗

u
, qN∗

s
, qN∗

d
) ≥ �i(kN∗

u\{i}, qN∗
s

, qN∗
d

, qi ).
By replacement monotonicity and (49), qj ≤ �j(kN∗

u
, qN∗

s
, qN∗

d
) ≤ �j(kN∗

u\{i}, qN∗
s

, qN∗
d

,
qi ). Iteratively applying the same argument to all remaining agents in (N∗

u \ {i}) \ Nu
(if any), we obtain that for the arbitrarily fixed agent j ∈ Nu, qj ≤ �j(kNu , qNs , qNd ) =
�j(kNu , qNs ).

Case 2: Suppose j has played throughout Stage C. Let Step C.t be last step at which
agent j has played, and let N∗

s , N∗
u , N∗

d , and q∗ be the input of Step C.t in the path to the
final outputNs,Nu,Nd , and q of the MIA. By definition, j ∈N∗

u and

q∗
j + 1 ≤�j

(
kN∗

u
,
(
q∗ − 1

)
N∗
d

, q∗
N∗
s

)
. (50)

As agent j does not play anymore, qj = q∗
j + 1. Therefore, (50) can be written as

qj ≤�j
(
kN∗

u
,
(
q∗ − 1

)
N∗
d

, q∗
N∗
s

)
. (51)

Let N̂s, N̂u, N̂d , and q̂ be the output of Step C.t.

Claim 4. We have (kN∗
u

, (q∗ − 1)N∗
d

, q∗
N∗
s

) = (kN̂u , (q∗ − 1)N̂d , q̂N̂s ).

Proof. As j ∈ Nu, N̂u = N∗
u . Let r ∈ N∗

d be the agent who plays at Step C.t.b. Then
q̂i = q∗

i for all i ∈N∗
s ∪N∗

d \ {r} and q̂r = q∗
r − 1. If N̂d =N∗

d , then N̂s =N∗
s and (kN∗

u
, (q∗ −
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1)N∗
d

, q∗
N∗
s

) = (kN̂u , (q∗ − 1)N̂d , q̂N̂s ) holds trivially. If N̂d =N∗
d \ {r}, thenN∗

s = N̂s \ {r} and
(kN∗

u
, (q∗ − 1)N∗

d
, q∗
N∗
s

) = (kN̂u , (q∗ − 1)N̂d , q̂N̂s\{r}, q
∗
r − 1) = (kN̂u , (q∗ − 1)N̂d , q̂N̂s ).

Since N̂u �= ∅, we can apply (L4.2) to obtain

�i
(
kN̂u ,

(
q∗ − 1

)
N̂d

, q̂N̂s
) =

{
q∗
i − 1 if i ∈ N̂d
q̂i if i ∈ N̂s .

If i ∈ N̂s, then i ∈Ns and qi = q̂i. If i ∈ N̂d , then i ∈Ns because Nd = ∅ and i is selected
to play at least once at some Step C.t ′.b with t < t ′. Then, by definition of qi and the fact
that i ∈ N̂d , qi ≤ q̂i − 1 ≤ q∗

i − 1. Then, as in Case 1, by iteratively applying (R3.1) to all
i ∈ (N̂s ∪ N̂d ), strategy-proofness to all i ∈ N̂u \Nu, and replacement monotonicity to j,
we obtain that

�j
(
kN̂u ,

(
q∗ − 1

)
N̂d

, q̂N̂s
) ≤�j(kN̂u , qN̂d , qN̂s ) ≤�j(kNu , qNu ). (52)

Therefore, by the Claim 4 above, (51), and (52), qj ≤�j(kNu , qNs ).
Hence, qj ≤ �j(kNu , qNs ) holds, independently of whether or not j plays through-

out Stage C. Since j was arbitrary, for all j ∈ Nu, qj ≤ �j(kNu , qNs ). Thus, by (48) and
feasibility of q,�(kNu , qNs ) = q.
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