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On Groves mechanisms for costly inclusion
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We investigate Groves mechanisms for economies where (i) a social outcome
specifies a group of winning agents, and (ii) a cost function associates each group
with a monetary cost. In particular, we characterize both (i) the class of cost func-
tions for which there are Groves mechanisms such that the agents cover the costs
through voluntary payments, and (ii) the class of cost functions for which there are
envy-free Groves mechanisms. It follows directly from our results that whenever
production efficient and envy-free allocations can be implemented in dominant
strategies, this can moreover be done while funding production through voluntary
payments.
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1. Introduction

We consider the problem of selecting a group of agents to receive a service and then allo-
cating the associated costs, a remarkably prevalent problem faced by a variety of public
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enterprises and private firms. Across the rich collection of applications considered in
the literature,1 some common themes have emerged: the group of beneficiaries should
maximize surplus (production efficiency), the costs should be covered without outside
subsidy (no-deficit), nobody should contribute more than he is willing (voluntary par-
ticipation), and the allocation should be fair (which can be formalized many ways; we
consider no-envy). In this article, we thoroughly investigate the implementation of these
objectives in dominant strategy equilibrium (strategy-proofness) when costs are known
but valuations are private information.

For the first-best scenario—where both costs and valuations are known—it is a clas-
sical insight that in order to maximize some notion of social welfare, (i) marginal cost
pricing is optimal when costs are convex and symmetric, due to standard arguments
involving supply and demand; and (ii) deviations from marginal cost pricing may be
optimal otherwise, which has been particularly investigated in the context of pricing
public utilities (Ramsey (1927); Manne (1952); Boiteux (1956); Baumol and Bradford
(1970)). Moreover, if it is known that each agent’s valuation is sufficiently high, then
the cost of serving all agents can be directly allocated on the basis of normative princi-
ples; this is the approach taken in the large literature on axiomatic cost allocation (see
Young (1985a) and Algaba, Fragnelli, and Sánchez-Soriano (2019) for overviews). That
said, these approaches are problematic when valuations are private information, as we
cannot directly set prices using demand information and it may be inefficient to serve
all agents unconditionally.

For the scenario we consider—where costs are known but valuations are not—there
is an active literature on mechanism design for costly inclusion environments that has
grown out of its seminal contributions (Young (1985b); Young (1998); Moulin (1999);
Moulin and Shenker (2001)). It is well known that the mechanisms satisfying produc-
tion efficiency and strategy-proofness are precisely the Groves mechanisms in a variety of
models, including this one (Groves (1973); Green and Laffont (1979); Holmström (1979)),
and early in this literature it was established that when the cost function is both mono-
tone and concave (but not additive), no Groves mechanism satisfies no-deficit, satis-
fies voluntary participation, and never assigns positive transfers (Moulin and Shenker
(2001)). Since then, the literature has primarily focused on monotone and concave cost
functions (possibly with additional structure) while abandoning production efficiency in
favor of precisely equating total contributions to total costs (Deb and Razzolini (1999a);
Deb and Razzolini (1999b); Ohseto (2000); Mutuswami (2004); Ohseto (2005); Yu (2007);
Ohseto (2009); Massó, Nicolò, Sen, Sharma, and Ülkü (2015); Hashimoto and Saitoh
(2016)).2

1Examples include the overhead costs faced by branches of a firm (Shubik (1962)), the runway costs faced
by airlines (Littlechild and Owen (1973)), the costs of common water resources such as multipurpose reser-
voirs and Tennessee Valley Authority projects (Straffin and Heaney (1981); Young, Okada, and Hashimoto
(1982)), and the costs of networks such as those for cable television (Sharkey (1995)) and multicast messages
(Herzog, Shenker, and Estrin (1997); Feigenbaum, Papadimitriou, and Shenker (2001)).

2As notable exceptions, group strategy-proofness has been investigated without any cost function restric-
tions (Juarez (2013)), and approximate versions of axioms have been thoroughly investigated by computer
scientists (see Feigenbaum and Shenker (2004) for an overview).
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A few simple observations suggest that Groves mechanisms merit further investi-
gation for costly inclusion environments. First, if costs are additive, then the classical
prescription of marginal cost pricing (adapted to allow for personalized prices) trivially
yields a Groves mechanism that satisfies no-deficit and voluntary participation, and
that moreover satisfies no-envy when costs are symmetric: simply ask each agent if he
is willing to pay his constant inclusion cost. Second, if we expand the model to allow
for infinite costs modeling infeasibility, then we include auctions with identical objects
where agents have unit demand, in which case the Vickrey mechanism (Vickrey (1961))
is a Groves mechanism that achieves all of our objectives.3 These positive observations
are mitigated by the fact that the expanded model also allows for binary public goods,
for which a well-known version of the free-rider problem states that no Groves mecha-
nism satisfies no-deficit and voluntary participation (see, for example, Green and Laf-
font (1979)). Taken together, these observations establish that Groves mechanisms have
a limited but nontrivial scope for success. What, then, is this scope?

To answer this question, we introduce inclusion cost coverage as a generalization of
nondecreasing average costs from quantity-based cost functions to set-based cost func-
tions; a similar generalization was done in the context of cooperative games for convex-
ity (Shapley (1971)). We also introduce exclusion pivot mechanisms, variants of standard
pivot mechanisms4 that differ only in that when an agent’s peers maximize their surplus
without him, they are restricted to selecting a group that excludes him. First, we show
that the cost function satisfies inclusion cost coverage if and only if there are Groves
mechanisms that satisfy no-deficit and voluntary participation if and only if each ex-
clusion pivot mechanism is such a mechanism (Theorem 1). Second, we show that the
cost function is convex and symmetric if and only if there are envy-free Groves mecha-
nisms if and only if each exclusion pivot mechanism is such a mechanism (Theorem 2).
Because convexity is a stronger requirement than inclusion cost coverage, it follows di-
rectly that whenever production efficient and envy-free allocations can be implemented
in dominant strategies, this can moreover be done while funding production through
voluntary payments (see Figure 1). Remarkably, this is precisely the case of monotonic
supply curves first considered by the classical literature, and our proof involves estab-
lishing that for these environments, the exclusion pivot mechanisms have considerable
structure involving the supply curve and the reported demand curve.

Altogether, our results both (i) reinforce the justification for abandoning produc-
tion efficiency in favor of balancing the budget when costs are concave, and (ii) suggest
Groves mechanisms merit further study when costs are convex. Our findings apply to

3In fact, there is a large literature on fair Groves mechanisms for environments with indivisible objects
and money. Our paper is most closely related to those that have investigated envy-free Groves mecha-
nisms (Pápai (2003); Ohseto (2006); Yengin (2012); Yengin (2017)); the primary difference is that we allow
for production.

4The family of exclusion pivot mechanisms is essentially single-valued: each exclusion pivot mecha-
nism is distinguished by a method of breaking ties when multiple groups maximize surplus, which has no
welfare consequences. Similarly, the family of standard pivot mechanisms is essentially single-valued. We
remark that in other models, it is common to refer to the standard pivot mechanism as the VCG mechanism
(Vickrey (1961); Clarke (1971); Groves (1973)).
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Figure 1. Summary of results. (a) For simple auction environments, the Vickrey mechanism
is a Groves mechanism that satisfies no-deficit, voluntary participation, and no-envy (Vickrey
(1961)). When providing a binary public good, no Groves mechanism satisfies no-deficit and
voluntary participation, and no Groves mechanism satisfies no-envy; this is a version of the clas-
sic free-rider problem (see, for example, Green and Laffont (1979)). When costs are monotone
and concave (but not additive), no Groves mechanism satisfies no-deficit, satisfies voluntary par-
ticipation, and never assigns positive transfers (Moulin and Shenker (2001)). (b) For any cost
function in the dark gray region, no Groves mechanism satisfies no-deficit and voluntary partic-
ipation, and no Groves mechanism satisfies no-envy. For any cost function in the medium gray
region, the exclusion pivot mechanisms satisfy no-deficit and voluntary participation, but no
Groves mechanism satisfies no-envy. For any cost function in the light gray region, the exclusion
pivot mechanisms satisfy no-deficit, voluntary participation, and no-envy. We establish logical
relations justifying how the medium gray region is drawn in Appendix C.

auctions, public goods, natural monopolies, two-sided markets, minimum cost span-

ning trees, and labor markets that involve revenue functions instead of cost functions;

see Section 4.
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2. Model

2.1 Costly inclusion environments

We consider the following class of production economies with incomplete information
and no consumption externalities.

Definition. A (costly inclusion) environment is a pair (N , C ), where

• N is a finite and nonempty set of agents. For convenience, we write N = {1, 2, � � � , n}.

• For each i ∈ N , a bundle (ti, xi ) ∈ R× {0, 1} specifies (i) a transfer of money, and (ii)
whether or not i is a winner, with 1 representing that he is. An allocation (t, W ) ∈
RN × 2N specifies both a list of monetary transfers t and a group of winners W ;
this can also be written (t, x) ∈ RN × {0, 1}N to emphasize the bundle each agent
receives.

• Money can be used to produce a group of winners; we call an agent who does not
win a loser. This is summarized by the cost function, C : 2N → R ∪ {∞} with C(∅) =
0, which specifies the monetary cost of producing each winning group. We let W
denote the collection of groups with finite cost.5

• Each i ∈ N has a valuation vi ∈ R, which represents the preference relation Ri over
bundles such that for each pair (ti, xi ), (t ′i , x

′
i ) ∈R× {0, 1},

(ti, xi ) Ri

(
t ′i , x

′
i

)
if and only if xivi + ti ≥ x′

ivi + t ′i .

Each agent’s valuation is his private information. We use Vi to denote R when em-
phasizing that it is the set of possible valuations for i, and we use V ≡ ×Vi to denote
the set of possible valuation profiles.6

For convenience, whenever we refer to a generic environment we will implicitly assume
all notation introduced thus far.

Costly inclusion environments use infinite costs to model infeasible groups and neg-
ative costs to model revenues, and therefore cover many familiar environments from the
literature. For example, if there is k ∈ {1, 2, � � � , n} such that for each W ⊆N ,

C(W ) =
{

0, |W | ≤ k,

∞, |W |> k,

then we have an auction environment with k identical objects where agents have unit
demand. As a second example, if there is κ ∈ [0, ∞) such that

C(W ) =

⎧⎪⎪⎨
⎪⎪⎩

0, W = ∅,

κ, W =N ,

∞, else,

5We use ∞ to denote positive infinity and −∞ to denote negative infinity; thus for each x ∈ R, we have
∞> x>−∞. We are careful to only use addition and subtraction for real numbers.

6We consider environments where each agent’s set of possible valuations is R+ in Section 4.3.
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then we have a public good environment. Finally, if all costs are negative, and if the
associated revenue function satisfies gross substitutes, then we have a Kelso–Crawford
labor market environment with a single firm (Kelso and Crawford (1982)). We discuss
the implications of our results for these examples and others in Section 4.

2.2 Mechanisms and axioms

Because we focus on dominant strategy implementation, it is without loss of generality
to focus on (direct) mechanisms, where the agents simultaneously report their prefer-
ences to an administrator who processes the reports to determine an allocation (Gib-
bard (1973); Myerson (1981)).

Definition. Fix an environment. A transfer policy is a mapping τ : V → RN . A winner
policy is a mapping ϕ : V → 2N . A mechanism (τ, ϕ) consists of a transfer policy τ and
a winner policy ϕ. Given a winner policy ϕ and an agent i, we sometimes speak of the
associated policy for determining whether or not i is a winner, using ϕi : V → {0, 1} for
the mapping

ϕi(v) ≡
{

1, i ∈ ϕ(v),

0, i /∈ ϕ(v).

We are interested in mechanisms that satisfy desirable properties, or axioms. In par-
ticular, we consider the following five standard axioms.

Definition. Fix an environment. For each v ∈ V and each W ⊆ N , the surplus of W at
v, σv(W ), is given by

σv(W ) ≡

⎧⎪⎨
⎪⎩

∑
i∈W

vi −C(W ), W ∈ W ,

−∞, else.

A mechanism (τ, ϕ) satisfies

• production efficiency if and only if for each v ∈ V and each W ⊆ N , we have
σv(ϕ(v)) ≥ σv(W );

• strategy-proofness if and only if for each i ∈ N , each v ∈ V , and each v′
i ∈ Vi, we have

ϕi(v)vi + τi(v) ≥ ϕi(v′
i, v−i )vi + τi(v′

i, v−i );

• no-deficit if and only if for each v ∈ V , we have 0 ≥ ∑
τi(v) +C(ϕ(v));

• voluntary participation if and only if for each i ∈N and each v ∈ V , we haveϕi(v)vi+
τi(v) ≥ 0; and

• no-envy if and only if for each pair i, j ∈N and each v ∈ V , we have ϕi(v)vi + τi(v) ≥
ϕj(v)vi + τj(v).

We say that ϕ is surplus-maximizing if and only if (τ, ϕ) satisfies production efficiency.
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It follows from Holmström (1979) that the class of mechanisms satisfying produc-
tion efficiency and strategy-proofness is precisely the class of Groves mechanisms; see
Appendix A for the familiar definition. We are interested in (i) identifying the costly in-
clusion environments that have Groves mechanisms satisfying no-deficit and voluntary
participation, and (ii) identifying the costly inclusion environments that have envy-free
Groves mechanisms.

3. Results

3.1 Preliminaries

The collections of axioms we investigate are logically compatible for some environments
but not for others, and this compatibility is determined by certain properties of the cost
function. We introduce the properties that prove focal to our analysis here.

Definition. Fix an environment. For each nonempty W ⊆ N and each i ∈ W , define
the inclusion cost for i in W , Ii(W ), by

Ii(W ) ≡

⎧⎪⎪⎨
⎪⎪⎩
C(W ) −C

(
W \{i}

)
, W , W \{i} ∈ W ,

∞, W /∈ W ,

−∞, else.

The cost function satisfies

• convexity if and only if for each i ∈ N and each pair W , W ′ ⊆ N such that {i} ⊆ W ⊆
W ′, we have Ii(W ′ ) ≥ Ii(W );

• symmetry if and only if for each pair W , W ′ ⊆ N such that |W | = |W ′|, we have
C(W ) = C(W ′ ); and

• inclusion cost coverage if and only if for each nonempty W ∈ W , we have

(i) for each i ∈W , W \{i} ∈ W , and

(ii)
∑

i∈W Ii(W ) ≥ C(W ).

Both convexity and symmetry are standard properties, while inclusion cost coverage
is novel. It is easy to verify that inclusion cost coverage is (i) satisfied by any auction
environment with identical objects where agents have unit demand, and (ii) violated by
any public good environment. Moreover, as we discuss in Section 4.2, it follows from
results in the literature that inclusion cost coverage is satisfied by any Kelso–Crawford
labor market environment with a single firm.

In Appendix C, we investigate the relationship between these cost function prop-
erties and three additional standard properties: monotonicity, superadditivity, and (for
symmetric cost functions) nondecreasing average costs. In particular, we establish seven
propositions providing logical relationships among these cost function properties, most
of which are illustrated in Figure 1.
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Both of our main results also involve variants of the classic pivot mechanism (Clarke
(1971)), where each agent pays the difference between (i) the maximum surplus his
peers could receive were he absent, and (ii) the surplus his peers do in fact receive. To
highlight the distinction, we define both the standard version and our variants.

Definition. Fix an environment. A mechanism (τ, ϕ) is a standard pivot mechanism if
and only if (i) ϕ is surplus-maximizing; and (ii) for each i ∈N and each v ∈ V ,

τi(v) =
([

max
W ⊆N

σv(W )
]
−ϕi(v)vi

)
−

[
max
W ⊆N

σ(0,v−i )(W )
]

.

A mechanism (τ, ϕ) is an exclusion pivot mechanism if and only if (i) ϕ is surplus-
maximizing; and (ii) for each i ∈N and each v ∈ V ,

τi(v) =
([

max
W ⊆N

σv(W )
]
−ϕi(v)vi

)
−

[
max

W ⊆N\{i}
σ(0,v−i )(W )

]
.

The two kinds of pivot mechanisms differ in how they calculate the maximum sur-
plus that the peers of i could receive were he absent. In particular, though in both cases
the calculation treats the valuation of i as zero by using the profile (0, v−i ), the mecha-
nisms differ in what they allow the peers of i to select: a standard pivot mechanism al-
lows them to select any social alternative, while an exclusion pivot mechanism requires
them to select a group that excludes i. We remark that due to this difference, standard
pivot mechanisms are defined for more general environments where social alternatives
are not groups of agents, while exclusion pivot mechanisms are not. It is not hard to see
that standard pivot mechanisms coincide with exclusion pivot mechanisms when costs
are monotonic, as in this case the peers of i cannot improve their own surplus by in-
cluding i, but the two versions differ in general—for example, they differ for public good
provision.

Finally, each of our main results concerns one subcollection of our five axioms, and
we frequently refer to these subcollections in our proof sketches and proofs. For conve-
nience, we introduce the following shorthand terms for these sections.

Definition. A mechanism is

• autonomous if and only if it satisfies production efficiency, strategy-proofness, no-
deficit, and voluntary participation; and

• equitable if and only if it satisfies production efficiency, strategy-proofness, and no-
envy.

Equivalently, an autonomous mechanism is a Groves mechanism that satisfies no-deficit
and voluntary participation, and an equitable mechanism is an envy-free Groves mech-
anism.

3.2 Characterizations

Our first result characterizes the costly inclusion environments for which there are
Groves mechanisms satisfying no-deficit and voluntary participation.
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Theorem 1. Fix an environment. The following are equivalent:

• there is a mechanism that satisfies production efficiency, strategy-proofness, no-
deficit, and voluntary participation;

• each exclusion pivot mechanism satisfies production efficiency, strategy-proofness,
no-deficit, and voluntary participation; and

• the cost function satisfies inclusion cost coverage.

Proof sketch. See Appendix A for the formal proof and for more detailed proof
sketches of the lemmas. Recall that for our proofs, we use autonomous mechanism as a
shorthand for Groves mechanism satisfying no-deficit and voluntary participation.

The proof consists of four lemmas, and involves simplifying our problem to charac-
terizing the cost functions for which exclusion pivot mechanisms satisfy no-deficit. In
particular, we begin by verifying that the exclusion pivot mechanisms are always Groves
mechanisms that satisfy voluntary participation (Lemma A.1), then prove that whenever
any such mechanism assigns low enough transfers to satisfy no-deficit, necessarily each
exclusion pivot mechanism does as well (Lemma A.2). To establish that inclusion cost
coverage is sufficient for the existence of an autonomous mechanism, we show that for
these cost functions each exclusion pivot mechanism always requires each loser to pay
nothing and each winner to pay at least his inclusion cost, and therefore satisfies no-
deficit and is autonomous (Lemma A.3). This leaves open the possibility that exclusion
pivot mechanisms might be able to cover costs more often by charging winners more
than their inclusion costs whenever necessary, but to complete the proof we argue that
in fact if inclusion cost coverage is violated, then no exclusion pivot mechanism—and
therefore no mechanism at all—is autonomous (Lemma A.4).

Before proceeding, we provide some intuition for the proof of Lemma A.4; see this
point in the working paper version (Mackenzie and Trudeau (2022)) for a more detailed
proof sketch of the entire theorem. To begin, observe that if all costs are finite, then
at any profile where all winners have extremely high valuations and all losers have ex-
tremely low valuations, any exclusion pivot mechanism charges each winner precisely
his inclusion cost and charges each loser nothing; it follows that if all costs are finite,
then any cost function that violates inclusion cost coverage has no autonomous mecha-
nism. That said, this argument does not work for a public good cost function, such as
the following example for N = {1, 2, 3}:

C(W ) ≡

⎧⎪⎪⎨
⎪⎪⎩

0, W = ∅,

∞, ∅ �W �N ,

5, W =N .

For this example, we cannot construct profiles where we select N and charge winners
their inclusion costs because these inclusion costs are each negative infinity. Notice,
however, that at the profile (2, 2, 2), each agent pays 1—which is already not enough to
cover costs—while at the profile (100, 100, 100), matters are strictly worse as each agent
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receives 195. Indeed, as all valuations increase, each winner is more desperately needed
by the others, and is thus compensated by the exclusion pivot mechanisms accordingly.
In the formal proof, we generalize this insight to arbitrary cost functions to show that
whenever inclusion cost coverage is violated, each exclusion pivot mechanism runs a
deficit at some profile.

Our second result characterizes the costly inclusion environments for which there
are envy-free Groves mechanisms.

Theorem 2. Fix an environment. The following are equivalent:

• there is a mechanism that satisfies production efficiency, strategy-proofness, and
no-envy;

• each exclusion pivot mechanism satisfies production efficiency, strategy-proofness,
and no-envy; and

• the cost function satisfies convexity and symmetry.

Proof sketch. See Appendix B for the formal proof and for more detailed proof
sketches of the lemmas. Recall that for our proofs, we use equitable mechanism as a
shorthand for envy-free Groves mechanism.

The proof consists of three lemmas, and in contrast to the proof of our first theorem
does not begin by simplifying our problem to the study of exclusion pivot mechanisms.
Instead, we partition the set of cost functions into (i) those that violate convexity, (ii)
those that satisfy convexity but violate symmetry, and (iii) those that satisfy both con-
vexity and symmetry. In particular, we first argue that for any cost function in the first
class, we can identify a situation where one agent controls whether or not another wins
regardless of whether the latter changes his report slightly, and argue that no Groves
mechanism can address such a situation in an envy-free manner (Lemma B.1). Second,
we argue that for any cost function in the second class, we can identify a situation where
surplus is maximized by including one agent and excluding another even though the
latter has a higher valuation, which is incompatible with no-envy (Lemma B.2). Finally,
we argue that for each cost function in the third class, each exclusion pivot mechanism
has considerable structure involving the supply curve and the reported demand curve:
if q̂ is the maximum number of winners compatible with surplus maximization, then
either (i) each winner pays the q̂th-lowest marginal cost, or (ii) each winner pays the

(q̂ + 1)th-highest valuation, and in both cases there is no envy (Lemma B.3). These are
three logically distinct arguments; none of these lemmas is proved using one of the oth-
ers.

Before proceeding, we provide some intuition for the proof of Lemma B.1; see this
point in the working paper version (Mackenzie and Trudeau (2022)) for a more detailed
proof sketch of the entire theorem. Consider the following example for N = {1, 2, 3},
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which satisfies symmetry and inclusion cost coverage but violates convexity:

C(W ) ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, |W | = 0,

1, |W | = 1,

8, |W | = 2,

12, |W | = 3.

In this case, one of the violations of convexity is that agent 1 has an inclusion cost of
7 for {1, 2}, while he has a lower inclusion cost of 4 for the larger group {1, 2, 3}. This
means that whenever 1 has a valuation between 4 and 7, it may be optimal to exclude
him from the smaller group by picking {2} or it may be optimal to include him in the
larger group by picking {1, 2, 3}. In particular, if 2 has a sufficiently high valuation, then
the common member of both these groups must be included, and thus with his report
agent 3 determines whether both he and 1 are included or excluded, regardless of what 1
reports between 4 and 7. We prove that it is this feature—that an agent has no voice even
when changing his report while another controls their shared fate—that is incompatible
with equitable mechanisms. Indeed, in this example, we construct (v1, v2 ) and (v′

1, v2 )
at which our axioms imply 3 must face the same price of winning. But this is impossible
in a Groves mechanism, as the price must be precisely the externality imposed on the
other agents by changing the social outcome, and thus for these profiles must vary with
the valuation of agent 1.

4. Discussion

4.1 Costs

Because convexity implies inclusion cost coverage, Theorem 1 and Theorem 2 together
imply that whenever production efficient and envy-free allocations can be implemented
in dominant strategies, this can moreover be done while funding production through
voluntary payments. Remarkably, in this model, implementing production efficiency
while providing equal opportunities never requires outside funding (such as subsidies
from neighboring communities or borrowing from future generations) or redistribution
through taxation. That said, this goal can only be achieved when production is both
convex and symmetric.

We conclude this section by discussing some implications of our results in various
settings.

Application 1 (Auctions). As discussed in Section 2, the problem of allocating k iden-
tical objects among agents with unit demand is modeled by a cost function that (i) as-
signs zero to any group with at most k members, and (ii) assigns infinity to any group
with more than k members. Such a cost function is both convex and symmetric, so by
Theorem 1 and Theorem 2, the exclusion pivot mechanism is a Groves mechanism that
satisfies no-deficit, voluntary participation, and no-envy. Indeed, this is simply the Vick-
rey mechanism, and it is well known that it satisfies these properties (Vickrey (1961)).
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Application 2 (Public goods). As discussed in Section 2, the problem of providing a
pure public good is modeled by a cost function that (i) assigns some κ ∈ [0, ∞) to serving
everybody, (ii) assigns zero to serving nobody, and (iii) assigns infinity to serving any
strict subset of the agents that is nonempty. Such a cost function violates inclusion cost
coverage, so by Theorem 1 and Theorem 2, no Groves mechanism satisfies no-deficit
and voluntary participation, and no Groves mechanism satisfies no-envy. Indeed, this is
a well-known formalization of the classic free-rider problem (Green and Laffont (1979)).
As a particular example, the Lindahl mechanism does not satisfy either collection of
axioms because it is not strategy-proof.

Application 3 (Natural monopolies). A cost function is subadditive if and only if for
each disjoint pair W , W ′ ⊆ N , we have C(W ∪W ′ ) ≤C(W ) +C(W ′ ). The cost function is
moreover strictly subadditive if and only if the inequality is strict for some pair of groups.
It has been argued that these are the technologies that lead naturally to monopolies: if
one firm produces W and another produces W ′, then the two firms can increase profits
by merging (Baumol (1977)). Because these cost functions violate inclusion cost cover-
age, thus by Theorem 1 and Theorem 2, no Groves mechanism satisfies no-deficit and
voluntary participation, and no Groves mechanism satisfies no-envy. As discussed in
Section 1, this strengthens a previous impossibility for the subclass of subadditive cost
functions that are monotone and concave but not convex (Moulin and Shenker (2001)).

Application 4 (One-sided collusion in two-sided markets). Consider an economy with
money and indivisible objects, where each individual desires at most one object and
has preferences summarized by his valuation. Suppose that there are n buyers, each
endowed with no object, and m sellers, each endowed with one object. In such an econ-
omy, there are Walrasian price vectors (Koopmans and Beckmann (1957); Gale (1960)),
and moreover these vectors form a bounded lattice (Shapley and Shubik (1972)). It is
well known that each minimum-price Walrasian mechanism, which uses reported buyer
valuations to (i) calculate the minimum Walrasian price vector, and (ii) assign the buy-
ers what they would receive in an associated Walrasian outcome, is strategy-proof (De-
mange (1982); Leonard (1983)).

Our analysis applies to the special case where the objects are identical; the classic
example is a market for horses (Böhm-Bawerk (1888)). Indeed, suppose that the n buyer
valuations are private information while the m seller valuations are common knowledge,
and suppose that the buyers wish to coordinate on an outcome by means of a mecha-
nism. If the seller valuations are ordered S1 ≤ S2 ≤ · · · ≤ Sm, then feasibility is modeled
by the cost function that (i) assigns zero to the empty set, (ii) assigns

∑q
q′=1 Sq′ to any

group of size q ≤ m, and (iii) assigns infinity to any group with more than m members.
This cost function is both convex and symmetric, so by Theorem 1 and Theorem 2, the
exclusion pivot mechanisms are Groves mechanisms that satisfy no-deficit, voluntary
participation, and no-envy. Indeed, in this case each exclusion pivot mechanism is a
minimum-price Walrasian mechanism.

Application 5 (Minimum cost spanning trees). Suppose there is a source denoted 0,
an edge is a distinct pair i, j ∈ N ∪ {0}, and for each edge ij there is an associated cost
cij ∈ R+. Moreover, for each W ⊆N ,
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• a spanning tree (for W ) is a collection of edges such that for each i ∈ W , there is a
unique path from 0 to i;

• the cost of a spanning tree is the sum of the costs of its edges; and

• C(W ) is the minimum cost of a spanning tree.

Such minimum cost spanning tree cost functions (Claus and Kleitman (1973)) have been
used to model the provision of utilities (such as electricity, water, sewage, and gas) and
multicast transmissions.

Since Bird (1976), the literature has largely focused on the problem of sharing the
cost C(N ) using cooperative game theory, implicitly requiring all agents to be con-
nected. By contrast, our analysis applies when agents have finite valuations that are
private information, in which case it may be inefficient to connect everybody. It is not
difficult to see that, unless connecting everybody directly to the source always mini-
mizes costs, the cost function does not satisfy inclusion cost coverage, so by Theorem 1
and Theorem 2, no Groves mechanism satisfies no-deficit and voluntary participation,
and no Groves mechanism satisfies no-envy.

4.2 Revenues

When all costs are nonnegative, it is natural to imagine that C(W ) units of divisible
money are used as an input, producing an indivisible good for members of W to con-
sume. When all costs are nonpositive, however, it is more natural to imagine that mem-
bers of W provide indivisible labor as an input, producing −C(W ) units of divisible
money. In this case, we can interpret N as a set of workers and interpret the set of win-
ners W as the group of workers that are employed.7

Indeed, for each environment (N , C ), each valuation profile v, and each agent i, we
can define the revenue function R ≡ −C and the reservation wage ri ≡ −vi; observe that
if i is willing to pay vi to work, then he is willing to receive ri to work. This alternative
notation allows us to rewrite our axioms—for example, production efficiency requires
that the group of winners maximizes the difference between revenue and the sum of the
reservation wages, and no-deficit requires that the sum of the transfers to the agents is
no greater than the produced revenue. As this change of notation has no impact on the
logic of our arguments, our results can be applied to labor market environments that
are specified by revenue (or “gross product”) functions. To avoid duplicating all of our
definitions with this alternative notation, we simply illustrate this point using the gross
substitutes condition of Kelso and Crawford (1982).

Definition. Fix a set of agents N = {1, 2, � � � , n}. A revenue function is a mapping R :
2N → R ∪ {−∞} with R(∅) = 0. In the context of a revenue function, we let W denote
the collection of groups with finite revenue. For each salary vector s ∈ RN , we let D(s)
denote the firm’s demand set, arg maxW ∈W R(W ) − ∑

i∈W si. We say that R satisfies

7We thank an anonymous referee for suggesting this application.
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• gross substitutes if and only if for each pair s, s′ ∈ RN such that for each i ∈ N we
have s′i ≥ si, and for each W ∈ D(s), there is a superset of {i ∈W |si = s′i} in D(s′ ); and

• concavity if and only if for each i ∈ N and each pair W , W ′ ⊆ N such that {i} ⊆ W ⊆
W ′ and W ′ ∈ W , we have

(i) W ∈ W , and

(ii) R(W ′ ) −R(W ′\{i}) ≤R(W ) −R(W \{i}).

If a revenue function satisfies gross substitutes, then it satisfies concavity.8 That said,
the two conditions are not equivalent: Kelso and Crawford (1982) provide a revenue
function that satisfies concavity but violates gross substitutes.

To simplify the interpretation, suppose that there is a single firm, and suppose that
R(W ) specifies the revenue generated by this firm when it hires the members of W . If
R satisfies gross substitutes, if the firm makes offers to workers who either tentatively
accept or reject these offers, and if this is done iteratively in accordance with the salary-
adjustment process, then this process converges to a discrete generalization of a com-
petitive equilibrium in a finite number of steps (Kelso and Crawford (1982)). We are
interested in comparing this dynamic procedure to a static alternative, where workers
report their reservation wages to the firm, which then uses these reports to determine
whom to hire and how much to pay each worker.

In fact, it follows immediately from our results that if the revenue function satis-
fies gross substitutes, then (i) each exclusion pivot mechanism is a Groves mechanism
that satisfies no-deficit and voluntary participation, and (ii) there is an envy-free Groves
mechanism if and only if workers are alike in production in that R is a symmetric func-
tion. Indeed, if R satisfies gross substitutes, then R is concave, so the associated cost
function C = −R is convex, so C satisfies inclusion cost coverage; the conclusions then
follow from Theorem 1 and Theorem 2. On the other hand, if there are envy-free Groves
mechanisms, then the revenue function satisfies gross substitutes: by Theorem 2, we
have that C satisfies symmetry and convexity, so R satisfies symmetry and concavity, so
R satisfies gross substitutes (Kelso and Crawford (1982); Theorem 6).9 Finally, if the rev-
enue function satisfies concavity but not gross substitutes, then the dynamic procedure
need not work, but the exclusion pivot mechanism satisfies all of our axioms except
no-envy.

8This implication was first established under monotonicity and the requirement that all groups have
finite revenue (Gul and Stacchetti (1999); Lemma 5), and has since been shown to hold even without mono-
tonicity (Paes Leme (2017); Theorem 2.2). In fact, this implication holds in general for our model; we briefly
sketch the straightforward argument. First, argue that gross substitutes implies that if W belongs to W , then
all of its subsets belong to W . Second, use the argument of Paes Leme (2017) to show that gross substi-
tutes implies that for each distinct pair i, j ∈ N and each W ⊆ N\{i, j} such that W ∪ {i, j} ∈ W , we have
R(W ∪ {i, j}) − R(W ∪ {i}) ≤ R(W ∪ {j}) − R(W ). Finally, show that this version of submodularity implies
concavity.

9Kelso and Crawford (1982) consider revenue functions for which all groups have finite revenue, but their
proof extends directly to our setting.
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4.3 Preferences

For our main results, we assume that each agent has quasi-linear preferences, and that
moreover the set of admissible valuations is R. How sensitive are our results to these
assumptions? We consider both smaller preference domains and larger preference do-
mains.10

First, for many economic applications, it is common knowledge that inclusion is a
good that is costly to provide; thus in the working paper version (Mackenzie and Trudeau
(2022)), we provide analogues to our main results that apply when (i) each agent’s set of
admissible valuations is R+, and (ii) each group is necessarily associated with a non-
negative cost. To state our results, we first introduce the modified cost function that
associates each group with the cost its members would face if they were free to add any
outsiders:

C⊇(W ) = min
{W ′⊆N|W ′⊇W }

C
(
W ′).

In the working paper version (Mackenzie and Trudeau (2022)), we prove that for non-
negative valuations and nonnegative costs, (i) there are autonomous mechanisms if and
only if each standard pivot mechanism is autonomous if and only if C⊇ satisfies inclu-
sion cost coverage (Theorem 3), and (ii) there are equitable mechanisms if and only if
each standard pivot mechanism is equitable if and only if C⊇ is convex and symmetric
(Theorem 4). It follows that when costs are moreover monotonic, our main results apply
without modification.

Second, suppose we allow for income effects by relaxing quasi-linearity. In partic-
ular, suppose we assume only that for each agent i, (i) there is a willingness to pay wi

such that he is indifferent between (0, 0) and (−wi, 1), and (ii) more money is better.
It is clear that whenever there is no desirable mechanism with quasi-linearity, there is
no desirable mechanism with this larger preference domain: otherwise the restriction
to quasi-linear profiles would be desirable. On the other hand, whenever there are de-
sirable quasi-linear mechanisms, one of them is an exclusion pivot mechanism; in this
case, we can simply ask each agent to report his willingness to pay and use the exclusion
pivot mechanism treating the reports as quasi-linear valuations.11 With the exception
of production efficiency, it is not hard to see that this extended mechanism inherits all
axioms satisfied by its quasi-linear restriction: no-envy follows from the fact that losers
always receive zero transfer, while the other axioms are trivial. The catch is that with-
out quasi-linearity, maximizing the sum of the willingness to pay reports minus the cost
does not imply there is no Pareto improvement that burns the same amount of money;
this offers an intriguing direction for future work.

10We thank two anonymous referees for suggesting that we consider these two directions.
11This method of extending mechanisms beyond quasi-linear domains using the fixed reference bun-

dle (0, 0) has been previously considered for auctions (Saitoh and Serizawa (2008); Sakai (2008)), while an
interesting variant in which reference bundles differ across agents been previously considered for public
goods (Hashimoto and Saitoh (2016)).
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Appendix A

In this appendix, we prove Theorem 1. We begin by stating (a corollary of a modification
of) a fundamental theorem.

Definition. Fix an environment. A mechanism (τ, ϕ) is a Groves mechanism if and
only if (i) ϕ is surplus-maximizing, and (ii) for each i ∈ N , there is θi : V−i → R such that
for each v ∈ V ,

τi(v) =
([

max
W ⊆N

σv(W )
]
−ϕi(v)vi

)
+ θi(v−i ).

Theorem H (Holmström (1979)). Fix an environment. A mechanism is production effi-
cient and strategy-proof if and only if it is a Groves mechanism.12

Our first lemma states that each exclusion pivot mechanism satisfies all require-
ments to be autonomous except possibly no-deficit. This is essentially a corollary of
Theorem H; we include the formal statement, together with its short proof, for com-
pleteness.

Lemma A.1. Fix an environment. Each exclusion pivot mechanism satisfies production
efficiency, strategy-proofness, and voluntary participation.

Proof. Let (τ, ϕ) be an exclusion pivot mechanism. For i ∈ N and each v−i ∈ V−i, we
can define θi(v−i ) ≡ −[maxW ⊆N\{i} σ(0,v−i )(W )]; as i ∈ N was arbitrary, thus by Theorem
H, (τ, ϕ) is production efficient and strategy-proof.

To see that (τ, ϕ) satisfies voluntary participation, let i ∈N and let v ∈ V . Then

max
W ⊆N

σv(W ) ≥ max
W ⊆N\{i}

σv(W )

= max
W ⊆N\{i}

σ(0,v−i )(W ),

so τi(v) ≥ −ϕi(v)vi. It follows immediately that (τ, ϕ) satisfies voluntary participation.

Our second lemma states that the existence of autonomous mechanisms can always
be determined using the exclusion pivot mechanisms. We begin by assuming there is an
autonomous mechanism (τ, ϕ); the proof then consists of two steps.

First, we show that the exclusion pivot mechanism with winner policy ϕ, (τp|ϕ, ϕ),
is autonomous. This is shown by contradiction: if not, then by the previous lemma
(τp|ϕ, ϕ) satisfies all requirements but no-deficit, so there is some profile v and some
agent i such that i receives a higher transfer at v under (τp|ϕ, ϕ) than under (τ, ϕ). But

12Though the original theorem of Holmström (1979) does not involve cost functions, the straightfor-
ward adaptation of its proof goes through line-by-line for the modified version with cost functions. Our
statement is in fact a corollary of the modified theorem, which follows because the domain ×NR is a topo-
logically connected space.



Theoretical Economics 18 (2023) On Groves mechanisms for costly inclusion 1197

then we can construct a profile (xi, v−i ) where i loses and pays under (τ, ϕ), contradict-
ing that this mechanism satisfies voluntary participation.

Second, we show that each exclusion pivot mechanism (τp, ϕp ) is autonomous. By
taking advantage of the structure of exclusion pivot transfer policies, we write the dif-
ference in net transfers at an arbitrary profile between (τp|ϕ, ϕ) and (τp, ϕp ) as the dif-
ference in the costs of the selected groups, from which we can conclude that neither
mechanism runs a deficit at the given profile. By the previous lemma, we are done.

Lemma A.2. Fix an environment. If there is an autonomous mechanism, then each ex-
clusion pivot mechanism is autonomous.

Proof. Assume (τ, ϕ) is autonomous. By Theorem H, since (τ, ϕ) satisfies production
efficiency and strategy-proofness, thus for each i ∈ N , there is θi : V−i → R such that for
each v ∈ V ,

τi(v) =
([

max
W ⊆N

σv(W )
]
−ϕi(v)vi

)
+ θi(v−i ).

Let (τp|ϕ, ϕ) be the exclusion pivot mechanism whose winner policy is ϕ.

◦ Step 1. The mechanism (τp|ϕ, ϕ) is autonomous.
Assume, by way of contradiction, that (τp|ϕ, ϕ) is not autonomous. Then by

Lemma A.1, (τp|ϕ, ϕ) violates no-deficit.
Since (τ, ϕ) satisfies no-deficit and (τp|ϕ, ϕ) does not, thus there is v ∈ V such that∑

τ
p|ϕ
i (v) > −C

(
ϕ(v)

)
≥

∑
τi(v).

Then there is i ∈N such that([
max
W ⊆N

σv(W )
]
−ϕi(v)vi

)
−

[
max

W ⊆N\{i}
σ(0,v−i )(W )

]
= τ

p|ϕ
i (v)

> τi(v)

=
([

max
W ⊆N

σv(W )
]
−ϕi(v)vi

)
+ θi(v−i ).

It cannot be that ϕ(v) ⊆ N\{i}; else as ϕ is surplus-maximizing, thus for each W ⊆
N\{i},

σ(0,v−i )
(
ϕ(v)

) = σv
(
ϕ(v)

)
≥ σv(W )

= σ(0,v−i )(W ),

so [maxW ⊆N σv(W )] = σv(ϕ(v)) = σ(0,v−i )(ϕ(v)) = [maxW ⊆N\{i} σ(0,v−i )(W )], and thus

τi(v) < τ
p|ϕ
i (v) = 0, contradicting that (τ, ϕ) satisfies voluntary participation.
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Thus i ∈ ϕ(v). Define

σ∗ ≡ max
{W ⊆N|i∈W }

σ(0,v−i )(W ).

Since i ∈ ϕ(v) and ϕ is surplus-maximizing, thus

σ∗ ≥ σ(0,v−i )
(
ϕ(v)

)
= σv

(
ϕ(v)

) − vi

≥ σv(∅) − vi

= −vi,

so σ∗ > −∞. Define xi ∈ Vi by xi ≡ −(σ∗ + 1).
By construction, at profile (xi, v−i ), each group that includes i receives negative sur-

plus and thus cannot be chosen over ∅, so surplus is maximized at a subset of N\{i}. But
then since θi(v−i ) < −[maxW ⊆N\{i} σ(0,v−i )(W )], thus

τi(xi, v−i ) =
([

max
W ⊆N

σ(xi ,v−i )(W )
]
− 0

)
+ θi(v−i )

<
([

max
W ⊆N

σ(xi ,v−i )(W )
]
− 0

)
−

[
max

W ⊆N\{i}
σ(0,v−i )(W )

]

=
([

max
W ⊆N\{i}

σ(xi ,v−i )(W )
]
− 0

)
−

[
max

W ⊆N\{i}
σ(xi ,v−i )(W )

]
= 0,

contradicting that (τ, ϕ) satisfies voluntary participation.

◦ Step 2. Each exclusion pivot mechanism is autonomous.
Let (τp, ϕp ) be an exclusion pivot mechanism and let v ∈ V . Then the net transfer at

v according to (τp|ϕ, ϕ) can be written∑
τ

p|ϕ
i (v) =

[∑([
max
W ⊆N

σv(W )
]
−ϕi(v)vi

)
−

[
max

W ⊆N\{i}
σ(0,v−i )(W )

]]

=
[∑([

max
W ⊆N

σv(W )
]
−

[
max

W ⊆N\{i}
σ(0,v−i )(W )

])]
−

[∑
ϕi(v)vi

]
.

Similarly, the net transfer at v according to (τp, ϕp ) can be written∑
τ

p
i (v) =

[∑([
max
W ⊆N

σv(W )
]
−

[
max

W ⊆N\{i}
σ(0,v−i )(W )

])]
−

[∑
ϕ

p
i (v)vi

]
.

The difference between these net transfers is therefore∑
τ

p|ϕ
i (v) −

∑
τ

p
i (v) =

∑
ϕ

p
i (v)vi −

∑
ϕi(v)vi.

Since ϕ and ϕp are both surplus-maximizing, thus∑
ϕi(v)vi −C

(
ϕ(v)

) =
∑

ϕ
p
i (v)vi −C

(
ϕp(v)

)
,
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so altogether the difference between net transfers is

∑
τ

p|ϕ
i (v) −

∑
τ

p
i (v) = C

(
ϕp(v)

) −C
(
ϕ(v)

)
.

As (τp|ϕ, ϕ) satisfies no-deficit, thus

∑
τ

p
i

(
ϕ(v)

) +C
(
ϕp(v)

) =
∑

τ
p|ϕ
i (v) +C

(
ϕ(v)

)
≤ 0,

from which it follows that (τp, ϕp ) runs no deficit at v. Since v ∈ V was arbitrary, thus
(τp, ϕp ) satisfies no-deficit, so by Lemma A.1, (τp, ϕp ) is autonomous.

Our third lemma states that inclusion cost coverage guarantees each exclusion pivot
mechanism is autonomous. In the proof, we argue that if the cost function satisfies this
condition, then at each profile, any exclusion pivot mechanism requires both that (i)
each loser pays nothing, and (ii) each winner pays at least his inclusion cost; it then
follows that there is no deficit, and by our first lemma we are done.

Lemma A.3. Fix an environment. If the cost function satisfies inclusion cost coverage,
then each exclusion pivot mechanism is autonomous.

Proof. Fix an environment whose cost function satisfies inclusion cost coverage, and let
(τ, ϕ) be an exclusion pivot mechanism. By Lemma A.1, we need only prove that (τ, ϕ)
satisfies no-deficit. Let v ∈ V and define W ∗ ≡ ϕ(v). Since ϕ is surplus-maximizing, thus
W ∗ ∈ W .

For each i ∈N\W ∗, since ϕ is surplus-maximizing, we have

σ(0,v−i )
(
W ∗) = σv

(
W ∗)

= max
W ⊆N\{i}

σv(W )

= max
W ⊆N\{i}

σ(0,v−i )(W ).

Altogether, for each i ∈ N\W ∗, τi(v) = 0.
Let i ∈W ∗. By inclusion cost coverage, W ∗\{i} ∈ W ; thus

max
W ⊆N\{i}

σ(0,v−i )(W ) ≥ σ(0,v−i )
(
W ∗\{i}

)
=

∑
W ∗\{i}

vj −C
(
W ∗\{i}

)

= (
σv

(
W ∗) +C

(
W ∗) − vi

) −C
(
W ∗\{i}

)
=

([
max
W ⊆N

σv(W )
]
+C

(
W ∗) − vi −C

(
W ∗\{i}

))
.
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As ϕi(v) = 1, thus

τi(v) =
([

max
W ⊆N

σv(W )
]
− vi

)
−

[
max

W ⊆N\{i}
σ(0,v−i )(W )

]

≤
([

max
W ⊆N

σv(W )
]
− vi

)
−

([
max
W ⊆N

σv(W )
]
+C

(
W ∗) − vi −C

(
W ∗\{i}

))
= C

(
W ∗\{i}

) −C
(
W ∗)

= −Ii
(
W ∗).

Altogether, for each i ∈W ∗, τi(v) ≤ −Ii(W ∗ ).
If W ∗ = ∅, it is immediate that

∑
τi(v) = 0 = −C(ϕ(v)), so (τ, ϕ) does not run a

deficit at v. If W ∗ is nonempty, then since W ∗ ∈ W , thus by inclusion cost coverage,∑
W ∗ Ii(W ∗ ) ≥ C(W ∗ ), so ∑

τi(v) =
∑
W ∗

τi(v) +
∑

N\W ∗
τi(v)

=
∑
W ∗

τi(v)

≤
∑
W ∗

(−Ii
(
W ∗))

≤ −C
(
W ∗)

= −C
(
ϕ(v)

)
,

so (τ, ϕ) does not run a deficit at v. Since v ∈ V was arbitrary, we are done.

Our fourth lemma states that inclusion cost coverage is necessary for the existence of
autonomous mechanisms. We proceed by contradiction, assuming that inclusion cost
coverage is violated but there is an autonomous mechanism. Then (i) there is a group
with finite cost W ∗ where inclusion cost coverage is violated, and (ii) each exclusion pivot
mechanism is autonomous. For each sufficiently high x, we introduce a profile vx where
members of W ∗ have valuation x and the others have valuation −nx; the proof then
consists of four steps.

First, we show that at any profile vx, nobody outside of W ∗ can win: such an agent’s
valuation is so low that it would be better to select the empty set. Second, we show that
each agent in W ∗ must win: such an agent’s valuation is so high that it offsets any cost
savings associated with his exclusion.

For each agent i in W ∗, we then introduce the group Wi, which (i) includes only
members of W ∗ and does not include i, (ii) has finite cost, (iii) among such groups is
largest, and (iv) among such groups has smallest cost. Third, we show that at any profile
vx, the peers of i maximize their surplus without i at Wi; the arguments are similar to
those in the first two steps.

To conclude, we consider a profile vx where, by the first two steps, W ∗ wins. We
first use the structure of the exclusion pivot transfer policy to show that each loser pays
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nothing and each winner i pays an amount involving the costs of W ∗ and Wi. If for each
winner i, Wi = W ∗\{i}, then each winner pays precisely his inclusion cost, which does
not cover costs, contradicting no-deficit. If instead for some winner i, Wi �= W ∗\{i}, then
the net transfer at vx is at least the sum of x and a fixed term; but then as x was any
sufficiently high number, there is some profile vx

∗
where the cost of W ∗ is not covered,

again contradicting no-deficit.

Lemma A.4. Fix an environment. If the cost function violates inclusion cost coverage,
then there is no autonomous mechanism.

Proof. Fix an environment and assume, by way of contradiction, that the cost function
violates inclusion cost coverage and there is an autonomous mechanism. Let (τ, ϕ) be an
exclusion pivot mechanism. By Lemma A.2, (τ, ϕ) is autonomous.

Since C violates inclusion cost coverage, thus there is nonempty W ∗ ∈ W such that
either

(i) there is i ∈W ∗ such that W ∗\{i} /∈ W , or

(ii)
∑

i∈W ∗ Ii(W ∗ ) <C(W ∗ ).

Necessarily, |W ∗| ≥ 2.
Define the maximum absolute finite cost, κ ∈R+, by

κ≡ max
W ∈W

∣∣C(W )
∣∣.

Since ∅ ∈ W , thus κ is well-defined. For each x ≥ 2κ+ 1, define vx ∈ V by

vxi ≡
{
x, i ∈W ∗,

−nx, else.

◦ Step 1: For each x ≥ 2κ+ 1 and each i ∈ N\W ∗, i /∈ ϕ(vx ).
If N\W ∗ = ∅, we are done, so assume N\W ∗ �= ∅. Let x≥ 2κ+ 1, let i ∈N\W ∗, and let

W ′ ⊆N such that i ∈W ′. Then

σvx
(
W ′) =

∑
W ′∩W ∗

vxj +
∑

W ′\W ∗
vxj −C

(
W ′)

≤ (n− 1)x+ vxi + κ

= (n− 1)x− nx+ κ

= κ− x

< 0

= σvx(∅),

so since ϕ is surplus-maximizing, thus ϕ(vx ) �= W ′. Since W ′ including i was arbitrary,
thus i /∈ ϕ(vx ). Since x≥ 2κ+ 1 and i ∈ N\W ∗ were arbitrary, we are done.
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◦ Step 2: For each x≥ 2κ+ 1, ϕ(vx ) = W ∗.
Let x≥ 2κ+ 1. By Step 1, ϕ(vx ) ⊆W ∗. Let W ′ �W ∗. Then

σvx
(
W ∗) − σvx

(
W ′) =

(∑
W ∗

vxj −C
(
W ∗)) −

(∑
W ′

vxj −C
(
W ′))

≥ (∣∣W ∗∣∣x− κ
) − ((∣∣W ∗∣∣ − 1

)
x+ κ

)
= x− 2κ

> 0.

Since W ′ �W ∗ was arbitrary, and since ϕ is surplus-maximizing, thus ϕ(vx ) =W ∗.

Before proceeding to the next step, we first introduce a family of sets {Wi}i∈W ∗ . In
particular, for each i ∈W ∗, let Wi ⊆W ∗\{i} be such that

• Wi ∈ W ,

• for each W ⊆W ∗\{i} such that W ∈ W , |Wi| ≥ |W |, and

• for each W ⊆W ∗\{i} such that W ∈ W and |Wi| = |W |, C(Wi ) ≤ C(W ).

Thus Wi is one of the largest subsets of W ∗\{i} with finite cost, and among these sets its
cost is smallest. Since ∅ ⊆ W ∗\{i} and ∅ ∈ W , thus we can indeed select such a set to be
Wi.

◦ Step 3: For each x≥ 2κ+ 1 and each i ∈W ∗, [maxW ⊆N\{i} σ(0,vx−i )(W )] = σ(0,vx−i )(Wi ).
Let x ≥ 2κ + 1 and let i ∈ W ∗. Define σ∗ ≡ [maxW ⊆N\{i} σ(0,vx−i )(W )], and let W ∗

i ⊆
N\{i} such that σ(0,vx−i )(W

∗
i ) = σ∗. Since σ∗ ≥ σ(0,vx−i )(∅) = 0, thus W ∗

i ∈ W .
We claim that W ∗

i ⊆ W ∗. Indeed, assume, by way of contradiction, there is j ∈
W ∗

i \W ∗. Then as i /∈W ∗
i , we have

σ(0,vx−i )
(
W ∗

i

) = ∣∣W ∗
i ∩W ∗∣∣x+ (∣∣W ∗

i \W ∗∣∣)(−nx) −C
(
W ∗

i

)
≤ (n− 1)x+ (−nx) + κ

= κ− x

< 0

= σ(0,vx−i )(∅),

contradicting that W ∗
i maximizes surplus at (0, v∗

−i ) among subsets of N\{i}. Thus W ∗
i ⊆

W ∗, as desired.
Since i /∈ W ∗

i , altogether we have that W ∗
i ⊆ W ∗\{i} and W ∗

i ∈ W . Define W1 ≡ {W ⊆
W ∗\{i}|W ∈ W }. If there are W , W ′ ∈ W1 such that |W | > |W ′|, then

σ(0,vx−i )(W ) − σ(0,vx−i )
(
W ′) = (|W |x−C(W )

) − (∣∣W ′∣∣x−C
(
W ′))

= (|W | − ∣∣W ′∣∣)x+ (
C

(
W ′) −C(W )

)
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≥ x− 2κ

> 0;

thus W ∗
i is a set with highest cardinality in W1.

Define W2 ≡ {W ∈ W1||W | = |W ∗
i |}. Clearly, W ∗

i is a set with smallest cost in W2.
Define W3 ≡ {W ∈ W2|C(W ) = C(W ∗

i )}. By construction, Wi, W ∗
i ∈ W3. Clearly, σ∗ =

σ(0,vx−i )(W
∗
i ) = σ(0,vx−i )(Wi ), as desired.

◦ Step 4: Conclude.
Let x ≥ 2κ + 1. For each i ∈ N\W ∗, by the fact that ϕ is surplus-maximizing and

Step 2,

τi
(
vx

) =
([

max
W ⊆N

σvx(W )
]
−ϕi

(
vx

)
vxi

)
−

[
max

W ⊆N\{i}
σ(0,vx−i )(W )

]
= (

σvx
(
W ∗) − 0

) − σvx
(
W ∗)

= 0.

For each i ∈W ∗, by Step 2, the fact that ϕ is surplus-maximizing, and Step 3,

τi
(
vx

) =
([

max
W ⊆N

σvx(W )
]
−ϕi

(
vx

)
vxi

)
−

[
max

W ⊆N\{i}
σ(0,vx−i )(W )

]
= ([

σvx
(
W ∗)] − x

) − [
σ(0,vx−i )(Wi )

]
= ([∣∣W ∗∣∣x−C

(
W ∗)] − x

) − [|Wi|x−C(Wi )
]

= (∣∣W ∗∣∣ − |Wi| − 1
)
x+ (

C(Wi ) −C
(
W ∗)).

Thus

∑
τi

(
vx

) =
[∑
W ∗

(∣∣W ∗∣∣ − |Wi| − 1
)
x

]
+

[∑
W ∗

C(Wi ) −C
(
W ∗)].

For each i ∈W ∗, since Wi ⊆ W ∗\{i}, thus |Wi| ≤ |W ∗| − 1.
To conclude, we consider two cases: (i) for each i ∈W ∗, |Wi| = |W ∗| − 1, and (ii) there

is i ∈ W ∗ such that |Wi| < |W ∗| − 1. Equivalently, these two cases are (i) for each i ∈ W ∗,
W ∗\{i} has finite cost, and (ii) there is i ∈ W ∗ such that W ∗\{i} has infinite cost.

First, assume that for each i ∈W ∗, |Wi| = |W ∗| −1. Then for each i ∈W ∗, Wi =W ∗\{i},
and thus W ∗\{i} ∈ W . Then

∑
i∈W ∗ Ii(W ∗ ) <C(W ∗ ), so by construction of W ∗ and Step 2,

∑
τi

(
vx

) =
[∑
W ∗

C(Wi ) −C
(
W ∗)]

=
[∑
W ∗

C
(
W ∗\{i}

) −C
(
W ∗)]

=
∑
W ∗

(−Ii
(
W ∗))
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>−C
(
W ∗)

= −C
(
ϕ

(
vx

))
,

contradicting no-deficit.
Second, assume there is i ∈W ∗ such that |Wi| < |W ∗| − 1. Then

∑
τi

(
vx

) ≥ x+
[∑
W ∗

C(Wi ) −C
(
W ∗)].

Since x ≥ 2κ + 1 was arbitrary, thus using Step 2, there is a sufficiently high x∗ ≥ 2κ + 1
such that ∑

τi
(
vx

∗)
>−C

(
W ∗)

= −C
(
ϕ

(
vx

∗))
,

contradicting no-deficit.

To conclude, Theorem 1 is a direct corollary of our previous lemmas.

Theorem 1 (Repeated). Fix an environment. The following are equivalent:

• there is a mechanism that satisfies production efficiency, strategy-proofness, no-
deficit, and voluntary participation;

• each exclusion pivot mechanism satisfies production efficiency, strategy-proofness,
no-deficit, and voluntary participation; and

• the cost function satisfies inclusion cost coverage.

Proof. The first item implies the third by Lemma A.4, the third implies the second by
Lemma A.3, and the second implies the first trivially.

Appendix B

In this appendix, we prove Theorem 2. We begin by proving that if costs are not convex,
then there are no equitable mechanisms. We proceed by contradiction, assuming that
costs are not convex but there is an equitable mechanism; the proof then consists of four
steps.

First, we use the lack of convexity to identify an agent i and a pair of groups W−,
W+ that together satisfy four properties. These properties imply that at certain pro-
files, another agent can determine whether W−\{i} wins or W+ wins, and thus determine
whether or not i wins. In particular, these four properties are: (i) i belongs to W−, which
is contained in W+; (ii) the inclusion cost for i in W+ is smaller than his inclusion cost in
W−; (iii) W−\{i} certainly has finite cost (and by the previous property, W+ does as well);
and (iv) among groups that contain W−\{i} and that are contained in W+, the only that
might have finite cost are W−\{i}, W−, W+\{i}, and W+.
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Next, we take the other agent j to be anybody in W+ but not W−. In the second step,
we carefully define (i) high and low valuations for i, and (ii) high and low valuations for j.
We then use these to construct four profiles: v++, v+−, v−+, and v−−. At profiles where
the first superscript is +, i has his high valuation; at profiles where the first superscript
is −, i has his low valuation; the second superscript plays the same role for j. The valua-
tions of agents in N\{i, j} are fixed so that across these four profiles, production efficiency
implies that the winning group must contain W−\{i} and be contained in W+. Both val-
uations of i are between his inclusion cost in W+ and his inclusion cost in W−, while the
valuations of j allow him to demand inclusion or exclusion across these profiles.

In the third step, we show that across the four profiles, W+ wins whenever j has his
high valuation and W−\{i} wins whenever j has his low valuation. In the final step, we
conclude by deriving a contradiction: j must receive the same transfer at both profiles
where he wins and the same transfer at both profiles where he loses, which is impossible
for any Groves mechanism.

Lemma B.1. Fix an environment. If the cost function violates convexity, then there are no
equitable mechanisms.

Proof. Let C be a cost function that violates convexity, and assume, by way of contra-
diction, that (τ, ϕ) satisfies production efficiency, strategy-proofness, and no-envy.

◦ Step 1: There are i ∈N and W−, W+ ⊆N such that

(i) {i} ⊆W− ⊆ W+;

(ii) Ii(W− ) > Ii(W+ );

(iii) W−\{i} ∈ W ; and

(iv) for each W ∈ 2N\{W−\{i}, W−, W+\{i}, W+} such that W−\{i} ⊆ W ⊆ W+, we have
W /∈ W .

Since C violates convexity, there are k ∈ N and W ′−, W ′+ ⊆ N such that (i) {k} ⊆ W ′− ⊆
W ′+, and (ii) Ik(W ′− ) > Ik(W ′+ ).

We first claim that there are i ∈ N and W ∗− ⊆ W ′− such that (i) {i} ⊆ W ∗− ⊆ W ′+, (ii)
Ii(W ∗− ) > Ii(W ′+ ), and (iii) W ∗−\{i} ∈ W . Indeed, if W ′−\{k} ∈ W , simply define i ≡ k and
W ∗− ≡ W ′−. If W ′−\{k} /∈ W , then because Ik(W ′− ) > Ik(W ′+ ) ≥ −∞, necessarily W ′− /∈ W . In
this case, define W0 ≡W ′−, and for each t ∈ {1, 2, � � � , |W ′−|}, define

• it ≡ minWt−1, and

• Wt ≡Wt−1\{it }.

It is straightforward to verify that W|W ′−| = ∅, so C(W|W ′−| ) = 0. Thus there is t ∈
{1, 2, � � � , |W ′−|} such that Wt ∈ W and Wt−1 /∈ W . Define i ≡ it and define W ∗− ≡ Wt−1;
then (i) {i} ⊆ W ∗− ⊆ W ′− ⊆ W ′+, and (iii) W ∗−\{i} = Wt ∈ W . Moreover, W ∗− = Wt−1 /∈ W , so
Ii(W ∗− ) = ∞. Since {i} ⊆ W ′+, thus we can define Ii(W ′+ ); and since Ik(W ′+ ) < Ik(W ′− ) ≤
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∞, thus W ′+ ∈ W , so Ii(W ′+ ) < ∞; altogether, then, we have (ii) Ii(W ′+ ) < ∞ = Ii(W ∗− ).
This completes the proof of the claim.

Define

W+ ≡ {
W ⊆N|{i} ⊆ W ∗− ⊆W ⊆W ′+ and Ii

(
W ∗−

)
> Ii(W )

}
,

which is nonempty as W ′+ ∈ W+. Let W+ be a set that is minimal in W+ with respect to
set inclusion.

Define

W− ≡ {
W ⊆N|{i} ⊆W ∗− ⊆W ⊆W+, Ii(W ) > Ii(W+ ), and W \{i} ∈ W

}
,

which is nonempty as W ∗− ∈ W−. Let W− be a set that is maximal in W− with respect to
set inclusion.

By construction, we have that (i) {i} ⊆ W− ⊆ W+, (ii) Ii(W− ) > Ii(W+ ), and (iii)
W−\{i} ∈ W . To complete the proof of Step 1, let W ∈ 2N such that W− � W � W+.
Then we cannot have Ii(W ) ≤ Ii(W+ ), else Ii(W ) < Ii(W ∗− ), so W ∈ W+, contradict-
ing the minimality of W+ in W+. Thus Ii(W ) > Ii(W+ ), so we must have W \{i} /∈ W ;
else we have W ∈ W−, contradicting the maximality of W− in W−. As W \{i} /∈ W , we
must have W /∈ W ; else Ii(W ) = −∞ ≤ Ii(W+ ) < Ii(W ∗− ), so W ∈ W+, again contra-
dicting the minimality of W+ in W+. Altogether, then, W \{i} /∈ W and W /∈ W . As
W ⊆ N such that W− � W � W+ was arbitrary, thus we have established (iv) for each
W ∈ 2N\{W−\{i}, W−, W+\{i}, W+} such that W−\{i} ⊆ W ⊆ W+, we have W /∈ W , as de-
sired.

◦ Step 2: Define j ∈ N , define κ ∈ R+, define v+
i , v−

i , v+
j , v−

j , x+, x− ∈ R such that x+ >

0 > x−, and define v++, v+−, v−+, v−− ∈ V .
Because W− ⊆ W+ and Ii(W− ) > Ii(W+ ), thus W− �W+. Define j ≡ minW+\W−. De-

fine the maximum absolute finite cost, κ ∈ R+, by

κ = max
W ∈W

∣∣C(W )
∣∣.

As Ii(W− ) > Ii(W+ ), choose v+
i , v−

i ∈ R such that Ii(W− ) > v+
i > v−

i > Ii(W+ ).
Define v+

j , v−
j , x+, x− ∈ R such that x+ > 0 > x− by

v+
j ≡ −v−

i + 2κ+ 1,

v−
j ≡ −v+

i − 2κ− 1,

x+ ≡ max
{
v+
i , 0

} + max
{
v+
j , 0

} + 2κ+ 1, and

x− ≡ min
{
v−
i , 0

} + min
{
v−
j , 0

} − 2κ− 1.

Finally, define v++, v+−, v−+, v−− ∈ V by

(i) for each v ∈ {v++, v+−}, vi ≡ v+
i ,

(ii) for each v ∈ {v−+, v−−}, vi ≡ v−
i ,



Theoretical Economics 18 (2023) On Groves mechanisms for costly inclusion 1207

(iii) for each v ∈ {v++, v−+}, vj ≡ v+
j ,

(iv) for each v ∈ {v+−, v−−}, vj ≡ v−
j , and

(v) for each v ∈ {v++, v+−, v−+, v−−} and each k ∈N\{i, j}, we have

vk ≡

⎧⎪⎪⎨
⎪⎪⎩
x+, k ∈W−\{i},

x−, k ∈N\W+,

0, else.

◦ Step 3: For each v ∈ {v++, v−+}, ϕ(v) =W+, and for each v ∈ {v+−, v−−}, ϕ(v) =W−\{i}.
This proof of this step consists of two claims, then a conclusion. First, we claim that

for each v ∈ {v++, v+−, v−+, v−−}, W−\{i} ⊆ ϕ(v) ⊆ W+. Indeed, let v ∈ {v++, v+−, v−+,
v−−}. To see that W−\{i} ⊆ ϕ(v), let W ⊆ N such that W−\{i} � W . Then there is k∗ ∈
(W−\{i})\W , so

σv
(
W−\{i}

) − σv(W ) =
[ ∑
W−\{i}

vk −C
(
W−\{i}

)] −
[∑

W

vk −C(W )

]

≥ [∣∣W−\{i}
∣∣x+ − κ

]
− [(∣∣W−\{i}

∣∣ − 1
)
x+ + max

{
v+
i , 0

} + max
{
v+
j , 0

} + κ
]

= x+ − 2κ− max
{
v+
i , 0

} − max
{
v+
j , 0

}
> 0,

so as ϕ is surplus-maximizing we have ϕ(v) �= W . Since W ⊆ N such that W−\{i} � W

was arbitrary, thus W−\{i} ⊆ ϕ(v), as desired. To see that ϕ(v) ⊆W+, let W ⊆N such that
W �W+. Then there is k∗ ∈W \W+, so

σv(W+ ) − σv(W ) =
[∑
W+

vk −C(W+ )

]
−

[∑
W

vk −C(W )

]

≥ [(|W−| − 1
)
x+ + vi + vj − κ

]
− [

x− + (|W−| − 1
)
x+ + max{vi, 0} + max{vj , 0} + κ

]
= − x− + (

vi − max{vi, 0}
) + (

vj − max{vj , 0}
) − 2κ

= − x− + min{vi, 0} + min{vj , 0} − 2κ

≥ − x− + min
{
v−
i , 0

} + min
{
v−
j , 0

} − 2κ

> 0,

so as ϕ is surplus-maximizing we have ϕ(v) �= W . Since W ⊆ N such that W �W+ was
arbitrary, thus ϕ(v) ⊆W+, as desired. This completes the proof of our first claim.

Second, we claim that for each v ∈ {v++, v+−, v−+, v−−}, ϕ(v) ∈ {W−\{i}, W+}. In-
deed, let v ∈ {v++, v+−, v−+, v−−}. By the first claim, W−\{i} ⊆ ϕ(v) ⊆ W+. By Step 1,
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for each W ∈ 2N\{W−\{i}, W−, W+\{i}, W+} such that W−\{i} ⊆ W ⊆ W+, we have W /∈ W ,
so σv(W ) = −∞ < 0 = σv(∅), so as ϕ is surplus-maximizing, we have ϕ(v) �= W . Al-
together, then, ϕ(v) ∈ {W−\{i}, W−, W+\{i}, W+}. Because Ii(W− ) > vi > Ii(W+ ), it is
straightforward to verify that σv(W−\{i}) > σv(W− ) and σv(W+ ) > σv(W+\{i}); thus as
ϕ is surplus-maximizing, we have ϕ(v) /∈ {W−, W+\{i}}. This completes the proof of our
second claim.

To conclude, first let v ∈ {v++, v−+}. Then

σv(W+ ) − σv
(
W−\{i}

) =
[∑
W+

vk −C(W+ )

]
−

[ ∑
W−\{i}

vk −C
(
W−\{i}

)]

=
[ ∑
W−\{i}

vk + vi + v+
j −C(W+ )

]
−

[ ∑
W−\{i}

vk −C
(
W−\{i}

)]

≥
[ ∑
W−\{i}

vk + vi + v+
j − κ

]
−

[ ∑
W−\{i}

vk + κ

]

= vi + v+
j − 2κ

≥ v−
i + v+

j − 2κ

> 0,

so as ϕ is surplus-maximizing, ϕ(v) �= W−\{i}. By the second claim, ϕ(v) = W+. Finally,
let v ∈ {v+−, v−−}. Then

σv
(
W−\{i}

) − σv(W+ ) =
[ ∑
W−\{i}

vk −C
(
W−\{i}

)] −
[∑
W+

vk −C(W+ )

]

=
[ ∑
W−\{i}

vk −C
(
W−\{i}

)] −
[ ∑
W−\{i}

vk + vi + v−
j −C(W+ )

]

≥
[ ∑
W−\{i}

vk − κ

]
−

[ ∑
W−\{i}

vk + vi + v−
j + κ

]

= −2κ− vi − v−
j

≥ −2κ− v+
i − v−

j

> 0,

so as ϕ is surplus-maximizing, ϕ(v) �= W+. By the second claim, ϕ(v) = W−\{i}. This
completes the proof of the step.

◦ Step 4: Conclude.
By Step 3, we have that both i and j win at v++ and v−+, and we have that both i and

j lose at v+− and v−−.
By no-envy, τj(v++ ) = τi(v++ ). By strategy-proofness, τi(v++ ) = τi(v−+ ). By no-envy,

τi(v−+ ) = τj(v−+ ). Altogether, τj(v++ ) = τj(v−+ ).
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By no-envy, τj(v+− ) = τi(v+− ). By strategy-proofness, τi(v+− ) = τi(v−− ). By no-envy,
τi(v−− ) = τj(v−− ). Altogether, τj(v+− ) = τj(v−− ).

As v+
i > v−

i , thus by Step 3 and Theorem H, we have

τj
(
v++) − τj

(
v+−) = σv++(W+ ) − v+

j − σv+−
(
W−\{i}

)
>σv−+(W+ ) − v+

j − σv−−
(
W−\{i}

)
= τj

(
v−+) − τj

(
v−−)

.

But then

0 = τj
(
v++) − τj

(
v−+)

> τj
(
v+−) − τj

(
v−−)

= 0,

contradicting that 0 = 0.

Our second impossibility lemma in this appendix states that if costs are convex
but not symmetric, then there are no equitable mechanisms. In the proof, we first
use the absence of symmetry to identify a group W ∗ and a pair of agents i, j out-
side of that group such that the cost of W ∗ ∪ {i} is less than the cost of W ∗ ∪ {j}.
We then use convexity to construct a particular nondegenerate interval from which
we pick a low valuation for i and a high valuation for j; we complete the profile v∗
by assigning a large positive valuation to members of W ∗ and a large negative valu-
ation to the others. By production efficiency, W ∗ ∪ {i} must win at this profile, but
no-envy then implies that the valuation of i is at least the valuation of j, which is not
true.

Lemma B.2. Fix an environment. If the cost function satisfies convexity but not symme-
try, then there are no equitable mechanisms.

Proof. Fix an environment whose cost function satisfies convexity but not symmetry,
and assume, by way of contradiction, that (τ, ϕ) satisfies production efficiency, strategy-
proofness, and no-envy.

We claim there are W ∗ ⊆ N and i, j ∈ N\W ∗ such that C(W ∗ ∪ {i}) < C(W ∗ ∪ {j}).
Indeed, since C is not symmetric, there are W , W ′ ⊆N such that |W | = |W ′| and C(W ) <
C(W ′ ). Define W0 ≡W , and for each t ∈ {1, 2, � � � , |W \W ′|}, define

• it ≡ min(Wt−1\W ′ ),

• jt ≡ min(W ′\Wt−1 ), and

• Wt ≡ (Wt−1\{it }) ∪ {jt }.

It is straightforward to verify that W|W \W ′| = W ′. Thus there is t ∈ {1, 2, � � � , |W \W ′|} such
that C(Wt−1 ) <C(Wt ). Define W ∗ ≡Wt ∩Wt−1, define i ≡ it , and define j ≡ jt ; then W ∗ ⊆
N and i, j ∈N\W ∗ are as desired.
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Since W ∗ ∪ {i} ∈ W , thus W ∗ ∈ W ; else there is k ∈ W ∗ such that Ik(W ∗ ) = ∞ >

Ik(W ∗ ∪ {i}), contradicting convexity. Then Ij(W ∗ ∪ {j}) �= −∞, so we can define the
maximum absolute finite cost κ ∈ R+, the upper bound vmax ∈ R, and the lower bound
vmin ∈R, by

κ ≡ max
W ∈W

∣∣C(W )
∣∣,

vmax ≡ min
{

2κ+ 1, Ij
(
W ∗ ∪ {j}

)}
, and

vmin ≡ Ii
(
W ∗ ∪ {i}

)
.

We claim vmax > vmin. Indeed, since W ∗, W ∗ ∪ {i} ∈ W , thus it cannot be that Ii(W ∗ ∪
{i}) > 2κ, else

C
(
W ∗ ∪ {i}

) =C
(
W ∗) + Ii

(
W ∗ ∪ {i}

)
>−κ+ 2κ,

contradicting the construction of κ as the maximum absolute finite cost. Then 2κ +
1 > 2κ ≥ Ii(W ∗ ∪ {i}). Moreover, since C(W ∗ ∪ {j}) > C(W ∗ ∪ {i}) and W ∗ ∈ W , thus
Ij(W ∗ ∪ {j}) > Ii(W ∗ ∪ {i}). Altogether, then, vmax > vmin, as desired.

Let vh, vl ∈ R such that vmax > vh > vl > vmin, and define v∗ ∈ V such that for each
k ∈ N ,

v∗
k ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vl, k= i,

vh, k= j,

6κ+ 3, k ∈W ∗,

−(6κ+ 3), else.

We first claim that W ∗ ⊆ ϕ(v∗ ) ⊆ W ∗ ∪ {i, j}. Indeed, if there were k∗ ∈ W ∗\ϕ(v∗ ),
then

σv∗
(
W ∗) − σv∗

(
ϕ

(
v∗)) =

(∑
W ∗

v∗
k −C

(
W ∗)) −

( ∑
ϕ(v∗ )

v∗
k −C

(
ϕ

(
v∗)))

≥ (∣∣W ∗∣∣(6κ+ 3) − κ
)

− ((|W ∗| − 1)
(
6κ+ 3) + max

{
vl, 0

} + max
{
vh, 0

} + κ
)

= (6κ+ 3) − 2κ− max
{
vl, 0

} − max
{
vh, 0

}
> (6κ+ 3) − 2κ− (2κ+ 1) − (2κ+ 1)

> 0,

contradicting that ϕ is surplus-maximizing. If there were k∗ ∈ ϕ(v∗ )\(W ∗ ∪ {i, j}), then

σv∗
(
W ∗) − σv∗

(
ϕ

(
v∗)) =

(∑
W ∗

v∗
k −C

(
W ∗)) −

( ∑
ϕ(v∗ )

v∗
k −C

(
ϕ

(
v∗)))
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≥ (∣∣W ∗∣∣(6κ+ 3) − κ
)

− (∣∣W ∗∣∣(6κ+ 3) + max
{
vl, 0

} + max
{
vh, 0

} − (6κ+ 3) + κ
)

= (6κ+ 3) − 2κ− max
{
vl, 0

} − max
{
vh, 0

}
> (6κ+ 3) − 2κ− (2κ+ 1) − (2κ+ 1)

> 0,

contradicting that ϕ is surplus-maximizing. Thus W ∗ ⊆ ϕ(v∗ ) ⊆W ∗ ∪ {i, j}, as desired.
Next, we claim ϕ(v∗ ) = W ∗ ∪ {i}. Indeed, if ϕ(v∗ ) = W ∗ ∪ {i, j}, then by production

efficiency, W ∗ ∪ {i, j} ∈ W . Since W ∗ ∪ {i} ∈ W , thus by convexity

σv∗
(
W ∗ ∪ {i}

) − σv∗
(
W ∗ ∪ {i, j}

) = −v∗
j + Ij

(
W ∗ ∪ {i, j}

)
≥ −vh + Ij

(
W ∗ ∪ {j}

)
> 0,

contradicting that ϕ is surplus-maximizing. Similarly, if ϕ(v∗ ) = W ∗ ∪ {j}, then by pro-
duction efficiency, W ∗ ∪ {j} ∈ W . Since W ∗ ∈ W , thus

σv∗
(
W ∗) − σv∗

(
W ∗ ∪ {j}

) = −v∗
j + Ij

(
W ∗ ∪ {j}

)
= −vh + Ij

(
W ∗ ∪ {j}

)
> 0,

contradicting that ϕ is surplus-maximizing. Finally, if ϕ(v∗ ) = W ∗, then since W ∗, W ∗ ∪
{i} ∈ W , thus

σv∗
(
W ∗ ∪ {i}

) − σv∗
(
W ∗) = v∗

i − Ii
(
W ∗ ∪ {i}

)
= vl − Ii

(
W ∗ ∪ {i}

)
> 0,

contradicting that ϕ is surplus-maximizing. As W ∗ ⊆ ϕ(v∗ ) ⊆ W ∗ ∪ {i, j}, altogether,
then, ϕ(v∗ ) =W ∗ ∪ {i}, as desired.

To conclude, by no-envy, τi(v∗ ) + vh ≤ τj(v∗ ) and τj(v∗ ) ≤ τi(v∗ ) + vl. But then

τi
(
v∗) ≤ τj

(
v∗) − vh

≤ τi
(
v∗) + vl − vh,

so vh ≤ vl, contradicting that vh > vl.

Finally, we prove that if costs are convex and symmetric, then each exclusion pivot
mechanism is equitable. We begin by taking an arbitrary valuation profile and using it
to construct a reported demand curve, which is used alongside the fixed supply curve
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given by the marginal costs. By production efficiency, winners must be served so long as
demand exceeds supply, and may be served when the two are equal; we define q̆ to be
the minimum efficient quantity and q̂ to be the maximum efficient quantity. Similarly,
for a given agent i, we define q̂i to be the maximum efficient quantity given i is removed.

The key observation is that for all winners, q̂ and q̂i share the same relationship.
Indeed, if the (q̂ + 1)th-highest valuation is at least the q̂th-highest marginal cost,
then for each winner we have that q̂i = q̂; otherwise, for each winner we have that
q̂i = q̂ − 1. In the first case, any winner can be replaced when he is removed, in the
sense that it is still efficient to serve q̂ agents; in the second case, no winner can be
replaced.

Finally, we use the structure of the exclusion pivot transfer policy to prove that
whether or not winners are replaceable, and no matter how many winners between q̆

and q̂ are selected, we have that (i) no loser envies a loser, (ii) no winner envies a loser,
(iii) no winner envies a winner, and (iv) no loser envies a winner.

Lemma B.3. Fix an environment. If the cost function is convex and symmetric, then each
exclusion pivot mechanism satisfies no-envy.

Proof. Fix an environment whose cost function is convex and symmetric, and let (τ, ϕ)
be an exclusion pivot mechanism. Since the cost function is symmetric, we abuse nota-
tion and write C : {0, 1, 2, � � � , n} → R ∪ {∞} so that C(q) denotes the cost of producing
any q winners, and write Q ⊆ {0, 1, � � � , n} to denote the quantities of winners that can be
produced for finite cost. By Lemma A.1, (τ, ϕ) satisfies production efficiency, strategy-
proofness, and voluntary participation. We want to show that (τ, ϕ) satisfies no-envy;
thus let v ∈ V . If n = 1 then we are done, so assume n≥ 2.

To avoid confusion, we refer to agents as members of N and nonzero quantities
as members of {1, 2, � � � , n}, even though these are the same set. We also introduce
a ranking of the agents to be used with the nonzero quantity notation: (i) label the
agents A1, A2, � � � , An such that vA1 ≥ vA2 ≥ · · · ≥ vAn , and (ii) for each i ∈ N , define
qi ∈ {1, 2, � � � , n} to be the solution to i =Aqi . Depending on the argument, we will some-
times refer to an agent as i and other times as Aq, but never as q (which is reserved for
quantities).

For each q ∈ {1, 2, � � � , n}, define

Sq ≡
{
C(q) −C(q− 1), q ∈ Q,

∞, else,

Dq ≡ vAq .

We refer to (Sq )q∈{1,2, ���,n} as the supply curve and (Dq )q∈{1,2, ���,n} as the demand curve.
Notice that Sq is the marginal cost of including a qth winner, so by convexity, we have
S1 ≤ S2 ≤ · · · ≤ Sn. By construction, D1 ≥ D2 ≥ · · · ≥ Dn.

For each i ∈N and each q ∈ {1, 2, � � � , n− 1}, define

Dq|i ≡
{

Dq, q < qi,

Dq+1, q ≥ qi,
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We refer to (Dq|i )q∈{1,2, ���,n−1} as the demand curve given i is removed. By construction,
D1|i ≥ D2|i ≥ · · · ≥ Dn−1|i.

Finally, define

q̆ ≡ max
({
q ∈ {1, 2, � � � , n}|Dq > Sq

} ∪ {0}
)
,

q̂ ≡ max
({
q ∈ {1, 2, � � � , n}|Dq ≥ Sq

} ∪ {0}
)
, and

for each i ∈N , q̂i ≡ max
({
q ∈ {1, 2, � � � , n− 1}|Dq|i ≥ Sq

} ∪ {0}
)
.

We refer to q̆ as the minimum efficient quantity, q̂ as the maximum efficient quantity,
and q̂i as the maximum efficient quantity given i is removed; these terms will be justified
by the proof.

◦ Step 1: We have |ϕ(v)| ∈ {q̆, q̆+ 1, � � � , q̂} and [maxW ⊆N σv(W )] = ∑q̂
q=1(Dq − Sq ).

For each q ∈ {0, 1, � � � , n}, define σ∗(q) ≡ σv({Aq′ ∈ N|q′ ≤ q}) to be the surplus of
serving the q highest-ranked agents at v. Then for each q ∈ {0, 1, � � � , n}, we have

σ∗(q) =

⎧⎪⎪⎨
⎪⎪⎩

q∑
q′=1

(Dq′ − Sq′ ), q ∈ Q,

−∞, else.

Since Dq is nonincreasing in q and Sq is nondecreasing in q, thus over Q we have that
(Dq − Sq ) is nonincreasing in q. Then σ∗ is maximized with any finite sum that includes
all terms (Dq − Sq ) that are positive and none that are negative, so its maximizers are
{q̆, q̆+ 1, � � � , q̂}.

For each W ⊆ N such that |W | /∈ {q̆, q̆ + 1, � � � , q̂}, we have σv({A1, A2, � � � , Aq̂}) =
σ∗(q̂) > σ∗(|W |) ≥ σv(W ), so by production efficiency, ϕ(v) �= W ; thus |ϕ(v)| ∈ {q̆, q̆ +
1, � � � , q̂}, as desired. For eachW ⊆N , we have σv({A1, A2, � � � , Aq̂}) = σ∗(q̂) ≥ σ∗(|W |) ≥
σv(W ); thus [maxW ⊆N σv(W )] = σ∗(q̂) = ∑q̂

q=1(Dq − Sq ), as desired.

◦ Step 2: For each i ∈N , [maxW ⊆N\{i} σ(0,v−i )(W )] = ∑q̂i
q=1(Dq|i − Sq ).

The argument is analogous to that in the previous step.

◦ Step 3: For each i ∈ ϕ(v), we have (i) for each j ∈ N\ϕ(v), vi ≥ vj ; and (ii) vi ≥
Dq̂.

Let i ∈ ϕ(v). For each j ∈ N\ϕ(v), we must have vi ≥ vj ; else σv((ϕ(v)\{i}) ∪
{j}) > σv(ϕ(v)), contradicting production efficiency. Thus vi is among the |ϕ(v)|
highest valuations, so by Step 1, vi is among the q̂ highest valuations; thus vi ≥
Dq̂.

◦ Step 4: If q̂ = n, then for each i ∈ ϕ(v), q̂i = q̂− 1.
Assume q̂ = n and let i ∈ ϕ(v). Since Dn−1 ≥ Dn ≥ Sn ≥ Sn−1, it follows immediately

that Dn−1|i ≥ Sn−1, so q̂i = n− 1 = q̂− 1, as desired.
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◦ Step 5: If q̂ ∈ {1, 2, � � � , n − 1}, then (i) Dq̂+1 ≥ Sq̂ implies for each i ∈ ϕ(v), q̂i = q̂; and
(ii) Dq̂+1 < Sq̂ implies for each i ∈ ϕ(v), q̂i = q̂− 1.

Assume q̂ ∈ {1, 2, � � � , n− 1} and let i ∈ ϕ(v). Recall that i = Aqi , while q̂i is the maxi-
mum efficient quantity given i is removed. We consider three cases.

Case 1: If q̂ < qi, then

• for each q ∈ {1, 2, � � � , q̂}, Dq|i = Dq ≥ Sq,

• for each q ∈ {q̂+ 1, q̂+ 2, � � � , qi − 1}, Dq|i = Dq < Sq, and

• for each q ∈ {qi, qi + 1, � � � , n− 1}, Dq|i = Dq+1 ≤ Dq < Sq,

so q̂i = q̂.

Case 2: If qi ≤ q̂ and Dq̂+1 ≥ Sq̂, then

• for each q ∈ {1, 2, � � � , qi − 1}, Dq|i = Dq ≥ Sq,

• for each q ∈ {qi, qi + 1, � � � , q̂− 1}, Dq|i = Dq+1 ≥ Sq+1 ≥ Sq,

• Dq̂|i = Dq̂+1 ≥ Sq̂, and

• for each q ∈ {q̂+ 1, q̂+ 2, � � � , n− 1}, Dq|i = Dq+1 ≤ Dq < Sq,

so q̂i = q̂.

Case 3: If qi ≤ q̂ and Dq̂+1 < Sq̂, then we have the same bullets as in Case 2 except that
the third is changed to Dq̂|i = Dq̂+1 < Sq̂, so q̂i = q̂− 1.

If Dq̂+1 ≥ Sq̂, then we are in Case 1 or Case 2, so q̂i = q̂. If Dq̂+1 < Sq̂, then since
i ∈ ϕ(v), thus by Step 3 we have vi ≥ Dq̂ ≥ Sq̂ > Dq̂+1; then qi ≤ q̂, so we are in Case 3 and
q̂i = q̂− 1. Since i ∈ ϕ(v) was arbitrary, we are done.

◦ Step 6: For each i ∈ ϕ(v),
∑q̂i

q=1 Dq|i =
∑q̂i+1

q=1 Dq − vi.
Let i ∈ ϕ(v), and recall vi = Dqi . If qi ≤ q̂i, then

q̂i∑
q=1

Dq|i =
qi−1∑
q=1

Dq|i +
q̂i∑

q=qi

Dq|i + [Dqi − vi]

=
qi−1∑
q=1

Dq +
q̂i∑

q=qi

Dq+1 + [Dqi − vi]

=
q̂i+1∑
q=1

Dq − vi,

as desired.
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If qi > q̂i, then qi ≥ q̂i + 1, so vi = Dqi ≤ Dq̂i+1. Moreover, since i ∈ ϕ(v), thus by Step
1, q̂ �= 0; so by Step 4 and Step 5, q̂ ≤ q̂i + 1; so by Step 3, vi ≥ Dq̂ ≥ Dq̂i+1. Then vi = Dq̂i+1,
so

q̂i∑
q=1

Dq|i =
q̂i∑
q=1

Dq + [Dq̂i+1 − vi]

=
q̂i+1∑
q=1

Dq − vi,

as desired.

◦ Step 7: Conclude.
Since (τ, ϕ) is an exclusion pivot mechanism, thus for each i ∈ N , we have

τi(v) =
([

max
W ⊆N

σv(W )
]
−ϕi(v)vi

)
−

[
max

W ⊆N\{i}
σ(0,v−i )(W )

]
.

For each i /∈ ϕ(v), clearly ϕ(v) maximizes σ(0,v−i ) among subsets of N\{i}, so

τi(v) = σv
(
ϕ(v)

) − σ(0,v−i )
(
ϕ(v)

)
= 0.

Thus no loser envies another loser. Moreover, since (τ, ϕ) satisfies voluntary par-
ticipation, no winner envies a loser. If q̂ = 0, then by Step 1 everybody is a loser
and we are done; thus let us assume q̂ ∈ {1, 2, � � � , n}. By Step 4 and Step 5, either
(i) for each i ∈ ϕ(v), q̂i = q̂ − 1; or (ii) for each i ∈ ϕ(v), q̂i = q̂. We consider both
cases.

Case 1: For each i ∈ ϕ(v), q̂i = q̂− 1. Then by Step 1, Step 2, and Step 6, for each i ∈ ϕ(v),
we have

τi(v) =
([ q̂∑

q=1

Dq

]
−C(q̂) − vi

)
−

([ q̂i∑
q=1

Dq|i

]
−C(q̂i )

)

=
([q̂i+1∑

q=1

Dq

]
−C(q̂i + 1) − vi

)
−

([q̂i+1∑
q=1

Dq

]
− vi −C(q̂i )

)

= −Sq̂i+1

= −Sq̂.

In this case, no winner envies another winner.
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Case 2: For each i ∈ ϕ(v), q̂i = q̂. Then by Step 1, Step 2, and Step 6, for each i ∈ ϕ(v), we
have

τi(v) =
([ q̂∑

q=1

Dq

]
−C(q̂) − vi

)
−

([ q̂i∑
q=1

Dq|i

]
−C(q̂i )

)

=
([ q̂i∑

q=1

Dq

]
−C(q̂i ) − vi

)
−

([q̂i+1∑
q=1

Dq

]
− vi −C(q̂i )

)

= −Dq̂i+1

= −Dq̂+1.

In this case, no winner envies another winner.

Assume, by way of contradiction, that a loser i envies a winner. If q̂ = n, then by Step
4 we are in Case 1; so vi > Sn, so σv(|ϕ(v)| ∪ {i}) > σv(ϕ(v)), contradicting production
efficiency. If q̂ ∈ {1, 2, � � � , n − 1}, then by Step 5 and the above cases, either Dq̂+1 ≥ Sq̂

and vi > Dq̂+1 or Dq̂+1 < Sq̂ and vi > Sq̂. In both cases, we have vi > Dq̂+1 and vi > Sq̂.
Define

q∗ ≡ max
{
q ∈ {1, 2, � � � , n}|Dq∗ = vi

}
.

Since Dq∗ = vi > Dq̂+1, thus q∗ ≤ q̂, so Dq∗ = vi > Sq̂ ≥ Sq∗ . Then q∗ ≤ q̆, so by Step 1 there
must be at least q∗ winners, so by Step 3 i must be a winner, contradicting that i is a
loser.

To conclude, Theorem 2 is a direct corollary of our previous lemmas.

Theorem 2 (Repeated). Fix an environment. The following are equivalent:

• there is a mechanism that satisfies production efficiency, strategy-proofness, and
no-envy;

• each exclusion pivot mechanism satisfies production efficiency, strategy-proofness,
and no-envy; and

• the cost function satisfies convexity and symmetry.

Proof. The first item implies the third by Lemma B.1 and Lemma B.2, the third implies
the second by Lemma B.3, and the second implies the first trivially.

Appendix C

In this appendix, we establish seven propositions providing logical relationships be-
tween inclusion cost coverage and other standard properties of cost functions. In ad-
dition to the properties introduced in Section 3.1, we consider the following.
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Definition. Fix an environment. The cost function satisfies

• monotonicity if and only if for each pair W , W ′ ⊆ N such that W ⊆ W ′, we have
C(W ′ ) ≥ C(W ); and

• superadditivity if and only if for each pair W , W ′ ⊆ N such that W ∩ W ′ = ∅ and
W ∪W ′ ∈ W , we have (i) W , W ′ ∈ W , and (ii) C(W ∪W ′ ) ≥ C(W ) +C(W ′ ).

Finally, if the cost function is symmetric, then for each w ∈ {0, 1, � � � , n}, we abuse nota-
tion by writing C(w) to denote the cost of producing any w winners. In this case, the
cost function satisfies

• nondecreasing average costs if and only if for each pair w, w′ ∈ {1, 2, � � � , n} such that
w′ >w,

(i) C(w) = ∞ implies C(w′ ) = ∞, and

(ii) if C(w), C(w′ ) ∈R, then C(w)
w ≤ C(w′ )

w′ .

In particular, we establish that (i) convexity implies inclusion cost coverage (Propo-
sition 1); (ii) inclusion cost coverage does not imply monotonicity (Proposition 2); (iii)
under symmetry, inclusion cost coverage is equivalent to nondecreasing average costs
(Proposition 3); (iv) symmetry and inclusion cost coverage do not together imply convex-
ity (Proposition 4); (v) symmetry and inclusion cost coverage together imply superaddi-
tivity (Proposition 5); (vi) symmetry and superadditivity do not together imply inclusion
cost coverage (Proposition 6); and (vii) monotonicity and inclusion cost coverage do not
together imply superadditivity (Proposition 7).

Proposition 1. Fix a set of agents. If a cost function satisfies convexity, then it satisfies
inclusion cost coverage.

Proof. Let C be convex and let W ∈ W be nonempty. Define w ≡ |W |, and re-index
the agents such that W = {1, 2, � � � , w}. Define W0 ≡ ∅, and for each i ∈ W , define Wi ≡
{1, 2, � � � , i}. For each i ∈ W , by convexity we have Ii(W ) ≥ Ii(Wi ); thus as W ∈ W , we
must have Wi ∈ W .

For each i ∈ W , since Wi ∈ W and Wi−1 ∈ W , thus Ii(Wi ) ∈R, so by convexity we have
Ii(W ) �= −∞, so as W ∈ W we have Ii(W ) ∈R. Thus by convexity,

C(W ) = [
C(Ww ) −C(Ww−1 )

] + [
C(Ww−1 ) −C(Ww−2 )

] + · · · + [
C(W1 ) −C(W0 )

]
= Iw(Ww ) + · · · + I1(W1 )

≤ Iw(W ) + · · · + I1(W )

=
∑
i∈W

Ii(W ).

Altogether, since W was an arbitrary nonempty member of W , thus C satisfies inclusion
cost coverage, as desired.
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Proposition 2. A cost function may satisfy inclusion cost coverage but not monotonic-
ity.

Proof. The proof is by example. Let N = {1, 2, 3}, and define C as follows:

C(W ) =

⎧⎪⎪⎨
⎪⎪⎩

1, W = N ,

2, W = {1, 2},

0, else.

It is straightforward to verify C that satisfies inclusion cost coverage but not monotonic-
ity.

Proposition 3. Fix a set of agents. If a cost function satisfies symmetry, then it satisfies
inclusion cost coverage if and only if it satisfies nondecreasing average costs.

Proof. Let C satisfy symmetry. For each w ∈ {0, 1, � � � , n}, we abuse notation by writing
C(w) to denote the cost of producing any w winners. We establish both implications:

[⇒] Assume C satisfies inclusion cost coverage, and let w, w′ ∈ {1, 2, � � � , n} such that w′ >
w. Let W , W ′ ∈ 2N such that |W | = w and |W ′| = w′, and reindex the agents such that
W ′\W = {1, 2, � � � , w′ −w}. Define W0 ≡ W , and for each i ∈W ′\W , define Wi ≡ Wi−1 ∪ {i}.

If C(w) = ∞, then W = W0 /∈ W . By inclusion cost coverage, for each i ∈W ′\W , Wi−1 /∈
W implies Wi /∈ W ; thus W ′ =Ww′−w /∈ W , so C(w′ ) = ∞.

If C(w), C(w′ ) ∈ R, then W ′ = Ww′−w ∈ W . By inclusion cost coverage, for each i ∈
W ′\W , Wi ∈ W implies Wi−1 ∈ W ; thus by inclusion cost coverage and symmetry, for each
i ∈ W ′\W , we have

C(w + i) =C(Wi )

≤ |Wi|
[
C(Wi ) −C(Wi−1 )

]
= (w + i)C(w + i) − (w + i)C(w + i− 1),

or C(w+i−1)
w+i−1 ≤ C(w+i)

w+i . Altogether, then, C(w)
w ≤ C(w′ )

w′ .
Since w, w′ ∈ {1, 2, � � � , n} such that w′ > w were arbitrary, thus C satisfies nonde-

creasing average costs, as desired.

[⇐] Assume C satisfies nondecreasing average costs. Let W ∈ W be nonempty and define
w ≡ |W |. Then C(w) �= ∞. By nondecreasing average costs, C(w − 1) �= ∞, so for each i ∈
W , W \{i} ∈ W . Moreover, by nondecreasing average costs, C(w−1)

w−1 ≤ C(w)
w , so wC(w− 1) ≤

wC(w)−C(w), soC(w)−C(w−1) ≥ C(w)
w . Thus for each i ∈W , we have Ii(W ) ≥ C(W )

|W | , so∑
W Ii(W ) ≥ C(W ). Since W was an arbitrary nonempty member of W , thus C satisfies

inclusion cost coverage, as desired.

Proposition 4. A cost function may satisfy symmetry and inclusion cost coverage but
not convexity.
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Proof. This is established by the cost function used as an example in the proof sketch
of Theorem 2.

Proposition 5. Fix a set of agents. If a cost function satisfies symmetry and inclusion
cost coverage, then it satisfies superadditivity.

Proof. Let C satisfy symmetry and inclusion cost coverage. For each w ∈ {0, 1, � � � , n},
we abuse notation by writing C(w) to denote the cost of producing any w winners. By
Proposition 3, C satisfies nondecreasing average costs.

Let W , W ′ ⊆ N such that W ∩ W ′ = ∅ and W ∪ W ′ ∈ W . Define w ≡ |W | and w′ ≡
|W ′|. Then C(w + w′ ) �= ∞, so by nondecreasing average costs, we have C(w) �= ∞ and
C(w′ ) �= ∞, so W ∈ W and W ′ ∈ W . If w = 0 or w′ = 0, then C(W ∪ W ′ ) = C(w + w′ ) =
C(w) +C(w′ ) = C(W ) +C(W ′ ), as desired. If w, w′ ∈ {1, 2, � � � , n}, then by nondecreasing
average costs,

C(W ) +C
(
W ′) = C(w) +C

(
w′)

=w
C(w)
w

+w′C
(
w′)
w′

≤w
C

(
w+w′)
w +w′ +w′C

(
w +w′)
w +w′

= C
(
w +w′)

= C
(
W ∪W ′),

as desired. Since W , W ′ ⊆ N with W ∩ W ′ = ∅ and W ∪ W ′ ∈ W were arbitrary, thus C

satisfies superadditivity, as desired.

Proposition 6. Fix a set of agents. A cost function may satisfy symmetry and superad-
ditivity but not inclusion cost coverage.

Proof. The proof is by example. Let N = {1, 2, 3}, and define C as follows:

C(W ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, |W | = 0,

1, |W | = 1,

4, |W | = 2,

5, |W | = 3.

It is straightforward to verify that C satisfies symmetry and superadditivity but not in-
clusion cost coverage.

Proposition 7. Fix a set of agents. A cost function may satisfy monotonicity and inclu-
sion cost coverage, but not superadditivity.
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Proof. The proof is by example. Let N = {1, 2, 3, 4}, and define C as follows:

C(W ) =

⎧⎪⎪⎨
⎪⎪⎩

4, W =N ,

3, |W | = 3, W = {1, 2}, or W = {3, 4},

0, else.

It is straightforward to verify that C satisfies monotonicity and inclusion cost coverage,
but C({1, 2, 3, 4}) <C({1, 2}) +C({3, 4}), and thus C does not satisfy superadditivity.
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