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Which misspecifications persist?
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We use an evolutionary model to determine which misperceptions can persist.
Every period, a new generation of agents use their subjective models and the data
generated by the previous generation to update their beliefs, and models that in-
duce better actions become more prevalent. An equilibrium can resist mutations
that lead agents to use a model that better fits the equilibrium data but induce
the mutated agents to take an action with lower payoffs. We characterize which
steady states resist mutations to a nearby model, and which resist mutations that
drop a qualitative restriction such as independence.

Keywords. Misspecified learning, Berk–Nash equilibrium, evolution, payoff
monotone dynamics.
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1. Introduction

Economic agents are often misspecified in the sense that their prior beliefs rule out the
data generating process they actually face. This misspecification may have different
roots: Agents may have a behavioral bias such as overconfidence and correlation ne-
glect, or they may oversimplify a complex environment by omitting some relevant vari-
ables or interactions, or by positing an incorrect functional form. Many of these mis-
specifications have important consequences for behavior. For example, when agents
misperceive a progressive tax schedule as linear they end up working too much, since
they equate their marginal cost of effort to the average instead of marginal tax rate, and
when buyers misperceive price and quality as independent they may bid prices that are
too low.

We study the effect of mutations in an evolutionary model where models that induce
higher-payoff actions become more prevalent. In our model, the agents face single-
agent decision problems where their optimal action depends on some parameters of
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the outcome-generating function. Each generation, agents estimate the parameters of
their subjective model (or “paradigm”) that best fit the data generated by the actions and
outcomes of the previous generation.1 The agents then choose a best reply to a belief
that is concentrated on these best-fitting parameters. Steady states in which all agents
have the same model coincide with Berk–Nash equilibria (Esponda and Pouzo (2016)):
The actions played are a best response to posterior beliefs that fit the equilibrium data
as well as the model allows.

A purely Bayesian agent can never come to assign positive probability to a data
generating process that lies outside the support of their subjective model, so the stan-
dard Bayesian model predicts that all misspecifications will persist forever. Instead, we
consider what happens when a small fraction of agents adopts an expanded subjective
model: Will the equilibrium resist the mutation in the sense that the original behavior
persists?

Our analysis uncovers a few general insights. The first is that there are two different
pathways by which a mutation can destabilize an equilibrium misperception. Under
the direct channel, a better explanation of the data may lead the mutants to adopt a
better action, so their share of the population grows. However, whether the actions of the
mutants are better is determined by the inference they draw from the equilibrium data.
Several examples show that unless the new model is correctly specified, this need not be
the case. Under the indirect channel, the mutants might obtain the same or lower payoff
as agents using the prevailing model, but the information their actions generate helps
agents with the old model realize they can increase their payoff with another action. We
also found that the ability of a mixed equilibrium to resist mutations depends on the
mixing probabilities, which may not not be pinned down by the equilibrium conditions.
This effect creates an effective bound on the inefficiency induced by a bias to persist.

Now we give a more detailed summary of our analysis. A first observation is that ev-
ery steady state resists any mutation that does not provide a better explanation of the
equilibrium data. For that reason, every self-confirming equilibrium resists all muta-
tions, even though the agents may misperceive the consequences of some nonequilib-
rium actions. In contrast, if an equilibrium relies on misspecified beliefs about the con-
sequences of equilibrium actions, it can be overturned by mutations. As noted above,
there are two ways this can occur: the direct channel and the indirect one. The effec-
tiveness of these channels depends both on the nature of the equilibrium and that of
the mutations. In a uniformly strict Berk–Nash equilibrium (Fudenberg, Lanzani, and
Strack (2021)), the action played is the unique best reply to all parameters that minimize
the Kullback–Leibler (henceforth “KL”) divergence from the equilibrium data. These
equilibria resist local mutations, where agents add nearby parameters to their subjec-
tive models when these better explain their data.2 Whether a Berk–Nash equilibrium
that is not uniformly strict resists local mutations depends on the actions the mutations
induce and their associated payoffs. We show that the effectiveness of the direct channel

1“Best fit” here means maximizing the likelihood of the data.
2This is similar to the neighborhoods of a subjective model considered in the macroeconomics literature

on robust control following Hansen and Sargent (2008).
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depends on the payoff of the best responses that remain optimal against the nearby pa-
rameters that most improve the fit to the equilibrium data. If and only if all these “local
responses” give an objectively higher payoff, the mutant will become more prevalent,
and the equilibrium does not resist local mutations.

Even though all uniformly strict equilibria resist local mutations, some of them do
not resist mutations to a paradigm with a more general structure. We model this with
the idea of one-hypothesis mutations. Here, the agent’s paradigm consists of a finite set
of assumptions about the data generating process, and mutations relax one assumption
while maintaining the others. This large change in paradigm can lead agents to take new
actions with higher payoffs. However, some equilibria resist one-hypothesis mutations
and not local ones, because the one-hypothesis relaxation can lead to overadjustment in
the direction of the relaxed constraint, and thus to overshooting the optimal action. We
characterize resistance to one-hypothesis mutations by considering the KL minimizers
in relaxed subjective models where one of the hypotheses is dropped. Specifically, we
show that a uniformly strict equilibrium is resistant if and only if the KL minimizers of
the relaxed problem induce an action that yields less than the equilibrium payoff.

In equilibria that are not uniformly strict, there may be an unused action that is a
best response to the KL minimizers. Here, the indirect channel can operate, because
the action induced by the mutation can provide evidence that leads agents with the old
paradigm to change to an action with higher payoffs. In this case, the misperception
does not persist even though the mutants may receive a lower payoff.

In models of correlation neglect, misspecified beliefs are less resistant to mutations
in “noisy” environments, because the noise helps the agents correctly infer the corre-
lation between the variables. Since in our setting the distribution of an initial signal is
equivalent to a distribution over heterogeneous preferences, this suggests that a homo-
geneous closed group of agents is more likely to maintain misspecified beliefs: If the
agents share a subjective model but have different preferences, in equilibrium they can
play different best replies. Thus, the KL minimizers for a new subjective model will re-
flect the consequences of multiple actions, which makes it less likely that the adjustment
induced by the mutation is detrimental.

We show that the continuum-of-agents dynamic process we study corresponds to
the limit of finite-population processes as the number of agents goes to infinity. Finally,
we consider settings with a continuum of actions. We explain how the conditions for
resisting mutations need to be modified to account for the fact that small changes in
paradigm can induce different actions even when the original equilibrium action was
the unique best reply, and how the modified definition relates to the limits of finer and
finer action grids.

1.1 Related work

Berk (1966) shows that the misspecified beliefs asymptotically concentrate on the mod-
els that minimize the KL divergence from the objective data generating process when
this process is exogenous. In many economic applications, actions and associated sig-
nal distributions are not fixed, but depend on agents’ actions, so misspecification has
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implications for what the agents observe, and thus for their long-run beliefs. Arrow and
Green (1973) give the first general framework for this problem, and Nyarko (1991) points
out that the combination of misspecification and endogenous data can lead to cycles.
Esponda and Pouzo (2016) define Berk–Nash equilibrium, which relaxes Nash equilib-
rium by replacing the requirement that player’s beliefs are correct with the requirement
that each player’s belief minimizes the KL divergence of their observations from their
subjective model.3

Esponda, Pouzo, and Yamamoto (2021) use stochastic approximation to establish
when the agent’s action frequency converges. Frick, Iijima, and Ishii (2023) provide con-
ditions for local and global convergence of the agent’s beliefs without explicitly model-
ing the agent’s actions. Fudenberg, Lanzani, and Strack (2021) introduce uniform Berk–
Nash equilibria and uniformly strict Berk–Nash equilibria. It shows that uniform Berk–
Nash equilibria are the only possible limit actions, and that uniformly strict Berk–Nash
equilibria are the only stable equilibria. Bohren and Hauser (2021) characterize the long-
run beliefs of a sequence of heterogeneous misspecified agents, and Bowen, Dmitriev,
and Galperti (2023) study polarization of misspecified agents on a network.4

Gagnon-Bartsch, Rabin, and Schwartzstein (2021) propose that agents only pay at-
tention to events they believe are payoff-relevant, and that an agent whose model is
wrong about the probability of one of these events may switch to a model that includes
the objective data generating process. It assumes actions do not influence the distribu-
tion over outcomes, so the issues that we address do not arise. He and Libgober (2021)
study competition between two models in a game setting, where even correctly speci-
fied models can be outperformed by some mutants. The inference in their model does
not depend on data that was generated before the mutation. Massari and Newton (2022)
justify a generalized Bayes’ rule as the result of evolutionary competition between dif-
ferent updating rules. This extends to a single misspecified decision maker the failure
of Bayesian updating that Blume and Easley (1992) obtained when correctly specified
agents trade with “irrational” ones. Grant and Quiggin (2017) study how the evolution-
arily stable profiles of a two-player game change when some agents in one population
become aware of additional strategies.5

Esponda, Vespa, and Yuksel (2022) show that when given unexplained evidence,
misspecified agents make small adjustments but do not typically include the correct
model. It also shows that agents use the effects of one action to help predict the conse-
quences of others. This extrapolation is at the core of why some misspecifications can
persist: A model that better fits the equilibrium data may lead agents to switch to an
action with lower payoffs. Our work is also related to models of agents who subject their

3Jehiel (2020) surveys various equilibrium concepts for misspecified agents.
4Fudenberg, Romanyuk, and Strack (2017), Heidhues, Kőszegi, and Strack (2018), and Molavi (2019) an-

alyze misspecified learning in specific applications. Bohren (2016), Frick, Iijima, and Ishii (2020), and He
(2022) consider misspecified social learning where all agents have the same misspecification. Like us, He
(2022) considers a model where agents learn from the data generated by the previous generation.

5Also, Schwartzstein and Sunderam (2021) study model selection in a setting without actions or payoffs,
Olea, Luis, Ortoleva, Pai, and Prat (2021) study how the bids of misspecified agents vary with their priors,
and Frick, Iijima, and Ishii (2021) characterize the efficiency of updating with incorrect likelihood functions
on exogenous data.
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models to tests for misspecification, as in Fudenberg and Kreps (1994), Hong, Stein, and
Yu (2007), Cho and Kasa (2017), Ba (2022), and Lanzani (2023).

2. The single-agent problem

Before developing our large-population model, we introduce the single-agent problem.

2.1 Static model

Actions, utility, and data generating process An agent chooses an action a from the fi-
nite setA after observing a signal s from the finite set S. The agent then observes an out-
come y ∈ Y , which is a subset of Rm for some finitem. The objective data generating pro-
cess is determined by a full-support probability distribution over signals σ ∈ �(S) and
an action and signal contingent probability measure over outcomesQ∗(·|·) ∈ �(Y )S×A.6

The individual experience of an agent consists of a (signal, action, outcome) triplet
(s, a, y ). The agent’s realized flow utility depends on their individual experience through
the utility function u : S ×A× Y → R. We denote the pure strategies of the agent, i.e.,
the maps from signals to actions, by �=AS . For notational simplicity, we do not allow
individual agents to randomize.7 The objective expected utility of strategy π is U∗(π ) =∑
s∈S σ(s)

∫
Y u(s, π(s), y )dQ∗(y|s, π(s)), which we assume is well-defined and finite for

each π ∈�.

Subjective models The agent uses parametric models to describe the environment.
Formally, there is a compact and convex subset H of a Euclidean space R

k whose el-
ements θ are associated with a family of probability measures Qθ(·|s, a), one for each
signal-action pair (s, a).8 The agent’s initial uncertainty about the value of the parameter
is described by a belief μ ∈ �(H); the agent’s subjective model is the subset of parameters
suppμ=�⊆ H the agent considers possible.

Preferences and best replies The agent’s utility function and beliefs determine their sub-
jective expected utility as a function of their strategy:

Uμ(π ) =
∫
�

∑
s∈S
σ(s)

∫
Y
u
(
s, π(s), y

)
dQθ

(
y|s, π(s)

)
dμ(θ).

We let Uθ =Uδθ where δθ is the Dirac measure on θ, and assume that Uμ(π ) is finite for
all (π, μ) pairs. We let BR(μ) = argmaxπ∈�Uμ(π ) denote the set of pure best replies to
μ, and for every C ⊆ �(�), we let BR(C ) = ⋃

μ∈C BR(μ).

6For every subset X of a Euclidean space, we let B(X ) denote its relative Borel sigma-algebra, and �(X )
denote the set of Borel probability distributions onX endowed with the Levy–Prokhorov metric.

7This is without loss of generality since we will allow different agents with the same belief to play different
actions as long as all of those actions maximize their subjective payoff, so that each individual randomiza-
tion can be replicated at the aggregate level.

8Compactness guarantees that for every observed distribution of actions and outcomes there is at least
one best explanation. Convexity only plays a role in our analysis of local mutations. See Diaconis and
Freedman (1986) for reasons to restrict to a finite-dimensional parameter space.
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Inference and Kullback–Leibler minimizers Given two distributions over outcomes
Q,Q′ ∈ �(Y ), we define H(Q,Q′ ) = − ∫

y∈Y logq′(y )dQ(y ).9 Note that −H(Q,Q′ ) is the
expected log-likelihood of an outcome under subjective distributionQ′ when the objec-
tive distribution is Q. So, Q′ with smaller H(Q,Q′ ) better explains distribution Q. This
is the force behind Berk (1966)’s result that as sample size grows, beliefs concentrate on
the parameters that minimize the Kullback–Leibler divergence from the objective distri-
bution.10

The likelihood of an outcome under the objective distribution Q∗ depends on both
the action and the signal. Given the signals, actions, and outcomes of a continuum pop-
ulation with strategy shares ψ ∈ �(�), we define the weighted KL divergence

Hψ
(
Q∗,Qθ

) =
∑
s∈S
σ(s)

∑
π∈�

ψ(π )H
(
Q∗(·|s, π(s)

)
,Qθ

(·|s, π(s)
))

.

We let �(ψ) denote the parameters in � that minimize the weighted KL divergence
from the observed distribution:

�(ψ) = argmin
θ∈�

Hψ
(
Q∗,Qθ

)
,

and call these the KL minimizers. Our evolutionary model will assume that the agent’s
posterior after observing the experience of a population of agents that used strategy dis-
tribution ψ is a probability distribution over �(ψ). Proposition 6 shows that this de-
scribes the limit as the agent observes a larger and larger number of individual experi-
ences.

Regularity assumptions The agent is correctly specified if there is a θ∗ ∈ � such that
Q∗ =Qθ∗ . We allow this case, but our focus is on the case where the agent is misspecified
in the sense their prior rules out the objective outcome distribution for at least some
actions. Let Bε(θ) = {θ′ ∈ H : ‖θ− θ′‖2 ≤ ε} denote the ε ball around �.

Assumption 1.

(i) θ 	→Qθ(·|s, a) is continuous for all s ∈ S and a ∈A.

(ii) Either Y is finite, or for every θ ∈ H and (s, a) ∈ S ×A, Q∗(·|s, a) and Qθ(·|s, a)
admit probability density functions.

(iii) For every ε > 0, there is an r ∈R+ such that

min
θ∈Bε(θ̂)

H
(
Q∗(·|s, a),Qθ(·|s, a)

)
< r ∀θ̂ ∈�, ∀s ∈ S, ∀a ∈A.

Assumption 1(i) guarantees that the set of KL minimizers is nonempty and compact.
Without it, the equilibrium notions we define can fail to exist. Assumption 1(ii) requires

9We use the notation q(y ) for the probability of outcome y if Y is finite, and for the probability density
function of Q with respect to the Lebesgue measure evaluated at y if Y is infinite.

10The Kullback–Leibler divergence between Q and Q′ is given by H(Q,Q′ ) −H(Q,Q). So, any Q′ that
minimizesH(Q,Q′ ) also minimizes the KL divergence betweenQ andQ′.
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that either every parameter specifies a discrete outcome distribution for each action,
or every parameter specifies a continuous density on outcomes for each action. The
assumption is made for simplicity. It allows both the finite outcomes case mostly studied
in the literature (see, e.g., Esponda and Pouzo (2016)) and examples with a Gaussian
structure. Assumption 1(iii) is a mild boundedness condition that guarantees the upper
hemicontinuity of �(·).

2.2 Equilibrium concepts

Here, we introduce the static equilibrium concepts that we will relate to the steady states
of our evolutionary model. To do so, let K denote the collection of compact subsets of H.

Definition. A Berk–Nash equilibrium is a (�, ψ) ∈ K × �(�) such that for every π ∈
suppψ there exists a beliefμ ∈ �(�(ψ)) withπ ∈ BR(μ). A Berk–Nash equilibrium (�, ψ)
is:

(i) Pure if ψ= δπ for some π ∈�; otherwise it is mixed.

(ii) Unitary if there exists a belief μ ∈ �(�(ψ)) with ψ ∈ �(BR(μ)).

(iii) Quasistrict if suppψ= BR(�(�(ψ))).

(iv) Uniformly strict if ψ= δπ and {π} = BR(μ) for every μ ∈ �(�(ψ)).

Berk–Nash equilibrium requires beliefs to be supported on the parameters that best
explain the equilibrium data. We do not allow agents to randomize; mixed equilibria
here correspond to different agents playing different strategies. Esponda and Pouzo
(2016) define the unitary version of the Berk–Nash equilibrium, which requires that all of
the equilibrium strategies can be rationalized with the same belief. It shows Berk–Nash
equilibria exist, and that if play converges, it converges to a unitary Berk–Nash equi-
librium.11 Section 6 extends this necessary condition to our large population setting,
where nonunitary Berk–Nash equilibria can also arise in the limit. Note that unitary
equilibria need not be pure; it is sufficient that all of the strategies played are best re-
sponses to the same belief μ. Non-unitary equilibria only arise if multiple parameters
minimize the weighted KL divergence from the equilibrium outcome distribution.12

Quasistrict equilibrium requires that all the strategies that are best replies to some
belief over the KL minimizers are played with positive probability; this generalizes the
strong equilibrium of Harsanyi (1973) (renamed quasistrict by Fudenberg and Tirole
(1991)) to allow for misspecified beliefs. We will see that the quasistrictness property
helps equilibria resist mutations. The more demanding concept of uniformly strict equi-
librium (Fudenberg, Lanzani, and Strack (2021)) requires the equilibrium strategy to be
a strict best reply to all of the KL-minimizing parameters. Uniformly strict equilibria are

11As with Nash equilibria in games, pure strategy Berk–Nash equilibria need not exist.
12This can be the case due to, e.g., symmetry constraints or the use of low-dimensional functional forms;

see Fudenberg, Lanzani, and Strack (2021) for examples.
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clearly quasistrict, and because a strict best reply remains so after small changes in be-
liefs, uniformly strict equilibria resist all local mutations (see Proposition 2). But neither
quasistrict nor uniformly strict equilibria are guaranteed to exist.

A self-confirming equilibrium is a Berk–Nash equilibrium (�, ψ) such that there is
a θ ∈ � with Qθ(·|s, π(s)) = Q∗(·|s, π(s)) for all π ∈ suppψ and s ∈ S. Self-confirming
equilibrium requires that the subjective model of the agents contains at least one pa-
rameter that induces the same distribution over observables as the equilibrium does.
These equilibria always resist mutations, as shown by Corollary 2 below.

3. Illustrative examples

To illustrate our main ideas and motivate our analysis, we present two examples of when
mutations do and do not lead to a change in paradigm. The examples use several con-
cepts that are not formally defined until Section 5, but we think that the intuition is still
clear. Our first example considers “local” mutations in two versions of the problem of
a misspecified seller facing an unknown demand function. The two versions have the
same payoff function for the seller and the same objective demand function, but differ-
ent specifications of the seller’s subjective model. The first version shows that even a
unique and isolated equilibrium may not resist mutations. In the second version, there
is a continuum of equilibria, and an equilibrium resists mutations if and only if it does
not assign too much probability to the suboptimal action. In both versions, playing one
action generates evidence that the other action would be better, so all the equilibria are
mixed. The computations backing the claims in this and all subsequent examples are in
Appendix A.2.

Example 1. The seller chooses price a ∈ {2, 10} and receives payoff u(a, y ) = ay = a(i∗ −
β∗a+ω), where i∗ and β∗ are the unknown intercept and slope of the demand function,
and ω is a standard normal shock. The objective demand function is given by (β∗, i∗ ) =
(4, 42).

(a) Suppose that the subjectively possible parameter values are [3/2, 5/2] × [28, 32],
as in the example of Nyarko (1991).13 The unique Berk–Nash equilibrium assigns
probability 1/4 to price 2, sustained by a Dirac belief on (5/2, 30). As shown in
Figure 1, the binding constraint of the KL minimization problem is β≤ 5/2. Thus,
if some mutant agents think a slightly larger set of parameters is possible, their KL
minimizer mostly adjusts the slope upwards, which leads the mutants to choose
the optimal price of 2.14 Hence, this Berk–Nash equilibrium does not resist the
mutation.

13In Nyarko’s version of the example, both the subjective model and the correct data generating process
differ from those in Esponda and Pouzo. To emphasize the role of the subjective model in determining
the stability of the equilibrium in an otherwise identical objective environment, we transposed Nyarko’s
example so both examples have the same data generating process.

14The fact that the KL divergence is minimized at the indifference line between actions is a consequence
of the fixed-point condition that characterizes Berk–Nash equilibria: the probabilities of the two actions
determine the curvature of the KL divergence, and analogously to mixed equilibria in games, the Berk–Nash
equilibria are the distributions over actions that make the KL minimizers lie on the indifference curve.
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Figure 1. The ellipses are KL-level curves in the unique equilibrium of part (a).

(b) Here, the seller thinks that the possible values of the slopes and intercepts are
[3, 10/3] × [33, 40]. There is a continuum of mixed Berk–Nash equilibria, indexed
by the probability of price 2 in [7/8, 35/36], sustained by a Dirac belief on the KL-
minimizing parameter (10/3, 40). In all of these equilibria, both the slope and
intercept constraints on the KL minimization bind, and because the average like-
lihood depends on the probabilities that each price is charged, so do the KL min-
imizers for slightly enlarged subjective models. Specifically, when the low price
is charged almost all the time, the main unexplained feature in the equilibrium
data is high demand, so the KL minimizer for a slightly larger subjective model
revises the intercept upward. This is the case for the equilibrium in Esponda and
Pouzo (2016) where the low price is charged with probability 35/36, illustrated
in Figure 2. Since the new KL minimizer lies above the diagonal indifference
curve, it induces 10 as the unique best reply, which yields a lower payoff than the
equilibrium action, so this equilibrium resists local mutations. In contrast, when
ψ(2)< 97/100, the main unexplained feature is high price sensitivity, so the mu-
tants revise their belief about the slope upward. This makes the optimal price 2
subjectively optimal, so this equilibrium does not resist local mutations. ♦

The next example shows that a qualitative relaxation of the subjective model can
lead to overadjustment in the direction of the relaxed constraint and a lower payoff than
before. We consider an equilibrium in which the agents exert excessive effort because
they mistakenly simplify a progressive tax schedule to a linear one, as in an example of
Esponda and Pouzo (2016).15 Mutated agents who realize that the tax schedule might
be progressive overestimate its convexity, because they use the data generated by the
equilibrium action. This overestimate leads to excessively low effort, which yields less
than the equilibrium payoff, so the equilibrium resists the mutation.

15Liebman and Zeckhauser (2004) and Rees-Jones and Taubinsky (2020) provide evidence for this mis-
perception. Our example could also describe agents with other sorts of misperception, e.g., the agent might
be self-employed and untaxed but misperceive the productivity of effort.
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Figure 2. The ellipses are the KL-level curves in the equilibrium of part (b) whereψ(2) = 35/36.

Example 2 (Nonlinear taxation). An agent chooses effort a ∈A= {3, 4, 5} at cost c(3) =
0, c(4) = 0.5, and c(5) = 1.38, and obtains income z = a + ω, where ω ∼ N(0, 1). The
agent pays taxes x = τ∗(z), where τ∗ has two income brackets, and the higher one is
heavily taxed:

τ∗(z) =
⎧⎨
⎩
z/6, if z ≤ 16/3

11
12
z− 4, if z > 16/3.

The agent’s payoff is u(a, (z, x)) = z− x− c(a), so the objectively optimal action is 4.
The agent observes y = (z, x) at the end of each period. The original paradigm is that

the tax schedule is linear with random coefficients, as in Sobel (1984), i.e., τθ(z) = (θ+
η)z+ηz2, η∼N(0, 1), with�=R. Given any action a, the KL-minimizing parameter is
given by �(a) = (E[τ∗(a+ω)/(a+ω)]): The agent believes that the expected marginal
rate is the actual average rate. Since the actual tax schedule is progressive, the agent
exerts too much effort. The unique pure Berk–Nash equilibrium is uniformly strict and
has π = 5, with a Dirac belief on 0.21.

As shown in Figure 3, an agent who relaxes linearity by shifting to a quadratic subjec-
tive model τθ(z) = (θ1 + η)z + (θ2 + η)z2, �′ = R×R+, estimates a very high quadratic
term: The equilibrium action makes average income very close to the shift point be-
tween the brackets, so the agent observes high progressivity. Their quadratic subjective
model extrapolates this progressivity as a global feature of the tax schedule, which leads
them to choose the minimal action 3. The objectively optimal action 4 is lower than the
equilibrium action 5, but the mutated agent overshoots the optimum and ends up us-
ing an action that performs even worse than the equilibrium one. For this reason, the
equilibrium resists one-hypothesis mutations. ♦
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Figure 3. Misspecified taxation.

4. Evolutionary dynamics and steady states

We consider a model that combines individual Bayesian learning with evolutionary
competition between the subjective models. There is a continuum of agents, all with
the same utility function. The state of the system at every period t ∈ N is a joint distri-
bution p in the space P of finite-support measures on K×� over the subjective models
and strategies of the agents. We denote the marginal distributions of p as pK and p�.16

Inference and actions

Let pt+1(·|�) denote the distribution over strategies played at time t + 1 by the agents
with subjective model � when the previous state is pt . We require that this distribution
satisfies the following inclusion, which captures the effect of learning and optimization:

pt+1(·|�) ∈ �(
BR

(
�

(
�

(
pt�

))))
. (1)

This formula says that each agent plays a best response to a posterior belief that is
supported on the KL-minimizing parameters in the agent’s model given the data from
the previous period. The reason that pt+1(·|�) takes values in �(BR(�(�(pt� )))) as op-
posed to the smaller set BR(�(�(pt� ))) is that different agents with the same subjective
model may play different best responses: They may have different beliefs over the KL
minimizers when �(pt� ) is not a singleton, and multiple strategies may be best replies
to the same beliefs. We provide an explicit learning foundation for this process in Sec-
tion 6 under the assumption that either there is a unique best reply to the KL minimizers
(which covers the case of a uniformly strict Berk–Nash equilibrium) or that� is finite.

16The assumption that at any point in time there is only a finite number of different subjective models
in the population is made to guarantee that the process is well-defined.
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Evolutionary dynamics

We assume that the share of agents with a particular subjective model evolves according
to an exogenously fixed T : P → �(K), so that

pt+1
K = T (

pt
)
. (2)

We say that T is an evolutionary map if it is continuous, with supppK = suppT (p) and
payoff monotone (Samuelson and Zhang (1992)), meaning that

U∗(p(·|�)
)
> (=)U∗(p(·|�′)) =⇒ T (p)(�)

T (p)
(
�′) > (=)

pK(�)

pK
(
�′) ∀p ∈ P , 17

where U∗(p(·|�)) is the average payoff of
∑
π∈�p(π|�)U∗(π ) of agents with model�.

This simple model of paradigm change can be interpreted as the result of biological
reproduction or as the result of social learning and imitation.18 Under the biological per-
spective, payoffs correspond to fitness, and agents whose subjective model induces fitter
actions have more offspring. Parents transmit their subjective model—i.e., the support
of their prior— but not their beliefs, strategy, or data, and the offspring then perform
Bayesian updating based on the actions and outcomes in the previous period. The bio-
logical interpretation of payoff monotonicity is better suited to misspecifications due to
behavioral biases such as overconfidence or correlation neglect, and can help to explain
why evolutionary forces may or may not be able to eradicate those biases. For example,
an overconfident agent may also be overconfident about the skill of their offspring, and
in turn this may induce the offspring to be more confident about themselves. Other eco-
nomic examples, such as the misspecified beliefs of a seller about a demand function,
are better interpreted as arising from imitation. Under this interpretation, agents in the
new generation receive noisy signals about the performance of the different subjective
models as in Björnerstedt and Weibull (1995), Schlag (1998), and Binmore and Samuel-
son (1997), and use these signals to decide whether to stick with their parent’s worldview
or adopt a different one.

Payoff monotonicity requires that the average payoff of each subjective model is
enough to rank them in terms of relative growth. This rules out dynamics that are based
on nonlinear functions of each agent’s payoffs. However, whenever the ordinal ranking
can be summarized in a single statistic (e.g., the median as in Ellison and Fudenberg
(1993)). Propositions 3 and 4 continue to hold by replacing the average payoff in the
statement with, say, the median.19

The combination of Bayesian inference within a model and payoff monotone evo-
lution of the subjective model shares can be seen as a generalized cross-validation pro-
cedure. Under cross validation, a statistician has to decide which statistical model � to

17Recall that we restrict attention to states with finitely many models and strategies.
18One example of a payoff monotone dynamic is the discrete-time replicator dynamics (Hines (1980),

Hofbauer and Sigmund (1988), Dekel and Scotchmer (1992), and Cabrales and Sobel (1992)).
19Proposition 7 holds as well provided that the statistic is Gateaux differentiable in the payoff distribu-

tion.
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use to perform inference (typically in the form of a subset of parameters they try to es-
timate). To do so, they rely on a past sample of observations, which they divide in two
parts, with the first (the training sample) used to estimate the model parameters and
the second (the validation sample) to see how well the estimated model performs. For
an agent in generation t+ 1, generation t− 1’s outcomes act as the training data set, and
the induced performance of the estimated parameter in period t acts as the validation
sample. Indeed, generation t−1’s outcomes are used by generation t agents to make de-
cision, and generation t+1 agents select the models depending on their performance at
time t. As under cross-validation, models that are more successful at the validation stage
are more likely to be adopted/maintained. In the procedure, the utility function plays
the role of a loss function: a model is viewed more favorably when its average utility on
the validation sample is higher.

Notice that the offspring “inherit” their subjective model from their parents, but do
not inherit their parent’s parameter estimates. That is, the offspring inherit ways of in-
terpreting data, but are left to make their own inferences based on the data that they
observe. The offspring also do not inherit how to handle cases where there are multiple
KL-minimizing beliefs or multiple best responses to the same belief. If these features
were inherited, the only change would be that mixed Berk–Nash equilibria in which
actions with different payoffs are played by a positive fraction of agents would not be
steady states.

In models where evolutionary pressure acts directly on strategies (rather than sub-
jective models), payoff monotonicity implies that for every solution the average payoff
in the population increases over time. This is not the case in our model, as the same
subjective model may induce different inferences on different data. As a consequence,
the dynamics can cycle between states with different payoffs, as in Example 5 in the
Appendix.

A sequence (pt )t∈N0 ∈ PN0 is a solution if there is an evolutionary map such that for
all t ∈ N0, equations (1) and (2) hold. A steady state is a p̂ ∈ P such that the sequence
constant at p̂ is a solution, and p̂K = δ� for some � ∈ K, so the solution is a constant
point mass on a single model.20 In a steady state, all agents have the same subjective
model, but they can have different beliefs over the KL minimizers unless the minimizer
is unique. A steady state is unitary if all the strategies are best replies to the same be-
lief. This does not require that the distribution over strategies is a point mass, because
different agents can break ties between best replies in different ways.

Lemma 1. For all � ∈ K and ψ ∈ �(�), δ� × ψ is a steady state if and only if (�, ψ) is a
Berk–Nash equilibrium. Moreover, δ� ×ψ is unitary if and only if (�, ψ) is unitary.

The proofs of this and all subsequent results are in the Appendix. Lemma 1 com-
bined with Theorem 1 of Esponda and Pouzo (2016) guarantees the existence of a steady
state.21

20The misspecified learning literature has focused on this case; Bohren and Hauser (2021) is an excep-
tion.

21Esponda and Pouzo (2016) assumes Y is finite, but this is not needed for the proof of their Theorem 1.
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Corollary 1. For every objective environment (S,A, Y , u,Q∗ ), every evolutionary
map T , and every subset of subjective models C ∈ K there exists a steady state p with
pK(C ) = 1.

5. Mutations

5.1 Explanation-improving mutations

We now consider mutations that lead agents to expand the subjective model they inher-
ited from their parents. We suppose that mutant agents consider a larger set of possible
parameter values, and use their data from the previous generation to estimate which
parameters fit best.

Our first step is to define what we mean by an εmutation.

Definition. p is an εmutation of a steady state δ� ×ψ to �′ ⊇� if:

(i) pK = (1 − ε)δ� + εδ�′ and

(ii) p(·|�̃) ∈ �(BR(�(�̃(ψ)))) ∀�̃ ∈ {�,�′}.

Note that both the mutated and unmutated agents choose their actions based on the
same data, namely the distribution of play that prevailed before the mutation occurred.
Note also that ε mutations must enlarge the set of subjective models. In Section 5.5, we
explain that as long as the induced mutations are minimally responsive to the evidence
generated by the steady state this is without loss of generality.

Definition. A Berk–Nash equilibrium (�, ψ) resists mutation to �′ if there is a se-
quence of solutions (ptεn )t,n∈N0 where p0

εn
is an εn ∈ (0, 1) mutation of δ� × ψ to �′,

limn→∞ εn = 0, and limn→∞ limt→∞(ptεn )� =ψ.

For every εn, the inner limit gives the long-run strategy distribution following an εn
mutation to �′; the outer limit sends the fraction of mutated agents to 0. The equi-
librium (�, ψ) resists this mutation if this iterated limit converges back to ψ for some
solution that starts from an εn mutation to �′.

This definition is purposefully weaker than the requirement that every possible solu-
tion converges back to ψ. Using this definition lets us identify the unambiguous depar-
tures from what is predicted by the purely Bayesian benchmark; the alternative stronger
definition would leave open whether an equilibrium that “failed to resist” could never-
theless persist.

Our definition of resisting mutations is also weaker than alternatives that require the
equilibrium to persist even when agents are forced to experiment. Forced experimen-
tation would force even correctly specified agents to move away from self-confirming
equilibria that are not Nash equilibria as they learn the consequences of nonequilibrium
play. When such experimentation-inducing mutations are present, we expect them to
be rare, and thus to operate on a much slower time scale than paradigm changes that
are driven by inconsistencies with the equilibrium data.
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A first reason why an equilibrium can resist a mutation is that the mutation may not
induce a different best response. In particular, this happens when the mutation does
not lead to a better explanation of the equilibrium data.

Definition. The mutation of a steady state δ� × ψ to �′ is explanation improving if
minθ∈�′ Hψ(Q∗,Qθ )<minθ∈�Hψ(Q∗,Qθ ).

In an explanation-improving mutation, a fraction of agents realizes that they could
better explain their data within a more permissive paradigm �′.

Proposition 1. A Berk–Nash equilibrium resists every mutation that is not explanation
improving.

The proof of this is simple: Because the subjective model �′ of the mutated agents
contains � and �′ is not explanation improving, the best explanations in � are also
best explanations in�′, and one possible continuation path is for the mutants and con-
formists to both play the same ψ as before the mutation.

Corollary 2. A self-confirming equilibrium resists every mutation.

This follows immediately from the definitions, as in a self-confirming equilibrium
the subjective model perfectly matches the observed distribution, so the KL divergence
between the agent’s beliefs and observations is 0. Conversely, only equilibria where the
strategy is objectively optimal or that are self-confirming resist a mutation that adds the
correct data generating process to �.

Which equilibria resist mutations depends on the types of mutations that can oc-
cur. We consider two different sorts of enlargements that do not necessarily include the
correct model, “local mutations” that make small enlargements of the current param-
eter space, and “one-hypothesis mutations” where the mutated agents drop one of the
restrictions of their subjective models. Local mutations relax the quantitative specifica-
tion of the model with the idea that a more robust approach may be beneficial. One-
hypothesis mutations instead relax a qualitative restriction on the data generating pro-
cess. For example, agents might restrict the set of possible values for one dimension
of the parameter, as in the case of an overconfident agent who is sure that their skill is
higher than some threshold. The hypotheses can also take the form of joint restrictions
on the parameters, as with an agent who believes that two variables are independent.

5.2 Local mutations

Definition. Subjective model �ε is the ε expansion of � if �ε = ⋃
θ∈�Bε(θ).

In an ε local mutation, a fraction ε of the agents in the new generation reacts to
unexplained evidence by considering a moderately more permissive paradigm.22

22To lighten notation, we use ε in two roles here, but nothing would change if we instead had share ε′ of
agents adopt an ε′′ expansion.



1286 Fudenberg and Lanzani Theoretical Economics 18 (2023)

Definition. p is an ε local mutation of a stead state δ� × ψ if it is an ε mutation of
δ� ×ψ to the ε expansion of �.

A Berk–Nash equilibrium (�, ψ) resists local mutations if it resists mutation to every
sufficiently small ε expansion of�. That is, an equilibrium resists local mutations if after
small mutations aggregate behavior converges back to the equilibrium.

Proposition 2.

(i) Every uniformly strict Berk–Nash equilibrium resists local mutations.

(ii) Every Berk–Nash equilibrium with�(ψ) in the interior of� resists local mutations.

Proposition 2(i) reinforces the finding of Fudenberg, Lanzani, and Strack (2021) that
uniformly strict Berk–Nash equilibria have strong local stability properties. Although
that result was obtained in a different single-agent setting and with a different proof
technique, both conclusions follow from the fact that in a uniformly strict equilibrium,
the equilibrium strategy π is a strict best response to all beliefs that assign a sufficiently
high probability to the parameters that minimize the weighted KL divergence given that
π is played. This implies that after small mutations π is still the unique best reply to
the agents’ beliefs. Part (ii) follows from the fact that when the KL minimizers are in the
interior of �; they have a strictly lower divergence than any parameter on or near the
boundary of �.

In other Berk–Nash equilibria, there may be a parameter θ′ ∈�(ψ) that does not in-
duce a unique best reply. If the mutation leads to a KL minimizer that is near θ′, the
mutated agents may start to play a different strategy, inducing a departure from equilib-
rium play.

To evaluate the stability of Berk–Nash equilibria that are not uniformly strict, we
will use a measure of how much enlarging the parameter space in a particular direction
improves the explanation of the equilibrium outcome. Given a steady state δ� ×ψ and
an ε ∈ R++, we define

M�,ψ(ε) = argmin
θ∈�ε

Hψ
(
Q∗,Qθ

)
. (3)

These parameters generate the largest decrease inH.23

By an argument paralleling that of Berk, small mutations induce beliefs that are con-
centrated on M�,ψ(ε). We will show that if the strategies induced by these beliefs per-
form better than the equilibrium strategy distribution, the mutation will not die out,
permanently destabilizing the equilibrium. Conversely, if the strategies of the mutated
agents lead to lower payoffs and the equilibrium is quasistrict, the mutated agents will
eventually disappear, and play converges back to the original equilibrium. To formal-
ize this, let �M�,ψ = lim supε→0 BR(�(M�,ψ(ε))) denote the limits of the strategies that
are optimal against distributions over M�,ψ(ε) as ε goes to 0. We call these the local
responses at (�, ψ).

23M�,ψ(ε) need not be a singleton, but it is a singleton for small ε in the examples we analyze. Moreover,
as shown in Lemma 5, it is a singleton for sufficiently small ε if �(ψ) is unique andQθ is linear in θ.
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Proposition 3. Let (�, ψ) be a Berk–Nash equilibrium.

(i) If for every local response π at (�, ψ), U∗(π ) > U∗(ψ), then (�, ψ) does not resist
local mutations.

(ii) If for some local response π ′ at (�, ψ), U∗(π ′ ) ≤U∗(ψ), and (�, ψ) is quasistrict, it
resists local mutations.

Part (ii) illustrates the similarity and differences between the stability notions when
subjective models rather than actions are inherited. The sufficient condition for resis-
tance has two requirements, mirroring the conditions defining an evolutionarily sta-
ble strategy. In both cases, the first requirement is that the mutants do not perform
better given the equilibrium strategy. For evolutionary stability “given the equilibrium
strategy” means against the equilibrium strategy. Here, “given the equilibrium strategy”
means given the beliefs generated by the equilibrium. The second requirement is that
the equilibrium strategy does not perform poorly given the mutants strategy. For evolu-
tionary stability, “given the mutants’ strategy” means against the mutants strategy. Here,
“given the mutants’ strategy” means for some best reply to the evidence generated by the
mutants’ strategy. Requiring that the equilibrium is quasistrict guarantees this second
requirement is satisfied: In a quasistrict equilibrium all best replies are played with pos-
itive probability, and so by upper hemicontinuity of �(·) and BR(·) all local responses
are already played with positive probability. So, no completely new evidence is gener-
ated after mutation.

To illustrate the role of payoff comparisons in Proposition 3, we revisit Example 1.
In the equilibrium of Example 1(a), only the slope constraint is binding. An upward
revision of the slope makes the low price the unique optimal choice, and since the low
price performs better than mixing, by Proposition 3(i) this Berk–Nash equilibrium does
not resist local mutations. In Example 1b, the constraints on the intercept and the slope
are both binding. Here, a Berk–Nash equilibrium resists local mutations if and only if the
low price is played by a large fraction of agents. When almost all the agents choose a low
price, mutants revise the intercept upward, which induces the high price. This action
performs worse than the equilibrium, so by Proposition 3(ii) the equilibrium resists local
mutations. When both actions are played sufficiently often, the agents’ revisions induce
the objectively optimal low price, and by Proposition 3(i) the equilibrium does not resist
local mutations.

Section 5.4 shows why the quasistrictness assumption in part (ii) of the proposition
is needed. Without it, the feedback gathered from mutated agents playing a strategy
that is not used in equilibrium may change the behavior of the old population, even if
they were performing better than the mutants. However, because M�,ψ(·) and BR(·)
have closed graphs, local mutations never introduce a completely novel strategy in a
quasistrict equilibrium.

5.3 One-hypothesis mutations

One-hypothesis mutations capture the idea that mutations that only change one dimen-
sion of the model are much more likely than adjustments that involve multiple aspects
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of the model at once. As an illustration, recall that the refined version of the Ptolemaic
cosmological model as formalized by Tycho Brahe has two central tenets: that the Sun
revolves around the Earth, and that stars and planets revolve around the Earth-Sun pair
(see Kuhn (1957)). The fit of the Ptolemaic model is imperfect but very good, and relax-
ing either assumption to include the correct model separately does not improve perfor-
mance.24 This may help explain why the Ptolemaic system persisted for over a thousand
years.

Formally, there is a finite collection of continuous functions F = {fl}ml=1, where each
fl : H →R, such that �= {θ ∈ H : fl(θ) ≥ 0, ∀l ∈ {1, � � � ,m}} :=�F .

Definition. Subjective model �l is a one-hypothesis relaxation of �F in hypothesis
l ∈ {1, � � � ,m} if �l =�F\{fl }.

Observe that several collections of hypotheses can describe the same �, and they
can have different sets of one-hypothesis relaxations.25 This is natural, as the hypothe-
ses are part of the agents’ model of the world. These hypotheses describe the parts of
the subjective model of an agent that can be separately relaxed by a mutation. As an
illustration, consider Example 2. We model the constraint θ2 = 0 as a pair of inequality
constraints, θ2 ≤ 0 and θ2 ≥ 0. Relaxing the first constraint and allowing negative val-
ues has no effect; relaxing the second constraint has the same effect as dropping both of
them.26

Definition. p̄ is a one-hypothesis εmutation of a steady state δ�×ψ if it is an εmuta-
tion to some one-hypothesis relaxation of �.

We say that a Berk–Nash equilibrium (�F , ψ) resists one-hypothesis mutations if it
resists every one-hypothesis ε mutation for sufficiently small ε.27 Given a steady state
p = δ� × ψ, the l-agnostic KL minimizers are Pl(p) : = argminθ∈�l Hψ(Q∗,Qθ ), and
�p,l = BR(�(Pl(p))) denotes the set of best replies when hypothesis l is dropped.

Proposition 4. Let (�F , ψ) be a Berk–Nash equilibrium.

(i) If for some l ∈ {1, � � � ,m}, U∗(π ) > U∗(ψ) for every π ∈ �p,l, then (�, ψ) does not
resist one-hypothesis mutations.

(ii) If for every l ∈ {1, � � � ,m} and π ′ ∈ �p,l, U∗(π ′ ) ≤ U∗(ψ), and either �p,l ⊆ suppψ
orψ is a uniformly strict Berk–Nash equilibrium, then (�, ψ) resists one-hypothesis
mutations.

24The unsuccessful “Andalusian revolt” in Islamic astronomy relaxed the latter assumption without
abandoning geocentrism (see Sabra (1984)), while the Copernican model (before the additions by Kepler)
only relaxed the former assumption.

25As a trivial special case, if F contains two copies of each of the f ’s it includes, then one-hypothesis
mutations have no effect on �.

26Formally, to make the example a special case of our model, we need H = [−K1,K1] × [−K2,K2] for
some large K1, K2, and F = {−θ2, θ2}.

27Note that here, unlike with local mutations, ε plays a single role.
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The intuition for part (i) is that if the strategy distribution converges back to the equi-
librium, then eventually the mutated agents will use strategies that are a best reply to the
l-agnostic KL minimizers, while conformists would perform strictly worse. The intuition
for part (ii) is that under the conditions considered, the feedback received from the play
of the mutants would not move the conformist play too far from the equilibrium behav-
ior. Since the equilibrium payoff is larger than the ones induced by the best-reply to the
l-agnostic KL minimizers, the mutated agents will eventually die out.

In Example 1(a), a one-hypothesis mutation that allows for larger slopes leads agents
to play the objectively optimal price 2. Thus, by Proposition 4(i) these equilibria do not
resist one-hypothesis mutations.

The next example considers a buyer who has correlation neglect: they do not un-
derstand that the price charged by a seller is positively correlated with the value of the
good. In the first version of the example, the difference between the buyer’s and seller’s
values for the good is constant. Here, the equilibrium resists one-hypothesis mutations,
because the buyer never bids a high price, and so even after mutation does not learn
that higher bids attract higher value sellers. This may help explain the apparent per-
vasiveness of correlation neglect. However, if there is a stochastic shock to the buyer’s
valuation, they make a wider range of bids, which allows one-hypothesis mutations to
lead them to find better actions. This suggests that correlation neglect should be less
frequent in settings where taste heterogeneity leads the agents to use a range of actions
instead of always using the same one.

Example 3 (Additive lemons and cursed equilibrium).

(a) Persistent correlation neglect The agent, a buyer whose value for an object is
v = ω + 3.1, faces a seller who owns the object and values it at ω. They play a
double auction with price at the buyer’s bid, so the seller sets their ask x equal
to their value, and a sale occurs if buyer’s bid a is at least x. The value ω is 3
with probability 1/3, 2 with probability 1/2, and 1 with probability 1/6. The value
is observed only if a transaction occurs, so the outcome is the pair y = (ω̃, x) ∈
(� ∪ {#}) ×X , where ω̃=ω if a≥ x, and ω̃= # otherwise.

Here, a parameter θ consists of probability distribution on seller ask prices
(p1, p2, p3 ) and a family of conditional probabilities (F(1|1), F(2|1), F(1|2),
F(2|2), F(1|3), F(2|3)), where F(i|j) is the probability that the value is less than
or equal to i given that the seller asked price j. So, H is the subset of R9 such that∑3
i=1pi = 1, and 0 ≤ F(1|i) ≤ F(2|i) ≤ 1 for i ∈ {1, 2, 3}. The objective price dis-

tribution is (1/6, 1/2, 1/3), with conditional probabilities (1, 1, 0, 1, 0, 0), so the
objectively optimal strategy is to bid 3.

Suppose that as in Esponda (2008) the agent believes that seller ask price and
value are independent. Because the value is only observed when a transaction oc-
curs, the buyer does not realize that a higher bid would increase average quality
conditional on the seller accepting the offer, and as we show in Appendix A.2.3,
a= 2 is a uniformly strict Berk–Nash equilibrium. The KL-minimizing parameter
is an independent joint probability distribution that is correct about the distribu-
tion of seller asks and with value distribution (1/4, 3/4, 0).
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Because the buyer never offers 3, a one-hypothesis mutation can be explana-
tion improving only if it better fits the conditional value distributions for asks 1
and 2. Such mutations do not induce a different strategy, so the mutated agents
do not obtain a higher payoff, and by Propositions 1 and 4 this equilibrium resists
one-hypothesis mutations.

(b) A nonresistant uniformly strict Berk–Nash equilibrium Now suppose that the
buyer’s value is v=ω+ 3.1 + s, where s is either −1 or 1 with probability 1/2 each,
independent of ω. The objectively optimal strategy is to bid 3 after both signals,
but π(−1) = 2, π(1) = 3 is a Berk–Nash equilibrium. The KL-minimizing param-
eter is an independent joint probability distribution that is correct about the dis-
tribution of seller bids. However, because the values are only observed when the
transaction is realized, and the buyer does not realize that a higher bid would in-
crease average quality conditional on the sellers accepting the offer, the corre-
sponding distribution over values (1/5, 3/5, 1/5) is too pessimistic, leading to the
(objectively suboptimal) bid of price 2 after signal s = −1.

This equilibrium is uniformly strict, so by Proposition 2 resists local mutations.
However, the one-hypothesis relaxation that allows for the possibility that a high
value is more likely to be observed after the seller has asked for a high price leads
to the subjective model:

�′ =

⎧⎪⎨
⎪⎩θ ∈R

9+ :
p1 +p2 +p3 = 1,

F(1|1) = F(1|2) = F(1|3),
F(2|1) = F(2|2) ≥ F(2|3),

⎫⎪⎬
⎪⎭

which generates a posterior concentrated on θ̂ = ((1/6, 1/2, 1/3), (1/5, 1, 1/5, 1,
1/5, 1/5)). Since BR(θ̂) = {3}, by Proposition 4 the equilibrium does not resist
one-hypothesis mutations. ♦

The difference between the cases is that payoff shocks lead agents to use more ac-
tions, which makes it easier to spot errors in the subjective model and find better strate-
gies.

5.4 Misspecification driven innovation

Here, we sharpen our previous sufficient conditions for an equilibrium not to persist.
Those conditions considered a direct channel between paradigm change and destabi-
lization, where mutants obtain a higher payoff. Now we focus on an indirect channel:
The new strategies the mutation induces may have lower payoff, but provide informa-
tion that lets the agents with the old subjective model realize that their previous play
was suboptimal. This possibility is captured by the following definition.

Definition. A Berk–Nash equilibrium (�, ψ) is innovation vulnerable if there exist
πI , πU ∈ � \ suppψ and ε̄ > 0 such that {πU } = argmaxπ∈�Uμ(π ) for all μ ∈ �(�(ψ′ ))
with ψ′ ∈ Bε̄(ψ), ψ′(πI )> 0. When (�, ψ) is innovation vulnerable, we say that�′ ⊃� is
innovation inducing for (�, ψ) if BR(�(�′(ψ))) = {πI }.
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In words, an equilibrium is innovation vulnerable if there is an unplayed best re-
sponse πU to some belief over equilibrium KL minimizers, and an innovative strategy
πI that provides evidence in favor of πU even if πI has a low payoff. A trivial case of an
equilibrium that is not vulnerable to innovation is when � is a singleton. More gener-
ally, quasistrict (and henceforth uniformly strict) Berk–Nash equilibria are not innova-
tion vulnerable, since they do not have any unplayed best responses to the belief over
equilibrium KL minimizers. By restricting the second part of the statement to quasistrict
and uniformly strict Berk–Nash equilibria, respectively, Propositions 3 and 4 rule out this
indirect channel. Other sorts of equilibria can be innovation vulnerable, and innovation
vulnerable equilibria do not persist.

Proposition 5. An innovation vulnerable equilibrium does not resist a mutation to an
innovation-inducing model.

The intuition is that if the solution of the dynamic process returns to the old
paradigm, the data provided by the mutated agents breaks ties among old paradigm’s
best-fitting models in a way that favors a nonequilibrium best reply.

The role of innovation vulnerability can be vividly illustrated with the case of thalido-
mide. In the original subjective model, doctors believed that no treatment is viable for
the nausea and “morning sickness” experienced in some pregnancies, so these symp-
toms were not treated. It was also known that blocking the growth of blood vessels slows
down myeloma, but there was uncertainty about which substances do so without se-
vere side effects. Finally, thalidomide had been used (and found effective) in treating
insomnia.

The mutation came in the form of understanding the similarity of the histamine lev-
els seen in patients with morning sickness and patients with insomnia. This evidence-
driven shift led to the use of thalidomide as a cure for morning sickness, but that had a
very low payoff: While effective against morning sickness, thalidomide has a dramatic
effect on the fetus, which led to the “thalidomide tragedy.” However, the data observed
in the tragedy, i.e., the inhibition of the growth of blood vessels without side effects be-
yond those for the fetus, led to the very successful use of thalidomide as a treatment for
myeloma (Franks, Macpherson, and Figg (2004)). Notice that adopting thalidomide for
myeloma did not require a shift of paradigm, since it is consistent also with the original
subjective model that believes no treatment is possible for morning sickness. Example 6
in the Appendix provides a fully detailed example of an innovation vulnerable equilib-
rium.

5.5 Mutations to smaller subjective models

Invasion by a nonimproving mutation A mutation that is not explanation improving
can only invade when agents discard a parameter that provides the best fit. Consider
for example a completely mixed equilibrium ψ of Example 1(b), and let �′ be the sin-
gle point (3, 33), so that mutated agents drop the best-fitting parameter (10/3, 40). This
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mutation is not explanation improving, but the equilibrium does not resist it: the mu-
tated agents start to play 2 at every period, and either the conformists eventually switch
to 2, or they eventually disappear. In either case, play does not converge back to ψ.

However, in the more plausible case where the smaller subjective model retains the
best-fitting parameters, the smaller model cannot invade.

Definition. p is an evidence-based simplification of a steady state δ� ×ψ to �′ if:

(i) pK = (1 − ε)δ� + εδ�′ ,

(ii) p(·|�̃) ∈ �(BR(�(�̃(ψ)))) ∀�̃ ∈ {�,�′},

(iii) �′ ⊆� and argminθ∈�′ Hψ(Q∗,Qθ ) = argminθ∈�Hψ(Q∗,Qθ ).

A mutation is an evidence-based simplification if the mutated agents reduce the size
of their subjective model by only eliminating parameters that provide worse fits to the
equilibrium data.

Since evidence-based simplifications do not drop any KL minimizer, the equilibrium
strategy remains a best reply to some belief over the KL minimizing parameters. Thus,
every Berk–Nash equilibrium (�, ψ) resists every evidence-based simplification. This
conclusion follows from our assumption that mutations that do not discard the best
fitting parameters, as opposed to being “blind.” Blindness may be natural under a purely
biological interpretation, but in our case of the evolution of subjective models it seems
less plausible that new agents reject the most successful explanations of the previous
generation. The new agents may well drop some aspects of the model they inherit or
imitate, but we see little reason for the dropped aspects to be those that actually work in
explaining the observables. More generally, although mutations that are not evidence-
based simplifications do not seem completely implausible, we expect them to be much
less common and so to operate on a much slower time scale.

6. Large finite data sets

Our evolutionary model is deterministic because agents observe an infinite number of
individual experiences. Here, we show that this process emerges as the limit of observing
large finite data sets.28

Suppose that all agents with subjective model � have the same prior μ�.29 Each
agent i ∈ [0, 1] observes n ∈ N individual experiences drawn from a population playing
p� ∈ �(�), independently across agents, computes posterior belief μin using Bayes’ rule,
and chooses a best reply according to a measurable best response function R : �(�) →
�. So, aggregate play is ψn(�, p� )(π ) = ∫ 1

0 1R(μin )=π di.

Definition. We say that p� distinguishes parameters and strategies if:

28This is only one way to provide a foundation for our model; we provide it to show the plausibility of the
dynamics we study. We conjecture that the same steady states would be asymptotic limits if a single agent
acted each period, as in He (2022) or Bohren and Hauser (2021).

29Section A.1 of the Appendix shows that the limit belief is independent of the prior.
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(i) For all θ, θ′ ∈ �(p� ), there is s ∈ S such that there is positive probability under∑
π∈�p�(π )Q∗(·|s, π(s)) that

∑
π∈�p�(π )Qθ(·|s, π(s)) �= ∑

π∈�p�(π )Qθ′(·|s,
π(s)).

(ii) For all π, π ′ ∈�, π �= π′, there is θ ∈�(p� ) such that Uθ(π ) �=Uθ(π ′ ).

In words, p� distinguishes parameters and strategies if every two KL-minimizing
parameters disagree on the probability of some events, and if for every pair of strategies
there is a KL-minimizing parameter under which they are not indifferent.

Proposition 6. If either:

(i) BR(�(�(p� )) is a singleton, or

(ii) � is finite and p� distinguishes parameters and strategies,

then limn→∞ψn(�, p� ) exists, and is in �(BR(�(�(p� )))).

This shows that if agents observe enough individual experiences from the previous
generation the aggregate distribution of strategies approaches �(BR(�(�(p� )))). The
case in which BR(�(�(p� )) is a singleton covers uniformly strict Berk–Nash equilib-
ria, and provides a complete learning foundation for our results about them. To handle
the case of multiple best replies to the KL minimizers, we add the assumption that ev-
ery agent has a finite set of possible models and that π� distinguishes parameters and
strategies.30 We do not think that the finiteness assumption is necessary, but it simpli-
fies the proof considerably. It is not needed if the best reply function is continuous in
beliefs, as in Section 7, since then when the distribution of beliefs converges so does the
distribution of best replies.

To prove this result, we use an argument similar to those of Berk (1966) and Esponda
and Pouzo (2016) to show that the probability assigned to models that do not minimize
the weighted KL divergence goes to 0. We then prove that although beliefs may not con-
verge, their distribution does. We prove this by showing that the vector of likelihood
ratios between KL minimizers is a random walk with positive definite covariance ma-
trix, and applying the central limit theorem to obtain convergence.31 The exact law of
large numbers applied to the continuum of agents implies that the distribution of be-
liefs in the population converges as well. Finally, we show that the limit distribution
assigns probability 0 to beliefs that induce ties between strategies, so the distribution of
strategies converges.

7. Infinitely many strategies

So far, we have assumed there is a finite number of strategies. However, in some ap-
plications, there are many actions and/or signals, and it is more convenient to analyze

30The Appendix proves this result under a more general condition that allows incomplete identification.
31Fudenberg, Lanzani, and Strack (2021) also combines the properties of a random walk with the prop-

erties of the KL divergence, but considers a different random walk (the difference between the realized
empirical distribution and the objective distribution) and does not prove that the distribution of beliefs
converges.
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the problem using a continuum approximation. We show here how our analysis can be
applied to continuum environments. We assume that actions are real numbers and � is
convex, as in many examples in the literature.

Assumption 2.

(i) A is a compact subset of R, with nonempty interiorAo.

(ii) S is a Borel subset of a Euclidean space, endowed with a full-support objective
Borel probability measure σ . � is the set of measurable functions from S toA.

(iii) u is continuously differentiable in a and s. The set {U∗(π ) : π ∈�} is bounded.

(iv) � is convex, and for all θ ∈�, BR(θ) is a singleton and Qθ(·|a, s) is continuous in
(a, s).

The results on one-hypothesis mutations extend immediately to real-valued actions.
For local mutations, the cardinality of the action space does matter: With any finite set
of actions a vanishingly small ε is eventually smaller than the “gap” between the actions,
but this is not the case when the action space is an interval in R. Instead, in any uni-
formly strict equilibrium there is a nearby action that performs almost as well, and arbi-
trarily small changes in beliefs generally induce a change in the best reply. As we show
below, this allows local mutations to invade some uniformly strict equilibria in settings
with a continuum of actions. We also show that any unstable uniformly strict equilib-
rium that is an attractor for the dynamic process corresponds to a limit of equilibria that
are mixed and unstable along a sequence of increasingly fine finite action grids.32

The stability of an equilibrium in this setting depends on M�,ψ(ε), introduced in
Section 5.2 and the (objective) indirect utility function of the agent, which is V (θ) =
U∗(BR(θ)). We assume that V is continuously Gateaux differentiable. If �(ψ) is
a singleton and M�,ψ(ε) is a singleton for sufficiently small ε, let V ′(M�,ψ, ψ) =
lim infε→0(V (M�,ψ(ε)) − V (�(ψ)))/ε be the derivative of V in the direction M�,ψ(ε).

Proposition 7. Let (�, ψ) be a Berk–Nash equilibrium such that �(ψ) is a singleton
and M�,ψ(ε) is a singleton for sufficiently small ε. If V ′(M�,ψ, ψ)> 0, then (�, ψ) does
not resist local mutations.

This shows that if the derivative of the static indirect utility function in direction
M�,ψ(ε) is positive the equilibrium does not resist local mutations.

Example 4 (Regression to the mean). An instructor observes the initial performance
s ∈ R of a student and decides whether to praise them, a= ar , or criticize them, a= ac .

32Convergence here means convergence with respect to the Hausdorff metric on the compact subsets
of A. In some cases, there are ways of specifying the approximating action grid so that the unstable limit
equilibrium is the limit of equilibria that are stable with finitely many actions, but these approximations
rely on exactly including the equilibrium action of the continuum case as one of the elements of the grid.
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Then the student performs again, and the instructor observes their performance y. The
instructor’s utility is

u(s, a, y ) =
{
y − k|s| if s > 0 and a= ac , or s < 0 and a= ar
y otherwise.

The truth is that s and y are independent standard normals and the instructor cannot
influence performance, so it is optimal to praise if s > 0.

The instructor believes that y = θ0s + θa + η, where η is a standard normal, θ0

is the perceived correlation between performance in the two periods, and θa is the
perceived effect of action a. Suppose the instructor is certain that θ0 = 1, with � =
{1} × [−K, +K]2. Esponda and Pouzo (2016) shows that for sufficiently large K the in-
structor criticizes too often in the unique Berk–Nash equilibrium: there is a threshold T
such that the instructor criticizes if and only if performance is below T = (θac (T , θ0 ) −
θar (T , θ0 ))/k > 0, where θac (T , θ0 ) = E[y − θ0s|s < T ]> 0 and θar (T , θ0 ) = E[y − θ0s|s >
T ]< 0. Since θar (T , θ0 ) and θac (T , θ0 ) are respectively decreasing and increasing in θ0,
for sufficiently small ε, M�,ψ(ε) is ((1, θac (T , θ0 ), θar (T , θ0 ))+(v0(ε), vc(ε), vr(ε))) with
v0(ε) < 0, vc(ε) ≤ 0, vr(ε) ≥ 0. This corresponds to a lower correlation between the
two periods, higher effectiveness of praise, and lower effectiveness of criticism. Since
V ′((1, θac (T , θ0 ), θar (T , θ0 ))+ (v0(ε), vc(ε), vr(ε))) = kT > 0, by Proposition 7, the equi-
librium does not resist local mutations. ♦

Definition. Let S be a singleton. We say that a pure Berk–Nash equilibrium (�, â) is an
attractor if â ∈Ao and there is an ε > 0 such that ‖a− â‖ ≤ ε implies �(a) is a singleton
and (BR(�(a)) − â)(a− â)< 0.

A Berk–Nash equilibrium is an attractor if slightly changing the action in one di-
rection induces a KL minimizer whose best reply is in the opposite direction.33 In all
continuum of actions versions of the examples of this paper, every interior Berk–Nash
equilibrium is an attractor. We say that a sequence of finite action sets (An )n∈N approx-
imatesA if for each n ∈N,An is a finite subset ofA, and ‖An −A‖ → 0.

Proposition 8. Suppose (�, â) is the unique Berk–Nash equilibrium, and is an attractor
that satisfies the assumptions of Proposition 7. Then for every sufficiently small ε > 0,
there is (An )n∈N that approximates A and (ψn )n∈N → â such that (�, ψn ) is a Berk–Nash
equilibrium of the environment with actions An that does not resist a mutation to an ε
expansion of �.

8. Conclusion

We say that an equilibrium resists mutations if after a mutation the aggregate play con-
verges back to the original equilibrium. This can happen because even explanation im-
proving mutations that lead to a better but imperfect fit can lead to lower payoffs. We

33When S is a singleton the space of strategies is unidimensional, so the direction of the deviation com-
pletely determines the direction of the best reply to the evidence it generates.
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considered two sorts of mutations: local mutations that add all parameters close to the
support of the original beliefs, and one-hypothesis mutations that completely abandon
a particular constraint. These two forms of mutations have different implications for
which equilibria resist mutations. Local mutations are effective at destabilizing mixed
equilibria, but cannot destabilize Berk–Nash equilibria that are uniformly strict. One-
hypothesis mutations can destabilize such equilibria, but they can fail to invade when
they lead the agent to overshoot the optimal action, as in our income tax example.

The two forms of mutations we study are natural benchmarks, but other sorts of mu-
tation may be worth exploring, such as mutations that weaken but do not entirely drop
a single hypothesis. Another interesting case is mutations in which the new subjective
model must include at least one parameter that perfectly fits the observed data, but may
be incorrect about what is not observed in equilibrium. Here, too, we expect that some
expansions of the parameter space may lead to lower payoffs, and thus be abandoned,
depending on how the expanded model interprets the equilibrium data.34

Our framework can be expanded to the misspecification-driven inattention pro-
posed by Gagnon-Bartsch, Rabin, and Schwartzstein (2021), where agents only pay at-
tention to the coarsest partition of outcomes that allows for all the inference they think
is payoff relevant. Gagnon-Bartsch, Rabin, and Schwartzstein (2021) assume that ac-
tions do not influence the distribution over outcomes, which implies that only equilib-
ria that are self-confirming given the agents’ “attention partition” resist mutations. It
also assumes that all mutations include the objective model. An earlier version of this
paper shows that when these assumptions are relaxed, the effect of attention partitions
is ambiguous.

Our model’s combination of Bayesian learning and evolutionary dynamics has a
larger potential scope, as it can be used as a framework to study competition between
paradigms without focusing, as we do, on steady states. For example, one might study
cycles between subjective models in a setting without mutations, or the ergodic distri-
bution of subjective models when mutations do sometimes occur but are rare. We could
also extend the model to consider agents who have an intrinsic preference for particular
beliefs, either innately or from peer effects.

Appendix

Proof of Lemma 1. If δ� × ψ is a steady state, then by equation (1), ψ ∈
�(BR(�(�(ψ)))), so for every π ∈ suppψ there exists μπ ∈ �(�(ψ)) such that π ∈
BR(μπ ), so (�, ψ) is a Berk–Nash equilibrium. The steady state is unitary if and only
there is μ ∈ �(�) such that this μπ can be chosen to be equal to μ for all π ∈ suppψ, so
the equilibrium is unitary as well.

Conversely, if (�, ψ) is a Berk–Nash equilibrium, for every π ∈ suppψ there exists
μπ ∈ �(�(ψ)) such that π ∈ BR(μπ ), and so ψ ∈ �(BR(�(�(ψ)))). Therefore, pt = δ� ×
ψ for all t satisfies equations (1) and (2), so δ� × ψ is a steady state. The equilibrium
is unitary if and only if we can choose μ = μπ for all π ∈ suppψ, so the steady state is
unitary as well.

34For an axiomatic approach to these “backup” models, see Ortoleva (2012).
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Proof of Proposition 1. Let (�, ψ) be a Berk–Nash equilibrium and suppose that
the mutation of δ� × ψ to �′ is not explanation improving. We show that for ev-
ery ε ∈ (0, 1) the following constant path is a solution: ptK(�) = 1 − ε, ptK(�′ ) = ε,
and pt�(·|�) = ψ = pt�(·|�′ ) for all t ∈ N0. By Lemma 1, ψ ∈ �(BR(�(�(ψ)))). Since
�′ ⊇ � is not explanation improving with respect to δ� × ψ, �(ψ) ⊆ �′(ψ), and ψ ∈
�(BR(�(�(ψ)))) ⊆ �(BR(�(�′(ψ)))), so equation (1) is satisfied, and equation (2) is sat-
isfied because the distributions of strategies generated by the two models are the same
at every period.

Lemma 2. �(·) is upper hemicontinuous, nonempty-valued, and compact-valued.

The proof of this lemma is an immediate adaptation of Lemma 1 of Esponda and
Pouzo (2016) to the case of infinitely many outcomes. Define �(π, ε) := {θ ∈ H : ∃θ′ ∈
�(π ), ‖θ− θ′‖2 ≤ ε}.

Lemma 3. For every� ∈ K and ε′ > 0, there is an ε̂ ∈ (0, ε′ ) such that if�′ is an ε < ε̂ local
expansion of �, then �′(π ) ⊆�(π, ε̂).

Proof. Suppose not, and let (�′
n )n∈N be a sequence of εn local expansions of � with

εn ↓ 0 and θn ∈ �′
n(π ) \�(π, ε̂). Since �′

1 is compact, the sequence has an accumula-
tion point θ ∈ �. If θ ∈ �(π ) then a subsequence of (θn )n∈N is eventually in �(π, ε̂),
a contradiction. If θ /∈ �(π ), then since H is lower semicontinuous in θ,35 eventu-
ally Hπ(Q∗,Qθn ) > minθ̃∈�Hπ(Q∗,Qθ̃ ) ≥ minθ̃∈�′

n
Hπ(Q∗,Qθ̃ ), which contradicts with

θn ∈�′
n(π ).

Proof of Proposition 2. (i) Let (�, π ) be a uniformly strict Berk–Nash equilibrium.
By Lemma 2, �(π ) is compact, and by the triangle inequality so is �(π, ε). The result is
immediate if � is a singleton. Otherwise, let G(ε) = minπ′∈�\{π} minμ∈�(�(π,ε))(Uμ(π ) −
Uμ(π ′ )). Because � is finite and U is linear and bounded on �(�), U is continuous by
Lemma 5.64 in Aliprantis and Border (2013). Moreover, ε 	→�(π, ε) is a continuous and
compact-valued correspondence, and so G is continuous by the maximum theorem.
And since (�, π ) is a uniformly strict Berk–Nash equilibrium, G(0)> 0, and there is an
ε̂ such that if ε≤ ε̂,G(ε)> 0.

By Lemma 3, there is an ε′ ∈ (0, ε̂) such that if �′ is an ε < ε′ local expansion of
�, then �′(π ) ⊆ �(π, ε̂). Let pε be an ε local mutation of δ� × π for ε < ε′ and let
�′ be the ε local expansion of �. We prove by induction that pt� = π for every solu-
tion (pt )t∈N with p0 = pε, concluding the proof of the statement. For the initial step,
note that since ε < ε′ ≤ ε̂, �′(π ) ⊆ �(π, ε̂). But then pε(·|�′ ) ∈ �(BR(�(�′(π ))) ⊆
�(BR(�(�(π, ε̂)))) = {π}, where the last equality follows fromG(ε̂)> 0. Moreover, since
(�, π ) is a uniformly strict Berk–Nash equilibrium, pε(·|�) = {π} as well, concluding the
base step. Suppose the statement is true for some t ∈ N0. Since ε < ε′ ≤ ε̂, we have

35The lower semicontinuity of H in the probability measure follows from, e.g., Theorem 1.47 of Liese
and Vajda (1987), and then the lower semicontinuity in θ follows from the continuity in θ of the probability
measure imposed by Assumption 1(i).
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�′(pt� ) = �′(π ) ⊆ �(π, ε̂), and by definition �(π ) ⊆ �(π, ε̂). Since G(ε̂) > 0, this im-
plies pt+1

� = {π}, which completes the inductive step.
(ii) Let ∂� denote the boundary of �. Since ∂� is compact, when the KL minimiz-

ers are in the interior of �, there is a K ∈ R++ and an ε̂ ∈ R++ such that if θ′ ∈ ∂� and
θ is in Bε̂(θ′ ) then Hψ(Q∗,Qθ ) − argminθ̃∈�Hψ(Q∗,Qθ̃ ) > K. This in turn implies that
�ε(ψ) = �(ψ), when ε < ε̂. Thus, the sequence in which both the mutated and the
conformist agents play ψ every period and their shares remain fixed is a solution: equa-
tion (1) is satisfied since �ε(ψ) =�(ψ), and equation (2) is trivially satisfied since both
subpopulations have the same distribution over strategies. Therefore, the equilibrium
resists local mutations.

For λ ∈R++, α ∈ (0, 1) and �,�′ ∈ K, let

Pλ,α
(
�,�′) = {

p ∈ P : pK
({
�,�′}) = 1,U∗(p(·|�′)) −U∗(p(·|�)

) ≥ λ,

min
{
pK(�), pK

(
�′)} ≥ α}

denote the states where the strategy used by agents with model�′ outperforms the strat-
egy used by agents with model � by at least λ, and both population shares are larger
than α.

The proofs of Propositions 3, 4, and 7 use the following lemma. It uses continuity
and compactness arguments and the payoff monotonicity of T to show that the change
in the relative prevalence of any two subjective models�,�′ is bounded away from 1 on
Pλ,α(�,�′ ), regardless of their initial population shares.

Lemma 4. For every λ, α ∈ (0, 1) and �,�′ ∈ K, minp∈Pλ,α(�,�′ )[T (p)(�′ )pK(�)]/
[T (p)(�)pK(�′ )] is well-defined and strictly larger than 1. Thus, there is no solution
that eventually stays in Pλ,α(�,�′ ).

Proof. Because U∗ is continuous, Pλ,α(�,�′ ) is a compact subset of P . There-
fore, since T (·)(�) is continuous and strictly positive on Pλ,α(�,�′ ), it is bounded
away from 0 on this set. Moreover, by definition pK(�′ ) ≥ α > 0 on Pλ,α(�,�′ ), so
[T (p)(�′ )pK(�)]/[T (p)(�)pK(�′ )] is continuous on Pλ,α(�,�′ ) and attains a mini-
mum m. Because T is payoff monotone and the strategy used by agents with subjective
model �′ strictly outperforms the strategy used by agents with subjective model � on
Pλ,α(�,�′ ), the minimum satisfiesm> 1.

To prove the last part of the lemma, note that when pt ∈ Pλ,α(�,�′ ) the ratio be-
tween the shares of models � and �′ grows multiplicatively by at least m, so there is
a τ ≤ logm(1/α2 ) + t such that pτ(�) < α. Thus, the solution leaves Pλ,α(�,�′ ) before
time τ.

Proof of Proposition 3. Since the set of strategies is finite, there is ε′ ∈R++ such that
for all ε ∈ (0, ε′ ), BR(�(M�,ψ(ε))) ⊆�M�,ψ . Fix such an ε′ for the entire proof.

(i) Since U∗ is continuous and �M�,ψ is finite, there are ε∗ ∈ R++ and γ ∈ R++ such
that ∥∥ψ′ −ψ∥∥< ε∗ ⇒ U∗(ψ′) − min

π∈�M�,ψ

U∗(π )<−γ. (4)
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Let (pt )t∈N0 be a solution withp0 = pε, wherepε is an ε local mutation of δ�×ψ and ε <

min{ε′, ε∗, (1 −ψ(�M�,ψ ))/2}. Because� is finite and�ε(·) is upper hemicontinuous by

Lemma 2, there is ε̄ ∈ (0, ε) such that

∥∥ψ′ −ψ∥∥< ε̄ ⇒ BR
(
�

(
�ε

(
ψ′))) ⊆�M�,ψ . (5)

Suppose by way of contradiction that limpt� =ψ and so ‖pt� −ψ‖< ε̄ for all t larger

than some τ > 0. For such t, BR(�(�ε(pt� )))) ⊆ �M�,ψ from equation (5), and since

ε̄ < ε < ε∗, equation (4) implies

U∗(pt+1(·|�ε )
)
>U∗((pt+1)

�

) + γ
= pt+1(�)U∗(pt+1(·|�)

) + (
1 −pt+1(�)

)
U∗(pt+1(·|�ε )

) + γ
so U∗(pt+1(·|�ε )

)
>U∗(pt+1(·|�)

) + γ

pt+1(�)
. (6)

Moreover, by equation (5) for all t > τ, the mutated agents only play strategies in

�M�,ψ , i.e., supppt+1(·|�ε ) ⊆ BR(�(�ε(pt� )))) ⊆ �M�,ψ . This, together with U∗(π ) >

U∗(ψ) for every π ∈�M�,ψ , implies that pt+1(�)> (1 −ψ(�M�,ψ ))/2> 0. But then pt ∈
Pλ,α(�,�ε ) for all t > τ with α= min{pτ+1(�ε ), (1 −ψ(�M�,ψ ))/2} and λ= γ/pτ+1(�),

a contradiction by Lemma 4.

(ii) We prove the following stronger result: If for some π′ ∈�M�,ψ , U∗(π ′ ) ≤ U∗(ψ),

and π ′ ∈ suppψ, then (�, ψ) resists local mutations. Part (ii) of the proposition follows

because the upper hemicontinuity of M�,ψ(·) and BR(·) implies that π ′ ∈ suppψ in any

quasistrict equilibrium.

Suppose that U∗(π ′ ) ≤ U∗(ψ), and π ′ ∈ suppψ for some π ′ ∈ �M�,ψ . We will show

that there is a solution in which the mutated agents always play π ′ ∈ �M�,ψ and the

conformists play a strategy distribution very close to the equilibrium in every period.

Upper hemicontinuity of the best reply make the case in period 1 for a sufficiently small

share of mutants. Payoff monotonicity and the fact that π′ has lower payoff than the

equilibrium distribution guarantee that the share of mutants does not increase.

Let ε̂ = minπ∈suppψψ(π ), and let (εn )n∈N0 ∈ (0, min{ε′, ε̂})N0 be such that π ′ ∈
BR(�(M�,ψ(εn ))) for all n ∈N0 and (εn )n∈N0 → 0. We now show that for every εn there is

a solution (pt )t∈N0 with p0 = pεn and limt→∞pt� =ψ, where pεn is an εn local mutation

of δ� ×ψ.

Set ε = εn for some n ∈ N0 and let �ε be the local ε expansion of �. To define the

candidate solution, let p0
K(�) = 1 − ε, p0

K(�ε ) = ε, p0
�(·|�ε ) = π′ and

p0
�(π|�) =

⎧⎪⎨
⎪⎩
ψ(π )
1 − ε π �= π′

ψ(π ) − ε
1 − ε π = π′.

(7)
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Also, recursively define pt+1
K (�) = T (pt )(�), pt+1

K (�ε ) = T (pt )(�ε ),

pt+1
� (·|�ε ) = π′, and pt+1

� (π|�) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ(π )

pt+1
K (�)

π �= π ′

ψ(π ) −pt+1
K (�ε )

pt+1
K (�)

π = π ′.

By definition, (pt )t∈N0 satisfies equation (2). It remains to show that ψ(π ′ ) ≥ ptK(�ε ) for
all t, so thatpt+1(·|�) is a well-defined element of�(�), and that equation (1) is satisfied.

We prove this by induction. For the initial step, since �ε is an ε local mutation of
�, and ε < ε̂= minπ∈suppψψ(π ), ψ(π ′ ) ≥ p0

K(�ε ) = ε. Moreover, by definition of ε= εn
equation (1) is satisfied for t = 0. For the inductive step, since the operator T is payoff
monotone, U∗(π ′ ) ≤ U∗(ψ), and ψ(π ′ ) ≥ ptK(�ε ) by the inductive hypothesis, we have
pt+1
K (�ε ) ≤ ptK(�ε ) ≤ψ(π ′ ), and because ε= εn equation (1) is satisfied for t + 1.

Lemma 5. Let (�, ψ) be a Berk–Nash equilibrium. If� is finite,�(ψ) is a singleton,Qθ is
linear in θ, and for every θ′ �= θ′′ Qθ′ andQθ′′ are notQ∗-almost surely equal, then there is
ε′ ∈ R

++ such that M�,ψ(ε) is a singleton for all ε≤ ε′.

Proof. Let {θ̂} =�(ψ). By Lemma 3, there is ε′ > 0 such that for all ε ≤ ε′, M�,ψ(ε) ⊆
Bε(θ̂). Assume by way of contradiction that θ′, θ′′ ∈ M�,ψ(ε), ε ≤ ε′, θ′ �= θ′′. By the
convexity of the norm, θ′/2 + θ′′/2 ∈ Bε(θ̂), and by the strict convexity of the weighted
KL divergence in the second argument, Hψ(Q∗,Qθ′/2+θ′′/2 ) <Hψ(Q∗,Qθ′ ), a contradic-
tion.

Proof of Proposition 4. Because �l(·) is upper hemicontinuous (see Lemma 2),
there is ε′ > 0 such that

∥∥ψ′ −ψ∥∥< ε′ ⇒ BR
(
�

(
�l

(
ψ′))) ⊆�p,l ∀l ∈ {1, � � � ,m}. (8)

(i) We prove this case by contradiction. Suppose that for some l ∈ {1, � � � ,m}, we have
U∗(π ) > U∗(ψ) for every π ∈ �p,l. Because U∗ is continuous and � is finite, there are
ε∗ > 0 and γ > 0 such that

∥∥ψ′ −ψ∥∥< ε∗ ⇒ U∗(ψ′) −U∗(ψ′′)<−γ ∀ψ′′ ∈ �(�p,l ). (9)

Let �l be the one-hypothesis relaxation of � in hypothesis l. By definition of ε′, we
have ∥∥pt� −ψ∥∥< ε′ ⇒ pt+1(·|�l) ∈ �(�p,l ) ∀pt ∈ P . (10)

Suppose by way of contradiction that for ε <min{ε′, ε∗, (1−ψ(�p,l ))/2} there is an ε
mutation to�l, p0

ε, such that limt→∞(ptε )� =ψ. This means that after some τ > 0, for all
t > τ, ‖(ptε )�−ψ‖< ε. Since ε < ε′, by equation (10), pt+1

ε (·|�l ) ∈ �(�p,l ). This, together
with the assumption that for every π ∈ �p,l, U∗(π ) > U∗(ψ), implies that pt+1

ε (�) >
(1 −ψ(�p,l ))/2> 0.
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Since ε < ε∗, by equation (9), U∗((pt+1
ε )� ) + γ < U∗(pt+1

ε (·|�l )). Therefore,
U∗(pt+1

ε (·|�l ))>pt+1
ε (�)U∗(pt+1

ε (·|�)) + (1 −pt+1
ε (�))U∗(pt+1

ε (·|�l )) + γ, so

U∗(pt+1
ε

(·|�l))>U∗(pt+1
ε (·|�)

) + γ

pt+1
ε (�)

.

But then pt ∈ Pλ,α(�,�l ) for all t > τ with α = min{pτ+1
ε (�l ), (1 − ψ(�p,l ))/2} and

λ= γ/pτ+1
ε (�), a contradiction by Lemma 4.

(ii.a) Let ε̂ = minπ∈suppψψ(π ). We will show that for every l ∈ {1, � � � ,m} and ε <
min{ε′, ε̂} there exists a solution (pt )t∈N0 where p0 is an ε mutation of δ� × ψ to the
one-hypothesis relaxation of � in hypothesis l ∈ {1, � � � ,m} and limt→∞(pt )� = ψ. Fix
such an ε and let �′ be the one-hypothesis relaxation of � in hypothesis l ∈ {1, � � � ,m}.
Initialize the candidate solution by setting p0

K(�) = 1 − ε, p0
K(�′ ) = ε, p0

�(·|�′ ) =
π′ ∈ �p,l and p0

�(π|�) as in equation (7), and recursively define subsequent states by
pt+1
K (�)/pt+1

K (�′ ) = T (pt )(�)/T (pt )(�′ ), pt+1
� (·|�′ ) = π′, and

pt+1
� (π|�) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ(π )

pt+1
K (�)

π �= π ′

ψ(π ) −pt+1
K

(
�′)

pt+1
K (�)

π = π ′.

By definition, (pt )t∈N0 satisfies equation (2). It only remains to show thatψ(π′ ) ≥ ptK(�′ )
for all t, so that pt+1(·|�) is a well-defined element of �(�), and that equation (1) is
satisfied.

We prove this by induction. For the initial step, since ε < ε̂ = minπ∈suppψψ(π ),
ψ(π ′ ) ≥ p0

K(�′ ) = ε. Moreover, since π ′ ∈ �p,l, equation (1) is satisfied for t = 0. For
the inductive step, since T is payoff monotone, U∗(π ′ ) ≤U∗(ψ), and ψ(π ′ ) ≥ ptK(�′ ) by
the inductive hypothesis, we have pt+1

K (�′ ) ≤ ptK(�′ ) ≤ ψ(π′ ). Moreover, since by the
inductive step (pt )� =ψ and π ′ ∈�p,l, equation (1) is satisfied for t + 1 as well.

(ii.b) Now suppose (�, ψ) is a uniformly strict Berk–Nash equilibrium. Let �′ be the
one-hypothesis relaxation of � in hypothesis l ∈ {1, � � � ,m}. Let ε̂ > 0 be small enough
that ‖ψ−ψ′‖ ≤ ε̂ implies BR(�(�(ψ′ )) ⊆ BR(�(�(ψ))) and BR(�(�′(ψ′ )) ⊆�p,l for ev-
ery l ∈ {1, � � � ,m}. (Such ε̂ exists by Lemma 2.) We show that for every ε < min{ε′, ε̂}
there is a solution (pt )t∈N0 where (i) p0 is an εmutation of δ�×ψ to the one-hypothesis
relaxation of � in hypothesis l and (ii) limt→∞(ptε )� =ψ. Fix such an ε.

Initialize the candidate solution by setting p0
K(�) = 1 − ε, p0

K(�′ ) = ε, p0
�(·|�′ ) = π0

and p0
�(·|�) = ψ, where π0 is an arbitrary element of �p,l, and recursively define sub-

sequent states by pt+1
K (�) = T (pt )(�) and pt+1

K (�′ ) = T (pt )(�′ ), pt+1
� (·|�′ ) = πt+1 and

pt+1
� (π|�) = ψ, where πt+1 is an arbitrary element of BR(�(�′(pt� ))) ∩ �p,l. By def-

inition, (pt )t∈N0 satisfies equation (2). It only remains to show that for every t ∈ N0,
ε̂ ≥ ptK(�′ ) so that equation (1) is satisfied because BR(�(�′(pt� ))) ∩ �p,l �= ∅ and
ψ ∈ �(BR(�(�(pt� )))). We prove this by induction. The initial step follows from the def-
inition of ε̂. For the inductive step, since the operator T is payoff monotone, U∗(π ′ ) ≤
U∗(ψ), for every π ′ ∈ �p,l, and ε̂ ≥ ε ≥ ptK(�′ ) by the inductive hypothesis, we have
pt+1
K (�′ ) ≤ ptK(�′ ) ≤ ε ≤ ε̂. The proof is concluded by observing that the previous in-

equality implies that as ε→ 0 we have limt→∞ptK(�′ ) = 0.
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Proof of Proposition 5. Let�′ be innovation-inducing for the innovation-vulnerable
equilibrium (�, ψ). Since U∗ is continuous and �′ is upper hemicontinuous by
Lemma 2, there is ε∗ > 0 such that

∥∥ψ′ −ψ∥∥< ε∗ ⇒ BR
(
�

(
�′(ψ′))) = {πI }. (11)

Let (pt )t∈N0 be a solution with p0 = pε, where pε is an ε mutation of δ� × ψ to �′ and
ε < ε∗. By assumption, there is ε̄ ∈ (0, ε) such that

‖p� −ψ‖< ε̄ and p
(·|�′) = {πI } ⇒ BR

(
�

(
�(p� )

)) = {πU }. (12)

Suppose by way of contradiction that after some τ > 0, for all t > τ, ‖pt� − ψ‖ <
ε̄. From equation (11), this implies that BR(�(�′(pt� )))) = {πI }. Since ε̄ < ε < ε∗, by
equation (12), BR(�(�(pt� )))) = {πU } a contradiction to ‖pt+1

� −ψ‖< ε̄.

Proofs of Proposition 6 and 9

Let E(θ, ψ) be the parameters that are indistinguishable from θ under strategy distribu-
tion ψ, i.e., the θ′ such that for all s ∈ S and for

∑
π∈�Q∗(·|s, π(s))ψ(π )-almost every y,∑

π∈�Qθ(·|s, π(s))ψ(π ) = ∑
π∈�Qθ′(·|s, π(s))ψ(π ). When aggregate play is ψ, the rela-

tive likelihood of elements of E(θ, ψ) is determined by the prior. LetU(π|E(θ, ψ)) denote
the subjective utility of strategy π under posterior μ�(·|E(θ, ψ)).

Definition. We say that strategies are subjectively different under p� if for all π, π ′ ∈�,
π �= π′, there is θ ∈�(p� ) such that U(π|E(θ, p� )) �=U(π ′|E(θ, p� )).

In words, strategies are subjectively different under p� if for every two strategies
there is a class of indistinguishable parameters E(θ, p� ) that minimize the weighted KL
divergence given p� such that the utility of the strategies conditional to E(θ, p� ) is dif-
ferent. Ifp� distinguishes parameters and strategies, strategies are subjectively different
under p�, as the former is the case when each E(θ, p� ) is a singleton. Thus, Proposi-
tion 6 follows from Proposition 9 below.

The next lemma is used in the proof of Proposition 9. It generalizes Jensen’s inequal-
ity by showing that if two parameters have the same weighted KL divergence given ψ,
and they do not assign the same probability to all events that ψ gives positive proba-
bility, then their strict convex combination has a strictly lower weighted KL divergence
given ψ.

Lemma 6. Let X ∈ B(Rm ), and let �,�1,�2 ∈ �(X ) be Borel probability measures with
densities φ, φ1, φ2 ∈ �(X ) such that − ∫

X logφ1(x)d�(x) = −∫
X logφ2(x)d�(x) and φ1

is not�-almost surely equal to φ2. For every v ∈ (0, 1),

−
∫
X

log
[
vφ1(x) + (1 − v)φ2(x)

]
d�(x)>−

∫
X

logφ1(x)d�(x).
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Proof. Sinceφ1 is not�-almost surely equal toφ2 there existsB ∈ B(X ) with�(B)> 0,
andK ∈R

+ such that φ1(x)>φ2(x) +K for all x ∈ B. Moreover, since

−
∫
x∈X

logφ1(x)d�(x) = −
∫
x∈X

logφ2(x)d�(x)

the set B can be chosen such that

K ≤φ1(x) ≤ K̄ and K ≤φ2(x) ≤ K̄ for all x ∈ B,

for someK, K̄. Let

ρ= min
z∈[K,K̄],z′∈[z+K,K̄]

log
(
vz+ (1 − v)z′) − v log(z) − (1 − v) log

(
z′)> 0 (13)

where the strict inequality follows from Jensen’s inequality, the strict concavity of log,
and the compactness of the set over which the expression is minimized.

Notice that the formula for relative entropy can be expanded as

−
∫
Y\B

log
(
vφ1(x) + (1 − v)φ2(x)

)
d�(x) −

∫
B

log
(
vφ1(x) + (1 − v)φ2(x)

)
d�(x)

≤ −
∫
Y\B

log
(
vφ1(x) + (1 − v)φ2(x)

)
d�(x)

−
∫
B

(
v logφ1(x) + (1 − v) logφ2(x) + ρ)d�(x)

≤ −v
∫
Y

logφ1(x)d�(x) + (1 − v)
∫
Y

logφ2(x)d�(x) − ρ�(B)

=
∫
x∈X

logφ1(x)d�(x) − ρ�(B)

as desired.

Proposition 9. If either:

(i) BR(�(�(p� )) is a singleton, or

(ii) � is finite and strategies are subjectively different under p�,

then limn→∞ψn(�, p� ) exists, and is in �(BR(�(�(p� )))).

Proof. If {π̂} = BR(�(�(p� )), an argument analogous to the main theorem in Berk
(1966) guarantees that almost surely limn→∞μn(C ) = 1 for all open sets C ⊇�(p� ), and
the upper hemicontinuity of the best-reply correspondence implies that ψn → π̂.

The proof for part (ii) follows from three claims. Claim 1 shows that almost surely
the posterior beliefs will assign probability 1 to the KL-minimizing parameters for p�.
Claim 2 shows that the likelihood ratios between different minimizers is a nondegener-
ate random walk. We show this by adapting and extending an argument from Fuden-
berg, Lanzani, and Strack (2021) to allow for infinitely many outcomes and a related but
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different random walk. Claim 3 shows that beliefs that induce ties have Lebesgue mea-
sure zero in the space of likelihood ratios. The proposition then follows from the central
limit theorem.

Define Qp� ∈ �(S ×A× Y ) by Qp�(s, a, B) = σ(s)p�{π : π(s) = a}Q∗(B|s, a). Parti-
tion the elements of � in equivalence classes {θ̃l}Cl=1 such that

∑
π∈�

qθ1
(·|s, π(s)

)
p�(π ) =

∑
π∈�

qθ2
(·|s, π(s)

)
p�(π ) ∀s ∈ S, ∀θ1, θ2 ∈ θ̃l

∑
π∈�Q∗(·|s, π(s))p�(π )-almost surely, and for every i ∈ {1, � � � , C} let θi be an arbitrary

element of θ̃i. Let θ̃1, � � � , θ̃K be the equivalence classes that contain the elements of
�(p� ), and let θ̃1 contain at least one element of

argmax
θ∈�(p� )

∫
S×A×Y

qθ(y|s, a)dQp�(s, a, y ).

For everym ∈N, let

μm
(
θ̃l

) = μ�
(
θ̃l

)
m∏
j=1

qθl (yj|sj , aj )

∑
i∈{1, ���,C}

μ�
(
θ̃i

) m∏
j=1

qθi(yj|sj , aj )

∀l ∈ {1, � � � , C},

which is well-definedQp�-almost surely. With this, for all l ∈ {1, � � � , C} define

Zlm = log
μm

(
θ̃l

)
μm

(
θ̃1) and Llm = log

qθl (ym|sm, am )
qθ1 (ym|sm, am )

, so Zlm =Zl0 +
m∑
i=1

Lli.

Claim 1. The probability assigned to the KL-minimizing parameters goes to 1 Qp�-
almost surely, i.e., lim infm→∞μm(�(p� )) = 1.

The proof of this claim combines the SLLN with the monotone convergence theo-
rem to show the likelihood ratio between two parameters converges even when the ratio
between their densities may be unbounded.36

Proof. If�=�(p� ), the result is immediate. SupposeK <C. For l > K, E[Llm|(Zli )
m−1
i=1 ]

is equal to

∑
s∈S
σ(s)

∑
π∈�

p�(π )
[
H

(
Q∗(·|s, π(s)

)
,Qθ1

(·|s, π(s)
))

−H(
Q∗(·|s, π(s)

)
,Qθl

(·|s, π(s)
))]
< 0.

36Unlike the related Lemma 2 of Esponda and Pouzo (2016), this result allows Y to be infinite.
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Since � ∈ K, E[(Llm )+|(Zli )
m−1
i=1 ]<∞ and so by the strong law of large numbers and the

monotone convergence theorem, it follows that limm→∞ eZ
l
m = 0 a.s. Therefore,

lim sup
m→∞

log
μm

(
� \�(p� )

)
μm

(
�(p� )

) ≤ lim sup
m→∞

log
μm

(
� \�(p� )

)
μm

(
θ̃1)

= lim sup
m→∞

log
�∑

l=K+1

expZlm
a.s.= −∞,

proving the claim.

Claim 2. The process (Zl )Kl=2 is a multidimensional random walk in R
K−1, and the co-

variance matrix of its increments is positive definite.

Proof. For every l ∈ {2, � � � ,K}, E[Llm|(Zli )
m−1
i=1 ] =Hp�(Q∗,Qθ1 ) −Hp�(Q∗,Qθl ) = 0, so

(Zl )Kl=2 is a multidimensional random walk. Because Q∗(·|s, a) is absolutely continu-
ous with respect to Qθ1 (·|s, a) for all s ∈ S and a ∈ suppp�(s), the increments Lt have
covariance matrix � given by

�ij = cov
(
Li, Lj

) = E
[
LiLj

] =
∫
S×A×Y

log
(
qθi(y|s, a)
qθ1 (y|s, a)

)
log

(
qθj (y|s, a)
qθ1 (y|s, a)

)
dQp�(s, a, y ).

To show this covariance matrix is positive definite, we will show that vT�v > 0 for all
v ∈ R

K−1++ with ‖v‖1 = 1. This is sufficient because these vectors include the canonical
orthogonal basis of RK−1. The claim trivially holds if K = 2. Therefore, suppose K > 2,
observe first that vT�v is nonnegative:

vT�v=
K∑
i=2

K∑
j=2

vi�ijvj

=
K∑
i=2

K∑
j=2

vivj

∫
S×A×Y

log
(
qθi(y|s, a)
qθ1 (y|s, a)

)
log

(
qθj (y|s, a)
qθ1 (y|s, a)

)
dQp�(s, a, y )

=
∫
S×A×Y

K∑
i=2

K∑
j=2

vi log
(
qθi(y|s, a)
qθ1 (y|s, a)

)
vj log

(
qθj (y|s, a)
qθ1 (y|s, a)

)
dQp�(s, a, y )

=
∫
S×A×Y

(
K∑
i=2

vi log
(
qθi(y|s, a)
qθ1 (y|s, a)

))2

dQp�(s, a, y ) ≥ 0.

Since the last expression is the integral of a weakly positive function, it equals zero if
and only if the integrand isQp�-almost surely equal to 0. Moreover, we have

0 =
K∑
i=2

vi log
(
qθi(y|s, a)
qθ1 (y|s, a)

)
⇒ logqθ1 (y|s, a) =

K∑
i=2

vi logqθi(y|s, a).
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By Jensen’s inequality, this implies that logqθ1 (y|s, a) ≤ log
∑K
i=2 viqθi(y|s, a),

Qp�-almost surely, so qθ1 (y|s, a) ≤ ∑K
i=2 viqθi(y|s, a). And as θ1 maximizes∫

S×A×Y qθ(y|s, a)dQp�(s, a, y ) on �(p� ) this implies that Qp�-almost surely qθ1 (y|s,

a) = ∑K
i=2 viqθi(y|s, a). By Lemma 6, this contradicts θ2 ∈ �(p� ). Thus, vT�v > 0, so

� is positive definite, proving Claim 2.

Claim 3. The set of ν ∈ �({θ̃1, � � � , θ̃K }) such that

K∑
i=1

ν
(
θ̃i

) ∑
θj∈θ̃i

μθ(θj )

μθ
(
θ̃i

)Uθj (π ) =
K∑
i=1

ν
(
θ̃i

) ∑
θj∈θ̃i

μθ(θj )

μθ
(
θ̃i

)Uθj (π′) (14)

for some π �= π ′ has Lebesgue measure 0 in R
K .

Proof. Fix π �= π′. Equation (14) is a linear equation in the K unknowns ν(θ̃i ), so its
solutions are a vector subspace of R

K . Since strategies are subjectively different un-
der p� there exists θ̃l ∈ �(p� ) such that Uμ(·|θ̃l )(π ) �= Uμ(·|θ̃l )(π

′ ), so the set of beliefs
under which Uμ(π ) = Uμ(π ′ ) has dimension at most K − 1, and hence Lebesgue mea-
sure 0. Since the set of actions is finite and π, π ′ are chosen arbitrary, the set of be-
liefs ν ∈ �({θ̃1, � � � , θ̃K }) ⊆ R

K such thatU(ν, π ) =U(ν, π ′ ) for some π �= π ′ has Lebesgue
measure 0 as well.

Note that because (Zl )Kl=2 is a martingale with positive definite covariance matrix of
the increments, the central limit theorem implies that (Zlm/

√
m)Kl=2 converges in distri-

bution to a K − 1 dimensional normal distribution with mean �0 and covariance matrix
�. Since

μm(θ̃l )

1 −μm(θ̃l )
= μ(θ̃l )

1 −μ(θ̃l )

expZlm
K∑
i=2

expZim + 1

∀l ∈ {2, � � � ,K},

the distribution on the indifference classes induced by μm converges to some ν ∈
�(�(�(p� ))), as does the distribution of beliefs over the indifference classes in the over-
all population. Claim 2 shows that � is positive definite, so by Claim 3 beliefs that induce
ties between the strategies’ payoffs have 0 limit probability. Therefore, the induced dis-
tribution of strategies converges to an element of �(BR(�(�(p� )))). This concludes the
proof of part (ii).

Proof of Proposition 7. We endow the set of strategies with the L1 norm. Let ε′ ∈
(0, 1) be such that for all ε < ε′, M�,ψ(ε) is a singleton, and V (M�,ψ(ε)) > U∗(ψ). We
now prove that (δ�, ψ) does not resist mutation to �′ if �′ is an ε expansion of � for
ε < ε′.

Assumption 2(iii) implies thatU∗ is continuous inψ.37 So, there is an ε∗ ∈ (0, ε′ ) and
γ > 0 such that for all ψ′ ∈ Bε∗(ψ), ψ̃ ∈ BR(�(Bε∗(M�,ψ(ε))),

U∗(ψ′) −U∗(ψ̃)<−γ. (15)

37See, e.g., Lemma 5.64 of Aliprantis and Border (2013).
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By the upper hemicontinuity (see Lemma 2) of �′(·), there is ε̄ such that ‖ψ′ −
ψ‖ < ε̄ implies �′(ψ′ ) ⊆ Bε∗(M�,ψ(ε)). Thus, if there were a t such that ‖pτ� − ψ‖ <
min{ε∗, ε̄} for all τ ≥ t, it would follow from equation (15) thatU∗(pτ+1(·|�))+γ/ptε(�)<
U∗(pτ+1(·|�′ ))). By Lemma 4, this concludes the proof.

Proof of Proposition 8. Suppose that â is an attractor with associated unique KL
minimizer θ̂. Let Am be given by {â + c/m}c∈Z\{0} ∩ A, and let ε̂ be such that for all
ε < ε̂, V (M�, â(ε)) > V (θ̂). Let BRn(θ) = argmaxa∈An Uθ(a). Since â is in the interior
of A, Am is nonempty for sufficiently large m. By Theorem 1 in Esponda and Pouzo
(2016), for every m ∈ N, the environment with action set Am admits at least one Berk–
Nash equilibrium, so for all m ∈ N there is an equilibrium (�, ψm ) with justifying belief
μm ∈ �(�(ψm )). Since A is compact, by Theorem 15.11 in Aliprantis and Border (2013)
�(A) is also compact and, therefore, (ψm, μm ) has an accumulation point (ψ̂, μ̂).

We claim that this accumulation point must be (δâ, δ�(â) ). To see this, recall that
there is a unique Berk–Nash equilibrium in the environment with a continuum of ac-
tions. Then note that for all a ∈A, there is a sequence (an )n∈N such that an → a, an ∈An,
and since U(·)(·) is jointly continuous in beliefs and actions Uμn(ψn ) ≥ Uμn(an ) for all
n ∈ N implies Uμ̂(ψ̂) ≥ Uμ̂(a). Moreover, by the upper hemicontinuity of �(·) (see
Lemma 2), μn ∈ �(�(ψn )) for all n ∈ N implies that μ̂ ∈ �(�(ψ̂)). That is, (ψ̂, μ̂) must
be the unique Berk–Nash equilibrium of the environment with a continuum of actions.

Next, we will show that this subsequence (An, ψn )n∈N satisfies the requirements in
the statement of the proposition. SinceA is compact, ‖An−A‖ → 0. Let ε̂ be as the ε in
the definition of an attractor for (â,�). Since μn → δ�(â), for every ε̃ there exists N > 0
such that for all n >N , ψn(Bε̂(â))> 1 − ε̃.

Fix an ε < ε̂. Because �ε(·) is upper hemicontinuous (see Lemma 2), there exists
N ′ >N such that for all n >N ′, U∗(BRn(�ε(ψn ))) ⊆ ([U∗(â) + V (M�,ψ(ε))]/2, ∞). But
sinceU∗(ψn ) →U∗(â), there existsN ′′ >N ′ such that for all n >N ′,U∗(BRn(�ε(ψn )))>
U(ψn ), so that ψn does not resist an ε expansion of �.

A.1 Prior-independent limit aggregate behavior

Here, we show that the limit aggregate behavior identified in Proposition 6 does not
depend on the prior of the agents, and that all the best replies to a KL minimizing pa-
rameter are played by a positive fraction of agents.

Proposition 10. If the assumptions of Proposition 6 are satisfied, then limn→∞ψn(�,
p� ) is independent of the prior, and if {π} = BR(δθ ) for some θ ∈ �(p� ), then
limn→∞ψn(�, p� )(π )> 0.

Proof. In this proof, we continue to use the notation introduced in the proof of Propo-
sition 6. That the limit beliefs do not depend on the prior follows from Proposition 6,
which shows that the beliefs over equivalence classes converges to the limit distribution
ν that is independent of the prior. Suppose {π} = BR(δθ ) for some θ ∈ �(p� ). Since
θ1 was chosen arbitrarily, suppose without loss of generality that θ = θ1. Since π is the



1308 Fudenberg and Lanzani Theoretical Economics 18 (2023)

unique best reply to θ1, and Zlm
a.s.→ −∞ for all l ∈ {K + 1, � � � , C} by Claim 1, there exists

c < 0 such that if (Zlm )Kl=2 is coordinate by coordinate less than c, the best reply to the
corresponding belief is to play π. Consider the eventsEm that (Zlm )Kl=2 is coordinatewise
less than c: Em = {Zlm ≤ c, ∀l ∈ {2, � � � ,K}}. As Zm/

√
m converges to a normal random

variable, we have that

lim
m→∞P[Em] = lim

m→∞P

[
Zm√
m

≤ c√
m

]
= P[Z̃ ≤ 0],

where Z̃ is a random variable that is normally distributed with mean �0 and covariance
matrix �. As � is positive definite, this distribution admits a strictly positive density, and
hence P[Z̃ ≤ 0]> 0.

A.2 Examples

A.2.1 Example 1 Esponda and Pouzo (2016) shows that∑
a∈{10,2}

ψ(a)H
(
Q∗(·|a),Qθ(·|s, a)

) =ψ(2)(34 − i+ 2β)2 +ψ(10)(2 − i+ 10β)2. (16)

(a) When ψ(2) = 1, the parameter that minimizes equation (16) is (3/2,32), and since
BR(δ(3/2,32) ) = {10}, (�, 2) is not a Berk–Nash equilibrium. When ψ(10) = 1, the pa-
rameter that minimizes equation (16) is (5/2, 28). Since BR(δ(5/2,28) ) = {2}, (�, 10) is
not a Berk–Nash equilibrium. For every totally mixed ψ, the Hessian of equation (16)
as a function of β and i, [200 − 192ψ(2), 16ψ(2) − 20; 16ψ(2) − 20, 2], is positive defi-
nite for every (β, i) ∈ � so there is a unique KL minimizer. Moreover, plugging i = 12β
in to equation (16) shows that the derivative in β of the resulting expression is strictly
negative for every ψ. Therefore, the unique parameter on the line i = 12β where the
two actions are indifferent that minimizes equation (16) for some ψ is θ̂= (5/2, 30) with
ψ= (1/4, 3/4), and so the latter is the unique Berk–Nash equilibrium.

The first-order condition for the KL-minimizing intercept after an ε expansion of the
model is

−2
1
4

(
34 − i+ 2 ∗ (2.5 + ε)

) − 2
(

1 − 1
4

)(
2 − i+ 10 ∗ (2.5 + ε)

) = 0

so that by equation (3), M�,ψ(ε) = (2.5 + ε, 30 + 8ε).
(b) When ψ(2) = 1, the parameter that minimizes equation (16) is (3,40), and since

BR(δ(3,40) ) = {10}, (�, 2) is not a Berk–Nash equilibrium. When ψ(10) = 1, all the (β, i)
with i= 10β+2, β ∈ (3, 10/3) minimize equation (16). Since BR(δ(β,i) ) = {2} for all such
(β, i), (�, 10) is not a Berk–Nash equilibrium. The first-order conditions for (10/3, 40)
to be the KL minimizer are

−2ψ(2)

(
34 − 40 + 2 ∗ 10

3

)
− 2

(
1 −ψ(2)

)(
2 − 40 + 10 ∗ 10

3

)
≤ 0 (17)

4ψ(2)

(
34 − 40 + 2 ∗ 10

3

)
+ 20

(
1 −ψ(2)

)(
2 − 40 + 10 ∗ 10

3

)
≤ 0. (18)

The first inequality gives ψ(2) ≥ 7/8, while the second gives ψ(2) ≤ 35/36.
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Each parameter ṽ on the unit circle S can be written as ṽ = (
√

(1 − v2 ), v) for some
v ∈ [0, 1]. With this,

−
√(

1 − v2
)[

4ψ(2)

(
34 − 40 + 2 ∗ 10

3

)
+ 20

(
1 −ψ(2)

)(
2 − 40 + 10 ∗ 10

3

)]

+ v ∗ 2ψ(2)

(
34 − 40 + 2 ∗ 10

3

)
+ 2

(
1 −ψ(2)

)(
2 − 40 + 10 ∗ 10

3

)
.

is maximized at a ṽ with
√

(1 − v2 )/v > 1/12 if and only if ψ(2)> 427/438 ≈ 0.97.

A.2.2 Example 2 Each parameter θ generates distribution qθ(z, x|a) = φ1(z − a) ×
φθ(x|z) on (z, x), where φ1 is the pdf of a standard normal distribution and φθ(·|z) is a
normal density with mean θ1z+ θ2z

2 and variance z2 + z4. Sinceφθ is a normal density,
for the restricted linear model where θ2 = 0 we have

H
(
Q∗(·|a),Qθ(·|a)

) ∝ −1
2

∫ (
τ(a+ω)
(a+ω)

− θ1

)2

dφ(ω).

An agent who drops the linearity assumption and shifts to the subjective model�2 =
R×R+ finds that the KL-minimizing parameters solve

argmin
(θ1,θ2 )∈R×R+

E
[(
τ(5 +ω) − θ1(5 +ω) − θ2(5 +ω)2)2]

.

Numerical calculations in Mathematica (available here) then show that the subjec-
tively optimal actions are 5 for the restricted linear model and 3 for the agent with model
�2.

A.2.3 Example 3 We add a constant signal s = 0 to the deterministic version of the ex-
ample so we can state some conclusions that apply to both deterministic and stochastic
version at the same time.

The buyer’s payoff is

u(s, a, y ) =
a∑

ω=1

pω(ω+ 3.1 + s− a)1a≥ω.

To see that bidding 3 is objectively optimal after every signal, note that

∑
y∈Y

u(−1, 3, y )p∗(y ) = 1
3

(3 + 3.1 − 1) + 1
2

(2 + 3.1 − 1) + 1
6

(1 + 3.1 − 1) − 3

>
1
2

(2 + 3.1 − 1 − 2) + 1
6

(1 + 3.1 − 1 − 2)

=
∑
y∈Y

u(−1, 2, y )p∗(y )>
1
6

(1 + 3.1 − 1 − 1)

=
∑
y∈Y

u(−1, 1, y )p∗(y ).

https://www.dropbox.com/s/flyw46s1jw0ldxv/Computat-Mathematica.nb?dl=0
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Since bidding 3 is optimal when s = −1 and the utility function is strictly supermod-
ular in a and s, it is also optimal to bid 3 when s is 0 or 1.

Online Appendix B of Esponda and Pouzo (2016) shows that in a Berk–Nash equi-
librium of this example, beliefs have correct marginals over prices asked and a marginal
distribution over valuations equal to the one observed in equilibrium. Therefore, when
s is identically zero, �(2) = θ̃ : = ((p̂1, p̂2, p̂3 ), (F̂(1|1), F̂(2|1), F̂(1|2), F̂(2|2), F̂(1|3),
F̂(2|3))) = ((1/6, 1/2, 1/3), (1/4, 1, 1/4, 1, 1/4, 1)), where p̂i is the conjectured probabil-
ity that the seller asks price i and F̂(i|j) is the conjectured probability that the value is
less than or equal to i given that the seller asked price j. Moreover, under θ̃ bidding 2 is
optimal,

Uθ̃(1) = 1
6

(
1
4

(4.1 − 1) + 3
4

(5.1 − 1)

)

<

(
1
4

(4.1 − 3) + 3
4

(5.1 − 3)

)

= Uθ̃(3)<
2
3

(
1
4

(4.1 − 2) + 3
4

(5.1 − 2)

)
=Uθ̃(2).

In this equilibrium, for every ω ∈ {1, 2, 3}, relaxing the hypotheses F(ω|3) ≥ F(ω|3)
or F(ω|3) ≤ F(ω|3) is not explanation improving, as in equilibrium the agent never ob-
serves the value after an ask price equal to 3.

In the stochastic case, there are two signals, s ∈ {−1, 1}. Withπ(−1) = 2 andπ(1) = 3,
we have θ̄ : = �(π ) = ((1/6, 1/2, 1/3), (1/5, 4/5, 1/5, 4/5, 1/5, 4/5)), and under θ̄ bid-
ding 2 after signal s = −1 is optimal:

∑
y∈Y

u(−1, 1, y )pθ̄(y ) = 1
6

(
1
5

(3.1 − 1) + 3
5

(4.1 − 1) + 1
5

(5.1 − 1)

)

<

(
1
5

(3.1 − 3) + 3
5

(4.1 − 3) + 1
5

(5.1 − 3)

)

=
∑
y∈Y

u(−1, 3, y )pθ̄(y )

<
2
3

(
1
5

(3.1 − 2) + 3
5

(4.1 − 2) + 1
5

(5.1 − 2)

)

=
∑
y∈Y

u(−1, 2, y )pθ̄(y ).

Moreover, under θ̄ bidding 3 after signal s = 1 is optimal:

∑
y∈Y

u(1, 1, y )pθ̄(y ) = 1
6

(
1
5

(5.1 − 1) + 3
5

(6.1 − 1) + 1
5

(7.1 − 1)

)

<
2
3

(
1
5

(5.1 − 2) + 3
5

(6.1 − 2) + 1
5

(7.1 − 2)

)
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=
∑
y∈Y

u(1, 2, y )pθ̄(y )

<

(
1
5

(5.1 − 3) + 3
5

(6.1 − 3) + 1
5

(7.1 − 3)

)

=
∑
y∈Y

u(1, 3, y )pθ̄(y ).

Finally, the minimizing parameter θ̂ after the one hypothesis relaxation to F(2|3) ≤
F(2|2) = F(2|1) is obtained as the unique element of

argmin
F(1|1),F(2|1),F(2|3)

−[
log

(
F(1|1)

)
/6 + log

(
F(2|1) − F(1|1)

)
/2

] − 1
2

[
log

(
1 − F(2|3)

)
/3

]
.

A.2.4 An example of a cycle

Example 5. Let A = {a, b, c}, Y = {0, 1}, u(a, y ) = y and let θ = (θa, θb, θc ) = [0, 1]3

correspond to the probability of success (y = 1) under the three actions. The objec-
tive parameter is (0.5, 0.01, 0.02) so that a is the optimal action. Suppose that �1 =
{(0.5, 0.9, 0.02), (0.5, 0.3, 0.1)}, �2 = {(0.5, 0.01, 0.9), (0.5, 0.1, 0.3)}. Consider the two
states:

p̂= 0.1δ�1×a + 0.9δ�2×c and p̄= 0.9δ�1×b + 0.1δ�2×a.

Let T be an arbitrary payoff monotone dynamic such that T (p̂)(�1 ) = 0.9 and
T (p̄)(�1 ) = 0.1. Notice that payoff monotonicity is satisfied, as under p̂ the perfor-
mance of the agents with subjective model �1 is higher (they play a) than that of those
with subjective model�2 (they play c). Moreover, under p̄ the performance of the agents
with subjective model �1 is lower (they play b) than that of those with subjective model
�2 (they play a). The unique solution with p0 = p̂ has pt = p̂ in all even periods and
pt = p̄ in all odd periods and the system cycles forever. Moreover, the average payoff is
0.5 ∗ 0.1 + 0.01 ∗ 0.9 in the odd periods and 0.5 ∗ 0.1 + 0.02 ∗ 0.9 in the even periods, so
that the average payoff sequence is not monotone. ♦

A.2.5 An innovation-vulnerable equilibrium

Example 6. Suppose that A = {a, b, c} and that the outcomes have three components
that are either 1 or 0, i.e., Y = {0, 1} × {0, 1} × {0, 1}. The utility of a and b depends only
on the first component; a is better if the first component is likely to be 1, b if it is likely
to be 0:

u
(
a, (1, y2, y3 )

) = 1 = u(b, (0, y2, y3 )
)

u
(
a, (0, y2, y3 )

) = 0 = u(b, (1, y2, y3 )
)
.

The utility to c depends only on the third outcome component:

u
(
c, (y1, y2, 1)

) = 1;

u
(
c, (y1, y2, 0)

) = 0.
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The parameter space has two dimensions H =[0, 1] × [0, 1], where θ = (θ1, θ2 ) ∈ H,
θ1 is both the probability that the first component is equal to 1 (regardless of the action)
and the probability that the second component is equal to 1 (regardless of the action),
and θ2 is the probability that the third component is equal to 1 while playing b or c. The
agent (correctly) believes that the third component is always equal to 0 if they play a,
and they believe that the outcomes are independent. Formally,

qθ(y|a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 y3 = 1

(1 − θ1 )2 y1 = y2 = y3 = 0

θ2
1 y1 = y2 = 1, y3 = 0

θ1(1 − θ1 ) y1 �= y2, y3 = 0

qθ(y|b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − θ1 )2(1 − θ2 ) y1 = y2 = y3 = 0

θ2
1(1 − θ2 ) y1 = y2 = 1, y3 = 0

θ1(1 − θ1 )(1 − θ2 ) y1 �= y2, y3 = 0

θ2
1θ2 y1 = y2 = y3 = 1

(1 − θ1 )2θ2 y1 = y2 = 0, y3 = 1

θ1(1 − θ1 )θ2 y1 �= y2, y3 = 1

qθ(y|c) = θ
y1+y2
1 (1 − θ1 )2−y1−y2θ

y3
2 (1 − θ2 )y3 .

In reality, the probability of having the first and second component equal to 1 are not
equal, the former is equal to 2/3 and the latter is equal to 1/4 under every action. More-
over, the probability of y3 = 1 given b or c is equal to 3/4.

The initial subjective model is�= {1/2} × [0, 1], and p= (�, a) is a Berk–Nash equi-
librium: every parameter induces the same weighted KL divergence and a is a best reply
to any subjective model in which θ1 = 1/2 and θ2 ≤ 1/2. The equilibrium is not qua-
sistrict: for every belief supported on�, a is a best reply if and only if b is.

A mutation to �ε with ε < 1/2 induces b as the unique best reply, since the mutated
agents decrease θ1 to better match the observed frequency of the second component,
which makes b strictly preferable to a. And even if b performs less well than a, behavior
does not converge back to the evidence generated by a small fraction of mutated agents
playing b allows all the agents to learn that c, the unused best reply to �(�(a)), is better
than either alternatives. Thus, the equilibrium is innovation-vulnerable. ♦
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