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Pathwise concentration bounds for Bayesian beliefs
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We show that Bayesian posteriors concentrate on the outcome distributions that
approximately minimize the Kullback-Leibler divergence from the empirical dis-
tribution, uniformly over sample paths, even when the prior does not have full
support. This generalizes Diaconis and Freedman’s (1990) uniform convergence
result to, e.g., priors that have finite support, are constrained by independence as-
sumptions, or have a parametric form that cannot match some probability distri-
butions. The concentration result lets us provide a rate of convergence for Berk’s
(1966) result on the limiting behavior of posterior beliefs when the prior is mis-
specified. We provide a bound on approximation errors in “anticipated-utility”
models, and extend our analysis to outcomes that are perceived to follow a Markov
process.

KeyworbDs. Misspecified learning, Bayesian consistency.
JEL crassirFicaTioN. C11, D81.

1. INTRODUCTION

Learning from repeated observations is a key feature of many economic settings, and
almost all economic studies of learning model it as Bayesian inference. To understand
the medium and long-run implications of Bayesian learning, it is useful to know how
quickly beliefs concentrate around the data generating processes that best explain the
observations. Our main result, Theorem 1, shows that the probability the posterior as-
signs to distributions that do not approximately maximize the likelihood assigned to
the data vanishes exponentially quickly. Importantly, we identify conditions for this to
hold not only with high probability, but for every possible realization of the data. More
specifically, Theorem 1 establishes that for every £ > 0 the posterior probability of the
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distributions that do not e-minimize the Kullback-Leibler (KL) divergence vanishes at
an exponential rate. In contrast to earlier pathwise concentration bounds, our result
holds even if the agent’s prior does not have full support, or satisfies parametric restric-
tions, and regardless of the true data generating process.

Our results generalize Diaconis and Freedman (1990), which showed that a ¢-
positivity condition implies that Bayesian posteriors converge to the empirical distribu-
tion at a uniform exponential rate. This condition requires that the support of the agent’s
prior includes every distribution over outcomes, and thus rules out many settings of
economic interest in which the set of outcome distributions is naturally restricted. For
example, it does not apply to agents whose prior has finite support (which is natural in
settings such as urn problems with a finite number of balls), agents who each period ob-
serve a set of Bernoulli trials that they think are i.i.d., or agents who believe (mistakenly
or not) that some variables are positively correlated. In addition, ¢-positivity rules out
all cases where the support of the agent’s prior does not contain the true data generating
process, so that the agent is misspecified.

Theorem 1 guarantees that beliefs concentrate on the approximate KL minimizers
for the empirical frequency. We show that this is equivalent to concentration on a ball
around the exact KL minimizers when priors have full support, but not in general. More-
over, since the KL minimizer is not unique, the theorem does not imply that beliefs con-
verge.

We use Theorem 1 to prove Theorem 2, which provides a rate of convergence for
Berk’s (1966) result that posterior beliefs concentrate around the Kullback-Leibler min-
imizers with respect to the true data generating process. Berk’s result, like our paper,
is stated for an exogenous data generating process. It was extended to learning from
endogenous data by Esponda and Pouzo (2016), which led to a renewed interest in mis-
specified learning in the economics literature.! A key step in the analysis of such models
is often to establish that Bayesian beliefs concentrate quickly around the KL minimizers,
and as our Theorem 1 holds pathwise it immediately implies such a result.? In Fuden-
berg, Lanzani, and Strack (2021b), we use the concentration result to characterize the
long-run beliefs of a correctly specified agent who has an imperfect and selective mem-
ory.

Theorem 3 extends Theorem 1 to beliefs that result from observing a Markov pro-
cess whose transition probabilities are unknown. This complements recent work by
Molavi (2019) and Esponda and Pouzo (2021), which studied analogs of Berk (1966) and
Esponda and Pouzo (2016) for Markovian environments.

ISubsequent papers include Fudenberg, Romanyuk, and Strack (2017), Molavi (2019), Bohren and
Hauser (2021), Fudenberg and Lanzani (2023), He and Libgober (2021), Esponda, Pouzo, and Yamamoto
(2021), Heidhues, Készegi, and Strack (2021), Levy, Moreno de Barreda, and Razin (2021), He (2022), and
Frick, Iijima, and Ishii (2023). Before this, Arrow and Green (1973) gave the first general framework for this
problem, and Nyarko (1991) pointed out that the combination of misspecification and endogenous obser-
vations can lead to cycles. In a setting with finitely many states, Frick, Iijima, and Ishii (2022) provide a
convergence-in-probability result on the relative speed at which beliefs converge to the truth for agents
with different likelihood functions; Frick, lijima, and Ishii (2021) extend this to endogenous data.

2For example, Theorem 1 provides a shorter way to prove Proposition 1 of Fudenberg, Lanzani, and
Strack (2021a).
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Most of the paper assumes that the set of outcomes is finite, as it is in Diaconis and
Freedman (1990). Section 6 discusses the extent to which the results extend to settings
with infinitely many outcomes. It also uses our results to show that the play of a Bayesian
agent converges to that predicted by the anticipated utility model (e.g., Kreps (1998),
Preston (2005), Eusepi and Preston (2018)), and quantifies its rate of convergence. This
clarifies when the anticipated utility model is a good approximation of rational play,
and complements numerical studies by Cogley, Colacito, and Sargent (2007), Cogley and
Sargent (2008), and Cogley, Colacito, Hansen, and Sargent (2008).

1.1 The importance of pathwise concentration

The statistical literature has many concentration results for beliefs; see, e.g., Shen and
Wasserman (2001). Our results differ in two important ways. First, ours hold for every
sample realization, and thus even when the true data generating process is time-varying
and endogenous, while the existing statistics results show that beliefs concentrate with
probability converging to 1 with respect to a fixed-data generating process. Second, the
statistics results are for concentration around the parameters or distributions that min-
imize the KL divergence from the true-data generating process, while our result are for
concentration around the KL-minimizers with respect to an arbitrary empirical distri-
bution.3

Pathwise concentration has played an important role in a number of economic ap-
plications, starting with the analysis of nonequilibrium learning in games in Fuden-
berg and Levine (1993).* The result has also been used to analyze selective atten-
tion (Schwartzstein (2014)), the merging of opinions (Acemoglu, Chernozhukov, and
Yildiz (2016)), recursive utility functions (Al-Najjar and Shmaya (2019)), and persuasion
(Schwartzstein and Sunderam (2021)).

To help motivate our analysis, we describe why pathwise concentration (rather than
concentration in probability) is needed in four papers on very different problems. Fu-
denberg and Levine (1993) study the steady states of a model of nonequilibrium learn-
ing. The uniform concentration result implies that agents play myopically at any infor-
mation set /4 that has been reached many times. Because which information sets are
reached is endogenous, the proof of the main theorem uses the pathwise concentration
to rule out the possibility that posteriors only concentrate conditional to histories that
induce the player to make choices that prevent reaching # many times. This is not ruled
out by concentration in probability, because the sets of histories under which the in-
formation set is reached less than N times could have probability approaching 1 as N
grows.

Al-Najjar and Shmaya (2019) provide a representation result for Epstein—-Zin pref-
erences over stochastic consumption streams for patient agents. To do so, they bound

3Most of these papers also assume that the prior is correctly specified, so that the unique KL minimizer is
the true distribution, but see Kleijn and Van der Vaart (2012) and the references therein for generalizations
to misspecified priors.

4Subsequent applications to learning in games are Fudenberg and Levine (2006), Fudenberg and He
(2018), Gongalves (2020), and Clark and Fudenberg (2021). Clark, Fudenberg, and He (2022) apply our
generalization of the result.
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the distance between the certain equivalents of period-¢ consumption with period ¢ — 1
and period 0 information. The (relative) impact of small-probability events on utility in-
creases in the high-patience limit, so the representation result needs the posterior con-
sumption variance to vanish uniformly over all sample paths, which follows from the
uniform concentration of the posterior.

Gongalves (2020) introduces an equilibrium concept for games that allows the
agents to sample from the opponents’ strategies at a cost before playing. To show ex-
istence of the equilibrium, the maximization problem of the agent is transformed into
an optimal stopping problem. There the uniform concentration result guarantees that
the stopping time is uniformly bounded by a deterministic horizon, thus transforming
an infinite-horizon problem into a finite-horizon one that is then solved by backward
induction.

Finally, Theorem 1 can be used to study the limit points of misspecified learning
when the distribution of outcomes depends on the action played by an agent, and that
action depends on the agent’s beliefs. For example, the agent might be a customer who
wants to learn which of two products she prefers, decides every period which one to buy,
and receives a signal about the product they bought. To understand if the action a can
be played in the long run, we need to understand whether the resulting process of beliefs
makes it optimal to play a. Fudenberg, Lanzani, and Strack (2021a) showed that a limit
action must be a best reply to all of the associated KL minimizers when the prior has
subexponential decay. An earlier version of this paper, Fudenberg, Lanzani, and Strack
(2022), use the results here to give a simpler and more transparent proof of this result.

1.2 The importance of relaxing full support

The following are examples of commonly studied situations where uniform concentra-
tion results that require a full support prior are not applicable, but our results apply.

Finite support priors In some problems, the reasonable priors have finite support as,
e.g., if outcomes correspond to the color of balls drawn with replacement from an urn
with known size but with unknown composition.

Correlation restrictions When the outcome space Y has a product structure, and the
agent’s prior imposes a qualitative restriction on how the components are correlated
(e.g., that they are positively correlated), the Diaconis and Freedman (1990) result does
not apply, while ours does. This naturally arises in economic problems as, e.g., in
Spiegler (2020), where the agent neglects the mediating role of expectations in the
Phillips curve and is mistakenly convinced that money supply and output are positively
correlated. Similarly, our model can be used to study situations where the agent mistak-
enly believes outcomes are independent as in, e.g., Enke and Zimmermann (2019).

Moreover, whenever the agent observes the outcome of a game and believes (cor-
rectly or not) that the players have coordinated on a correlated equilibrium, the correla-
tion structure is naturally restricted, as the possible joint distributions must satisfy the
obedience constraint.”

5Formally, let Y; be the set of actions available to player i, let the outcome space be Y = xi ,Y;, and
let (u;)i_, be the payoff functions. If the agent is certain that the outcome corresponds to a correlated
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Markov models Another context where support restrictions arise naturally is in the
study of Markov models. For example, if an analyst assumes that beliefs follow Bayes
rule or that a stock price process is a martingale (Bachelier (1900), Fama (1965)), the
techniques of Diaconis and Freedman (1990) cannot be applied, as they would require
full support over the set of transition matrices. However, it is easy to extend our anal-
ysis to analyze belief concentration in Markov models, as we do in Section 5. And our
Markov model can also be used to study mistaken beliefs about the correlation between
signals and outcomes, as in Esponda (2008).

Extending the applications of Section 1.1 Our results can be used to extend some past
applications of the pathwise concentration results. They permit an extension of Al-
Najjar and Shmaya’s (2019) representation theorem to beliefs about the consumption
process that do not have full support, such as its illustrative example (which is not cov-
ered by the paper’s result), and also to Markovian consumption processes. For the exper-
imentation in games considered by Gongalves (2020), our extension allows, e.g., beliefs
concentrated on the pure strategies for the opponents, or certainty that the opponent
does not play a dominated strategy.

2. SETUP

We study Bayesian beliefs induced by a sequence of subjectively i.i.d. data. Let Y be a
finite set of possible outcomes, and let P = A(Y') be the set of probability measures over
Y endowed with | - ||, the total variation distance of probability measures.®

Let up € A(P) = A(A(Y)) denote a prior belief over distributions of outcomes, and
0 = supp wo denote its support.” A data set y' = (y1, 2, ..., ;) € Y' is a vector of out-
comes. For every data set y’, we let u, be the posterior belief, which is required to satisfy
Bayes rule whenever the denominator is different from 0:

t
/ [ r) duotp)
C

T=1
t

/ [1r0ndro(p)
P

=1

ue(C) =

(Bayes rule)

The empirical distribution f; € P is

1 t
fi(z)= ; Z}H{z}(%')-

Our main result is that along any path of realized outcomes, the probability the poste-
rior belief assigns to the outcome distributions that do not best approximate the em-
pirical distribution converges to zero at a uniform and exponential rate. To state this

equilibrium, then every p € ® mustsatisfy >, .y, wi(yi, y-)p(y-ily) = 32y, ey, u; (v, y-i) p(y—i|y:) for all
iel,y; y, € Y;with p(y;) > 0.

SFormally, for every p, g € P, || p — gl =supy.cy | p(Y') — q(Y")|.

"For every X C R¥, we let A(X) denote the set of Borel probability distributions on X.
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conclusion formally, we adopt the convention that 0/0 = 0 and 0log0 = 0, and define
H : P x P — R to be the (possibly infinite) Kullback-Leibler divergence of ¢ with respect
to p:

61(2))
H(q, p)= § log{ === ).
(g, p) Zeyq(z) 0g<p(z)

Let M : P = P be the correspondence that maps a distribution g to the set of minimizers
of the Kullback-Leibler divergence over the support of the prior:

M (q) = argmin H (g, p).
pe®

The log-likelihood assigned to the data set y’ under outcome distribution p is

t
log(]_[ p(yﬂ) =Y _tfi(z)log p(z) = —tH(f;, p) +1 ) _ fi(2)log fi(2). ey

=1 zeY zeY

Minimizing the Kullback-Leibler divergence relative to the empirical distribution is
hence the same as maximizing the log-likelihood assigned to the data set, so the KL
minimizers M (f;) at time ¢ correspond to the outcome distributions that maximize the
likelihood of y’. Throughout, B.(D) denotes the ball of radius ¢ around a set D C P
in total variation distance, and denote by M, : P = P the correspondence that maps a
distribution g to the distributions that come within ¢ of the minimum KL divergence:

M.(q) = {p/ €0:H(q, p') <minH(q, p) +s}.
pe®

3. THE RATE OF CONVERGENCE OF BAYESIAN BELIEFS
To show that Bayesian beliefs concentrate around the empirical distribution at a uni-

form rate, Diaconis and Freedman (1990) used the following condition.

DEerFINITION 1 (¢ positivity). The prior ug is ¢ positive if for ¢ : Ryy — Ry,
ro(Be(p)) = ¢ () forevery p € P and ¢ > 0.

Since ¢ positivity requires the prior to assign strictly positive probability to every &
ball, it requires the prior to have full support.

THEOREM A (Diaconis and Freedman (1990)). For every ¢ : Ryy — Ry and every ¢ €
(0, 1) there are A(e) € Ry and g(&) € Ry such that

Mt(Ba(ft))
1 —lLt(Be(ft))

for all ¢ positive wo, t € N, and f; € A(Y).

> A(e)exp(g(e)t),
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Theorem A shows that for ¢ positive priors, the probability that Bayesian beliefs as-
sign to distributions that are more that £ away from the empirical distribution vanishes
exponentially quickly, so it quantifies the speed at which a Bayesian with full support
prior becomes more certain when observing i.i.d. data. The strength of this theorem is
that it holds not only in probability, but for every realization of outcomes.

Clearly, ¢ positivity plays a crucial role in Theorem A, as if the prior is not ¢ posi-
tive the empirical distribution need not be in its support, so beliefs cannot concentrate
around it. However, requiring the prior to satisfy ¢ positivity rules out several practi-
cally relevant cases. For example, ¢ positivity cannot be satisfied if the prior has finite
support, reduces the dimensionality of the problem, or is supported only on unimodal
distributions.

Moreover, models of misspecified learning suppose that the true data generating
process is not in the support of the prior, which rules out ¢ positivity. We extend The-
orem A to cases where ¢ positivity fails. Loosely, we require that either the prior gives
all neighborhoods of a distribution sufficient weight or the prior gives zero weight to a
small neighborhood of the distribution.

DEFINITION 2 (¢ positivity on ). The prior wg is ¢ positiveon © iffor ¢ : R4 — Ry,
po(Be(p)) = ¢(e) forevery p € ® and ¢ > 0.

Note that ¢ positivity on ® reduces to ¢ positivity when ® = P, i.e., the prior has full
support. In Diaconis and Freedman (1990), Bayes rule is well-defined everywhere, but
this is not true when the prior does not have full support. We define A®(Y) to be the
(compact) set of empirical frequencies for which Bayesian updating is well-defined for
a prior with support ©.2 Theorem 1 below establishes that if beliefs are ¢ positive on 0,
for every ¢ € (0, 1), the posterior concentrates on M.(f;).

THEOREM 1. Forevery ¢ :Ryy — Ri4, @€ (0,1), and € € (0, 1), there is A(e) > 0 such
that

we(Ms(f1))
1— wi (Mo (f1)

forallteN, f; A®(Y), and o that is ¢ positive on 0.
Moreover, if q:= infyce Mincsupp g 4(2) > 0, then we can set

> A(e)exp(aet)

A(e) = ¢p(min{q/2, (1 — a)s}q/2).

Theorem 1 only requires ¢ positivity on 0, in contrast to Theorem A, which assumes
¢ positivity on the whole space of distributions. When the prior is not ¢ positive on
all of A(Y), beliefs need not concentrate around the empirical frequency, because this
frequency might not be in the prior’s support. This is why Theorem 1 bounds the prob-
ability assigned to the distributions in M.(f;), which are the £ minimizers of the KL di-
vergence, while Theorem A bounds the probability assigned to B.(f;), the ¢ ball around

8Thatis, A®(Y) ={g e A(Y):3p € ®, suppgq  supp p}.



1592 Fudenberg, Lanzani, and Strack Theoretical Economics 18 (2023)

the empirical distribution. Moreover, as Example 1 below shows, the theorem does not
apply to the ¢ ball B.(M(f;)) around the exact minimizers M (f;), because when 0 is not
convex points far from the minimizers can attain almost the same divergence.

The theorem implies that the probability assigned to all distributions that do not &
best explain the empirical frequency f; vanishes at the exponential rate ae:

/-M(®\Ms(ft)> =

= Ao exp(—aet).

Notice that the multiplicative constant 4 (&) depends on the prior po only through ®
and the function ¢. The second part of the statement guarantees that in the widely-
studied case of finite support priors, there is an explicit formula to compute the rate of
convergence as a function of ® and ¢, with the intuitive comparative statics that the rate
of convergence improves when ¢ is higher and when the support is smaller.

The next example shows why Theorem 1 does not apply to the ¢ ball B.(M(f;))
around the exact minimizers M (f;).

ExampLE 1. Let Y = {0, 1}, identify each p € A(Y) with the probability of y =1, and let
wo({1/4}) = no({3/4}) = 1/2. Consider the sequence of outcomes ()72, where y, = 1 if
tis odd and y; = 0 if  is even. In the even periods 2¢, the data is uninformative about the
state, and both 1/4 and 3/4 are minimizers. At every odd period 2¢ + 1, for every p € 0O,

t t+1

H ) =K;— I 1-— -
(f2t+1, p) ‘ 2t+10g( p) T

log(p),

where the term K; does not depend on p. Thus in the odd periods M (f>+1) = {3/4}, so
for e < 1/2, B.(M(f2r+1)) = {3/4}. However,

w21 (Be (M (f2i41))) _ moi+1(13/4}) _ ro(13/4})(1/4)'(3/4)' 1! _
1— por1(Be(M(f2r41)))  more1({1/43)  mo({1/4})(1/4)(3/4)

so beliefs do not concentrate on the neighborhood of the KL minimizer.® The con-
centration result fails because the difference between the KL-divergences is (log(3/4) —
log(1/4))/(2t 4+ 1), which converges to 0. Thus even a very large data set provides only
weak evidence in favor of p = 3/4. O

3.1 Proofsketch of Theorem 1

The proofs of all our results are in the Appendix. The proof of Theorem 1 has three steps.
Step 1 proves a local Lipschitz property of the KL divergence, step 2 gives an explicit rate
of concentration for each realized empirical frequency, while step 3 concludes by turn-
ing this explicit local rate of convergence into an exponential (but with possibly implicit
constant) global rate of convergence.

9In this example, ® is not connected. Example 4 in the Appendix shows that the same problem can arise
when it is. The example there adds a third outcome to this one, and specifies a ©® that connects 1/4 and 3/4
via distributions that are not relevant under the specified outcome sequence.
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Specifically, Lemma 3 shows that Kullback-Leibler divergence H (g, -) is locally Lips-
chitz continuous in its second argument:

q(z) q(z) } ©

H(q, H(q, 2
|H(q, p) =~ H(q, p)| < 2|l p — pl| maxmax {p(z) @)

With this, we are able to prove the next lemma, which is at the heart of our results. The
lemma uses the following bound on the likelihood ratio between the empirical distri-
bution and the elements of the agent’s prior: For every f; € A9(Y), € ©, and k € R,
let

R(f;, k,g):= max max fi(2)
qe®NB,(q) zeY q(z)

LEMMA 1. If uo is ¢ positive on O, then for every ¢,&',k e Ry, t €N, f; € A®(Y), and
g e My (f) with & + k < eand R(f;, , g) < oo, we have

,U«t(Ma(ft))

m = (j)(K/ZR(fl) K, 6?)) eXp((S — K= 8/)t). (3)

To prove the lemma, we use the Lipschitz condition (2) to establish that the
Kullback-Leibler divergence from f; is at most min peo H(f1, p) + & + k in a ball of ra-
dius «/2R(f;, k, ) around the &-minimizer §.'° Therefore, M, . (f;) contains a ball
of radius «/2R(f:, k, q) around g € ©. As up is ¢ positive on 0, that ball has prior
probability at least ¢(x/2R(f:, k, @)), so the ratio between the prior probabilities of
My (ft) 2 Bij2r(f,,x,g)(q) and © \ M (f;) is at least

po (M4 (f1) . wo(Bu/2r(f,1,9) (@)
1 _MO(Ms(ft)) 1

which delivers the multiplicative constant in the right-hand side of the lemma. The
exponential term follows from the fact that the the posterior probability ratio of D C P
over P\ D grows exponentially in the difference between the KL divergence from f; of
the distribution inside and outside D:

¢( /ZR(ft’ K, C]))

me(D) /Dexp(—H(ft, p)t)dpo(p)

1— (D) f exp(—H (fi, p)t) dpo(p)
P\D

and that by definition distributions outside M,.(f;) have a KL-divergence from f; of at
least min ,c¢ H(f:, p) + &. Thus at time ¢ the posterior probability ratio is larger than the
lower bound on the prior probability ratio ¢ («/2R(f;, , g)) multiplied by the exponen-
tial of # times the difference in divergence between the two sets ¢ — k — &'.

10For some triplets (f, «, @), R(f:, k, ) can be infinite. However, f; € A9(Y) implies there is at least one
p in O with finite KL divergence from f;. Thus the ¢/ -minimizer g also has a finite divergence from f;, and
so has g(z) > 0 for all z € supp f;. The same then holds for the elements of B, (g) for sufficiently small «, so
R is finite, which is enough to derive the theorem.
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To derive Theorem 1 from Lemma 1, we bound the multiplicative constant away
from 0 on A®(Y). We do this by contradiction, using the compactness of A®(Y) and
the lower semicontinuity of H to show there are ¢, k > 0 such that for every f; € A9(Y)
we can pick gy, € M(1_a)¢/2 such that R(f;, k, g,) < c. This g7, may not be an exact KL
minimizer for f;, since a minimizer ¢’ that is close to the simplex boundary may have
a high value of the ratio f;(z)/4¢’(z), so that the KL-divergence changes quickly around
q'. Loosely speaking, moving away from the boundary decreases this ratio, and since
the minimizers assign very low probability only to outcomes with very low probabil-
ity under f;, this does not have much effect on the KL fit, i.e., there is a (1 — a)g/2-
minimizer sufficiently far from the boundary. Finally, to show that the concentration
speed scales linearly in ¢ (i.e., exp(aet) for some «), we use the fact that E]ft can be cho-
senin M(1_a)s/2(fi).1!

3.2 Implications of Theorem 1

The most direct implication of Theorem 1 is Theorem A, which is the special case where
® = A(Y). Here, we use Pinsker’s inequality (which gives a lower bound on the KL di-
vergence of g from f; as a function of ||¢ — f;||) and the fact that for a full support prior,
M(f:) = {f:}, i.e., the unconstrained minimizer of the Kullback-Leibler divergence is the
distribution itself.

ProoF oF THEOREM A. Consider ¢ € (0, 1) and a ¢ positive prior wg. As H(f:, f;) =0,
all p e M.(f;) satisfy H(p, fi) < e. Pinsker’s inequality (Lemma 5) implies that M.(f;) C
B /z7a( f1). Defining & = /¢/2, by Theorem 1 there exists A4(&) such that

we(Bz(f1)) - wi(Ms(f1)
1—we(Bs(f1)) ~ 1= me(Me(fy)

> A(e) exp(%t) = A(28%) exp(&%t).

The result follows by letting A(g) = A(2£%) and g(&) = &2. O

Our result is also closely related to the seminal work by Berk (1966) on long-run be-
liefs in a misspecified model. The paper showed that when the objective data generating
process is i.i.d., beliefs almost surely concentrate on every ¢ ball around the set of KL
minimizers relative to the true outcome distribution p*.

THEOREM B (Berk (1966)). Let P be the probability measure induced by i.i.d. draws from
p*. Foralle € (0, 1),

lim w(Bs(M(p*))) =1 P-as.

—00

Theorem 1 lets us use the assumption of ¢ positivity to add a rate of convergence to
Theorem B when the number of outcomes is finite, as we have assumed so far (Section 6

11 Although & enters linearly in the exponential term of Lemma 1, different values of ¢ may need different
values of ¢ and «, so the overall effect of £ on the concentration rate is not linear.
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discusses the case of infinitely many outcomes). The rate of convergence has important
implications when the beliefs of an agent are used to solve a decision problem, as it lets
us bound the probability of choosing actions that are not optimal with respect to the
KL-minimizers as a function of how many outcomes have been observed.

THEOREM 2. Let P be the probability measure induced by i.i.d. draws from p*. If wo is ¢
positive on O, then for every ¢ € (0, 1) thereisa K € R such that

P[m:(Bs(M(p*))) <1 —exp(—K1)] = O(exp(—K1)).

The idea is that if uo is ¢ positive on 0, then for all a € (0, 1) there is a function
A:R,, — R, suchthatforall e € (0,1),teN,and f, € A®(Y),

me(Me(f) =1 -

A(o) exp(—aset).
We then show that there is &€ € Ri such that if the empirical frequency is in an & ball
around the objective distribution, i.e., f; € B;(p*), then M;(f;) € B.(M(p*)), so we can
use Theorem 1 and Sanov’s theorem to obtain the stated conclusion.

4. GENERAL PARAMETRIC MODELS

In our setting with a finite number of outcomes, we can view the probability distribu-
tions themselves as the parameters. However, when the size of the outcome space is
large, so is the dimension of A(Y'), and people tend to use lower-dimensional paramet-
ric models to make the distribution of outcomes easier to think about and analyze. Here,
the Diaconis and Freedman (1990) result does not apply, but the extension in this section
guarantees that beliefs concentrate exponentially fast around the KL-minimizing pa-
rameters themselves, rather than on the £ minimizers, whenever the realized frequency
is such that KL divergence is “sufficiently convex” in the parameters.

Consider a parametric model where I1 = {py: 6 € ®} with p, (Gateaux) differentiable
in 6, and ® C R* closed and convex, and define ﬁ(f, 0)=H(f, pg)-

DEFINITION 3. Letm > 0. H is uniformly strongly m-convex if for all f € A(Y),
(VoH (f, 0) = VoH(f, 0)) (06— 0') = m|6— 0|, V0,6 <.

Intuitively, strong m-convexity ensures that a change in the parameter 6 has an ef-
fect on the KL divergence that is at least proportional to the square of the change. In the
single-dimensional case, strong m-convexity requires that the second derivative of A in
0 is bounded away from zero. In the multidimensional case, strong m-convexity is equiv-
alent to the smallest eigenvalue of the Hessian being greater than m. Uniform strong
m-convexity extends this property to parametric models. Given a uniformly strongly m-
convex H, let 6*( f) = argmingg H( f, 0) be the (unique) parameter that minimize the
KL divergence between pg and f.

Let B;(6) = {py: lIm — 0]l2 < &} be the set of all distributions whose parameter are at
most ¢ away from 6. The following result establishes the concentration of beliefs about
the parameter.



1596 Fudenberg, Lanzani, and Strack Theoretical Economics 18 (2023)

ProPosITION 1. If H is uniformly strongly m-convex then for every ¢ : R, — R, and

everya € (0, 1),
* 2 2
we(Be(6% (1)) ZA<mg )exp(am—8t>
1 — wi(Bs (6 (f1))) 2 2

for all uo that are ¢ positiveon ®, e € (0, 1), t €N, and f; € A(Y), where A is the function
whose existence is guaranteed by Theorem 1.

Intuitively, uniform strong m-convexity ensures that a parameter that is far from the
log-likelihood maximizer is assigned a low log-likelihood. Without this assumption, pa-
rameters arbitrarily far away from the maximizer could be assigned a likelihood that is
arbitrarily close to that of the log-likelihood maximizer, which precludes uniform con-
centration results.

To see why the proposition is true, note that because @ is convex, when H is strongly
m-convex the KL minimizer 6*(f) is a singleton. In addition, the convexity of ® guaran-
tees that small movements away from the minimizer to other parameters in ® increase
the KL divergence. Uniform strong convexity provides alower bound on this increase, so
we can conclude that parameters outside of B,(6*(f;)) are not me?/2 minimizers. The
proposition then follows from Theorem 1.

In the next example, the support restriction comes from the assumption that suc-
cessive trials are i.i.d., which is a way of simplifying a complex environment.

ExaMPLE 2. (Bernoulli trials) Suppose the outcome y € Y = {1, ..., n} corresponds to
the number of Bernoulli trials needed to get one success, with y = n — 1 denoting the
maximum number of allowed trials.!? If the agent believes the trials are independent,
their subjective distribution for outcome y is a truncated geometric distribution,

_|ea -6yt fory<n,
pB(y)—{(l_H)y—l fOI'nyl,
and the support of the agent’s prior only includes these distributions, i.e., [T C {pg: 6 €
[0, 1]}. No prior with this support can satisfy the ¢-positivity condition of Diaconis and
Freedman (1990), but our results apply if the prior wo has a density that is bounded away
from zero on [0, 1] or is Beta.!® We have

n n
H(f, 6) = —log(1 - 6) {Z(z - 1)f(z>] — (1= f(m)log(6) + Y f(2)log(f(2)).
z=1 z=1
1230 when y = n, no success occurred in the allowed n — 1 trials.
130f course, the particular function ¢ will change. If the density is bounded, ¢ can be chosen linear in
&, while for Beta priors ¢ can be chosen to be a power function of e.
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This function is uniformly strongly 1-convex on A(Y), and the first-order condition
shows that the unique KL minimizing parameter is given by

1-fm)
> () - fn)

zeY

0*(f) =

Thus from Proposition 1 beliefs about 6 concentrate on any B.(6*(f)) exponentially fast.
Moreover, if the data has no realizations of n, the KL minimizer is the reciprocal of the
average outcome ) .y zf(z). This is intuitive, as the expectation of a geometric distri-
bution is the reciprocal of the parameter 0, i.e., lim, . Y,y pa(z)z=1/6. O

5. SUBJECTIVELY MARKOVIAN ENVIRONMENTS

We now show how to generalize Theorem 1 to the case of beliefs that the signals y are
generated by a Markov process, which is a key environment in macroeconomics. For
example, this is the setting where the approximation properties of the anticipated utility
model have been analyzed.

In the Markov setting, the agent is learning about # different outcome distributions;
let P = A(Y)Y be the set of transition matrices over ¥ endowed with the total varia-
tion distance.!* Let po € A(P) = A(A(Y)Y) denote a prior distribution over transition
matrices and O = supp w its support.!®

To initialize the process, we fix an observed period 0 outcome y,. For every data set
y', we let u, be the posterior belief, which is required to satisfy Bayes rule whenever the
data set has positive prior probability:

t
/C [[70elyr-1) duo(m)
wi(C) = —=1 ) (Bayes Rule)

t

/ [ 70rlyr-1) duo ()
PT=1

The empirical transition distribution f; € A(Y x Y) is

1 t
ft(Z, Z/) = ; Zﬂ{z’,z} (yT) yT—l)'

=1
We define H: A(Y x Y) x P —> Ras
H(f, m) =~ Z f(z, 2)log(w(Z'|2)).
(z,2)eYxY
MThat is, for all y € RY)Y, |xll=, Loy IX(Z]2)]/2.

15Note that the uo need not be a product measure, and that this reduces to the subjectively i.i.d. envi-
ronment of the previous sections if for every = € ® and every z, 2’ € Y, 7w (+|z) = 7 (-|2').
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The function # generalizes H to the non-i.i.d. case, as H(f, 7) measures the log-
likelihood assigned to the empirical transitions distribution f given the transition prob-
ability 7

t
10g<1_[ w(yT|yT1)> =t Z fi(z, ') log m(|z) = —tH(f;, 7).

=1 (z,2)eYxY

Let M : A(Y x Y) = P be the correspondence that maps an empirical transition distri-
bution f to the minimizers of # over the support of the prior: M(f) =
argmin_.q H(f, 7). We let M (f) be the set of distributions that come within ¢ of the
minimum of H:

Mo(f) = {7’ € @ H(f, 7)< min (S, m) + e},

and let A®(Y x Y) denote the set of empirical transition distributions for which Bayes
rule is well-defined.!®

THEOREM 3. Supposethatforallm, w' €0,z,7 €Y, w(Z|z) > 0ifandonlyif 7' (Z'|z) > 0
and that g is ¢ positiveon ©. Then forall « € (0, 1) and ¢ € (0, 1) thereis A(e) > 0 such
that

we(Me(f1)

—— >4 1),
l—Mt(Ms(fz)) = Al explash

forallteNand f, € A®(Y x Y).

The proof of this result is similar in spirit to that of Theorem 1, because we can con-
sider the data set to be a sequence of pairs (yr, y;+1) in place of a sequence of y,.

ExamPLE 3. In Markov settings, priors without full support arise very naturally. For ex-
ample, when Y C R, the agent may believe that the data generating process is a martin-
gale, so that the support of the beliefs consist of all distributions 7 € P for which

Z w(|2)2 =z VzeY.
z’eY

Alternatively, they may believe that the outcome process is unlikely to make large
jumps between consequent periods: for some «; € (0, 1),

|2~z

a;z
|z'~z|
az

zZ’eY

m(|z) = VzeY.

16That s, f € A9(Y x Y) if there is a 7 € ® such that for all (z, z') € supp f, 7(|z) > 0.
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6. INFINITE OUTCOME SPACES
This section discusses pathwise concentration in the case of an infinite outcome space.

Noncompact prior support The most common approach when dealing with infinitely
many outcomes is to use a parametric description of the data generating process, as
was done in Section 4 for a finite outcome space. However, if the set of parameters ®
indexing the data generating process is not compact, it will be typically not be possible to
satisfy ¢-positivity. For example, if the prior is supported over the normal distributions
with some fixed variance o2 and unknown mean 6 € R, and all values of the mean are
considered possible, the prior cannot be ¢-positive, as for any ¢ > 0, u(B:(0)) > ¢ (&) >
0 for all 6 € ® would imply that w(R) = co.

Similarly, pathwise concentration fails: Pathwise concentration requires that a finite
number of observations can outweigh the prior, but no fixed finite number of obser-
vations can outweigh the prior if the prior probability of the ¢-minimizing set can be
arbitrarily low. For this reason, pathwise concentration can be obtained only for priors
with compact support.

Divergence vs. likelihood The empirical distribution is always discrete, but the KL di-
vergence from a discrete distribution to a nonatomic one is infinite. To handle this, we
shift from concentration around the KL-minimizer to concentration around the maxi-
mizer of the empirical log-likelihood. Since the likelihood is the negative of the diver-
gence plus a constant, these coincide in the case of a finite Y, but only the empirical
log-likelihood maximizers are always well-defined for a continuum of outcomes. With
this change, we now extend Lemma 1 to the case of infinitely many outcomes.

Let Y be a metric space, and suppose that there exists a o-finite measure ¢ on Y such
that for every 6 € 0, the probability measure associated with 6 is absolutely continuous
with respect to ¢ with Radon—-Nykodim derivative pg € RY. LetII ={ po:0e0®land Psbe
the set of simple (finite support) distributions over Y. Balls in I1 are taken with respect
to the supnorm. For every 6 € ® and g € P;, let

L(qllpe) = _ q(y)log ps(y)
yeY

be the empirical log-likelihood of the empirical distribution g under pg € I1. Also, let
Ms(q) = {Pe’ ell: Lqllpo) +e= r;ueech(qllpa)}

be the set of ¢ maximizers of the empirical log-likelihood. Recall that
A®(Y): ={feP;:30€®,V¥yesuppf, po(y) >0}

is the set of empirical frequencies for which Bayesian updating is well-defined.

LEMMA 2. Foreverye, &,k eR, t€N, f; € A9 (Y), geMy(fy), withe +k<e,

we(Me(f1)) i /
v eNty) B ) o |
1-— I'Lt(Ms(ft)) = MO( K/R(ft,K,q)(q)) exp((g K & )t)



1600 Fudenberg, Lanzani, and Strack Theoretical Economics 18 (2023)
where

1
R(f1, k, @) :max{ max ——, 1}.
qellnB. () 4(2)
zesupp f;
As in the finite case, m-convexity is useful for guaranteeing belief concentration, but
it is harder to satisfy m-convexity when Y is infinite. For this reason, we generalize the
m-convexity to only hold on a given set of empirical frequencies.

DEFINITION 4. Let m > 0. L is uniformly strongly m-concave on F C P ifforall f € F,

(VoL (f|lpe) — VoL(f|lpe)) (6 —0') < —m|6— ¢/ ”;
forall 9, 6 € ©.

Let 6*(f;) denote the empirical likelihood maximizer. In the case of a single-
dimensional parameter, uniform strong m-concavity on F is still enough to prove that
posteriors concentrate on a neighborhood of the unique maximizer at a rate that is uni-
form over paths with empirical frequency in 7. Example 5 in the Appendix shows that
convergence need not be uniform over frequencies that do not make the likelihood func-
tion m-uniformly concave.

The main difficulty is that we have little information about which ¢ movements from
0*(f:) least decrease the empirical likelihood. The proof uses the fact that when the pa-
rameters are unidimensional there are at most two candidates for a best fitting parame-
ter outside B.(6*(f;)) (either 6*(f;) — € or 0*(f;) + &) to overcome this difficulty.

ProrosiTION 2. If L is uniformly strongly m-concave on F, then for every ¢ : Ri; —
B (6" 2

e (B ( (*fz))) zq&(f)exp{tm}
1 — wi(Be(6*(f1))) 4 2

for all o that are ¢ positiveon ® CR, e€(0,1),teN, and f; € A®(Y)Nn F.

R+,

As an immediate corollary, there is pathwise belief concentration for an agent who
believes the data are generated by a normal distribution with known variance and un-
known mean.

COROLLARY 1. Leto? e R, and

_ 1 - 9)2>
po(y) = - exp( 252 )

Forevery ¢ :Riy — Ry, and every a € (0, 1),

W(Bg(e*(fz))))) . ‘{’(Z) exp{f;}

1 — we(Bs (6" (f1)

for all wo that are ¢ positiveon ® CR, e € (0,1),teN, and f; € A9(Y).
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No concentration on the ¢ maximizers Without additional assumptions, Proposition
2 cannot be strengthened to obtain pathwise concentration on the ¢ maximizers, as
Example 6 in Appendix A.11 shows. Intuitively, with infinitely many signals, the infor-
mativeness of a single signal may be unbounded, so that the set of ¢ maximizers after
a single signal can be arbitrarily small. If the prior probability assigned to these sets
vanishes at a sufficiently high exponential rate, their good match to the data does not
guarantee that the posterior concentrates on them. More precisely, for some priors the
conclusion of Theorem 1 does not even hold for r = 1. That is, it is not possible to have a
concentration that holds uniformly over all the same-length realizations, let alone con-
centration rate that is uniform over same-length realizations and grows exponentially in
the sample size.!” We leave for future work the challenge of determining just what sorts
of restrictions on the prior would allow a uniform concentration result.

Anticipated utility Much of the macroeconomics literature assumes that the data
agents observe can take infinitely many different values. This is true in particular for the
literature on “anticipated utility” (Kreps (1998)), which assumes that agents in the econ-
omy choose actions that maximize their payoff under a point estimate that maximizes
the likelihood of their sample, ignoring uncertainty about the state. This is a simpler
problem than the maximization of expected utility, and the reduction in complexity and
dimension makes anticipated utility models more tractable and easier to analyze. How-
ever, it has not been clear how much error the approximation induces. For example,
Cogley and Sargent (2008) wrote:

Macroeconomists might justify anticipated-utility models as an approximation to a cor-
rectly formulated Bayesian decision problem... (the models) would be more compelling
if one could also show that anticipated-utility decisions well approximate Bayesian deci-
sions. As far as we know, no one has assessed the quality of the approximation...

There is also a small literature that addresses this question using numerical simu-
lations (Cogley, Colacito, and Sargent (2007), Cogley and Sargent (2008), Cogley et al.
(2008)). Our result on Bayesian updating can be used to derive analytical results that
complement these numerical studies. In particular, they imply that the long-run behav-
ior under anticipated utility models converges to that of an expected utility maximizer.
This provides a formal justification for the use of anticipated as an approximation of
expected utility models in studies of long-run behavior.

To develop this link, suppose that in each period ¢ € {1, 2, 3, ...} the agent chooses an
action from 4. We assume that A is a convex set, endowed with a metric d that makes
it a compact set. The action does not affect the outcome distribution but influences the
agent’s utility function u : A x Y — R, which is strictly concave in a. Let A*(v) denote
the (unique) optimal action given belief v, i.e.,

A*(v) = argmax/ Epy[ula, y)]dv(6),
acA

17Fudenberg, He, and Imhof (2017) and Fudenberg, Lanzani, and Strack (2021a) point out other odd
implications of priors that decay exponentially quickly.



1602 Fudenberg, Lanzani, and Strack Theoretical Economics 18 (2023)

and suppose A* is uniformly continuous when A(®) is endowed with the topology of
weak convergence of measures. !

Let A*(M(f;)) denote the action that is optimal for a point belief in the likelihood
maximizer M (f;).

ProprosITION 3. Suppose that ® C R is convex and that wgy is ¢ positive on O. If L
is uniformly strongly m-concave on F, then for all ¢ > 0 there is a T € N such that
d(A* (), A*(M(f))) < e foreveryt > T and every f; € F.

7. CONCLUSION

We have shown that for every realization of the data, Bayesian beliefs concentrate expo-
nentially quickly on the models that best explain the empirical frequency of outcomes.
One implication of this concentration result is that optimal actions can be determined
directly from the empirical frequency without computing beliefs. More precisely, once
the sample is sufficiently large, neither the exact sample size nor calendar time is needed
to compute the optimal action; the empirical frequency is sufficient. As the dynamics
and distribution of the empirical frequency are well understood, this insight can greatly
simplify the analysis of the long-run behavior of Bayesian agents.

In addition to the applications developed in this paper, Theorem 1 may allow gener-
alizations of other results about misspecified Bayesian agents who learn from endoge-
nous data. One recurrent theme in this literature is the possibility that when actions
are endogenous, misspecified beliefs can lead to cycles in setting that would not occur
with correctly specified beliefs, because repeated play of an action generates evidence
in favor of another action.!® In such situations, our concentration result may be used to
bound the number of periods spent in each phase of the cycles. This would complement
Esponda, Pouzo, and Yamamoto (2021), which characterized the asymptotic frequen-
cies of these cycles when the space of beliefs can be partitioned into a finite number of
attracting sets and the support of the prior is one-dimensional. Our uniform speed of
convergence result might be useful in extending this to more general settings. In addi-
tion, as we provide a concentration bound for every finite time, our result can be used
to characterize behavior in the “medium-run” before the asymptotic results apply.

Mazumdar, Pacchiano, Ma, Bartlett, and Jordan (2020) prove that with high proba-
bility, the posteriors of a correctly-specified Bayesian concentrate around the true pa-
rameter at rate +/n, and use this result to study the long-run properties of Thompson
sampling. The paper allows for infinitely many outcomes, but imposes additional strong
conditions such as log-concavity of the true data generating process, and a prior density
that is bounded away from 0. Our results enable extensions to Thompson sampling with
less restricted priors in the finite outcome case.

In settings where multiple agents choose their actions based on the same observ-
ables, our concentration results can be used to quantify the minimal extent of the dif-
ferences in their prior beliefs needed to rationalize different choices. For example, Olea,

18A sufficient condition for this is that ® is compact and 4* is continuous.
19Gee, e.g., Nyarko (1991), Fudenberg, Romanyuk, and Strack (2017), Levy, Razin, and Young (2020), and
Lanzani (2022).
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Luis, Ortoleva, Pai, and Prat (2021) showed that when observing signals of an object’s
value, misspecified agents with lower-dimensional models have a higher willingness to
pay after the first few observations, while correctly specified agents have a higher will-
ingness to pay in the long-run; our result on the speed of convergence may help to better
identify the switching time.

The learning in games literature has assumed correctly specified beliefs to appeal
to Diaconis and Freedman (1990). Our generalization will facilitate the extension of the
results from this literature to cases where the agents in the learning model have mis-
specified beliefs about the extensive form of the game. It will also enable extensions to
incorrect beliefs about a complex network structure in Bowen, Dmitriev, and Galperti
(forthcoming), and to overconfident agents as in Heidhues, Készegi, and Strack (2018).

APPENDIX
A.1 Properties of the KL divergence
Lemwma 3. Forall p, p,q€ P,

p(2)’ p(2)

Prookr. Let

R := maxmax
zeY

q(z) M}
p(z)" p(2)

Y ={z: p(z) > p(2)}, and suppose without loss of generality that p(suppg) > p(suppq).
Then

2 (o) el e

zesuppq
r(z)/q(z) 1
/ —drq(z)
p

zesuppq? P(2)/4(2) r
(z) q() HP(Z) )
Szegpqmax{ﬁ(z)’ p(Z) q(Z) q(Z) q(Z)
p(z)  p(2)
=K Z - q(z)
sesuppg 42) - 4(2)
p(z) ﬁ(z))
=R ol () — 1) 22 _ P2
Zegp:pq( P2 )(f](z) q(z) q(2)

=R Y (2 -1)p2)-R Y (203(2)—1)p(2)

zesuppq zesuppgq
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=2R|: Y Li@p@ - Y Hlp(z)ﬁ(z)}+R(13(suppq)—p(suppq))-
zesuppq zesuppgq

As p(suppq) > p(supp q), the above term is bounded by

SZR[ Y Li@p - H?(z)ﬁ(z)]SZR[Zp(z)_
zeY

Zesuppq zesuppq

Zﬁ(Z)}

zeV

=2R|p—pl,

where the last inequality follows from the definition of ¥ and the last equality by the
definition of the total variation distance. O

Recall that a probability distribution p € A(Y) is absolutely continuous with respect
to g € A(Y), denoted as p « g, if supp p C suppgq.

LEMMA 4. LeteeR,. Then M,(-) ={q' € ®: H(:, q') <mingep H (-, q) + &} is nonempty-
valued and compact-valued. Moreover, for all p € P, M.(-) is upper hemicontinuous on
Bint,cquppp p(2)/2(P) N{q 1 ¢ K p}.

Proor. If H(p, qg) = oo for all g € ®, M.(p) = O is nonempty and compact. If there is
g such that H(p, §) = K < oo, theset @ ={g € ©: H(p, q) < K + &} is compact by the
continuity of H(p, -), and M.(p) C ®’. So, the continuous and real-valued restriction of
H(p, -) to ® has compact lower contour sets, and it attains a minimum. Thus M.(p) 2
M(p) # @ is nonempty and compact.

For the second part of the statement, observe that if p ¢ A®(Y), then M, ( p)=0and,
therefore, M. (p) is trivially upper hemicontinuous at p since by definition M.(p’) € ©
forall p’ € A(Y). Ifinstead p € A9(Y), there exist ge€0®and K € Ry with H(p, g) =K.
Moreover, the finiteness of H(p, ¢) = K implies that p <« g. So, there exists K’ > 0 such
that

H(p',q) <K' Vp'€Bint. gy, p(2)/2(P) N{q: q < p}.

We use this equation to show that there exists C such that r € M (p’), p' €
Bint,cqppp p(2)/2(P) N{q : ¢ < p} implies r(y) > C for all y € supp p. Suppose by contra-
diction that this is not the case. Then there exist a convergent sequence (r,, pn)neN €
(0 X (Bint.cquppp p(2)/2(P) N{q : g < p}))" and an j € supp p with r, € M, (p,) foralln e N
and lim,,_, . 7, (9) = 0. But we have

H(pn, 1) = Y pn(3)10g pu(y) = pu(9)logra(9) = Y pa(y)log paly) — glogrn(y)
yeY yeY

and the right-hand side is diverging to co. So, eventually H(pp, 1) > e+ K' > ¢ +
H(pn, @), a contradiction with r,, € M.(p,).
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This shows that for all p’ € Bint,cquppp p(2)/2(P) N{q 1 g K p},

AN . / . ;) =
Mg(p)_{re®.H(p,r)§1;n€H(p,r)+g}

= {r €O®:H(p,r)< mi(t)lH(p’, F)+er(y)=C,Vye suppp}. (4)
re@
Also, observe that the function H is continuous on the set

(Bintocaupp p p(2)/2(P) N1q 1 q < p}) x {r€@:r(y) = C, ¥y € supp p}.

Therefore, if we define G : (Bint, .y, , p(2)/2(P) N{g: g < p}) - Ras

/ . /
G(p ) n {re@):r(y)éncl,r\lfyesuppp} H(p ’ r)
G is continuous by the maximum theorem. Moreover, by equation (4) G(p') =
min,ce H(p/, r) for all Binfzesupppp(z)/z(p) N{q: g < p}, showing that min,.g H(:,r) is a
continuous function when restricted on Bint, _,, , p(z)/2(P) N {q : ¢ < p}. To conclude, we
show that M.(-) is upper hemicontinuous on Binfzesuppp p(z)2(P) N{q : g K p} by show-
ing that it has a closed graph. Indeed, let (p,, r,) € Binfzesuppp p(2)2(P)N{g:q <K p} x O
be such that r, € M.(p,) for all n € N and lim,_, (s, pn) = (7, p). By equation (4),
for all n € N, we have r, € {r € ® : r(y) > C, Vy € supp p} and since this last set is close
Fef{re®:r(y) > C,Vy esupp p}. By the continuity of H on (Binf, ., p(2)/2(P) N1q: g K
pH x{re®:r(y) > C,Vy esupp p}, and of G on Bint, cquppp p(2)72(P) N {q 1 ¢ K p}, we have

minH (p,r) —H(p,7)=G(p)—H(p,7) = lim (G(pn) — H(pn, 1)) <&
re® n—00

proving that 7 € M (p). O

LemMA 5 (Pinsker’s inequality). Forevery p, g € A(Y),

||p—q||§‘/w.

A.2 Proofof Lemma 1

LEMMA 1. If po is ¢ positive on O, then for every e, &',k e Ry, t €N, f; € A®(Y), and
g€ My(f) with & + k < e and R(f;, , g) < oo, we have

,U«t(Ms(ft))

T (M) = P /2R o @) exp((e = k= <)), 5

Proor. The proof uses the following bound on how much the Kullback-Leibler diver-
gence can increase when moving from an & minimizer to a nearby distribution.

CraiMm 1. Foreveryp' €0, f e A9 (Y), ¢, ke Ry, and ge My (f),

P €Beprip(@ = H(f,p/)iglei(ralH(f,p)—ke/JrK.
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Proor. For every two distributions f, g € A(Y), there is at least one outcome that is
weakly more likely under f than under ¢, so

R(f,k, @)= max max (@)
qe®ONB,(q) zeY q(z)

is bounded below by 1. Thus p’ € B,/2r(f,«,4)(q) implies p’ € B.(q). Therefore, both p’, g
are in ® N B,(q), so from the definition of R,

f2) f(@)

) - SR M ’_ .
P(2) q(z)} (/> @)

maxmax
zeY

Moreover, p’ € B./2r(f,«,q)(q) implies that g € B,/2r(f,«,q)(P') N M /(f), so by Lemma 3,

K —
RGeS D=k

ax{ f(2) f(Z)}

H(f, p')—H(f, G L
(f,p)—H(f,q < ) 70

K
~ R(f, k, q) zeY

and hence H(f, p') < H(f, @) + k <min,ece H(f, p) + & + k. d

We use Claim 1 to provide alower bound on the probability of the £ minimizers given
the empirical frequency f;. Observe that

/ exp(—H (p, f)t) dpo(dp)
Ms(fr)

/J«t(Ms(ft)) _
1— (Mo (f2) / exp(—H (p, f1)t) duo(dp)
O\M:(f)

/ exp(—H (p, f1)t) duo(dp)
MK+8/( 0

exp(—H (p, f)t) dpo(dp)
O\M,(f:)

exp(—(min# (o p)+ +6)1) L ar )

- exp(—(gggH(ft,p)+e)t> po(O\ M (f))

/JvO(MK+s’(ft))
MO(\Ms(ft))

> exp((e — x — &) 1) o (Bu/2r ., k) (4))
> exp((e — k — &)t)p(k/2R(f3, &, q)).

=exp((e — k — &)1)

The first equality follows from equation (1). The first inequality follows from &' + « <
¢, the second inequality from pointwise bounding the integrands and the definition of
M., the third inequality from Claim 1, and the fourth because ug is ¢ positiveon ®. O
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A.3 Proof of Theorem 1
THEOREM 1. Forevery¢:Ri; — Ry, a€(0,1),and e € (0, 1) thereis A(e) such that

Mt(Mg(ft))

————>A t
L= (M ()~ P

forall t e N, f; € A®(Y), and o that is ¢ positive on ©. Moreover, if q =
inf,c@ Min;esupp g q(2) > 0, then we can set

A(e) = ¢p(min{q/2, (1 — a)s}q/2).

We prove the theorem for ¢ nondecreasing. This is without loss of generality, as if
is ¢ positive on 0, it is also ¢ positive on ® where

$(8)=SUP ¢(8) V8€R++.

g<e

Clearly, ¢ is nondecreasing and only depends on ¢. Moreover, it also pointwise weakly
dominates ¢, so when g > 0, if we prove the statement for ¢ we have

:U’I(Me(ft)) ~ .
1— (Mo (1) > ¢<m1n{g/2, 1- a)a}g/Z) exp(aet)

> ¢ (min{g/2, (1 - a)}q/2) explast)

proving the statement for ¢ as well.

We first show that if q:= inf,c@ minzesupp g ¢(z) > 0, Lemma 1 yields the desired uni-
form rate of convergence. If (1 — a)e < g, then for all f, € A®(Y) and g € M(f,), if
P €00 B1_a)s(§), then supp p =supp§ < supp f;, 0

1 ( ﬁ(z))‘l 1
— = max max > =q.
R(ftv (1 - a)sv 6]) PE®QB(1—a)8((}) zeY P(Z) (l/g) -

Ifinstead (1 — a)e > g, it is enough to observe that 1/R(f:, g/2, q) > g for all f; € A®(Y),
qeM(fy).

Now we move to the proof for the general case where some outcomes might have an
arbitrarily low probability under data-generating processes in the support of the prior,
i.e., ¢ might equal 0. Recall that A®(Y) = {g € A(Y) :3p € O, supp g C supp p} is the set
of distributions for which Bayes rule is well-defined, and that Theorem 1 applies only
to empirical distributions f € A®(Y). To provide an upper bound on R, we show that
the likelihood ratio f/q (which determines the value of R) can be uniformly bounded
for all probability distributions ¢ that are sufficiently close to an (1 — a)&/2 minimizer
of the Kullback-Leibler divergence. Intuitively, as f € A®(Y) some distribution assigns
nonvanishing probability to every outcome which has positive probability under f, and
thus a distribution that assigns vanishing probability to some of these outcomes leads
to an excessively low log-likelihood (and thus a high Kullback-Leibler divergence).



1608 Fudenberg, Lanzani, and Strack Theoretical Economics 18 (2023)

CrLamMm 2. Forevery e € (0, 1), there exist ko (&) € (0, (1 —a)e/2] and c > 1 such that for all
K<kqandf e A®(Y), there is q € M(1_q)g/2(f) such that

Ji6)) -
yeY,qeB(§) q(y)

Proot. If not, then since A®(Y) and O are compact, there is a sequence (f;, gn) €
A®(Y) x ® with ¢, € M (f,) that converges to (f, §), and such that

inf ( max f”(y)) >n. (6)

r?eMu_za)g(f,;) yeY,qeBi(q) q(y)

Since Y is finite, so is the set of possible supports, so there is a subsequence (f;;),en Such
that each element of the sequence has common support, with (f,(y)), weakly decreas-
ing for all y € Y \ supp f. Moreover, since

an(z)logfn(z) € [log(%), 0] VneN

zeY

the subsequence can also be taken such that ), _y f.(z) log f.(z) converges.
Since all the f,, are in A®(Y) and have common support, g, € M(f,), andlog(f,(z)) <
0 forall z € Y, we have

H(fu,qn) <H(fmoq)= Y fa(2logfulz) = > fa(z)logq(2)

zesupp f1 zesupp f1

<— > fa@logqi(z) <— min logqi(z) < oo,
zesupp fi
zesupp f1

S0 (H(fun, gn))nen is bounded. Moreover, if there exist z* € Y and / € Ry with
lim,, o0 gn(z*) = 0 and lim,,_, o f,(z*) =/, then

limsup H (f,,, g») = limsup an(y)(logfn(y) —logqa(y))

n—oo n—oo
yeY

=3 f»log f(») +limsup— 3 fu(3) log ga()

n—oo

yeyY yeY

> > f(y)log f () + limsup — £, (z*) log g (2*)
yeY n—oo

=" f)1ogf(y) — tog( lim_ga(*)) =00,
yey

which contradicts (H (f;, g»))nen being bounded. So, forallz e Y,
lim g,(z) =0 = lim f,(z2)=0 = zgésuppf.
n—oo n—00

Thus G: = infneN,yesuppflog qn(y) > —oo.
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Since (f,;)nen converges, there is N € N such that for all » and m larger than N,

1 (1—-we
1fn — fmll < Gl - [supp /il T )]

Because H: = liminf H( fn» qn) < 00, there exists N’ > N such that

. 1—
H(fw an) < H + ¢ 8"‘)‘9 (8)
and
(1—-we ,
Y fa(Dl0g fu(2) = Y fm(2)log fm(2)] < Vr,m=>N'. 9)
zeY zeY
Moreover, there exists N” > N’ such that for all n > N”,
N 1—
Hfpr ) = H — 8“)8. (10)

Thus for every n > N”, we have

H(fnv CIN’) _H(fn) qn)

~ 1-—
SH(fn;CIN’)—H-l—( )

8
.~ (1-—

= Hfyy av) — H(fiv an) + H(f, aw) =+ S0
= fal@log fu(2) = Y fr(2)log fi(2)

zeY zeY

A~ (1—a)e
+D_(Fa(2) = fv () (= logqn'(2)) + H (fxr, qn) — H + ——
zeY
- (1—-—aw)e
=3 > (fal2) = fvi(2))(—log g (2))
zesuppf
A (1—w)e
+ ). (@ - fv@)(-logan () + H(fx an) — H+ —
zeY\suppf

1—-a)e A

s——+ ) (h@-fv@)(-logay () + H(fx, an) —H
zesuppf

1-a)e 1 (1-we A
== Gl 16 2|G|+H(fn, gn) — H
< (1 —46\’,)8 (1 _Sa)8+f:l+ (1—-we A (l—a)s,

where the first inequality follows by equation (10), the second by equation (9), the third
because f,;(z) is decreasing for the outcomes outside supp f, the fourth by equation (7)
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and the definition of G, and the fifth by equation (8). Therefore,
an’ € Mo (fn)

for all n > N”. But this is a contradiction with equation (6), as

In(y) 1

lim < lim max ————— <oo. 0
n—00 yeY,qeB1/n(qyr) q(y) n— 00 yesupp gy qN/(y)/Z

Now for every f; € A®(Y) let ¢, kqo(€), and q € M(1_a)¢/2(f;) be the values whose ex-
istence is established by Claim 2. Then

M, _ 1-—
% > ¢ (ka(£)/2R(fi, Kal), §)) exp((e ~ Rale) = 2“)8>t>

> ¢(kale)/2¢) eXP((s— (1 —201)8 _a _za)8>t>

> ¢(ka(e)/2c) exp(act),

where the first inequality follows from applying Lemma 1 with &’ = (1 — @)e/2 and k =
ka(€), the second inequality follows because Claim 2 shows that

c=  max IS R( ka(e), )
Y€Y,q€Bzq(s)(@) q(Y)

and kq(&) < (1 — a)e/2, and the third inequality is algebra. Theorem 1 then follows by

letting

A.4 Proof of Theorem 2

THEOREM 4 (Sanov’s theorem, Sanov (1961)). Let P be the probability measure induced
by i.i.d. draws from p*. Then forall A C A(Y) and fort €N,

P(f; € A] < (¢ + DYI27iminpea H(p.p7),
ProoOF. See, e.g., Dupuis and Ellis (2011). O

THEOREM 2. Let P be the probability measure induced by i.i.d. draws from p*. If po is ¢
positive on O, then for every € € (0, 1) thereisa K € Ry such that

P[u:(Bs(M(p*))) <1 —exp(—K1)] = O(exp(—K1)).
CraiM 3. Forevery e > 0 and p* € P, there exists ¢ > 0 such that

M (p") € B:(M(p"))-
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Proofr. Assume the claim is false, so for every n € N, there exists g, € ® \ B.(M(p*))
such that

H(p*, qn) — mmH(p p) <

:I»—'

Since 0 is compact, (g,)seny admits a convergent subsequence with limit g* € 0. Since
H(p*, ) is lower semicontinuous, g* € M(p*). But this would imply that the subse-
quence is eventually in B.(M (p*)), a contradiction. O

By Claim 3, M (p*) € B.(M(p*)) for some & > 0. Since M.(-) is upper hemi-
continuous by Lemma 4, there exists & such that if § € B;(p*) N {q : ¢ < p*}, then
M 2(q) € My (p*). Because the actual data generating process is p* and Y is finite,
P[f; « p*] =1 for all t € N. By Sanov’s theorem (Theorem 4) and Pinsker’s inequality
(Lemma 5), for all ¢ large enough to have (¢ + 1)/Y] < 281,

P[f, ¢ Bs(p*) N {q: g < p*}] <P[H(fi, p*) = 28%] < (1 + 1)Y12728% < 2=,
So,
P (Bs(M(p*))) <1 - Kexp(—]%t)] = O(exp(—K't))

follows from Theorem 1 by letting K = ag' /2 for a € (0,1), K =1/A(&'/2), and K’ =

Kep(KD) _ o for all ¢ < K , the result follows by letting K =

2‘2 lOg 2. Since lim;_, o “exp(=C1)

min{K /2, K'}.

A.5 Proof of Proposition 1

PrOPOSITION 1. If H is uniformly strongly m-convex then for every ¢ : R, — R, and

everya € (0, 1),
wi(Be(6*(f1))) 2A<m82>exp(am—82t)
1 — wi(Be(6"(f))) 2 2

forall uo that are ¢ positiveon ®, e € (0, 1), t e N, and f; € A(Y), where A is the function
whose existence is guaranteed by Theorem 1.

Prook. We claim first that for every 6 e ® and f € A®(Y), VgFI(f, 0*(f))T(9 —6*(f)) >
0. If not,

H(f, 0°(f)+ k(60— 0*(f))—H(f, 6*(N)

0> VoA (f, 0°(f)" (0 - 6*() = | -

But this means that there is k (0 1) such that H(f, 6*(f) + k(o — 9*(f))) — H(f
0*(f)) <0or H(f (1-— k)B*(f) + k0) < H(f 0*(f)). As O is convex, (1 — k)0*(f) + ko
belongs to O, but then 6*(f) would not be a KL-minimizer.
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Next, for every 0 € O,
~ ~ 1 ~
H(f,0) - H(f, 6"(f)) =/0 VoH (f, A0+ (1= 0)6*(f))" (6 — 6*(f))dA

2
27

> Vol (£, (1) (0= 0" (D) + F[0—0* (N5 = F]o—0°()

where the second inequality comes from the uniform strong m-convexity of H. As a
consequence,

MmTSZ(f)EBa(O*(f))

and the result follows from Theorem 1. O

A.6 Proof of Theorem 3

THEOREM 3. Supposethatforallm, ' €0,z,7 €Y, w(Z|z) > 0ifandonlyifw'(z'|z) > 0
and that wo is ¢ positive on O. Then for all « € (0, 1) and ¢ € (0, 1) thereis an A(e) >0
such that
Mt(Ms(ft))
1- ,U«z(Ma(ft))

forallteNand f; € A®(Y x Y).

> A(e)exp(act),

We begin with a continuity result that extends Lemma 3 to the Markov setting.

CLAIM 4. Let R := MaX,co, zcy, 2 esuppm(|2) (1/7(2'|2)). Forall m, 7€ ® and f € A®(Y x
Y),

\H(f, m) = H(f, 7)| <2R|7 — 7.

ProOF.

H(f, M —H(f, @ =] Y (log(m(Z]2)) —log(7(2|2)))f (2, Z)

(z,2')esupp f
w(Z|2) 1
- Z / ~f(z,2)dr
(z,2')esupp f w(2|2) r
1 1 } / ~ (] /
< max{ ——, —— t|7(Z'|z) — 7(|2)|f (2, Z)
(z,z’)Xeszlppf {W(z/lz) 7T(Z/|Z)
<R Z |7(2'|2) — 7(Z|2)|f(z, 2') < 2R|7 — 7]
(z,2')esupp f

Here, the first inequality follows from pointwise bounding the integrand, and the second
inequality follows from the fact that for all 7, 7/ € 0, z,z' € Y, w(Z|z) > 0 if and only
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7'(Z/|z) >0and f € A®(Y x Y). The last inequality follows from the definition of the
total variation distance. O

We now use Claim 4 to establish the theorem. Fix £ € R, ;. Rewrite the likelihood
ratio for distributions inside and outside of M(f;) as follows:

/ H 7(yrlyr-1) dpo ()
Mz(Ma(ft)) Me(fo)

1- Mt(Ms(ft)) - /
(C)

]"[w(y7|y7 1) dpo ()
\Me(f) 121

fol
Me(ft)

f@\Ma(ﬁ (fo z, 2') log( (Z|Z/))t>d,uo(7r)

z,2’€Y

> filer#)log(m(z12))t ) ()

z,2’€eY

/ exp(—H(fi, m)t) dpo (1)
M (fr

/ exp(—H(fi, m)t) duo ()
O\M.(f1)
Next, we provide a lower bound on this likelihood ratio:

f exp(—H(fi, m)t) dpo()
Me(ft)

/ exp(—H(fy, m)1) dpso ()
O\M(f:

f eXp(—H(f,, 7T)t) duo()
Ma-a)e) (ft

exp(—[gieigﬂ(ft, )+ s]t)

exp(—|minH(f;, m) + (1 — a)e|t) duo(m)
'/M((l we) (fr) ( Lre@ ! ]) 0

exp(—[?eigﬂ(f,, T) + s]t)
/B((la)s/ZR)(M(ff)) eXP(_[ETn‘EigH(fI, mH- a)8]1> drotm)
exp(—[gieigﬂ(fz, ) + 8]t>

v

exp(—(glei({)lH(ft, )+ (1— a)a)t)

= $((1 —a)/2R) exp(—[min M(/;, m) + 1)

=¢((1 — a)e/2R) exp(ast).
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Here, the first and second inequalities follow from the definitions of M., the third in-
equality from Claim 4, and the fourth inequality from ¢ positivity on 0. The result fol-
lows by setting A(e) = ¢((1 — a)e/2R).

A.7 Counterexamples to Proposition 1
ExamPLE 4. (Connected O is not sufficient for Proposition 1) O
Let Y ={A4,B,C},®={p: p(A)p(B)p(C) =0} \ {p: p(A), p(B) € (1/4,3/4)}, and
f1o be the uniform measure on . Let w, = 6(1/4,3/4,0)/2 + 8(3/4,1/4,0/2 and po = fio/2 +

1o/2. Suppose y, = B if t is odd and y, = 4 if ¢ is even. At every odd period 2t + 1,1 > 1,
M(farz1) = {(1/4,3/4, 0)}, and for & < 1/12,

. 241 (Bs(M(f21+1))) . M2t41 (Bs(1/4» 3/4, 0))
lim < lim
=00 1 — wost1 (Bs(M(sz-l))) =00 oy (33(3/4, 1/4, 0))
. po(B:(1/4,3/4,0)) (1/4)'(3/4)*!
oo pug(13/4,1/4,01)  (1/4)+1(3/4)!

so beliefs do not concentrate on the KL minimizer.

ExaMPLE 5. (Convergence is not uniform over all paths) O

This example shows that even if O is convex, beliefs need not to converge to the KL
minimizers along paths where the empirical distribution converges to the boundary.

LetY={A,B,C},0={p: p(A)=1/3}, and u¢ be the uniform measure on ®. When
fon=00—-1/n,1/2n,1/2n), M(f2,) = {(1/3,1/3,1/3)} for all n € N. However, fix an ¢ €
(0, 1/12). Then

pi2n(Be(M (f2n)))
1— u2n(Be(M(fan)))

/ exp(—H (fan, p)2n) do(p)
Bs(M (fan))

<

/ exp(—H (fon, p)2n) dpo(p)
P\BP(M(fZ}’l))

- 1o (Be(M(f2n))) exp(=H (fon, (1/3,1/3, 1/3))2n)
= wo(Bae(M(f2n)) \ Be(M(f2n))) exp(—H (f2n, (1/3,1/3 + 2¢, 1/3 — 2¢))2n)

_ 1o(Bs(M (f2n))) (1/3)(1/3)
10 (B2s (M (f21)) \ Bs(M (f2n))) (1/3 +2£)(1/3 — 2¢)

ro(B:({(1/3,1/3,1/3)})) (1/3)(1/3)
%n )
wo(B2:({(1/3,1/3,1/3)}) \ B({(1/3,1/3,1/3)})) (1/3+2&)(1/3 — 2¢)

so beliefs do not concentrate.
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A.8 Proofof Lemma 2

LEMMA 2. Foreverye, e,k eRy, t€N, f; € A®(Y), geMy(fy), withe +k<e,

Mz(Ma(ft))

_H ) B o o
I—Mt(Ms(ft))z,UvO( /R (i) (@) exp((e — k — &)1)

where

1
R » Ky q) = — 1
(fr, &, q) max{qe$%x @ @)’ }
zesupp fi

Proor. The proof follows from the following claims.

CrLamMm 5. Forall p, pell, g € Ps,

\L(qllp) — L(ql|p)| < _max

1
ZesuppqmaX{ Bk p(z)}llp Dlloo-

PROOF.
IL(qllp) — L(ql|p)|

Y (log(p(2) —log(p(2)))q(2)

zesuppgq

rz) 1
Z/ ~drq(2)| <

1 1 .
< max max{——} Y |p(@) = p2)|q(2)

zesuppgq p(z) p(z) zesuppg

1 1 N
Z max{%, ﬁhp(z) — p(2)|q(2)

zesuppq

< max max

= max {p(z) p(z)}llp Plloos

where the last equality follows from the definition of the supremum distance.
CLAIM 6. Forevery p' eIl, f e A°(Y), &,k e Ry, and § € My (f),

P €Byr(y @ = L(fllp))+& +x=> max L(f]| pe)-

1615

PrOOF. Since R is bounded below by 1, p’ € B, /r(f,«,4)(q) implies p’ € B,(g). There-

fore, both p/, g are in I[1N B, (g), so from the definition of R, max; cqupp £ Max{

1 1
p/(z)’ m} 5

R(f, k, ). Moreover, p' € B./r(f,«q)(q) implies that g € B,/r(f,«,3)(P") N My (f), so by

Claim 5,

Max max { 1 1 } K
R(f K, q) zesupp f p/(Z)’ q(z) R(f, k

L(fllg) — L(fllp') <

R(f K, q) =K,
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and hence

L(fllp) = L(fll)) — k= max L(f||pe) - g —«k.

To prove the lemma, observe that

exp(L( )t) dug(dp)
/.Lt(Mg(f[)) fMK+€,(ft) p( ftllp ) MHolap

1—pe(Me(f) ~ / exp(L(fi||p)t) duo(dp)
I\M(f;)

eXp((gﬂggL(ftHPa) —k=2)r) o (Mesw (1)
exp((r;tag)(L(f,Hp@) - s)t) po(TT\ M (fr))

_ oy 0 (Mecte (1)
=exp((e—Kk—¢ )t)m

> exp((& — k = &) 1) o (Bu/rifi 0,) (D)

The first inequality follows from &’ + k < ¢, the second from pointwise bounding the
integrands and the definition of M, and the third from Claim 6. O

A.9 Proof of Proposition 2

ProrosiTiON 2. If L is uniformly strongly m-concave on F, then for every ¢ : Ry, —

m(Bg(e*(ft))))) zd)(Z) exp{tsz_m}

1 — wi(Be (6" (f0) 2

Ry,

for all o that are ¢ positiveon ® CR, e€(0,1),teN, and f; € A®(Y)nF.

ProOF. We claim first that for every 6 € ©® and f € A®(Y)N F, VgL(f||p9*(f))T(0 —
0*(f)) <0. Ifnot,

L(fllpospy+ko—o+r)) — L(fllPo=r))

0<V9L(f||pe*(f))T(9—9*(”):;?3}) k

But this means that there is k € (0, 1) such thatL(f||p0*(f)+]€(070*(f))) —L(fllposs)) > 0.

As 0 is convex, (1 — IQ)O*(f) 1+ k6 belongs to 0, but then 6*(f) would not be a likelihood
maximizer.
Next, as L is uniformly strongly m-concave,

LUfllpo) = LU llpor(5)) = VoL (Fllporcp) (0= 0°(F) = Z |0 - 0°(N)| = =T 0 = 0*(f)].
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The statement is trivially true if ® € B, (0*(f)). If not, since L(f||p(.) is concave and ©
is convex, at least one of

0+ece argmax L(f||pg),
0:)0—0%(f)|>e

and

6 —ece argmax L(f||pe)
6:16—6*(f)|=e

holds. We prove the result in the first case, the proof for the other case is symmetric. Let
6, ' € O be such that

0>0"(f)+e>0"(f)+ g >0 > 0*(f).

We have

L(fllpg) = L(fllpo) = Lo Fllpe) (8- 0) — Z( - 0)°

82171
2 )

< Lofllpop) (B 0) = 5 (0-0)* <=6 0) <~

where the first inequality follows from the strong m-concavity of L, and the second by
the concavity of L in 6. Therefore,

p(Be(0°() “f([e*(f)’ rin+ g])
1= (Be(67(N)) 1= m(Bo(67())

. Mo([ﬁ*(f), 6*(f) + g]) exp<t82m>

1 — po(Be(6"(1)))

= M0<[0*(f), 0" (f)+ g]) exp<z822’“)
=¢<Z) exp(tasz), .

A.10 Proofof Proposition 3

ProposITION 3. Suppose that ® C R is convex and that uo is ¢ positive on ©. If L
is uniformly strongly m-concave on F, then for all ¢ > 0 there is a T € N such that
d(A* (), A*(M(f))) < e foreveryt> T and every f; € F.

Proor. Since A* is uniformly continuous, there exists ¢ € R, such thatforallv € A(0)
and u; € By (v), d(A*(u:), A*(v)) < €. Since O C R, the topology of weak convergence
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on A(®) is metrized by the Lévy-Prokhorov metric. By the definition of this metric, ||v —
8pl||lLp < & whenever
v(By2(p)) J1- g2
1—v(Byp2(p) ~ /2

The statement follows from applying Proposition 2 and choosing

1-¢/2 )
21 _
N °g<¢>(s//8)s’/2

(¢)’m8 O

A.11 Example6

ExaMPLE 6. (Unlimited Bernoulli trials) Suppose the outcome y corresponds to the
number of Bernoulli trials needed to get one success. If the agent believes the tri-
als are i.i.d. with parameter py, their subjective distribution for outcome y is py(y) =
6(1 — 9)’~!. Suppose that all success probabilities are considered possible, so that
II={py: 00, 1]}. Then

L(fllpe) =Y _ f(2)[(z— 1)log(1 — 0) +log(6)] = log(1 — )z + log(6) — log(1 — 6).

z=1

That L is uniformly strongly 1-concave immediately follows from taking derivatives:

JL(f|lpe) z 1 1
90 (1—0)+5+1—0’
IL(fllpe)® _  Z 11
%0 1-6)2% 0 (1-0)>%

The unique log-likelihood maximizing parameter is 6*(f) = 1/z. Suppose that the prior

belief u is such that
[ 26
p,<|:0, 0+ 1-0 0i|>

=0. (11)
60 exp[L(81/9ll p1/2) — L(81/6]| po)]

An example that satisfies the restriction is given by the CDF

1-6
1 100 1 1

The restriction implies there cannot be A4 and g such that

p1(M1/2(8.))
1 —u1(My2(8.))

1 0 1. 17\?
exp| —log(l — 6)—= —log| —— | + = log = for 0 <1/10,
F(9) = 9 6 °2

> Aexp(g) VceR,y, (12)
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so that the conclusion of Theorem 1 does not hold for t = 1. To see why equation (12)
cannot be satisfied, observe that for every K > 0, there is ¢ > 0 such that

(loe i) _elloery=il)
mMpea) T\ e Ty T-1e]) P\ e TV T-1/e]) exp(Laclipye)

<
1= a1 (M1a(6) — 11 = 11 L(5
w1(M1/2(8.)) Ml([Z’ED “([Z’ED exp(L( IIP%))

1 2/c 1/c
- M([O, - +, 1—71/C]> exp(clog(l —1/c) —log(1 — 1/c)> .
N 11 ) 1 -
(52 ()

where the last inequality follows because equation (11) implies the left-hand side is ar-
bitrarily close to 0 for sufficiently high c. O
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