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Stability in repeated matching markets

Ce Liu
Department of Economics, Michigan State University

This paper develops a framework for studying repeated matching markets. The
model departs from the Gale–Shapley matching model by having a fixed set of
long-lived players (firms) match with a new generation of short-lived players
(workers) in every period. I define history-dependent and self-enforcing match-
ing processes in this repeated matching environment and characterize the firms’
payoffs. Firms fall into one of two categories: some firms must obtain the same
payoff as they would in static stable matchings, and this holds at every patience
level; meanwhile, repetition and history dependence can enlarge the set of sus-
tainable payoffs for the other firms, provided that the firms are sufficiently patient.
In large matching markets with correlated preferences, the first kind of firms cor-
responds to “elite” firms that make up at most a vanishingly small fraction of the
market. The vast majority of firms fall into the second category.
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1. Introduction

College admission, hospital—resident matching, and entry-level hiring are ongoing
matching processes that take place every year. One side of these markets—the firms—is
long-lived players, whereas the other side—namely the students, residents, or workers—
participates in the matching process on only a few occasions, sometimes only once.
However, much of the theoretical analysis of matching environments treats both sides
of the market as short-lived players, ignoring the possibility for dynamic incentives that
could be used as a carrot and stick to motivate the long-lived players.

To understand the scope of these dynamic incentives, I consider a two-sided one-
to-many matching model with long-lived firms and short-lived workers. In each period,
a new generation of workers enters the market and lives for one period. The stage game
is the canonical one-to-many matching market à la Gale and Shapley (1962) among the
firms and workers currently in the market. I define a stability notion—self-enforcing
matching process—that generalizes static stability to this repeated environment. Specif-
ically, a matching process is a complete contingent plan that specifies a current stage-
game matching as a function of past histories. A blocking coalition in the stage game can
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comprise a firm and a set of workers who also find this deviation profitable, but unlike
in the theory of static matching, firms care about continuation play and are unwilling
to deviate if doing so leads to unattractive future outcomes. A matching process is said
to be self-enforcing if it is immune to not only unilateral deviations by firms or work-
ers, but also sequential blocking coalitions that can be chained together by a firm over a
possibly infinite horizon.

The goal of this paper is to investigate what can be sustained through self-enforcing
matching processes. I find that firms fall into either one of two categories. The first kind
of firms must obtain the same payoff as they would in static stable matchings, and this
holds regardless of the firms’ patience level. By contrast, the other kind of firms can
obtain payoffs that are distinct from what can be sustained in static stable matchings;
in fact, when patience is sufficiently high, the only restriction is for these firms to obtain
payoffs that are higher than their respective minmax values.1 Finally, I show that in large
matching markets with random and correlated preferences, the first kind of firms make
up at most a vanishingly small fraction of the market.

Let us illustrate the effect of history dependence through a stylized example based
on the matching market between hospitals and medical students. Suppose that there
are three firms (hospitals): f1 and f2 are urban hospitals while fr is rural. Firms are long-
lived players, each with two hiring slots to fill every year. On the other side of the market,
five representative workers (students) w1, � � � , w5 enter the market looking for residency
jobs each year. Workers are short-lived players in this market.

The left panel of Table 1 shows the firms’ stage-game utilities. For this example, we
shall assume that firms have additively separable utilities from matched workers and
derive 0 from unfilled positions. Observe that w5 is every firm’s least preferred worker
yielding a payoff of 1; on the contrary, the maximum payoff a firm can obtain from any
matching is 9. Workers’ preferences over firms are in the right panel of Table 1. Each
worker prefers to work for any company over unemployment. Observe that the firm fr
(which represents the rural hospital) is the worst firm for all workers.

As illustrated in Figure 1, there are two stable matchings in the stage game: mW is the
worker-optimal stable matching whilemF is optimal for firms. BothmF andmW match

Table 1. Example: preferences.

uf (w) w1 w2 w3 w4 w5

f1 5 4 3 2 1
f2 2 4 5 3 1
fr 2 5 3 4 1

�

w1 f2 f1 fr
w2 f2 f1 fr
w3 f1 f2 fr
w4 f1 f2 fr
w5 f1 f2 fr

1In particular, firms may be able to obtain payoff profiles that are on their efficient frontier. Note that
from the firms’ perspective, the firm-proposing stable matching is ordinally efficient among all stable
matchings; however, it may not be on the firms’ efficient frontier because all the firms may be better off
from an unstable matching.
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Figure 1. Stable matchings.

fr with the worst worker w5 while leaving its other position unfilled. The matching m0

in Figure 2 matches fr with w2, butm0 is unstable: f1 and w2 will form a blocking pair.
Now suppose how players match in the future can be based on how they matched

in the past. Consider the following “triggering” matching process μ0: firms and workers
match according to m0 on the path of play; if any firm has deviated in the past, players
will instead match according to the worker-optimal stage-game matching mW . Note
that this is the familiar idea of Nash reversion, but the stage game is a cooperative game.

The stage-game matching m0 is played in every period in the matching process μ0.
A one-shot deviation principle, established later in Lemma 1, shows that μ0 is also self-
enforcing when firm patience is high. Lemma 1 shows that a matching process is self-
enforcing if and only if two requirements are satisfied at every history of the market:

• No worker wishes to unilaterally leave her matched firm.

• No firm finds it profitable to conduct a one-shot deviation with a group of workers
who also find this deviation profitable.

These requirements are met at every off-path history of μ0: mW is a static stable match-
ing, so by construction, there are no profitable deviations. At every on-path history
(where m0 is played), no workers want to unilaterally leave their firm since everyone
prefers employment. By following μ0, f1 receives 6 in every period. If f1 were to devi-
ate with any worker, it would receive no more than 9 in the current period and 5 in all
future periods. As long as f1’s discount factor δ satisfies δ > 3/4, it would not find such

Figure 2. Matchingm0: An unstable matching.
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Table 2. Workers share identical preference.

uf (w) w1 w2 w3 w4 w5

f1 5 4 3 2 1
f2 2 4 5 3 1
fr 2 5 3 4 1

�

w1 f1 f2 fr
w2 f1 f2 fr
w3 f1 f2 fr
w4 f1 f2 fr
w5 f1 f2 fr

one-shot deviations profitable. A similar argument rules out any profitable one-shot
deviations involving f2. In light of Lemma 1, μ0 is a self-enforcing matching process for
δ > 3/4.

We have argued so far that it is possible to use history dependence to expand the set
of stable outcomes. The next example shows that certain preference configurations can
severely limit this possibility.

Consider the market in Table 2: the only difference from Table 1 is that now all work-
ers share a common preference ranking f1 � f2 � fr over firms. The stage game has
a unique stable matching m∗, as depicted in Figure 3. We argue below that no self-
enforcing matching process can sustain any matching other than m∗ no matter how
patient the firms are.

To see why, first observe that as the workers’ favorite firm, f1 finds its favorite workers
{w1, w2} available in every future generation: whenever f1 is not matched to {w1, w2},
it can always poach them. Since {w1, w2} also happens to give f1 the highest possible
stage-game payoff, it is impossible to punish or reward f1 through continuation value.
Essentially, f1’s “minmax” payoff is the same as its maximum payoff, so it is impossible
to motivate f1 through dynamic enforcement. As a result, f1 acts like a short-lived player
and will always match with {w1, w2} after every history.

Since {f1, w1, w2} are always matched together, they are essentially inactive. This
makes f2 the workers’ favorite among active firms. Meanwhile, f2 finds its favorite active
workers, {w3, w4}, always available in every future generation. The only way to credibly
remove w3 or w4 from f2 is to match them with f1; otherwise f2 can simply poach them
back. But this is impossible since f1 is always occupied by {w1, w2} at every history.
Without changes in continuation value, f2 also behaves myopically and matches with

Figure 3. Matchingm∗: The unique stable matching.
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{w3, w4} at every history. A similar “peeling” argument along workers’ shared preference
list ensures that fr is always matched with w5 in every self-enforcing matching process.

None of the arguments so far has involved the firms’ patience, so for all 0< δ< 1, the
only self-enforcing matching process is the one where m∗ is played after every history,
and the market functions like a one-shot interaction. It is also worth noting that the
uniqueness of the static stable matching is not responsible for the collapse of dynamic
enforcement. In fact, if the firms share a common ranking over workers, the market
will have a unique static stable matching. But in this case, it is possible to sustain other
stage-game matchings in a self-enforcing matching process: I provide an example that
illustrates this possibility in Appendix A.6.

In the examples above, repeated interaction had starkly different implications for
what can be sustained in a matching market. The key difference between these two
settings is the size of the top coalition sequence. A firm and a group of representative
workers form a top coalition in the stage game if they are mutual favorites. The top
coalition sequence is identified by iteratively finding and removing new top coalitions
in the stage game until no more top coalitions can be found. In the first example, the top
coalition sequence is empty; by contrast, all players are in the top coalition sequence in
the second example. The results in this paper generalize these observations.

Section 2 first introduces the repeated matching market and the top coalition se-
quence. Theorem 1 then shows that regardless of firms’ patience, players in the top
coalition sequence always match in the same way as they do in static stable matchings.
Theorem 2 complements Theorem 1 and proves a folk theorem for players outside of
the top coalition sequence, so with sufficient patience, they may obtain matches that
are unattainable in static stable matchings. Theorem 1 has a simple intuition. If a firm
is in a top coalition, its minmax payoff is equal to its maximum stage-game payoff, so it
cannot be motivated through dynamic enforcement. In standard repeated games, this
would only arise under very strong assumptions on payoffs, but in two-sided matching
markets, this occurs naturally with top coalitions. As a result, at every history, these firms
must always match with their top coalition workers, so a top coalition can be treated as
“inactive” players and removed from the stage game. Applying this argument iteratively
yields Theorem 1. Theorem 2 is a folk theorem for the remaining “active” players in
the reduced game and follows from the standard arguments in Fudenberg, Kreps, and
Maskin (1990).

Section 3 builds on the repeated matching model but allows the worker population
in each period to be drawn randomly. Preferences are correlated: both the firms and the
workers can be divided into quality classes; players always prefer matches from a higher
quality class, but within the same class, preference is heterogeneous and random. In
this setting, I will call the best class of firms elite firms if the size of this quality class
is vanishingly small relative to the size of the best class of workers. Theorem 3 shows
that for every fixed discount factor, as the market size grows, all elite firms (should they
exist) must obtain almost their maximum payoffs at every history. In other words, elite
firms are untouchable in large matching markets. Elite firms, however, make up only a
vanishingly small fraction of the market by definition. Theorem 4 shows that as long as
a firm quality class makes up a nonvanishing fraction of the market, the range of payoffs
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that can be sustained in self-enforcing matching processes will be non-vanishing as the
market size grows large. This contrasts with elite firms, whose range of possible payoffs
becomes degenerate in large markets. Perhaps surprisingly, Theorem 4 also applies to
the top quality class as long as its size is not vanishing (in this case, there would be no
elite firms in the market).

To understand the intuition of Theorem 3, suppose that f ∗ is an elite firm and that
the value of each worker is bounded between [0, 1]. As the market size grows, the work-
ers who are worth at least (1 − ε) to f ∗ will likely far outnumber the total hiring slots
at elite firms. Since f ∗ faces competition only from other elite firms, it is almost guar-
anteed to fill all its hiring slots with these workers. As the market size grows large, this
payoff guarantee will approach f ∗’s payoff upper bound despite the randomness in pref-
erence realizations. One challenge in proving Theorem 4 is that in large matching mar-
kets, players obtain approximately efficient payoffs from all static stable matchings, so
these matchings cannot be used to punish deviating firms.2 Instead, I show that a vari-
ant of the worker-proposing serial dictatorship can punish firms effectively even in large
matching markets.

Related literature This paper is related to several different lines of research. First, my
paper is part of a large and active literature on community enforcement, which stud-
ies how repeated interactions can lead to desirable outcomes that are not sustainable
in one-shot interactions. See, for example, Kandori (1992), Ellison (1994), Wolitzky
(2013), Ali and Miller (2016), Acemoglu and Wolitzky (2020, 2021), and Deb, Sugaya, and
Wolitzky (2020). The main difference between my paper and the existing literature is that
I focus on two-sided and one-to-many matching environments, which may contain top
coalition players who cannot be motivated dynamically even when patience is high. To
quantify the impact of these untouchable players, I build on techniques from the large
matching market literature to obtain asymptotic characterizations of their relative size
in the market.

Second, this paper is also related to the literature on dynamic matching. Du and
Livne (2016) and Doval (2022) consider the existence of self-enforcing arrangements
in a setting where matching is one-to-one, and players leave the market permanently
once matched.3 Another strand of this literature investigates self-enforcing arrange-
ments in matching markets where the links among long-lived players can be revised
over time. See, for example, Corbae, Temzelides, and Wright (2003), Damiano and Lam
(2005), Kurino (2020), Newton and Sawa (2015), Kadam and Kotowski (2018a,b), Ko-
towski (2020), and Altınok (2021). The main difference in the current paper is that I
study a setting where a fixed set of long-lived players match with multiple short-lived
players in every period. As a result of this difference, while dynamic incentives typically
impede either stability or efficiency in the existing literature, in my paper, they are used
as a carrot and stick to enforce more stable outcomes.

2See Pittel (1989, 1992) and Lee (2016) for large-market results on this point; Ashlagi, Kanoria, and
Leshno (2017) show that this is true even in small matching markets.

3See Ünver (2010), Anderson, Ashlagi, Gamarnik, and Kanoria (2015), Baccara, Lee, and Yariv (2019),
Leshno (2022), and Akbarpour, Li, and Gharan (2020) for the welfare implications of various dynamic
matching algorithms in such markets.
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Third, the current paper is also part of a nascent literature that combines repeated
games and cooperative games. Bernheim and Slavov (2009) study a repeated version of
Condorcet winner. Ali and Liu (2020) consider coalitional deviations in general repeated
games where the stage game can be either a strategic-form game or a cooperative game.
The solution concept in this paper builds on the full history dependence and subgame-
perfection requirement in these papers. The main difference is in the form of effective
coalitions: in both these papers, the effective coalitions consist of subsets of long-lived
players; in the current paper, however, the effective coalitions are those that consist of
a single long-lived player and multiple generations of short-lived players. Ali and Liu
(2020) also focus on the effects of public versus secret payments, whereas the current
paper focuses on matching markets without transfers. More recently, Bardhi, Guo, and
Strulovici (2023) use a similar solution concept as Ali and Liu (2020) to study early career
discrimination in matching markets where wages are flexible.

2. Repeated matching market

In this section, I first review the benchmark static matching environment and then ex-
tend the model to repeated matching markets. I also introduce the notion of top coali-
tion sequence and show that it determines whether or not a firm can be motivated
through continuation play.

2.1 Model

Players At the beginning of each period t = 0, 1, 2 � � �, a new generation of workers W
enter the market to match with a fixed set of firms F . Firms are long-lived players who
persist through time. Workers are short-lived and remain in the market for only one
period, but the composition of the workers in each generation is the same. Matching is
one-to-many: each firm f has qf > 0 hiring slots to fill in every period.

Each worker w has a strict preference relation �w over the set of firms and being
unmatched (being unmatched is denoted w). I write f �w f ′ if either f �w f ′ or f = f ′.

Each firm f has a utility function ũf : 2W → R defined on all subsets of workers.
Firms’ utility functions are strict (ũf (W ) = ũf (W ′ ) only if W =W ′ ) and responsive: for
all f ∈ F ,W ⊆ W , and w, w′ /∈W ,4

• ũf (W ∪ {w′})> ũf (W ∪ {w}) if and only if ũf ({w′})> ũf ({w})

• ũf (W ∪ {w})> ũf (W ) if and only if ũf ({w})> ũf (∅).

That is, replacing a worker with someone better (or adding an acceptable worker) makes
the firm f better off. Firms share a common discount factor δ and evaluate a sequence
of flow utilities through exponential discounting.

4Firms’ utility functions are defined even for groups of workers that exceed its capacity constraint: this
allows for a simpler notation for utility functions. However, the concepts of stage-game matching and fea-
sible deviation both require firms to respect their capacity constraints, which rules out the possibility for
any firm f to match with more than qf workers.
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Stage game The stage game in every period is a static one-to-many coalitional match-
ing game played between the firms and the workers who are active in that period. For-
mally, a stage-game matching m is a mapping defined on the set F ∪ W such that (i)
for every w ∈ W , m(w) ∈ F ∪ {w}, (ii) for every f ∈ F , m(f ) ⊆ W and |m(f )| ≤ qf , and
(iii) w ∈m(f ) if and only if m(w) = f . Let M denote the set of all stage-game matchings.
For each f ∈ F , let uf : M → R be firm f ’s utility function over stage-game matchings
induced from its preference over workers: uf (m) ≡ ũf (m(f )) for allm ∈M .

A stage-game matching m is subject to three types of deviations: (i) a deviation by
a firm f , where f fires a subset of its employees and leaves those positions unfilled; (ii)
a deviation by a worker w, where w leaves her employer and remains unmatched; (iii)
a deviation consisting of a firm f and a subset of workers W , where f and W match
together and abandon any other preexisting match partners. However, observe that the
firm f firing a subset of its employees is equivalent to f deviating with the workers that
remain employed by f . Therefore, it is without loss to focus only on the latter kind of
deviation in addition to deviations by individual workers.

We say that a matching m is acceptable to worker w if m(w) �w w. The coalitional
deviation {f } ∪ W from m is said to be feasible to f if |W | ≤ qf and f �w m(w) for
w ∈ W \m(f ): each worker w ∈ W is either already working for f or finds herself bet-
ter off to do so. Furthermore, the coalitional deviation {f } ∪W is said to be profitable
for f if ũf (W ) > uf (m). Finally, a stage-game matching m is stable if all workers find it
acceptable, and no firm can find any coalition deviation that is both feasible and prof-
itable.5

In static matching models, there is no need to specify the resulting matching out-
come after a deviation. This is because in static matching environments, the profitabil-
ity of a deviation does not depend on how others respond. However, in repeated match-
ing markets where the past influences the future, we have to specify what outcome is
realized after a deviation. To this end, let [m, (f ,W )] ∈ M denote the resulting stage-
game matching after coalition {f } ∪W deviates from stage-game matching m. I make
the following assumption.

Assumption 1. The stage-game matching m′ = [m, (f ,W )] satisfies m′(f ) = W , and
m′(f ′ ) =m(f ′ )\W for all f ′ 
= f .

Assumption 1 states that members of the deviating coalition are matched together
in the resulting stage-game matching; in addition, players abandoned by the deviators
remain unmatched, while those untouched by the deviation remain matched as before.
One can make alternative assumptions that specify how other players may further de-
viate within the period after the initial deviation. As long as it is possible to identify the
firm that initiated the first deviation, identical results follow.6

5Note that the notion of stability outlined above is stronger than pairwise stability à la Gale–Shapley but
weaker than the strong core, which would rule out deviations involving multiple firms. These different
notions of stability coincide in static matching environments where preferences satisfy substitutability, but
can lead to different analyses in dynamic settings. I discuss this point in more detail after introducing the
dynamic stability notion in Definition 1.

6Assumption 1 is only needed for establishing Lemma 2 in Appendix A.1: it is always possible to identify
the firm responsible for a deviation.
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Finally, it is worth noting that even though the stage game is a cooperative game
featuring deviations by coalitions, the firms play a much more active role than the work-
ers: essentially, a firm can choose any worker who prefers them to their current match.
At the end of this section, I discuss an alternative normal-form game with firms as the
only active players, and argue that the repeated matching market can be analyzed by
studying subgame perfect Nash equilibria in the corresponding repeated normal-form
game.

Repeated matching market The timing in each period is as follows: at the beginning
of the period, a realization ω ∈ � is drawn from a public randomization device (by, for
example, a centralized matching clearing house); based on ω and the history of past
interactions, a recommended stage-game matching is created for the players who are
currently in the market; firms and workers then decide whether to deviate from this rec-
ommendation, which leads to the realized stage-game matching. Note that the public
randomization device is not intended to represent the random realization of players’
preferences.7 Instead, it represents the ability of the matching clearing house to ran-
domize its recommendations.

A t-period ex ante histories h= (ωτ ,mτ )t−1
τ=0 specifies a sequence of past realizations

from the public randomization device and matching outcomes before the randomiza-
tion at the beginning of period t is drawn. I use Ht to denote the set of all t-period ex
ante histories, with H0 = {∅} the singleton set comprising the initial null history. Let
H ≡⋃∞

t=0 Ht be the set of all ex ante histories. Finally, let Ht ≡ Ht ×� denote the set of
t-period ex post histories and let H ≡ H×� denote the set of all ex post histories.

A matching process proposes a stage-game matching following each ex post history:
a matching process μ is a mapping μ : H →M . One can interpret a matching process
as proposals from a history-dependent matching protocol. I use μ(f |h) and μ(w|h) to
denote the match partners of firm f and worker w in the stage-game matching μ(h),
respectively.

Let H∞ = (� ×M )∞ be the set of outcomes of the repeated matching market. For
an outcome h ∈ H∞, let mτ(h) denote the stage-game matching in the τth period of h.
Following every t-period (ex ante or ex post) history ĥ ∈ H ∪H, let

Uf (ĥ|μ) ≡ (1 − δ)Eμ

[ ∞∑
τ=t

δτ−tuf
(
mτ(h)

)∣∣∣ĥ]

denote the continuation payoff firm f obtains fromμ following ĥ, where the expectation
is taken with respect to the measure over H∞ induced by μ conditional on ĥ. I will also
use Uf (μ) ≡Uf (∅|μ) to denote the payoff firm f obtains from μ at the beginning of the
game.

Deviation plan In repeated matching markets, a firm f can participate in a sequence of
deviations by forming coalitions with workers across multiple generations. Each of these

7In fact, preferences are assumed to be predetermined so far; in Section 3, I augment the stage-game to
account for the random preferences realizations.
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coalitions must be immediately profitable for the short-lived workers, but not necessar-
ily for f , since it cares about the utility it collects from the entire sequence.

Motivated by this observation, I define a deviation plan for a firm f as a complete
contingent plan that specifies, at each ex post history, a set of workers with whom f

wishes to form a deviating coalition: a deviation plan for f is a mapping df : H → 2W .
Together with the original matching process, a deviation plan generates an altered distri-
bution over the outcome of the game H∞. Given a matching process μ and f ’s deviation
plan df , the manipulated matching process, denoted [μ, (f , df )] : H →M , is a matching
process defined by[

μ, (f , df )
]
(h) ≡ [

μ(h),
(
f , df (h)

)]
for every h ∈ H.

To understand the expression above, note that at every history h of the manipu-
lated matching process [μ, (f , df )], the coalition f ∪ df (h) deviates from the stage-
game matching μ(h) prescribed by μ, which results in the stage-game matching
[μ(h), (f , df (h))]. The deviation plan df is said to be feasible if at every ex post history
h, the following statements hold:

(i) We have |df (h)| ≤ qf , so the stage-game deviation respects f ’s capacity constraint.

(ii) We have f �w μ(w|h) for w ∈ d(h)\μ(f |h), so any worker specified by df either
already works for f or finds herself strictly better off to do so.

A deviation plan df is profitable for firm f if there exists an ex post history h where
Uf (h|[μ, (f , df )])>Uf (h|μ); that is, having reached the ex post history h, the continua-
tion value from carrying out the deviation plan exceeds that from following the matching
process μ.

Note that if the deviation plan df agrees with the matching process μ at every ex
post history, i.e., df (h) = μ(f |ĥ) for all h ∈ H, then it is equivalent to f following the
prescription of μ. For much of the analysis in this paper, I focus on a special class of
deviation plans that disagree with μ at only one ex post history: a deviation plan df is a
one-shot deviation from a matching processμ if there is a unique ex post history ĥwhere
df (ĥ) 
= μ(f |ĥ).

Self-enforcing matching process The notion of self-enforcing matching process cap-
tures stability in repeated matching markets.

Definition 1. A matching process μ : H →M is self-enforcing if

(i) μ(w|h) �w w for every w at every ex post history h

(ii) no firm f has a deviation plan that is both feasible and profitable.

The first requirement in Definition 1 guards against deviations by singleton workers
in every generation; the second requirement asks that no firm can profit from chaining
together a sequence of deviating coalitions, each of which is immediately profitable for
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the deviating workers, but not necessarily for the firm itself. Note that these require-
ments are imposed at every ex post history, including those that are off-path: this em-
beds sequential rationality in the same way as subgame perfection does in a repeated
non-cooperative game. Finally, observe that Definition 1 coincides with the definition
of static stable matchings when patience is 0.

Note that Definition 1 focuses only on coalitional deviations that involve a single
firm. In dynamic environments, this is generally not equivalent to considering devi-
ating coalitions with multiple firms. However, allowing infinite-horizon deviations by
multiple long-lived players creates a conceptual difficulty in assessing whether those
deviations themselves can be self-enforcing. One appealing feature of the matching en-
vironment studied in this paper is that here it is relatively standard to study deviations
in coalitions that comprise a single firm and potentially multiple workers, which avoids
these conceptual issues. In a separate paper (Ali and Liu (2020)), we show that if coali-
tions cannot commit to long-run behavior and are unable to make anonymous trans-
fers, then modeling coalitions with multiple long-run players does not alter the set of
sustainable outcomes when players are patient.

Lemma 1 below establishes a one-shot deviation principle for self-enforcing match-
ing processes: to check whether a matching process is self-enforcing, instead of check-
ing all deviation plans, it suffices to focus on those that only depart from the matching
process at a single history.

Lemma 1 (One-Shot Deviation Principle). A matching process μ is self-enforcing if and
only if

(i) μ(w|h) �w w for every w at every ex post history h

(ii) no firm f has a one-shot deviation that is both feasible and profitable.

The proof of Lemma 1 follows arguments similar to the one-shot deviation principle
for repeated normal-form games and is relegated to Appendix A.1. An immediate im-
plication of Lemma 1 is that self-enforcing matching processes exist at every patience
level.

Observation 1. There exists a self-enforcing matching process for every 0 ≤ δ < 1.

Recall that we assumed that the firms’ preferences are responsive. Standard results
in the static matching literature (see, for example, Theorem 6.5 in Roth and Sotomayor
(1992)) then ensure the existence of stable static matchings. By Lemma 1, the infinite
repetition of a static stable matching is always a self-enforcing matching process.

Active firm, passive workers In the current paper, the stage game of the repeated
matching market is modeled as a cooperative game, which is consistent with the tra-
dition of the static matching literature. However, the stage game can also be modeled
as a normal-form game with firms as the only players. In this normal-form game, each
firm f ’s action space consists of subsets of W with no more than qf workers—intuitively,
think of each action as the firm proposing to the group of workers. By contrast, workers
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Figure 4. Workers as actions.

are not modeled as players in this representation; instead, given an action profile from
the firms, we use the imputed worker assignment to determine the firms’ payoffs. In
particular, each worker is assigned to her favorite acceptable proposer or remains un-
matched if she receives no acceptable proposals. We will refer to this normal-form game
as the active firms, passive workers (AFPW) representation of the matching market, in
contrast to the cooperative-game representation we have focused on thus far.

As an illustration, consider a matching market where the stage game consists of two
firms F = {f1, f2} and two representative workers W = {w1, w2}, with firms’ capacities
q1 = 1 and q2 = 2. Suppose that each firm derives a payoff of 2 from the worker shar-
ing the same index as itself, a payoff of 1 from the worker with a different index, and
0 payoff from unfilled positions. Assume also that f2 has additively separable payoffs
from its two hiring slots. Each worker prefers to work for the firm with a distinct index
over working for the firm with the same index, but working for either firm is better than
unemployment.

Figure 4 shows the AFPW representation of the stage game. The pure-strategy Nash
equilibria are (w2, w1 ) and (w2, {w1, w2}), both of which correspond to the unique stable
matching where f1 is matched with w2 and f2 is matched with w1.

More broadly, in Appendix A.5, I show that for the kind of matching markets consid-
ered in the current paper, analyzing self-enforcing matching processes in the repeated
matching market is equivalent to analyzing subgame perfect Nash equilibria in the re-
peated AFPW game. Intuitively, each action profile in the AFPW stage game corresponds
to a stage-game matching that is acceptable to all workers. Moreover, the payoffs a firm
can achieve by deviating in the AFPW stage game are identical to the payoffs it can ob-
tain through feasible coalitional deviations in the coalitional matching game. As a re-
sult, the enforceable outcomes in the repeated AFPW game and the repeated coalitional
matching game are identical.

2.2 Top coalition sequence

In the second example in Section 1, history dependence is powerless against top firms
due to their immunity to future punishments. In a general matching environment with-
out assuming common worker preferences, the appropriate notion of top players is cap-
tured by top coalitions.

Fix an arbitrary subset of firms and workers F ∪W ⊆ F ∪W . A firm f̂ ∈ F and a set of
workers Ŵ ⊆W , |Ŵ | ≤ qf form a top coalition in F ∪W in the following circumstances:

(i) If ũf̂ (Ŵ ) ≥ uf̂ (W ′ ) for all W ′ ⊆ W such that |W ′| ≤ qf : subject to capacity con-

straint qf , Ŵ is f̂ ’s favorite group of workers amongW .
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(ii) If f̂ �w f ′ for allw ∈ Ŵ and f ′ ∈ F ∪ {w}: f̂ is the favorite firm for every worker in Ŵ .

In other words, f̂ and Ŵ are mutual favorites. The top coalition sequence takes this
idea further by iteratively finding and eliminating top coalitions in the remaining players
until no new top coalition can be found.

Definition 2. The top coalition sequence is the ordered set T = {(f̂1, Ŵ1 ), (f̂2, Ŵ2 ), � � �}
produced by the following procedure:8

• Initialization: Set T = ∅.

• New Phase:

(i) If (F ∪W )\T contains no top coalition, stop.

(ii) If (F ∪ W )\T has a top coalition (f̂ , Ŵ ), add (f̂ , Ŵ ) to T and restart New
Phase.

The top coalition sequence is related to, but distinct from, the top coalition prop-
erty studied in various cooperative game settings. While the top coalition sequence is
an object constructed from arbitrary player preferences, the top coalition property, by
contrast, is an assumption that requires the top coalition sequence to include all players
in the stage game.9 We summarize this connection as an observation below.

Observation 2. If the stage game satisfies the top coalition property, then the top coali-
tion sequence includes all firms and workers.

Below are some observations on how the composition of the top coalition sequence
may depend on the preference configurations in the market.

Observation 3. Suppose all firms are acceptable to all workers (f �w w for allw ∈ W).

(i) If workers share a common preference ranking over firms, then all players are in
the top coalition sequence.

(ii) When firms share a common utility function over workers, the top coalition se-
quence may be empty.

The first point in Observation 3 follows from the iterative elimination of the top firm
along the workers’ shared preference list, just as in the second example in Section 1. The
second point is illustrated through the following example.

8Whenever it causes no confusion, I will use T to denote both the set of (f ,W ) pairs and the set of players
who show up in those pairs.

9See, for example, Eeckhout (2000), Banerjee, Konishi, and Sönmez (2001), and Pycia (2012) and Wu
(2015) for applications of the top coalition property. See Peralta (2020) for an example of the application of
the top coalition sequence in static matching environments.
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Example 1. F = {f1, f2} and W = {w1, w2, w3, w4}. The two firms f1 and f2 are iden-
tical: both have capacity qf1 = qf2 = 2 and share a common utility function uf1 (wi ) =
uf2 (wi ) = i. Suppose �wi= f1, f2, wi if i is odd and �wi= f2, f1, wi if i is even.

The procedure in Definition 2 stops at the first step: both firms point to {w3, w4} as
their favorite workers, but since neither f1 nor f2 is the favorite for both {w3, w4}, there
is no top coalition and T = ∅. ♦

2.3 The limit of self-enforcement

The results in this section explore the extent to which history dependence can be used
to alter the matches obtained by firms when they are sufficiently patient. In particular,
I say that a firm is untouchable in the repeated matching market if, regardless of the pa-
tience level, the firm always retains the same set of workers at each history in every self-
enforcing matching process. Therefore, dynamic enforcement cannot be used to alter
the matches obtained by untouchable firms as compared to static stable matchings.

Impossible to motivate top coalition sequence As Theorem 1 shows, the firms in the top
coalition sequence are untouchable.

Theorem 1. Suppose (f̂ , Ŵ ) is in the top coalition sequence. Then f̂ is matched to Ŵ
in all static stable matchings. Moreover, for every 0 < δ < 1, f̂ is matched to Ŵ in every
self-enforcing matching process at every ex post history.

Theorem 1 states that the firms and workers in the top coalition sequence are always
matched together in both static and repeated matching markets. This holds in a stark
sense in repeated matching markets since it applies regardless of firms’ patience and
after every ex post history, including those that are off-path.

The complete proof of Theorem 1 can be found in Appendix A.2. Here are the key
steps. First, (f̂ , Ŵ ) being mutual favorites implies that they must be matched together
in any static stable matching. Second, in a repeated matching market, (f̂ , Ŵ ) being
mutual favorites further implies that f̂ is not punishable through continuation value:
whenever a matching process recommends f̂ to match with W 
= Ŵ , everyone in Ŵ is
willing to deviate with f̂ , so f̂ ’s continuation value cannot be lower than uf̂ (Ŵ ); at the

same time, f̂ ’s continuation value also cannot be higher than uf̂ (Ŵ ), so f̂ ’s continuation

value must be precisely uf̂ (Ŵ ), no matter what happens in the current period. Without

credible changes in its continuation value, f̂ behaves just like a short-lived player, so
it must always match with Ŵ at every ex post history. Finally, an inductive argument
extends this logic to the entire top coalition sequence.

The following is an immediate corollary of Theorem 1 and Observation 2.

Corollary 1. If the stage-game matching market satisfies the top coalition property,
there is a unique self-enforcing matching process where the unique static stable matching
is played at each history.
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Difference from standard folk theorem The “impossibility” implication from Theorem 1
stands in contrast to what one might expect from standard folk theorems for repeated
games, where many outcomes are sustainable at high patience levels: here, the match-
ing outcome for players in T is unique no matter how high the patience is.

To understand why, note that for firm f to deviate and poach a worker, the worker
must strictly prefer f over her current match. So when stage-game matching m is rec-
ommended, f can choose from workers in Df (m) ≡m(f ) ∪ {w ∈ W : f �w m(w)}: these
workers are either already working for f or can be poached by f if it wishes. On the other
hand, to ward off deviations by individual workers, a self-enforcing matching process
can only recommend stage-game matchings in M◦ ≡ {m ∈ M : m �w w for all w ∈ W }:
these are the matchings that are acceptable to all workers. The minmax payoff for firm f

is the payoff it obtains from its “best response” to the worst possible recommendation,
which is given by

uf ≡ min
m∈M◦ max

W⊆Df (m), |W |≤qf
uf (W ). (1)

A naive adaptation of the standard folk theorem would state that any payoff profile that
gives every firm f strictly higher than their respective uf can be sustained through a
self-enforcing matching process as δ→ 1.

The problem with this approach is that whenever there exists a top coalition, say
(f̂ , Ŵ ) ∈ T , then the workers in Ŵ are always available to f̂ when f̂ deviates. That is,
Ŵ ⊆Df̂ (m) for allm ∈M◦. According to (1), firm f̂ ’s minmax payoff therefore satisfies

uf̂ ≡ min
m∈M◦ max

W⊆Df (m), |W |≤qf
uf (W ) ≥ uf̂ (Ŵ ) = max

W⊆W , |W |≤qf
uf̂ (W ),

where the last equality follows since Ŵ is f̂ ’s favorite group of employees. The expression
above implies that f̂ ’s minmax payoff is identical to its highest feasible payoff, so the set
of feasible payoff profiles giving f̂ strictly higher than uf̂ is an empty set. A top coalition
firm essentially has an action that guarantees itself the highest possible payoff from the
stage game independent of the actions of other firms, and the folk theorem is always
vacuous for such payoff structures.

Moreover, (1) also leads to incorrect minmax payoffs for firms that are not in T .
In light of Theorem 1, any credible recommendation must match f̂ with Ŵ , but some
stage-game matchings in M◦ do not. As a result, (1) incorrectly assumes that f̂ ’s hiring
capacity can be used when punishing other firms, which underestimates the minmax
payoffs for firms other than f̂ .

It should be noted that the subtlety introduced by the top coalition sequence is dif-
ferent from the failure of full dimensionality that is studied in Wen (1994) and Fuden-
berg, Levine, and Takahashi (2007). In the aforementioned papers, there is a nonempty
set of payoff profiles that are both feasible and strictly higher than each player’s min-
max; however, this set lacks dimensionality due to long-run players having aligned pref-
erences. The presence of a top coalition, by contrast, leads to an empty set of such pay-
off profiles. The construction of the top coalition sequence in Definition 2 is an iterative
process of finding degenerate payoff dimensions while recalibrating the minmax payoffs
for the remaining firms until we arrive at a reduced game without new top coalitions.
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Modified folk theorem in the reduced game Motivated by the discussion above, let us
introduce a few notations that are useful for analyzing the reduced game after the top
coalition sequence has been removed. Let R ≡ (F ∪ W )\T denote the players who are
not in the top coalition sequence, and let MR denote the set of stage-game matchings
that ensure the top coalition sequence is matched together:

MR ≡ {
m ∈M :m(f̂ ) = Ŵ for all (f̂ , Ŵ ) ∈ T

}
.

Let M◦
R denote the stage-game matchings in MR that are acceptable to all workers. Re-

call that for each stage-game matching m, firm f can form feasible coalitional devia-
tions with workers inDf (m) ≡m(f ) ∪ {w ∈ W : f �w m(f )}. For every firm f ∈ F ∩R, its
reduced-game minmax is then

uRf ≡ min
m∈M◦

R
max

W⊆Df (m), |W |≤qf
uf (W ). (2)

Notice that for every firm f ∈ F ∩R, its reduced-game minmax is higher than the value
produced from (1), since the minimization is taken over a more restricted set of stage-
game recommendations. Finally, let �∗ ≡ {λ ∈ 
(M◦

R ) : uf (λ)> uRf for all f ∈ F ∩R} de-
note the randomizations overM◦

R that secure each firm strictly higher than its reduced-
game minmax.

In contrast to Theorem 1, Theorem 2 shows that history dependence can be used
to change the matches obtained by players outside of the top coalition sequence: ev-
ery random matching in �∗ can be sustained on-path in a stationary manner in a self-
enforcing matching process.

Theorem 2. For every λ ∈ �∗, there is a δ such that for every δ ∈ (δ, 1), there exists a
self-enforcing matching process that randomizes according to λ in every period.

The first step of the proof is to show that firms’ payoffs in the reduced game always
satisfy the non-equivalent utilities (NEU) condition: no firm’s payoff can be a positive
affine transformation of another (Abreu, Dutta, and Smith (1994)). The proof then uses
this condition to construct player-specific punishments to deter deviations. Given these
punishments, the final step adapts the construction from Fudenberg and Maskin (1986)
to show that the payoff profile corresponding to any λ ∈ �∗ can be sustained in a self-
enforcing matching process when firms are patient. The complete proof can be found in
the Supplementary Appendix, available in a supplementary file on the journal website,
https://econtheory.org/supp/4898/supplement.pdf.

3. Large-market analysis

We see in Section 2 that in repeated matching markets, firms in the top coalition se-
quence are untouchable, while the others can be motivated through history depen-
dence. But how large is the aggregate impact of these untouchable firms relative to those
that can be motivated dynamically? The goal of this section is to quantify asymptotically
the relative size of these two kinds of firms. To do this, I build on the repeated matching

https://econtheory.org/supp/4898/supplement.pdf
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model introduced in Section 2, but augment it with randomly drawn workers and focus
on large-market analysis. Section 3.1 introduces this setup; Section 3.2 characterizes the
large-market asymptotics in this environment.

3.1 The setup

I consider a sequence of market sizes n, letting n go to infinity. In a market of size n, the
stage game consists of n firms Fn each with a hiring quota q,10 and workers Wn where
|Wn| = �βnq� with β> 0. LetMn denote the set of stage-game matchings among Fn and
Wn.

I use the finite-tier random preference model to capture positive preference corre-
lations that arise from quality differentiation in the market.11 For every n, firms can be
partitioned into K quality classes Fn = {F1

n , F2
n , � � � , FKn }. Every worker prefers a firm

from a higher quality class to those from a lower quality class, but each worker’s pref-
erence ranking over firms within the same quality class Fkn is drawn uniformly from all
permutations of Fkn . Let πn denote a realization of worker preferences that are compat-
ible with this restriction. I assume that the proportion of tier-k firms, |Fkn |/n, converges
to xk ≥ 0 for 1 ≤ k≤K.

Similarly, workers can be partitioned into L quality classes Wn = {W1
n , W2

n , � � � , WL
n }.

When a firm f matches with a worker w ∈ W l
n, the firm receives

ũf (w) = V (Cl, ζf ,w ),

whereCl is the common value shared by all workers in W l
n satisfying Cl > Cl′ for all l < l′,

and ζf ,w is the idiosyncratic match quality between f and w. I assume that the quality
component for each tier, Cl, is constant over time, while the idiosyncratic components
ζf ,w are drawn independently for every worker in each cohort from the uniform distri-
bution over [0, 1]. The function V (·, ·) : R2+ → R+ is continuous and strictly increasing
in both arguments, and satisfies V (Cl, 0) > V (Cl′ , 1) for all l < l′ (so there is no overlap
between tiers). Firms have additive utilities for each job opening, ũf (W ) =∑

w∈W ũf (w),
and derive zero utility from unfilled positions. Let ζn = {ζf ,w}f∈Fn,w∈Wn denote a realiza-
tion of the matrix of idiosyncratic match qualities. I assume that the proportion of tier-l
workers, |W l

n|/|Wn|, converges to yl ≥ 0 for 1 ≤ l ≤L.
The timing in each period is as follows. First, a new cohort of workers arrives,

and preferences πn and ζn are realized; the public randomization ω ∈ � is then real-
ized; based on the realization of (πn, ζn,ω), a stage-game matching is recommended
for Fn and Wn; players then decide whether to deviate from this recommendation,
which determines the outcome of the stage game. I will refer to the realization of
sn = (πn, ζn,ω) ∈ Sn together as a state. The notions of ex ante and ex post histories,
introduced in Section 2, are modified accordingly with sn replacing ω.

10The assumption that each firm has an identical quota is only for convenience. The same results con-
tinue to hold if each firm has a different quota.

11See, for example, Ashlagi, Kanoria, and Leshno (2017) for an ordinal version of the multiple-tiered
preferences, and Che and Tercieux (2019) for a cardinal parameterization of this class of preferences. See
also Lee (2016) for a different way to model preference correlation without tiers.
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3.2 Which firms are untouchable?

In repeated matching markets, we say a firm is untouchable if it must match with the
same set of workers at every history of the market regardless of the patience level. In the
current section, since workers are drawn randomly every period, it is impossible for any
firm to always match with the same workers. Instead, I say a firm is untouchable in large
matching markets if at every fixed patience level, the firm’s ex ante stage-game payoffs
across all histories can be bounded by an arbitrarily small interval as market size grows
large.

Indeed, with sufficient patience, the range of payoffs that can be sustained for the
vast majority of firms is nondegenerate even as the market size grows to infinity. The
only untouchable firms, should they exist, are elite firms that make up at most a vanish-
ingly small fraction of the market.

Specifically, I say that the best class of firms F1
n is an elite class if the number of firms

it contains is vanishing relative to the best class of workers.

Definition 3. The class of firms F1
n is an elite quality class if |F1

n |/|W1
n | → 0 as n→ ∞.

A firm in f ∈ F1
n dominates the firms in all other lower-quality classes, so workers can

possibly only rank other firms in F1
n higher than f . If F1

n is also an elite firm class, then
the number of firms that can be considered better than f by any worker becomes van-
ishingly small relative to the workers in W1

n . As the market size increases, an increasingly
large number of workers in W1

n will rank f as their top choice, so each elite firm becomes
“over-demanded” in large markets. However, note that elite firms may not necessarily
exist: if limn→∞ F1

n/n > 0, then no firms in the market would qualify as elite firms.
Theorem 3 shows that at every fixed patience level, when the market size is large, the

elite firms must obtain almost the maximum possible payoff at every history.

Theorem 3. Suppose F1
n is an elite firm class; then for every discount factor 0 < δ < 1

and every ε > 0, there exists N such that for all n ≥N , the ex ante stage-game payoffs of
every self-enforcing matching process μ satisfies

E
[
uf
(
μ(h, sn )

)]
> qV (C1, 1) − ε

for every f ∈ F1
n and every ex ante history h, where the expectation is taken with respect to

the realization of state sn.

The proof of Theorem 3 can be found in Appendix A.3. To understand the intu-
ition, note that an elite firm f only faces competition from other elite firms. As market
size grows large, elite firms become rare relative to W1

n , which makes these firms over-
demanded. As a result, they are able to hire workers who are close to the top of their
preference ranking no matter what, which guarantees a high continuation value. This
future payoff guarantee increases with the market size and eventually makes it impossi-
ble to motivate f to accept a low (expected) stage-game payoff in the current period.

For concreteness, consider a one-to-one matching market with two firm classes F1
n

and F2
n and only one worker class Wn. Firm classes satisfy |F1

n | =
√
n and |F2

n | = n− √
n,
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so F1
n is an elite class. Workers Wn satisfy |Wn| = n, so there is an equal number of

firms and workers. Suppose that firms’ payoffs from matching with each worker are
drawn from n independent and identically distributed (i.i.d.) uniform random vari-
ables on [0, 1]. Now, in the worst-case scenario, an elite firm f can secure a worker
who ranks

√
n out of the total n workers on its preference list. In other words, in each

period f is guaranteed a payoff equal to the (n − √
n + 1)th order static among n i.i.d.

uniform random variables on [0, 1]. This payoff guarantee yields an expected payoff
of (n − √

n + 1)/(n + 1), which converges to 1 as n → ∞. Since δ is fixed, this payoff
guarantee eliminates the possibility of dynamic enforcement as n→ ∞.

Note that Theorem 3 is not a folk theorem: instead of taking patience δ to 1, I con-
sider an arbitrary fixed δ while taking the market size n to infinity. A constant discount
factor creates an important driving force for Theorem 3, as it limits the impact of con-
tinuation payoffs compared to stage-game payoffs. On the other hand, for each fixed
market size n and ε > 0, it is possible to find a sufficiently high δ so that elite firms are
willing to accept expected stage-game payoffs that are lower than qV (C1, 1) − ε. What
Theorem 3 does highlight is that for elite firms, dynamic enforcement boils down to a
race between their patience versus how much they are over-demanded. In other words,
for elite firms, the minimum δ required for dynamic enforcement increases with market
size n. This contrasts with Theorem 4 below, which will show that for non-elite firms,
the possibility of dynamic enforcement is not diminished by increases in market size.

Although Theorem 3 highlights the limits of dynamic enforcement, it is worth re-
membering that elite firms, by definition, only make up a vanishing fraction of the mar-
ket, so their impact is negligible in large markets. The next result, Theorem 4, confirms
that as long as a firm belongs to a quality class that makes up a nonvanishing fraction of
the market, then the range of sustainable payoffs for this firm will be nondegenerate. Im-
portantly, the affirmative message of Theorem 4 is not the result of a race between δ and
N : Theorem 4 is valid especially when both δ andN are large, and, perhaps surprisingly,
this result also applies to firms in F1

n .

Theorem 4. Suppose limn→∞ |Fkn |/n > 0 for some 1 ≤ k ≤ K. There exists a discount
factor 0< δ < 1, market size N ≥ 0, and payoff interval [v, v̂] with v < v̂, such that for all
discount factors δ > δ, market sizes n > N , and payoff profile vn ∈ [v, v̂]F

k
n , there exists a

self-enforcement matching process μ∗
n that satisfies Uf (μ∗

n ) = vnf for all f ∈ Fkn .

The proof of Theorem 4 builds on results from both the large-market matching liter-
ature and the repeated games literature. In what follows, I briefly discuss the intuition,
leaving the formal arguments to Appendix A.4.

Let us call a firm quality class Fkn occupied if the hiring capacities at quality classes
that are better than Fkn do not absorb all the workers in the market; that is,

lim
n→∞

k−1∑
i=1

∣∣F in∣∣
|Wn| < 1.
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Otherwise, we say that the firm quality class Fkn is vacant. Below, I discuss how the claim
is established for occupied firms. The claim for vacant firms follows by constructing
self-enforcing matching processes where the occupied firms hire less than what their
capacities allow, and the excess workers are allocated to vacant firms to increase their
payoffs.

In large matching markets, triggering with static stable matchings is not enough
to deter firm deviations: It is well known that as the market size grows large, firms
may obtain efficient payoffs from even the worst stable matching (Pittel (1989), Lee
(2016), Ashlagi, Kanoria, and Leshno (2017)), so they cannot serve as effective deter-
rents. Therefore, the first step in proving Theorem 4 is to find a “punishment matching”
that (i) reduces the deviating firm’s expected payoff even when market size is large, and
(ii) makes sure that no worker is willing to block this punishment with the deviating
firm. Such matchings essentially play the role of minmax action profiles in standard re-
peated games. I show that the stage-game matchings produced by certain variants of
the worker-proposing serial dictatorship satisfy both requirements.

While the worker-proposing serial dictatorship establishes the payoff lower bound v,
the upper bound v̂ is achieved by the firm-proposing random serial dictatorship. I build
on existing results from Che and Tercieux (2018) to show that the gap between v̂ and
v is nonvanishing as the market size grows to infinity. Finally, I use the classical ideas
from Fudenberg and Maskin (1986) to construct self-enforcing matching processes that
sustain payoffs between v and v̂.

Section 3.3 below provides a detailed illustration of these serial dictatorship match-
ing algorithms in the example of a one-to-one matching market; it also illustrates how
randomizations over stage-game matchings can be used on-path to generate the correct
target payoff for self-enforcing matching processes.

3.3 An example for one-to-one matching

Theorem 3 and Theorem 4 show that elite firms, while untouchable, have no real impact
on aggregate allocations. The goal of this example is to provide insights into the scope
of the sustainable payoffs for non-elite firms. To this end, we study a simple setting with
only one class of firms Fn and one class of workers Wn. Note that in this case Fn is not
an elite class since |Fn|/n= 1. Matching is one-to-one, and there are an equal number
of firms and workers (so q= β= 1). For tractability, we will also assume that the value of
a worker to a firm is uniformly distributed on [0, 1] and vice versa.

For each discount factor δ and market size n, let Eδ,n denote the set of (firms’) payoff
profiles that can be sustained by self-enforcing matching processes. In what follows, I
first study the set Eδ,n under a fixed market size n while letting δ→ 1. I then provide
bounds on the firms’ minmax payoff, and use these bounds to characterize Eδ,n when
both n→ ∞ and δ→ 1.

The market of fixed size n For each fixed market size n, I first construct a set of payoff
profiles that can be sustained by self-enforcing matching processes with patient firms.
As we shall see later, this set will be crucial to characterizing the behavior of Eδ,n in large
markets.
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Let m̂n be the matching produced by the firm-proposing random serial dictatorship.
By symmetry, all firms obtain the same payoff from m̂n, so we will denote ûn ≡ uf (m̂n ) for
all f ∈ Fn. For each F ⊆ Fn, let m̂−F

n denote the matching that is identical to m̂n, except
that all the firms in F and their workers are unmatched from each other (so m̂−F

n (f ) = ∅
for all f ∈ F). Firms’ payoff profiles from these matchings satisfy {u(m̂−F

n ) : F ⊆ Fn} =
{0, ûn}n, so the payoff profiles generated by {m̂−F

n : F ⊆ Fn} span all the vertices of an
n-dimensional cube. It follows that the randomizations over {m̂−F

n : F ⊆ Fn} span the
entire n-dimensional cube; in other words,{

u(λ) : λ ∈ 
{m̂−F
n : F ⊆ Fn

}}= [0, ûn]n.

So for each market size n, the set of feasible stage-game payoff profiles is a superset of
[0, ûn]n.

Recall that for each firm f , its stage-game minmax payoff is

un = E
[

min
m∈M◦

n

max
w∈Df (m)

uf (w)
]

,

where M◦
n is the set of stage-game recommendations that are acceptable to all workers;

Df (m) ≡m(f )∪ {w ∈ Wn : f �w m(w)} are the workers who are either already working for
f or can be poached by f ; last, the expectation is taken over all preference realizations.

The following result can be proved using standard constructions in repeated games
with perfect monitoring (see, for example, Fudenberg and Maskin (1986) and Fuden-
berg, Kreps, and Maskin (1990)).

Proposition 1. For each fixed n, (un, ûn]n ⊆ lim infδ→1 Eδ,n ⊆ lim supδ→1 Eδ,n ⊆ (un, 1]n.

In light of Proposition 1, the set of sustainable payoffs in large markets depends cru-
cially on the behavior of un and ûn when n→ ∞. Theorem 1 in Che and Tercieux (2018)
implies that

ûn → 1 as n→ ∞.

Although the precise value of the minmax payoff un is difficult to compute, I provide
bounds on its value by calculating firms’ payoffs from two stage-game matchings.

To establish an upper bound for un, note that the “max” operation in the definition of
un implies that to reduce f ’s payoff, it is without loss to focus on stage-game matchings
that leave f with no feasible and profitable deviations; the “min” operation then selects
the worst recommendation for f among these matchings. The upper bound is obtained
by constructing a stage-game matching that leaves f with no feasible and profitable de-
viations, even though this particular matching may not be the worst possible for f .

As for the lower bound for un, note that when f contemplates a deviation in the max
operation, the only way to credibly remove a worker from f ’s choice set Df (·) is to as-
sign her to a firm that she prefers over f . However, this is constrained by the capacities
available at other firms. We can, therefore, obtain a lower bound for un by considering a
fictitious matching where all other firms face no capacity constraints, so the recommen-
dation in the min operation can remove all workers from f ’s choice set, except for those
who rank f as their first choice.
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An upper bound for minmax payoff To obtain an upper bound for the minmax value
un, let us consider the following algorithm designed to punish an arbitrary firm f ; we

will usemfn to denote the stage-game matching produced by this algorithm.
The algorithm is a variant of the worker-proposing serial dictatorship. It first as-

signs priorities to workers according to f ’s preference ranking and then runs the worker-
proposing serial dictatorship based on these priorities. Note that as workers propose
and exit the market with their matched firms, the algorithm moves down f ’s preference
list. How high f ranks its matched worker therefore boils down to how early it is picked
by a worker.

From the workers’ perspective, a new firm is sampled each round without replace-
ment. Since workers’ preferences for firms are uniformly random, the number of draws
it takes for f to be sampled is uniformly distributed from 1 to n. Note that if f is sampled
at the ith draw, then f obtains the (n + 1 − i)th order statistic among n i.i.d. uniform
random variables over [0, 1]; in particular, i is itself uniformly distributed over {1, � � � , n}.
It is well known that the expected value of this (n+ 1 − i)th order statistic is n+1−i

n+1 , so the
expected payoff of firm f is

E
[
uf
(
m
f
n

)]= 1
n(n+ 1)

(1 + 2 + · · · + n) = 1
2

.

Moreover, f can find no feasible and profitable deviations fromm
f
n . To see why, note

that there are two possibilities for a worker who did not end up matching with f in mfn :

(i) she had higher priority than mfn(f ) and is, therefore, more desirable to f than mfn(f ),
but left the market with a firm that is more desirable to her than f , or (ii) she had lower
priority than mfn(f ), so she is less desirable to f than mfn(f ). In either case, f is unable

to find a better worker who is willing to replacemfn(f ). This implies that uf (m
f
n ) ≥ uf (w)

for all w ∈Df (m
f
n ), and as a result we have

un = E
[

min
m∈M◦

n

max
w∈Df (m)

uf (w)
]

≤ E
[

max
w∈Df (m

f
n )
uf (w)

]
= E

[
uf
(
m
f
n

)]= 1
2

.

In summary, we have the following result that provides an upper bound for un.

Proposition 2. The minmax payoff un satisfies un ≤ E[uf (m
f
n )] = 1

2 for all n.

A lower bound for minmax payoff To obtain a lower bound on the minmax value un,
take an arbitrary firm f , and note that when f contemplates a deviation from any stage-
game matchingm ∈M◦

n , it can always attract the workers who rank f as their first choice.

Let W̃ f
n ≡ {w ∈ Wn : f �w f ′ for all f ′ ∈ Fn} denote these workers; then we have W̃ f

n ⊆
Df (m) for allm ∈M◦

n . It follows that

un = E
[

min
m∈M◦

n

max
w∈Df (m)

uf (w)
]

≥ E
[

max
w∈W̃ f

n

uf (w)
]

.
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The value E[max
w∈W̃ f

n
uf (w)] can be computed through a fictitious stage-game

matching12 ψf
n

produced by the following variant of the worker-proposing serial dic-

tatorship. The algorithm is identical to the one that produced m
f
n , except that now

all firms other than f have their capacities enlarged to q = ∞. In particular, the algo-
rithm assigns priorities to workers according to f ’s preference ranking and then runs
the worker-proposing serial dictatorship based on these priorities. Just as in the algo-

rithm that produced mfn , how high f ranks its matched worker depends on how early it

is picked by a worker. The difference from m
f
n is that from the workers’ perspective, all

firms other than f are now being sampled with replacement due to their infinite capaci-
ties, so f will only be sampled by a worker who ranks it as her first choice. Therefore, we
have

un ≥ E
[

max
w∈W̃ f

n

uf (w)
]

= E
[
uf
(
ψf
n

)]
. (3)

Since the workers’ preferences for firms are uniformly random, the number of draws
it takes for f to be sampled, which I denote by i, follows a truncated geometric dis-
tribution with success rate 1/n. In particular, i is a random variable with support
{1, � � � , n} ∪ {∞}, where ∞ represents the event that f is never sampled. Its probability,
mass function is given by

P(i= l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
n

(
1 − 1

n

)l−1

for l= 1, � � � , n(
1 − 1

n

)n
for l= ∞.

In addition, if f is sampled at the ith draw, then it obtains the (n+ 1 − i)th order statistic
among n i.i.d. uniform random variables over [0, 1], so firm f ’s expected payoff from ψf

n
satisfies

E
[
uf
(
ψf
n

)]=
n∑
i=1

1
n

(
1 − 1

n

)i−1(n+ 1 − i
n+ 1

)
+ 0

(
1 − 1

n

)n
.

It is well known that as n→ ∞, the distribution of i
n+1 converges to a truncated expo-

nential distribution with arrival rate 1, so the expression above can be approximated
by

E
[
uf
(
ψf
n

)]→
∫ 1

0
e−x(1 − x)dx= 1

e
as n→ ∞. (4)

Combining (3) and (4), we have the following result that provides a lower bound on un.

Proposition 3. The minmax payoff un satisfies un ≥ E[uf (ψf
n

)] for all n. Furthermore,

E[uf (ψf
n

)] → 1
e as n→ ∞.

12We emphasize the word “fictitious” because, strictly speaking, ψf
n

does not satisfy the definition of
stage-game matching as it violates capacity constraints.
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Figure 5. An illustration of Proposition 4 when F = {f , f ′}. The limit payoff sets are supersets
of the blue square (without borders), and subsets of the red square (with borders).

Limit in large markets The following result is a direct consequence of Propositions 1,
2 and 3. In particular, for every fixed and finite subset of firms F , Proposition 4 charac-
terizes the joint payoffs among firms in F as firms become patient and the market size
grows to infinity.

Proposition 4. Let F ⊆ Fn be a finite set of firms, and let EFδ,n denote the projection of
Eδ,n onto the payoff space of F . Then we have13

(
1
2

, 1
)F

⊆ lim inf
n→∞,δ→1

EFδ,n ⊆ lim sup
n→∞,δ→1

EFδ,n ⊆
[

1
e

, 1
]F

.

See Figure 5 for an illustration of the inner and outer bounds of the limit payoff sets.
Note that the interval [ 1

e , 1]F is closed on the left since it is possible that un <
1
e for all

market size n, which means { 1
e }F is a sustainable payoff profile for all n as long as δ is

sufficiently high.
The next result, which is a special case of Theorem 4, speaks directly to the payoff

space of all firms in large markets.

Proposition 5. For every payoff interval [v, v̂] ⊆ ( 1
2 , 1), there exist a discount factor 0<

δ < 1 and market size N ≥ 0 such that for all δ > δ, n > N , and every payoff profile vn ∈
[v, v̂]n, there exists a self-enforcing matching process μ∗

n that satisfies Uf (μ∗
n ) = vf for all

f ∈ Fn.

Note that Proposition 5 does not imply the existence of δ and N such that all payoff
profiles in ( 1

2 , 1)n are sustainable for δ > δ and n > N . To see why, suppose that the

13The limits in Proposition 4 are defined as

lim inf
n→∞,δ→1

EFδ,n ≡
⋃

N≥1,δ>0

⋂
n≥N ,δ≥δ

EFδ,n and lim sup
n→∞,δ→1

EFδ,n ≡
⋂

N≥1,δ>0

⋃
n≥N ,δ≥δ

EFδ,n.
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minmax payoff is un = 1
2 (so the upper bound derived in Proposition 2 is tight), and

consider the payoff profile ṽn = ( 3
4 , 5

8 , � � � , 1
2 + 1

4n ) ∈ ( 1
2 , 1)n for all n. There may not be

a pair of δ and N such that ṽn is sustainable for all δ > δ and n > N . The problem is
that the nth firm’s payoff 1

2 + 1
4n → 1

2 as n→ ∞, and the δ required to sustain a payoff
may increase as it approaches the minmax, in which case the lower bound δ cannot be
chosen independently of the market size n.

4. Conclusion

This paper provides a framework and solution concept for studying stability in re-
peated matching markets that combines elements from repeated noncooperative games
with the cooperative stability notion for two-sided matching markets. While history-
dependent play can be used to alter the matches obtained by some firms, some other
firms are immune to such influences due to the unique payoff structure in matching en-
vironments. To understand the impact of such firms, I consider large matching markets
with correlated preferences. I find that in large matching markets, these elite firms make
up at most a negligible fraction of the market.

It is useful to compare the results in this paper with the rural hospital theorem (Roth
(1986)), which states that any firm that does not fill its quota at some static stable match-
ing is assigned precisely the same set of workers at every stable matching. In my setting,
when patience is 0, both the top-coalition firms and “rural firms” (i.e., firms that do
not fill their quotas at some static stable matching) retain the same matched workers
across all static stable matchings. However, this happens due to different reasons for
rural firms and top-coalition firms. The rural firms have this feature because they are
under-demanded, and they (by definition) have vacancies; the top-coalition firms have
this feature because they are over-demanded and typically have no vacancies in stable
matchings unless they find fewer workers acceptable than their hiring quotas. When
patience goes to 1, only the top-coalition firms’ workers must remain unchanged re-
gardless of the patience level; by contrast, we are able to change all other firms’ workers
no matter whether they are rural firms in the static setting or not.

An interesting open question for future research is in understanding whether match-
ing processes like simple exclusion can be approximately self-enforcing sense in large
matching markets.

Appendix

A.1 Preliminary lemmas

Proof of Lemma 1. At each history h, firm f faces a decision regarding whether and
how to deviate with workers who are currently in the market. Suppose firm f has a
deviation plan df from matching process μ that is both feasible and profitable. Since
stage-game payoffs are bounded for firm f and there is discounting, the standard one-
shot deviation principle for individual decision making (Blackwell (1965)) implies that
there exists a history ĥ ∈ H such that

(1 − δ)ũf
(
df (ĥ)

)+ δUf
(
ĥ,
[
μ(ĥ),

(
f , df (ĥ)

)]|μ)>Uf (ĥ|μ).
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Consider the deviation plan dof that satisfies dof (h) = df (h) if h = ĥ and dof (h) = μ(f |h)
otherwise. The plan dof is a profitable one-shot deviation plan for firm f .

Lemma 2 shows that if a firm deviates from the recommended matching with a
group of workers, then this deviating firm can be uniquely identified by comparing the
resulting matching against the recommended matching.

Lemma 2. Letm be a static matching. If [m, (f ,W )] = [m, (f ′,W ′ )] 
=m, then f = f ′.

Proof. Letm≡ [m, (f ,W )] and m̂≡ [m, (f ′,W ′ )]. Suppose by contradiction that f 
= f ′,
but m̂=m 
=m. There are three cases to consider:

(i) IfW ⊆m(f ), thenm(f ′ ) =m(f ′ ) 
= m̂(f ′ ), som 
= m̂, a contradiction.

(ii) IfW �m(f ), thenm(f ) �m(f ), but m̂(f ) ⊆m(f ), som 
= m̂, a contradiction.

Therefore, [m, (f ,W )] = [m, (f ′,W ′ )] 
=m implies f = f ′.

A.2 Proof of Theorem 1

Suppose T = {(f̂k, Ŵk )}Kk=1. In both one-shot and repeated matching environments, the
proof proceeds by induction.

Static stable matching In every static stable matching, f̂1 and Ŵ1 must be matched to-
gether since they are mutual favorites. Suppose f̂i and Ŵi must be matched together
in all stable matchings for 1 ≤ i ≤ k − 1, but suppose by contradiction that there is a
stable matchingmwhere f̂k and Ŵk are not matched together. By the induction hypoth-
esis, m(f̂k ) ⊆ W\⋃k−1

i=1 Ŵi, so ũf̂ (Ŵk ) > ũf̂ (m(f̂k )), and m(w) ∈ F\{f̂i : 1 ≤ i ≤ k− 1}, so

f̂k �w m(w) for all w ∈ Ŵk\m(f̂k ). This is a contradiction to m being a stable match-
ing, since f̂k and Ŵk find it profitable to jointly deviate. So f̂k and Ŵk must be matched
together in all stable matchings. This completes the induction step.

Self-enforcing matching process The proof again proceeds by induction. First, I prove
that in every self-enforcing matching process μ, μ(f̂1|h) = Ŵ1 for all h ∈ HF . Suppose by
contradiction that μ(f̂1|h̃) 
= Ŵ1 at some h̃ ∈ H. Consider the deviation plan d1 defined
by d1(h) = Ŵ1 for all h ∈ H. Plan d1 is clearly feasible for f̂1 since f̂1 is every worker’s
favorite firm. In addition,

Uf̂1
(h̃|μ) = (1 − δ)ũf̂1

(
μ(f̂1|h̃)

)+ δUf̂1

(
h̃, μ(h̃)|μ)

< (1 − δ)ũf̂1
(Ŵ1 ) + δuf̂1

(Ŵ1 ) =Uf̂1

(
h̃|[μ, (f̂1, d1 )

])
,

so d1 is also profitable for f̂1. This is a contradiction to μ being self-enforcing. So
μ(f̂1|h) = Ŵ1 for all h ∈ H.

Suppose it has been shown that in every self-enforcing matching processμ,μ(f̂i|h) =
Ŵi for i = 1, � � � , k− 1 at every ex post history h ∈ H, and suppose by contradiction that
there is a self-enforcing matching process μ such that μ(f̂k|h̃) 
= Ŵk for some h̃ ∈ H. By
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the inductive hypothesis, μ(f̂k|h) ⊆ W\⋃k−1
i=1 Ŵi at all h ∈ H, so ũf̂k(μ(f̂k|h̃))< ũf̂k(Ŵk ),

and Uf̂k(h̃|μ) ≤ ũf̂k(Ŵk ).

Consider the deviation plan dk defined by dk(h) = Ŵk for all h ∈ H. Plan dk is feasible
for f̂k since for every worker in W\⋃k−1

i=1 Ŵi, f̂k is the best firm among F\{fi}
k−1
i=1 . In

addition

Uf̂k(h̃|μ) = (1 − δ)ũf̂k
(
μ(f̂k|h̃)

)+ δUf̂k
(
h̃, μ(h̃)|μ)

< (1 − δ)ũf̂k(Ŵk ) + δũf̂k(Ŵk ) =Uf̂k
(
h̃|[μ, (f̂k, d)

])
,

so dk is both feasible and profitable, contradicting the assumption that μ is self-
enforcing. So in every self-enforcing matching process μ, μ(f̂k|h) = Ŵk at every ex post
history h ∈ H. This completes the induction.

A.3 Proof of Theorem 3

A.3.1 Preliminaries I first establish a few preliminary results so as to prove Theorem 3.
Lemma 3 proves that when market size is sufficiently large, an elite firm f is very likely
able to fill its positions with workers who (i) rank f as their favorite firm and (ii) give f
close to the highest possible stage-game utility.

For each firm f ∈ F1
n and r > 0, let Ŵ 1

n (f , ε) ≡ {w ∈ W1
n : f �w f ′ for all f ′ ∈ F1

n and
uf (w)> V (C1, 1) − r}.

Lemma 3. Suppose |F1
n |/|W1

n | → 0. In the stage game, for every r > 0, there exists N such
that P(|Ŵ (f , r, k)|> q)> 1 − r for all n >N and every f ∈ F1

n .

Proof. Let ζ ∈ [0, 1) be a number such that V (C1, ζ )> V (C1, 1) − r. Define W̃ 1
n (f , r ) ≡

{w ∈ W1
n : f �w f ′ for all f ′ ∈ F1

n and ζf ,w > ζ}, so W̃ 1
n (f , r ) ⊆ Ŵ 1

n (f , r ).
From the perspective of firm f ∈ F1

n , every worker w ∈ W1
n satisfies ζf ,w > ζ with

probability 1 − ζ > 0. Furthermore, a worker is equally likely to rank any firm within F1
n

as her top choice within F1
n . Let Yw(f , r ) be the Bernoulli random variable that takes

value 1 if w ∈ W̃ 1
n (f , r ) and 0 otherwise. Let φ ≡ (1 − ζ )/|F1

n |. Note that the random
variables {Yw(f , r ) : w ∈ W1

n } are independently and identically distributed with rate φ,
and as a result, |W̃ 1

n (f , r )| = ∑
w∈Wn

Yw(f , r ) follows binomial distribution B(|W1
n |, φ).

By the Chernoff bound,

P
(∣∣W̃ 1

n (f , r )
∣∣≤ q)≤ min

t>0
etq

∏
w∈W1

n

E
[
e−tYw(f ,r )].

Since E[e−tYw(f ,r )] = 1 +φ(e−t − 1) ≤ eφ(e−t−1) for all w ∈ W1
n , we have

P
(∣∣W̃ 1

n (f , r )
∣∣≤ q)≤ min

t>0
etq · e|W1

n |φ(e−t−1) ≤ eq · e|W1
n |φ(e−1−1),

where the second inequality above follows from setting t = 1. Since |W1
n |φ = (1 −

ζ )|W1
n |/|F1

n | → ∞ and e−1 − 1 < 0, we have P(|W̃ 1
n (f , r )| ≤ q) → 0 as n → ∞. Finally,

since W̃ 1
n (f , r ) ⊆ Ŵ 1

n (f , r ), it follows that P(|Ŵ 1
n (f , r )| ≤ q) → 0 as n→ ∞.
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Lemma 4 shows that an elite firm can secure a high continuation value in large mar-
kets.

Lemma 4. Suppose |F1
n |/|W1

n | → 0. For every r > 0 and discount factor 0< δ< 1, there ex-
istsN such that for all n >N , the continuation value of every f ∈ F1

n in every self-enforcing
matching process μ satisfies Uf (h|μ)> qV (C1, 1) − r at every ex ante history h.

Proof. Suppose that the stage game satisfies P(|Ŵ 1
n (f , r̃ )|> q)> 1 − r̃ for some r̃, and

consider the following deviation plan df by an arbitrary firm f ∈ F1
n : at every ex post

history, given the realized preferences in the current stage game,

df (h) = arg max
W⊆Ŵ 1

n (f ,̃r ), |W |≤q

∑
w∈W

uf (w).

I first show that with sufficiently small r̃, firm f can guarantee itself a strictly higher
payoff than qV (C1, 1) − r by using df to deviate from any matching process. The claim
of the lemma then follows by invoking Lemma 3.

Fix an arbitrary matching process μ. Note first that since every worker in Ŵ 1
n (f , r̃ )

ranks f as their favorite firm, df is a feasible deviation plan for f by construction.
To see that df guarantees qV (C1, 1) − r for sufficiently small r̃, let T be large enough

so that δTV (C1, 1)q < r/2. At every ex ante history h, firm f ’s continuation payoff from
the manipulated matching process [μ, (f , df )] satisfies

Uf
(
h|[μ, (f , df )

])≥ (
1 − δT ){(1 − r̃ )T q

(
V (C1, 1) − r̃)+ [

1 − (1 − r̃ )T
]
0
}+ δT · 0

= (
1 − δT )(1 − r̃ )T q

(
V (C1, 1) − r̃). (5)

Inequality (5) above follows from decomposing f ’s continuation payoff between those
accrued within the first T and those after period T ; for the first T periods, the expected
payoff is further decomposed by whether |Ŵ 1

n (f , r̃ )| ≥ q is satisfied all the way through
this phase or not.

Since (1 − δT )(1 − r̃ )T q(V (C1, 1) − r̃ ) → (1 − δT )qV (C1, 1) as r̃ → 0, we can find r
such that (1 − δT )(1 − r )T q(V (C1, 1) − r )> (1 − δT )qV (C1, 1) − r/2. By Lemma 3, there
existsN such that P(|Ŵ 1

n (f , r )|> q)> 1 − r for all n >N . So for all n >N , we have

Uf
(
h|[μ, (f , df )

])
>
(
1 − δT )qV (C1, 1) − r/2

= (
1 − δT )qV (C1, 1) + δTqV (C1, 1) − r/2 − δTqV (C1, 1)

>
(
1 − δT )qV (C1, 1) + δTqV (C1, 1) − r/2 − r/2

= qV (C1, 1) − r.

Finally, if μ is a self-enforcing matching process, then it must satisfy

Uf (h|μ) ≥Uf
(
h|[μ, (f , df )

])
> qV (C1, 1) − r

at every ex ante history h.



Theoretical Economics 18 (2023) Stability in matching markets 1739

A.3.2 Proof of Theorem 3 By setting r = (1 − δ)ε in Lemma 4, we know there exists N1

such that if n >N1,

Uf (h|μ)> qV (C1, 1) − (1 − δ)ε (6)

for every self-enforcing matching process μ at every ex ante history h.
Let μ be a self-enforcing matching process, and suppose by contradiction that

E
[
uf
(
μ(ĥ, sn )

)]≤ qV (C1, 1) − ε

at some ex ante history ĥ. It follows than that at ĥ, firm f ’s continuation payoff satisfies

Uf (ĥ|μ) ≤ (1 − δ)E
[
uf
(
μ(ĥ, sn )

)]+ δqV (C1, 1)

≤ (1 − δ)
[
qV (C1, 1) − ε]+ δqV (C1, 1)

≤ qV (C1, 1) − (1 − δ)ε,

which is a contradiction to (6).

A.4 Proof of Theorem 4

The proof of Theorem 4 is divided into three parts. The first part, Appendix A.4.1, focuses
on the “submarket” faced by an occupied firm quality class Fkn : this is a matching market
that comprises only Fkn and the workers who these firms would obtain in a static stable
matching. Within this submarket, I show how one can construct stage-game matchings
that reward firms for cooperation, as well as stage-game matchings that can be used
to punish deviating firms. The second part, Appendix A.4.2, returns to the matching
market at large, and uses the insights from submarkets to prove Theorem 4 for occupied
firm quality classes. Finally, Appendix A.4.3, proves Theorem 4 for vacant quality classes.

A.4.1 Submarkets For each 1 ≤ l ≤ L, let QW
n (l) ≡ ∑

l′≤l |W l′
n | denote the number of

workers who are in a quality class no worse than W l
n; similarly, for each 1 ≤ k ≤ K, let

QF
n (k) ≡ q

∑
k′≤k |Fk′

n | denote the number of firm seats that are in a quality class no
worse than Fkn .

I say that a worker quality class W l
n is achievable by firms in quality class Fkn if

lim
n→∞

QW
n (l)

QF
n (k− 1)

≥ 1 and lim
n→∞

QW
n (l− 1)

QF
n (k)

≤ 1.

The first inequality above ensures that not all workers in W l
n can be absorbed by firms

in higher quality classes than Fkn ; the second inequality ensures that not all seats in Fkn
can be filled by workers in higher quality classes than W l

n. Let A(k) ⊆ {1, � � � , L} denote
the set of worker quality classes achievable by firm quality class k.

In the analysis in this section, when market size is sufficiently large, the only rele-
vant workers are those who are in an achievable quality class. I therefore focus on the
submarket that consists of only firms in Fkn and workers in its achievable quality classes.
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Let the numbers α1, α2, � � � , αI ≥ 0 be numbers that satisfy
∑I−1
i=1 αi < 1 and∑I

i=1 αi ≥ 1. Consider a sequence of submarkets: for every n, the firm side is made
up of Fkn , while the worker side consists of

⋃I
i=1 V in, where for each i,

V in ⊆ W i
n and

∣∣V in∣∣∣∣Fkn ∣∣q → αi as n→ ∞.

I treat each seat on the firm side of the market as an individual player who inherits the
preference of its firm. For each seat s, let ũs(·) denote the utility function of the seat,
which is identical to ũf (·) of the firm that it belongs to.

Reward matching Let φ̂n denote the matching resulting from the seat-proposing ran-
dom serial dictatorship in the submarket. Matching φ̂n is played as a reward for the firms
when they comply with capacity reduction. Lemma 6 characterizes the payoff from this
reward. Noting that the matching φ̂n is Pareto efficient, I will make use of the following
result from Che and Tercieux (2018).

Lemma 5 (Che and Tercieux (2018)). As n→ ∞,∑
s

us
(
φ̂n(s)

)
∣∣Fkn ∣∣q p−→

I−1∑
i=1

αiV (Ci, 1) +
(

1 −
I−1∑
i=1

αi

)
V (CI , 1).

Lemma 6 shows that in φ̂n, every firm obtains a randomly assigned common value
from its matched workers, but obtains a close to maximum idiosyncratic component
from each worker.

Lemma 6. For every ε > 0, there existsN such that

E
[
uf (φ̂n )

]
> q

[
I−1∑
i=1

αiV (Ci, 1) +
(

1 −
I−1∑
i=1

αi

)
V (CI , 1)

]
− ε

for all market sizes n >N and every f ∈ Fkn .

Proof. To prove the claim, it suffices to prove that E[us(φ̂n )]>
∑I−1
i=1 αiV (Ci, 1) + (1 −∑I−1

i=1 αi )V (CI , 1) − ε for all n > N and every individual seat s. This is what I will prove
below.

Let

un ≡

∑
s

us
(
φ̂n(s)

)
∣∣Fkn ∣∣q

denote the average realized utilities for individual seats, and let Fn denote the proba-
bility distribution of this random variable un. Let A−

n (ε) ≡ {un ≤∑I−1
i=1 αiV (Ci, 1) + (1 −∑I−1

i=1 αi )V (CI , 1) − 1
2ε} be the event that u is less than the payoff upper bound, and let

A+
n (ε) ≡ {un >

∑I−1
i=1 αiV (Ci, 1) + (1 −∑I−1

i=1 αi )V (CI , 1) − 1
2ε} be its complement.
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Note that by the law of total expectation, for every seat s,

E
[
us(φ̂n )

]=
∫

E
[
us(φ̂n )|un

]
dFn =

∫
A−
n (ε)

E
[
us(φ̂n )|un

]
dFn +

∫
A+
n (ε)

E
[
us(φ̂n )|un

]
dFn.

Since seats are treated symmetrically in a random serial dictatorship, it follows that
E[us(φ̂n )|un] = un. So for every seat s,

E
[
us(φ̂n )

]=
∫
A−
n (ε)

un dFn +
∫
A+
n (ε)

un dFn

≥ P(A−
n (ε)

) · 0 + P(A+
n (ε)

)[I−1∑
i=1

αiV (Ci, 1) +
(

1 −
I−1∑
i=1

αi

)
V (CI , 1) − 1

2
ε

]
.

By Lemma 5, P(A+
n (ε)) → 1 as n→ ∞. As a result, there exists N such that E[us(φ̂n )] ≥∑I−1

i=1 αiV (Ci, 1) + (1 −∑I−1
i=1 αi )V (CI , 1) − ε for all n >N and s ∈ Fkn .

Minmax matching

Definition 4. Given a set of firms F ′, workers W ′, and a firm f ∈ F ′, the punitive
matching for f , φf

n
, is the matching produced by the following procedure:

Step 1. Set S0 = ∅ andG0 = ∅.

Step 2. If either F ′\Sk−1 = ∅ or W ′\Gk−1 = ∅, stop; otherwise, let ŵ be f ’s favorite
worker in W ′\Gk−1 and let f̂ be ŵ’s favorite firm among F ′\Sk−1. Match f̂ and
ŵ, and set Sk = Sk−1 ∪ {f̂ } andGk =Gk−1 ∪ {ŵ}. Go to Step k+ 1.

For a seat s belonging to a firm f , let Rsn denote f ’s ranking of the worker matched to
seat s in the matching φf

n
: that is, Rsn = j if φf

n
(s) is the jth favorite worker according to

the preference of f . The next lemma shows that Rsn is uniformly distributed.

Lemma 7. For every seat s belonging to f and 1 ≤ r ≤ |Fkn |q, P(Rsn = r ) = 1
|Fk
n |q .

Proof. In the procedure in Definition 4, starting from f ’s favorite worker, each worker
takes a turn to pick a seat from the remaining seats. As we move down f ’s preference list,
the first worker to pick seat s will determine Rsn.

We can equivalently think of Rsn as being determined through sampling without re-
placement from an urn that contains a red ball (representing seat s) and (|Fkn |q − 1)
black balls (representing all other seats). Specifically, Rsn is the number of draws it takes
for the red ball to be sampled. Since the red ball is equally likely to be in any position in
the sequence of balls to be drawn, P(Rsn = r ) = 1

|Fk
n |q for 1 ≤ r ≤ |Fkn |q.

Lemma 8 shows that if a firm is excluded from the very top section of its preference
list, then with high probability it obtains a low utility.
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Lemma 8. Fix any 0 < ε < 1 and 0 < γ < ε. For every f ∈ Fkn , let Xf
n denote the event

that, according to f ’s preference, the worst γ|VIn| workers in VIn all satisfy ζf ,w < ε. Then

P(X
f
n ) → 1 as n→ ∞.

Proof. For each f ∈ Fkn , letKfn be the number of workers in VIn such that ζf ,w < ε. I first

prove that P(K
f
n < γ|VIn|) → 0 as n→ ∞.

Since ζf ,w is uniformly distributed over [0, 1], K
f
n follows binomial distribution

B(|VIn|, ε). By Hoeffding’s inequality, for every f ∈ Fkn ,

P
(
K
f
n < γ

∣∣VIn∣∣)≤ 1
2

exp
{
−2

(
ε
∣∣VIn∣∣− γ∣∣VIn∣∣)2∣∣VIn∣∣

}
→ 0

as n→ ∞. The claim of the lemma follows since {K
f
n ≥ γ|VIn|} ⊆Xf

n .

Lemma 9 proves that as market gets large, the payoff f obtains from the punish-
ment algorithm in Definition 4 is bounded away from what it obtains from the reward
matching φ̂n.

Lemma 9. There exists g > 0 andN such that

E
[
uf
(
φf
n

)]
< q

[
I−1∑
i=1

αiV (Ci, 1) +
(

1 −
I−1∑
i=1

αi

)
V (CI , 1)

]
− g

for all f ∈ Fkn and n >N .

Proof. To prove the claim, it suffices to prove that there exists g > 0 and N such that if
n >N , then

E
[
us
(
φf
n

)]
<

I−1∑
i=1

αiV (Ci, 1) +
(

1 −
I−1∑
i=1

αi

)
V (CI , 1) − g

for every firm f ∈ Fkn and seat s belonging to f . This is what I will prove below.
For every f ∈ Fkn , every seat s belonging to f , and 1 ≤ i≤ I, let

Asn(i) ≡
{ ∑
j≤i−1

∣∣Vjn∣∣<Rsn ≤
∑
j≤i

∣∣Vjn∣∣}

denote the event that s is matched to a worker in V in in the matching φf
n

. By Lemma 7,
Rsn is uniformly distributed for every s and f , so P(Asn(i)) is independent of f or s, and I
will write pin ≡ P(Asn(i)) for every 1 ≤ i≤ I.

Fix (
∑I
i=1 αi − 1)/αI < ε < 1 and (

∑I
i=1 αi − 1)/αI < γ < ε.14 Since the function

V (CI , ·) is strictly increasing, there exists gI > 0 such that V (CI , ζ ) < V (CI , 1) − gI for

14Note that αI > 0 and 0< (
∑I
i=1 αi − 1)/αI = 1 − (1 −∑I−1

i=1 αi )/αI < 1. So such ε always exists.
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all ζ < ε. For every seat s belonging to any f ∈Fkn , let

�sn ≡
{
I−1∑
i=1

∣∣V in∣∣+ (1 − γ)
∣∣VIn∣∣≤Rsn ≤

I∑
i=1

∣∣V in∣∣
}

denote the event that s is matched to the γ-tail section of VIn in the matching φf
n

. Again,
by Lemma 7, Rsn is uniformly distributed, so P(�sn ) is independent of f or s. I will write
p�n ≡ P(�sn ).

For each firm f ∈ Fkn , let Xf
n denote the event that, according to any firm f ’s pref-

erence, workers in the γ-tail section of VIn all satisfy V (CI , ζf ,w ) < V (CI , 1) − gI . Since

all firms in Fkn are symmetric, the probability P(X
f
n ) does not depend on f , and I will

simply write pXn ≡ P(X
f
n ).

By the definition of the events �sn and Xf
n , we have, for every f ∈ Fkn and seat s be-

longing to f ,

P
(
us
(
φf
n

)
< V (CI , 1) − gI

∣∣Asn(I )
)≥ P(�sn ∩Xf

n

∣∣Asn(I )
)

= P(�sn ∩Xf
n ∩Asn(I )

)
/P
(
Asn(I )

)
= P(�sn ∩Xf

n

)
/P
(
Asn(I )

)
= [
p�n − P(�sn ∩ (

X
f
n

)c)]
/pIn

≥ [
p�n − (

1 −pXn
)]
/pIn. (7)

Note that the second expression above follows since �sn ⊆Asn(I ).
As n→ ∞, pIn → 1 −∑I−1

i=1 αi > 0 and p�n → 1 −∑I−1
i=1 αi− (1 −γ)αI > 0. Importantly,

these limits are all strictly positive numbers.15 In addition, by Lemma 8, pXn → 1 as
n→ ∞. So inequality (7) implies that there exitsNI such that if n≥NI ,

P
(
us
(
φf
n

)
< V (CI , 1) − gI

∣∣Asn(I )
)≥ p�n

2pIn

for all f ∈ Fkn and seat s belonging to f , and, therefore,

E
(
us
(
φf
n

)∣∣Asn(I )
)
< V (CI , 1) − gI p

�
n

2pIn
. (8)

Meanwhile, for 1 ≤ i≤ I − 1, pin → αi ≥ 0 and

E
(
us
(
φf
n

)∣∣Asn(i)
)≤ V (Ci, 1). (9)

15To see why, note that by our choice of γ, p�n = 1 − ∑I−1
i=1 αi − (1 − γ)αI > 1 − ∑I−1

i=1 αi − [1 −
(
∑I
i=1 αi − 1)/αI ]αI = 0.
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Define g ≡ (1 −∑I−1
i=1 αi )gI

p�n
2pIn

> 0. Combining inequalities (8) and (9), there must

existN such that for all n >N ,

E
(
us
(
φf
n

))=
∑

1≤i≤m
pinE

(
us
(
φf
n

)∣∣Asn(i)
)

<

I−1∑
i=1

αiV (Ci, 1) +
(

1 −
I−1∑
i=1

αi

)
V (CI , 1) − g

for all f ∈ Fkn and seat s belonging to f . This completes the proof.

Finally, Lemma 10 proves that when a firm f is being punished, it cannot find any
profitable deviations with workers.

Lemma 10. For every f ∈ Fkn , no coalition in the form of (f ,W ) can be a profitable devi-
ation from the matching φf

n
.

Proof. Suppose there is a profitable coalition (f ,W ) for some W . Let w ∈ W \φf
n

(f )

be any new worker in W who is not originally matched to f in φf
n

. I will show that

uf (w′ ) > uf (w) for all w′ ∈ φf
n

(f ). This will be a contradiction to (f ,W ) being a prof-
itable coalition, because in this case any new worker in W is worse than the worker in
φf
n

(f ) she replaced. It is then impossible for f to prefer W over φf
n

(f ) since firms’ pref-
erences are responsive.

To this end, first observe that if there existsw′ ∈φf
n

(f ) such that uf (w′ )< uf (w), then

it means that in Step A.4.2 in the punishment algorithm in Definition 4, w chose φf
n

(w)

over f when f still had vacancy (which would later be filled by w′) so φf
n

(w) �w f , and w
does not find this deviation profitable. This is a contradiction. So uf (w′ )> uf (w) for all
w′ ∈φf

n
(f ). This completes the proof.

A.4.2 Proof of Theorem 4 for occupied quality classes Recall that QW
n (l) ≡ ∑

l′≤l |W l′
n |

denotes the number of workers who are in a quality class no worse than W l
n, while

QF
n (k) ≡ q

∑
k′≤k |Fk′

n | denotes the number of firm seats that are in a quality class no
worse than Fkn . Let A(k) = {j + 1, � � � , j + I} be the set of worker quality classes achiev-
able by firms in quality class k. By definition, there existsN0 such that for all n >N0 and
every l /∈ A(k),

eitherQW
n (l)<QF

n (k− 1) or QW
n (l− 1)>QF

n (k). (10)

I focus on market sizes greater than thisN0. By the inequalities in (10), in all the match-
ings defined below, workers in any unachievable quality class by Fkn are either already
matched to firms in a higher quality class or ranked too low to be relevant for Fkn . There-
fore, to analyze the payoff for a firm f ∈ Fkn , it suffices to isolate Fkn and

⋃
l∈A(k) W l

n as if
they are the only firms and workers in the market. For each l ∈ A(k), let

αl ≡ lim
n→∞

{
QW
n (l) − max

{
QW
n (l− 1),QF

n (k− 1)
}

q
∣∣Fkn ∣∣

}
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denote the asymptotic share of seats in Fkn filled by workers in W l
n. Since |Wn| = �βnq�,

we know all αls are finite numbers. Note that they also satisfy
∑I−1
i=1 αj+i < 1 and∑I

i=1 αj+i ≥ 1.

Minmax matching For each f ∈ Fkn , consider the matchingmfn defined by the following
procedure:

Step 1. Let φ<n be a stable matching between
⋃
j<kF

j
n and Wn. Set mfn(f ′ ) = φ<(f ′ )

for every f ′ ∈⋃j<kF
j
n.

Step 2. Let φf
n

be the punitive matching for f among Fkn and Wn\φ<n (
⋃
j<kF

j
n ). Set

m
f
n(f ′ ) =φf

n
(f ′ ) for every f ′ ∈ Fkn .

Step 3. Let φ>n be a stable matching between
⋃
j>kF

j
n and Wn\[φ<n (

⋃
j<kF

j
n ) ∪

φf
n

(Fkn )]. Setmfn(f ′ ) =φ>n (f ′ ) for every f ′ ∈⋃j>kF
j
n.

By Lemma 9, there exists g > 0 and market sizeN1 such that

0 ≤ E
[
uf
(
m
f
n

)]
<

I−1∑
i=1

αj+iV (Cj+i, 1) +
(

1 −
I−1∑
i=1

αj+i

)
V (Cj+I , 1) − 2g (11)

for all f ∈ Fkn and n >N1.

Reward matching Consider the matching m̂n defined by the following procedure:

Step 1. Let φ<n be a stable matching between
⋃
j<kF

j
n and Wn. Set m̂n(f ) =φ<n (f ) for

every f ∈⋃j<kF
j
n.

Step 2. Let φ̂n be the matching resulting from seat-proposing random serial dictator-
ship between Fkn and Wn\φ<n (

⋃
j<kF

j
n ). Set m̂n(f ) = φ̂n(f ) for all f ∈ Fkn .

Step 3. Let φ>n be a stable matching between
⋃
j>kF

j
n and Wn\[φ<n (

⋃
j<kF

j
n ) ∪

φ̂n(Fkn )]. Set m̂n(f ) =φ>n (f ) for every f ∈⋃j>kF
j
n.

By Lemma 6, there exists market sizeN2 such that

E
[
uf (m̂n )

]
>

I−1∑
i=1

αj+iV (Cj+i, 1) +
(

1 −
I−1∑
i=1

αj+i

)
V (Cj+I , 1) − g (12)

for all f ∈ Fkn and n >N2.
I focus on market sizes greater than N ≡ max{N0,N1,N2}. In particular, combining

(11) and (12) yields

E
[
uf (m̂n )

]
> E

[
uf
(
m
f
n

)]+ g (13)

for all n >N and all f ∈ Fkn .
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Payoff interval In this section we construct the payoff interval (v, v̂) mentioned in the
statement of Theorem 4 as well as the randomizations over stage-game matchings that
achieve the payoffs therein.

For each subset of firms F ⊆ Fkn , we construct a matching m̂Fn through the procedure
outlined below. In particular, m̂Fn is constructed using the same procedure as the reward
matching m̂n except that no workers are matched to firms in F .

Step 1. Let φ<n be a stable matching between
⋃
j<kF

j
n and Wn. Set m̂Fn (f ) =φ<n (f ) for

every f ∈⋃j<kF
j
n.

Step 2. Let φ̂n be the matching resulting from seat-proposing random serial dictator-
ship between Fkn and Wn\φ<n (

⋃
j<kF

j
n ). Let φ̂Fn (f ) = φ̂n(f ) for all f /∈ F , but

φ̂Fn (f ) = ∅ for all f ∈ F . Set m̂Fn (f ) = φ̂Fn (f ) for all f ∈ Fkn .

Step 3. Letφ>n be a stable matching between
⋃
j>kF

j
n and φ̂n(F )∪Wn\[φ<n (

⋃
j<kF

j
n )∪

φ̂n(Fkn )]. Set m̂n(f ) =φ>n (f ) for every f ∈⋃j>kF
j
n.

Note that for each firm f ∈ Fkn , we have

E
[
uf
(
m̂Fn

)]=
{

0 for all f ∈ F
E
[
uf (m̂n )

]
for all f /∈ F ,

so together, the deterministic matchings {m̂Fn : F ⊆ Fkn } span all payoff vectors in

{0, û}F
k
n , while randomizations over {m̂Fn : F ⊆ Fkn } span [0, û]F

k
n . Let us set v̂ ≡ û and

v = u+ 2
3g. We will show that all payoff vectors in (v, v̂)F

k
n ⊆ [0, û]F

k
n can be sustained

when patience is sufficiently high.

Firm-specific punishments Recall that randomizations over {m̂Fn : F ⊆ Fkn } span [0,

û]F
k
n . For each firm f ∈ Fkn , let λfn ∈ 
({m̂Fn : F ⊆ Fkn }) be the random matching that

satisfies

E
[
uf ′

(
λ
f
n

)]=

⎧⎪⎪⎨⎪⎪⎩
u+ 1

3
g if f ′ = f

u+ 2
3
g if f ′ 
= f .

Fix any payoff vector v ∈ (v, v̂)F
k
n , and let λ0 ∈ 
({m̂Fn : F ⊆ Fkn }) be the random

matching that satisfies E[uf (λ0
n )] = vf for all f ∈ Fkn . The random matchings {λ

f
n : f ∈

Fkn } form a system of player-specific punishments for v. In particular,

E
[
uf
(
λ
f
n

)]≤ vf − 1
3
g (14)

E
[
uf
(
λ
f
n

)]≤ E
[
uf
(
λ
f ′
n

)]− 1
3
g for all f 
= f ′. (15)

Also note that by construction,

E
[
uf
(
λ
f
n

)]≥ u+ 1
3
g for all f . (16)
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Note that, in particular, the payoff gap is guaranteed to be at least 1/3g regardless of
the choice of target payoff vector v ∈ (v, v̂)F

k
n .

Self-enforcing matching process In what follows, I will focus on verifying the incentives
firms in Fkn , since the firms in other tiers will have no incentive to deviate by construc-
tion. Consider the matching process represented by the automaton (�, γ0, O, κ), where
the following statements hold:

(i) The equality �n = {θ(e,m) : e ∈ Fkn ∪ {0};m ∈Mn} ∪ {θ(f , t ) : f ∈ Fkn , 0 ≤ t < L} is
the set of all possible states.

(ii) The variable γ0 is the initial distribution over states, which satisfies γ0(θ(0,m)) =
λ0(m) for allm ∈Mn.

(iii) The function O : � → Mn is the output function, where O(θ(f ,m)) = m and
O(θ(f , t )) =mfn .

(iv) The function κ :�×Mn → 
(�) is the transition function defined as follows.
For states {θ(f , t )|0 ≤ t < L− 1}, κ is defined as

κ
(
θ(f , t ),m′)
=
{
θ
(
f ′, 0

)
ifm′ 
=mfn;m′ = [

m
f
n , (f ′,W )

]
for some f ′ ∈ Fkn andW ⊆ Wn

θ(f , t + 1) otherwise.

For states θ(f , L− 1), the transition is defined as

κ
(
θ(f , L− 1),m′)
=
{
θ
(
f ′, 0

)
ifm′ 
=mfn;m′ = [

m
f
n , (f ′,W )

]
for some f ′ ∈ Fkn andW ⊆ Wn

γf otherwise,

where pf is the distribution over states that satisfies γf (θ(f ,m)) = λf (m) for all
f ∈ Fkn andm ∈Mn.

For states θ(e,m), the transition is

κ
(
θ(e,m),m′)
=
{
θ
(
f ′, 0

)
ifm′ 
=m;m′ = [

m, (f ′,W )
]

for some f ′ ∈ Fkn andW ⊆ Wn

γe otherwise,

where γf and γ0 are defined as above.

The matching process represented by the above automaton randomizes overMn ac-
cording to λ0 in every period. It remains to verify that no firm has profitable one-shot
deviations in any automaton state.
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For states of the form θ(e,m) Consider a one-shot deviation (f ′,W ) by firm f ′. There
are two cases to consider.

Case 1: f ′ 
= e. Choose a number Z > qV (C1, 1), so no firm can derive payoff higher
than Z from any deviation. Without deviation, f ′ has value (1 − δ)uf ′(m) + δE[uf ′(λen )].

After deviation, f ′ yields less than (1 − δ)Z + δ(1 − δL )E[uf ′(m
f ′
n )] + δL+1E[uf ′(λ

f ′
n )].

There is no profitable one-shot deviation for f ′ if

(1 − δ)uf ′(m) + δE[uf ′
(
λen
)]≥ (1 − δ)Z + δ(1 − δL)E[uf ′

(
m
f ′
n

)]+ δL+1E
[
uf ′

(
λ
f ′
n

)]
.

A sufficient condition for the inequality above is

(1 − δ)0 + δE[uf ′
(
λen
)]≥ (1 − δ)Z + δ(1 − δL)E[uf ′

(
λ
f ′
n

)]+ δL+1E
[
uf ′

(
λ
f ′
n

)]
,

which is equivalent to

δ
[
Euf ′

(
λen
)−Euf ′

(
λ
f ′
n

)]≥ (1 − δ)Z.

By (14) and (15), E[uf ′(λen )] − E[uf ′(λ
f ′
n )] ≥ 1

3g for all n > N and f ′ ∈ Fkn . Let δ1 be suffi-
ciently high such that the left-hand side (LHS) is greater than the right-hand side (RHS).
Note that the inequality above does not depend on the choice of target payoff v. It fol-
lows that for all target payoffs v ∈ (v, v̂)F

k
n , these deviations are not profitable as long as

δ > δ1 and n >N .

Case 2: f ′ = e. Without deviation, f ′ has value (1 − δ)uf ′(m) + δE[uf ′(λ
f ′
n )]. After

deviation, f ′ yields less than (1 − δ)Z+ δ(1 − δL )E[uf ′(m
f ′
n )] + δL+1E[uf ′(λ

f ′
n )]. There is

no profitable one-shot deviation for f ′ if

(1 − δ)uf ′(m) + δE[uf ′
(
λ
f ′
n

)]≥ (1 − δ)Z + δ(1 − δL)E[uf ′
(
m
f ′
n

)]+ δL+1E
[
uf ′

(
λ
f ′
n

)]
.

The inequality is equivalent to

Z − uf ′(m) ≤ δ(1 + · · · + δL−1)[E[uf ′
(
λ
f ′
n

)]−E
[
uf ′

(
m
f ′
n

)]]
.

Since uf ′(m) ≥ 0 and, by (16), E[uf ′(λ
f ′
n )] − E[uf ′(m

f ′
n )] ≥ 1

3g for all f ′ ∈ Fkn and n > N , a
sufficient condition for the inequality above is

Z ≤ δ(1 + · · · + δL−1)1
3
g.

Choose L large enough so that 1
3Lg > Z. As δ→ 1, the LHS remains unchanged while

the RHS converges to 1
3Lg, so there exists δ2 such that no deviation is profitable for

δ > δ2 and n >N . Note again that the choice of δ2 does not depend on the target payoff

v, so no such deviations are profitable regardless of v ∈ (v, v̂)F
k
n .

For states of the form θ(f , t ) There are two cases to consider.

Case 1: f ′ 
= f . Without deviation, f ′ has payoff (1 − δL−t )E[uf ′(m
f
n )] + δL−t ×

E[uf ′(λ
f
n )]. With any deviation, f ′ has payoff less than (1 − δ)Z+ δ(1 − δL )E[uf ′(m

f ′
n )] +
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δL+1E[uf ′(λ
f ′
n )]. There is no profitable one-shot deviation for f ′ if(

1 − δL−t)E[uf ′
(
m
f
n

)]+ δL−tE
[
uf ′

(
λ
f
n

)]≥ (1 − δ)Z + δ(1 − δL)E[uf ′
(
m
f ′
n

)]
+ δL+1E

[
uf ′

(
λ
f ′
n

)]
.

Note that E[uf ′(m
f
n )] ≥ 0 and E[uf ′(m

f ′
n )] ≤ E[uf ′(λ

f ′
n )]; in addition, the inequality above

is most demanding when t = 0. So a sufficient condition for the inequality above is

δLE
[
uf ′

(
λ
f
n

)]≥ (1 − δ)Z + δE[uf ′
(
λ
f ′
n

)]
.

As δ→ 1, the LHS converges to E[uf ′(λ
f
n )] for all t such that 0 ≤ t ≤ L, while the RHS

converges to E[uf ′(λ
f ′
n )]. By (15), E[uf ′(λ

f
n )]> E[uf ′(λ

f ′
n )] + 1

3g for all f ′ 
= f and n > N .
So there exists δ3 such that for all δ > δ3 and n > N , there is no profitable deviation.
Once again, note that the choice of δ3 is independent of the target payoff v.

Case 2: f ′ = f . Without deviation, firm f ′ has payoff(
1 − δL−t)E[uf ′

(
m
f ′
n

)]+ δL−tE
[
uf ′

(
λ
f ′
n

)]
.

When deviating from mk′ , by Lemma 10, f ′’s stage-game payoff is at most E[uf ′(m
f ′
n )].

So f ′’s discounted expected payoff from deviation is at most

(1 − δ)E
[
uf ′

(
m
f ′
n

)]+ δ(1 − δL)E[uf ′
(
m
f ′
n

)]+ δL+1E
[
uf ′

(
λ
f ′
n

)]
= (

1 − δL+1)E[uf ′
(
m
f ′
n

)]+ δL+1E
[
uf ′

(
λ
f ′
n

)]
.

Firm f ′ has no profitable deviation if(
1 − δL−t)E[uf ′

(
m
f ′
n

)]+ δL−tE
[
uf ′

(
λ
f ′
n

)]≥ (
1 − δL+1)E[uf ′

(
m
f ′
n

)]+ δL+1E
[
uf ′

(
λ
f ′
n

)]
or

E
[
uf ′

(
λ
f ′
n

)]
> E

[
uf ′

(
m
f ′
n

)]
,

which is true for all f ′ ∈ Fkn , n > N , and regardless of δ. So no firm has profitable one-
shot deviations of this kind for all n >N and all δ. To sustain the payoff interval

Define δ ≡ max{δ1, δ2, δ3}. For every target payoff v ∈ (v, v̂), there is no profitable
one-shot deviation in any states of the automaton as long as δ > δ and n > N . This
completes the proof.

A.4.3 Proof of Theorem 4 for vacant quality classes

Reward matching Let {Fkn : k = 1, � � � , J} be the occupied quality classes and let {Fkn :
k= J + 1, � � � ,K} be the vacant quality classes.

Consider the matching x̂n defined by the following procedure:

Step 1. Let φ̂1
n be the matching resulting from seat-proposing random serial dictator-

ship between F1
n and Wn. Set x̂n(f ) = φ̂1

n(f ) for all f ∈ F1
n .
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Step 2. Let φ̂kn be the matching resulting from seat-proposing random serial dictator-

ship between Fkn and Wn\φ<n (
⋃
j<kF

j
n ). Set x̂n(f ) = φ̂kn(f ) for all f ∈ Fkn .

For each occupied quality class Fkn , let [vk, v̂k] be the payoff interval in Theo-
rem 4 corresponding to Fkn . Note that there exists an N such that Uf (x̂n ) ≥ v̂k for all
k = 1, � � � , J and f ∈ Fkn . Since v̂k > vk for each 1 ≤ k ≤ J, there exists px ∈ (0, 1) such
that (vk + v̂k )/2 ≤ pxv̂k + (1 −p0 )0 for each 1 ≤ k≤ J.

Let μk be the corresponding self-enforcing matching process that satisfiesUf (μk ) =
vk for all f ∈ Fkn .

Payoff interval Consider the matching ŷn defined by the following procedure:

Step 1. Set ŷn(f ) = ∅ for every f ∈ F1
n ∪ · · · ∪FJn .

Step 2. Let φ̂n be the matching resulting from seat-proposing random serial dictator-
ship between FJ+1

n ∪ · · · ∪FKn and Wn. Set ŷn(f ) = φ̂n(f ) for all f ∈ FJ+1
n ∪ · · · ∪

FKn .

Note that E[uf (ŷn )]> 0 for every f ∈ FJ+1
n ∪· · ·∪FKn . For each subset of firms F ⊆ FJ+1

n ∪
· · · ∪FKn , consider the matching ŷFn defined by the following procedure:

Step 1. Set ŷFn (f ) = ŷn(f ) for every f ∈ Fn\F .

Step 2. Set ŷFn (f ) = ŷn(f ) for every f ∈ F .

Using a similar argument as the one in Appendix A.4.2, the payoffs that firms in
FJ+1
n ∪ · · · ∪FKn obtain from 
({m̂Fn : F ⊆ FJ+1

n ∪ · · · ∪FKn }) span [0, E[uf (ŷn )]]F
J+1
n ∪···FK

n .
Observe also that E[uf (ŷFn )] = 0 for every f ∈ F1

n ∪ · · · ∪FJn and all F ⊆ FJ+1
n ∪ · · · ∪FKn .

Define ŵ ≡ (1 − px )E[uf (ŷn )] > 0. The payoff interval for vacant firms is [ 1
2 ŵ, ŵ].

Take any w ∈ [0, ŵ]F
J+1
n ∪···∪FK

n . Then we have w = (1 − px )w̃ for some w̃ ∈ [0,
E[uf (ŷn )]]F

J+1
n ∪···FK

n . Let λyn ∈ 
({m̂Fn : F ⊆ FJ+1
n ∪ · · · ∪ FKn }) be a random matching that

satisfies E[uf (λ
y
n )] = w̃f for all f ∈ FJ+1

n ∪· · ·∪FKn . Let λ∗
n denote the (compound) lottery

that assigns px weight on x̂n and (1 −px ) weight on λyn.
We have

E
[
uf
(
λ∗
n

)]≥ pxv̂k + (
1 −px)0 ≥ 1

2
(v̂k + vk ) for all f ∈ Fkn , 1 ≤ k≤ J (17)

E
[
uf
(
λ∗
n

)]= px0 + (
1 −px)w̃f =wf for all f ∈ Fkn , J + 1 ≤ k≤K. (18)

Self-enforcing matching process Consider a triggering matching process μ∗
n that ran-

domizes according to λ∗
n on-path. If a firm in Fkn , k = 1, � � � , J, deviates, the matching

process switches to permanently playing μk
n

; if any firm in FJ+1
n ∪ · · · ∪FKn deviates, the

matching process permanently switches to playing the worker-proposing static stable
matching.

A firm belonging to an occupied quality class, Fkn , obtains at least 1
2 (v̂k + vk ) on-

path and only vk after deviation, so there exists δ1 so that no firm in F1 ∪ · · · ∪ FJn finds
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it profitable to deviate when δ > δ1. Meanwhile, a firm f belonging to a vacant quality
class FJ+1 ∪ · · · ∪ FKn obtains wf ≥ 1

2 ŵ > 0 on-path, but 0 if it were to deviate, so there
exists δ2 so that no firm in F1 ∪· · ·∪FJn finds it profitable to deviate when δ > δ2. So when
δ > δ≡ max{δ1, δ2}, no firm has profitable deviations. In addition, no worker can deviate
profitably by construction. So the matching process is self-enforcing and sustains payoff
vector w.

A.5 Active firms, passive workers

Consider a stage-game matching market that consists of firms F and workers W . The
active firms, passive workers (AFPW) stage game is a normal-form game, where F is the
set of players and each f ∈ F has action setAf ≡ {W ⊆ W : |W | ≤ qf }; that is, each firm’s
action set consists of (possibly empty) subsets of workers that do not violate its capacity
constraint. For each action profile a=×f∈F af and worker w ∈ W , define Pw(a) ≡ {f ∈
F : w ∈ af , f �w w} ∪ {w} as the set of proposals that are acceptable to w. We associate
each action profile a in the AFPW stage game with a stage-game matching ma defined
by

ma(w) = max�w
Pw(a).

In the matching ma, each worker is matched to her favorite acceptable proposer. Note
that the maximizer above is unique since worker preferences are strict. Finally, in the
AFPW stage game, each firm f ’s payoff from action profile a, vf (a), is the payoff it ob-
tains from the imputed matchingma: that is, vf (a) = uf (ma ) for all a ∈A≡×f∈F Af .

Below I show that analyzing subgame perfect Nash equilibria in the AFPW game is
equivalent to analyzing self-enforcing matching processes in the repeated coalitional
matching game. The argument proceeds in two steps. Claim 1 below establishes that the
two game forms have the same set of stage-game outcomes. Claim 2 further shows that
for each “recommended” stage-game outcome, the payoffs that firm f can achieve by
deviating in the AFPW stage game are identical to the payoffs that it can obtain through
feasible coalitional deviations in the coalitional matching stage game. Together, Claim 1
and Claim 2 imply that the enforceable outcomes in the repeated AFPW game and the
repeated coalitional matching game are identical.

Let M◦ denote the set of stage-game matchings that are acceptable to all workers.
Our first claim shows that each action profile in the AFPW stage game corresponds to a
stage-game matching inM◦ and vice versa.

Claim 1. For every action profile a in the AFPW stage game, we have ma ∈M◦. Con-
versely, for each matching m ∈ M◦, there exists an action profile a in the AFPW stage
game such thatm=ma.

Proof. The first half of the claim follows by the construction of ma. To see the second
half, consider any matching m ∈M◦, and let firm f ’s action in the AFPW stage game be
defined by af =m(f ). It is straightforward to see thatm=ma.
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The next result shows that for each outcome, both game forms offer firms the same

opportunities to deviate. In particular, I show that the set of payoffs that firm f can

achieve by deviating from an action profile a is identical to the payoffs that it can obtain

through feasible coalitional deviations from the matchingma.

For each stage-game matchingm, let

D(m, f ) ≡ {[
m, (f ,W )

]
: {f } ∪W is a feasible coalitional deviation fromm

}
denote the set of stage-game matchings that can result from a feasible coalitional devi-

ation fromm involving f . For each action profile a in the AFPW stage game, let

D̃(a, f ) ≡ {
a′ ∈A : a′

−f = a−f
}

denote the set of action profiles that can result from f deviating from action profile a.

Claim 2. Let a be an action profile in the AFPW stage game and let ma be its corre-

sponding stage-game matching, and let f ∈ F be any firm. Then for every action pro-

file a′ ∈ D̃(a, f ), there exists m′ ∈ D(ma, f ) such that vf (a′ ) = uf (m′ ). Conversely, for

each matching m′ ∈D(ma, f ), there exists action profile a′ ∈ D̃(a, f ) such that uf (m′ ) =
vf (a′ ).

Proof. For the first half of the claim, letW =ma(f ) andW ′ =ma′
(f ) be f ’s match part-

ners in ma and ma
′
, respectively. For every worker w ∈W ′, we know from the definition

ofma
′

that

f �w f ′ for every f ′ ∈ Pw(a′)\{f }. (19)

But since a−f = a′
−f , we know thatw received the same set of alternative proposals under

a and a′, so Pw(a)\{f } = Pw(a′ )\{f }. As a result, (19) implies that f �w f ′ for everyw ∈W ′

and f ′ ∈ Pw(a)\{f }. In other words, ifma is the status quo matching and a workerw ∈W ′

receives a proposal from f , then f would be the most attractive proposal to her. This

implies that {f } ∪W ′ is a feasible deviation, and the matchingm′ ≡ [m, (f ,W ′ )] satisfies

uf (m′ ) = ũ(W ′ ) = vf (a′ ).

For the second half of the claim, suppose without loss of generality that m′ =
[ma, (f ,W ′ )] for some W ′, where {f } ∪ W ′ is a feasible coalitional deviation from ma.

By the definition ofma, we know that

f �w f ′ for all w ∈ma(f ) and f ′ ∈ Pw(a) (20)

and

ma(w) �w f ′ for all w ∈W ′\ma(f ) and f ′ ∈ Pw(a). (21)
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Table 3. Preferences.

uf (w) w1 w2 w3

f1 2 9 −1
f2 7 7.5 9
f3 −1 9 2

�

w1 f1 f3 f2

w2 f2 f1 f3

w3 f3 f2 f1

In addition, since {f }∪W ′ is a feasible deviation fromma, it must be true that f �w ma(w)
for every w ∈W ′\ma(f ), so (21) becomes

f �w f ′ for all w ∈W ′\ma(f ) and f ′ ∈ Pw(a). (22)

Let a′
f ≡W ′ and a′ ≡ (a′

f , a−f ). We will show that uf (ma
′
) = ũ(W ′ ) = uf (m′ ), which,

since vf (a′ ) = uf (ma
′
) by definition, would imply uf (m′ ) = vf (a′ ) and establish our

claim. To see why, first note that every worker w ∈ W ′ ∩ ma(f ) receives the same set
of proposals under a and a′, i.e., Pw(a) = Pw(a′ ). So (20) becomes

f �w f ′ for all w ∈W ′ ∩ma(f ) and f ′ ∈ Pw(a′),
which impliesma

′
(w) = f for all w ∈W ′ ∩ma(f ). Second, note that Pw(a′ ) = Pw(a) ∪ {f }

for every w ∈W ′\ma(f ), so (22) becomes

f �w f ′ for all w ∈W ′\ma(f ) and f ′ ∈ Pw(a′),
and, therefore, ma

′
(w) = f for all w ∈W ′\ma(f ). As a result, ma

′
(f ) =W ′ and uf (ma

′
) =

ũ(W ′ ) = uf (m′ ), which completes the proof.

A.6 Examples

A.6.1 One-to-one matching market with unique stable matching The goal of this sec-
tion is to demonstrate that when q= 1 and there is a unique stable matching, repetition
can still lead to gains for the firms.

Suppose F = {f1, f2, f3} with q1 = q2 = q3 = 1, and W = {w1, w2, w3}. Firms’ pay-
offs and workers’ preferences are shown in Table 3. Assume also that firms obtain zero
payoff from unfilled positions and workers prefer any employer over unemployment. In
this matching market there is a unique stable matching m∗, as shown in Figure 6 (the
uniqueness can be verified by checking that both the worker- and firm-optimal match-
ings coincide).

Figure 6. Matchingm∗: Unique stable matching.
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Figure 7. Unstable matchings.

Figure 7 shows two unstable matchings,m1 andm2. From the firms’ perspective, the
randomization λ̂= 1

2m1 + 1
2m2 gives the firms a payoff profile of (4, 8, 4), which strictly

Pareto dominates their payoff profile (2, 7.5, 2) from m∗. Moreover, λ̂ can be sustained
by the threat of permanently reverting tom∗.

A.6.2 Common ranking over workers The goal of this section is to demonstrate that
when firms share a common ranking over workers, repetition can still expand the set of
sustainable outcomes.

Suppose F = {f1, f2} with q1 = q2 = 2, and W = {w1, w2, w3, w4}. Firms’ payoffs and
workers’ preferences are shown in Table 4. Note that firms share a common ranking
over workers. Assume also that firms obtain zero payoff from unfilled positions and that
workers prefer any employer over unemployment. In this matching market, there is a
unique stable matching m∗, as is shown in the left panel of Figure 8. In the right panel
of Figure 8 is an unstable matching m̂ that (from the firms’ perspective) strictly Pareto
dominates the stable matching m∗. If the matching market is repeated and firms are
sufficiently patient, then m̂ can be sustained through the threat of permanently reverting
back tom∗.

Table 4. Preferences.

uf (w) w1 w2 w3 w4

f1 6 5 4 1
f2 9 3 2 1

�

w1 f1 f2

w2 f2 f1

w3 f2 f1

w4 f1 f2

Figure 8. Stage-Game Matchings.
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