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Optimal sequential contests

Toomas Hinnosaar
School of Economics, University of Nottingham and CEPR

I study sequential contests where the efforts of earlier players may be disclosed
to later players by nature or by design. The model has many applications, in-
cluding rent seeking, R&D, oligopoly, public goods provision, and tragedy of the
commons. I show that information about other players’ efforts increases the total
effort. Thus, the total effort is maximized with full transparency and minimized
with no transparency. I also show that in addition to the first-mover advantage,
there is an earlier-mover advantage. Finally, I derive the limits for large contests
and discuss the limit to perfectly competitive outcomes under different disclosure
rules.
Keywords. Contest design, oligopoly, public goods, rent-seeking, R&D.
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1. Introduction

Many economic interactions have contest-like structures, with payoffs that increase in
players’ own efforts and decrease in the total effort. Examples include oligopolies, pub-
lic goods provision, tragedy of the commons, rent seeking, R&D, advertising, and sports.
The literature typically assumes that effort choices are simultaneous. Simultaneous con-
tests have convenient properties: the equilibrium is unique, is in pure strategies, and is
relatively easy to characterize.

In this paper, I study contests where the effort choices are not necessarily simulta-
neous. In many real-life situations, some players can observe their competitors’ efforts
and respond appropriately to those choices. However, earlier movers can also anticipate
these subsequent responses and, therefore, influence the behavior of later movers. Each
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additional period in a sequential contest adds complexity to the analysis, which might
explain why previous studies have focused mainly on simultaneous models. I character-
ize equilibria for a general class of sequential contests and analyze how the information
about other players’ efforts influences the equilibrium behavior.

Contests may be sequential by nature or by design. For example, in rent-seeking
contests, firms lobby the government to achieve market power. One tool that regula-
tors can use to minimize such rent-seeking is a disclosure policy. A nontransparent dis-
closure policy would lead to simultaneous effort choices, but a full transparency policy
would lead to a fully sequential contest. There may be potentially intermediate solutions
as well, where the information is revealed only occasionally. Over the last few decades,
many countries have introduced new legislation regulating transparency in lobbying ac-
tivity. This list includes the United States (Lobbying Disclosure Act, 1995; Honest Lead-
ership and Open Government Act, 2007), the European Union (European Transparency
Initiative, 2005), and Canada (Lobbying Act, 2008). However, there are significant cross-
country differences in regulations. For example, lobbying efforts in the US must be re-
ported quarterly, whereas in the EU, reporting occurs annually and on a more voluntary
basis.

Another classic example of a contest is research and development (R&D), where the
probability of a scientific breakthrough is proportional to agents’ research efforts. The
question is how to best organize the disclosure rules to maximize aggregate research ef-
forts. In some academic fields, it is common to present early findings in working papers
and conferences. In other fields, these efforts are kept confidential until the work has
been vetted and published in a journal. Similarly, when announcing an R&D contest,
the organizer can choose a transparency level: whether to use a public leaderboard or
perhaps keep the entries secret until the deadline.

To address such questions, I study a model of sequential contests. First, I charac-
terize all equilibria for any given sequential contest, i.e., for any fixed disclosure rule.
The standard backward-induction approach requires finding best-response functions
every period and substituting them recursively. This solution method is not generally
tractable or even feasible. Instead, I use an alternative approach, in which I characterize
best-response functions by inverse functions. This method pools all the optimality con-
ditions into one necessary condition and solves the resulting equation just once. I prove
that for any contest the equilibrium exists and is unique. Importantly, the characteriza-
tion theorem shows how to compute the equilibrium.

The main result of the paper shows that the information about other players’ efforts
strictly increases the total effort. Consequently, the optimal contest is always one of the
extremes. When efforts are desirable (as in R&D competitions), the optimal contest is
one with full transparency. When the efforts are undesirable (as in rent-seeking), the
optimal contest is one with hidden efforts. The intuition behind this result is simple.
While players’ efforts could be strategic substitutes or complements, I show that efforts
are strategic substitutes sufficiently close to the equilibrium. Therefore, earlier-moving
players have an additional incentive to exert effort to discourage later players’ efforts. If
the discouragement effect were strong enough to reduce the total effort, this would offer
profitable deviations for some players. Therefore, the discouragement effect is less than
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one-to-one. It increases earlier-movers efforts more than it reduces later-movers efforts,
therefore increasing total effort. While there could be indirect effects that change the
conclusions, I show that (again, near the equilibrium) efforts are higher-order strategic
substitutes and, therefore, the result still holds.

The information about other players’ efforts is important both qualitatively and
quantitatively. For example, the sequential contest with 5 players ensures a higher to-
tal effort than the simultaneous contest with 24 players. The differences become even
larger with larger contests. For example, a contest with 14 sequential players achieves a
higher total effort than a contest with 16,000 simultaneous players. Therefore, the infor-
mation about other players’ efforts is at least as important as other characteristics of the
model, such as the number of players.

I also generalize the first-mover advantage result by Dixit (1987), who showed that
a player who pre-commits chooses a greater level of effort and obtains a higher pay-
off than his followers. This leader exploits two advantages: he moves earlier and has
no direct competitors. With the characterization result, I can further explore this ques-
tion and compare players’ payoffs and effort levels in sequential contests. I show that
there is a strict earlier-mover advantage—earlier players choose greater efforts and ob-
tain higher payoffs than later players.

Finally, I provide insights for large contests. I derive an approximation result for
contests with an infinitely large number of players. This result allows me to show that
as the number of players becomes large, the total effort converges to the prize’s value
(or perfectly competitive outcome more generally) regardless of the contest structure.
However, the speed of convergence to this level is different under different disclosure
policies. In simultaneous contests, the rate of convergence is linear, whereas in sequen-
tial contests it is exponential.

These results paint a different picture of highly competitive strategic interactions.
In simultaneous contests, a high degree of competitiveness requires a large number of
players, all choosing a minuscule effort level. Contrastingly, in a sequential contest, the
same total effort requires a much smaller number of players, each exerting different ef-
fort levels. The first player chooses a much higher effort than anyone else, the second
one much higher than the first, and so on. By any definition, this is a highly concen-
trated market. However, the early movers cannot capitalize on their position, as later
movers would react by increasing their efforts. Therefore, despite the different effort
levels, their payoffs are still close to zero. These results thus provide an alternative foun-
dation for the contestability theory (Baumol (1982)). Instead of introducing a separate
class of inactive players—the competitive fringe—in this model, the competitive fringe
arises endogenously through the order of moves.

Literature: The simultaneous version of the model has been studied extensively, start-
ing from Cournot (1838). The literature on Tullock contests was initiated by Tullock
(1967, 1974) and motivated by rent-seeking (Krueger (1974)).1 The most general treat-
ment of simultaneous contests is provided by the literature on aggregative games (Selten

1See Nitzan (1994), Konrad (2009), and Vojnović (2015) for literature reviews on contests.
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(1970), Acemoglu and Jensen (2013), Jensen (2018)). My model is an aggregative game
only in the simultaneous case.

The only sequential contest that has been studied extensively is the first-mover con-
test. It was introduced by von Stackelberg (1934), who studied quantity leadership in
an oligopoly. Dixit (1987) showed that there is a first-mover advantage in contests. Rel-
atively little is known about (Tullock) contests with more than two periods. The only
paper prior to this that studied sequential Tullock contests with more than two periods
is Glazer and Hassin (2000), which characterized the equilibrium in the sequential three-
player Tullock contest. Kahana and Klunover (2018) is an independent and concurrent
work that uses a similar approach to characterize the equilibrium in an important spe-
cial case of my model: an n-player fully sequential Tullock contest. In contrast to my
paper, they do not study any of the questions that are the main focus of my paper, such
as the optimal contests, earlier-mover advantage, and large contests. Moreover, as I ar-
gue in Section 8, the characterization alone is not sufficient to answer these questions.
The only class of contests where equilibria are fully characterized for sequential contests
are oligopolies with linear demand.2

More is known about large contests. Perfect competition (Marshall equilibrium) is
a standard assumption in economics, and it is a baseline with which to understand its
foundations. Novshek (1980) showed that Cournot equilibrium exists in large markets
and converges to the Marshall equilibrium. Robson (1990) provided further foundations
for Marshall equilibrium by proving an analogous result for large sequential oligopolis-
tic markets. In this paper, I take an alternative approach. Under stronger assumptions
about payoffs, I provide a full characterization of equilibria with any number of players
and any disclosure structure, including simultaneous and sequential contests as oppo-
site extremes. This allows me not only to show that the large contest limit is the Marshall
equilibrium but also to study the rates of convergence under any contest structure.

The paper also contributes to the contest design literature. Previous papers on con-
test design include Taylor (1995), Che and Gale (2003), Moldovanu and Sela (2001, 2006),
and Olszewski and Siegel (2016), which have focused on contests with private informa-
tion. Halac, Kartik, and Liu (2017) studied contest design in the presence of informa-
tional externalities when players learn about the feasibility of the project. In this paper,
I study contest design on a different dimension: how to optimally disclose other players’
efforts, when players move sequentially, to minimize or maximize total effort.3

Similar connections between disclosures and subsequent actions have been found
in other settings. For example, Fershtman and Nitzan (1991), Varian (1994), and Wirl
(1996) used a model of dynamic voluntary public goods provision to show that if con-
tributions are adjusted after observing earlier contributions, this may increase the free-
riding problem. Admati and Perry (1991) and Bonatti and Hörner (2011) showed similar

2Daughety (1990) used such a model to show that an oligopoly where players are divided between two
periods is more concentrated but also closer to competitive equilibrium than an oligopoly where all players
move at once. Hinnosaar (2021) provides a literature review and shows that the linear oligopoly model has
unique properties that fail when the demand is not linear.

3Recently, Ely, Georgiadis, Khorasani, and Rayo (2022) studied feedback design in a continuous-time
model where the designer wants to prolong participation for as long as possible and contestants do not
observe their successes.
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effects in dynamic team production problems. While the driving forces in these papers
are similar to the discouragement effect studied herein, none of these works addressed
higher-order effects and their implications for resulting equilibria.4

The paper also helps to explain empirical findings. For example, there is widespread
empirical evidence of earlier-mover advantage in consumer goods markets. According
to a survey by Kalyanaram, Robinson, and Urban (1995), there is a negative relationship
between a brand’s entry time and the brand’s market share in many mature markets,
including pharmaceutical products, investment banks, semiconductors, and drilling
rigs. For example, Bronnenberg, Dhar, and Dubé (2009) studied brands of typical con-
sumer packaged goods and found a significant early entry advantage. The advantage is
strong enough to drive the rank order of market shares in most cities. Lemus and Mar-
shall (2021) used observational data and a lab experiment to study the impact of public
leaderboards in prediction contests. They found that public leaderboards encouraged
some players and discouraged others, but the overall effect was positive, improving the
prediction contest’s quality.

The rest of the paper unfolds as follows. Section 2 introduces the model. Section 3
uses a three-player example to illustrate why the standard backward induction is not
tractable and shows how the inverted best-response approach solves the tractability
problem. Section 4 provides the characterization result. Section 5 discusses the sec-
ond main result, connecting information and total effort, and discusses its implications.
Section 6 studies earlier-mover advantage and Section 7 analyzes large contests. Sec-
tion 8 shows how the analysis applies to a broader class of models. Finally, Section 9
concludes. All proofs are in Appendix A.

2. Model

There are n identical players N = {1, � � � , n} who arrive to the contest sequentially and
make effort choices on arrival. At T − 1 points in time, the sum of efforts by previous
players is publicly disclosed. These disclosures partition players into T groups, denoted
by I = (I1, � � � , IT ). In particular, all players in I1 arrive before the first disclosure and,
therefore, have no information about other players’ efforts. All players in It arrive be-
tween disclosures t − 1 and t and, therefore, have exactly the same information: they
observe the total effort of players arriving prior to disclosure t − 1.5 I refer to the time
interval in which players in the group It arrived as period t. As all players are identical,
the disclosure rule of the contest is fully described by the vector n = (n1, � � � , nT ), where
nt = |It| is the number of players arriving in period t.6

4More broadly, there is a connection with the sequential information design literature. For example,
Doval and Ely (2020) and Makris and Renou (2023) provide characterization results in sequential models
where information design may involve signals about players’ actions in addition to unknown types or states.
Li and Norman (2021) study a sequential persuasion model and find that players generally want to move
only once.

5As the payoffs depend on the total effort of other players and not their individual efforts, observing the
sum of previous players’ efforts is equivalent to observing their individual efforts.

6Equivalently, the model can be stated as follows: n players are divided across T time periods, either
exogenously or by the contest designer.
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Figure 1. A contest with 7 players and 3 disclosures. Players 1 to 3 choose efforts x1, x2, and x3

independently; player 4 observes X1 = x1 + x2 + x3, player 5 observes X2 =X1 + x4, and players
6 and 7 observe X3 =X2 + x5.

Each player i chooses an individual effort xi ≥ 0 at the time of arrival. I denote the
profile of effort choices by x = (x1, � � � , xn ), the total effort in the contest by X =∑n

i=1 xi,
and the cumulative effort up (and including) to period t by Xt =∑t

s=1
∑

i∈Is xi. By con-
struction, the cumulative effort before the contest is X0 = 0, and the cumulative effort
after period T is the total effort exerted during the contest, i.e., XT = X . Figure 1 illus-
trates the notation with an example of the four-period contest n = (3, 1, 1, 2):

Players compete for a prize of size one, the probability of winning is proportional to
the level of effort, and the marginal cost of effort is one. I therefore assume the normal-
ized Tullock payoffs, with

ui(x) = xi
X

− xi. (1)

I study pure-strategy subgame-perfect equilibria, a natural equilibrium concept in
this setting: there is no private information, and earlier arrivals can be interpreted as
having greater commitment power. I show that there always exists a unique equilib-
rium. Throughout the paper, I maintain a few assumptions that simplify the analysis.
First, there is no private information. Second, the arrival times and the disclosure rules
are fixed and common knowledge. Third, each player makes an effort choice just once
upon arrival. Fourth, disclosures make cumulative efforts public.7 In Sections 8 and 9,
I discuss the extent to which the results rely on each of these assumptions and explain
how the results extend to more general sequential games.

3. Example

The standard Tullock contest has n identical players who make their choices in isolation.
Each player i chooses effort xi to maximize payoff (1). The optimal efforts have to satisfy
the first-order condition

1
X

− xi

X2 − 1 = 0, (2)

7Specifically, each player observes the sum of earlier-movers’ efforts with certainty and unconditionally.
More complex disclosure rules would change the conclusions. For example, probabilistic disclosures may
limit the earlier-movers commitment power (Bagwell (1995)) and conditional disclosures may substantially
expand the set of possible outcomes (Bizzotto, Hinnosaar, and Vigier (2023)).
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where X2 is the total effort squared. Combining the optimality conditions leads to a
total equilibrium effort X∗ = (n− 1)/n and individual efforts x∗

i = (n− 1)/n2. The equi-
librium is unique, easy to compute, and easy to generalize in various directions, which
may explain the widespread use of this model in various branches of economics.

3.1 The problem with standard backward induction

Consider next a three-player version of the same contest, but the players arrive sequen-
tially and their efforts are instantly publicly disclosed. That is, players 1, 2, and 3 make
their choices x1, x2, and x3 after observing the efforts of previous players. I will first try
to find equilibria using the standard backward-induction approach.

Player 3 observes the total effort of the previous two players, X2 = x1 + x2 < 1 and
maximizes the payoff. The optimality condition for player 3 is

1
X2 + x3

− x3

(X2 + x3 )2 − 1 = 0. (3)

Solving it for x3 gives the best-response function x∗
3(X2 ) = √

X2 − X2.8 Now, player 2
observes x1 < 1 and knows x∗

3(X2 ) and, therefore, solves the maximization problem

max
x2≥0

x2

x1 + x2 + x∗
3(x1 + x2 )

− x2 = max
x2≥0

x2√
x1 + x2

− x2.

The optimality condition for player 2 is

1√
x1 + x2

− x2

2(x1 + x2 )
3
2

− 1 = 0.

For each x1 ∈ [0, 1), this equation defines a unique best-response,

x∗
2(x1 ) = 1

12
− x1 +

(
8
√

27x3
1(27x1 + 1) + 216x2

1 + 36x1 + 1
) 2

3 + 24x1 + 1

12
(

8
√

27x3
1(27x1 + 1) + 216x2

1 + 36x1 + 1
) 1

3

. (4)

Finally, player 1’s problem is

max
x1≥0

x1

x1 + x∗
2(x1 ) + x∗

3
(
x1 + x∗

2(x1 )
) − x1,

where x∗
2(x1 ) and x∗

3(X2 ) are defined by equations (3) and (4). Although the problem is
not complex, it is not tractable. Moreover, the direct approach is not generalizable for an
arbitrary number of players. In fact, the best response function does not have an explicit
representation for contests with a larger number of periods.

8In this example, I focus only on interior solutions. It is straightforward to verify that corner solutions
cannot occur in equilibrium, as they require that at least one player chooses an effort level giving inducing
a nonpositive payoff, and there is always a deviation with a strictly positive payoff.
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3.2 Inverted best-response approach

In this paper, I use a different approach. Instead of characterizing individual (reduced)
best-responses x∗

i (Xt−1 ), or the total efforts induced by Xt−1, i.e., X∗(Xt−1 ), I charac-
terize the inverse of X∗(Xt−1 ). For any level of total effort X , the inverted best-response
function ft−1(X ) specifies the cumulative effort Xt−1 up to period t − 1 (i.e., before the
move of players in period t), that is consistent with total effort being X , given that the
players in periods t, � � � , T behave optimally.

To see how the characterization works, consider the three-player sequential contest
again. In the last period, player 3 observes X2 and chooses x3. Equivalently, we can
think of his problem as choosing the total effort X ≥X2 by setting x3 =X −X2, i.e.,

max
X≥X2

X −X2

X
− (X −X2 ).

Differentiating the objective with respect to X gives us the optimality condition

1
X

− X −X2

X2 − 1 = X2

X2 − 1 = 0,

which implies X2 = X2. That is, if the total effort in the contest is X , then before
player 3’s action, the cumulative effort had to be f2(X ) = X2; otherwise, player 3 would
not be behaving optimally.

We can now think of player 2’s problem as choosing X ≥ X1 = x1, which he can in-
duce by making sure that the cumulative effort up to his move is X2 = f2(X ), setting
x2 = f2(X ) −X1. Therefore, his maximization problem can be written as

max
X≥X1

f2(X ) −X1

X
− (f2(X ) −X1

)
.

Again, differentiating with respect to X , we get the optimality condition

f ′
2(X )
X

− f2(X ) −X1

X2 − f ′
2(X ) = 0. (5)

This is the key equation that shows the advantage of the inverted best-response ap-
proach. Equation (5) is nonlinear in X and, therefore, in x2, which causes the difficulty
for the standard backward-induction approach. Solving this equation every period for
the best-response function leads to complex expressions, and the complexity increases
with each step of the recursion. However, (5) is linear in X1, making it easy to derive the
inverted best-response function

f1(X ) = X1 = f2(X ) − f ′
2(X )X(1 −X ) =X2(2X − 1).

The condition X1 = f1(X ) aggregates the two necessary conditions of equilibrium into
one, by capturing the best responses of players 2 and 3. It simply states that if the total
effort at the end of the contest is X , then the cumulative effort X1 had to be f1(X ) after
player 1. Otherwise, either player 2 or player 3 is not behaving optimally.
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Note that X < 1/2 cannot be induced by any x1, as even if x1 = 0, the total effort
chosen by players 2 and 3 would be 1/2. Inducing total effort below 1/2 would require
player 1 to exert negative effort, which is not possible. Therefore, f1(X ) is defined over
the domain [1/2, 1], and it is strictly increasing in this interval.

Player 1 knows that he can induce total effort X ≥ 1/2 by choosing effort x1 = f1(X ).
Therefore, we can write his maximization problem as

max
X≥ 1

2

f1(X )
X

− f1(X ),

which implies optimality condition

0 = f ′
1(X )
X

− f1(X )

X2 − f ′
1(X ) = 0 ⇐⇒

0 = f0(X ) = f1(X ) − f ′
1(X )X(1 −X ) =X2(6X2 − 6X + 1

)
.

(6)

Equation (6) has a simple interpretation again—the total equilibrium quantity X∗ must
be consistent with the optimal behavior of all three players and the fact that the cu-
mulative effort before the move of the first player is X0 = 0. The expression on the
right-hand side of the equation, denoted by f0(X ), captures the optimal behavior of all
three players and, therefore, a necessary condition for X∗ to be an equilibrium quantity
is that f0(X∗ ) = 0. Equation (6) gives three candidates for the total equilibrium effort
X∗. It is either 0, 1/2 − 1/(2

√
3) < 1/2, or 1/2 + 1/(2

√
3) > 1/2. Only the highest root

X∗ = 1/2 + 1/(2
√

3) ≈ 0.7887 constitutes an equilibrium.9

The advantage of the inverted best-response approach is that instead of finding so-
lutions to nonlinear equations that become increasingly complex with each recursion,
this method combines all of the first-order necessary conditions into a single equation
that is then solved only once.

There is a simple recursive dependence in each period that determines how the in-
verted best-response function evolves. At the end of the contest, i.e., after period 3,
the total effort is f3(X ) = X . In each of the previous periods, it is equal to ft−1(X ) =
ft(X ) − f ′

t (X )X(1 − X ). Extending the analysis from three sequential players to four
or more sequential players is straightforward. It requires applying the same rule more
times and solving a somewhat more complex equation at the end.

4. Characterization

The characterization theorem (Theorem 1) in this section shows that each contest
n = (n1, � � � , nT ) has a unique equilibrium and characterizes it using the inverted best-
response functions f0, � � � , fT . These functions are recursively defined according to the
same rule as in the previous example. The function fT (X ) specifies the cumulative ef-
fort up to and including the last period T that is consistent with total effort X , which is
clearly fT (X ) = X .

9The other positive root implies negative effort by player 2. From X = 0, players would have profitable
deviations: for example, player 2 would deviate to strictly positive effort defined by equation (4).
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Suppose that the efforts after period t are characterized by a differentiable function
ft(X ). That is, if the sum of efforts after period t is Xt = Xt−1 +∑i∈It xi, then the total

effort at the end of the contest will be X = f−1
t (Xt ).10 Player i in period t solves

max
xi≥0

xi

f−1
t (Xt )

− xi.

The first-order condition determining effort xi is

1

f−1
t (Xt )

− xi[
f−1
t (Xt )

]2 df−1
t (Xt )
dXt

dXt

dxi
− 1 = 0.

Inserting X = f−1
t (Xt ), df−1

t (Xt )/dXt = 1/f ′
t (X ), and dXt/dxi = 1 to this expression and

rearranging the terms gives a necessary condition for optimality xi = f ′
t (Xt )X(1 − X ).

Summing these constraints for all nt players in period t, we obtain

ft(X ) − ft−1(X ) =
∑
i∈It

xi = ntf
′
t (Xt )X(1 −X ).

Therefore, ft−1(X ) is characterized by a recursive rule that is analogous to the expression
we saw above

ft−1(X ) = ft(X ) − ntf
′
t (X )X(1 −X ), ∀t ∈ {1, � � � , T }, where fT (X ) =X . (7)

The only difference with the example is the term nt . If there are multiple players
in period t, then each of them has only a fractional impact on the followers’ optimal
responses. This means that the effect on inverted best-responses is multiplied by nt .

Theorem 1 (Characterization Theorem). Each contest n has a unique equilibrium. The
equilibrium strategy of player i in period t is

x∗
i (Xt−1 ) =

⎧⎨⎩
1
nt

[
ft
(
f−1
t−1(Xt−1 )

)−Xt−1
] ∀Xt−1 < 1,

0 ∀Xt−1 ≥ 1.
(8)

In particular, the total equilibrium effort X∗ is the highest root of f0(X ) = 0, and the
equilibrium effort of player i ∈ It is x∗

i = n−1
t [ft(X∗ ) − ft−1(X∗ )].

The proof in Appendix A starts by showing that the polynomials ft have some help-
ful properties. Let Xt be the highest root of ft(X ) = 0. These highest roots are ordered
according to t as 0 = XT < XT−1 < · · · <X1 <X0. Moreover, for all X ∈ [Xt , Xt−1 ) the
function ft−1(X ) is strictly less than zero and for all X ∈ [Xt , 1] the derivative f ′

t (X ) is
strictly positive. Then the arguments above imply that there are two types of necessary
conditions for equilibria. First, total equilibrium effort X∗ must be consistent with cu-
mulative effort before the contest being zero, i.e., X∗ must be a root f0(X ) = 0. Second,

10Function f−1
t is the inverse of ft (X ) in the interval [Xt , 1], where Xt is the highest root of ft . The proof

of the theorem shows that Xt < 1 and ft (X ) is strictly increasing this interval.
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cumulative effort cannot decrease, i.e., ft(X∗ ) ≥ ft−1(X∗ ) for all t. These conditions to-
gether with the properties of ft functions imply that the highest root of f0(X∗ ) is the
only candidate for equilibrium. Finally, assuming the followers behave according to the
strategies characterized by ft functions, each player has a unique interior local optimum
for each Xt < 1. Alternatively, choosing a corner outcome (either no effort or an effort
lever such that all followers choose no effort) clearly gives the player a nonpositive pay-
off. Therefore, the interior optimum is also a global optimum, and the candidate for
equilibrium determined above is indeed an equilibrium.

5. Information and effort

This section includes the main results of the paper. I show that information increases
total effort in sequential contests. Before the formal result, let me give an example. Con-
sider contests n = (1, 2, 1) and n̂ = (1, 1, 1, 1). The second contest n̂ is more informative
as the added disclosure after player 2 creates a finer partition of players. Let X∗ and X̂∗
denote the corresponding total equilibrium efforts in the two contests. Direct applica-
tion of Theorem 1 gives equilibrium efforts X∗ = (7+√

13)/12 < X̂∗ = (6+√
24)/12, i.e.,

total equilibrium effort in the more informative contest is strictly higher.
The intuition for this ranking is the following. While efforts could be strategic com-

plements or strategic substitutes, in equilibrium the efforts are high enough to make the
individual efforts strategic substitutes. Compared to contest n, the additional disclosure
of player 2’s effort in contest n̂ gives player 2 a new reason to increase his effort: it dis-
courages player 3. Therefore, we would expect the effort of player 2 to be higher and the
effort of player 3 to be lower than in contest n.

The remaining question is: which of these two effects is larger? The payoff func-
tion of player 2 is u2(x) = x2(1/X − 1), which is strictly increasing in player’s own effort
x2 and strictly decreasing in total effort X . If player 2 could increase his effort x2 in a
way that the discouragement effect is so large that total effort decreases, player 2 would
happily exploit this opportunity, and the outcome would not be an equilibrium. There-
fore, the discouragement effect is less than one-to-one, implying that the total effort is
increased.

The full comparison of the two contests must also consider how players 1 and 4
respond to the change of game conditions. Their incentives are driven by indirect ef-
fects. For example, player 1 may want to influence player 2 to exert more or less effort in
the more informative contest, depending on how this second-order impact affects other
players.

Capturing the indirect effects requires some new notation. Let me use a contest n =
(1, 2, 1) again to illustrate the construction of relevant variables. All four players in this
contest observe their own efforts (regardless of the disclosure rule), and the number of
players clearly affects the outcomes of the contest. I call this the first level of information
and denote it as S1 = n = 4. More importantly, some players directly observe the efforts
of some other players. Players 2 and 3 observe the effort of player 1 and player 4 observes
the efforts of all three previous players. Therefore, there are five direct observations of
other players’ effort levels. I call this the second level of information and denote it as
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S2 = 5. Finally, player 4 observes players 2 and 3 observing player 1. There are two
indirect observations of this kind, which I call the third level of information and denote
as S3 = 2. In contests with more periods, there would be more levels of information—
observations of observations of observations and so on.

I call a vector S(n) = (S1(n), � � � , ST (n)) the measure of information in a contest n.
In the example described above, S(1, 2, 1) = (4, 5, 2). Formally, Sk(n) is the sum of all
products of k-combinations of set {n1, � � � , nT }.11 For example, in a sequential n-player
contest n = (1, 1, � � � , 1), Sk(n) is simply the number of all k-combinations, i.e., Sk(n) =
n!/(k!(n− k)!).

With this notation, I can now state the second main result. Theorem 2 defines a par-
tial order on all contests—if contests can be ranked about the measures of information
S(n̂) > S(n), i.e., Sk(n̂) ≥ Sk(n) for all k and the inequality is strict at least for one k,
then X∗(S(n̂)) > X∗(S(n)). In the example above, increasing informativeness in con-
tests by adding public disclosures increases vector S and, therefore, total effort, or more
concretely S(1, 2, 1) = (4, 5, 2) < S(1, 1, 1, 1) = (4, 6, 4, 1).12

Theorem 2 (Information Theorem). Total effort in contest n is a strictly increasing func-
tion X∗(S(n)).

There are two key steps in the proof. The first step shows by induction that the in-
verted best-response functions can be expressed using the measures of information as

ft(X ) = X −
T−t∑
k=1

Sk
(
nt
)
gk(X ), (9)

where nt = (nt+1, � � � , T ) is a vector of integers describing the subcontest that starts
after period t and S(nt ) denotes its measures of information, i.e., Sk(nt ) is the sum
of all products of k-combinations of nt . The functions gk(X ) are defined recursively
and independently of the contest n as g1(X ) = X(1 − X ), and for all k > 0, gk+1(X ) =
−g′

k(X )X(1 −X ). In particular, f0(X ) takes the following form:

f0(X ) =X −
T∑

k=1

Sk(n)gk(X ). (10)

Remember that total equilibrium effort X∗ is the highest root of f0(X ) and this function
is strictly increasing above its highest root. The second key step of the proof shows that
functions gk(X∗ ) > 0 at the equilibrium value X∗. Now, increasing S(n) decreases the
value of f0(X∗ ) at the original equilibrium value. Therefore, the highest root of the new
function f0(X ) must be higher than the original one.

11Let
(n
k

)
denote the set of all k-combinations of set {n1, � � � , nT }. For example, s3 ≡ {n1, n3, n4} ∈ (n

3

)
.

Then Sk(n) =∑
sk∈
(n
k

)∏
s∈sk s for all k ≤ T and Sk(n) = 0, otherwise.

12Sk(n) = 0 for all k > T , so that S(n) is an infinite-dimensional vector with only zeroes after element
T . I have left zeroes out for brevity. In this example, more detailed comparison would be S(1, 2, 1) =
(4, 5, 2, 0, 0, 0, � � � ) < S(1, 1, 1, 1) = (4, 6, 4, 1, 0, 0, � � � ).
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Equation (10) also sheds some light on the reason for this result. The positive weights
on the measures of information, gk(X∗ ), can be interpreted as higher-order strategic
substitutability terms. In particular, g1(X ) captures the concavity of payoff functions—
as agent i increases his effort, the incentive to increase the effort further decreases and
is positive for all X . With slight abuse of terminology, we can think concavity of pay-
offs as a player’s effort being “a substitute” for his own effort. The term g2(X ) captures
the standard strategic substitutability. In the example above, if player 2 increases effort,
player 3 who observes this deviation has an incentive to decrease effort. The next term
g3(X ) captures an indirect incentive: player 4, who observes the response of player 3
has an incentive to decrease effort as well (beyond the direct effect of responding to
player 2). We can think of this as second-order strategic substitutability. Similarly,
g4(X ) would capture the incentives to respond to second-order effects and, therefore,
describe the third-order strategic substitutability, and so on. The fact that near equilib-
rium gk(X∗ ) > 0 for all k, means that all these effects move the equilibrium outcomes to
the same direction—in more informative contests (in the sense of S(n)) earlier movers
exert more effort, later movers less effort, but the total equilibrium effort is higher.

Equation (10) therefore also allows to complete order defined by Theorem 2. To com-
plete the order, we would have to know how to weigh different measures of information.
Equation (10) shows that correct weights are gk(X∗ ); i.e., by magnitudes of discourage-
ment effects near equilibrium. The following lemma shows that lower information mea-
sures have a higher weight.

Lemma 1 (Decreasing Weights). gk−1(X∗ ) > gk(X∗ ) for each k≥ 2.

While direct effects have a larger impact than indirect ones, the indirect effects are
not qualitatively unimportant. Compare, for example, two seven-player contests n =
(3, 4) and n̂ = (1, 1, 5). The first contest n has 12 direct observations whereas n̂ has
only 11. Nevertheless, the total effort in n is lower than in contest n̂. This is because of
indirect effects, S3(n̂) = 5 > 0. Intuitively, in the contest n̂ player 1 knows that in addition
to influencing all followers directly, there is also an effect to the five last movers through
the behavior change of player 2. This indirect effect is missing in n.

Theorem 2 has several direct implications summarized by the following corollary.

Corollary 1 (Implications of the Information Theorem). Take two contests n and n̂,
with corresponding partitions I and ̂I , and let X = X∗(S(n)) and X̂ = X∗(S(n̂)) be the
corresponding total equilibrium efforts.

(a) Comparative statics of n: if n < n̂, then X < X̂. This includes the case when nt =
0 < n̂t for some t, i.e., n̂ has more periods than n.

(b) Independence of permutations: if n is a permutation of n̂, then X = X̂ .

(c) Disclosures increase effort: if I is a coarser partition than ̂I , then X < X̂ .

(d) Homogeneity increases effort: if
∑

t nt =∑t n̂t and there exist t, t ′ such that ntnt ′ <
n̂tn̂t ′ and ns = n̂s for all s 
= t, t ′, then X < X̂ .
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(e) For any n, the simultaneous contest n = (n) minimizes total effort, and the fully
sequential contest n = (1, 1, � � � , 1) maximizes the total effort. For fixed number of
periods T , contests that allocate players into groups that are as equal as possible
maximize the total effort.

The first implication (a) is intuitive, adding players to any period or adding periods
to any contest increases the total effort. However, this does not imply that the total ef-
fort increases with the total number of players. Total effort in the three-player sequential
contest is 0.7887, whereas in the four-player simultaneous contest, it is 0.75. The sec-
ond implication (b) is more surprising—reallocating disclosures in a way that creates
a permutation of n does not affect the total effort. For example, a first-mover contest
(1, n− 1) gives the same total effort as the last-mover contest (n− 1, 1). The third impli-
cation (c) that disclosures increase effort was already discussed above. The fourth im-
plication (d) gives even clearer implications for the optimal contest. Namely, more ho-
mogeneous contests give higher total effort. Intuitively, a contest is more homogeneous
if players are divided more evenly across periods. For example, a contest n̂ = (2, 2) is
more homogeneous than n = (1, 3) and also has more direct observations of efforts as
2 × 2 = 4 > 3 = 1 × 3.

Therefore, if the goal is to minimize the total effort (such as in rent-seeking contests),
then the optimal policy is to minimize the available information, which is achieved by a
simultaneous contest. Transparency gives earlier-movers incentives to increase efforts
to discourage later players, but this discouragement effect is less than one-to-one and
therefore increases total effort. Conversely, if the goal is to maximize the total effort
(such as in research and development), then the optimal contest is fully sequential as it
maximizes the incentives to increase efforts through this discouragement effect. If the
number of possible disclosures is limited (e.g., collecting or announcing information is
costly), then it is better to spread the disclosures as evenly as possible.

6. Earlier-mover advantage

Dixit (1987) showed that there is a first-mover advantage. If one player can pre-commit,
the first-mover chooses a strictly higher effort and achieves a strictly higher payoff than
the followers. Using the tools developed here, I can explore this result further. Namely,
the first mover has two advantages compared to the followers. First, he moves earlier,
and his action may impact the followers. Second, he does not have any direct com-
petitors in the same period. I can now distinguish these two aspects. For example, what
would happen if n−1 players chose simultaneously first, and the remaining player chose
after observing their efforts? More generally, in an arbitrary sequence of players, which
players choose the highest efforts and which ones get the highest payoffs? The answer
to all such questions turns out to be unambiguous—there is a strict earlier-mover ad-
vantage.

Proposition 1 (Earlier-Mover Advantage). The efforts and payoffs of earlier players are
strictly higher than for later players.
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The equilibrium payoff of a player i is in ui(x∗ ) = x∗
i (1/X∗ − 1), and since X∗ is the

same for all the players, payoffs are proportional to efforts. Therefore, it suffices to show
that the efforts of earlier players are strictly higher. Using Theorem 1 and equation (9),
I can express the difference between the equilibrium efforts of players i and j from con-
secutive periods t and t + 1 as

x∗
i − x∗

j =
T−t∑
k=1

[
Sk
(
nt
)− Sk

(
nt+1)]gk+1

(
X∗) (11)

where nt+1 = (nt+2, � � � , nT ) is the subcontest starting after period t + 1 and nt =
(nt+1, nt+1 ) is the subcontest starting after period t. Clearly, Sk(nt ) > Sk(nt+1 ) for all k;
i.e., there is more information on all levels in a strictly longer contest. As gk+1(X∗ ) > 0,
for each k the whole sum is strictly positive. The intuition of the result is straightfor-
ward: players in earlier periods are observed by strictly more followers than the players
from the later periods. Therefore, in addition to the incentives that later players have,
the earlier players have an additional incentive to exert more effort to discourage later
players.

7. Large contests

Numeric comparison of simultaneous and sequential contests highlights that the infor-
mation about other players’ efforts is at least as important in determining the total effort
as other parameters, such as the number of players. For example, the total effort in the
simultaneous contest with 10 players is 0.9, whereas the total effort with four sequential
players is 0.9082. A fifth sequential player increases the total effort to 0.9587. A simul-
taneous contest with the same total effort requires 24 players. Figure 2 shows that the
comparison becomes even more favorable for sequential contests with large n.

The following proposition gives the reason for this connection. As the number of
players becomes large, the total effort converges to 1 no matter the contest structure,
but the convergence is different depending on the structure. For large simultaneous
contests, the convergence is linear, with 1 − X∗ ≈ 1/n, while for large sequential con-
tests, the convergence is exponential, with 1 −X∗ ≈ 1/2n.13 It is also worth noting that,
although the individual payoffs converge to zero, the individual efforts may not.

Proposition 2 (Large Contests). Fix T ∈ N and a sequence of contests (nn )∞n=3, such that
contest nn is n-player contest with at most T periods. Let Xn = X∗(S(nn )) and for each
player i, let xni the equilibrium effort in contest nn. For all t ≤ T and all i ∈ In

t ,

lim
n→∞

⎡⎢⎢⎢⎢⎢⎣1 −Xn − 1
T∏
t=1

(
1 + nnt

)
⎤⎥⎥⎥⎥⎥⎦= 0 and lim

n→∞

⎡⎢⎢⎢⎢⎢⎣xni − 1
t∏

s=1

(
1 + nns

)
⎤⎥⎥⎥⎥⎥⎦= 0. (12)

13Proposition 2 is stated for arbitrary fixed T . Therefore, it is straightforward to apply it to the limit of
contests where T itself becomes infinitely large (e.g., large fully sequential contests) by taking another limit
with respect to T .
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Figure 2. Number of players in a sequential contest that leads to the same total effort as a si-
multaneous contest with n players.

These results shed new light on the meaning of a highly competitive contest or mar-
ket. In a large simultaneous contest, each contestant chooses a minuscule effort level.
Such a market is clearly not concentrated. For example, with n = 16,000 the standard
measure of concentration, the Herfindahl–Hirschman Index is HHI sim ≈ 0.

In contrast, a sequential contest requires only a limited number of players to achieve
the same aggregate results, and players behave differently. In a large sequential con-
test, the individual equilibrium efforts are x∗ ≈ (1/2, 1/4, � � � , 1/2n ). The earlier movers
choose much larger efforts and achieve larger payoffs than the followers. For example,
with n = 14 sequential players, the corresponding concentration index HHI seq ≈ 1/3,
which is typically interpreted as a highly concentrated market. However, in terms of
outcomes, this market is highly competitive: as total effort is close to one, we have full
dissipation of rents, and thus all players earn equilibrium profits that are close to zero.

This effect is similar to contestability theory (Baumol, Panzar, and Willig (1988)),
where a small number of firms cannot capitalize on their market power due to the pres-
ence of a competitive fringe—a large number of potential competitors, who could fric-
tionlessly enter when a profit opportunity arises. In my model, the later movers are en-
dogenously taking the role of the competitive fringe. In equilibrium, they decide to put
in very little effort. However, if the earlier movers were to try and exploit their position
by reducing their efforts, the later movers would be there to respond.

8. Generalization

In this section, I discuss how to implement the methodology for a general class models.
I also provide sufficient conditions under which the results above remain unchanged.
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Specifically, I define a class of linearly multiplicative payoff functions and show that if
it satisfies Property 1, Theorem 1 remains valid without any modifications. By adding
another sufficient condition, Property 2, nearly all other results in the paper hold as
well. The differences between Property 1 and Property 2 also suggest that Theorem 2
and most other results in the paper are not direct implications of Theorem 1.

Suppose that each player chooses an action xi from a set Xi and if the profile of
actions is x = (x1, � � � , xn ), then player i gets a payoff

Ui(x) = ui(xi, X ). (13)

Take a player i from the last period T . Player i observes cumulative effort XT−1 before
period T and knows that other players in period T are choosing efforts simultaneously
to him. Therefore, he solves the maximization problem

max
xi∈Xi

ui

(
xi, xi +XT−1 +

∑
j∈IT \{i}

xj

)
.

The standard best-response function would be x∗
i (XT−1 ).14 But suppose we can express

the optimal effort xi choice as a function of total effort, φi(X ). Then adding up individ-
ual efforts in period T consistent with total effort X gives us a necessary condition for
equilibrium,

XT−1 =X −
∑
i∈IT

φi(X ).

I denote the function on the right-hand side by fT−1(X ). Its inverse function (assuming
it exists), f−1

T−1(XT−1 ) is the total effort induced by cumulative effort XT−1, if all players
in period T behave optimally.15

Suppose by induction that the same argument holds starting from period t, i.e., if
cumulative effort after t is Xt then the total effort induced is f−1

t (Xt ). Then player i in
period t solves the following problem:

max
xi∈Xi

ui
(
xi, f

−1
t (Xt )

)
.

If again, we can express the optimal xi only as a function φi(X ), then adding up the
conditions would give us a necessary condition for equilibrium

Xt−1 =Xt −
∑
i∈It

xi = ft(X ) −
∑
i∈It

φi(X ),

which I denote by ft−1(X ). Finally, in the beginning of the game cumulative total action
is X0 = 0, which gives us an equilibrium condition for the whole game.

14This function is also called the reduced best-response function as it only depends on the sum.
15When T = 1, the game becomes a linearly aggregative game, as introduced in Selten (1970), with a

known equilibrium condition X =∑n
i=1 φi(X ), where

∑n
i=1 φi(X ) is the aggregate backward correspon-

dence. See Jensen (2018) for a literature review. If T > 1, the game is not aggregative, so the analysis pre-
sented here is a dynamic generalization of linearly aggregative games.
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There are some gaps in this analysis that need to be filled. I have already shown
that with the Tullock contest payoffs, ui(xi, X ) = xi/X − xi and Xi = R+, this approach
characterizes the unique equilibrium. It is equally clear that the approach is not valid for
all payoff functions, as interior optimums may not exist or be unique. Next, I introduce a
more restricted class of payoff functions and sufficient conditions where all results hold
and the analysis remains tractable.

Linearly multiplicative payoffs: Assume that the payoff functions are identical and the
utility is linearly multiplicative with respect to players’ own actions,

ui(xi, X ) = xih(X ), xi ∈ Xi =R+. (14)

For Tullock contest payoffs, h(X ) = v/X−c, where v represents the prize value and c de-
notes the marginal cost of effort. This class of games also includes oligopolies with linear
costs, where h(X ) = P(X ) − c, with xi as the firm’s own quantity, X as the total quantity,
P(X ) as the inverse demand function, and c as the marginal cost. Additionally, this class
includes public goods games, in which xi denotes private consumption and h(X ) rep-
resents the marginal benefit of private consumption, which decreases with public good
contributions and, therefore, with total private consumption.

It is natural to assume in these applications that h(X ) is strictly decreasing up to
some upper bound X , at which it takes value h(X ) = 0 and above which h(X ) ≤ 0.
Therefore, effectively the action space is Xi = [0, X]. Without loss of generality, we can
change the scale of actions so that X = 1.

The first-order optimality condition for players in period T is then

h(X ) + xih
′(X ) = 0 ⇐⇒ xi = g1(X ),

where g1(X ) = −h(X )/h′(X ). Therefore, we can write the inverted best-response func-
tion as

fT−1(X ) =X − nTg1(X ).

Similarly, if the inverted best-response functions at period t is ft(X ), which is invert-
ible in the relevant range, the payoff function of player i in period t is ui(xi, f

−1
t (Xt )) =

xih(f−1
t (Xt )) and, therefore, the first-order condition for players in period t is

h(X ) + xih
′(X )

1

f ′
t (X )

= 0 ⇐⇒ xi = g1(X )f ′
t (X ). (15)

Therefore, ft−1(X ) = ft(X ) − ntf
′
t (X )g1(X ). This shows that we can use the character-

ization derived in the paper, with two modifications. First, instead of specific expres-
sion X(1 − X ), we have a function g1(X ) = −h(X )/h′(X ). And second, we need to
impose some conditions on the function h(X ) so that the conditions for the existence
and uniqueness are satisfied.

In Appendix A, I define Property 1, which is a sufficient condition for all ft functions
to be well behaved so that the characterization theorem (Theorem 1) holds without any
modifications. Intuitively, Property 1 puts two restrictions on ft functions. First, for
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sufficiently high X , they are strictly increasing and, therefore, invertible in the relevant
range. Second, at least one of the ft functions is taking a negative value for lower values
of X , which eliminates such X as a candidate for equilibrium. Proposition 3 in Ap-
pendix A proves that Tullock payoffs satisfy Property 1 and below I discuss some other
cases when it is satisfied.

Therefore, under Property 1, the equilibrium is still unique and can be computed as
the highest root of f0(X ) in [0, 1]. Moreover, the limit for large contests (Proposition 2)
holds as well, with a particular adjustment in formulas. Let α = −g′

1(1) > 0. Then the
formulas in equation (12) would be adjusted as

lim
n→∞

⎡⎢⎢⎢⎢⎢⎣1 −Xn − 1
T∏
t=1

(
1 + αnnt

)
⎤⎥⎥⎥⎥⎥⎦= 0 and lim

n→∞

⎡⎢⎢⎢⎢⎢⎣xni − α
t∏

s=1

(
1 + αnns

)
⎤⎥⎥⎥⎥⎥⎦= 0. (16)

For the information theorem (Theorem 2) its corollaries (Corollary 1), as well as the
earlier-mover advantage result (Proposition 1) I need an additional assumption. First,
let us adjust gk functions by defining these as g1(X ) = −h(X )/h′(X ) and gk+1(X ) =
−g′

k(X )g1(X ) for all k. The additional assumption, Property 2 in Appendix A, states
essentially that each gk(X∗ ) > 0 near equilibrium. This assumption can be interpreted
as actions being higher-order strategic substitutes. Proposition 4 proves that Tullock
payoffs satisfy Property 2 and below I discuss some functional forms that satisfy this
assumption.

The only result that does not generalize is Lemma 1 that showed that with Tullock
payoffs, the weights gk(X∗ ) are decreasing in k. It is easy to see that this result depends
on the function h(X ). For example, consider the case when h(X ) = α

√
1 −X for all X ∈

[0, 1] and 0 otherwise, where α> 0 is a constant. Then g1(X ) = α(1−X ), g2(X ) = α2(1−
X ), and so on, gk(X ) = αk(1 − X ). Whenever α > 1, the weights are increasing in this
case.

The remaining question is when are properties 1 and 2 satisfied? For example, one
special class of functions where these assumption are satisfied, is the class of functions,
where g1(X ) = −h(X )/h′(X ) is completely monotone, i.e., (−1)kdkg1(X )/dXk ≥ 0 for
all k ∈ N.16 This includes many functions, including linear h(X ), power function
h(X ) = α

√
1 −X , but also many other natural functions. For example, the following func-

tions are all completely monotone: g(X ) = α(1 −Xm ), g(X ) = α(1 −X )m, for all m ∈ N,
g(X ) = α((X + γ)s − (1 + γ)s ) for all s < 0, γ > 0, g(X ) = α[e−rX − e−r ] for all r > 0,
and g(X ) = −α log(X ), all with any α > 0. Also, all sums and products of completely
monotone functions are completely monotone.17

16It suffices that g1(X ) is only T -times monotone, which is less restrictive, but perhaps harder to verify.
17In the working paper version (https://arxiv.org/pdf/1802.04669.pdf), I give more examples: (1) An

oligopoly with logarithmic demand, where the analysis can be directly extended, even with non-monotonic
g1(X ); (2) An example where properties 1 and 2 are violated, and equilibrium may not exist or be unique;

https://arxiv.org/pdf/1802.04669.pdf
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Note that linearly multiplicative payoffs combined with properties 1 and 2 are suffi-
cient and convenient assumptions, but they are not necessary. These assumptions en-
sure that the first-order conditions are linear in the cumulative action of preceding play-
ers, and as a result, the inverted best-response functions can be easily characterized.
This raises the question: is the functional form assumption relevant only for tractabil-
ity or does it have economic implications? A simple continuity argument demonstrates
that the results will not change with small perturbations near the original model.18

9. Discussion

I showed that each contest has a unique equilibrium. It is in pure strategies and sim-
ple to compute. The main result of the paper shows that the total equilibrium effort is
strictly increasing in information. This implies that the optimal contest for maximiz-
ing total effort is fully sequential, e.g., R&D contests benefit from full transparency. On
the other hand, if the goal is to minimize the total effort, such as rent-seeking contests,
the optimal contest is nontransparent, i.e., the simultaneous contest. Further, there is a
strict earlier-mover advantage: players in earlier periods exert strictly greater efforts and
obtain strictly higher payoffs. Total effort converges to full dissipation linearly with the
number of players in large simultaneous contests but exponentially in large sequential
contests.

The results in this paper hold much more generally than the model discussed herein.
In addition to the generalization discussed in Section 8, some assumptions about the
timing of arrivals can be relaxed. I assumed that players exert efforts only at their arrival
and that their efforts are publicly observable for players in the following periods. Given
that players benefit from the discouragement effect, they would not hide or delay their
actions. Thus, the outcomes would be unchanged if players could take hidden actions or
take actions over multiple periods. This was shown by Yildirim (2005) in the two-player
case.

The analysis can also be extended to heterogeneous players. However, there is a new
complication: players may find it optimal to stay inactive at different thresholds. This
means that earlier movers may sometimes find it optimal to deter entry by followers
and the order of players becomes an important determinant of outcomes. Xu, Zhang,
and Zhang (2020) use the approach introduced here to study the three-player asymmet-
ric sequential contests.19

 Hinnosaar (2023) extends the methodology to another type
of player heterogeneity, where the game is played on a network. Players only observe
the choices of players they are linked to. This analysis shows that there is a connec-
tion between weighted measures of information and standard centrality measures from
network theory.

(3) An example where efforts may be direct strategic substitutes in the standard sense but strategic comple-
ments due to indirect effects. In this instance, the equilibrium with two periods behaves as one would ex-
pect with strategic substitutes, while introducing a third period alters the conclusions as a result of indirect
effects.

18In the working paper version, I show that in Tullock contests with quadratic costs, the analysis still
applies when the parameter multiplying the quadratic term is sufficiently close to zero.

19The two-player case has been studied by Morgan (2003) and Serena (2017), who also considered en-
dogenous order of moves.
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Appendix A: Proofs

A.1 Proof of the characterization theorem (Theorem 1)

Before proving Theorem 1, it is useful to define the following property.

Property 1 (Inverted Best Responses are Well Behaved). Clearly, fT (X ) = X has
unique root XT = 0. For all t = 0, � � � , T −1, the function ft has the following properties:

(a) ft(X ) = 0 has a root in [Xt+1, 1]. Let Xt be the highest such root.

(b) ft(X ) < 0 for all X ∈ [Xt+1, Xt ).

(c) f ′
t (X ) > 0 for all X ∈ [Xt , 1].

Moreover, X0 ∈ (0, 1).

The proof of Theorem 1 has two parts. The first part is Proposition 3 in Appendix A.2
that shows that ft functions satisfy Property 1. The proof relies on keeping track of the
roots of ft functions. The second part in Appendix A.3 establishes the theorem’s claims.
Briefly, it shows that behavior where each player i in each period t behaves according to
equation (8) and expects that total effort induced by cumulative effort Xt to be f−1

t (X ),
is an equilibrium and in fact it is the only equilibrium. The proof is divided into five
lemmas:

1. Lemma 5 shows that in all histories where Xt−1 < 1, each player in period t chooses
strictly positive effort, but these added efforts in period t are small enough so that
the cumulative effort after period t remains strictly below one, Xt < 1. On the other
hand, in histories where Xt−1 ≥ 1, the players in period t exert no effort. Therefore,
on the equilibrium path Xt < 1 for all t.

2. Lemma 6 shows that Xt = ft(X ) is a necessary condition for equilibrium. In par-
ticular, f0(X ) = 0 is a necessary condition for equilibrium and, therefore, X∗ must
be a root of f0(X ).

3. Lemma 7 shows that under Property 1, the inverse function f−1
t−1(Xt−1 ) is well-

defined and strictly increasing, f−1
t−1(0) =Xt−1 and f−1

t−1(1) = 1.

4. Lemma 8 shows that the best-response function of player i ∈ It after cumula-
tive effort Xt−1 is x∗

i (Xt−1 ) = n−1
t [ft(f

−1
t−1(Xt−1 )) − Xt−1] for all Xt−1 < 1 and

x∗
i (Xt−1 ) = 0 for all Xt−1 ≥ 0. On the equilibrium path, the individual efforts are

x∗
i = n−1

t [ft(X∗ ) − ft−1(X∗ )]. Note that this step in the proof implicitly also shows
that strategies of all players in period t are identical.

5. Finally, Lemma 9 verifies that the unique candidate for equilibrium, i.e., x∗ speci-
fied in the theorem, is indeed an equilibrium, which completes the proof.

The combination of these results proves Theorem 1.
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A.2 Proof that Property 1 is satisfied (Proposition 3)

Proposition 3. Inverted best responses f0, � � � , fT defined by equation (7) are well be-
haved.

Before giving the proof of Proposition 3, let me briefly describe its key idea. The
function ft+1 is a polynomial of degree r = T − t, so it can have at most r roots. By
keeping track of all the roots, I show by induction that all r roots are real and in [0, 1),
with the highest being Xt+1. Therefore, all r − 1 roots of the derivative f ′

t are also real
and in [0, Xt+1 ). Evaluating ft at Xt+1 and 1, we get

ft(Xt+1 ) = ft+1(Xt+1 )︸ ︷︷ ︸
=0

−nt+1 f
′
t+1(Xt+1 )︸ ︷︷ ︸

>0

Xt+1(1 −Xt+1 )︸ ︷︷ ︸
>0

< 0

ft(1) = ft+1(1) − nt+1f
′
t+1(1) 1(1 − 1)︸ ︷︷ ︸

=0

= ft+1(1) = · · · = fT (1) = 1 > 0.

This implies that ft must have a root Xt ∈ (Xt+1, 1). Moreover, since the highest root
of its derivative is again below Xt , it is strictly increasing in [Xt , 1]. Finally, I show that
the second highest root of ft is strictly below Xt+1, so that ft(X ) < 0 for all [Xt+1, Xt ).
Proving this requires keeping track of all the roots.

Proof of Proposition 3. First, note that fT (X ) = X is a polynomial of degree 1, and
each step of the recursion adds one degree, so ft(X ) is a polynomial of degree T + 1 − t,
which I denote by r for brevity. The following two technical lemmas describe the values
of the polynomials ft at 1 and the number of roots at 0.

Lemma 2. ft(1) = 1 for all t = 0, � � � , T .

Proof. ft−1(1) = ft(1) − ntf
′
t (1)1(1 − 1) = ft(1) = fT (1) = 1.

Lemma 3. ft(0) = 0 for all t = 0, � � � , T . Depending on n, there could be either one or two
roots at zero:

(a) If ns = 1 for some s > t, then ft(X ) has exactly two roots at zero.

(b) Otherwise, i.e., if ns 
= 1 for all s > t, then ft(X ) has exactly one root at zero.

Proof. As ft(X ) is a polynomial of degree r = T + 1 − t, it can be expressed as

ft(X ) =
r∑

s=0

ctsX
s ⇒ f ′

t (X ) =
r∑

s=1

ctssX
s−1,

where ct0, � � � , ctr are the coefficients. Therefore,

ft−1(X ) = ct0 +ct1(1−nt )+
r∑

s=2

[
cts(1− snt )+ntc

t
s−1(s−1)

]
Xs +ntc

t
T+1−t(T +1− t )XT+2−t .



Theoretical Economics 19 (2024) Optimal sequential contests 229

As fT (X ) = X , we have that cT0 = 0 and so ct0 = 0 for all t. Therefore, each ft has at least
one root at 0. Next, ft−1(X ) has two roots at zero if and only if ct−1

1 = ct1(1 − nt ) = 0. This
can happen only if either ct1 = 0 (i.e., ft(X ) has two roots at zero) or nt = 1. As fT (X ) =X ,
we have that cT1 = 1 and, therefore, ft(X ) does indeed have two roots at zero if and only
if ns = 1 for some s > t.

Finally, ft−1(X ) would have three roots at zero only if ct−1
2 = ct−1

1 = 0 = ct−1
0 . This

would require that ct−1
2 = ct2(1 − 2nt ) + ntc

t
1 = ct2(1 − 2nt ) = 0. Since 2nt 
= 1, this can

happen only when ct2 = 0. But note that fT−1(X ) = nTX
2 − (1 − nT )X , so that cT−1

2 =
nT 
= 0. Therefore, ft(X ) cannot have more than two roots at zero.

Lemma 4. The leading coefficient of ft is (T − t )!∏T
s=t+1 ns > 0.

Proof. Using the same notation as in Lemma 3, the leading coefficient of ft−1(X ) is
ct−1
r+1 = rntc

t
r = r!∏T

s=t ns.

Now I can proceed with the proof of Proposition 3 itself. The proof uses that fact
that the ft is a polynomial of degree r = T + 1 − t and keeps track of all of its roots. In
particular, it can be expressed as

ft(X ) = ct

r∏
s=1

(X −Xs,t ), (17)

where ct > 0 is the leading coefficient and X1,t , � � � , Xr,t are the r roots. By Lemma 3,
either one or two of these roots are equal to zero. I show by induction that all other roots
are distinct and in (0, 1).

Let us consider the case of a single zero root first, i.e., assume that 0 = X1,t < X2,t <

· · · <Xr,t < 1. We can express the derivative of ft as

f ′
t (X ) = ct

r∑
i=1

∏
s 
=i

(X −Xs,t ).

Therefore, at root Xj,t , the polynomial f ′
t (X ) takes value

f ′
t (Xj,t ) = ct

∏
s 
=j

(Xj,t −Xs,t ). (18)

In particular, at the highest root, f ′
t (Xr,t ) > 0, and at the second highest f ′

t (Xr−1,t ) <
0; therefore, f ′

t must have a root Yr−1,t ∈ (Xr−1,t , Xr,t ). By the same argument, there
must be a root Ys,t of f ′

t between each of the two adjacent distinct roots of ft . As f ′
t is a

polynomial of degree r − 1, this argument implies that all the roots of f ′
t are distinct and

such that

X1,t = 0 <Y1,t < X2,t < Y2,t < · · · <Xr−1,t < Yr−1,t < Xr,t < 1.

In particular, sgn f ′
t (Xs,t ) = sgn ft(Ys,t ) for all s ∈ {1, � � � , r − 1}. Next, note that ft(1) =

1 > 0 and, as the highest root of f ′
t is Yr−1,t < Xr,t , this implies f ′

t (Xr,t ) > 0, and so

ft−1(Xr,t ) = ft(Xr,t ) − ntf
′
t (Xr,t )Xr,t(1 −Xr,t ) < 0.
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Therefore, ft−1 must have a root Xr+1,t−1 ∈ (Xr,t , 1). Now, for each s ∈ {2, r − 1}

ft−1(Ys,t ) = ft(Ys,t ) and ft−1(Xs,t ) = −ntf
′
t (Xs,t )Xs,t(1 −Xs,t ).

Hence, sgn ft−1(Ys,t ) = sgn ft(Ys,t ) = sgn f ′
t (Xs,t ) = −ft−1(Xs,t ). This means that ft−1

must have a root Xs+1,t−1 ∈ (Xs,t , Ys,t ). This argument determines r − 2 distinct roots in
(X2,t , Yr−1,t ). By Lemma 3, ft−1 also has at least one root X1,t−1 = 0.

We have therefore found 1+r−2−1 = r distinct real roots of ft−1 that is a polynomial
of degree r + 1. Thus, the final root X2,t must also be real. By Lemma 3, if nt = 1, then
the ft−1 must have two roots at zero; so, X2,t = 0. Let us consider the remaining case
where nt > 1. By Lemma 3, X2,t 
= 0. To determine its location, consider the function
fXt−1(X ) = ft−1(X )/X . Note that

fXt (X ) = ft(X )
X

= ct
∏
s>0

(X −Xs,t ) ⇒ fXt (0) = ct
∏
s>0

(−Xs,t )

and

f ′
t (0) = ct

∏
s>0

(−Xs,t ).

Therefore,

fXt−1(0) = fXt (0) − ntf
′
t (0)(1 − 0) = ct

∏
s>0

(−Xs,t )[1 − nt ] = f ′
t (0)[1 − nt ].

We assumed that nt > 1; so, sgn fXt−1(0) = − sgn f ′
t (0). Evaluating the function sgn fXt−1 at

Y1,t gives

sgn fXt−1(Y1,t ) = sgn ft(Y1,t ) = sgn f ′
t (X1,t ) = − sgn fXt−1(0).

Hence, fXt−1 must have a root X2,t−1 ∈ (0, Y1,t ). As ft−1(X ) =XfXt−1(X ), it must be a root
of ft−1 as well. We have therefore located all r + 1 roots of ft−1, which are all distinct in
this case.

Let us now get back to the case where ft had two roots at zero. By the same argu-
ment as above, there must be a root of f ′

t between each positive root of ft . As there
are r − 2 positive roots, this determines r − 3 distinct positive roots of f ′

t . It is also
clear that f ′

t must have exactly one root at zero. Polynomial f ′
t has r − 1 roots, and

we have determined that r − 2 of them are real and distinct. Thus, the remaining
root must be real. To determine its location, using the above approach, let fX

′
t (X ) =

f ′
t (X )/X . Then as f ′

t (Xr,t ) > 0, we have fX
′

t (Xr,t ) > 0. Similarly, fX
′

t (Xr−1,t ) < 0,
and so on. In particular, fX

′
t (X3,t ) < 0 if r is even, and fX

′
t (X3,t ) > 0 if r is odd.

Now,

fX
′

t (0) = 2ct
∏
s>2

(−Xs,t ),

which is strictly positive if r is odd and strictly negative if r is even, so that sgn fX
′

t (0) =
− sgn fX

′
t (X3,t ). Hence, fX

′
t must have a root Y2,t ∈ (0, X3,t ). Clearly, this Y2,t is
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also a root of f ′
t (X ) = XfX

′
t (X ). Now we have found all r − 1 roots of polynomial f ′

t

and

X1,t = Y1,t = X2,t = 0 <Y2,t < X3,t < · · · <Xr−1,t < Yr,t < Xr,t .

Again, sgn f ′
t (Xs,t ) = sgn ft(Ys,t ) for all s ∈ {2, � � � , r − 1}.

By the same arguments as above, ft−1 has a root Xr+1,t−1 ∈ (Xr,t , 1) and r − 3 roots
Xs+1,t−1 ∈ (Xs,t , Ys,t ) for each s ∈ {3, r − 1}. Also, by Lemma 3, ft−1 must have two roots
at zero. Therefore, we have determined 1 + r − 3 + 2 = r roots of ft−1, and so the final
root must also be real. The argument for determining this root is similar to the previous
case. Let fX

2

t−1(X ) = ft−1(X )/X2. Then

fX
2

t−1(X ) = fX
2

t (X ) − ntf
X ′
t (X )(1 −X ).

Therefore,

fX
2

t−1(0) = ct
∏
s>2

(−Xs,t )(1 − 2nt ),

so that sgn fX
2

t−1(0) = − sgn fX
′

t (0). Also,

fX
2

t−1(Y2,t ) = fX
2

t (Y2,t ).

Since Y2,t > 0 and X3,t > 0 =X2,t , we have that

sgn fX
2

t−1(Y2,t ) = sgn fX
2

t (Y2,t ) = sgn ft(Y2,t ) = − sgn ft(Y3,t )

= − sgn f ′
t (X3,t ) = − sgn fX

′
t (X3,t ) = sgn fX

′
t (0) = − sgn fX

2

t−1(0).

Therefore, fX
2

t−1 must have a root in (0, Y2,t ) which must also be a root of ft−1. Again, we
have found all r + 1 roots of ft−1.

In all cases, we found that

(a) Xr+1,t−1 ∈ (Xr,t , 1); i.e., indeed the highest root of ft−1 is between the highest root
of ft and 1.

(b) [Xr,t , Xr+1,t−1 ) ⊂ (Xr,t−1, Xr+1,t−1 ), so that ft−1(X ) < 0 for allX ∈ [Xr,t , Xr+1,t−1 ).

(c) By the same argument as above (or by the Gauss–Lucas theorem), Xr+1,t−1 >

Yr,t−1, so that f ′
t−1(X ) > 0 for all X ∈ [Xr+1,t−1, 1].

A.3 Proof of Theorem 1 using Property 1

Lemma 5. Depending on Xt−1, we have two cases:

(a) If Xt−1 < 1, then xi > 0 for all i ∈ It and Xt−1 <Xt < 1.

(b) If Xt−1 ≥ 1, then xi = 0 for all i ∈ It and Xt = Xt−1 ≥ 1.
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In other words, if period t starts with cumulative effort Xt−1 < 1, the players exert
strictly positive efforts, but the cumulative effort stays below 1. Alternatively, if the cu-
mulative effort is already Xt−1 ≥ 1, then all players choose zero effort and, therefore,
Xt = Xt−1 ≥ 1. A straightforward implication of this lemma is that the total effort never
reaches 1 or above in equilibrium, and the individual efforts on the equilibrium path are
always interior (i.e., strictly positive).

Proof. If Xt−1 ≥ 1, then if any player i in period t chooses xi > 0, then Xt > 1 and,
therefore, X ≥Xt > 1, which means that ui(x) < 0. Since player i can ensure zero payoff
by choosing xi = 0, this is a contradiction. So, x∗

i (Xt−1 ) = 0 for all Xt−1 ≥ 1, and thus
Xt =Xt−1 ≥ 1.

Now, take Xt−1 < 1. Suppose by contradiction that it leads to X ≥ 1. This implies
that in some period s ≥ t players chose efforts such that Xs−1 < 1, but Xs ≥ 1. This
means that at least one player i in period s chose xi > 0 and gets a payoff of ui(x) ≤ 0.
Now, there are two cases. First, if the induced total effort X > 1, then player i’s payoff is
strictly negative, and the player could deviate and choose xi = 0 to ensure zero payoff.
On the other hand, if X = 1, which means that Xs = 1, then player i could choose effort
xi/2, thus making Xs < 1 and, therefore, X < 1, ensuring a strictly positive payoff. In
both cases, we arrive at a contradiction. Thus, Xt−1 < 1 implies Xt < 1 and X < 1.

The last step is to show that Xt−1 < 1 implies xi > 0 for all i ∈ It . Suppose that this
is not true, so that xi = 0 for some i. Then player i gets a payoff of 0. But by choosing
x̂i ∈ (0, 1 − Xt ), he can ensure that the cumulative effort X̂t = Xt + x̂i < 1, and thus the
induced total effort X̂ < 1, and the new payoff of player i is strictly positive. This is a
contradiction.

Lemma 6. Xt = ft(X ) is a necessary condition for equilibrium.

Proof. By Lemma 5, we only need to consider the histories with Xt−1 < 1. Moreover,
we know that each player i ∈ It chooses xi > 0, i.e., an interior solution. Player i’s maxi-
mization problem is

max
xi≥0

xi

f−1
t (Xt )

− xt

where Xt = Xt−1 +∑j∈It xj . Therefore, a necessary condition for optimum is

1

f−1
t (Xt )

− 1 + −xi[
f−1
t (Xt )

]2 df−1
t (Xt )
dXt

= 0.

It is convenient to rewrite this condition in terms of the total effort X , taking into ac-
count that X = f−1

t (Xt ) and df−1
t (Xt )/dXt = 1/f ′

t (X ) to get

xi = f ′
t (X )X(1 −X ). (19)

Now, we can add up these necessary conditions for all players i ∈ It and take into ac-
count that ft(X ) =Xt =Xt−1 +∑i∈It xi to get a necessary condition for the equilibrium,
Xt−1 = ft−1(X ), defined by equation (7).
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Lemma 7. Under Property 1, f−1
t−1(Xt−1 ) is well-defined, strictly increasing, and satisfies

f−1
t−1(0) = Xt−1 and f−1

t−1(1) = 1.

Proof. First, note that even if Xt would be 0, the total effort induced by it would not be
zero. In fact, by recursion it is straightforward to show that it would be Xt . For any Xt−1,
therefore, f−1

t−1(Xt−1 ) ≥ Xt . Consequently, X < Xt cannot be the total effort following
any Xt−1.

Moreover, by Property 1, Xt−1 ≥Xt and ft−1(X ) < 0 for all X ∈ [Xt , Xt−1 ); therefore,
total efforts in [Xt , Xt−1 ) range are not consistent with any Xt−1 either. We get that the
only feasible range of the total effort X induced by cumulative effort Xt−1 is [Xt−1, 1].
By Property 1, the function ft−1 is continuously differentiable and strictly increasing in
this range; therefore, the inverse is well-defined, continuously differentiable, and strictly
increasing. Moreover, since ft−1(1) = 1, we have f−1

t−1(1) = 1, and since Xt−1 is a root of
ft−1, we have f−1

t−1(0) = Xt−1.

Lemma 8. The best-response function of player i ∈ It after cumulative effort Xt−1 is

x∗
i (Xt−1 ) =

⎧⎨⎩
1
nt

[
ft
(
f−1
t−1(Xt−1 )

)−Xt−1
] ∀Xt−1 < 1,

0 ∀Xt−1 ≥ 1.
(20)

On the equilibrium path, the individual efforts are x∗
i = n−1

t [ft(X∗ ) − ft−1(X∗ )].

Proof. Lemma 5 proved the claim for any Xt−1 ≥ 1. Take Xt−1 < 1. Then by Lemma 5,
the individual efforts are interior, so they have to satisfy the individual first-order condi-
tions (19). I showed that the total effort induced by Xt−1 must be f−1

t−1(Xt−1 ). Inserting
these results into the individual optimality condition for player i ∈ It , I get

x∗
i (Xt−1 ) = 1

nt

[
ft
(
f−1
t−1(Xt−1 )

)−Xt−1
]
.

In particular, on the equilibrium path, X = X∗ and, therefore, x∗
i = n−1

t [ft(X∗ ) −
ft−1(X∗ )].

So far, the arguments show that necessary conditions for equilibria lead to a unique
candidate for equilibrium—the strategies specified in the theorem. Finally, we have to
check that this is indeed an equilibrium. That is, we need to show that all players are
indeed maximizing their payoffs.

Lemma 9. x∗ is an equilibrium.

Proof. By construction, x∗
i (Xt−1 ) is a local extremum for player i ∈ It , given that the

cumulative effort prior to period t is Xt−1 and all other players behave according to their
equilibrium strategies. Since the local extremum is unique and ensures strictly positive
payoff (which is strictly more than zero from corner solution xi = 0), x∗

i (Xt−1 ) is also the
global maximum. Thus, no player has an incentive to deviate.
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A.4 Proof of the information theorem (Theorem 2)

For any contest n = (n1, � � � , nT ) and any period t ≤ T , let nt = (nt+1, � � � , nT ) denote the
subcontest starting after period t. In particular, nT = ∅ and n0 = n. Note that ft(X )
depends only on nt .

Remember that g1, � � � , gT are recursively defined as g1(X ) = X(1 − X ) and
gk+1(X ) = −g′

k(X )X(1 − X ), so they are independent of n. Also, S(n) = (S1(n), � � � ,
ST (n)) are defined so that Sk(n) is the sum of all products of k-combinations of vector n
and is therefore independent of X . Similarly, S(nt ) is defined in the same way for each
subcontest.

The proof has two key steps. The first step (Lemma 10) shows that we can express the
inverted best-response functions through a weighted sums of measures of information
as in equation (9).

In particular, a sufficient condition that guarantees X∗ is strictly increasing in S(n)
is that each gk(X∗ ) > 0, i.e., the efforts are higher-order strategic substitutes near equi-
librium. The following Property 2 formalizes this idea with a small caveat. Namely,
as we will see below, in the case of fully the sequential contest gn(X∗ ) = 0 and, there-
fore, the strict version of this definition is not satisfied. However, as I will prove, for
any n > 2, it is sufficient that efforts are weak strategic substitutes of level n as defined
below.

Property 2 (Kth-Order Strategic Substitutes Near Equilibrium). Efforts are (weak)
strategic substitutes of level K near equilibrium, if gK(X∗ ) ≥ 0 and gk(X∗ ) > 0 for all
k ∈ {2, � � � , K − 1} at the equilibrium level of total effort X∗. Efforts are strict strategic
substitutes of level K near equilibrium, if they are strategic substitutes of level K and
gK(X∗ ) > 0.

Lemma 10. The function ft(X ) can be expressed as

ft(X ) =X −
T−t∑
k=1

Sk
(
nt
)
gk(X ). (9)

Proof. By construction, the subcontest starting after period T has no players, so
Sk(nT ) = 0 for any k. Therefore, fT (X ) = X satisfies equation (9). Now, suppose that
the characterization holds for ft(X ). Then, since gk+1(X ) = −g′

k(X )X(1 − X ), we get
that

f ′
t (X )X(1 −X ) = X(1 −X ) −X(1 −X )

T−t∑
k=1

Sk
(
nt
)
g′
k(X )

= g1(X ) +
T−t+1∑
k=2

Sk−1
(
nt
)
gk(X ).
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Therefore, ft−1(X ) = ft(X ) − ntf
′
t (X )g(X ) implies that

ft−1(X ) = X −
T−t∑
k=1

Sk
(
nt
)
gk(X ) − ntg1(X ) − nt

T−t+1∑
k=2

Sk−1
(
nt
)
gk(X )

= X − [S1
(
nt
)+ nt

]
g1(X ) −

T−t∑
k=2

[
Sk
(
nt
)+ ntSk−1

(
nt
)]
gk(X )

− ntST−t

(
nt
)
gT+1(X ).

Note that S1(nt ) =∑s>t ns and g1(X ) = g(X ), so that S1(nt ) + nt = S1(nt−1 ). Similarly,
nt−1 = (nt , nt ), so Sk(nt ) includes all k-combinations of nt−1 except the ones involv-
ing nt . Adding ntSk−1(nt ) therefore completes the sum, so that Sk(nt−1 ) = Sk(nt ) +
ntSk−1(nt ). Since ST−t(nt ) = nt+1 � � � nT , we have that ntST−t(nt ) = nt × · · · × nT =
ST−(t−1)(nt−1 ). Therefore, we can express ft−1(X ) as

ft−1(X ) =X −
T−(t−1)∑

k=1

Sk
(
nt−1)gk(X ).

Proposition 4 (Efforts are Higher-Order Strategic Substitutes). Take a contest n with
T ≤ n periods with a positive number of players. Then:

(a) If T < n, efforts are strict strategic substitutes of level T near equilibrium.

(b) If T = n, efforts are weak strategic substitutes of level n near equilibrium.

As the proof is long, I include the proof as a separate subsection below. With these
results, the proof of the information theorem is now straightforward.

Proof of Theorem 2. Take two contests n and n̂ such that S(n̂) > S(n), i.e., Sk(n̂) ≥
Sk(n) for all k and the inequality is strict for at least one k. Let T and T̂ be the number of
periods with strictly positive number of players in contests n and n̂, respectively. Notice
that by assumptions, T ≤ T̂ and Sk(n) = 0 for all k > T . By Theorem 1, the total equi-
librium X∗ is the highest root of f0(X ) in [0, 1]. By Lemma 10, we can express f0(X∗ ),
as

f0
(
X∗)= X∗ −

T∑
k=1

Sk(n)gk
(
X∗)=X∗ −

T̂∑
k=1

Sk(n)gk
(
X∗).

Similarly, let X̂∗ be the total equilibrium effort in contest n̂. It is the highest root of
f̂0(X∗ ) in [0, 1], which we can write as

f̂0
(
X̂∗)= X̂∗ −

T̂∑
k=1

Sk(n̂)gk
(
X̂∗).

Suppose by contradiction that the claim of the theorem does not hold and so X̂∗ ≤ X∗.
Since by Property 1 f̂0 is strictly increasing in [X̂∗, 1], we get that 0 = f̂0(X̂∗ ) ≤ f̂0(X∗ ).
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Therefore,

0 ≤ f̂0
(
X∗)− f0

(
X∗)= −

T̂∑
k=1

[
Sk(n) − Sk(n)

]
gk
(
X∗)].

As Sk(n) ≥ Sk(n) and gk(X∗ ) ≥ 0 for each k ∈ {1, � � � , K}, the sum on the right-hand side
is nonpositive. Moreover, of at least one k, we have Sk(n) > Sk(n). Now, by Proposi-
tion 4, if T̂ < n, the efforts are strict strategic substitutes, so gk(X∗ ) > 0. Therefore, we
get a contradiction.

Finally, suppose that T̂ = n. As the only n-player contest with a positive number of
players in n periods is the fully sequential contest, we must have n̂ = (1, 1, � � � , 1). It is
straightforward to verify that then Sn(n̂) = 1 and Sn−1(n̂) = n. Now, notice that since
the contest n is strictly less informative than n̂, it must have at least one period with
two players. Let us replace it with a new contest n′, where we have split all players into
separate periods and left only one period with two players, i.e., the contest n′ is a permu-
tation of (2, 1, 1, � � � , 1). Clearly, the contest S(n′ ) ≥ S(n). As in both contests n and n′,
the number of periods is strictly less than n, the part of the theorem we already proved
implies that the corresponding equilibrium effort X∗′ ≥X∗.

In contest n′, Sn(n′ ) = 0 < Sn(n̂), Sn−1(n′ ) = 2 < nSn−1, and Sk(n′ ) ≤ Sk(n̂) for all
k < n − 1. As by Proposition 4, the efforts are weak strategic substitutes of level n near
equilibrium, and this proves that X∗ ≤X∗′

< X̂∗ ≤X∗. This is a contradiction.

Remark. The last paragraph of the proof shows why we need the assumption that n > 2.
Otherwise, in two-player contest, the sequential contest implies S(1, 1) = (2, 1) and si-
multaneous contest S(2) = (2, 0). These two contests only differ by the measure of in-
formation of level 2. As the efforts are only weakly strategic substitutes at X∗, the proof
would not be valid. Indeed, it is straightforward to check that with n = 2, X∗ = 0.5 and
g2(0.5) = 0, so the two contests would give the same total effort. With n = 3, this issue
does not arise, as S2(1, 1, 1) = 3 and with any other three-player contest S2(n) ≤ 2.

A.5 Proof that efforts are higher-order strategic substitutes (Proposition 4)

Remember that g1(X ) =X(1 −X ) and gk(X ) = −g′
k−1(X )X(1 −X ) for all k> 1. There-

fore, g1(X ) is a second-degree polynomial, g2(X ) third-degree, and so on. In particu-
lar, gk(X ) is a polynomial of degree k + 1 and, therefore, has up to k + 1 real roots. In
the following, I show that all roots are real and in [0, 1]. Let these roots be denoted as
Z0:k ≤ Z1:k ≤ · · · ≤ Zk:k. The proof keeps track of the order and locations of these roots
and their comparison with X∗.

Proof of Proposition 4. The proof relies on three lemmas that I prove below:

1. Lemma 11 shows that the highest root of gk is Zk:k = 1, the second highest Zk−1:k ∈
(Zk−2:k−1, 1), and gk(X ) > 0 for all X between the highest two roots. Therefore, to
prove that gk(X∗ ) > 0, it suffices to show that X∗ >Zk−1:k.
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2. Lemma 12 establishes a connection between the total equilibrium effort X∗ and
Zk−1:k. It shows that if we take the sequential n-player contest n = (1, � � � , 1), then
fn−k(X ) = gk(X )X/(1 − X ) for all k = 1, � � � , n. Therefore, if we take the fully se-
quential contest with n players, we get f0(X ) = gn(X )X/(1 − X ), and so the total
equilibrium effort X∗ of this contest is exactly equal to the second highest root of
gn, i.e., Zn−1:n.

This proves the “weak” part of the proposition, i.e., if n is fully sequential, then
X∗ = Zn−1:n, which is a root of gn and, therefore, gk(X∗ ) = 0.

3. Lemma 13 shows directly20 that X∗ is strictly increasing in each nt . Therefore, if the
contest is not sequential (nt > 1 for some t), then the total effort in this contest is
strictly higher than in the fully sequential T -player contest. Thus, X∗ >ZT−1:T and
gT (X∗ ) > 0.

4. Finally, Lemma 11 also shows that the adjacent gk’s are interlaced; i.e., the second
highest roots are increasing in k, so that for all k < T , Zk−1:k < ZT−1:T ≤ X∗ and,
therefore, gk(X∗ ) > 0 for all k< T .

Lemma 11. Each gk has the following properties:

(a) gk(1) = g′
k(1) = −1.

(b) gk can be expressed as

gk(X ) = −
k∏

j=0

(X −Zj:k ), (21)

where 0 =Z0:k < Z1:k < · · · <Zk:k = 1.

(c) Zs:k+1 ∈ (Zs−1:k, Zs:k ) for all s = 1, � � � , k.

Proof. First, note that g1(X ) = g(X ) = X(1 − X ) is a polynomial of degree 2. Each
step of the recursion gives a polynomial of one degree higher; i.e., gk(X ) is a polyno-
mial of degree k + 1, so g′

k(X ) is a polynomial of degree k and, therefore, gk+1(X ) =
−g′

k(X )X(1 −X ) is a polynomial of degree k+ 2.

1. gk+1(1) = −g′
k(1)g(1) = 0, because g(1) = 1(1 − 1) = 0. Therefore, g′

k(1) =
−g′′

k−1(1)g(1) − g′(1)g′
k−1(1) = g′

k−1(1) = · · · = g′
1(1) = g′(1) = 1 − 2 · 1 = −1.

2. The claim clearly holds for g1(X ) = X(1 − X ) with Z0:1 = 0 < Z1:1 = 1. Suppose
it holds for k. Since all k + 1 roots of gk are real and in [0, 1], by the Gauss–Lucas
theorem all k roots of g′

k are in (0, 1). Then gk+1(X ) = −g′
k(X )X(1 −X ) clearly has

roots at 0 and 1 and k roots in (0, 1). To see that the roots are all distinct, note that

g′
k(X ) = −

k∑
s=0

∏
j 
=s

(X −Zj:k ).

20Note the first part of Corollary 1 proves the same claim, but since Proposition 4 establishes a sufficient
condition for Theorem 2, and hence its Corollary 1, to avoid a circular argument I prove it here directly.
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Therefore, g′
k(Zs:k ) = −∏j 
=s(Zs:k−Zj:k ), which is strictly negative for s = k, strictly

positive for s = k−1, and so on. Therefore, for each s = 1, � � � , k, function g′
k; hence,

gk+1 also has a root Zs:k+1 = (Zs−1:k, Zs:k ). This determines the k interior roots.

3. The previous argument also proves the last claim.

Lemma 12. If n = (1, � � � , 1), then fn−k(X ) = gk(X )X/(1 −X ) for all k = 1, � � � , T .

Proof. Suppose that n = (1, � � � , 1). First, fn−1(X ) = X − X(1 − X ) = X2 = g1(X )X/

(1 −X ). Now, suppose that fn−k(X ) = gk(X )X/(1 −X ). Then since

d
X

1 −X
dX

X(1 −X ) =
[

1
1 −X

− −X

(1 −X )2

]
X(1 −X ) = X

1 −X
,

we get that

fn−(k+1)(X ) = gk(X )
X

1 −X
− gk(X )

d
X

1 −X
dX

X(1 −X ) − g′
k(X )

X

1 −X
X(1 −X )

= gk+1(X )
X

1 −X
.

Lemma 13. X∗ is strictly increasing in each nt .

Proof. I first show that X∗ is independent of permutations of n. Fix a contest n and a
period t > 1. To shorten the notation, let φt(X ) = f ′

t (X )X(1 −X ):

ft−1(X ) = ft(X ) − ntφt(X ),

f ′
t−1(X ) = f ′

t (X ) − ntφ
′
t(X ) = φt(X )

g(X )
− ntφ

′
t(X ),

ft−2(X ) = ft(X ) − [nt−1 + nt ]φt(X ) + nt−1ntφ
′
t(X )X(1 −X ).

Switching nt−1 and nt in n does not affect ft−2 and, therefore, it also does not affect f0.
This means that any such switch leaves X∗ unaffected, which means that X∗ is indepen-
dent of permutations of n.

To prove that X∗ is strictly increasing in each nt , it therefore suffices to prove that it
is strictly increasing on n1. Take n̂ = (n1 + 1, n2, � � � , nT ). Then f1 is unchanged and the
corresponding f̂0 at the original equilibrium X∗ is

f̂0
(
X∗)= f1

(
X∗)− (n1 + 1)f ′

1
(
X∗)X∗(1 −X∗)= f0

(
X∗)− f ′

1
(
X∗)X∗(1 −X∗)< 0,

because f0(X∗ ) = 0 and f1(X∗ ) > 0 by Property 1. By Property 1, f̂0 is strictly increasing
between its highest root X̂∗ and 1, thus X̂∗ >X∗.
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A.6 Proof of decreasing weights lemma (Lemma 1)

This lemma allows to order some contests, which cannot be ranked according to their
information measures. For example, two 10-player contests n = (5, 5) and n̂ = (8, 1, 1)
have corresponding information measures S(n) = (10, 25) and S(n̂) = (10, 17, 8). Con-
test n has more second-order information, but n̂ has one more disclosure, and thus
more third-order information. However, the sum of all information measures is 10 +
25 = 10 + 17 + 8 = 35. Since the weights are higher in lower-order information, this
implies that the total effort is higher in the first contest. Indeed, direct application The-
orem 1 confirms this, as X∗ = (13 + √

41)/20 ≈ 0.9702 > X̂∗ = (31 + √
241)/48 ≈ 0.9693.

Proof of Lemma 1. By Lemma 12, gk(X ) = f̂n̂−k(X )(1 − X )/X , where f̂n̂−k is defined
for a sequential n̂≥ k-player contest. Similarly, gk−1(X ) = f̂n+1−k(X )(1 −X )/X . There-
fore,

gk−1
(
X∗)− gk

(
X∗)= [f̂n̂+1−k

(
X∗)− f̂n̂−k

(
X∗)]1 −X∗

X∗ = f̂ ′
n̂+1−k

(
X∗)(1 −X∗)2.

Now, take n̂ = T . Then by Lemma 13, X∗ is weakly higher than the highest root of f̂0.
By Property 1, the highest root of f̂T+1−k is even (weakly) lower and f̂T+1−k is strictly
increasing above its highest root, so that f̂ ′

n̂+1−k(X∗ ) > 0. This proves that gk−1(X∗ ) >
gk(X∗ ).

A.7 Proofs of implications of the information theorem (Corollary 1)

Proof of Corollary 1. Take two contests n and n̂ and let X and X̂ be the correspond-
ing total equilibrium efforts.

1. Suppose that n < n̂. Then S(n) < S(n̂) and, therefore, X < X̂ .

2. If n is a permutation of n̂, then S(n) = S(n̂) and, therefore, X = X̂ .

3. If I is a coarser partition than ̂I , then S(n) < S(n̂) and, therefore, X < X̂ .

4. If
∑

t nt =∑t n̂t = n and there exist t, t ′ such that ntnt ′ < n̂tn̂t ′ and ns = n̂s for all
s 
= t, t ′, then by construction S1(n) = S1(n̂) = n and Sk(n) < Sk(n̂) for all k > 1.
Therefore, X < X̂ .

5. Let n = (n). Then for any n̂ 
= n, S(n) < S(n̂), so indeed X is the unique minimum
of X∗ over all contests. Similarly, if n̂ = (1, 1, � � � , 1), any other contest has strictly
lower measures of information and, therefore, X̂ is the unique maximum of X∗
over all contests.

To establish the final claim of the optimality of equal division of players, let n be
n-player contests where players are distributed among at most T periods. Suppose
by contradiction that the corresponding total equilibrium effort X∗ is a maximum
over all such contests and n does not split players as equally as possible. In partic-
ular, let k = �n/T �. Equal split requires that each period has either nt ∈ {k, k + 1}
players. Since this is not the case, there exists a period t where nt ≤ k − 1 and a
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period s where ns ≥ k + 1 (or t, s such that nt ≤ k and ns ≥ k + 2, then the proof is
analogous).

We can now construct a new contest, n̂, where we have moved one player from
period s to period t. Then as ns − 1 ≥ k> nt ,

n̂t n̂s = (nt + 1)(ns − 1) = ntns − nt + ns − 1 > ntns .

Therefore, the contest n̂ is more homogeneous than n and so X < X̂ by the previ-
ous step. Thus, we found a contradiction with the assumption that X is a maximal
total effort among such contests.

A.8 Proof of the earlier-mover advantage (Proposition 1)

Proof of Proposition 1. The equilibrium payoff of player i is ui(x∗ ) = x∗
i (1/X∗ − 1),

so the payoffs are ranked in the same order as the individual efforts (in fact they are
proportional to individual efforts). Therefore, it suffices to prove that if i ∈ It and j ∈
It+1, then x∗

i > x∗
j . Using Theorem 1 and equation (9), the difference in equilibrium

efforts can be expressed as

x∗
i − x∗

j =
T−t∑
k=1

[
Sk
(
nt
)− Sk

(
nt+1)]gk+1

(
X∗).

Now, note that S(nt ) ≥ S(nt+1 ) as there is less information remaining in the game that
starts one period later. Moreover, S1(nt ) > S1(nt+1 ) as nt includes player j, whereas nt+1

does not. Finally, note that by Proposition 4, g2(X∗ ) > 0 and, therefore, x∗
i − x∗

j > 0.

A.9 Proof of the large contests limit (Proposition 2)

Proof of Proposition 2. By Theorem 1, each Xn < 1. Meanwhile, by Theorem 2,
Xn ≥ (n−1)/n, which is the total equilibrium effort of the simultaneous n-player contest
(see Section 3). Therefore, limn→∞ Xn = 1.

The total equilibrium effort of a censored contest nn is the highest root of f0(X ),
which can be expressed by equation (10) as

Xn =
T∑

k=1

Sk
(
nn
)
gk
(
Xn
)
. (22)

For each k, function gk(X ) is a twice continuously differentiable function (a polyno-
mial), gk(1) = 0, and g′

k(1) = −g′′
k−1(1)g(1) − g′

k−1(1)g′(1) = g′
k−1(1) = · · · = g′

1(1) = −1,
as g1(X ) =X(1 −X ). Therefore, for all k > 1,

lim
X→1

gk(X )
X(1 −X )

= lim
X→1

−g′
k−1(X )X(1 −X )

X(1 −X )
= −g′

k−1(1) = 1.

Taking limits from both sides of equation (22) and using the result that limn→∞ Xn = 1,

1 = lim
n→∞Xn = lim

n→∞

T∑
k=1

Sk
(
nn
) gk

(
Xn
)

Xn
(
1 −Xn

)Xn
(
1 −Xn

)= lim
n→∞

(
1 −Xn

) T∑
k=1

Sk
(
nn
)
.
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To shorten the notation, let Sn =∑T
k=1 Sk(nn ). Rearranging the previous equation gives

0 = lim
n→∞

[
1 − (1 −Xn

)
Sn
]= lim

n→∞

[
Xn −

(
1 − 1

Sn

)]
Sn. (23)

We can express Sn =∑T
k=1 Sk(nn ) =∏T

t=1(1 + nkt ) − 1. As limn→∞ Sn = ∞, equation (23)
implies that

lim
n→∞

[
Xn −

(
1 − 1

Sn

)]
= lim

n→∞

⎡⎢⎢⎢⎢⎢⎣Xn −

⎛⎜⎜⎜⎜⎜⎝1 − 1
T∏
t=1

(
1 + nnt

)
⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦= 0.

For individual effort of player i ∈ In
t , we can use Theorem 1 and equation (9) to get

xni = g1
(
Xn
)+ T−t∑

k=1

Sk
(
nt
)
gk+1

(
Xn
)
.

Taking the limit, again using the facts that Xn → 1 and gk+1(Xn )/[Xn(1 −Xn )] → 1,

lim
n→∞xni = lim

n→∞
(
1 −Xn

)[
1 +

T−t∑
k=1

Sk
(
nt
)]

.

Now, note that 1 +∑T−t
k=1 Sk(nt ) =∏T

s=t(1 + nns ). Therefore, using the result from above,
we can express the last equation as

0 = lim
n→∞

[
xni − (1 −Xn

)(
1 +

T−t∑
k=1

Sk
(
nt
))]= lim

n→∞

⎡⎢⎢⎢⎢⎢⎣xni − 1
T∏
s=t

(
1 + nns

)
⎤⎥⎥⎥⎥⎥⎦ .
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