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Regret-free truth-telling in school choice with consent
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Efficiency Adjusted Deferred Acceptance Rule (EDA) is a promising candidate
mechanism for a public school assignment. A potential drawback of EDA is that it
could encourage students to game the system since it is not strategy-proof. How-
ever, to successfully strategize, students typically need information that is unlikely
to be available to them in practice. We model school choice under incomplete in-
formation and show that EDA is regret-free truth-telling, which is a weaker incen-
tive property than strategy-proofness and was introduced by Fernandez (2020).
We also show that there is no efficient matching rule that weakly Pareto domi-
nates a stable matching rule and is regret-free truth-telling. Note that the original
version of EDA by Kesten (2010) weakly Pareto dominates a stable matching rule,
but it is not efficient.
Keywords. School choice, matching, efficiency adjusted deferred acceptance,
regret, manipulation, stable-dominating.
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1. Introduction

Efficiency and fairness are incompatible in the school choice problem.1 The Efficiency
Adjusted Deferred Acceptance Rule (EDA) (Kesten (2010)) elegantly circumvents this in-
compatibility by allowing students to give their consent to relax the fairness constraint.
Its desirable features made EDA a candidate for school assignment in Belgium’s Flanders
region in 2019 (Cerrone, Hermstrüwer, and Kesten (2022)). However, EDA belongs to the
class of stable dominating (matching) rules (Alva and Manjunath (2019a)) of which no
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1A student has justified envy at a matching, if there exists a lower prioritized student assigned to a
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candidate is strategy-proof except the Student-Proposing Deferred Acceptance Rule (DA)
(Alva and Manjunath (2019b)).2, 3 To address possible incentive issues with EDA, we ex-
amine whether it satisfies an incentive criterion by Fernandez (2020) that is weaker than
strategy-proofness and is based on participants’ wish to avoid regret.

We employ a many-to-one school choice model with consent (Kesten (2010)) under
incomplete information, where students can reconsider their admission chances for al-
ternative reports through an observational structure based on the cutoff terminology.
We express each school’s individual priorities over students in the form of scores, and
for each school, the cutoff is the lowest score among all students that have been admit-
ted to that school. Once the final matching has been determined, each student makes
an observation that consists of the final matching and each school’s cutoff and can then
draw inferences about the set of market unknowns that are consistent with her obser-
vation. Our choice of a student’s unknowns is motivated by characteristics common in
the context of public school assignment, which includes other students’ scores and their
reported preferences. Specifically, it is common in practical applications that students’
scores are based on proximity, walk-zone areas, sibling-status, and other socioeconomic
variables. The composition of scores is usually public information, whereas accurate in-
formation on other students’ scores and reported preferences will generally be covered
by privacy protection.

In this framework, we adapt an incentive notion by Fernandez (2020) that is based
on regret. A student regrets her report at an observation if she finds another report that
does not assign her worse for all market unknowns compatible with the observation
and assigns her strictly better for some of the compatible market unknowns. A rule is
regret-free truth-telling if no student ever regrets reporting her preferences truthfully.

The main finding of this paper is that EDA is regret-free truth-telling (Theorem 1)
and that under EDA, truth-telling is the unique option that never leads to regret (Propo-
sition 2). We thus provide an appropriate statement for the intuition that truth-telling
can be a focal strategy under EDA and contribute to the strand of literature that outlines
the many desirable features of EDA for practical implementation. Note that we assume
that students make their inferences subject to the uncertainty and unobservability of
other students’ consents. The described uncertainty plays a key role in the proof of The-
orem 1.

We also study stable dominating rules without consent decisions. Under these rules,
students indicate only their preference rankings over schools—so there is no uncer-
tainty about the consent decisions of other students. As argued by Alva and Manju-
nath (2019a), stable dominating rules without consent decisions address the efficiency

2A matching rule is stable if it produces outcomes that are fair, individually rational, and non-wasteful.
A matching is nonwasteful if there is no object that is unassigned although there is an agent that prefers
it over her assignment. A matching is individually rational if no agent prefers her outside option over her
final assignment. A stable dominating rule always implements a matching that weakly Pareto dominates a
stable matching (Alva and Manjunath (2019a)).

3Strategy-proofness requires that it is a weakly dominant strategy for students to report their true prefer-
ences. DA was introduced by Gale and Shapley (1962) and shown to be strategy-proof by Dubins and Freed-
man (1981) and Roth (1982). For related results regarding the incompatibility of strategy-proofness with
rules that Pareto dominate DA, see also Abdulkadiroğlu, Pathak, and Roth (2009), Erdil and Ergin (2008), or
Kesten (2010).
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and fairness trade-off as follows: Students who complain that they experienced justified
envy under a matching can always be offered a corrective, namely the stable matching
that the implemented matching Pareto dominates. Since the corrective makes all stu-
dents, including the students who complain, weakly worse off, it does not pay off to
complain.

We show that there is a stable dominating rule without consent decisions that is not
equivalent to DA and that is regret-free truth-telling (Proposition 3). However, we also
show that stable dominating rules that are regret-free truth-telling cannot be efficient
(Theorem 2). Stable dominating rules that are efficient contain some interesting candi-
dates for practical applications such as a version of EDA that improves to the efficiency
frontier without students’ consents. Note that the original version of EDA, for which
Theorem 1 is satisfied, is not efficient since it respects improvements on efficiency only
with students’ consents.

Related literature

To our knowledge, Fernandez (2020) is the first to introduce regret-based incentives in
the matching literature.4 In marriage markets, Fernandez (2020) shows that truth-telling
is the unique regret-free strategy under DA for both men and women and that DA is the
unique regret-free truth-telling rule among a class of stable rules. In college admission,
the student-proposing variant of DA remains regret-free truth-telling. However, under
the college-proposing variant of DA, being truthful does not need to be free of regret for
colleges. The key difference between our work and that of Fernandez (2020) is that in
our contribution only the students are strategic. Moreover, whereas in Fernandez (2020)
participants only observe the realized matching, students in our model additionally ob-
serve cutoffs.

This paper mainly contributes to the literature that deepens the understanding of
EDA’s incentive properties. Our results complement those of Troyan and Morrill (2020),
who show that for cognitively limited participants beneficial misreporting under EDA
is not obvious in the following sense: a profitable misreport is an obvious manipula-
tion if the best-case outcome of the misreport is better than the best-case outcome of
telling the truth, or if the worst-case outcome of the misreport is better than the worst-
case outcome of telling the truth. The main difference between our work and that of
Troyan and Morrill (2020) concerns the source of uncertainty that students face. A prof-
itable misreport is obvious if it is easy to recognize for students whose knowledge on
the matching rule is imperfect, given that these students have full access to the scores of
other students. That is, nonobvious manipulability is mainly driven by participants’ lim-
ited understanding of the matching rule. By contrast, students in our model know how
the matching rule works and our results are driven by students’ incomplete access to the
scores of other students. Notably, the positive result of Troyan and Morrill (2020) covers

4Regret-based incentives have a long tradition in economic theory. For instance, in auction theory,
regret-based incentives of bidders in first-price auctions have been studied by Filiz-Ozbay and Ozbay (2007)
and Engelbrecht-Wiggans (1989). For a more detailed discussion, we refer to Fernandez (2020). See Gilovich
and Medvec (1995) and Zeelenberg and Pieters (2007) for psychological treatments of regret.
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both EDA and stable dominating rules, where we reach a negative result for efficient
stable dominating rules.

Previous results on EDA’s incentive properties are inspired by the theoretical bench-
mark for low information environments from Roth and Rothblum (1999) and Ehlers
(2008). Kesten (2010) studies Bayesian incentives of EDA in a setting where it is com-
mon knowledge that students’ preferences over schools are ordered into shared quality
classes and students’ beliefs on how other students order schools within each quality
class are symmetrically distributed. Kesten (2010) shows that if other students submit
their true preferences, then truth-telling stochastically dominates any other strategy.
The key difference to our model is that we do not specify any prior probability distribu-
tion regarding the beliefs or distribution on other participants’ preferences, and thus do
not impose any symmetry assumptions or correlation of preferences over schools. Thus,
in contrast to the approach of Kesten (2010) our informational environment follows the
“Wilson doctrine” (Wilson (1987)).

Related to our work are also some more recent findings on EDA’s incentive fea-
tures. Reny (2022) shows that under EDA, truth-telling is a maxmin optimal strategy
for students that do not know other students’ preferences. Decerf and Van der Linden
(2021) find that rules that Pareto dominate DA are harder to manipulate than the well-
known Boston mechanism. Finally, a recent experiment on manipulation under EDA
by Cerrone, Hermstrüwer, and Kesten (2022) revealed that different variants of EDA
yield higher rates of truth-telling than DA in environments with strategic uncertainty,
complete information about the primitives, and given that students are not allowed to
truncate.

More generally, the theoretical literature on EDA is growing rapidly as well. Tang and
Yu (2014), Ehlers and Morrill (2020), Bando (2014), and Dur, Gitmez, and Yılmaz (2019)
have recently developed tractable alternatives to Kesten’s initial formulation of EDA.
Ehlers and Morrill (2020) generalize EDA to a school choice model where school pri-
orities take the form of flexible choice functions and Kwon and Shorrer (2019) propose a
version of EDA for organ exchange. EDA also manages to satisfy some reasonable weaker
alternatives to fairness in the sense of Abdulkadiroğlu and Sönmez (2003) including,
for example, guaranteed selection of essentially stable matchings (Troyan, Delacrétaz,
and Kloosterman (2020)), priority-neutral matchings (Reny (2022)), and legal matchings
(Ehlers and Morrill (2020)).

Finally, this work also adds to the literature examining the impact of behavioral bi-
ases on decision making in school choice. Meisner and von Wangenheim (2023) and
Dreyfuss, Heffetz, and Rabin (2022) show that students not playing truthfully under the
student-proposing variant of DA can be explained by students being loss averse. The
influence of students’ overconfidence is examined by Pan (2019).

The rest of this paper is organized as follows. We introduce the basic model and
EDA in Section 2. We model the informational environment and adapt regret-free
truth-telling in Section 3. In Section 4, we present our main results. Our analysis re-
garding stable dominating rules without consent option is provided in Section 5. In
Section 6, we give a brief discussion of how our key assumptions influence the re-
sults. Finally, Section 7 gives a short conclusion. The Appendix contains most of our
proofs.
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2. The model

There is a finite set of students I and a finite set of schools S. Each school s ∈ S has a
fixed capacity qs and we collect the capacities in q = (qs )s∈S . We add a common outside
option s∅ for students that has infinite capacity.

Each school s ∈ S has a vector of scores gs = {gsi }i∈I , where gsi ∈ (0, 1) is i’s score at s.
We assume that gsi �= gsj for any i, j ∈ I, and any s ∈ S, and we say that for each pair of
students i, j ∈ I, i has higher priority at s than j if and only if gsi > gsj . That is, for each

school s, the school’s scores induce a strict priority ranking over I.5 For each i ∈ I, let
gi = {gsi }s∈S be the vector of scores assigned to student i. Let a score structure g = (gi )i∈I
be a collection of scores for each student and let g−i = (gj )j∈I\{i} be a collection of scores
for students in I \ {i}. Moreover, set GI as the domain of all possible score structures and
G−i as the domain of all score structures for students other than i.

For each student i ∈ I, let �i be a strict preference relation over S ∪ {s∅}. The corre-
sponding weak preference relation of �i is denoted by �i.6 Let P denote the set of all
possible strict preference relations over S ∪ {s∅}. For any �i∈ P , a school s is acceptable
to i if s �i s∅ and unacceptable if it is not acceptable. A preference profile �= (�i )i∈I is a
realization of P for each i ∈ I and �−i= (�j )j∈I\{i} is a preference profile for students in
I \ {i}. We define PI as the domain of all preference profiles and P−i as the domain of all
preference profiles for students in I \ {i}.

A matching μ : I → S ∪ {s∅} is a function such that for each s ∈ S, |μ−1(s)| ≤ qs. Given
any μ, we set μi = μ(i) as the assignment of i and μs = μ−1(s) as the set of students
assigned to s. Denote the set of all possible matchings by M.

In the following, fix any �∈ PI . We say a matching μ weakly Pareto dominates an-
other matching μ′ if for all i ∈ I, μi �i μ

′
i. A matching μ Pareto dominates μ′ if μ weakly

Pareto dominates μ′ and for some j ∈ I, μj �j μ
′
j . A matching μ is Pareto efficient if there

does not exist another matching μ′ that Pareto dominates μ.
We now introduce two fairness notions, where we start with the well-known notion

by Abdulkadiroğlu and Sönmez (2003). Given a matching μ, student i has justified envy
toward student j at school μj under μ if μj �i μi and g

μj

i > g
μj

j . A matching μ is fair if no
student has justified envy at μ. A matching μ is individually rational if for each student
the assigned school is acceptable to her. A matching μ is nonwasteful if there does not
exist a student i and a school s, such that s �i μi and |μs| < qs. A matching μ is stable if
it is fair, individually rational and nonwasteful.

We also consider a weaker fairness notion that was introduced by Kesten (2010). The
notion takes students’ willingness to consent for being exposed to justified envy into ac-
count. For each student i, the consent is parameterized by a binary variable ci ∈ {0, 1},
where ci = 1 means that i consents and ci = 0 means that i does not consent. We say a
matching μ violates the priority of student i given ci if ci = 0 and if there exists another
student j ∈ I such that i has justified envy toward j at μ. Let c = (ci )i∈I be a consent pro-
file and let CI be the domain of all consent profiles. Denote a consent profile of students

5The incomplete information framework we introduce in Section 3 allows students to draw inferences
about their admission chances. Our formulation of scores will then ensure that a student typically cannot
infer her exact rank on a school’s priority list just on the basis of her own score.

6That is, for all s, s′ ∈ S, s �i s
′ if either s �i s

′ or s = s′.
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other than i by c−i = (cj )j∈I\{i} and the respective domain by C−i. Given a matching μ,
a profile of preferences � and a consent profile c, we say that a matching is fair with
consent if there exists no student whose priority is violated at μ.

We call a collection (I, S, q, g, �, c) a school choice problem with consent (or simply
a problem). A report of student i is pair (�̃i, c̃i ) ∈ P × {0, 1} and a report profile is a pair
(�̃, c̃) ∈ PI × CI . Analogously, let (�̃−i, c̃−i ) ∈ P−i × C−i be a report profile of students
except i.

A matching rule f maps any problem into a matching. Throughout, we often restrict
attention to f for a given triple (I ′, S′, q′ ). To simplify notation, we therefore omit the ar-
guments (I ′, S′, q′ ) from f and denote with f (g′, �′, c′ ) the outcome of f given a problem
(I ′, S′, q′, g′, �′, c′ ). For each i ∈ I, let fi(g′, �′, c′ ) denote student i’s respective assign-
ment. If the rule does not take consent decisions into consideration, we write f (g′, �′ )
instead of f (g′, �′, c′ ). A rule f is Pareto efficient if it produces a Pareto efficient match-
ing for any problem. Similarly, a rule is stable if it produces a stable matching for any
problem. A rule f is stable dominating (Alva and Manjunath (2019a)) if for any prob-
lem (I ′, S′, q′, g′, �′, c′ ) the matching f (g′, �′, c′ ) weakly Pareto dominates a matching
μ ∈ M given �′, where μ is stable with respect to (g′, �′ ).

We proceed with the description of two incentive notions for students. A matching
rule f is consent-invariant if for any problem (I′, S′, q′, g′, �′, c′ ), it holds that fi(g′, �′
, (c′

i, c
′
−i )) = fi(g′, �′, (c̃i, c′

−i )) for all i ∈ I ′ and c̃i �= c′
i. That is, each student’s assign-

ment is independent of her own consent decision. Note that the rules studied in this
paper are all consent-invariant. A matching rule f is strategy-proof, if for any problem
(I ′, S′, q′, g′, �′, c′ ), it holds that fi(g′, (�′

i, �′
−i ), c′ ) �i fi(g′, (�̃i, �′

−i ), c′ ) for all i ∈ I ′ and
all �̃i ∈ P . That means, for each student, reporting her true preferences is weakly better
than reporting preferences untruthfully regardless of other students’ reports. Through-
out the main body, we fix a problem (I, S, q, g, �, c).

2.1 EDA

In this subsection, we present Kesten’s EDA along with our first result. EDA inputs a
report profile (�, c) and produces an outcome where no student who decided not to
consent experiences justified envy. EDA is stable dominating and essentially iteratively
runs DA presented in Appendix A. Specifically, in the DA application process, a pair
(i, s) ∈ I × S is an interrupting pair at step t ′ if (1) student i is tentatively accepted by
s at some step t and is then rejected by s at the later step t ′; and (2) another student is
rejected by s at some step t∗ with t ≤ t∗ < t ′. We also refer to i as an interrupter for s at
step t ′. The formal description of the algorithm that induces EDA as in Kesten (2010)
is provided below, while the alternative top priority algorithm (Dur, Gitmez, and Yılmaz
(2019)) used in most of the proofs can be found in Appendix A. Given any input report
profile, EDA yields the outcome via the following procedure:

Round 0 Run DA.
Round k, k≥ 1 Consider the application process of DA in round k−1. If there are inter-

rupting pairs where the interrupter consents, find the last step of this process where a
consenting interrupter is rejected by the school for which she is an interrupter. At that
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step, collect all interrupting pairs with a consenting interrupter. For each collected
pair (i, s), remove s from i’s input preferences of round k − 1 and keep the relative
ranking of all other schools as before. For all other students, keep their input prefer-
ences the same as in round k − 1. Then run DA with the updated preference profile
and proceed to round k+ 1. If there are no interrupting pairs with a consenting inter-
rupter, the algorithm terminates with the DA outcome of round k− 1.

We now move to our discussion on EDA’s incentive property that is known to be consent-
invariant but not strategy-proof (Kesten (2010)). Our first result, Proposition 1, states
that a certain class of deviations of a student does not affect her own assignment. For
any preference relation �i∈ P and school s ∈ S, let the weak lower contour set of �i with
respect to s be L

�i
s = {s′ ∈ S|s �i s

′}.

Proposition 1. If EDA(g, �, c) = μ and �̃i ∈ P is such that for all s, s′ ∈ L
�i
μi , s �i s

′ only
if s�̃is

′, then EDAi(g, (�̃i, �−i ), c) = μi.

Proof. See Appendix B.

In words, Proposition 1 shows that if a student’s deviation from her baseline re-
port keeps the order of the schools in the lower contour set with respect to the base-
line assignment, then it yields the same outcome for the deviating student. The set
of deviations considered in Proposition 1 is a subset of monotonic transformations at
the student’s baseline assignment. Formally, �′

i is a monotonic transformation of �i at
s ∈ S ∪ {s∅}, if s′ �′

i s implies that s′ �i s. As will be evident from Section 4, Proposition 1
cannot be generalized to hold for all monotonic transformations at μi.

3. Regret in school choice

In this section, we introduce the informational environment and regret-based incen-
tives. We first describe the students’ information and impose an observational struc-
ture. Assume that before submitting the report, each student i knows (I, S, q, gi ) and the
matching rule f . After assignments have been determined by f , each student observes
the matching and the cutoff at each school, that is, the lowest score among all students
matched to the school. More formally, given a report profile (�̂, ĉ), student i observes
μ = f (g, �̂, ĉ) and for each school s ∈ S ∪ {s∅}, she observes πs(μ, g) = mini∈μs g

s
i when

|μs| = qs and πs(μ, g) = 0 otherwise. Let π(μ, g) = {πs(μ, g)}s∈S∪{s∅} and let an observa-
tion of student i be captured by (μ, π(μ, g)).

Next, define any triple (g′
−i, �′

−i, c
′
−i ) ∈ G−i × P−i × C−i as a scenario for student i. If

i submits (�̂i, ĉi ) and observes (μ, π(μ, g)), then scenario (g′
−i, �′

−i, c
′
−i ) is plausible if

π(μ, g) = π(μ, (gi, g′
−i )) and f ((gi, g′

−i ), (�̂i, �′
−i ), (ĉi, c′

−i )) = μ. The set of all plausible
scenarios for student i is her inference set I(μ, �̂i, ĉi ). Moreover, for student i ∈ I who
reports (�̂i, ĉi ) to f , let

M|(�̂i , ĉi ) = {
μ ∈ M|∃(�′

−i, c
′
−i

) ∈ P−i × C−i : f
(
g,

(�̂i, �′
−i

)
,
(
ĉi, c

′
−i

)) = μ
}
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be the set of matchings that could be observed by student i. Note that g is fixed in
M|(�̂i , ĉi ), since it is a primitive of the market and independent of the report profile.

Having defined our observational structure, we are ready to introduce the notions
of regret and regret-free truth-telling adapted from Fernandez (2020). Recall that all
matching rules we study are consent-invariant. To simplify our notation, we therefore
define regret with a fixed consent decision for the student under consideration. Note,
however, that for rules that are not consent-invariant one may define regret with respect
to a pair of a consent decision and a preference ranking.

Definition 1. Fix consent decision ĉi. Student i regrets submitting �̂i at μ ∈ M|(�̂i , ĉi )

through �∗
i under f if:

(i) ∀(g′
−i, �′

−i, c
′
−i ) ∈ I(μ, �̂i, ĉi ): fi((gi, g′

−i ), (�∗
i , �′

−i ), (ĉi, c′
−i )) �i μi;

(ii) ∃(g̃−i, �̃−i, c̃−i ) ∈ I(μ, �̂i, ĉi ): fi((gi, g̃−i ), (�∗
i , �̃−i ), (ĉi, c̃−i )) �i μi.

In words, a student regrets her report at an observation if there is an alternative re-
port that guarantees her a weakly better assignment in all plausible scenarios and real-
izes a strict improvement in at least one plausible scenario.

Definition 2. Fix consent decision ĉi. A report �̂i is regret-free under f if there does
not exist a pair (μ, �∗

i ) ∈ M|(�̂i , ĉi ) ×P such that i regrets �̂i at μ through �∗
i .

That is, a regret-free report ensures that regardless of the realized observation, the
student does not regret her report.

We only consider matching rules that are invariant in the unacceptable set and de-
fine reported preferences as truth-telling if they differ from a student’s true preferences
only in the order within the unacceptable set.

Definition 3. A matching rule f is regret-free truth-telling if for each problem and for
each student, truth-telling is regret-free under f .

Strategy-proofness is stronger than regret-free truth-telling. That is, once truth-
telling is weakly dominant under a rule, it is regret-free. However, the converse is not
true. Specifically, strategy-proofness means that truth-telling is the weakly best option
under any scenario, whereas regret-freeness only needs that, given a student’s observa-
tion, no other report weakly dominates the truth given the plausible scenarios.

4. Main results

In this section, we present our main result. We show that a student can avoid regret
under EDA if she submits her true preferences (Theorem 1) and that there is no other
reporting behavior that provides the same guarantee (Proposition 2).

Theorem 1. EDA is regret-free truth-telling.

Proof. See Appendix C.
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The following exposition provides an overview of the main arguments used in the
formal proof. Fix any student i ∈ I, suppose that she reports her true preferences �i, and
she observes (μ, π(μ, g)). Then any misreport �̃i can be interpreted as a combination
of the following types of variations, where relative to �i:

(A1) for all s, s′ ∈ S, s �i s
′ and s′�̃is only if s ∈ S \L�i

μi ;

(A2) there exists s′ ∈ S such that μi �i s
′ and s′�̃iμi, or;

(A3) there exists s, s′ ∈L
�i
μi such that s, s′ ∈L

�̃i
μi , s �i s

′, and s′�̃is.

Type (A1) involves all variations relative to �i that keep the same ranking of all
schools that are truly less preferred to μi. Type (A2) considers the misreports that rank
some schools that are truly less preferred to μi as more preferred and (A3) considers the
misreports that alter the rankings among the schools that are truly less preferred to μi.

First, note that any variation �̃i of type (A1) relates to Proposition 1. If (g̃−i, �̃−i, c̃−i )
is plausible, then we have EDA((gi, g̃−i ), (�̃i, �̃−i ), (ci, c̃−i )) = μ, and we can apply
Proposition 1 to obtain EDAi((gi, g̃−i ), (�̃i, �̃−i ), (ci, c̃−i )) = μi.

Next, let student i choose a misreport �̃i that contains variations of type (A2) and
let S̃ = {s′ ∈ S|μi �i s

′ and s′�̃iμi}. The key arguments in the proof can roughly be di-
vided into two categories: The submission of �̃i either would not have effectively in-
fluenced the assignment process at all, meaning i’s assignment remains μi; or there is
at least one plausible scenario in which the student is finally assigned to some s∗ ∈ S̃.
Here, we discuss the latter and more interesting case. The starting point of our argu-
ment is to construct a plausible scenario (g̃−i, �̃−i, c̃−i ) where i is assigned to s∗ under
DA((gi, g̃−i ), (�̃i, �̃−i )). Then we show that either the potential improvements that in-
volve i cannot be realized because the consent of a student is missing; or there is no
student who prefers s∗ to her assignment under DA((gi, g̃−i ), (�̃i, �̃−i )). The key chal-
lenge is that the construction of the scenario must be carefully tailored to the inferences
the student draws from observed cutoffs.7

Intuitively, given strategy-proofness of DA, what would allow student i to benefit
from misreporting under EDA is that relative to the process under truth, (1) i’s appli-
cation at s∗ creates a last rejected interrupting pair and (2) the created interrupter con-
sents. In this case, the induced inefficiency under DA may lead student i to improve
upon s∗ to some school preferred to μi under EDA. However, there always exists a plau-
sible scenario for student i where (1) or (2) cannot be satisfied, under which i is assigned
to s∗ and worse off compared to μi. Section 6 discusses in more detail in which cases the
uncertainty about other students’ consent decisions is needed for the result.

Finally, suppose that the misreport �̃i contains variations of type (A3). The key
argument for such a misreport is similar to that for (A2): By submitting �̃i, student
i faces the possibility to be assigned to a less preferred school s∗ whose order is per-
muted in �̃i and for which there is no student who prefers s∗ to her assignment un-
der DA((gi, g̃−i ), (�̃i, �̃−i )). However, different from (A2), here the target school s∗ still

7For instance, the observed cutoffs are crucial for student i to learn whether she has justified envy toward
another student. In this case, any plausible scenario must reflect that the envied student benefits from
student i being a last rejected consenting interrupter.
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ranks below μi on �̃i and its identification depends on its relative position to i’s DA
assignment on �i and �̃i. This difference brings an additional challenge to the proof.
While for (A2) it is enough to consider a plausible scenario where under truth-telling,
i was already assigned to μi under DA, for (A3) we need to construct a scenario where
under truth-telling the updating procedure of EDA improves student i from some school
to μi.

Our final result in this section shows that truth-telling is the unique regret-free
choice under EDA.

Proposition 2. For any nontruthful report, there exists an observation at which the stu-
dent regrets it through truth-telling.

Proof. See Appendix D.

At first glance, it might appear that Proposition 1 and Proposition 2 are in conflict
with each other. However, Proposition 1 only implies that a certain class of misreports
does not change the student’s assignment when we fixed an observation that follows
from her true preferences. In Proposition 2, however, the observation is not fixed. In-
stead, we show that given any nontruthful report, we can find a corresponding observa-
tion, such that truth-telling guarantees weakly better assignments in all plausible sce-
narios.

As an intuition for Proposition 2, note that for every misreport there must exist a
pair, say school s and s̃, that compared to the truth, reverse their rankings. Let student
i prefer s to s̃ under truth. Now, suppose that upon submission of the misreport, she is
assigned to s̃ while a seat at s is vacant. Note that the vacant seat at s allows i to infer that
the truth would have guaranteed her at worst s. As a result, she will regret not having
been truthful. The key step in the proof is to construct an observation of the type just
described for any misreport.

5. Stable dominating rules without consent decisions

In this section, we focus on stable dominating rules without consent decisions. That is,
unlike under the version of EDA examined in the previous section, consent decisions
are not reported for this class of stable dominating rules. This also means that students
face no uncertainty regarding the consent decisions of other students. Accordingly, we
modify the elements of the basic framework presented in Section 3 to reflect the removal
of the consent decisions. To exemplify this point, let a scenario for student i reduce to a
pair (g̃−i, �̃−i ) ∈ G−i ×P−i and denote i’s inference set with I(μ, �i ).

For our main negative result, we refine the set of stable dominating rules and con-
sider only candidates that are efficient. A matching rule is efficient stable dominating
if it is stable dominating and Pareto efficient. Since efficient stable dominating rules
are stable dominating, it follows from Alva and Manjunath (2019b) that none of them is
strategy-proof. As we will show below, for efficient stable dominating rules, also regret-
free truth-telling cannot be satisfied.
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Theorem 2. No efficient stable dominating rule is regret-free truth-telling.

The proof is constructive. We provide a problem with |S| = 2 and |I| = 3, and show
that a student regrets submitting her true preferences under any efficient stable dom-
inating rule. We only need small adjustments in the construction to apply the basic
argument to markets with |S| ≥ 2 and |I| ≥ 3.

Proof. Consider a problem (I, S, q, g, �) with two schools S = {s1, s2} with capacities
qs1 = qs2 = 1 and three students I = {i1, i2, i3}. Suppose that i1’s true preferences �i1

are s2 �i1 s∅ �i1 s1. Also, let �−i∈ P−i satisfy s1 �i2 s2 �i2 s∅ and s2 �i3 s1 �i3 s∅. Next,
consider score structure g with gs1

i1
> gs1

i3
> gs1

i2
and gs2

i2
> gs2

i1
> gs2

i3
. Note that the unique

stable matching with respect to � is ν = {(i1, s∅ ), (i2, s2 ), (i3, s1 )}, and that matching μ =
{(i1, s∅ ), (i2, s1 ), (i3, s2 )} is the unique Pareto efficient matching that Pareto dominates
ν. Thus, for an arbitrary efficient stable dominating rule, denoted by fESD, we must have
fESD(�) = μ.

In the following, we construct a misreport �̃i1 through which i1 regrets �i1 at obser-
vation (μ, π(μ, g)). Before we can make this misreport explicit, we need to describe i1’s
inference set I(μ, �i1 ). To start, note that gs1

i1
> πs1 (μ, g) and gs2

i1
> πs2 (μ, g). We now

show that any ˜gs2 must share its ordinal ranking with gs2 for any plausible score struc-
ture g̃−i. First, from the observation (μ, π(μ, g)) student i1 observes that her top choice
s2 is assigned to a lower priority student i3, that is, g̃s2

i1
> g̃s2

i3
. Second, if i1 would have

top priority at s2 this would imply that i1 is assigned to s2 under any stable matching ν′
whenever s2 is submitted as her top choice. Thus, this must also hold true for any Pareto
efficient matching μ′ that improves on ν′, and hence i1 can infer that student i2 must
have top priority at s2. In conclusion, for any plausible (g̃−i1 , �̃−i1 ), the corresponding
g̃s2 shares the same ordinal ranking with gs2 .

Next, given g̃s2 , it must hold �̃i2 =�i2 . First, i2 must submit s2 as acceptable since
otherwise any stable matching would assign s2 to i1. Therefore, i1 knows s2�̃i2s∅. Sec-
ond, note that since i2 has top priority at s2, fESD would have assigned s2 to i2 if i2 would
have submitted s2 as her top choice. Thus, i1 knows s1�̃i2s2. Combining the two re-
lations, i1 can infer that �̃i2 =�i2 is the unique candidate contained in any plausible
(g̃−i1 , �̃−i1 ).

Now, we describe the candidates for g̃s1 . First, by observing (μ, π(μ, g)), student i1
knows that s1 is assigned to the lower priority student i2, that is, g̃s1

i1
> g̃s1

i2
. Second, we es-

tablish that given the information regarding g̃s2 and �̃i2 , we must have g̃s1
i3
> g̃s1

i2
. Suppose

by contradiction that g̃s1
i2
> g̃s1

i3
. In this case, in fESD, i1 and i2 must be assigned to their

top choices s2 and s1, respectively. However, this is incompatible with μ. Thus, there are
two remaining ordinal rankings g̃s1

i1
> g̃s1

i3
> g̃s1

i2
and g̃s1

i3
> g̃s1

i1
> g̃s1

i2
that are compatible

with any plausible scenario (g̃−i1 , �̃−i1 ).
We show that only �̃i3 =�i3 is compatible with i1’s observation. First, since i3 is as-

signed to s2 in μ, student i1 can conclude that s2�̃i3s∅. If i3 would have submitted s∅�̃i3s1,
then any stable matching would have assigned both i1 and i2 to their top choices, which
is incompatible with the observation. Thus, it must be true that s1�̃i3s∅. Furthermore,
suppose by contradiction that s1�̃i3s2. Given that s∅ �i1 s1 and g̃s1

i3
> g̃s1

i2
, student i3 is
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assigned to s1 under fESD, which is again incompatible with observing μ. Hence, stu-
dent i3 can only have submitted �̃i3 =�i3 . As a result, we can classify i1’s inference set
I(μ, �i1 ) into two cases that are distinguished by the remaining candidates of ordinal
rankings for scores at s1.

We now show that i1 regrets reporting the truth �i1 at (μ, π(μ, g)) through �̃i1 :
s2�̃i1s1�̃i1s∅. We establish that among the two possible classes from the inference set,
in one class i1 is strictly better off through the misreport and she is not worse off in the
remaining class.

First, suppose that (g̃−i1 , �̃−i1 ) ∈ I(μ, �i1 ) satisfies g̃s1
i1
> g̃s1

i3
> g̃s1

i2
. In this case, we

argue that fESD must assign i1 to s2 when i1 submits �̃i. Hence, student i1 would strictly
improve her assignment from s∅ under truth-telling to her top choice s2.

We first show that there is a unique stable matching ν̃ = {(i1, s1 ), (i2, s2 ), (i3, s∅ )}.
Note that in any stable matching i1 cannot be assigned to s∅, since i1 would have justified
envy at s1. This implies that whenever i1 is not assigned to s2, she must be assigned
to s1. Furthermore, if i1 is matched with s2, then i2 must be assigned to s1, which would
mean that i3 has justified envy at s1. Thus, the unique stable matching corresponds
to ν̃. Hence, any efficient stable dominating rule selects μ̃ = {(i1, s2 ), (i2, s1 ), (i3, s∅ )}
since it is the only Pareto efficient matching that dominates ν̃. Thus, we conclude that
conditional on her observation (μ, π(μ, g)), in this scenario, i1 would have been better
off if she had reported �̃i1 to fESD.

It remains to show that given (g̃−i1 , �̃−i1 ) ∈ I(μ, �i1 ) with g̃s1
i3
> g̃s1

i1
> g̃s1

i2
, student i1

is not assigned to a worse option than under truth-telling (namely s1). Clearly, in this
case the unique stable matching is ν, while the unique matching that Pareto dominates
ν is μ. Therefore, i1 will be assigned to s∅ under fESD, which is the same assignment as
under true preferences.

Since the choice of fESD was arbitrary, we have shown that for any efficient sta-
ble dominating rule, student i1 regrets reporting the truth �i1 through misreport �̃i1

at (μ, π(μ, g)). This completes the proof.

Theorem 2 cannot be generalized to hold for all stable dominating rules without
consent decisions and that are different from DA.

Proposition 3. There exists a nonstable and nonefficient stable dominating rule with-
out consent decisions that is regret-free truth-telling.

Proof. See Appendix E.

The rule we construct in the proof of Proposition 3 always selects the DA outcome
except when the input is the same as under the problem studied in the proof of Theo-
rem 2, where it selects an unstable but efficient matching.

As a final remark, note that not all nonstable and nonefficient stable dominating
rules are regret-free truth-telling. An example is a modification of the efficient stable
dominating DA+TTC, which first runs DA, then gives each student her matched school
as an endowment and runs the Top Trading Cycles (TTC) algorithm by Shapley and Scarf
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(1974). More precisely, consider a nonefficient variant of DA+TTC where only cycles
that contain exactly two students are executed. A brief inspection of the proof of Theo-
rem 2 shows that this variant of DA+TTC coincides with an efficient stable dominating
rule in the relevant cases and the proof can be applied directly.

6. Discussion

As we remarked in Section 4, a necessary condition for EDA to be regret-free truth-telling
(Theorem 1) is that students face uncertainty regarding the consent decisions of other
students. Yet specifying the consent decisions of students is rarely critical to our argu-
ments and in the majority of cases the consent decisions could be disclosed without an
effect on truth-telling being regret-free.

We can illustrate one exception with our construction in the proof of Theorem 2.8

If one would use EDA for this problem with ci1 = 1, then i1 would observe (μ, π(μ, g)).
In this case, the observation reveals that i1 has justified envy at the two schools s1 and
s2, and i1 can thus infer that their assigned students must have benefited in comparison
to DA through her own consent. The details i1 can infer from the observations’ features
in this example are then rich enough for her to conclude that by misreporting �̃i1 , her
applications either would have made i3 a last rejected interrupter at school s2 or that i1
remains to be matched with her observed matching s∅. In the former case, having ci3 = 1
would ensure that i1 improves from s1 to s2 under EDA’s updating procedure, whereas
ci3 = 0 implies that i1 is matched with her truly least preferred school s1. Consequently,
the truth remains regret-free since no inferences about the consent decisions of i3 can
be drawn from i1’s observation.

Our main results are robust to various changes in the information structure and
modeling decisions. For instance, the negative result Theorem 2 also holds in the setting
where each student observes only her own assignment and the cutoffs of the schools she
applied to. Carefully inspecting the particular problem in the proof of Theorem 2 again
reveals that student i1 has only one additional consistent matching and one additional
plausible score ranking for school s1. In this case, switching the assignments for stu-
dents i2 and i3 compared to μ and using a symmetric argument will lead to the same
conclusions as for the original setting.9

Finally, the main results in Fernandez (2020) and ours are not logically connected.
The key challenge in Fernandez (2020) is to show that truth-telling is regret-free for the
side that receives the applications under DA in a framework without cutoffs and consent
options. He essentially shows that a preference profile for which the set of stable match-
ings is a singleton is always plausible. This means that i’s observed assignment is already
her best achievable stable assignment and student i may be worse off by misreporting.

8More generally, the instances where the uncertainty regarding the consent decisions play a role in our
constructions are all treated in Case 3.2.2.1 in the proof of Lemma 5 (proof of Theorem 1) of which the prob-
lem in Theorem 2 is a special case. Different from the construction in the proof of Theorem 2, Case 3.2.2.1
covers instances with large numbers of students and schools and for which the uncertainty regarding the
consent decision is necessary. It is an open question whether Case 3.2.2.1 characterizes all such instances.

9The proof of Theorem 2 is not applicable if the cutoffs are unobservable.
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This argument is not applicable to our framework, since in contrast to DA, EDA is not
stable. In particular, under EDA the cutoffs may reveal the instability of the matching to
an observing student.

7. Conclusion

Telling the truth is a safe choice under EDA if students wish to avoid regretting their
submitted reports. Strengthening this first result, we have also shown that truth-telling
is the unique regret-free option under EDA. Moreover, we established that in the class of
stable dominating rules without consent decisions, there are candidates that are regret-
free truth-telling, whereas no such candidate can be efficient.

Our results open up several avenues for future research. For example, a natural step
seems to be to further explore the scope of relaxations of observational constraints that
do not affect our results. In another direction, it is also an open question whether EDA
is still regret-free if schools’ priorities take the form of more flexible choice functions.10

Appendix A: DA and TP rule

We first introduce the algorithm that induces DA. Thereafter, we present a lemma on DA
that is necessary to prove Proposition 1 and Theorem 1 and introduce the TP algorithm.
First, fix a problem (I, S, q, g, �, c) and consider the DA algorithm:

Step k Each student applies to her most preferred school s ∈ S ∪ {s∅} that has not re-
jected her. Each school s tentatively accepts the qs highest scored students among
those who have applied to it (or each of them, if fewer than qs apply), and rejects the
rest.

The algorithm terminates with the tentative assignments of the first step in which
no student is rejected. For our lemma presented below, we define weak Maskin mono-
tonicity as in Kojima and Manea (2010). We call �′ a monotonic transformation of � at
matching μ, if for each i′ ∈ I, �′

i′ is a monotonic transformation of �i′ at μi′ .

Definition 4. A matching rule f is weakly Maskin monotonic if for any problem
(I ′, S′, q′, g′, �′, c′ ), given any �̂ and for any �̃ that is a monotonic transformation of
�̂ at f (g′, �̂, c′ ), f (g′, �̃, c′ ) weakly Pareto dominates f (g′, �̂, c′ ) with respect to �̂.

Kojima and Manea (2010) show that DA is weakly Maskin monotonic. Furthermore,
DA is strategy-proof (Dubins and Freedman (1981) and Roth (1982)) and produces the
SOSM for a given score structure and preference profile.

Lemma 1. Suppose that �′
i∈ P is a monotonic transformation of �i at DAi(g, �). Then

DA(g, (�′
i, �−i )) weakly Pareto dominates DA(g, �) and i’s outcomes are identical, that

is, DAi(g, �) = DAi(g, (�′
i, �−i )).

10Ehlers and Morrill (2020) introduce a generalized version of EDA that might serve as a starting point
for an investigation.
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Proof. The first part follows from weak Maskin monotonicity of DA. The second part
is proved by means of contradiction. Suppose that DAi(g, �) �= DAi(g, (�′

i, �−i )), then
by weak Maskin monotonicity of DA, DAi(g, (�′

i, �−i )) �i DAi(g, �), which contradicts
strategy-proofness of DA.

Relevant to our proofs, we now introduce how the Top-Priority (TP) algorithm (Dur,
Gitmez, and Yılmaz (2019)) calculates the outcomes of EDA and start with some basic
terminology. Fix any (�, c). For any matching μ ∈ M, any student i and any school s, we
say that i demands s at μ if s �i μi. Moreover, we say that student i is eligible for s at μ if
i demands s at μ and there exists no j who also demands s with cj = 0 and gsi < gsj .

Note that there could be more than one student who is eligible for a school and if
two students i, i′ are both eligible for s, then gsi > gsi′ implies ci = 1.

Given a matching μ ∈ M, consider the directed graph G(μ) = (I, E(μ)), where
E(μ) ⊆ I × I is the set of (directed) edges such that ij ∈E(μ) if and only if i is eligible for
μj . Hence, for each student i ∈ I, her directed edges under G(μ) describe her demands
of which the realization would not imply a priority violation given that each student j �= i

is matched with a school weakly preferred to μj . A set of edges {i1i2, i2i3, � � � , inin+1} in
G(μ) is a path if i1, i2, � � � , in+1 are distinct and it is a cycle if i1, i2, � � � , in are distinct while
i1 = in+1.

A school s has no demand at μ if no student demands s at μ. A school s is under-
demanded at μ if it either has no demand at μ, or every path in G(μ) that is not part
of another path in G(μ) and that ends with some i ∈ μs begins with a student assigned
to a school with no demand. We say that a student is permanently matched at μ if she
is assigned to an underdemanded school at μ. Furthermore, a student is temporarily
matched if she is not permanently matched.

Given μ ∈ M, we call G∗(μ) = (I, E∗(μ)) the top-priority graph of μ and its set of
edges E∗(μ) is defined as follows: we have ij ∈ E∗(μ) if and only if among the students
who are temporarily matched at μ and are eligible for μj , student i has the highest score
for μj . That is, for each i ∈ I, E∗(μ) ⊆ E(μ) contains at most one edge pointing to i. Solv-
ing cycle γ = {i1i2, i2i3, � � � ini1} in G∗(μ) is defined by the operation ◦ and yields match-
ing ν = γ ◦μ, such that νi = μj for each ij ∈ γ, and νi′ = μi′ for each i′ /∈ {i1, i2, � � � , in}. The
TP algorithm iteratively solves cycles from top-priority graphs as follows:

Step 0: Run DA and denote the matching outcome by μ0.

Step t: Given matching μt−1:

t.1 If there is no cycle in G∗(μt−1 ), then stop and let the outcome be μt−1.

t.2 Otherwise, select one of the cycles in G∗(μt−1 ), say γt , and let μt = γt ◦ μt−1.
Move to step t + 1.

As has been shown in Lemma 6 of Dur, Gitmez, and Yılmaz (2019), any cycle selection of
the algorithm leads to the outcome of EDA, and thus the TP algorithm induces EDA.
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Appendix B: Proof of Proposition 1

In this section, we provide an important lemma to prove Proposition 1. This lemma is
also used in the proof of Theorem 1. We use EDA(�) to refer to EDA(g, (�i, �−i ), c); and
EDA(�̃) to refer to EDA(g, (�̃i, �−i ), c). In a similar way, we use DA(�) for DA(g, (�i,
�−i )) and DA(�̃) to refer to DA(g, (�̃i, �−i )).

Let pTP� be an arbitrary process of the TP algorithm with input (g, �, c) defined
by the series of solved cycles {γt }Tt=1 such that (i) for each t ≤ T , γt is solved at step t,
(ii) solving the sequence {γt }Tt=1 leads to outcome EDA(�), and (iii) G∗(EDA(�)) con-
tains no cycles. Let ξt(�) be the outcome of the tth step in the TP algorithm given pro-
cess pTP�. Specifically, denote ξt(�) = γt ◦ ξt−1(�) with ξ0(�) = DA(�) and ξT (�) =
EDA(�). Let Si = {ŝ ∈ S|∃t ∈N : ξti(�) = ŝ}. Also, for any �′

i∈ P and s ∈ S, let SU
�′
i

s = {s′ ∈
S|s′ �′

i s} be the strict upper contour set of �′
i at s.

Lemma 2. If SU �̃i

ŝ
⊆ SU �i

ŝ
for all ŝ ∈ Si, then EDAi(g, (�̃i, �−i ), c) = μi.

Note that the condition in Lemma 2 is satisfied if �̃i ∈ P is such that for all s, s′ ∈L
�i
μi ,

s �i s
′ only if s�̃is

′. Thus, Lemma 2 implies Proposition 1.

Proof. We first prove that EDA(�) = EDA(�̃) when ci = 1. At the end of the proof, we
consider the case where ci = 0, for which we establish that EDAi(�) = EDAi(�̃).

Since the outcome of the TP algorithm is invariant in the choice of the cycle solved in
each round, it suffices to construct one TP process for input ((�̃i, �−i ), c, g) denoted by
pTP�̃ that leads to the same outcome as pTP�. We make use of the algorithm presented
next.

Initialize: Let t = 1. Also, let ν0(�̃) = DA(�̃).
Round t ≤ T : Let Ît = {l ∈ I|νt−1

l (�̃) �= ξt−1
l (�)}.

• If each jk ∈ γt satisfies that j, k ∈ Ît , let νt(�̃) = νt−1(�̃). Then move to round t + 1
or terminate the algorithm if t = T .

• If there exists jk ∈ γt such that j /∈ Ît or k /∈ Ît , let νt(�̃) = γt ◦ νt−1(�̃). Then move to
round t + 1 or terminate the algorithm if t = T .

Collect in {γ̃t }T̃t=1 the series of cycles solved while running the algorithm. By construc-

tion, we have {γ̃t }T̃t=1 ⊆ {γt }Tt=1. We now show that the generated cycle selection {γ̃t }T̃t=1
allows to describe the desired pTP�̃. Our strategy will be as follows. We establish in
the first step that the algorithm is well-defined. In the second step, we will argue that
νT (�̃) = ξT (�) and that G∗(νT (�̃)) contains no cycles.

Step 1 We can generate the desired sequence of cycles {γ̃t }T̃t=1 if for each round t ≤ T ,
the following four statements are satisfied:

(B1) Either all students involved in γt belong to Ît , or none of them does.

(B2) γt ∈G∗(νt−1(�̃)) when γt contains no student from Ît .

(B3) νt(�̃) weakly Pareto dominates ξt(�), and Ît+1 ⊆ Ît .

(B4) For each l ∈ Ît , DAl(�̃) = νt−1
l (�̃).
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We prove by means of induction that (B1)–(B4) hold for each round of the process.
Since the arguments for the initial step and the inductive step are similar and to avoid
lengthy repetition of arguments, we establish (B1)–(B4) to be applicable for both the
initial step and the inductive step. That is, to apply the arguments for round 1, set t = 1
and for t > 1, we use the inductive hypothesis that (B1)–(B4) hold for all rounds t ′ < t.

More specifically, given the induction hypothesis, for each t, statement (B1) is
needed to ensure that statement (B2) is true. We then use (B1) and (B2) to establish
(B3) and then show (B4).

For the initial case, we build on the following observations. We have DAi(�) ∈ Si,
thus �̃i is a monotonic transformation of �i at DAi(�). It is then immediate from
Lemma 1 that DA(�̃) weakly Pareto dominates DA(�) and DAi(�) = DAi(�̃). Thus,
Î1 = {l ∈ I|DAl(�̃) �l DAl(�)} and i /∈ Î1. Furthermore, by definition it is true that
DAl(�̃) = ν0

l (�̃) for any l ∈ I. Moreover, let S′ = {s ∈ S|s �i μi and μi�̃is}.

Statement (B1): Since γt is a cycle, it suffices to show that for each jk ∈ γt , k ∈ Ît

implies j ∈ Ît . We first establish that for any jk ∈ γt , if k ∈ Ît , then either (1) j ∈ Ît

or (2) j = i and ξt−1
k (�) ∈ S′. By contradiction, let k ∈ Ît , j /∈ Ît , and if j = i, then

ξt−1
k (�) /∈ S′. We aim at a contradiction toward the stability of DA(�̃). First, if k ∈ Ît ,

then there exists l ∈ Ît such that νt−1
l (�̃) = ξt−1

k (�). Now, since l ∈ Ît , it must be true
that DAl(�̃) = νt−1

l (�̃) �l ξ
t−1
l (�). For the initial case, this argument is immediate since

DAl(�̃) = ν0
l (�̃) �l DAl(�). For t > 1, the relation is a consequence of the inductive

hypothesis. Specifically, (B4) holding in all previous rounds establishes the left side
of the relation, and (B3) holding for all previous rounds implies the right side of the
relation. Next, together with jk ∈ G∗(ξt−1(�)) this implies that g

DAl(�̃)
j > g

DAl(�̃)
l and

ξt−1
k (�) �j ξ

t−1
j (�). Furthermore, j /∈ Ît implies ξt−1

j (�) = νt−1
j (�̃) �j DAj(�̃). In the

following, let �j= �̃j if j �= i. Now note that �j= �̃j implies that ξt−1
k (�)�̃jξ

t−1
j (�). Sim-

ilarly, for i = j, if ξt−1
k (�) /∈ S′, then since for all ŝ ∈ Si, SU �̃i

ŝ
⊆ SU �i

ŝ
the variations on

�̃i relative to �i cannot change the position of ξt−1
i (�) relative to ξt−1

k (�), and thus

ξt−1
k (�)�̃iξ

t−1
i (�). Thus, combining the relations derived so far means for each j /∈ Ît

that

DAl(�̃) = νt−1
l (�̃) = ξt−1

k (�)�̃jξ
t−1
j (�) = νt−1

j (�̃)�̃jDAj(�̃).

However, this implies that j has justified envy toward l at DA(�̃). Hence, we arrive at a
contradiction to the stability of DA(�̃) with respect to �̃.

Note that the statement we established above implies that for any jk ∈ γt , if k ∈ Ît

and j �= i, we have j ∈ Ît . Moreover, the arguments we used ensure that the implication
would hold more generally, that is, for any jk ∈ G∗(ξt−1(�)), if k ∈ Ît and j �= i, we have
j ∈ Ît . This generalization will turn out to be useful in the upcoming arguments in Step 2.

We next show that jk ∈ γt and k ∈ Ît imply j �= i. Based on the statements already
established, it suffices to show that j = i and ξt−1

k (�) ∈ S′ is impossible. If ik ∈ γt and
ξt−1
k (�) ∈ S′, then it implies that ξt−1

k (�) = ξti(�) �i μi. However, this is a contradiction
to μ being the final matching induced by the process pTP�. Thus, we must have j �= i.

We conclude that once there is an edge jk ∈ γt with k ∈ Ît , then j ∈ Ît . Therefore,
either all students involved in γt belong to Ît , or no such student does.
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Statement (B2): Given that (B1) is true at round t, we proceed to prove (B2). Suppose
that for each jk ∈ γt , j, k /∈ Ît . Thus, we get ξt−1

j (�) = νt−1
j (�̃) and ξt−1

k (�) = νt−1
k (�̃).

This implies that νt−1
k (�̃)�̃jν

t−1
j (�̃). Note that this also holds if j = i, since ξt−1

k (�) /∈ S′

implies that variations on �̃j relative �j cannot change the position of ξt−1
j (�) relative

to ξt−1
k (�), and thus ξt−1

k (�)�̃jξ
t−1
j (�). Hence, we obtain that student j must still de-

sire νt−1
k (�̃) at νt−1(�̃). Clearly, the last argument is true for all j such that jk ∈ γt .

Thus, we have that all students involved in γt are temporarily matched at νt−1(�̃).
Next, since νt−1(�̃) weakly Pareto dominates ξt−1(�), there are weakly fewer temporar-
ily matched students who desire νt−1

k (�̃) at νt−1(�̃) compared to ξt−1(�). As a result, j
still has the highest score among all temporarily matched students pointing to k. Hence,
jk ∈G∗(νt−1(�̃)). Since this holds for all edges in γt , it follows that γt ∈G∗(νt−1(�̃)).

Statement (B3): We first show that νt(�̃) weakly Pareto dominates ξt(�). Note that
νt−1(�̃) weakly Pareto dominates ξt−1(�). At t = 1, this follows from Lemma 1 and in
any round t > 1 it follows from the induction hypothesis. Moreover, only students in
γt change their assignments in round t of our algorithm (and also i ∈ γt if and only if
ξt−1
i �= ξti ). Thus, to conclude that νt(�̃) weakly Pareto dominates ξt(�), it is sufficient to

show that for each jk ∈ γt it holds νtj(�̃) �j ξ
t
j(�).

Of the two cases we have to consider, we start with the simpler one, in which for any
jk ∈ γt , we have j, k /∈ Ît . In this case, γt is solved in both νt−1(�̃) and ξt−1(�). Therefore,
νtj(�̃) = ξtj(�) and we obtain the desired result.

In the remaining case, any jk ∈ γt satisfies that j, k ∈ Ît . Clearly, we can solve a cycle
of this form only if Ît �= ∅. Moreover, note that ξt(�) = γt ◦ ξt−1(�) and νt(�̃) = νt−1(�̃).

We proceed by contradiction and assume that ξtj(�) �j ν
t
j(�̃). Similar to the argu-

ments of (B1), we will contradict the stability of DA(�̃). We make the following observa-
tions: First, since we have k ∈ Ît , there must exist l ∈ Ît such that we have νt−1

l (�̃) =
ξt−1
k (�). Second, note that l ∈ Ît implies the relation DAl(�̃) = νt−1

l (�̃) �l ξ
t−1
l (�).

Therefore, jk ∈ γt also means that gDAl(�̃)
j > g

DAl(�̃)
l and ξt−1

k (�) = ξtj(�). Third, the al-
gorithm guarantees that νtj(�̃) �j DAj(�̃). If we combine all relations above with �j= �̃j ,
we obtain

DAl(�̃) = νt−1
l (�̃) = ξt−1

k (�) = ξtj(�)�̃jν
t
j(�̃)�̃jDAj(�̃)

and reach a contradiction, since j has justified envy toward l at DA(�̃). Thus, νt(�̃)
weakly Pareto dominates ξt(�). Moreover, based on the weak Pareto dominance we just
established, we can write Ît+1 as Ît+1 = {l ∈ I|νtl (�̃) �l ξ

t
l (�)}.

To finish the proof for statement (B3), we need to show that Ît+1 ⊆ Ît . If any jk ∈ γt

satisfies j, k /∈ Ît , then it is immediate that Ît+1 = Ît . On the contrary, if any jk ∈ γt

satisfies j, k ∈ Ît then: First, for each such j, we have νt−1
j (�̃) �j ξ

t−1
j (�) and νtj(�̃) �j

ξtj(�). This implies that while j is contained in Ît , she might not be in Ît+1. Second,

for each j′ ∈ I not involved in γt , we have νtj′(�̃) = νt−1
j′ (�̃) and ξtj′(�) = ξt−1

j′ (�), which

implies that j′ ∈ Ît if and only if j′ ∈ Ît+1. In conclusion, we can infer that Ît+1 ⊆ Ît .
Hence, (B3) is satisfied.

Statement (B4): For t = 1, the statement is immediate. Let t > 1. By the inductive
hypothesis (in particular (B3)), it holds Ît

′+1 ⊆ Ît
′

for any t ′ < t. This implies that Ît ⊆ Ît
′
.
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Second, solving the cycles in the algorithm under the inductive hypothesis implies that,
given any t ′ < t, the assignments at νt

′
(�̃) and νt

′−1(�̃) are identical for each student
in Ît

′
. Thus, since Ît ⊆ Ît

′
, we can infer that for each l ∈ Ît , DAl(�̃) = νt−1

l (�̃).
Step 2: We show that ξT (�) = νT (�̃). Let ti ≤ T be the first step in pTP� where i is

permanently matched and consider round ti of our algorithm. If ξti−1(�) = νti−1(�̃), we
have that Ît = ∅ and that γt is solved in each round t > ti of the algorithm. Consequently,
it is true that ξT (�) = νT (�̃). If ξti−1(�) �= νti−1(�̃), then Îti is nonempty. In this case,
we show that there exists t̂ > ti such that ξt̂(�) = νt̂(�̃). As shown above, this leads to
ξT (�) = νT (�̃).

We show that there must be a cycle in G∗(ξti−1(�)) that solely consists of elements
in Îti . We begin with showing that for any k ∈ Îti , there exists an edge jk ∈ G∗(ξti−1(�))
for some j ∈ I. Since k ∈ Îti , there exists l ∈ Îti such that ξti−1

k (�) = ν
ti−1
l (�̃) �l ξ

ti−1
l (�).

That is, at ξti−1(�), for each student in Îti , her assignment is desired by at least one stu-
dent in Îti whose assignment is further desired by some other student in Îti . Now, recall
that we assume c1 = 1. Since i is permanently matched at step ti and i consents, then
even if i prefers ξ

ti−1
k (�) to μi, she cannot prevent any student from being eligible for

ξ
ti−1
k (�). In other words, at least one edge that is pointing to k, namely lk, is contained

in G(ξti−1(�)). Therefore, we can infer that k is temporarily matched in ξti−1(�), and
thus there must be jk ∈G∗(ξti−1(�)) for some j ∈ I.

Next, for any such jk, our arguments from (B1) will be sufficient to conclude that
j ∈ Îti . First, we have already shown j ∈ Îti ∪ {i}. Second, we know that j �= i, since i is
permanently matched. Thus, we can infer that each student in Îti is pointed by another
student in Îti in G∗(ξti−1(�)). Since Îti is finite, the existence of the desired cycle is
guaranteed. Notably, according to (B3) and by iteratively applying the same argument,
we can eventually reach a round t̂ > ti where ξt̂(�) = νt̂(�̃).

We next claim that no cycles can be found in G∗(νT (�̃)). Notably, if G∗(νT (�̃)) has
a cycle, then using the arguments in (B2) implies that G∗(ξT (�)) must also have a cycle.
However, this contradicts the definition of pTP�. Based on the statements provided so

far, we can construct the desired pTP�̃ as pTP�̃ = {γ̃t }T̃t=1. Thus, EDA(�) = EDA(�̃),
which completes the proof for ci = 1.

Finally, we extend the arguments to the case where ci = 0. Note that EDA is
consent-invariant, and thus EDAi(�) = EDAi(g, (�i, �−i ), (c̃i, c−i )) and also EDAi(�̃) =
EDAi(g, (�̃i, �−i ), (c̃i, c−i )) for c̃i = 1. Moreover, we have just shown that when i con-
sents, submitting �̃i will not alter the EDA outcome, that is, EDA(g, (�i, �−i ), (c̃i, c−i )) =
EDA(g, (�̃i, �−i ), (c̃i, c−i )). This allows us to conclude EDAi(�) = EDAi(�̃), which com-
pletes the proof.

Appendix C: Proof of Theorem 1

Fix an arbitrary problem (I, S, q, g, �, c) and consider an arbitrary student i ∈ I. Since
EDA only takes acceptable schools into account, for any tuple (g, �−i, c) and any �′

i that
is truth-telling, we have EDA(g, (�′

i, �−i ), c) = EDA(g, (�i, �−i ), c). Hence, if student
i does not regret reporting her true preferences �i, she does not regret to report any
truth-telling report �′

i. Thus, we show that i does not regret to report �i.
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Lemmas 3, 5, and 9 will each consider a distinct class of misreports of student i and
jointly imply that i cannot regret submitting her true preferences. In the following ex-
position, take an arbitrary observation (μ, π(μ, g)) where μ ∈ M|(�i ,ci ). We fix i’s scores
gi and i’s consent decision ci throughout the proof. From now on, we use g̃ to refer to
(gi, g̃−i ) and c̃ to refer to (ci, c̃−i ).

We first show that a misreport is not profitable for i, if it shares the same relative
ranking of schools weakly below her own assignment under truth-telling.

Lemma 3. Consider �̃i ∈ P such that for all s, s′ ∈ L
�i
μi , s�̃is

′ if and only if s �i s
′. For any

(g̃−i, �̃−i, c̃−i ) ∈ I(μ, �i, ci ), it is true that EDAi(g̃, (�̃i, �̃−i ), c̃) = μi.

Proof. Select any (g̃−i, �̃−i, c̃−i ) ∈ I(μ, �i, ci ). By definition, EDA(g̃, (�i, �̃−i ), c̃) = μ

and using Proposition 1, we know EDAi(g̃, (�̃i, �̃−i ), c̃) = μi.

Before formally presenting our arguments for other misreports, we provide the fol-
lowing auxiliary result.

Lemma 4. Fix any �̂ ∈ PI , any ĝ ∈ GI and any ĉ ∈ CI . If DAj(ĝ, �̂)�̂jDAi(ĝ, �̂) for all j ∈ I,
then EDAi(ĝ, �̂, ĉ) = DAi(ĝ, �̂).

Proof. Note that DAj(ĝ, �̂)�̂jDAi(ĝ, �̂) for all j ∈ I implies DAj(ĝ, �̂)�̂jDAi(ĝ, �̂) for
any j ∈ I such that DAj(ĝ, �̂) �= DAi(ĝ, �̂). That means DAi(ĝ, �̂) has no demand at
DA(ĝ, �̂). Therefore, DAi(ĝ, �̂) is underdemanded at DA(ĝ, �̂) and i will not be involved
in any cycle solution during any process calculating EDA(ĝ, �̂, ĉ). As a result, we have
EDAi(ĝ, �̂, ĉ) = DAi(ĝ, �̂).

In the remainder of the proof, the following argument is applied repeatedly for
the remaining categories of misreports: When i submits misreport �̃i, then there is a
plausible scenario (g̃−i, �̃−i, c̃−i ) ∈ I(μ, �i, ci ) such that we can apply Lemma 4 under
(g̃, (�̃i, �̃−i ), c̃). Moreover, in this case, we will show that μi �i DAi(g̃, (�̃i, �̃−i )).

We proceed with misreports in which some schools ranked below μi under truth
permute their order with μi. Our next lemma shows that the student can either infer that
she would have possibly been worse off, or that the misreport would not have affected
her assignment in any plausible scenario.

Lemma 5. Consider �̃i ∈ P such that μi �i s and s�̃iμi for some s ∈ S. Then either (1)
there exists (g̃−i, �̃−i, c̃−i ) ∈ I(μ, �i, ci ) such that μi �i EDAi(g̃, (�̃i, �̃−i ), c̃) or (2) for any
(g̃−i, �̃−i, c̃−i ) ∈ I(μ, �i, ci ): EDAi(g̃, (�̃i, �̃−i ), c̃) = μi.

Proof. Let S̃ = {s′ ∈ S|μi �i s
′ and s′�̃iμi}. We start with a singleton S̃ = {s∗} and gener-

alize the arguments later on. We now distinguish the following exhaustive cases based
on i’s observation (μ, π(μ, g)).

Case 1: πs∗(μ, g) = 0. Note that s∗ has a vacant seat at EDA(g̃, (�i, �̃−i ), c̃) = μ, for
any (g̃−i, �̃−i, c̃−i ) ∈ I(μ, �i, ci ). Thus, at DA(g̃(�i, �̃−i )), s∗ must also have a vacant
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seat and for any i′ ∈ I, i′ weakly prefers DAi′(g̃, (�i, �̃−i )) to s∗ given �̃i′ . Hence, s∗ has
no demand.

Next, if i submits �̃i, then we obtain DAi(g̃, (�̃i, �̃−i )) = s∗. Now notice that be-
fore being matched to the final assignment, the set of applications i sends to reach
DAi(g̃, (�̃i, �̃−i )) is a subset of those sent to reach DAi(g̃, (�i, �̃−i )). Therefore, each
student i′ �= i must weakly prefer DAi′(g̃, (�̃i, �̃−i )) to DAi′(g̃, (�i, �̃−i )) given her pref-
erences are �̃i′ . Accordingly, each student i′ ∈ I still weakly prefers DAi′(g̃, (�̃i, �̃−i ))
to s∗ given her preferences are �̃i′ . By Lemma 4, we thus have EDAi(g̃, (�̃i, �̃−i ), c̃) =
DAi(g̃, (�̃i, �̃−i )) = s∗: Statement (1) holds.

Case 2: πs∗(μ, g) �= 0, πμi(μ, g) = 0, and gs
∗
i < πs∗(μ, g). We show that statement (2)

is satisfied. Take an arbitrary (g̃−i, �̃−i, c̃−i ) ∈ I(μ, �i, ci ). To start, note that whenever
a student j improves her assignment from one school to another at one step of the TP
algorithm, another student with lower score is assigned to the school that j left at that
step. Since gs

∗
i < πs∗(μ, g), this implies that student i must have a lower score than any

student assigned to s∗ at DAi(g̃, (�i, �̃−i )). Thus, compared to the DA procedure of i
submitting �i, i’s additional application to s∗ by submitting �̃i has no influence on the
outcome and we reach DA(g̃, (�i, �̃−i )) = DA(g̃, (�̃i, �̃−i )). Moreover, since πμi(μ, g) =
0, nonwastefulness of DA implies that all students weakly prefer their assignments to
μi at DA(g̃, (�̃i.�̃−i )). We then apply Lemma 4 and conclude EDAi(g̃, (�̃i, �̃−i ), c̃) =
DAi(g̃, (�̃i.�̃−i )) = μi: Statement (2) holds.

Case 3: πs∗(μ, g) �= 0 and either (C1) gs
∗
i > πs∗(μ, g); or (C2) πμi(μ, g) �= 0 and

gs
∗
i < πs∗(μ, g).11 Except for Case 3.2.2.2, statement (1) will apply and our approach is

standardized as follows:

Step 1: We construct a candidate scenario (g̃−i, �̃−i, c̃−i ).

Step 2: We show that (g̃−i, �̃−i, c̃−i ) ∈ I(μ, �i, ci ).

Step 3: We argue that EDAi(g̃, (�̃i, �̃−i ), c̃) = s∗.

Let j ∈ I be such that μj = s∗ and gs
∗
j = πs∗(μ, g). Let Ŝ = {s1, � � � , sT } be the set of

schools for which i has justified envy at μ and assume without loss of generality that
s1 �i s2 �i � � � �i sT . For any �′

i∈ P and s ∈ S, denote the strict lower contour set of �′
i at s

by SL
�′
i

s = {s′ ∈ S|s �′
i s

′}. The following observations on Ŝ will be helpful:

• Ŝ = ∅, if ci = 0, since EDA does not allow for any priority violations for i.

• Nonwastefulness of EDA implies that for each s′ ∈ Ŝ, πs′(μ, g) �= 0.

• Since Ŝ ⊆ SU �i
μi

and s∗ ∈ SL�i
μi

, s∗ /∈ Ŝ.

Now, for each t ∈ {1, � � � , T }, let it ∈ μst be such that gstit = πst (μ, g). Collect all such stu-

dents in Î = {i1, � � � , iT }. Note that for each it ∈ Î, in any TP process corresponding to a
plausible scenario, there must exist a solved cycle γ such that itk ∈ γ for some k ∈ I and

11Since we assume that gsi �= gsj for any i, j ∈ I and any s ∈ S, note that it cannot be true that πs∗ (μ, g) = gs
∗
i

when i /∈ μs∗
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it is assigned to st when γ is solved. Moreover, solving γ must be the last step in that TP
process in which it is improved. We distinguish cases by different cardinalities of Ŝ.

Case 3.1: |Ŝ| �= 1. For now, assume that (C2) is satisfied.
Step 1: We start with the candidate score structure g̃−i:

• let gμi
i ≥ πμi(μ, g) > g̃

μi
j and let g̃μi

k = g
μi

k for all k ∈ I \ {i, j} and;

• for any s′ ∈ S \ {Ŝ ∪μi}, let g̃s
′ = gs

′
.

Let i0 = iT and sT+1 = s1. In case that Ŝ �= ∅, let for each st ∈ Ŝ be g̃st such that g̃stit−1
>

gsti > g̃stit with g̃stit = πst (μ, g), and for all l ∈ μst with l �= it let g̃stl > g̃stit−1
. Next, select an

arbitrary c̃−i and consider the following preferences �̃−i:

μi�̃js
∗�̃js∅�̃j � � � ,

st�̃it st+1�̃it s∅�̃it � � � ∀t ∈ {1, � � � , T },

μk�̃ks∅�̃k � � � ∀k ∈ I\(Î ∪ {i, j}
)
.

Step 2: The construction of g̃−i ensures that for each s ∈ S\ Ŝ and eachk ∈ μs , we have
g̃sk = gsk. Also, the construction of g̃st for each st ∈ Ŝ guarantees that πst (μ, (gi, g̃−i )) =
g̃sit = πst (μ, g). Thus, we can infer π(μ, (gi, g̃−i )) = π(μ, g).

We next show that the constructed scenario (g̃−i, �̃−i, c̃−i ) yields μ under the TP al-
gorithm. First, if Ŝ = ∅, we get DA(g̃, (�i, �̃−i )) = μ and the TP algorithm terminates
with μ since there are no cycles G∗(μ). Second, suppose that Ŝ �= ∅. We describe how
we arrive at the corresponding DA outcome: DAk(g̃, (�i, �̃−i )) = μk for all k ∈ I \ Î and
DAit (g̃, (�i, �̃−i )) = st+1 for all it ∈ Î. Each k ∈ I \ {i, j} is accepted by her top choice μk

at step 1. Moreover, at some step, student i applies to s1 and gets tentatively accepted.
For each t ∈ {1, � � � , T }, this leads to it getting rejected by st and applying to st+1 in the
next step, causing it+1 being rejected by st+1 and so forth. Eventually i is rejected by s1,
and applies to all schools in SU �i

μi
\ SU �i

s1
being finally accepted by μi. Thus, j is rejected

by μi and is accepted by s∗.
Next, there is a unique cycle γ = {iT iT−1, � � � , i2i1, i1iT } in G∗(DA(g̃, (�i, �̃−i ))),

which once solved produces μ. According to (�i, �̃−i ), i and j are the only students
who do not receive their top choice in μ and, therefore, the TP algorithm terminates
with μ.

Step 3: Notice that the outcome DA(g̃, (�̃i, �̃−i )) may vary in the position of s∗ on �̃i:
If s∗�̃is1, then DAi(g̃, (�̃i, �̃−i )) = s∗, DAj(g̃, (�̃i, �̃−i )) = μi, and DAk(g̃, (�̃i, �̃−i )) = μk

for any k ∈ I\{i, j}. If s1�̃is
∗, then we have DAi(g̃, (�̃i, �̃−i )) = s∗, DAj(g̃, (�̃i, �̃−i )) =

μi, and DAit (g̃, (�̃i, �̃−i )) = st+1 for it ∈ Î and DAk(g̃, (�̃i, �̃−i )) = μk for any k ∈ I \ ({i,
j} ∪ Ŝ).

In both instances above, we can apply Lemma 4 to have EDAi(g̃, (�̃i, �̃−i ), c̃) = s∗
and the argument for (C2) is complete.

Now suppose that (C1) holds.
Step 1: Modify the preferences of j to be s∗�̃js∅�̃j � � � and keep all other details of our

construction the same as in the instance (C2) above.
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Step 2 and Step 3: The arguments resemble those in instance (C2) above.
Case 3.2: |Ŝ| = 1.
Case 3.2.1: There exists s′ ∈ S \ {s1, μi, s∗} such that πs′(μ, g) �= 0.
Pick an arbitrary such s′ and denote with j′ the student who has the lowest score

among all students being assigned to s′ under μ.
Step 1: Let g̃−i be such that

• g̃s1
j′ > gs1

i > g̃s1
i1

and g̃s1
k = gs1

k for all k ∈ I \ {i, j′} and;

• g̃s
′
i1
> g̃s

′
j′ and g̃s

′
k = gs

′
k for all k ∈ I \ {i1} and;

• g
μi
i > g̃

μi
j and g̃

μi

k = g
μi

k for all k ∈ I \ {i, j′} and;

• g̃s
′′ = gs

′′
for any s′′ ∈ S \ {s1, μi, s′}.

Next, fix an arbitrary c̃−i and consider the following profile �̃−i:

μi�̃js
∗�̃js∅�̃j � � � ,

s1�̃i1s
′�̃i1s∅�̃i1 � � � ,

s′�̃j′s1�̃j′s∅�̃j′ � � � ,

μk�̃ks∅�̃k � � � ∀k ∈ I\{i, i1, j, j′
}

.

Step 2 and Step 3: We omit the arguments for Step 2 and Step 3. They are almost
identical to those in Case 3.1 and we can eventually apply Lemma 4.

Case 3.2.2: There does not exist s′ ∈ S \ {s1, μi, s∗} such that πs′(μ, g) �= 0. Note that
this subcase is very specific, as there are only three schools that exhaust their capacity.
Here, we have two more subdivisions to make.

Case 3.2.2.1: gs
∗
i > πs∗(μ, g). That is, (C1) holds and we have gs

∗
i > gs

∗
j .

Step 1: Let g̃−i be such that

• g̃s1
j > gs1

i > g̃s1
i1

and g̃s1
k = gs1

k for all k ∈ I \ {i, j} and;

• gs
∗
i > g̃s

∗
i1
> g̃s

∗
j and g̃s

∗
k = gs

∗
k for all k ∈ I \ {i, i1} and;

• g̃s
′ = gs

′
for any s′ ∈ S \ {s∗, s1}.

Now, let c̃−i be such that c̃i1 = 012 and consider the following profile �̃−i:

s∗�̃js1�̃js∅ � � � ,

s1�̃i1s
∗�̃i1s∅ � � � ,

μk�̃ks∅�̃k � � � ∀k ∈ I\{i, j, i1}.

Step 2: Fix any s ∈ S and any k ∈ μs. The construction of g̃−i guarantees g̃sk =
gsk. Thus, π(μ, (gi, g̃−i )) = π(μ, g). Next, following a similar application procedure

12This is the only place, where we need a plausible scenario where a student does not consent. For a
discussion, see also Section 6.
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as in Case 3.1 (Step 2), we reach DAj(g̃, (�i, �̃−i )) = s1, DAi1 (g̃, (�i, �̃−i )) = s∗, and
DAk(g̃, (�i, �̃−i )) = μk for all k ∈ I \ {j, i1}. There is a unique cycle γ = {i1j, ji1} in
G∗(DA(g̃, (�i, �̃−i ))), and once this cycle is solved, we obtain μ. In this instance, all
students except i receive their top choice in μ. The TP algorithm thus terminates and
EDA(g̃, (�i, �̃−i ), c̃) = μ.

Step 3: The DA algorithm arrives at DAi(g̃, (�̃i, �̃−i )) = s∗, DAj(g̃, (�̃i, �̃−i )) = s1,
DAi1 (g̃, (�̃i, �̃−i )) = s∅, and DAk(g̃, (�̃i, �̃−i )) = μk for all k ∈ I\{i, j, i1}. Notably, j is
not eligible for s∗, since c̃i1 = 0. Therefore, we cannot add ji to the graph, and thus there
is no cycle in G∗(DA(g̃, (�̃i, �̃−i ))). In conclusion, EDAi(g̃, (�̃i, �̃−i ), c̃) = s∗.

Case 3.2.2.2: πμi(μ, g) �= 0 and gs
∗
i < πs∗(μ, g). That is, (C2) holds and we thus have

gs
∗
i < gs

∗
j . Since πs∗(μ, g) �= 0 and πμi(μ, g) �= 0, there are only three schools, namely

s1, μi, s∗ that exhaust their capacity under μ. In this last subcase, we show that state-
ment (2) is satisfied.

First, note that since i has justified envy for s1 at μ, there exists a cycle containing i1
that is solved in the TP algorithm. Second, by nonwastefulness of EDA, if a school is
contained in one solved cycle, it exhausts its capacity under the final matching. Recall
that only s1, μi, s∗ exhaust their capacity at μ. Thus, the candidate student for forming
a cycle can only be assigned to s∗. Therefore, we can construct exactly one cycle with i1
and some l ∈ μs∗ .

Now select any (g̃−i, �̃−i, c̃−i ) ∈ I(μ, �i, ci ). Since gs
∗
i < πs∗(μ, g) and by our ar-

guments made above, we have g̃s
∗
i1

> g̃s
∗
l > gs

∗
i and DAi1 (g̃, (�i, �̃−i )) = s∗. However,

this implies that i will be rejected by s∗ under DA when she reports �̃i. As a result,
DAi(g̃, (�̃i, �̃−i )) = EDAi(g̃, (�̃i, �̃−i ), c̃) = μi and statement (2) holds.

This completes the proof for the case in which S̃ is a singleton. To finish the proof,
suppose now that S̃ contains multiple elements. We denote the top ranked school on �̃i

among all schools in S̃ by s1. Specifically, let �1
i be such that s1 �1

i μi and s �1
i s

′ if s �i s
′

for all s, s′ ∈ S \ {s1}. Since s1 is the only permuted school on �1
i compared to �i, we

can apply the arguments above (for singleton S̃) to �1
i . Here, we distinguish two cases.

In the first case, suppose that the observation (μ, π(μ, g)) is such that statement (1)
holds for �1

i . That is, we find (g1
−i, �1

−i, c
1
−i ) ∈ I(μ, �1

i , ci ) such that EDAi(g1, (�1
i , �1

−i ),
c1 ) = s1. Note that all our constructions above satisfy that DAi(g1, (�1

i , �1
−i )) = EDAi(g1,

(�1
i , �1

−i ), c1 ) = s1. Since SU �̃i
s1

= SU
�1
i

s1 , we obtain DAi(g1, (�̃i, �1
−i )) = EDAi(g1, (�̃i,

�1
−i ), c1 ) = s1. Thus, we can conclude that statement (1) also holds for misreport �̃i

for the first case. In the second case, suppose that the observation (μ, π(μ, g)) falls into
the case where statement (2) holds for �1

i . Then we need further consider the second
ranked school among S̃ on �̃, denoted by s2. Specifically, we construct �2

i such that
s1 �2

i s2 �2
i μi and s �2

i s
′ if s �i s

′ for all s, s′ ∈ S \ {s1, s2}. Since we assume that �1
i has no

influence on the result at all, we can again apply the arguments for the singleton case
to �2

i . That is, we consider whether statement (1) or statement (2) applies to �2
i . If state-

ment (1) holds for �2
i , then as explained above we can conclude that statement (1) holds

for �̃i. Otherwise, we further consider the third ranked school among S̃ on �̃. In the fol-
lowing, we iteratively apply the above arguments by adding a new school from S̃ through
each iteration. Once we arrive at a step where statement (1) holds, we stop and conclude
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that statement (1) holds for �̃i. On the contrary, if for all schools in S̃ the observation (2)
holds, then we conclude that statement (2) holds for the misreport �̃i.

We move to the final class of misreports in which all schools that are truly less pre-
ferred to μi still rank lower than μi. That is, in the rest of the proof, we consider �̃i ∈ P
such that SU �̃i

μi
⊆ SU �i

μi
and for which there exists s, s′ ∈ SL�i

μi
such that s �i s

′ and s′�̃is.
Our strategy is to show that if a student could have been improved upon truth through
such a misreport �̃i in a plausible scenario, then the misreport could also have made the
misreporting student worse off in another plausible scenario.

Before we formally show the above argument, we provide three auxiliary results.
Throughout the remaining discussion, we fix some (g′

−i, �′
−i, c

′
−i ) ∈ I(μ, �i, ci ). Hence-

forth, we use g′ to refer to (gi, g′
−i ) and c′ to refer to (ci, c′

−i ). Also, let for any �′
i∈ P and

any s ∈ S the weak upper contour set of �′
i at s be U

�′
i

s = {s′ ∈ S|s′ �′
i s}.

Next, let S′ = {s′ ∈ SL�i
μi

|∃s̃ ∈ SL�i
μi

: s′ �i s̃ and s̃�̃is
′}. Note that we now consider a

misreport �̃i of the class where SU �̃i
μi

⊆ SU �i
μi

, and hence according to Proposition 1,
EDAi(g′, (�̃i, �′

−i ), c′ ) �= EDAi(g′, (�i, �′
−i ), c′ ) implies that S′ must be nonempty. In the

following, select any TP process for input (g′, (�i, �′
−i ), c′ ) and recall that it is denoted

with pTP�. Also, recall that ξt(�) is the outcome of the tth step in the TP algorithm given
the process pTP�. Let Si = {ŝ ∈ S|∃t ∈N : ξti(�) = ŝ}.

Lemma 6. If EDAi(g′, (�̃i, �′
−i ), c′ ) �i μi, then there exists s′ ∈ S′ such that gs

′
i > πs′(μ,

g) > 0.

Proof. We prove the contrapositive statement. Note that in the course of running the
TP algorithm, scores of assigned students are weakly decreasing at each school from
step to step. Thus, for any ŝ ∈ Si, we have gŝi ≥ πŝ(μ, g). Also, schools in Si must have
positive cutoffs. Therefore, by assumption of S′, we have S′ ∩ Si = ∅. Hence, for any
ŝ ∈ Si, SU �̃i

ŝ
⊆ SU �i

ŝ
. By Lemma 2, we reach EDAi(g′, (�̃i, �′

−i ), c′ ) = μi. This completes
the proof.

Lemma 7. If EDAi(g′, (�̃i, �′
−i ), c′ ) �i μi, then μi �i DAi(g′, (�i, �′

−i )).

Proof. Since EDA guarantees μi �i DAi(g′, (�i, �′
−i )), we assume by contradiction that

DAi(g′, (�i, �′
−i )) = μi. Recall that �̃i satisfies SU �̃i

μi
⊆ SU �i

μi
. This assumption implies

that for any ŝ ∈ Si, SU �̃i

ŝ
⊆ SU �i

ŝ
. By Lemma 2, we can infer EDAi(g′, (�̃i, �′

−i ), c′ ) = μi,
which contradicts to EDAi(g′, (�̃i, �′

−i ), c′ ) �i μi.

Based on Lemma 7, we assume that μi �i DAi(g′
−i, (�i, �′

−i )) from now on. This
implies that we have πμi(μ, g) �= 0. Moreover, by Lemma 6 there exists a maximal and
nonempty set S1 ⊆ S′ such that s1 ∈ S1 if and only if gs1

i > πs1 (μ, g) > 0. For the rest of
the proof, let r∗ ∈ S1 be such that r∗ �i s1 for any s1 ∈ S1. Furthermore, we collect in
S2 = {s2 ∈L

�i
μi |r

∗ �i s2, s2�̃ir
∗} and denote with s∗ ∈ S2 the school such that s∗�̃is2 for any

s2 ∈ S2.
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Lemma 8. If EDAi(g′, (�̃i, �′
−i ), c′ ) �i μi, then πs∗(μ, g) �= 0.

Proof. We show the contrapositive statement. That is, given πs∗(μ, g) = 0, we
prove that μi �i EDAi(g′, (�̃i, , �′

−i ), c′ ). Let DAi(g′, (�i, �′
−i )) = νi. Since we assume

πμi(μ, g) �= 0, it follows πνi(μ, g) �= 0. That is, νi �= s∗. In the following, we consider two
cases that are distinguished by the relative ranking of s∗ and νi on �̃i.

In the first case, suppose νi�̃is
∗. Note that by the selection of s∗ and the assump-

tion νi�̃is
∗, we can infer that for any ŝ ∈ Si, SU �̃i

ŝ
⊆ SU �i

ŝ
, and thus μi = EDAi(g′, (�̃i, ,

�′
−i ), c′ ) by Lemma 2.

In the second case, suppose s∗�̃iνi. We show μi �i EDAi(g′, (�̃i, �′
−i ), c′ ) here. We

first argue SU �̃i
s∗ ⊆ SU �i

νi
. By contradiction, suppose that there exists r′ ∈ S such that

r ′ ∈ SU �̃i
s∗ and r′ /∈ SU �i

νi
. Then we know (1) νi �i r

′, (2) r ′�̃is
∗, and thus (3) r′�̃iνi. Since

g
νi
i > πνi(μ, g) > 0, by (1) and (3) we can infer νi ∈ S1. Thus, the selection of r∗ ensures

that r∗ �i νi, which combined with (1), shows r∗ �i r
′. Moreover, from (2) and the con-

struction of S2 we have r ′�̃is
∗�̃ir

∗. Note that r∗ �i νi and r′�̃is
∗�̃ir

∗ we reach a contra-
diction to how s∗ is selected. Thus, we have SU �̃i

s∗ ⊆ SU �i
νi

. Next, since by assumption s∗
has vacant seat at EDA(g′, (�i, �′

−i ), c′ ), it also has vacant seat at DA(g′, (�i, �′
−i )). With

the two findings above, we can use the arguments from Case 1 of Lemma 5 and con-
clude that no student strictly prefers DAi(g′, (�̃i, �′

−i )) = s∗ to her own assignments at
DA(g′, (�̃i, �′

−i )). We then apply Lemma 4 and reach EDAi(g′, (�̃i, �′
−i ), c′ ) = s∗. Since

μi �i s
∗, the proof is complete.

We finally show that when i would have reported �̃i, then she could have been worse
off by being assigned to s∗ in some plausible scenario.

Lemma 9. If EDAi(g′, (�̃i, �′
−i ), c′ ) �i μi, then there exists (g̃−i, �̃−i, c̃−i ) ∈ I(μ, �i, ci )

such that μi �i EDAi(g̃, (�̃i, �̃−i ), c̃) = s∗.

Proof. Note that by Lemma 8, we only need to construct such a scenario for cases
where πs∗(μ, g) > 0. Similar as in the proof of Lemma 5, we go through a series of stan-
dardized steps:

Step 1: We construct a candidate scenario (g̃−i, �̃−i, c̃−i ).

Step 2: We show that (g̃−i, �̃−i, c̃−i ) ∈ I(μ, �i, ci ).

Step 3: We argue that EDAi(g̃, (�̃i, �̃−i ), c̃) = s∗.

Recall that r∗ ∈ S1 is the school that ranks highest on �i among all schools in S1. Let
j ∈ I be an arbitrary student such that μj = s∗, and let l ∈ I be such that μl = r∗ and
gr

∗
l = πr∗(μ, g). Moreover, consider the set S̄ = {s′ ∈ SU �i

r∗ |gs
′
i > πs′(μ, g)} and denote

S̄ = {s1, s2, � � � , sT }. Without loss of generality, let s1 �i s2 �i � � � �i sT . Since s∗ ∈ SL�i
r∗ ,

we know that s∗ /∈ S̄. For each t ∈ {1, � � � , T }, denote the student with the lowest score
assigned to st at μ by it and collect all such students in Ī = {i1, � � � , iT }. Since we already
know that πμi(μ, g) �= 0 and πs∗(μ, g) �= 0, it suffices to consider different cardinalities
of S̄ for distinguishing characteristic observations of student i.
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Case 1: |S̄| �= 1. Step 1: We start with the candidate score structure. Let g̃−i be such
that

• g̃
μi

l > g̃
μi
j > g

μi
i ; and g̃

μi

k = g
μi

k for all k ∈ I \ {i, j, l}, and

• gr
∗
i > g̃r

∗
l ; and g̃r

∗
k = gr

∗
k for all k ∈ I \ {i, j}, and

• g̃s
′ = gs

′
for any s′ ∈ S \ {s1, � � � , sT , μi, r∗}.

Let i0 = iT and sT+1 = s1. In case that S̄ �= ∅, for any st ∈ S̄,

• g̃stit−1
> g̃sti > g̃stit ; and g̃stk = gstk for all k ∈ I \ {i, it−1}.

Next, we specify c̃−i such that for all i′ ∈ I \ {i} it holds that c̃i′ = 1 and consider pref-
erence profile �̃−i ∈ P−i:

st�̃it st+1�̃it s∅�̃it � � � ∀t ∈ {1, � � � , T },

r∗�̃lμi�̃ls∅�̃l � � � ,

μi�̃js
∗�̃js∅�̃j � � � ,

μk�̃ks∅�̃k � � � ∀k ∈ I\(Ī ∪ {i, j, l}
)
.

Step 2: The construction of g̃−i ensures that π(μ, (gi, g̃−i )) = π(μ, g). For the con-
structed scenario, DA leads to DAi(g̃, (�i, �̃−i )) = r∗, DAj(g̃, (�i, �̃−i )) = s∗, DAl(g̃,
(�i, �̃−i )) = μi, DAit (g̃, (�i, �̃−i )) = st+1 for each t ∈ {1, � � � , T }, and DAk(g̃, (�i, �̃−i )) =
μk for k ∈ I\(Ī ∪ {i, j, l}). Consider the corresponding application process. At the first
step, for all k ∈ I \ (Ī ∪ {i, j, l}), k is accepted at μk, j is accepted at μi, l is accepted at r∗,
and for all t ∈ {1, � � � , T }, it is accepted at st . If i’s top choice is not s1, let t1 ∈ N be the
step in which i applies to s1 and is tentatively accepted. In all the previous steps t < t1,
student i is rejected. For each t ∈ {1, � � � , T }, this leads to it getting rejected by st and
applying to st+1 in the next step, causing it+1 being rejected by st+1 and so forth. Eventu-
ally, i is rejected by s1 at step t1 + T . Then student i is rejected at the remaining schools
in SU �i

r∗ until being accepted at r∗, in favor of l. Student l then applies to μi such that j
gets rejected. Next, j applies to s∗ and gets accepted. Here, the algorithm terminates.

We now show that the cycle selection ends in the observed matching μ in the TP al-
gorithm. Since j is permanently matched in DA(g̃, (�i, �̃−i )) and c̃j = 1, we know that
G∗(DA(g̃, (�i, �̃−i ))) contains cycle γ1 = {il, li} and solving it yields ξ1(g̃, (�i, �̃−i ), c̃) =
γ1 ◦ DA(g̃, (�i, �̃−i )), where compared to DA(g̃, (�i, �̃−i )), only i and l switch their as-
signments.

Next, since ci = 1 and i is permanently matched to μi in ξ1(g̃, (�i, �̃−i ), c̃), whenever
S̄ is nonempty, G∗(ξ1(g̃, (�i, �̃−i ), c̃)) contains a unique cycle

γ2 = {iT iT−1, iT−1iT−2, � � � , it+1it , � � � i2i1, i1iT }

that once solved yields matching μ. Since all students except i and j get their top-choice,
and both i, j are permanently matched, there is no cycle in G∗(μ). Therefore, EDA(g̃, (�i

, �̃−i ), c̃) = μ.
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Step 3: Reviewing the application process above, we get DAi(g̃, (�̃i, �̃−i )) = s∗.
Moreover, note that apart from the students who are matched with school s∗ at
DA(g̃, (�̃i, �̃−i )), student j is the only one who ranks s∗ above s∅ in �̃−i. However, notice
that DAj(g̃, (�̃i, �̃−i )) = μi�̃js

∗ and school s∗ is underdemanded in DA(g̃, (�̃i, �̃−i )). By
Lemma 4, we can infer EDAi(g̃, (�̃i, �̃−i ), c̃) = s∗. This completes the proof for Case 1.

Case 2: |S̄| = 1. Step 1: Let g̃−i be such that

• g̃s1
l > gs1

i > g̃s1
i1

; and g̃s1
k = gs1

k for all k ∈ I \ {i, l}, and

• g̃
μi
i1

> g̃
μi
j > g

μi
i ; and g̃

μi

k = g
μi

k for all k ∈ I \ {i, j, i1}, and

• gr
∗
i > g̃r

∗
i1
> g̃r

∗
l ; and g̃r

∗
k = gr

∗
k for all k ∈ I \ {i, i1}, and

• g̃s
′ = gs

′
for any s′ ∈ S \ {s1, μi, r∗}.

Under c̃−i, let for all i′ ∈ I \ {i} be c̃i′ = 1 and let �̃−i ∈ P−i be

s1�̃i1r
∗�̃i1μi�̃i1s∅�̃i1 � � � ,

r∗�̃ls1�̃ls∅�̃l � � � ,

μi�̃js
∗�̃js∅�̃j � � � ,

μk�̃ks∅�̃k � � � ∀k ∈ I\{i, j, l, i1}.

Step 2 and Step 3: Here, we can almost resemble the arguments in Step 2 and Step 3
for Case 1. That is, i is worse off by being finally assigned to s∗, which is underdemanded
under the DA outcome.

Since the conclusion holds for any observation, for any student and any problem,
we conclude that EDA is regret-free truth-telling.

Appendix D: Proof of Proposition 2

In the proof, we use a similar technique as in the proof of Proposition 1 in Fernandez
(2020). Fix an arbitrary (I, S, q, gi ) and fix an arbitrary i ∈ I with preferences and con-
sent (�i, ci ). We now show there exists an observation under a problem with primitives
(I, S, q, gi ) such that i regrets submitting a misreport �′

i through �i. We divide the set of
possible misreports into three exhaustive cases.

Case 1 Let under �′
i exist s ∈ S such that s∅ �i s and s �′

i s∅. Let i submit �′
i and consider

(μ, π(μ, g)) for some g−i ∈ G−i such that μi = s and gs
′
i < πs′(μ, g) for all s′ ∈ SU

�′
i

s . At
first, we show that μ ∈ M|(�′

i,ci ) by constructing (g̃−i, �̃−i, c̃−i ) that leads to (μ, π(μ, g)).
That is, we show that (μ, π(μ, g)) is an observation under EDA. Let g̃−i be such that, for

each s′ ∈ SU
�′
i

μi , each student in μs′ is among the top qs′ ’s scored students at school s′.
Let i rank highest on g̃s and let the remaining scores be arbitrary. Let �̃−i be such
that for each j ∈ I \ {i}, �̃j only ranks μj as acceptable and assume c̃ = c. We have
π(μ, (gi, g̃−i )) = π(μ, g) and EDA(g̃, (�′

i, �̃−i ), c̃) = μ. Thus, μ ∈ M|(�′
i ,ci ). Now note

that for any (ĝ−i, �̂−i, ĉ−i ) ∈ I(μ, �i, ci ) it holds that EDAi(ĝ, (�i, �̂−i ), ĉ) �i s∅, since
EDA is individually rational. Since s∅ �i s, student i regrets �′

i through �i at (μ, π(μ, g)).
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Case 2 Let for �′
i exist s ∈ S such that s∅ �′

i s and s �i s∅. Suppose i submits �′
i and con-

sider (μ, π(μ, g)) for some g−i ∈ G−i such that μi = s∅, πs(μ, g) = 0 and gs
′
i < πs′(μ, g)

for all s′ ∈ SU
�′
i

s∅ . Notably, by doing the same construction (g̃−i, �̃−i, c̃−i ) as in Case 1,
we can infer μ ∈ M|(�′

i ,ci ). Next, note that EDA is nonwasteful and as such for any
(ĝ−i, �̂−i, ĉ−i ) ∈ I(μ, �i, ci ) it holds that EDAi(ĝ, (�i, �̂−i ), ĉ) = s. Since s �i s∅, student i
regrets �′

i through �i at (μ, π(μ, g)).

Case 3 Consider �′
i that only contains variations in the acceptable and unacceptable

set. For any �′′
i ∈ P , collect in Ai(�′′

i ) all acceptable schools. The following labeling for
any �′′

i ∈ P in the acceptable set Ai(�′′
i ) ensures that a school’s index corresponds to

its position in �′′
i . Precisely, we denote s′′1 as the �′′

i -maximal element on Ai,1(�′′
i ) =

Ai(�′′
i ) and s′′2 as the �′′

i -maximal element on Ai,2(�′′
i ) = Ai,1(�′′

i ) \ {s′′1 }, and so forth.
Let |Ai(�i )| = N ∈ N be the number of acceptable schools under �i and consider �′

i as
described above. Since �′

i is a variation, there exists n∗ = arg min
n

{n ≤N|s′n �= sn}. Next, let

student i observe (μ, π(μ, g)) for some g−i ∈ G−i such that μi = s′n∗ , πsn∗ (μ, g) = 0 and

gs
′
i < πs′(μ, g) for all s′ ∈ SU

�′
i

s′
n∗ . Again, by doing the same construction (g̃−i, �̃−i, c̃−i ) as

in Case 1, we can infer μ ∈ M|(�′
i ,ci ).

Next, since sn∗ has capacity left, if i had reported �i, then for any (ĝ−i, �̂−i, ĉ−i ) ∈
I(μ, �i, ci ), i would had been matched to sn∗ . Since sn∗ �i s

′
n∗ , we conclude that i re-

grets �′
i through �i at (μ, π(μ, g)). This completes the proof.

Appendix E: Proposition 3

We aim at constructing a regret-free truth-telling stable dominating rule f that is nei-
ther stable nor efficient. Concretely, let f select the DA outcome except for a problem
(I, S, q, ĝ, �̂) as it is described in the proof of Theorem 2. In this problem, we have S =
{s1, s2}, where both schools have unit capacity and I = {i1, i2, i3}. Student i1’s preferences
are s2�̂i1s∅�̂i1s1, student i2’s preferences are s1�̂i2s2�̂i2s∅, and student i3’s preferences
are s2�̂i3s1�̂i3s∅ and the score structure ĝ satisfies ĝs1

i1
> ĝs1

i3
> ĝs1

i2
and ĝs2

i2
> ĝs2

i1
> ĝs2

i3
. Let

f select the efficient and nonstable matching μ̂ = {(i1, s∅ ), (i2, s1 ), (i3, s2 )} in this prob-
lem.13 Since f always selects the DA outcome in problems with primitives other than
(I, S, q) and since DA is regret-free truth-telling, it suffices to show that f is regret-free
truth-telling in problems with (I, S, q). In what follows, we thus consider only problems
with primitives (I, S, q).

We first consider i1. Under f , for any pair of scores and preferences (g, �) ∈ GI ×PI ,
i1 receives her most preferred school among schools she can be matched to in a stable
matching. Note that this includes input (ĝ, �̂), where i1 receives s∅ = DAi1 (ĝ, �̂). Thus,
i1 cannot improve by misreporting, and hence does not regret telling the truth.

We next consider i2 and i3. Since i2 and i3 receive their top choices under f (ĝ, �̂),
both of them do not regret telling the truth for input (ĝ, �̂). In the following, consider

13Notably, our argument extends directly to any rule f ′ that selects the DA outcome except for problems
(I, S, q, g′, �̂) where g′ share the same rankings as ĝ (with different scores). For ease of presentation, we
consider f that only selects a nonstable outcome for this specific problem (I, S, q, ĝ, �̂).
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an arbitrary input (g = {gi}i∈I , �= {�i}i∈I ) and let (μ, π(μ, g)) be the observation under
f (g, �). We first show that i2 will not regret reporting her true preference �i2 under
(μ, π(μ, g)). Concretely, suppose that i2 improves upon μi2 under f by misreporting.
By strategy-proofness of DA and the fact that f selects an outcome different from DA
only if the input is (ĝ, �̂), it follows that (1) i2 misreports �̃i2 = �̂i2 �=�i2 , (2) gi2 = ĝi2 ,
(3) (ĝ−i2 , �̂−i2 ) ∈ I(μ, �i2 ). Observe that (2) and (3) imply that �i2 cannot have s2 as the
top choice, since i2 would have been assigned to s2 under μ. However, then i2 could
never improve upon μi2 from misreporting. The same argument holds for s∅. Hence,
together with (1) we reach s1 �i2 s∅ �i2 s2, and since i2 cannot be matched to her top
choice under μ, we have μi2 �= s1. With �i2 and given (2) and (3), we know that μi1 = s2,
μi2 = s∅, and μi3 = s1. Accordingly, we have πs1 (μ, g) = ĝs1

i3
= gs1

i3
and πs2 (μ, g) = ĝs2

i1
=

gs2
i1

. Now, consider �∗
i3

: s1 �∗
i3
s∅ �∗

i3
s2. Note that (ĝ−i2 , (�̂i1 , �∗

i3
)) ∈ I(μ, �i2 ) and that

fi2 ((gi2 , ĝ−i2 ), (�̂i1 , �̃i2 , �∗
i3

)) = s2 and since s∅ �i2 s2, student i2 does not regret telling
the truth under (μ, π(μ, g)).

Next, suppose that i3 improves by misreporting. We use a similar argument as for
i2 to reach that i3’s improvement upon μi3 would require s2 �i3 s∅ �i3 s1: By strategy-
proofness of DA and since f selects an outcome different from DA only if the input
is (ĝ, �̂), i3’s improvement needs that (1′ ) i3 misreports �̃i3 = �̂i3 �=�i3 , (2′ ) gi3 = ĝi3 ,
(3′ ) (ĝ−i3 , �̂−i3 ) ∈ I(μ, �i2 ). Conditions (2′ ) and (3′ ) imply that s1 and s∅ cannot be
top choices on �i3 and since i3 must be able to improve, we also have μi3 �= s2. Next,
given �i3 under (2′ ) and (3′ ), we reach μi1 = s2, μi2 = s1, and μi3 = s∅, while πs1 (μ, g) =
ĝs1
i2

= gs1
i2

and πs2 (μ, g) = ĝs2
i1

= gs2
i1

. However, consider �∗
i2

, where s1 �∗
i2
s∅ �∗

i2
s2. Note

that (ĝ−i3 , (�̂i1 , �∗
i2

)) ∈ I(μ, �i3 ) and fi3 ((gi3 , ĝ−i3 ), (�̂i1 , �∗
i2

, �̃i3 )) = s1. Since s∅ �i3 s1,
we reach that i3 does not regret truth-telling under (μ, π(μ, g)).

Since there is no student who regrets being truthful, this completes the proof.

References

Abdulkadiroğlu, Atila, Parag A. Pathak, and Alvin E. Roth (2009), “Strategy-proofness ver-
sus efficiency in matching with indifferences: Redesigning the nyc high school match.”
American Economic Review, 99, 1954–1978. [636]
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