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1. Introduction

Many competitive activities resemble a contest, in which contenders strive to leapfrog
and their efforts are nonrefundable regardless of win or loss. Such phenomena are
widespread in socioeconomic contexts, ranging from electoral campaigns (Snyder
(1989)), lobbying (Che and Gale (1998), Baye, Kovenock, and De Vries (1993)), internal
labor markets inside firms (Lazear and Rosen (1981), Rosen (1986), Green and Stokey
(1983)), and sporting events (Brown (2011)) to R&D races (Loury (1979), Lee and Wilde
(1980), Taylor (1995), Fullerton and McAfee (1999), Che and Gale (2003)).

Contest-like competitions in practice are often inherently sequential, in that con-
tenders enter and act in succession. Firms may enter a race successively for an innova-
tive technology. Consider, for instance, the recent race to develop Coronavirus vaccines.
Moderna/NIH, China’s CanSino Biologics, and the University of Oxford/AstraZeneca
PLC took the lead in entry.1 Promising results in early trials sparked strong enthusiasm
and encouraged a massive global effort, with more than 200 candidates jumping on the
bandwagon. In an R&D project, a firm often has to decide on the intensity of its efforts
(e.g., the number of trials) before research progress materializes due to budget require-
ments and resource planning, which cannot later be flexibly adjusted. Further, firms’
actions are often subject to disclosure requirements or leaked to competitors. For in-
stance, EU countries typically require mandatory disclosure of firms’ R&D activities (La
Rosa and Liberatore (2014)). In the United States, the Honest Leadership and Open Gov-
ernment Act of 2007 amended the Lobbying Disclosure Act of 1995, which strengthened
public disclosure requirements regarding lobbying activities and funding. On Taskcn,
a leading crowdsourcing platform, a participant is given access to earlier submissions
(Liu, Yang, Adamic, and Chen (2014)), and an earlier entrant is fully aware of the infor-
mation spillover to future contenders.

Dynamic interactions arise in such scenarios. Later movers condition their actions
on prior moves, and an earlier mover shapes their strategies in anticipation of future
opponents’ reactions. These complicate strategical analysis of the contest game. The
complexity can be further compounded when the contest allows for richer timing ar-
chitectures: For instance, multiple players can enter and act in a single period simulta-
neously; they observe prior actions but not contemporaneous actions, which embeds
simultaneous competitions in a dynamic structure. Consider a biopharmaceutical firm
that entered the race for Coronavirus vaccines in mid-2020; its research can presumably
leverage the efforts of pioneers, but not those of the many entrants that flooded into
the arena within the short time window. A full-fledged analysis involves substantial an-
alytical subtlety, which confines the majority of previous studies to limited settings, for
example, a two-player, two-period structure.2, 3

Sequential moves have spawned two related classical questions in oligopoly theory
(Amir and Stepanova (2006)). The first concerns players’ comparative payoffs with re-
spect to their timing positions; that is, the earlier- versus later-mover advantage (see,

1See https://www.nytimes.com/2020/05/20/health/coronavirus-vaccines.html.
2See, for example, Dixit (1987), Baik and Shogren (1992), and Hoffmann and Rota-Graziosi (2012).
3Hinnosaar (2024) provides a remarkable exception.

https://www.nytimes.com/2020/05/20/health/coronavirus-vaccines.html
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e.g., Gal-Or (1987); Dowrick (1986); Dixit (1987)). The second views the timing archi-
tecture of an oligopoly as the endogenously determined outcome of players’ strategic
choices (see, e.g., Hamilton and Slutsky (1990); Amir (1995); Morgan (2003)), which ad-
dresses the classical Cournot/Stackelberg debate. The conventional wisdom obtained
in the usual duopolistic settings, however, does not readily extend under more general
sequential structures and deserves to be reexamined. Shinkai (2000), for instance, con-
siders a three-firm, three-period model. He shows that players’ payoffs can be non-
monotone along the sequence, which precludes a convenient answer in general to the
question regarding early- or later-mover advantage in oligopoly.

We consider a general contest game with sequential entry that imposes no restric-
tions on the number of players and accommodates a full spectrum of timing architec-
tures. Analogous to standard static all-pay auction models (e.g., Moldovanu and Sela
(2001) and Moldovanu, Sela, and Shi (2007)), ex ante symmetric players strive for a com-
monly valued prize and the highest bidder wins; players’ private types (abilities) are
independently and identically distributed, with higher ability yielding lower marginal
effort cost. The contest proceeds in multiple periods, and multiple players can be clus-
tered in a single period; all players within each period act simultaneously and they ob-
serve earlier moves. A fully sequential contest and the standard simultaneous bench-
mark boil down to special cases of our model. The unrestricted timing architecture
introduces substantial game-theoretical subtleties that would be absent in the usual
duopolistic settings.4, 5 The literature has yet to provide an equilibrium analysis of this
game, and our paper fills the gap. The equilibrium result further enables us to tackle the
two aforementioned classical questions.

Findings and implications: Summary Our paper first conducts a comprehensive equi-
librium analysis of the contest game with sequential entry described above. To meet
the analytical challenges posed by the dynamic interactions, we take advantage of the
recursive property of the payoff structure and convert the game into one that resem-
bles a simultaneous-move, all-pay auction with an endogenously determined prize. The
pseudo-prize is shaped by players’ ability distribution function and can be expressed
as a function of a player’s bid. Our model does not impose specific requirements on
the curvature of players’ ability distribution. This may cause irregularity in their payoff
functions and, therefore, discontinuity in their bidding strategies. Despite the nuance,
we establish that there exists a unique symmetric perfect Bayesian equilibrium (PBE)
in the game and provide a complete equilibrium characterization (Theorem 1). The

4In a simple two-player, sequential-move contest, the second mover, upon observing the first mover’s
effort, either simply matches the earlier effort or stays inactive. This property greatly simplifies the equilib-
rium analysis. This, however, no longer holds when a third player is introduced to the contest. Imagine a
simple case with three players and fully sequential moves. Now the second mover cannot simply match the
earlier effort, which allows him to defeat the first mover but may not be optimal given the threat from the
third. The optimal response depends on his expectation of the future competition. The literature has yet to
provide an equilibrium analysis of this game, and our paper fills the gap.

5Segev and Sela (2014) and Jian, Li, and Liu (2017) allow for multiple players but assume a fully sequential
structure. As previously noted, Hinnosaar (2024) provides a remarkable exception to the literature that
allows for an unrestricted timing architecture but assumes a lottery contest, which differs from our setting.
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equilibrium result enables three applications that shed light on the fundamentals of the
contest game with sequential entry.

We first investigate whether a player who moves later would receive a higher (lower)
payoff than his earlier opponents. We establish that a payoff monotonicity arises: Re-
gardless of the prevailing contest architecture, a player ends up with a higher ex ante
expected payoff in a later timing position vis-à-vis an earlier one (Theorem 2). Our re-
sult thus provides a formal argument for an unambiguous later-mover advantage in the
context of multiplayer contests.

We then allow players to simultaneously commit to the timing of their moves prior
to the contest, which endogenizes the timing architecture of the contest. It is worth not-
ing that despite the inherent overlap, the above-mentioned analysis—which establishes
a later-mover advantage—does not address a player’s timing choice. The later-mover
advantage is obtained by comparing players’ ex ante expected payoff across different
periods under a given timing architecture. A player’s timing choice, however, affects
the timing architecture of the contest; as a result, the analysis requires that we compare
a player’s equilibrium expected payoffs across different timing architectures. We for-
mally verify that all players choose the last period for their moves, which constitutes the
unique equilibrium that survives iterated elimination of strictly dominated strategies
(Theorem 3). A fully simultaneous contest arises when each player makes autonomous
timing choices.

Finally, we generalize the model to allow for a hybrid payment rule that involves both
winner-pay and all-pay elements. Specifically, the winner of the contest is obliged to pay
the full cost of his own effort, while a loser may only pay a fraction of that. Our analysis
can readily be adapted to accommodate this extension to characterize the equilibrium,
as in Theorem 1. The main implications of the equilibrium are summarized in Theo-
rem 4 and are consistent with the insights obtained in Theorems 2 and 3. This indicates
that our main predictions do not rely on the all-pay feature of the baseline model.

Link to the literature This paper belongs to the small but burgeoning literature on se-
quential contests. Dixit (1987), Baik and Shogren (1992), Morgan (2003), and Hoffmann
and Rota-Graziosi (2012) all consider complete-information Tullock contests in which
two players move sequentially. Morgan and Várdy (2007) adopt a similar framework but
assume that the follower has to bear a small cost to observe the leader’s effort. Glazer
and Hassin (2000) allow for three-period sequential plays. Analysis of multi-player se-
quential contests involves substantial technical difficulties, because standard backward
induction is to no avail. Kahana and Klunover (2018) apply an “inverted best response”
approach to a fully sequential lottery contest with multiple symmetric players. Hin-
nosaar (2024) allows for a general setup that imposes no restrictions on the prevailing
timing architecture. Remarkably, he generalizes and formalizes Dixit’s thesis that earlier
players exert strictly higher efforts and are rewarded with strictly higher payoffs, which
results from the strategic substitutability of efforts in a symmetric sequential lottery con-
test.
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Our paper examines a radically contrasting game theoretical context (i.e., all-pay
auctions) and provides a general and comprehensive analysis that imposes no restric-
tions on timing architectures and allows for a broader class of ability distribution func-
tions. All-pay auctions do not generate a continuous and well-behaved best-response
correspondence, unlike a lottery or a Tullock contest. Our results diverge from that of
Hinnosaar (2024): We establish a later-mover advantage. Segev and Sela (2014) and Jian,
Li, and Liu (2017) both consider fully sequential incomplete-information all-pay auc-
tions. Segev and Sela (2014), assuming concave distribution functions, investigate how
ex ante heterogeneous players’ expected highest effort depends on the number of play-
ers and ability distributions. Jian, Li, and Liu (2017), assuming that players’ type dis-
tribution function takes a power functional form, compare ex ante symmetric players’
winning probabilities with respect to the order of moves. Konrad and Leininger (2007)
consider two-stage multiplayer complete-information all-pay auctions. They show that,
as in simultaneous-move contests, only the player with the lowest cost ends up with a
positive expected payoff, while the payoff depends on his own timing position vis-à-vis
those of the others.

This paper contributes to the extensive literature on players’ comparative payoffs
with respect to their timing positions in sequential-move games—such as Gal-Or (1985,
1987), Dixit (1987), Dowrick (1986), Daughety (1990), Deneckere and Kovenock (1992),
Amir and Grilo (1999), Van Damme and Hurkens (1999, 2004), Amir and Stepanova
(2006), and von Stengel (2010), among many others—in various contexts, ranging from
quantity/capacity to price-setting competitions.6 As stated above, this strand of the lit-
erature typically focuses on duopolistic rivalry. Shinkai (2000) extends the framework to
a three-firm, three-period setting and illuminates the nuance caused by the more exten-
sive sequence. To the best of our knowledge, our paper and Hinnosaar’s (2024) are the
few exceptions in the literature that examine earlier-/later-mover advantage under an
unrestricted timing architecture.

Our analysis adds to the literature on endogenous timing in oligopoly, such as
Hamilton and Slutsky (1990), Mailath (1993), Amir (1995), and Amir and Stepanova
(2006). A handful of studies explore this issue in contest settings, including Baik and
Shogren (1992), Leininger (1993), and Morgan (2003). All of these studies consider two-
player models. Konrad and Leininger (2007) allow for multiple contestants, but impose
a two-period structure.

The rest of the article is organized as follows. Section 2 sets up the model. Section 3
characterizes the equilibrium. Section 4 further delves into the fundamentals of this
contest game and applies our equilibrium results to the extended settings. Section 5
concludes. Proofs are relegated to the Appendix.

2. The model

A contest involves N ≥ 2 ex ante identical risk-neutral players, indexed by i ∈ N ≡
{1, � � � , N }. The players arrive sequentially and each exerts effort upon arrival to com-
pete for a prize with unit value. The contest proceeds in T ≥ 1 period(s), and the players

6Kempf and Rota-Graziosi (2010) consider a setting in which two jurisdictions set tax rates and endoge-
nize leadership in tax competitions.
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are accordingly partitioned into T groups. Denote by Nt the set of players in period t,
and let nt := |Nt| ≥ 1 indicate the number of players in Nt . A player observes the ef-
forts sunk by his earlier opponents but not those in contemporaneous or future peri-
ods. The architecture of the contest is fully described by a vector n := (n1, � � � , nT ), with
N = ∑T

t=1 nt .
7 The contest is fully sequential with n = (1, � � � , 1), while it degenerates to

a fully simultaneous one with n= (N ).
A player i, when exerting an effort (or, interchangeably, a bid) bi ≥ 0, incurs a cost

c(bi ) = bi/ai, where ai > 0 measures one’s ability and is privately known.8 Abilities are
drawn independently from an interval (0, 1] according to a common distribution func-
tion F(·). We assume that F(·) admits a positive and continuous density f (·) ≡ F ′(·) and
is piecewise analytic on [δ, 1] for all δ ∈ (0, 1).

Winner selection mechanism and payoffs The competition is modeled as an all-pay
auction. The player with the highest effort wins. Specifically, a player i ∈ Nt , when exert-
ing an effort bi ≥ 0, is the sole winner if and only if (i) his effort is greater than or equal
to those in earlier periods (i.e., bi ≥ bj for j ∈ ⋃t−1

k=1 Nk) and (ii) his effort is strictly larger
than those in contemporaneous and future periods (i.e., bi > bj for j ∈ ⋃T

k=t Nk \ {i}).
In the event that (i) multiple players in period t place the same highest bid and (ii) no
future players match that, the prize is randomly distributed among them. To put it more
formally, fixing a set of effort entries b ≡ (b1, � � � , bN ), contestant i’s winning probability
is9

pi(b) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if bi ≥ max
j∈⋃t−1

k=1 Nk

{
bj

}
and bi > max

j∈⋃T
k=t Nk\{i}

{
bj

}
,

1/m, if bi ≥ max
j∈⋃t−1

k=1 Nk

{
bj

}
, bi > max

j∈⋃T
k=t+1 Nk

{
bj

}
,

and bj is among the m highest of
{
bj

}
j∈Nt

with a tie,

0, if bi < max
j∈⋃t

k=1 Nk\{i}

{
bj

}
or bi ≤ max

j∈⋃T
k=t+1 Nk

{
bj

}
,

(1)

and his ex post payoff, for a given ability level ai, is

pi(b) − bi/ai, for all i ∈ N . (2)

Equilibrium concept We consider the solution concept of perfect Bayesian equilibrium
(PBE) for the contest game with sequential entry throughout the paper. We focus on the
symmetric equilibrium in which all players in the same period adopt the same bidding
strategy.

7We ignore periods in which no players enter.
8We follow the tradition in the contest literature and accommodate player heterogeneity in their cost

functions (e.g., Moldovanu and Sela (2001, 2006); Moldovanu, Sela, and Shi (2007); Brown and Minor
(2014)). It is noteworthy that the model is isomorphic to an alternative setting in which effort is interpreted
as bid in the auction literature: Players value the prize differently but bear the same effort costs. All of our
results remain qualitatively unchanged under this model specification.

9The tie-breaking rule in (1) is asymmetric, which is commonly assumed in the literature (see, e.g., An-
dreoni, Che, and Kim (2007), Simon and Zame (1990), Maskin and Riley (2000)). The asymmetry ensures
well-defined best responses and the existence of an equilibrium, as in an asymmetric Bertrand duopoly
game.
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More formally, we fix an effort profile (bj )j∈⋃t−1
k=1 Nk

. Define βt := maxj∈⋃t−1
k=1 Nk

{bj } for

t ∈ {2, � � � , T }, and let β1 ≡ 0. In words, βt is the maximum effort in the contest prior to
period t. A symmetric PBE is denoted by {b∗

t (a; βt )}Tt=1, where a is a player’s ability and
b∗
t (a; βt ) is the equilibrium bidding strategy for a player in period t. It is noteworthy that

the information available to a period-t player i is summarized by his own type ai and
the highest effort βt ≡ maxj∈⋃t−1

k=1 Nk
{bj } instead of the bidding history prior to period

t, that is, (bj )j∈⋃t−1
k=1 Nk

: Only the maximum previous bid matters to a player in an all-

pay auction with sequential entry (see Equation (1)), so βt can be viewed as a sufficient
statistic for (bj )j∈⋃t−1

k=1 Nk
.

Besides the usual restrictions for PBE, we require that each player not update his
belief about contemporaneous and future rivals upon observing past effort levels and
his own type, either on or off the equilibrium path. This condition is sensible because
players’ abilities are independently distributed.10 Further, players’ payoffs in our setting
do not depend on their beliefs about earlier movers’ abilities. As a result, we do not
specify a belief system explicitly to define the PBE.

3. Equilibrium analysis

In this section, we first lay out the fundamentals of the analysis and then formally char-
acterize the equilibrium.

3.1 Preliminaries of equilibrium analysis

This section sets up important primitives that lay the foundation for our equilibrium
analysis. We first introduce several pieces of notation that pave the way for our analysis
and discussion. We then present four preliminary results (Lemmas 1 to 4) that under-
pin the main equilibrium results. Lemma 1 depicts the fundamentals of the bidding
strategies in a hypothetical symmetric PBE and enables subsequent analysis that relies
on the recursive nature of this contest game with sequential entry. Lemma 2 narrows
the set of equilibrium efforts. Lemmas 3 and 4 identify a potential discontinuity in the
equilibrium bidding strategies.

Fixing a contest architecture n ≡ (n1, � � � , nT ), we define a sequence of functions
{Qt(b), a∗

t (β), π̃t(b, a)}Tt=1, recursively, as follows:

QT (b) ≡ 1, Qt−1(b) :=Qt(b)Fnt
(
a∗
t (b)

)
, ∀b ∈ [0, 1], (3)

a∗
t (β) := max

{
0 < a≤ 1 : π̃t(b, a) ≤ 0, ∀b ∈ [β, 1]

}
, (4)

π̃t(b, a) := Qt(b)Fnt−1(a) − b/a. (5)

The sequence of functions {Qt(b), a∗
t (β), π̃t(b, a)}Tt=1 is key to equilibrium charac-

terization, and their implications will be revealed as the analysis unfolds. As a head

10Note that for all totally mixed small perturbations of beliefs, a player’s beliefs about contemporane-
ous and future rivals must be equal to the prior, which implies that this belief satisfies the consistency
requirement under the solution concept of sequential equilibrium.
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start, the function a∗
t (β) allows us to derive the threshold ability above (below) which a

period-t player stays active (inactive) in equilibrium. Let b ≥ 0 be the realized highest ef-
fort by the end of period t ∈ T . Then Qt(b) gives the probability of effort b’s exceeding all
subsequent efforts in a symmetric equilibrium. The function π̃t(b, a) lays a foundation
for equilibrium payoff characterization; it plays a critical role in identifying the relevant
range of equilibrium efforts and potential discontinuity in players’ bidding strategies.

It can be verified from the above definition that a∗
t (β) and Qt(b) are well-defined

and satisfy the following properties:

(a) a∗
t (β) is continuous, piecewise differentiable, and weakly increasing on [0, 1], sat-

isfying a∗
t (β) ≥ β for all t ∈ T ; and

(b) Qt(b) is continuous, piecewise differentiable, and strictly increasing on [0, 1], with
Qt(0) = 0 and Qt(1) = 1 for all t ∈ T \ {T }.11

We hereby present four lemmas that pave the way for our equilibrium result.
Lemma 1 delineates useful properties of players’ bidding strategy in a hypothetical sym-
metric PBE.

Lemma 1 (Properties of Equilibrium Bidding Strategy). Consider a contest with sequen-
tial entry n ≡ (n1, � � � , nT ), and suppose that a symmetric PBE exists. A period-t player’s
equilibrium bidding strategy b∗

t (a; βt ) satisfies the following properties:

(i) b∗
t (a; βt ) is increasing in a on (0, 1);

(ii) b∗
t (a; βt ) = 0 for a≤ a∗

t (βt ) and b∗
t (a; βt ) ≥ βt for a > a∗

t (βt );

(iii) b∗
t (a; βt ) strictly increases with a on (a∗

t (βt ), 1) if nt ≥ 2.

Lemma 1(i) is intuitive: A stronger player tends to bid more aggressively. Lemma 1(ii)
reveals the nature of a∗

t (·): A period-t player would stay active (inactive) in equilibrium
if his ability at exceeds (falls short of) the threshold a∗

t (βt ). Recall that a∗
t (·) increases

with its arguments and βt is the maximum effort prior to period-t, which implies that
higher earlier effort elevates the threshold for active bidding, thereby discouraging fu-
ture competition. By Lemma 1(iii), when a period t involves two or more players, one’s
effort strictly increases with his ability provided that he is willing to place a positive bid,
that is, a > a∗

t (βt ). Note that the strict monotonicity does not necessarily hold in the
case with nt = 1. To see this, consider a two-player, sequential-move contest n = (1, 1).
The later mover simply matches the first mover’s effort β2 irrespective of his own ability,
provided that it exceeds a∗

2(β2 ) = β2, that is, b∗
2(a; β2 ) = β2 for a > a∗

2(β2 ).
Recall that b ≥ 0 denotes the realized highest effort by the end of period t ∈ T , which

leads to an eventual win if and only if it exceeds all subsequent efforts from period t + 1.
Lemma 1(ii) allows us to derive the equilibrium probability of this event. By Lemma 1, b
ends up as the eventual winning effort if and only if all subsequent players stay inactive
(i.e., every period-� player’s ability falls below the threshold a∗

�(b), ∀� ∈ {t + 1, � � � , T }),

11See the proof of Lemma 8 in the Appendix for more details.
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which occurs with a probability of �T
�=t+1F

n�(a∗
�(b)); otherwise, at least one player in

later periods would stay active and exert an effort above b. Notably, this probability can
be expressed recursively, which boils down to the function Qt(b) in (3). We formally
establish this fact in the Appendix (see Lemma 7 in Appendix A.1).

The property of Qt(b) enables us to exploit the recursive nature of this contest game
with sequential entry, which simplifies the equilibrium analysis. Consider a period-t
player with ability a > 0. In a symmetric PBE, by exerting an arbitrary effort b ≥ βt , he
earns an expected payoff12

πt(b, a; βt ) := Qt(b)Fnt−1((b∗
t

)−1
(b; βt )

) − b/a. (6)

He wins with a probability Qt(b)Fnt−1((b∗
t )−1(b; βt )): As stated above, the effort b allows

him to beat future opponents with a probability Qt(b) and prevail over his contempora-
neous competitors with a probability Fnt−1((b∗

t )−1(b; βt )).
The strategic interactions between a period-t player and his future opponents are

encapsulated in the provisional winning probability function Qt(·): His equilibrium bid-
ding strategy can be solved for as if he competed in a static contest for a prize of a value
Qt(b), which technically dissolves the dynamic linkages between contestants across dif-
ferent periods. Despite the analogy, the pseudo-prize value, Qt(b), endogenously de-
pends on the player’s own effort b, so the equilibrium bidding strategy fundamentally
differs from that in a standard static contest.

3.1.1 The set of equilibrium efforts We now set out to narrow the set of equilibrium
efforts. Consider a period-t player with ability a > 0 who faces contemporaneous com-
petition, that is, nt ≥ 2. Recall the function π̃t(b, a) in (5):

π̃t(b, a) ≡Qt(b)Fnt−1(a) − b/a.

Fixing βt ≥ 0, we define

St(a; βt ) := {
b ∈ [βt , 1] : π̃t(b, a) > π̃t

(
b′, a

)
, ∀b′ ∈ (b, 1]

}
.

We will subsequently establish that any efforts outside those contained in St(a; βt ) must
be suboptimal. Note that the set St(a; βt ) is type-dependent and shrinks as ability a

increases, that is, St(a′; βt ) ⊆ St(a; βt ) for a < a′. Further, recall the piecewise analytic-
ity of the ability distribution F(·). This implies that Qt(b) and, therefore, π̃t(b, a), are
continuous and piecewise analytic with respect to b on [βt , 1]; St(a; βt ), in turn, can be
expressed as the union of finitely many disjoint intervals. For ease of exposition, we
denote by mt(a; βt ) ∈ N+ the number of disjoint intervals included in St(a; βt ). Then
St(a; βt ) can be written as

St(a; βt ) = [
s1
t (a; βt ), e1

t (a; βt )
)∪[

s2
t (a; βt ), e2

t (a; βt )
)∪· · ·

∪[
s
mt (a;βt )
t (a; βt ), emt (a;βt )

t (a; βt )
]
,

12The inverse function (b∗
t )−1(b; βt ) is well-defined by Lemma 1(iii) for b≥ βt and nt ≥ 2. Note that there

is no need to specify (b∗
t )−1(b; βt ) for the case of nt = 1 given that Fnt−1(a) = 1 for all a ∈ (0, 1).
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Figure 1. Illustration of St(a; βt ).

with emt (a; βt ) < sm+1
t (a; βt ) for 1 ≤ m ≤ mt(a; βt ) − 1 and e

mt (a;βt )
t (a; βt ) ≡ 1. Figure 1

graphically illustrates the set St(a; βt ) for the case of mt(a; βt ) = 2. The following can be
obtained.

Lemma 2 (Set of Equilibrium Efforts). Consider a contest with sequential entry n ≡
(n1, � � � , nT ) and suppose that a symmetric PBE exists. A period-t player’s equilibrium ef-
fort must be contained within the above-defined set St(a; βt ), provided that it exceeds βt .
That is, b∗

t (a, βt ) ∈ St(a; βt ) if b∗
t (a, βt ) ≥ βt is continuous in the neighborhood of a.

We verify this claim by the following argument. Suppose, to the contrary, that
b∗
t (a, βt ) /∈ St(a; βt ). By definition, there exists some effort b′ > b∗

t (a, βt ) such that
π̃t(b′, a) ≥ π̃t(b∗

t (a, βt ), a). We claim that the player’s payoff would strictly exceed the
value of the constructed function π̃t(b′, a) when he deviates from b∗

t (a, βt ) to b′. This is
because the higher effort b′ increases not only the probability of outbidding his future
opponents but also that of beating the contemporaneous ones. More specifically, let a′
be the maximum ability such that b∗

t (a, βt ) ≤ b′. Because the equilibrium bidding strat-
egy b∗

t (a, βt ) is strictly increasing and continuous around a, we can conclude that a′ > a.
In a symmetric PBE, the player’s actual expected payoff from the deviation ends up as
Qt(b′ )Fnt−1(a′ ) − b′/a: In other words, he behaves as if he has an ability a′, which allows
him to defeat his contemporaneous opponents with a probability Fnt−1(a′ ). This payoff
strictly exceeds π̃t(b′, a) ≡Qt(b′ )Fnt−1(a) − b′/a, and thus overshadows the equilibrium
payoff π̃t(b∗

t (a, βt ), a). Contradiction ensues.

3.1.2 Equilibrium effort of threshold ability type and potential discontinuity The set
St(a; βt ) is constructed as the union of a finite number of disjoint intervals, which al-
ludes to the possibility of discontinuity in a hypothetical equilibrium. The following two
lemmas shed light on these possibilities and show that any discontinuity in a player’s
equilibrium bidding strategy, whenever it exists, must arise at the end points of these
intervals.

We first establish that the smallest element in St(a; βt ) is indeed the bid a player of
the threshold ability a= a∗

t (βt ) tends to place in equilibrium.
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Lemma 3 (Equilibrium Effort at a∗
t (βt )). Consider a contest with sequential entry n ≡

(n1, � � � , nT ) and suppose that a symmetric PBE exists. If nt ≥ 2 and a∗
t (βt ) < 1, then

lima↘a∗
t (βt ) b

∗
t (a; βt ) = s1

t (a∗
t (βt ); βt ).

Because b∗
t (a; βt ) = 0 for a ≤ a∗

t (βt ), lima↘a∗
t (βt ) b

∗
t (a; βt ) > 0 indicates a discontinu-

ity in bidding at a∗
t (βt ). Such discontinuity does not come as a surprise, since it concerns

itself with the behavior of the player of threshold ability who decides to outbid βt . To see
this, recall the two-player, sequential-move example in Footnote 4: The second mover
matches the earlier effort when his type exceeds the threshold and remains inactive oth-
erwise. Discontinuity in bidding thus arises for the second mover when his type equals
the earlier bid.

The next lemma nevertheless suggests the possibility of discontinuity in a player’s
equilibrium bidding strategy when his ability exceeds the threshold a∗

t (βt ), which stems
from the dynamic nature of the game. Such discontinuity can even occur for the first
mover. In Section 3.3, we demonstrate that such discontinuity may indeed emerge in
equilibrium, but can only arise if the distribution function contains both concave and
convex parts. For notational convenience, we use b∗

t (a − 0; βt ) and b∗
t (a + 0; βt ) to de-

note the left and right limits of b∗
t (a; βt ), respectively. We have the following.

Lemma 4 (Potential Discontinuity of Players’ Bidding Strategy). Consider a contest with
sequential entry n ≡ (n1, � � � , nT ) and suppose that a symmetric PBE exists. Fix a period
t with nt ≥ 2 and a player’s ability ã ∈ (a∗

t (βt ), 1]. If b∗
t (ã − 0; βt ) = emt (ã; βt ) for some

1 ≤m≤mt(ã; βt ) − 1, then b∗
t (ã+ 0; βt ) = sm+1

t (ã; βt ).

By Lemma 1, a period-t player, for a given βt , would increase his effort as his ability
ascends. When the effort is in the interior of the set St(a; βt ), the player’s bidding strat-
egy would gradually increase with a for a > a∗

t (βt ), as Figure 2(a) illustrates. Recall that
the set of eligible efforts St(a; βt ) shrinks as a ascends (see Figure 2). When the player’s
effort reaches the end of some interval in the set St(a; βt ) (i.e., emt (a; βt )), he would re-
frain from exerting an effort in the “undesirable” region (emt (a; βt ), sm+1

t (a; βt )); his ef-
fort jumps directly to the lower bound of the next adjacent interval in St(a; βt ), that is,
sm+1
t (a; βt ). This scenario is depicted in Figure 2(b).

Figure 2. Illustration of equilibrium bidding strategy b∗
t (a; βt ).
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To understand why the boundary of the set St(a; βt ) can be played in the equilib-
rium, it is useful to further inspect the constructed function (5) and the equilibrium
payoff function (6). Consider a symmetric PBE. When a player’s effort increases, he ends
up with a higher probability of outperforming his contemporaneous opponents; such an
equilibrium effect is nevertheless omitted in the expression of (5). Suppose that all other
players’ bidding strategies contain a jump from b� to b�� when one’s ability increases. All
efforts between b� and b�� would yield the same probability of winning the contempora-
neous competition. As a result, the aforementioned equilibrium effect dissolves around
the jump.

The jump predicted in Lemma 4 and Figure 2(b) is impossible in a Bayesian Nash
equilibrium of a static all-pay auction. The discontinuity, if it exists, largely stems from
the dynamic interaction in the game, which is captured by the provisional winning prob-
ability function Qt(·) in the interim expected payoff (6).

3.2 Equilibrium result: Existence, uniqueness, and characterization

We are ready to verify the existence and uniqueness of a symmetric PBE in the contest
game with sequential entry under an arbitrary contest architecture n≡ (n1, � � � , nT ) and
fully characterize it. Let qt(b) := Q′

t(b).

Theorem 1 (Equilibrium of Contests With Sequential Entry). Consider a contest with
sequential entry n ≡ (n1, � � � , nT ). There exists a unique symmetric PBE {b∗

t (a; βt )}Tt=1 of
the contest game, which is fully characterized as follows:13

(i) If nt = 1, then

b∗
t (a; βt )

⎧⎪⎪⎨⎪⎪⎩
= 0, if a ≤ a∗

t (βt ),

= βt , if a∗
t (βt ) < a≤ a∗∗

t (βt ),

∈ arg maxb>βt

[
Qt(b) − b/a

]
, if a > a∗∗

t (βt ),

(7)

where a∗
t (βt ) is defined in (4) and can be simplified as a∗

t (βt ) = minb≥βt b/Qt(b),
and a∗∗

t (βt ) := supa∗
t (βt )≤a≤1{a : Qt(βt ) −βt/a >Qt(b′ ) − b′/a, ∀b′ ∈ (βt , 1]}.

(ii) If nt ≥ 2, then b∗
t (a; βt ) = 0 for a ≤ a∗

t (βt ). For a > a∗
t (βt ), b∗

t (a; βt ) increases con-
tinuously and is governed by the following differential equation:

(nt − 1)aFnt−2(a)f (a)Qt
(
b∗
t (a; βt )

)
+ aFnt−1(a)qt

(
b∗
t (a; βt )

)(
b∗
t

)′
(a; βt ) − (

b∗
t

)′
(a; βt ) = 0, (8)

with the initial condition b∗
t (a∗

t (βt ) + 0; βt ) = s1
t (a∗

t (βt ); βt ). When b∗
t (ã; βt ) =

emt (ã; βt ) for some ã ∈ (0, 1) and 1 ≤ m ≤ mt(ã; βt ) − 1, b∗
t (a; βt ) jumps to

sm+1
t (ã; βt ) at a= ã and then increases continuously from ã again according to (8),

with the initial condition b∗
t (ã+ 0; βt ) = sm+1

t (ã; βt ).

13The symmetric PBE is unique in the sense that if there exist two symmetric PBE of the contest game—
denoted by {b∗

t (a; βt )}Tt=1 and {b∗∗
t (a; βt )}Tt=1—then for all t ∈ T and βt ≥ 0, the collection of ability a such

that b∗
t (a; βt ) = b∗∗

t (a; βt ) has F-measure one.
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Theorem 1 establishes the existence and uniqueness of a symmetric PBE in contests
with sequential entry. A player’s equilibrium bidding strategy depends on the number
of contemporaneous opponents. Theorem 1(i) considers a scenario in which a single
player arrives in a period, while Theorem 1(ii) addresses the case in which multiple
players are clustered in one set Nt . It is straightforward to observe that a player would
remain inactive if he is of low ability (i.e., a ≤ a∗

t (βt )) in either scenario, as predicted in
Lemma 1(ii). The predictions diverge between the two scenarios when the player’s abil-
ity is sufficiently high. With nt = 1, the player matches the highest prior bid βt when
his ability remains in an intermediate range (i.e., a∗

t (βt ) < a < a∗∗
t (βt )) while he strictly

outbids βt if his ability exceeds the cutoff a∗∗
t (βt ). In contrast, with nt ≥ 2, he strictly

outbids βt whenever his ability exceeds a∗
t (βt ); contemporaneous competition compels

him to step up effort to avoid a tie.
A closer look at Lemma 1 and Theorem 1 allows us to identify the set of play-

ers who constantly stay inactive, that is, exerting zero effort irrespective of their own
types and previous efforts. Recall from Lemma 1(ii) that a period-t player would be
completely discouraged if his ability falls below a∗

t (βt ). Obviously, he would do so if
a∗
t (βt ) = 1 for all βt ∈ [0, 1], which is equivalent to π̃t(b, 1) ≤ 0 for all b ∈ [0, 1] by (4).

This condition, together with (5) and F(1) = 1, implies Qt(b) ≤ b for all b ∈ [0, 1]. Let
T0 := {t ∈ T : Qt(b) ≤ b, ∀b ∈ [0, 1]}. It can be verified that t ′ ∈ T0 if t ∈ T0 and t ′ < t. De-
fine t0 := maxT0; it is obvious to infer 0 ≤ t0 ≤ T − 1.14 The following result naturally
ensues.

Proposition 1 (Players who Always Remain Inactive). Consider a contest with sequen-
tial entry n ≡ (n1, � � � , nT ). In the unique symmetric PBE {b∗

t (a; βt )}Tt=1 of the contest
game, all players in periods 1 through t0 choose to stay inactive regardless of their abil-
ity and the previous maximum bid, that is, b∗

t (a; βt ) = 0 for all a ∈ (0, 1], βt ∈ [0, 1], and
t ∈ T0.

Proposition 1 states that players who arrive in early periods (i.e., t ≤ t0) always stay
inactive, regardless of their own types. These players obviously receive zero expected
payoff in equilibrium, which alludes to a disadvantage of being earlier movers in a con-
test. Players who arrive subsequently, in contrast, exert positive efforts with positive
probabilities.

We illustrate our equilibrium results in more specific settings.

Corollary 1 (Players who Always Remain Inactive With Concave/Convex Ability Distri-
butions). Consider a contest with sequential entry n ≡ (n1, � � � , nT ). The following state-
ments hold in the unique symmetric PBE:

(i) Suppose that F(·) is continuous, twice differentiable, strictly concave, and satisfies
lima↘0[f (a)a] = 0. Then t0 = 0.

(ii) Suppose that F(·) is continuous, twice differentiable, and weakly convex. Then t0 =
T − 1.

14In the case that T0 is an empty set, we let t0 = 0.
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By Corollary 1(i), with a concave ability distribution F(·), all players exert positive
efforts in equilibrium with positive probabilities. To understand the logic, consider a
simple two-player, sequential-move contest (1, 1) and focus on the first mover. His fu-
ture opponent (i.e., the second mover) will either match his effort or stay inactive. The
first mover thus ends up with an expected payoff F(b) − b/a when he exerts an effort b,
where F(b) is the probability of his defeating the second mover. A concave ability dis-
tribution ensures that the first mover’s expected payoff is concave in his effort, which in
turn, implies that he tends to increase his effort gradually as his ability ascends. To put
this intuitively, a concave ability distribution implies milder future competition, since
the player who moves in the second period is likely to be mediocre, which compels the
first mover to participate actively. That is, the marginal return of sinking the first unit of
effort exceeds the associated marginal cost, that is, F ′(0) > 1.

In contrast, with a convex ability distribution F(·), all players who arrive prior to
period T stay inactive in equilibrium regardless of their own types. Period-T players
behave as if they are participating in a simultaneous all-pay auction with nT players,
where the standard result in static all-pay auctions applies. We again resort to the two-
player, sequential-move contest (1, 1) to elaborate on the intuition. Recall that the first
mover receives an expected payoff F(b) − b/a when he sinks an effort of b, which is
convex with a convex CDF F(·), and thus its maximizer is either zero or a sufficiently
large effort. Intuitively, a convex ability distribution implies intense future competition,
because high-ability players are likely to emerge in later periods. This disincentivizes
early players, since inaction allows them to avert futile investment. In response, the
players—except for those from the last period—choose to drop out of the competition.

3.3 Discussion: Discontinuity in equilibrium strategies

The result of Theorem 1 can readily be adapted to derive the equilibrium in the con-
cave/convexity case. Further, recall that Lemma 4 alludes to the possibility of discon-
tinuous equilibrium bidding strategies. However, such discontinuity arises in neither of
the cases laid out above (i.e., concave or convex ability distributions). Next, we demon-
strate that discontinuity may indeed emerge under irregular distribution, for example,
to be concave in some regions and convex in others.

Consider the following three ability distributions: (i) F1(a) = a2/3; (ii) F2(a) = a2;
and (iii)

F3(a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
a, a <

1
4

,

(a+ 0.75)2

2
,

1
4

≤ a ≤ 1
2

,

0.3837
√
a− 0.4764 + 0.7224, a >

1
2

.

Note that F3(·) is convex in a on [ 1
4 , 1

2 ] and concave on (0, 1
4 ) and ( 1

2 , 1] (see Fig-
ure 3(a)). Again, consider a simple two-player, sequential-move contest (n1, n2 ) = (1, 1).
Figure 3(b) illustrates the first mover’s equilibrium bidding strategy under each distri-
bution. A jump in the bidding function with respect to the first mover’s ability, a, arises
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Figure 3. First mover’s bidding strategy in two-period, sequential-move contests under differ-
ent ability distributions.

under F3(·). Recall that the first-mover’s winning probability is given by F3(b) and his
expected payoff is F3(b) − b/a. The curvature of the CDF of ability captures the mag-
nitude of the marginal return on his effort. In the convex region of the ability distribu-
tion, the first mover enjoys increasing marginal returns on his effort. As a result, his bid
would not fall in the region of [ 1

4 , 1
2 ]. Moreover, as shown by Figure 3(c), the discontinu-

ity would persist when an additional player is added in the first period, which yields a
simultaneous competition (n1 = 2).15

4. Discussions and extensions

In this section, we apply our equilibrium results to further delve into the fundamentals
of this contest game with sequential entry and demonstrate the versatility of our ap-
proach. First, we formally establish the monotonicity of players’ ex ante expected pay-
offs with respect to their timing positions in the general setting. Second, we endogenize
players’ moving order in the contest. Finally, we allow for a general payment rule, such
that each player may not bear the full cost of his effort.

15Note that the jump in the first mover’s bidding strategy under F3(·) is not driven by the kinks in the
CDF’s derivatives; rather it is caused by the change in the concavity/convexity of the CDF. More formally,
we can construct an example of a distribution function such that all derivatives are differentiable on (0, 1)
and a jump emerges in the equilibrium bidding function.
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4.1 Monotone payoff ranking

We now formally address the following research question: Holding fixed the contest
architecture, does a player benefit from being an earlier/later mover? Answering this
question requires that we compare players’ expected payoffs with respect to their tim-
ing positions. We establish that players’ equilibrium expected payoffs can be ranked
monotonically.

Let �∗
t denote a period-t player’s equilibrium expected payoff, with t ∈ T , in a contest

with sequential entry n ≡ (n1, � � � , nT ). Recall that T0 ≡ {t ∈ T : Qt(b) ≤ b, ∀b ∈ [0, 1]}
indicates the set of the periods in which players always stay inactive in equilibrium, with
t0 ≡ maxT0. The following result can be obtained.

Theorem 2 (Later-Mover Advantage in Contests With Sequential Entry). Consider a
contest with sequential entry n ≡ (n1, � � � , nT ). A player’s expected payoff is higher than
those of all earlier movers in the unique symmetric PBE. To put this formally, 0 = �∗

1 =
· · · =�∗

t0
<�∗

t0+1 < · · · <�∗
T .

Recall that t0 = 0 under a concave ability distribution and t0 = T − 1 under a convex
distribution. The following result can immediately be obtained.

Corollary 2 (Later-Mover Advantage With Concave/Convex Ability Distributions).
Consider a contest with sequential entry n ≡ (n1, � � � , nT ). The following statements hold
in the unique symmetric PBE:

(i) Suppose that F(·) is continuous, twice differentiable, strictly concave, and satisfies
lima↘0[f (a)a] = 0. Then 0 <�∗

1 < · · · <�∗
T .

(ii) Suppose that F(·) is continuous, twice differentiable, and weakly convex. Then
�∗

1 = · · · = �∗
T−1 = 0 <�∗

T .

Theorem 2 and Corollary 2 formally establish later-mover advantage in a multi-
player all-pay auction with sequential entry. We sketch the proof as follows. For ease
of exposition, let us consider a fully sequential contest, with N = T (one entrant per
period). Recall that the profile of equilibrium bidding strategies is denoted by b∗ :=
{b∗

1(a; β1 ), � � � , b∗
T (a; βT )}. Fix an arbitrary period τ ∈ {t0 + 1, � � � , T − 1}. We conduct the

following thought experiment. Let us modify the period-(τ+1) player’s bidding strategy
from b∗

τ+1(a; βτ+1 ) to

b†
τ+1(a; βτ+1 ) := b∗

τ(a; βτ ).

In other words, he hypothetically ignores the period-τ player’s effort and replicates
the latter’s equilibrium strategy (not his effort). Denote players’ expected payoffs un-
der the constructed strategy profile b† := {b∗

1(a; β1 ), � � � , b∗
τ(a; βτ ), b†

τ+1(a; βτ+1 ), b∗
τ+2(a;

βτ+2 ), � � � , b∗
T (a; βT )} by (�†

1, � � � , �†
T ).

The key is to show that the period-τ player would be strictly better off with the
period-(τ + 1) player’s hypothetical deviation, that is, �∗

τ < �†
τ . The intuition is as fol-

lows. A later mover, ceteris paribus, tends to be more aggressive in competition than an
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earlier mover: The former needs to beat a smaller number of future opponents for a win
than the latter, which encourages the later mover. Thus, when the period-(τ + 1) player
deviates and replicates his immediate predecessor’s strategy, he would be less likely to
outperform the latter. This obviously benefits the period-τ player.

To fix ideas, consider a period-τ player, with ability aτ > a∗∗
τ (βτ ), for a given βτ . By

Theorem 1, he would exert an effort strictly above βτ . When the period-(τ + 1) player
mimics the period-τ player, the former can defeat the latter if and only if the period-
(τ+1) player is of a higher type, which occurs with probability 1−F(aτ ). Under the equi-
librium strategy profile, in contrast, the period-(τ + 1) player outperforms the period-τ
player as long as the former chooses to stay active: He does so whenever his ability ex-
ceeds the threshold a∗

τ+1(βτ+1 ) = a∗
τ+1(b∗

τ(aτ; βτ )), which occurs with a probability of
1 −F(a∗

τ+1(b∗
τ(aτ; βτ ))). We formally show in the Appendix that aτ > a∗

τ+1(b∗
τ(aτ; βτ )):16

In other words, the period-(τ + 1) player behaves less aggressively when he mimics his
immediate predecessor.

To complete the proof, first note that �†
τ+1 ≤ �∗

τ+1 by the definition of PBE. We fur-

ther have �†
τ ≤ �†

τ+1 by the construction of b†
τ+1 = b∗

τ .17 Combining these inequalities

yield �∗
τ < �†

τ ≤ �†
τ+1 ≤ �∗

τ+1, which concludes that a period-(τ + 1) player receives a
higher equilibrium payoff than a period-τ player.

Our prediction stands in sharp contrast to that of Hinnosaar (2024). He establishes
that an earlier mover exerts a higher effort and secures a larger expected payoff. We
nevertheless observe the opposite monotone payoff ranking in our setting. Hinnosaar
(2024) considers a lottery contest, in which earlier and later efforts can be strategic sub-
stitutes near the equilibrium. In a lottery contest, one is tempted to preempt future
opponents. However, this does not occur in an all-pay auction: The later mover is
awarded an information advantage since he can observe previous efforts; the winner-
selection mechanism of an all-pay auction allows him to outbid earlier opponents by
simply matching their efforts. As a result, strategic complementarity could arise in our
bidding game, which as we establish, discourages early bidders. Our study thus comple-
ments that by Hinnosaar (2024).

4.2 Endogenous timing

Our equilibrium results enable us to explore how the architecture of the contest game
could arise endogenously. Let the contest be preceded by a timing-choice stage, in
which players simultaneously commit to the timing of their moves. Each player picks
one from L ≥ 2 available periods, denoted by L := {1, � � � , L}, before he learns his re-
alized type and acts accordingly. Before the contest begins, the architecture ñ is an-
nounced publicly, and each player learns his own ability privately. The contest with

16We show in the proof of Theorem 2 that aτ > a∗
τ+1(b∗

τ(aτ ; βτ )) holds for an arbitrary contest architec-
ture.

17Note that the strict inequality may hold (i.e., �†
τ < �†

τ+1) due to the tie-breaking rule, despite the fact
that period-τ and period-(τ + 1) players employ the same strategy. To see this, consider a fully sequential
contest (1, 1, 1) with a concave ability distribution and let the third mover replicate the second mover’s
equilibrium strategy. In the event that players 2 and 3 choose to match player 1’s effort, player 3 wins,
which occurs with a positive probability and results in the strict inequality.
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sequential entry takes place as described in Section 2 thereafter, and Theorem 1 fully
characterizes the unique PBE of the contest subgame.18

It is noteworthy that the later-mover advantage established in Theorem 2 does not
imply that choosing a late period is a dominant strategy for each player. To be more spe-
cific, the later-mover advantage is obtained by comparing different players’ expected
payoffs with respect to their timing positions under a predetermined contest architec-
ture. With endogenous timing of moves, however, a player’s autonomous timing choice
would reshape the resultant contest architecture and affect all players’ equilibrium pay-
offs. Understanding a player’s timing choice requires that we compare a given player’s
equilibrium payoffs across different contest architectures. The subsequent analysis
takes up this challenge.

The analysis begins with players’ equilibrium winning probabilities. Fix an arbitrary
contest architecture n ≡ (n1, � � � , nT ), with nt ≥ 1 for t ∈ {1, � � � , T }. Consider a period-t
player of ability a ∈ (0, 1) and denote by WP∗

t (a; n) his expected equilibrium winning
probability in the unique symmetric PBE. The following lemma can be obtained.

Lemma 5. Consider two arbitrary contest architectures n′ ≡ (n′
1, � � � , n′

T ′ )—with n′
t ≥ 1,

t ∈ {1, � � � , T ′}, T ′ ≥ 2, and
∑T ′

t=1 n
′
t = N—and n′′ ≡ (n′′

1, � � � , n′′
T ′′ )—with n′′

t ≥ 1, t ∈
{1, � � � , T ′′}, T ′′ ≥ 2, and

∑T ′′
t=1 n

′′
t =N . For almost every a ∈ (0, 1), we have

max
{
WP∗

1

(
a; n′), WP∗

1

(
a; n′′)} < FN−1(a) < min

{
WP∗

T ′
(
a; n′), WP∗

T ′′
(
a; n′′)}.

That is, for almost every a, a player is more likely to win when acting in the last period
of the contest than being one of the first movers, regardless of the prevailing contest ar-
chitecture. The comparison is bridged through FN−1(a), which is a player’s equilibrium
winning probability in a simultaneous contest.

This inequality paves the way for a comparison of equilibrium payoffs. We invoke
the standard payoff-equivalence argument for direct mechanisms. A period-t player’s
equilibrium payoff in a contest with sequential entry n ≡ (n1, � � � , nT )—which we de-
note by �∗

t (n)—can be pinned down by his equilibrium expected winning probability as
follows:

�∗
t (n) = E

[
1
a

∫ a

0
WP∗

t (x; n)dx
]

=
∫ 1

0

∫ a

0

WP∗
t (x; n)
a

dxdF(a).

We further define �SIM := ∫ 1
0

∫ a
0

1
aF

N−1(a)dxdF(a), which is one’s expected payoff in a
simultaneous contest. Lemma 5 can then be translated into a comparison of equilib-
rium payoffs:

max
{
�∗

1

(
n′), �∗

1

(
n′′)} <�SIM < min

{
�∗

T ′
(
n′), �∗

T ′′
(
n′′)}. (9)

By this inequality, we are ready to explore players’ incentives in their timing choices. The
following result ensues.

18Theorem 1 is established under the assumption that each period possesses at least one player. With
endogenous timing, this assumption may not be satisfied due to the possibility that no players choose to
move in a certain period. In such a scenario, we can simply remove these periods and relabel the rest to
invoke Theorem 1.



Theoretical Economics 19 (2024) Contests with sequential entry 723

Lemma 6 (Strictly Dominated Strategy With Endogenous Moving Order). For every
player, choosing to move in period 1 is strictly dominated by choosing to move in period L.

Lemma 6 implies that the equilibrium in the timing-choice stage is solvable by iter-
ated elimination of strictly dominated strategies (IESDS).

Theorem 3 (Unique Equilibrium With Endogenous Moving Order). All players’ choos-
ing to move in the last period constitutes a Nash equilibrium of the first-stage game that
uniquely survives IESDS.

When players are allowed to pick the timing of their moves, all players will choose
the last period and a simultaneous contest endogenously emerges. Zhang (2024) ap-
plies the mechanism design approach to optimal contest design with convex (or linear)
effort cost and identifies a sufficient and necessary condition for the static single-prize
contest to be effort maximizing. With linear effort cost, the condition degenerates to
Myerson’s (1981) classical regularity condition of nondecreasing virtual value, that is,
with a − [1 − F(a)]/f (a) being nondecreasing in a in our context. Our Theorem 3, to-
gether with Zhang (2024), indicates that a process of decentralized decision on timings
of moves leads to a simultaneous contest and generates the maximum amount of ex-
pected total effort under the regularity condition.

4.3 Hybrid payment rule for losers

Our main results do not rely on the all-pay feature. Specifically, we allow each loser to
bear only a portion of his effort cost. The associated payment rule is specified as follows:
The winner in the contest is obliged to pay the full cost of his own effort, while a loser
pays θ ∈ [0, 1] of that.19, 20 To put this formally, fixing a contestant i’s ability ai and the
effort profile b≡ (b1, � � � , bN ), his ex post payoff is

pi(b)
(
1 − bi/ai

) − [
1 −pi(b)

]
θbi/ai, for all i ∈ N .

The above expression degenerates to (2) in the baseline setting as θ = 1, and the contest
game turns into a first-price auction with sequential entry as θ = 0.21 A θ ∈ (0, 1) depicts
a hybrid payment rule that involves both winner-pay and all-pay elements.

19See Amann and Leininger (1996) and Baye, Kovenock, and De Vries (2005, 2012) for similar parameter-
ization.

20Note that a bid b ∈ (0, βt ) always leads to a loss and is suboptimal to a period-t player for θ > 0. In
contrast, when θ = 0, bidding b ∈ (0, βt ) is strategically equivalent to bidding zero because a bid does not
incur a cost to a loser. In this case, we impose the restriction that period-t players bid 0 or weakly above βt

without any loss of generality when characterizing the symmetric PBE.
21To the best of our knowledge, the previous studies of first-price auctions have yet to accommodate a

setting of unrestricted timing structure like ours.
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Fixing a contest architecture n ≡ (n1, � � � , nT ) and θ ∈ [0, 1], a sequence of functions
{Qt(b; θ), a∗

t (β; θ), π̃t(b, a; θ)}Tt=1 in parallel with (3), (4), and (5) can be defined recur-
sively as follows:22

QT (b; θ) ≡ 1, Qt−1(b; θ) := Qt(b; θ)Fnt
(
a∗
t (b; θ)

)
, ∀b ∈ [0, 1], (10)

a∗
t (β; θ) := max

{
0 < a ≤ 1 : π̃t(b, a; θ) ≤ 0, ∀b≥ β

}
, (11)

π̃t(b, a; θ) := Qt(b; θ)Fnt−1(a)
[
1 − (1 − θ)b/a

] − θb/a. (12)

With slight abuse of notation, let T0(θ) := {t ∈ T : Qt(b; θ) ≤ θb
1−b+θb , ∀b ∈ [0, 1]} and

define t0(θ) := maxT0(θ). Again, we can obtain 0 ≤ t0(θ) ≤ T − 1.

Theorem 4 (Contests With a Generalized Payment Rule for Losers). Fix θ ∈ [0, 1] and
consider a generalized contest with sequential entry n≡ (n1, � � � , nT ) under a tie-breaking
rule as specified in (1). There exists a unique symmetric PBE of the contest game. In the
equilibrium, all players in periods 1 through t0(θ) choose to stay inactive regardless of
their ability and the previous maximum bid; moreover, a player’s expected payoff is higher
than those of all earlier movers. If players can choose the timing of their move, then all
players’ choosing to move in the last period constitutes a Nash equilibrium of the first-
stage game that uniquely survives IESDS.

Theorem 4 reinstates the main results of our baseline model under the hybrid pay-
ment rule. Our analysis and predictions extend to all the alternative settings with
θ ∈ [0, 1], such as standard first-price auctions. The main results are not an artifact of
the all-pay feature. Instead, the strategic complementarity in these bidding games is the
key driver of the results.

5. Concluding remarks

In this paper, we conduct a general analysis of an incomplete-information contest with
sequential entry in the form of (first-price) all-pay auctions. Our model allows for a
flexible architecture, such that multiple players can be clustered in a single period: They
move simultaneously within the period, while observing earlier efforts and anticipating
future competitions. Our analysis fully characterizes the unique symmetric equilibrium
under a general ability distribution, which adds to the contest literature since a general
analysis of contests with sequential entry remains scarce.

Based on our equilibrium analysis, we formally establish a later-mover advantage, in
that one secures a higher ex ante expected payoff when he is assigned to a later timing
position vis-à-vis an earlier one. We further allow players to choose the timing of their
moves in a pre-contest stage. The unique equilibrium that survives iterated elimination
of strictly dominated strategies requires that all players choose the last period. Finally,
we demonstrate that the all-pay feature is not crucial for our analysis and that all of the
results extend to contests with a hybrid payment rule for losers.

22We add θ to {Qt (b), a∗
t (β), π̃t (b, a)}Tt=1 to highlight the fact that the defined sequence of functions de-

pends on θ.
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Large room for extensions remains. For instance, a model of multiple prizes with se-
quential moves deserves serious scholarly effort. A second-price all-pay auction (e.g.,
Krishna and Morgan (1997); Bulow and Klemperer (1999); Hafer (2006); Bergemann,
Brooks, and Morris (2019)) also deserves serious research effort under a sequential tim-
ing architecture, and will be attempted in the future. Further, our analysis assumes ex
ante symmetric players. This allows us to identify the effect of timing positions on play-
ers’ expected payoff. An equilibrium analysis of contests with sequential entry and ex
ante heterogeneous players under a general timing architecture is technically challeng-
ing, but warrants serious research effort. Also, our paper assumes that each player com-
mits to his effort upon entry. One natural variation is to allow them to add to their bids
in future periods as in Yildirim (2005).23 Such an analysis entails enormous compli-
cations in our setting: With incomplete information, players’ bidding strategies trigger
complicated information updating and give rise to a challenging and subtle signaling
game. Finally, we assume that players’ timings of moves are well known before they sink
their effort. It is intriguing to assume instead that players’ timing positions are randomly
assigned, so they do not know precisely the timings of future opponents’ entries while
observing the history of previous bids. This setting also causes technical difficulty: The
general and random timing architecture can lead to numerous possibilities for future
competitions—which is history-dependent—and, in turn, complexly and reflexively re-
shape earlier bidding.

Appendix A: Proofs

A.1 Proof of Lemma 1

Proof. We prove Lemma 1 along with the following lemma.

Lemma 7 (Equilibrium Winning Probability of a Provisional Winner). Consider a contest
with sequential entry n ≡ (n1, � � � , nT ) and suppose that a symmetric PBE exists. Let b ≥ 0
be the realized highest effort by the end of period t ∈ T . Then Qt(b) gives the probability
of effort b’s exceeding all subsequent efforts in equilibrium.

It is useful to prove several intermediate results.

Lemma 8. The following statements hold:

(i) a∗
t (β) is continuous, piecewise differentiable, and weakly increasing on [0, 1], sat-

isfying a∗
t (β) ≥ β for all t ∈ T ; and

(ii) Qt(b) is continuous, piecewise differentiable, and strictly increasing on [0, 1], with
Qt(0) = 0 and Qt(1) = 1 for all t ∈ T \ {T }.

23Relatedly, Quint and Hendricks (2018) let a seller use indicative bids (i.e., nonbinding preliminary bids)
before a standard English auction to select a subset of bidders for conducting due diligence and eliciting
binding offers. In their model, bidders simultaneously send cheap-talk messages to the seller, who subse-
quently uses these messages to select participants for the auction. The chosen bidders then partake in the
auction.
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Proof. We prove the lemma by induction. Note that piecewise analyticity implies
piecewise differentiability. Therefore, to show that a∗

t (β) and Qt(b) are piecewise differ-
entiable, it suffices to show that they are piecewise analytic. Denote by Gn(·) the inverse
function of aFn−1(a) for an arbitrary positive integer n ∈ N+. It can be verified that Gn(·)
is strictly increasing, piecewise analytic, and differentiable on [0, 1], with Gn(0) = 0 and
Gn(1) = 1.

Base case: By definition, QT (b) = 1. Therefore, π̃T (b, a) ≡ QT (b)FnT−1(a) − b/a =
FnT−1(a) − b/a. These facts, together with (4), imply that

a∗
T (β) := max

{
0 < a ≤ 1 : π̃T (b, a) ≤ 0, ∀b ∈ [β, 1]

} = GnT (β)

and QT−1(b) = FnT (GnT (b)). It is straightforward to verify that a∗
T (β) satisfies part (i) of

the lemma and QT−1(b) satisfies part (ii).
Inductive step: Suppose that Qt(b) satisfies part (ii) of the lemma for some t ≤ T − 1.

It suffices to show that a∗
t (β) satisfies part (i) of the lemma and Qt−1(b) satisfies part (ii).

Fixing b ∈ (0, 1], π̃t(b, a) strictly increases with a ∈ (0, 1). Define ăt(b) as follows:

ăt(b) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Gnt

(
min

{
1

Q′
t(0)

, 1
})

, if b = 0,

1, if b ∈ (0, 1] and π̃t(b, 1) < 0,

the unique solution to π̃t(b, a) = 0, otherwise.

It can be verified that a∗
t (β) = minb≥β ăt(b) and ăt(b) is continuous on [0, 1]. This in turn

implies that a∗
t (β) is continuous, piecewise analytic, and weakly increasing on [0, 1].

Further, for b ≥ β, we have

π̃t(b, β) = Fnt−1(β)Qt(b) − b/β≤ 0,

which indicates that β ∈ {0 < a ≤ 1 : π̃t(b, a) ≤ 0, ∀b ≥ β}, and thus a∗
t (β) ≥ β. To sum-

marize, a∗
t (β) satisfies part (i) of the lemma.

Because Qt(b) satisfies part (ii) of the lemma by assumption and a∗
t (β) satisfies

part (i), we can conclude that Qt−1(b) = Qt(b)Fnt (a∗
t (b)) satisfies part (ii). This com-

pletes the inductive step.
Conclusion: By the principle of induction, a∗

t (β) satisfies part (i) of Lemma 8 for all
t ∈ T and Qt(b) satisfies part (ii) for all t ∈ T \ {T }. This concludes the proof.

Lemma 9. The following statements hold for all t ∈ T :

(i) If a∗
t (β) < a< 1, then there exists b ∈ [β, 1] such that π̃t(b, a) > 0.

(ii) If 0 < a< a∗
t (β), then π̃t(b, a) < 0 for all b ∈ [β, 1] \ {0}.

Proof. Part (i) of the lemma is obvious and it remains to prove part (ii). Fix 0 < a <

a∗
t (β). Suppose, to the contrary, that π̃t(b0, a) ≥ 0 for some b0 ∈ [β, 1]\ {0}. It follows im-

mediately that a ≥ b0. Further, we have that π̃t(b0, a∗
t (β)) > π̃t(b0, a) ≥ 0, which contra-

dicts with the fact that π̃t(b0, a∗
t (β)) ≤ 0 for all b ∈ [β, 1]. This completes the proof.

Now we can prove Lemmas 1 and 7 by induction.
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Base case: Consider the last period, that is, t = T . It is evident that the realized high-
est effort by the end of period T wins the contest with certainty. By definition, QT (b) = 1.
Therefore, Lemma 7 holds for t = T and it remains to show that Lemma 1 holds for the
last period. We consider the following two cases:

(a) Suppose nT = 1. Then the optimal bidding strategy of the unique period-T player
is to bid βT if a > βT and bid 0 otherwise. Therefore, Lemma 1(i) and (ii) hold.

(b) Suppose nT ≥ 2. We first show that b∗
T (a; βT ) is increasing in a. Suppose, to the

contrary, that there exists an ability pair (a′, a′′ ), with 0 < a′ < a′′ < 1, such that
b′′ := b∗

T (a′′; βT ) < b′ := b∗
T (a′; βT ). Denote the equilibrium winning probability

of bidding b by WP∗
T (b). It is obvious that WP∗

T (b′′ ) < WP∗
T (b′ ); otherwise, a

type-a′ player has a strict incentive to bid b′′. Moreover, from players’ incentive
compatibility constraints, we have that

WP∗
T

(
b′)a′ − b′ ≥ WP∗

T

(
b′′)a′ − b′′, and WP∗

T

(
b′′)a′′ − b′′ ≥ WP∗

T

(
b′)a′′ − b′,

which is equivalent to

a′[WP∗
T

(
b′) −WP∗

T

(
b′′)] ≥ b′ − b′′, and a′′[WP∗

T

(
b′) −WP∗

T

(
b′′)] ≤ b′ − b′′.

Combining the above inequalities yield(
a′ − a′′) × [

WP∗
T

(
b′) −WP∗

T

(
b′′)] ≥ 0,

which is a contradiction given that WP∗
T (b′′ ) < WP∗

T (b′ ) and the postulated
a′ < a′′.

Let āT := inf{a : b∗
T (a; βT ) > 0}. We first show that b∗

T (a; βT ) strictly increases
with a for a > āT . Suppose, to the contrary, that āT < a′ < a′′ < 1 and b′ :=
b∗
T (a′; βT ) = b′′ := b∗

T (a′′; βT ). It follows immediately that b∗
T (a; βT ) = b′ for a ∈

[a′, a′′]. Then a type-a′ player has an incentive to deviate from bidding b′. Specif-
ically, he can raise his effort by an infinitesimal amount to substantially increase
his winning probability, which leads to an increase in his interim expected payoff.
A contradiction.

Further, note that b∗
T (a; βT ) ≥ βT for a > āT and b∗

T (a; βT ) = 0 for a ≤ āT , and
it thus remains to prove that āT = a∗

T (βT ) ≡ max{0 < a≤ 1 : π̃T (b, a) ≤ 0, ∀b ∈
[βT , 1]}, where π̃T (b, a) ≡ QT (b)FnT−1(a) − b/a. We consider the following two
cases:

(i) Suppose that āT < a∗
T (βT ). Consider a type-a′ player, with āT < a′ <

a∗
T (βT ). Recall that b∗

T (a; βT ) strictly increases with a for a > āT . Therefore,
we have b∗

T (a′; βT ) > 0. His equilibrium expected payoff is

FnT−1(a′) − b∗
T

(
a′; βT

)
a′ = π̃T

(
b∗
T

(
a′; βT

)
, a′) < 0,

where the strict inequality follows from b∗
T (a′; βT ) 
= 0, b∗

T (a′; βT ) ≥ βT , and
Lemma 9(ii). However, he can secure a nonnegative expected payoff by bid-
ding zero. A contradiction.
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(ii) Suppose that āT > a∗
T (βT ). Fix a′ ∈ (a∗

T (βT ), āT ). It follows immediately
from a′ < āT that b∗

T (a′; βT ) = 0. Note that bidding zero must generate zero
expected payoff to a type-a′ player. Otherwise, we must have βT = 0; to-
gether with āT > 0, we can conclude that a player whose type falls below āT
can strictly increase his expected payoff by exerting an infinitesimal amount
of effort. A contradiction.

By Lemma 9(i), there exists some b′ ∈ [βT , 1] such that π̃T (b′, a′ ) > 0.
Then type-a′ player’s expected payoff of bidding b′ is bounded from below
by

FnT−1(a′) − b′

a′ = π̃T

(
b′, a′) > 0.

Therefore, a type-a′ player has a strict incentive to deviate from exerting
zero effort, which is a contradiction.

Inductive step: Suppose that the equilibrium bidding strategy b∗
t (a; βt ) satisfies the

properties stated in Lemma 1 and Qt(b) gives the probability of the effort b’s exceeding
all subsequent efforts in equilibrium, as predicted in Lemma 7, for some t ≤ T . We show
that the same holds for period t − 1.

Suppose that the realized highest effort by the end of period t−1 is b. Then the prob-
ability of the effort b’s exceeding all subsequent efforts in equilibrium is Qt(b)Fnt (a∗

t (b)),
which is exactly Qt−1(b) from (3).

For the case of nt−1 = 1, note that the problem of the only period-(t − 1) player with
ability a is maxb∈{0}∪[βt−1,1][Qt−1(b) − b/a]. It is then straightforward to verify that (i)
b∗
t−1(a; βt−1 ) is increasing in a on (0, 1), and (ii) b∗

t−1(a; βt−1 ) = 0 for a ≤ a∗
t−1(βt−1 )

and b∗
t−1(a; βt−1 ) ≥ βt−1 for a > a∗

t−1(βt−1 ). For the case of nt−1 ≥ 2, by the same ar-
gument as in the base case, we can show that b∗

t−1(a, βt−1 ) satisfies all properties stated
in Lemma 1. This completes the inductive step.

Conclusion: By the principle of induction, b∗
t (a; βt ) satisfies all properties stated in

Lemma 1 for all t ∈ T . Moreover, Qt(b) gives the probability of the effort b’s exceeding all
subsequent efforts in equilibrium for all t ∈ T , as predicted in Lemma 7. This concludes
the proof.

A.2 Proof of Lemma 2

Proof. See the main text.

A.3 Proof of Lemma 3

Proof. It is useful to prove the following intermediate result.

Lemma 10. Suppose that a∗
t (βt ) < 1. Then π̃t(s1

t (a∗
t (βt ); βt ), a∗

t (βt )) = 0.



Theoretical Economics 19 (2024) Contests with sequential entry 729

Proof. Evidently, s1
t (a∗

t (βt ); βt ) ≥ βt ; together with the definition of a∗
t (βt ), we can

obtain π̃t(s1
t (a∗

t (βt ); βt ), a∗
t (βt )) ≤ 0. Suppose, to the contrary, that π̃t(s1

t (a∗
t (βt ); βt ),

a∗
t (βt )) 
= 0. Then we must have

π̃t
(
s1
t

(
a∗
t (βt ); βt

)
, a∗

t (βt )
)
< 0.

The above inequality, together with the fact that s1
t (a∗

t (βt ); βt ) ∈ St(a; βt ), implies that

π̃t
(
b′, a∗

t (βt )
)
< π̃t

(
s1
t

(
a∗
t (βt ); βt

)
, a∗

t (βt )
)
< 0, for all s1

t

(
a∗
t (βt ); βt

)
< b′ ≤ 1. (13)

Next, note that by definition, s1
t (a∗

t (βt ); βt ) is the smallest element in the set St(a; βt ).
Therefore, we have that

π̃t
(
b′, a∗

t (βt )
) ≤ π̃t

(
s1
t

(
a∗
t (βt ); βt

)
, a∗

t (βt )
)
< 0, for all βt ≤ b′ ≤ s1

t

(
a∗
t (βt ); βt

)
. (14)

Combining (13) and (14), π̃t(b′, a∗
t (βt ) + ε) < 0 for all b′ ∈ [βt , 1] for sufficiently small

ε > 0, which contradicts the definition of a∗
t (βt ) and concludes the proof.

Now we can prove Lemma 3. Suppose, to the contrary, that nt ≥ 2, a∗
t (βt ) < 1, and

lima↘a∗
t (βt ) b

∗
t (a; βt ) 
= s1

t (a∗
t (βt ); βt ). We consider the following two cases:

(a) Suppose that lima↘a∗
t (βt ) b

∗
t (a; βt ) < s1

t (a∗
t (βt ); βt ). Then for sufficiently small ε >

0, we have b∗
t (a; βt ) < s1

t (a∗
t (βt ); βt ) for all a < a∗

t (βt ) + ε. Consider a type-a∗
t (βt )

player. His expected payoff of bidding s1
t (a∗

t (βt ); βt ) is at least

Qt
(
s1
t

(
a∗
t (βt ); βt

))
Fnt−1(a∗

t (βt ) + ε
) − s1

t

(
a∗
t (βt ); βt

)
a∗
t (βt )

>Qt
(
s1
t

(
a∗
t (βt ); βt

))
Fnt−1(a∗

t (βt )
) − s1

t

(
a∗
t (βt ); βt

)
a∗
t (βt )

= π̃t
(
s1
t

(
a∗
t (βt ); βt

)
, a∗

t (βt )
) = 0,

where the equality follows from Lemma 10. Meanwhile, it follows from Lem-
ma 1(ii) that a type-a∗

t (βt ) player would bid 0, and thus earns zero expected payoff
in equilibrium. A contradiction.

(b) Suppose that lima↘a∗
t (βt ) b

∗
t (a; βt ) > s1

t (a∗
t (βt ); βt ). Consider a player whose type

is a′ = a∗
t (βt ) + ε for sufficiently small ε > 0. His expected payoff of bidding

b′ = b∗
t (a′; βt ) is π̃t(b′, a′ ). It follows from the postulated lima↘a∗

t (βt ) b
∗
t (a; βt ) >

s1
t (a∗

t (βt ); βt ) and the definition of St(a; βt ) that

π̃t

(
lim

a↘a∗
t (βt )

b∗
t (a; βt ), a∗

t (βt )
)
< π̃t

(
s1
t

(
a∗
t (βt ); βt

)
, a∗

t (βt )
) = 0,

where the equality again follows from Lemma 10. By continuity, π̃t(b′, a′ ) < 0 for
sufficiently small ε > 0. Therefore, a type-a′ player can secure a strictly higher
expected payoff by exerting zero effort, which is a contradiction. This concludes
the proof.



730 Deng, Fu, Wu, and Zhu Theoretical Economics 19 (2024)

A.4 Proof of Lemma 4

Proof. Fix some type ã ∈ (a∗
t (βt ), 1] such that b∗

t (ã − 0; βt ) = emt (ã; βt ) for some 1 ≤
m≤mt(ã; βt ) − 1. Then we have that (see Figure 1)

π̃t
(
emt (ã; βt ), ã

) = π̃t
(
sm+1
t (ã; βt ), ã

)
. (15)

Suppose, to the contrary, that b∗
t (ã+ 0; βt ) 
= sm+1

t (ã; βt ). We consider the following two
cases:

(a) Suppose that b∗
t (ã + 0; βt ) < sm+1

t (ã; βt ). Then there exists ε > 0 such that
b∗
t (a; βt ) < sm+1

t (ã; βt ) for all a < ã+ ε. Consider a player whose ability is ã− ε′ for
sufficiently small ε′ > 0. His expected payoff of bidding sm+1

t (ã; βt ) is no less than

Fnt−1(ã+ ε)Qt
(
sm+1
t (ã; βt )

) − sm+1
t (ã; βt )
ã− ε′

>Fnt−1(ã+ ε)Qt
(
sm+1
t (ã; βt )

) − sm+1
t (ã; βt )

ã

> π̃t
(
sm+1
t (ã; βt ), ã

)
= π̃t

(
emt (ã; βt ), ã

)
,

where the second equality follows from (15). Note that b∗
t (ã − 0; βt ) = emt (ã; βt ),

and thus π̃t(emt (ã; βt ), ã) is the limit of player’s equilibrium expected payoff as ε′
approaches 0. Therefore, the player can obtain a strictly higher payoff by bidding
sm+1
t (ã; βt ), which is a contradiction.

(b) Suppose that b∗
t (ã + 0; βt ) > sm+1

t (ã; βt ). Consider a player whose type is ã + ε′
for sufficiently small ε′ > 0. Note that his equilibrium expected payoff of bidding
b∗
t (ã+ ε′; βt ) can then be bounded from above by

π̃t
(
b∗
t

(
ã+ ε′; βt

)
, ã+ ε′)< π̃t

(
sm+1
t (ã; βt ), ã

) = π̃t
(
emt (ã; βt ), ã

)
,

where the inequality follows from the definition of St(a; βt ) and the equality
from (15). Meanwhile, his expected payoff of bidding b∗

t (ã− 0; βt ) is

Fnt−1(ã)Qt
(
emt (ã; βt )

) − emt (ã; βt )
ã+ ε′ ≥ π̃t

(
emt (ã; βt ), ã

)
.

Therefore, the player has a strict incentive to deviate from his equilibrium bid
b∗
t (ã+ ε′; βt ), which is a contradiction.

A.5 Proof of Theorem 1

Proof. We consider the following two cases:

(a) Suppose nt = 1. It is evident that b∗
t (a; βt ) = 0 for a ≤ a∗

t (βt ) and b∗
t (a; βt ) solves

max
b≥βt

[
Qt(b) − b/a

]
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for a > a∗
t (βt ). Further, let a∗∗

t (βt ) := supa∗
t (βt )≤a≤1{a : Qt(βt ) − βt/a > Qt(b′ ) −

b′/a, ∀b′ ∈ (βt , 1]}. It follows immediately that

b′ −βt

a
>

b′ −βt

a∗∗
t (βt )

≥Qt
(
b′) −Qt(βt ), for all a∗

t (βt ) ≤ a < a∗∗
t (βt ) and b′ ∈ (βt , 1],

which in turn implies that b∗
t (a; βt ) = βt for when the player’s ability a lies between

a∗(βt ) and a∗∗(βt ). To summarize, period-t player’s equilibrium bidding strategy
for the case of nt = 1 is characterized by (7) in part (i) of the theorem.

(b) Suppose that nt ≥ 2. For a ≤ a∗
t (βt ), it follows immediately from Lemma 1(ii) that

b∗
t (a; βt ) = 0. For a > a∗

t (βt ), we have that

b∗
t (a; βt ) ∈ arg maxb>βt

[
Qt(b)Fnt−1((b∗

t

)−1
(b; βt )

) − b/a
]
.

This implies that

a ∈ arg maxǎ>a∗
t (βt )π̌t(ǎ, a; βt ) := Qt

(
b∗
t (ǎ; βt )

)
Fnt−1(ǎ) − b∗

t (ǎ; βt )/a.

Suppose that b∗
t (a; βt ) is continuous in some interval Uã = (ã, ã + ε). In the equi-

librium, the following first-order condition should be satisfied:

∂π̌t(ǎ, a; βt )
∂ǎ

∣∣∣∣
ǎ=a

= 0, for a ∈ Uã,

which is equivalent to

(nt − 1)Qt
(
b∗
t (a; βt )

)
Fnt−2(a)f (a) + (

b∗
t

)′
(a; βt ) × ∂π̃t(b, a)

∂b

∣∣∣∣
b=b∗

t (a;βt )

= 0, for a ∈ Uã, (16)

and can be further simplified as (8) in the text. Condition (16), together with
Lemma 1(ii), Lemma 3, and Lemma 4, indicates that the equilibrium bidding strat-
egy b∗

t (a; βt ), if a PBE exists, is fully characterized as in Theorem 1(ii).
It remains to verify that b∗

t (a; βt ) as described in Theorem 1(ii) indeed consti-
tutes a PBE of the contest game. We first verify the monotonicity of b∗

t (a; βt ). Ev-
idently, the first term on the left-hand side of (16) always remains positive, indi-
cating that (b∗

t )′(a; βt ) 
= 0. Moreover, suppose that there exists ã ≥ a∗
t (βt ) such

that b∗
t (ã + 0; βt ) = smt (ã; βt ) for some 1 ≤ m ≤ mt(ã; βt ). From the definition of

smt (ã; βt ), for any sufficiently small ε > 0, we have that

∂π̃t(b, ã)
∂b

∣∣∣∣
b=smt (ã;βt )+ε

< 0.

Therefore, (b∗
t )′(a; βt ) > 0 at a = ã+ ε; otherwise, (16) cannot be satisfied. We can

thus conclude from these facts that b∗
t (a; βt ) strictly increases with a whenever

b∗
t (a; βt ) is continuous and is governed by (16). It remains to verify the mono-

tonicity of b∗
t (a; βt ) at discontinuity points. Suppose that there exists ã such that
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b∗
t (ã − 0; βt ) = emt (ã; βt ) for some 1 ≤ m ≤ mt(ã; βt ) − 1. By Lemma 4, we have

b∗
t (ã− 0; βt ) = emt (ã; βt ) < sm+1

t (ã; βt ) = b∗
t (ã+ 0; βt ).

Simple algebra would verify that

∂2π̌t(ǎ, a; βt )
∂ǎ∂a

> 0,

which implies that ∂π̌t (ǎ,a;βt )
∂ǎ

is increasing in a. Therefore, we have

∂π̌t(ǎ, a; βt )
∂ǎ

>
∂π̌t(ǎ, a; βt )

∂ǎ

∣∣∣∣
ǎ=a

= 0, for ǎ < a,

and

∂π̌t(ǎ, a; βt )
∂ǎ

<
∂π̌t(ǎ, a; βt )

∂ǎ

∣∣∣∣
ǎ=a

= 0, for ǎ > a.

That is, the necessary first-order condition ∂π̌t (ǎ,a;βt )
∂ǎ

|ǎ=a = 0 is also a sufficient
condition for global maximizer. This concludes the proof.

A.6 Proof of Proposition 1

Proof. See the main text.

A.7 Proof of Corollary 1

Proof. It is useful to prove the following intermediate result.

Lemma 11. Suppose that F(·) is continuous, twice differentiable, strictly concave, and
satisfies lima↘0[f (a)a] = 0. Then Qt(b) is continuous, twice differentiable, weakly in-
creasing, strictly concave on [0, 1], and satisfies limb↘0[bqt(b)] = 0 for all t ≤ T − 1.

Proof. We prove the lemma by induction.
Base case: Consider the penultimate period, that is, t = T − 1. Recall from the proof

of Lemma 8 that Gn(·) is defined as the inverse function of aFn−1(a) for an arbitrary
positive integer n ∈N+. It follows from (4) and (5) that a∗

T (β) =GnT (β); together with (3),
we have QT−1(b) = FnT (GnT (b)). Evidently, QT−1(b) is continuous, twice differentiable,
and weakly increasing, and it remains to show that QT−1(b) is strictly concave on [0, 1]
and satisfies limb↘0[bqT−1(b)] = 0.

For notational convenience, define Ĝt(b) := Fnt (Gnt (b)), ∀t ∈ {2, � � � , T }. It can be
verified that Ĝt(b) is continuous, twice differentiable, and weakly increasing. We first
show that Ĝt(b) is strictly concave. Carrying out the algebra, we have that

Ĝ′
t(b) = ntF

(
Gnt (b)

)
f
(
Gnt (b)

)
F

(
Gnt (b)

) + (nt − 1)Gnt (b)f
(
Gnt (b)

) .

Because Gnt (b) is strictly increasing in b, it suffices to show that for all x ∈ (0, 1),

d

dx

F(x)f (x)
F(x) + (nt − 1)xf (x)

< 0 ⇐⇒ d

dx

[
1

f (x)
+ (nt − 1)

x

F(x)

]
> 0.
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The strict concavity of F(x) implies that both 1
f (x) and x

F(x) are strictly increasing in x.

Therefore, Ĝt(b) is strictly concave in b.
Next, we show that limb↘0[bĜ′

t(b)] = 0. The analysis is straightforward for nt = 1,
and it suffices to consider the case of nt ≥ 2. Carrying out the algebra, we have that

lim
b↘0

b

Gnt (b)
= lim

b↘0

[
Fnt−1(Gnt (b)

)] = 0,

and

lim
b↘0

[
Gnt (b)Ĝ′

t(b)
] = lim

b↘0

ntbF(b)f (b)
F(b) + (nt − 1)bf (b)

= lim
b↘0

nt
1

bf (b)
+ (nt − 1)

1
F(b)

= 0.

Therefore,

lim
b↘0

[
bĜ′

t(b)
] = lim

b↘0

b

Gnt (b)
× lim

b↘0

[
Gnt (b)Ĝ′

t(b)
] = 0.

Note that QT−1(b) = ĜT (b). The above analyses indicate that QT−1(b) = ĜT (b) is
strictly concave and limb↘0[bqT−1(b)] = limb↘0[bĜ′

T (b)] = 0.
Inductive step: Suppose that Qt(b) is continuous, twice differentiable, weakly in-

creasing, strictly concave on [0, 1], and satisfies limb↘0[bqt(b)] = 0 for some t ≤ T − 1.
Next, we show that Qt−1(b) has the same properties. Before we proceed, note that
Qt(0) = 0 for all t ≤ T − 1.

It is straightforward to verify that Qt−1(b) is continuous and twice differentiable from
its definition. Further, it can be verified from the concavity of Qt(b) that b/Qt(b) is
strictly increasing in b. Because Qt(b), Ĝt(b), and b/Qt(b) are all increasing, Qt−1(b)
is an increasing function.

Next, we prove the strict concavity of Qt−1(b). Carrying out the algebra, we can ob-
tain that

qt−1(b) = qt(b)

[
Ĝt

(
b

Qt(b)

)
− Ĝ′

t

(
b

Qt(b)

)
b

Qt(b)

]
+ Ĝ′

t

(
b

Qt(b)

)
and

q′
t−1(b) = q′

t(b)︸ ︷︷ ︸
<0

[
Ĝt

(
b

Qt(b)

)
− Ĝ′

t

(
b

Qt(b)

)
b

Qt(b)

]
︸ ︷︷ ︸

>0

+ Ĝ′′
t

(
b

Qt(b)

)
︸ ︷︷ ︸

<0

[
Qt(b) − bqt(b)

Qt(b)

]
︸ ︷︷ ︸

>0

[
b

Qt(b)

]′

︸ ︷︷ ︸
>0

.

From the previous analysis, Ĝt(b) is strictly concave and limb↘0[bĜ′
t(b)] = 0, which im-

plies that Ĝ′′
t ( b

Qt (b) ) < 0 and

Ĝt

(
b

Qt(b)

)
− Ĝ′

t

(
b

Qt(b)

)
b

Qt(b)
> 0, ∀b ∈ (0, 1).
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The monotonicity of b/Qt(b) implies that Qt (b)−bqt (b)
Qt (b) > 0 and [ b

Qt (b) ]′ > 0. Further, the
strict concavity of Qt(b) implies that q′

t(b) < 0. Therefore, q′
t−1(b) < 0, and thus Qt−1(b)

is strictly concave.
Finally, we have

lim
b↘0

[
bqt−1(b)

] = lim
b↘0

{
bqt(b)

[
Ĝt

(
b

Qt(b)

)
− Ĝ′

t

(
b

Qt(b)

)
b

Qt(b)

]
+Qt(b)

b

Qt(b)
Ĝ′

t

(
b

Qt(b)

)}
. (17)

Note that

0 ≤ Ĝt

(
b

Qt(b)

)
− Ĝ′

t

(
b

Qt(b)

)
b

Qt(b)
≤ Ĝt

(
b

Qt(b)

)
≤ 1 (18)

and

0 ≤ b

Qt(b)
Ĝ′

t

(
b

Qt(b)

)
≤ Ĝt

(
b

Qt(b)

)
≤ 1. (19)

Equations (17) to (19), together with Qt(0) = 0 and the postulated limb↘0[bqt(b)] = 0,
imply that limb↘0[bqt−1(b)] = 0. This completes the inductive step.

Conclusion: By the principle of induction, Qt(b) is continuous, twice differentiable,
weakly increasing, strictly concave on [0, 1], and satisfies limb↘0[bqt(b)] = 0 for all t ≤
T − 1. This concludes the proof.

Now we can prove Corollary 1. Suppose that F(·) is continuous, twice differentiable,
strictly concave, and satisfies lima↘0[f (a)a] = 0. By Lemma 11, Qt(b) is strictly concave
on [0, 1]. Further, by Lemma 8, Qt(0) = 0 and Qt(1) = 1 for all t ∈ T \ {T }. It follows
immediately that Qt(b) > b for all b ∈ (0, 1), which in turn implies that t0 = 0.

Next, suppose that F(·) is continuous, twice differentiable, and weakly convex. Re-
call from the proof of Lemma 8 that Gn(·) is the inverse function of aFn−1(a)—which
implies that b =GnT (b)FnT−1(GnT (b))—and FnT (GnT (b)) =QT−1(b). Further, the weak
convexity of F(·) implies that a ≥ F(a). Taken together, we can obtain that

b = GnT (b)FnT−1(GnT (b)
) ≥ FnT

(
GnT (b)

) =QT−1(b),

from which we can conclude that t0 = T − 1. This concludes the proof.

A.8 Proof of Theorem 2

Proof. Recall the unique symmetric PBE is denoted by b∗ := {b∗
1(a; β1 ), � � � , b∗

T (a; βT )}.
Fix an arbitrary period τ ∈ {t0 + 1, � � � , T − 1} and a player i in period τ + 1, that is,
i ∈ Nτ+1. We conduct the following thought experiment. Holding fixed all other play-
ers’ strategies—including those in period τ+ 1, if any—we modify player i’s equilibrium
bidding strategy from b∗

τ+1(a; βτ+1 ) to

bi†τ+1(a; βτ+1 ) := b∗
τ(a; βτ ).
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For ease of exposition, denote the constructed profile of bidding strategies by b†. Fur-
ther, denote player i’s expected payoff and a period-τ player’s under b† by �i†

τ+1 and �†
τ ,

respectively.
We first show that �∗

τ < �†
τ . Consider an indicative period-τ player j, j ∈ Nτ , whose

ability we denote by aj . Denote his interim expected payoff under b∗ and that under b†

by π∗
τ (aj ; βτ ) and π†

τ (aj ; βτ ), respectively.
If bj := b∗

τ(aj ; βτ ) = 0, then the period-τ player loses under both b∗ and b†, indicating
π∗
τ (aj ; βτ ) = π†

τ (aj ; βτ ) = 0. If bj > 0, then we have bj ≥ βτ and

π∗
τ

(
aj ; βτ

) = Fnτ−1(aj)Qτ
(
bj

) − bj/aj

= Fnτ−1(aj)Qτ+1
(
bj

)
Fnτ+1

(
a∗
τ+1

(
bj

)) − bj/aj ,

where the second equality follows from (3). Similarly, we have

π†
τ

(
aj ; βτ

) = F
(
áj

)
Fnτ−1(aj)Qτ+1

(
bj

)
Fnτ+1−1(a∗

τ+1
(
bj

)) − bj/aj ,

where áj is defined as

áj :=
{
a∗
τ(βτ ), if nτ = 1 and a∗

τ(βτ ) < aj ≤ a∗∗
τ (βτ ),

aj , otherwise,

and satisfies b∗
τ(áj ; βτ ) = b∗

τ(aj ; βτ ) > 0. It is straightforward to verify that

π∗
τ

(
aj ; βτ

)
<π†

τ

(
aj ; βτ

) ⇐⇒ F
(
a∗
τ+1

(
bj

))
<F

(
áj

) ⇐⇒ a∗
τ+1

(
bj

)
< áj . (20)

It follows immediately from b∗
τ(áj ; βτ ) = b∗

τ(aj ; βτ ) > 0 that π∗
τ (áj ; βτ ) > 0, from which

we can conclude

Qτ+1
(
bj

)
Fnτ+1−1(a∗

τ+1

(
bj

)) − bj/áj > 0. (21)

Further, it follows from the definition of a∗
τ+1(·) [see Equation (4)] that

π̃τ+1
(
bj , a∗

τ+1

(
bj

)) =Qτ+1
(
bj

)
Fnτ+1−1(a∗

τ+1

(
bj

)) − bj/a∗
τ+1

(
bj

) ≤ 0. (22)

Combining (21) and (22) yields

a∗
τ+1

(
bj

) ≤ bj

Qτ+1
(
bj

)
Fnτ+1−1(a∗

τ+1
(
bj

)) < áj .

The above condition, together with (20), implies that π∗
τ (aj ; βτ ) <π†

τ (aj ; βτ ) and

�∗
τ = E

[
π∗
τ

(
aj ; βτ

)]
< E

[
π†
τ

(
aj ; βτ

)] = �†
τ , (23)

where the expectation is taken with respect to both aj and βτ .
To complete the proof, first note that �∗

τ+1 ≥ �i†
τ+1 by the definition of PBE. More-

over, it follows immediately from the construction bi†τ+1(a; βτ+1 ) := b∗
τ(a; βτ ) that �i†

τ+1 ≥
�†

τ . These inequalities, together with (23), imply that �∗
τ+1 ≥�i†

τ+1 ≥�†
τ > �∗

τ .
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A.9 Proof of Corollary 2

Proof. The corollary follows immediately from Theorem 2 and Corollary 1.

A.10 Proof of Lemma 5

Proof. Fixing an arbitrary architecture n ≡ (n1, � � � , nT ), with nt ≥ 1 for all t ∈ {1, � � � , T }
and T ≥ 2, it suffices to show that

WP∗
1(a; n) < FN−1(a) < WP∗

T (a; n), for almost every a ∈ (0, 1).

We first prove that WP∗
1(a; n) < FN−1(a) for all a ∈ (0, 1). Consider a representative

period-1 player i ∈ N1. Recall β1 ≡ 0. The inequality obviously holds if bi := b∗
1(ai; β1 ) =

0, and it remains to consider the case where bi > 0. Player i’s expected equilibrium pay-
off is

π∗
1
(
ai; n

)
:= WP∗

1
(
ai; n

) − bi

ai
> 0. (24)

Fixing � ∈ {2, � � � , T }, we have that

WP∗
1
(
ai; n

) = Fn1−1(ai) �∏
t=2

Fnt
(
a∗
t

(
bi

))
Q�

(
bi

) ≤ Fn�−1(a∗
�

(
bi

))
Q�

(
bi

)
, (25)

where the equality follows from Lemma 1 and Lemma 7. Combining (24) and (25) yields

Fn�−1(a∗
�

(
bi

))
Q�

(
bi

) − bi

ai
> 0. (26)

From (3), (4), and (5), we have that π̃�(bi, a∗
�(bi )) ≤ 0, which is equivalent to

Fn�−1(a∗
�

(
bi

))
Q�

(
bi

) − bi

a∗
�

(
bi

) ≤ 0. (27)

Comparing (26) with (27) yields that ai > a∗
�(bi ) for all � ∈ {2, � � � , T }, which in turn im-

plies that

WP∗
1

(
ai; n

) = Fn1−1(ai) T∏
�=2

Fn�
(
a∗
�

(
bi

))
< Fn1−1(ai) T∏

�=2

Fn�
(
ai

) = FN−1(ai).

Next, we prove that FN−1(a) < WP∗
T (a; n) for almost every a ∈ (0, 1). Fix a ∈ (0, 1),

β ∈ [0, 1], and (t, �), with 1 ≤ t < � ≤ T . Following a similar argument as in the previous
analysis, we can show that if b∗

t (a; β) > 0, then

a > a∗
�

(
b∗
t (a; β)

)
. (28)

Consider a representative period-T player, j ∈ NT , with ability aj ∈ (0, 1). By (28), we
have aj > a∗

T (b∗
1(aj ; 0)). Note that a∗

T (b∗
1(a; 0)) weakly increases with a, and thus is con-

tinuous almost everywhere. We can focus on the case where a∗
T (b∗

1(a; 0)) is continuous
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at a = aj . Therefore, there exists ε > 0 such that aj > a∗
T (b∗

1(aj + ε; 0)). Let a := aj + ε. It
follows immediately that

a > aj > a∗
T

(
b∗

1(a; 0)
)
. (29)

It is useful to prove the following intermediate result.

Lemma 12. Fix an arbitrary architecture n ≡ (n1, � � � , nT )—with nt ≥ 1 for all t ∈
{1, � � � , T } and T ≥ 2—and consider an indicative period-T player j ∈ NT . He wins the
contest in the unique PBE if a > aj

′
for all j′ ∈ N1 and aj > aj

′
for all j′ ∈ N \ ({j} ∪N1 ).

Proof. Fix an ability profile a := (a1, � � � , aN ) such that a > aj
′

for all j′ ∈ N1 and aj > aj
′

for all j′ ∈ N \ ({j} ∪ N1 ). Let ı denote the index of the provisional winner by the end
of period T − 1 given that all players use the equilibrium strategy and t the period he
moves. Then βT = b∗

t (aı; βt). Evidently, the lemma holds if b∗
t (aı; βt) = 0 and it remains

to consider the situation where b∗
t (aı; βt) > 0. We consider the following two cases:

(a) Suppose t≥ 2. Then we have

aj > aı > a∗
T

(
b∗
t

(
aı; βt

)) = a∗
T (βT ),

where the first inequality follows from the postulated ı /∈ N1 and the second in-
equality from (28).

(b) Suppose t= 1. Then we have

aj > a∗
T

(
b∗

1(a; 0)
) ≥ a∗

T

(
b∗

1
(
aı; 0

)) = a∗
T (βT ),

where the first inequality follows from (29).

To summarize, if b∗
t (aı; βt) > 0, then aj > a∗

T (βT ), indicating that player j places a
positive amount of bid in equilibrium. Therefore, he outbids all players up to period
T − 1. Next, note that aj > aj

′
for all j′ ∈ NT by assumption; together with Lemma 1(iii),

player j outbids all of his contemporaneous rivals in period T and wins the contest.

By Lemma 12, player j’s expected winning probability, WP∗
T (aj ; n), can be bounded

from below by

WP∗
T

(
aj ; n

) ≥ Fn1 (a)F (
∑T

t=2 nt )−1(aj)> FN−1(aj).

This concludes the proof.

A.11 Proof of Lemma 6

Proof. Fix an indicative player i ∈N and consider the following two cases:

(a) All other players choose to move in the last period. If player i chooses to move in
period 1, the resultant contest architecture is n̂ = (1, N − 1) and his equilibrium
payoff in this subgame is �∗

1(n̂). If player i chooses to move in the last period,
all players move simultaneously in the second-stage game and his equilibrium
payoff amounts to �SIM. By (9), we have �∗

1(n̂) <�SIM.
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(b) At least one of player i’ opponents chooses not to move in the last period. Denote
the resultant contest architecture when player i chooses to move in period 1 and
that when he chooses to move in period L by n̂′ and n̂′′, respectively. Note that n̂′

degenerates to a simultaneous-move contest if all other players choose to move
in period 1 and a sequential-move one otherwise. By (9), we have �∗

1(n̂′ ) ≤ �SIM.
Next, note that n̂′′ is a sequential-move contest. Denote the number of periods
with at least one player by T̂ ′′. Clearly, player i’s equilibrium payoff under n̂′′

is �∗
T̂ ′′(n̂

′′ ). Again, we can obtain �SIM < �∗
T̂ ′′(n̂

′′ ) from (9). Therefore, we have

�∗
1(n̂′ ) ≤�SIM <�∗

T̂ ′′(n̂
′′ ).

To summarize, moving in period L yields a strictly higher payoff to player i than
moving in period 1. This concludes the proof.

A.12 Proof of Theorem 3

Proof. The theorem follows immediately from Lemma 6.

A.13 Proof of Theorem 4

Proof. Fixing a contest architecture n≡ (n1, � � � , nT ) and θ ∈ [0, 1], denote a symmetric
PBE of the contest game, if it exists, by {b∗

t (a; βt )}Tt=1, with slight abuse of notation. Recall
that the sequence of functions {Qt(b; θ), a∗

t (β; θ), π̃t(b, a; θ)}Tt=1 is defined by (10), (11),
and (12). By arguments similar to the case of θ = 1, we can show that Lemmas 1, 3, 4,
and 7 extend to θ ∈ [0, 1]. The proof of the existence and uniqueness of symmetric PBE
resembles that of Theorem 1, except that π̌t(ǎ, a; β) is now defined as

π̌t(ǎ, a; βt ) := Qt
(
b∗
t (ǎ; βt ); θ

)
Fnt−1(ǎ)

[
1 − (1 − θ)b∗

t (ǎ; βt )/a
] − θb∗

t (ǎ; βt )/a,

and the differential equation that governs a period-t player’s bidding strategy b∗
t (a; βt )—

given that nt ≥ 2 and b∗
t (a; βt ) is continuous in some interval Uã = (ã, ã+ ε)—is

(nt − 1)Qt
(
b∗
t (a; βt ); θ

)
Fnt−2(a)f (a)

[
a− (1 − θ)b∗

t (a; βt )
]

+ (
b∗
t

)′
(a; βt )a

∂π̃t(b, a; θ)
∂b

∣∣∣∣
b=b∗

t (a;βt )
= 0.

The proofs of the later-mover advantage and the endogenous timing result are similar
to those in Theorem 2 and Theorem 3 and omitted for brevity.
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