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We study full implementation with evidence in an environment with bounded
utilities. We show that a social choice function is Nash implementable in a di-
rect revelation mechanism if and only if it satisfies the measurability condition
proposed by Ben-Porath and Lipman (2012). Building on a novel classification
of lies according to their refutability with evidence, the mechanism requires only
two agents, accounts for mixed-strategy equilibria, and accommodates eviden-
tiary costs. While monetary transfers are used, they are off the equilibrium and
can be balanced with three or more agents. In a richer model of evidence due
to Kartik and Tercieux (2012a), we establish pure-strategy implementation with
two or more agents in a direct revelation mechanism. We also obtain a necessary
and sufficient condition on the evidence structure for renegotiation-proof bilat-
eral contracts, based on the classification of lies.
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1. Introduction

Consider a government which aims to balance infrastructure development with envi-
ronmental protection. It consults infrastructure development firms and environmental
protection organizations to do a cost-benefit analysis. Without knowing the exact state
of the environment, the government needs to factor in inputs from these consultants.
However, the consultants have their own incentives, which are not necessarily aligned
with that of the government. For instance, infrastructure development firms will always
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prefer to build rather than to not build, whereas environmental protection organizations
will always push to err on the side of caution in protecting nature. How can the gov-
ernment glean useful information from these agents whose incentives are conceivably
misaligned?

Alternatively, consider a litigation scenario in which a firm is suing a supplier for
providing defective parts while the supplier argues that the parts meet the specifications
in the initial contract. The judge wants to impose a financial penalty commensurate to
the offence, assuming one is proven. The plaintiff always prefers higher penalties while
the defendant always prefers smaller ones. How, then, is the judge to decide on the scale
of the penalty, given that those in the know do not have the incentive to truthfully reveal
whether the parts were defective or the contract unclear?

A common thread that links these scenarios is that the preferences of the agents
do not change across states. Other scenarios which share this feature include budget
allocation (where agents prioritize obtaining larger shares, irrespective of their require-
ments), and lobbying (where groups prioritize their own interests which are indepen-
dent of the state). In all of these situations, classical results on full implementation such
as Maskin (1999) and Moore and Repullo (1988) cannot be used, as they rely on prefer-
ence variation across states. In this paper, we pursue the idea of enriching the mecha-
nism with the use of evidence, so that agents can no longer misreport the state arbitrar-
ily. For instance, the infrastructure development firms or the environmental protection
organizations may be able to partially prove the state of the environment by submitting
their environmental research reports. Likewise, the defendant in the litigation scenario
may be able to prove that the supplied product meets the specifications in the contract
or the plaintiff may be able to prove that it does not.

Specifically, we study the full implementation problem with evidence due to Ben-
Porath and Lipman (2012). There is a state of the world, which is common knowledge
among a set of agents but unknown to a designer. At each state, an agent is endowed with
some articles of evidence, which may vary from one state to another. Each article of evi-
dence can be identified with a subset of the state space, and it refutes the possibility that
the true state is outside this subset. In other words, we work with hard evidence, which
differs in its availability across states, and hence can be used by the agents to partially
prove the state.1 In designing a mechanism, the planner can request evidence presen-
tation as well as cheap talk messages (which are available in every state). In such a set-
ting, Ben-Porath and Lipman (2012) propose a condition called measurability. A social
choice function is said to be measurable with respect to the underlying evidence struc-
ture (hereafter, measurable) if whenever the desirable social outcomes differ across two
states, at least one agent has a variation in the set of available evidence. To wit, if neither
the preferences nor the evidence varies between two states, then any (direct or indirect)
mechanism will have the same outcome in both, regardless of the solution concept to
which the planner subscribes.

We study an environment in which there are two or more agents with bounded util-
ities and the designer can impose monetary transfers off the equilibrium. We consider

1The hard evidence setting is a special case of the costly evidence setting due to Kartik and Tercieux
(2012a), which we study in Section 4.
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a normal evidence structure under which each agent can present (in one message) all
the articles of evidence, which he is endowed with.2 In this setting, we show that a so-
cial choice function is implementable in mixed-strategy Nash equilibria regardless of
the agents’ preferences if and only if it is measurable (Theorem 1). Moreover, we obtain
the implementation result using a direct revelation mechanism in the sense of Bull and
Watson (2007), wherein agents only report a state and present an article of evidence.
Further, the mechanism achieves budget balance when there are three or more agents;
in addition, if we allow the designer to randomize, then the off-the-equilibrium transfers
can be made arbitrarily small (Theorem 2).

Our implementation results possesses a number of desirable features. First, we rec-
ognize, following the critique due to Jackson (1992), that implementation has long relied
on invoking integer/modulo games to eliminate unwanted equilibria. While such devices
are useful in achieving positive results in general settings, they admit no pure-strategy
equilibrium. This problem is exacerbated under mixed strategies: in an integer game,
an agent has no best response to an opponent’s strategy, which places positive proba-
bility on all integers, whereas a modulo game possesses an unwanted mixed-strategy
equilibrium. The hope has been that more realistic mechanisms may suffice in more
specific settings. Our mechanism makes use of neither integer/modulo games nor se-
quential moves.3 Rather, we use a direct revelation mechanism, which has the simplest
possible message structure in implementing arbitrary measurable social choice func-
tions. The design of our direct revelation mechanism is based on a novel classification
of lies (i.e., inaccurate state claims). Specifically, there are lies, which can be refuted by
evidence, possessed by other agents (other-refutable lies), lies which can be refuted only
by the agent who is reporting them (self-refutable lies), and lies which cannot be refuted
by any evidence available under the true state (nonrefutable lies).4 We design transfer
rules, which eliminate the lies successively in any mixed-strategy equilibrium.

Second, our result extends to settings where evidence presentation is costly. Specifi-
cally, as long as the designer knows the bound of the agents’ evidentiary cost, every mea-
surable social choice function remains directly implementable in mixed-strategy Nash
equilibria regardless of the cost structure (Theorem 3).5 In contrast, when there is a
fixed evidentiary cost structure, which is common knowledge, the designer is able to dis-
tinguish between states by exploiting the cost variation and measurability is no longer
necessary for implementation. In such a setting, Kartik and Tercieux (2012a) propose a
condition called evidence monotonicity, and show that it is necessary for implementa-
tion where only the cheapest evidence is submitted in equilibrium. We adapt the notion

2Normality is also imposed in Theorem 2 of Ben-Porath and Lipman (2012), which achieves Nash imple-
mentation by invoking integer games and ε transfers. For a detailed comparison between our results and
the results of Ben-Porath and Lipman (2012), see Section 6.

3Implementation with equililbrium refinements, which do not possess the closed-graph property (e.g.,
subgame-perfect Nash equilibrium) need not be robust to a “small amount of incomplete information
about the state”; see Chung and Ely (2003) and Aghion et al. (2012).

4It follows from measurability that if state s′ is not refutable at state s and induces a different social
outcome, then s must be refutable at s′.

5It is well recognized in the literature that there may be material or psychological costs associated with
the presentation of evidence. See Bull and Watson (2007), Ben-Porath and Lipman (2012), and Kartik and
Tercieux (2012a) for instance.
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of evidence monotonicity to our environment and establish that evidence monotonicity
is sufficient for pure-strategy Nash implementation with two or more agents via a direct
revelation mechanism (Theorem 4).6

Third, as our results hold even when there are only two agents, they allow for ap-
plications to a classical issue in the incomplete contract literature. The difficulty in this
regard arises when a desirable contractual outcome (e.g., an efficient trade) needs to be
conditioned on some state variables (e.g., the a buyer’s valuation of some good), which
are observable to both contractual parties and yet not verifiable by a third party such as
a court. A well-known solution is to invoke implementation theory to design a mech-
anism, which has the agents announce the observed state as a verifiable equilibrium
message. However, such mechanisms often involve off-the-equilibrium transfers, which
penalize both agents so that such mechanisms are susceptible to renegotiation.7 Mea-
surability with respect to an evidence structure may be considerably easier to satisfy in
practice than verifiability. Indeed, even when a state is not verifiable, the agents may
still be able to provide evidence to refute certain states. In Section 5, we establish a
necessary and sufficient condition on the evidence structure for the existence of rene-
gotiation proof bilateral contracts. In particular, such a contractual outcome must lie on
the Pareto frontier of the agents’ utility possibility set and thereby must achieve budget
balance.

The rest of the paper is organized as follows. Section 2 provides a formal description
of the model, the implementing condition, and further details the classification of lies
on which the mechanism is based. Section 3 presents the main implementing mech-
anism and a formal proof of implementation. Following this, we also establish budget
balance with three or more agents (Section 3.8) and implementation with small trans-
fers (Section 3.9). In Section 4, we extend our results to settings where evidence presen-
tation is costly. Section 5 details our treatment of renegotiation-proof contracting and
we conclude by comparing our results to the existing literature.

2. Model

2.1 Environment

Let I ={1, � � � , I} (I ≥ 2) be a set of agents, A, a set of social outcomes, and S a set of
states. Suppose that S is finite. Agents have quasilinear utilities in transfers, so that
ui(a, s, τ) = vi(a, s)+τ where τ is the transfer to the agent. We assume that vi is bounded
and without loss of generality, we set vi : A× S → [0, 1] (in dollars). As a result, an agent
can be induced to accept any outcome if the alternative were to be any other outcome
with a penalty of 1 dollar. A social planner would like to implement a social choice func-
tion (SCF) f : S → A. We assume that while the true state is common knowledge among
the agents, it is unknown to the social planner.

6We also obtain mixed-strategy implementation under a stronger version of evidence monotonicity in
Banerjee, Chen, and Sun (2023).

7For an example of the issues posed by renegotiation, we refer the reader to Maskin and Moore (1999)
where they demonstrate a setting in which only a null contract is renegotiation-proof even though it is
efficient to trade with verifiable states. Maskin and Tirole (1999) attempt to circumvent this issue by using
lotteries, but their result depends crucially on at least one agent being strictly risk averse.
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2.2 Evidence

We assume that each agent i is endowed with a (state-dependent) collection of articles
of evidence Ei : S⇒ 2S . In particular, by providing a message Ei ∈ Ei(s) in a state s, agent
i establishes that the true state lies within Ei. At state s, we say that an article of evidence
Ei ∈ Ei(s) refutes state s′ if s′ /∈Ei.

Following Ben-Porath and Lipman (2012), we introduce the following definition.

Definition 1. An evidence structure satisfies the following conditions:
(e1) it is impossible to refute the truth, i.e., ∀s ∈ S, Ei ∈ Ei(s) only if s ∈Ei;
(e2) if an agent can prove the event E in some state, then they must be able to do so

in all the states in E, i.e., E ∈ Ei(s) only if E ∈ Ei(s′ ) for every s′ ∈ E.

We stress here that this is not an assumption. Rather, if articles of evidence differ in
their availability across states, then without loss of generality, we can name the article
in terms of the subset of states in which it is available. With such names, the above
properties must be satisfied.

We say that a setting involves hard evidence if the set of evidence available to an
agent can change from state to state. Furthermore, we say that the evidence structure is
normal if, for every agent i, and every state s,

E∗
i (s) ≡

⋂
E∈Ei(s)

E ∈ Ei(s).

The idea behind normality is that it is feasible for agents to present all their evidence
at once, suggesting an idealization in which there are no time or other constraints on
doing so. We refer to this message containing all the evidence that an agent has as the
tightest evidence of the agent in the given state. For a start, we prove our first main result
(Theorem 1) under the assumption of normality. We will discuss in Section 3.7 how this
result should be modified when the normality assumption does not hold. We define a
social choice environment as a tuple � = (I , A, S, {Ei}i∈I , f ), which is assumed to be
common knowledge among the designer and agents. We write s ∼ s′ (and say that s is
equivalent to s′) if Ei(s) = Ei(s′ ) for all i.

2.3 Illustrating example

To illustrate the above ideas, we consider a situation wherein a government (acting as
the social planner) is considering whether to approve a development project, which has
an adverse environmental impact. The agents concerned are an infrastructure devel-
opment firm (F) and an environmental protection organization (O). Suppose the three
actions available to the planner are to allow the project (Pl), ask for it to be made smaller
(Pm), or to scrap it entirely (Ph). It wishes to make these decisions if the threat to the
environment is low (sl), medium (sm), or high (sh), respectively. The government does
not know the degree of the threat to the environment, while both F and O being more
familiar with the scenario, know that the true threat level is medium (sm).

Profit-making firm (F) is solely concerned with implementing the project, and thus
has a preference ordering Pl 
 Pm 
 Ph. The environmental protection organization (O)
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has the preference ordering Ph 
 Pm 
 Pl since it strictly prioritizes protecting the envi-
ronment. These preference orderings are not dependent on the state and this is where
this scenario departs from the classical/Maskin-type implementation problem.

The social planner now requests the two parties to submit evidence for and against
the project. Suppose that articles of evidence are of the form of discoveries of environ-
mental degradation, which refute lower-impact states. Moreover, the state sh is assumed
to be associated with a very serious degree of environmental impact, so that if the true
state were sh, it would be apparent to (and provable by) all the agents. To sum up these
ideas, we present below the evidence structure for each agent in all possible states:

Agent/State sl sm sh

Firm (F)
{{
sl, sm, sh

}} {{
sl, sm, sh

}
,
{
sm, sh

}} {{
sl, sm, sh

}
,
{
sm, sh

}
,
{
sh

}}
Organization (O)

{{
sl, sm, sh

}} {{
sl, sm, sh

}} {{
sl, sm, sh

}
,
{
sh

}}
Note that articles of evidence are subsets of the state space so that an agent present-

ing {sm, sh} informs the designer only that the state is not sl. We also say that this article
of evidence refutes sl. Thus, in state sm, reporting the state sl is a lie that only F can
refute, and reporting the state sh is a lie that no one can refute. It is interesting to note
that in the true state (sm), O would like to convince the planner that the true state is sh

(a claim that no one can refute in this scenario) and F would like to convince the planner
that the true state is sl (a claim that only F can refute).

2.4 Measurability and implementation

When the agents’ preferences do not vary across states (i.e., v does not depend on s), ev-
idence is the only way to differentiate two states. Indeed, if two states induce the same
preference profile and evidence endowments, then irrespective of the solution concept
in use, in any mechanism they must be associated with the same set of equilibria.8 Mea-
surability of an SCF entails that when the planner wants to implement different out-
comes from one state to another, there must be at least one agent who can differentiate
between the states in terms of their evidence set. We now state the formal definition.

Definition 2. Given a social environment �, an SCF f satisfies measurability if f (s) =
f (s′ ) whenever s ∼ s′.

In other words, if f is measurable, then in implementing the desirable social out-
come, the designer needs to identify only the equivalence class of states, which contains
the truth.

To fix ideas, consider the example in Section 2.3 with the modification that in
state sm, F is endowed only with {{sl, sm, sh}}. In this case, no agent can differentiate
between sl and sm, so that any implementable SCF must be constant between these two
states. More generally, if there were to be no evidence in the model, so that Ei(s) = {S} for

8Unless otherwise specified, we assume that articles of evidence do not have costs associated with them
so that the designer cannot exploit cost variation.
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all agents in all states, then only constant SCFs are implementable. Further, even if each
agent were endowed only with {{sl , sm, sh}} in each state with the exception of only one
agent being endowed with {sh} in state sh, it (we shall show later) would still be possible
to implement different outcomes in sh relative to sl and sm, so that even the slightest
variation in evidence is sufficient for implementing different outcomes.

A mechanism M in this social choice environment is defined as a tuple M =
(M , g, (τi )i∈I ) where M = �i∈IMi is a finite set of message profiles, g : M → A is the
outcome function, and τi : M → R is the payment rule for agent i. A mechanism M
together with a profile of utility functions v = (vi )i∈I with vi : A × S → [0, 1] induces a
complete-information game G(M, v, s) at state s. We call a mechanism a direct reve-
lation mechanism (Bull and Watson (2007)) when Mi = S × Ei, i.e., every agent submits
only one claim of state and one article of evidence.

A (mixed) strategy of agent i in the game G(M, v, s) is a probability distribution σi

over Mi, which we also denote by σi ∈ �Mi. A strategy profile σ = (σ1, � � � , σI ) ∈ ×i∈I�Mi

is said to be a (mixed-strategy) Nash equilibrium of the game G(M, v, s) if, for any agent
i ∈ I and for any messages mi ∈ supp(σi ), we have∑

m−i∈M−i

σ−i(m−i )
[
vi

(
g(mi, m−i ), s

) + τi(mi, m−i )
]

≥
∑

m−i∈M−i

σ−i(m−i )
[
vi

(
g
(
m′

i, m−i

)
, s

) + τi
(
m′

i, m−i

)]
, ∀m′

i ∈Mi

where σ−i(m−i ) = �j �=iσj(mj ). A pure-strategy Nash equilibrium is a Nash equilib-
rium σ , which assigns probability one to some message profile m.

Unlike the classical implementation problem, and in recognition of practical situa-
tions in which preferences do not vary across states, we seek to implement the SCF by
relying on evidence instead of preference reversal. To stress this difference, we require in
the following definition that implementation is achieved regardless of the profile of util-
ity functions. This also has the effect of strengthening our result from the point of view
that we no longer require that preferences vary between states for implementation.9

Definition 3. An SCF f is Nash-implementable if there is a mechanism M = (M , g,
(τi )i∈I ) such that for any profile of bounded utility functions v = (vi )i∈I , any state s,
and any mixed-strategy Nash equilibrium σ of the game G(M, v, s), g(m) = f (s), and
τi(m) = 0 for each message profile m ∈ suppσ(s).

That is, a mechanism implements a social choice function if at any state, and with
any profile of bounded utility functions, any mixed-strategy Nash equilibrium outcome
coincides with the outcome of the SCF. That is, we ask for full implementation as op-
posed to partial implementation that requires only one equilibrium achieving the out-
come of the SCF. Note that partial implementation is trivial in such a setting, as all that

9Evidence variation, however, continues to be necessary. Kartik and Tercieux (2012a) provide the min-
imum necessary condition in this context, when both preference and evidence variation are combined—
evidence monotonicity. For the purposes of this paper, we set aside preference variation and focus on
evidence variation alone.
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would be required to achieve it would be to heavily penalize all agents for disagreeing
with each other about the state, so that there would be an equilibrium where each agent
tells the truth and there are no transfers.

In what follows, we consider two states to be different only if they induce different
tightest evidence for at least one agent. Otherwise, they are treated as the same state.
In other words, we identify S with its quotient space S/ ∼ induced by the equivalence
relation ∼ where each point corresponds to an equivalent class. Owing to the necessity
of measurability, this is without loss of generality for our implementation exercise.

2.5 A classification of lies

We will construct a direct revelation mechanism, which leverages two ways to use ev-
idence in cross-checking any claim of state. First, an article of evidence may be able
to refute a state claim. That is, it establishes that the state claim is definitely not true.
Second, it is possible for the designer to pick out state claims, which have not been fully
supported by agents, i.e., states for which agents have not provided all the evidence they
ought to have if the state were true. If a state claim is not supported by an agent even
though he is incentivized to do so, then it signals to the designer that the state claim is
false. These two ideas underlie the mechanism, which we will present later.

Formally, agent i is said to have supported a state claim s in an evidence message Ei

if Ei ⊆ E∗
i (s). Based upon the notion of refutation, we distinguish three different types

of lies wherein a lie is a claim of state s′, which is different from s∗ (under the relation ∼
defined previously). First, an other-refutable lie for agent i is a lie that at least one agent
other than i has the evidence to refute in the true state. For instance, for organization O,
the lie sl is an other-refutable lie in state sm since it can be refuted by the article {sm, sh}
possessed by Firm F. Note that it is straightforward to construct a transfer rule so that no
agent will tell other-refutable lies; this is done by just requiring an agent to pay a large
penalty to whoever refutes his state claim.

Second, a self-refutable lie for agent i is a lie that only agent i has the evidence to
refute in the true state. For instance, for firm F, the lie sl is a self-refutable lie in state sm

since it can only be refuted by the article {sm, sh} possessed by the firm itself.
Finally, a nonrefutable lie is a lie that cannot be refuted by any evidence that is pos-

sessed by any agent. For instance, the lie sh is a nonrefutable lie in state sm.
From an agent’s perspective, the truth, other-refutable, self-refutable, and non-

refutable lies partition the entire state space. To see this, notice that given a lie, it can
either be refuted at the true state, or not. If it can be refuted, it can either be refuted by
other agents, or only by the agent in question.

We now prove the following observations, which will be exploited in proving our
main result.

Observation 1. If an agent i cannot refute s′ at s∗, then every article of evidence avail-
able to him at s∗ is also available to him at s′.

Proof. If s′ /∈ RLi(s∗ ), then every article of evidence available to i at s∗ contains s′. Then,
from Property (e2) of Definition 1, every such article is available to i at s′, so that Ei(s∗ ) ⊆
Ei(s′ ).
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Observation 2. If s′ is a nonrefutable lie at s∗, then some agent must have an article of
evidence at state s′, which refutes s∗.

Proof. As s′ is nonrefutable for i at s∗, Observation 1 yields that Ei(s∗ ) ⊆ Ei(s′ ) for ev-
ery i. Since s′ is a lie, s′ � s∗. Hence, Ei(s∗ ) ⊂ Ei(s′ ) for some i, and from (e2) of Defini-
tion 1 any member of Ei(s′ )\Ei(s∗ ) must refute s∗. In other words, any article of evidence
that is available to agent i under s′ and not available under s∗ must refute s∗.

Observation 1 establishes that supporting either a self-refutable lie of another agent,
or a nonrefutable lie requires the presentation of at least as much evidence as support-
ing the truth. Observation 2 entails that it is impossible to have every agent support
a nonrefutable lie. Since nonrefutable lies cannot be directly refuted by evidence, this
inability to support them forms the only way to eliminate them in equilibrium.

3. Implementing mechanism

Fix the environment � = (I , A, S, {Ei}i∈I , f ). We now present our main result.

Theorem 1. Suppose the evidence structure is given by Ei(·). Then an SCF f is Nash-
implementable in a direct revelation mechanism if and only if it is measurable with re-
spect to Ei(·).

The necessity of measurability follows from the fact that if two states are associated
with the same set of evidence, and the preferences are constant among states, then any
mechanism must have the same set of equilibria in both states. In the following sub-
sections, we prove the sufficiency part of Theorem 1 by constructing a direct revelation
mechanism, which implements f .

3.1 Message space

Every agent has a typical message mi = (si, Ei ) ∈ Mi = S × Ei. We interpret this as a
claim of state and an article of evidence. The typical message mi therefore is of the form
(si, Ei ). In the following, we denote the full message profile (of all agents) by m ∈�i∈IMi.

3.2 Outcome

We define the outcome function of the mechanism as

g(m) = f (s1 ).

That is, we implement the social outcome according to the state claim made by the first
agent. However, we will show that in any equilibrium all agents report the true state.
Hence, any Nash equilibrium achieves the desirable social outcome.

3.3 Transfers

There are four different types of transfers in the mechanism, which we will introduce
one by one. The first transfer applies when an agent refutes a state claim of another
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agent. In this case, the agent whose claim is refuted has to pay a penalty to the agent
who refutes the claim. That is,

τ1
ij(m) =

⎧⎪⎪⎨
⎪⎪⎩

2I + 1, if si ∈Ej and sj /∈Ei;

−2I − 1, if si /∈Ej and sj ∈Ei;

0, otherwise

where I is the number of agents.
Under the second transfer, an agent incurs a penalty if his state claim is not sup-

ported by himself or other agents. Formally,

τ2
i (m) =

{
−I, if ∃j ∈ I such that Ej �E∗

j (si );

0, otherwise.

The third transfer penalizes an agent (say, agent i) if he disagrees with another agent
(say, agent j) along the evidence dimension for agent i. This is expressed as follows:

τ3
ij(m) =

{
−1, if E∗

i (si ) �=E∗
i (sj );

0, otherwise.

The fourth transfer is a penalty proportional to the cardinality of states that are not
refuted by the evidence presented by agent i. This is active when an agent has made a
state claim, which one or more agents have not supported. Formally,

τ4
i (m) =

⎧⎨
⎩−|Ei|

|S| , if Ej �E∗
j (sj′ ) for some j, j′ ∈ I;

0, otherwise.

We stress that this applies to one’s own state claims as well, i.e., being unable to
provide the tightest evidence for one’s own state claim also incurs a penalty from this
transfer.

With τ1
i = ∑

j �=i τ
1
ij and τ3

i = ∑
j �=i τ

3
ij , we define the overall transfer to agent i as

τi = τ1
i + τ2

i + τ3
i + τ4

i .

3.4 Proof sketch

The mechanism deals with each type of lie in sequence. We begin with other-refutable
lies, for instance the lie sl for O in state sm in the illustrating example. This involves
the transfer τ1. Recall that by definition, an other-refutable lie for some player (say i)
is refutable by a different agent, (say j). We note that τ1 provides agent j the incentive
to refute agent i’s lie irrespective of the probability with which i presents it (normality
ensures that he does not have to sacrifice rewards from refuting another agent’s lies). It
also assures agent i of a large penalty from refutation, which can be avoided by deviating
to the truth (which is irrefutable).

Before eliminating the remaining lies, we comment on the role of τ4. The transfer
τ4 is a cardinality transfer which (when it is active) incentivizes the presentation of the
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tightest evidence by all agents. We construct the mechanism in a way that presenting
additional evidence is never harmful for an agent. Indeed, when τ4 is active, it strictly
benefits the agent, since presenting an additional article of evidence reduces |Ei|, and
thus reduces the magnitude of the fine. This allows the mechanism to elicit the true
profile of tightest evidence, which is useful for the elimination of both nonrefutable and
self-refutable lies. This crucially depends upon normality, since incentivizing agents
to present their tightest evidence would not achieve its goal unless such an article is
available and can be presented.

Now, we eliminate nonrefutable lies, for instance the lie sh in state sm in the illus-
trating example. This step involves τ2 and τ4. Recall that if s′ is a nonrefutable lie at s∗,
then some agent must have the evidence to refute s∗ at s′; for instance, {sh} refutes sm

at sh. Since by assumption it is not possible to eliminate s∗ if it is the truth, there is at
least one agent who cannot support the claim s′ if the true state is s∗. Therefore, if an
agent i presents a nonrefutable lie, then he knows that it cannot be supported. In the
mechanism, this has two effects. First, he gets a large fine from τ2. Second, τ4 is ac-
tive, so that all agents have a strict incentive to present all their evidence. This has the
consequence of allowing agent i to evade the fine from τ2 by switching to the truth (if
everyone presents all their evidence, the truth is supported by everyone).

If we prioritize the first two steps, then agents are restricted to presenting either the
truth or self-refutable lies, each of which (from Observation 1) induces for any other
agent an evidence set at least as large as the truth. In this case, we claim that all agents
present their tightest evidence. Indeed, if any agent withholds evidence, they fail to sup-
port the state claims of all other agents, so that τ4 is active, and submitting additional
evidence is a profitable deviation. This step, which involves τ2, τ3, and τ4, uses this fact
to deal with self-refutable lies.

Finally, suppose that an agent i presents a self-refutable lie, for instance F claims sl

in state sm. Since all evidence is tightest, the transfer τ2 incentivizes other agents to
present state claims that are consistent with agent i’s tightest evidence. Following this,
the cross-check in τ3 yields a penalty for agent i because a self-refutable lie for agent
i is inconsistent with agent i’s own tightest evidence. This penalty can be avoided by
switching to the truth, since all agents are presenting their tightest evidence. In sum-
mary, in any equilibrium everyone presents the truth with the tightest evidence. Hence,
the mechanism implements the social choice function.

3.5 Proof of implementation

We present below a formal proof of implementation using the direct revelation mech-
anism in Section 3. In what follows, we denote the true state by s∗. For simplicity, we
will write NRL and SRLi to denote NRL(s∗ ) and SRLi(s∗ ), respectively. Fix an arbitrary
mixed-strategy Nash equilibrium σ .

3.5.1 Preliminary results We begin by proving a lemma, which finds use at multiple
points in the proof.
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Lemma 1. Given the strategies of other agents, an agent never incurs a loss from pre-
senting more evidence (while holding the state claim fixed) in a deviation. Moreover, if
τ4
i is active with nonzero probability, then under any optimal strategy, agent i presents

the tightest evidence.

Proof. Fix agent i. It is clear that τ1
i causes no loss from presenting additional evi-

dence. Indeed if agent i refutes another agent’s state claim, he may make a profit from
tightening the evidence. τ2

i only requires that the evidence presented be as tight as some
bound, so that tightening the evidence causes no loss from τ2

i either. τ3
i is a statement

on state claims, so evidence is not related to this transfer. τ4
i clearly causes no loss from

tightening, rather, it causes strict gains if it is active. Therefore, given a strategy profile
for other agents, if an agent expects τ4 to be active with positive probability, then it is op-
timal for him to present the tightest evidence, as otherwise he could tighten his evidence
to improve his payoff.

3.5.2 Eliminating other-refutable lies

Claim 1. If agent i reports with positive probability a message mi = (si, Ei ) such that
agent j �= i has an article of evidence which refutes si, then Ej must refute si for every
message mj = (sj , Ej ), which agent j reports with positive probability.

Proof. Suppose not. Then agent j’s evidence does not refute si, i.e., si ∈ Ej . Consider an
alternate message m̃j , that only replaces Ej with E∗

j (s∗ ), which refutes si. The following
table documents agent j’s payoff change by deviating from mj to m̃j :

g τ1
i τ2

i τ3
i τ4

i In total

0 >0 0 ≥0 ≥0 >0

That is, agent j gains from τ1, on account of the fact that he has now refuted agent
i’s lie. By Lemma 1, there is no loss from any of the other transfers.

Claim 2. No agent reports an other-refutable lie with positive probability.

Proof. From Claim 1, if agent i reports a lie si, which agent j can refute, then with
probability one agent j must present Ej to refute si. Consider an alternative message m̃i,
which replaces si with s∗ in mi. The following table summarizes the payoff change by
deviating from mi to m̃i:

g τ1
i τ2

i τ3
i τ4

i In total

>−1 2I + 1 ≥ −I ≥ −I + 1 ≥ −1 >0

Agent i gains a minimum of 2I+1 from τ1 due to the fact that agent j was refuting si.
In addition, in the worst case, agent i loses at most 1 from outcome g, at most I from τ2,
at most I − 1 from τ3, and less than |Ei|

|S| (which is less than 1) from τ4. Hence, m̃i is a
profitable deviation from mi.
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3.5.3 Eliminating nonrefutable lies The next two claims eliminate the possibility that
nonrefutable lies are reported in equilibrium.

Claim 3. If an agent reports with positive probability a message mi = (si, Ei ) where si
is a nonrefutable lie at s∗, then Ei is the tightest, and every agent j �= i must provide the
tightest evidence available, i.e., Ej =E∗

j (s∗ ).

Proof. Since si ∈ NRL, it follows from Observation 2 that there is an agent j ∈ I who
can refute s∗ at si. However, since the evidence structure Ei(·) satisfies condition (e1) of
Definition 1, agent j cannot present E∗

j (si ) (which must refute s∗) at the state s∗. Thus,
whenever there is an agent i who reports with positive probability a message mi with a
nonrefutable lie si, then for every j �= i, τ4

j must be triggered with positive probability.
It then follows from Lemma 1 that each agent j �= i must present Ej = E∗

j (s∗ ) under any
optimal strategy. Further, in presenting si, agent i knows that he (or another agent) will
be unable to support si so that τ4

i is active with probability 1. Therefore, Lemma 1 yields
Ei =E∗

i (s∗ ) since agent i plays an optimal strategy.

Claim 4. No agent reports a nonrefutable lie with positive probability.

Proof. Suppose not. By Claim 3, if there is an agent who reports a nonrefutable lie si
in message mi = (si, Ei ), then Ei = E∗

i (s∗ ) and every agent j �= i will present Ej = E∗
j (s∗ ).

Now, consider an alternative message m̃i, which replaces si with s∗. The following table
summarizes the payoff change by deviating from mi to m̃i:

g τ1
i τ2

i τ3
i τ4

i In total

>− 1 0 ≥ I ≥ − I + 1 ≥0 >0

First, fixing mi where si is nonrefutable, we know that τ2
i (mi, m−i ) = −I for every m since

there exists some agent j (j may be i) such that E∗
j (si ) ⊂ E∗

j (s∗ ). Hence, agent i gains

at least I from τ2
i from the deviation. Second, he loses less than 1 from changing the

outcome, incurs no loss from τ1
i (since the truth is not refutable), and at most I − 1

from τ3
i . Third, agent i incurs no losses from τ4

i either as he was facing a scenario of no
support with si before the deviation and the size of his evidence set has not changed.
Overall, this is therefore a profitable deviation.

3.5.4 Eliminating self-refutable lies The next three claims eliminate self-refutable lies.
Up to this point, we have established that agents can report only the truth or self-
refutable lies in equilibrium. Observation 1 implies that in this situation, agents would
need to present their tightest evidence to support other agent’s state claims. This is the
basic idea, which we will exploit in establishing the following claims.

Claim 5. All agents present the tightest evidence with probability one. That is, for any
agent i, Ei = E∗

i (s∗ ) for any message mi = (si, Ei ) on the support of σi.
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Proof. Suppose to the contrary that for some agent i, mi = (si, Ei ) is on the support
of σi, and Ei �= E∗

i (s∗ ). From Claims 2 and 4, other agents report either a self-refutable
lie or the truth in equilibrium. Therefore, from Observation 1, if Ei �= E∗

i (s∗ ), then agent i
expects τ4 to be active with positive probability as he is not supporting any other agent’s
claims. Deviating to m̃i = (si, E∗

i (s∗ )) from mi is a profitable deviation in this case.

Claim 6. For every agent i, and for any message mi = (si, Ei ) on the support of σi, we
must have E∗

j (si ) =E∗
j (s∗ ) for every agent j �= i.

Proof. Suppose to the contrary that agent i reports mi = (si, Ei ) with E∗
j (si ) �= E∗

j (s∗ )
for some agent j �= i. It follows from Claims 2 and 4 that si is a self-refutable lie for
agent i. Since E∗

j (si ) �= E∗
j (s∗ ), Observation 1 implies that E∗

j (si ) ⊂E∗
j (s∗ ). From Claim 5,

all agents present the tightest evidence with probability one, i.e., Ej = E∗
j (s∗ ) with σj-

probability one for every agent j ∈ I .
Consider a deviation for agent i to the truth, i.e., consider a message m̃i, which only

replaces si with s∗ in mi. The following table summarizes the payoff change by deviating
from mi to m̃i:

g τ1
i τ2

i τ3
i τ4

i In total

>−1 ≥0 ≥ I ≥ −I + 1 ≥0 >0

The agent gains I from τ2. This is because, by assumption, E∗
j (si ) ⊂ Ej for some

j �= i (i.e., j cannot support si at s∗) and E∗
j (s∗ ) = Ej for every agent j. Moreover, the

agent loses less than −1 due to the outcome, and at most I − 1 to τ3, and incurs no loss
from τ1 (the truth is not refutable) or τ4 (all claims are supported now). In conclusion,
this is a profitable deviation.

Claim 7. No agent reports a self-refutable lie with positive probability.

Proof. Suppose to the contrary that agent i reports mi = (si, Ei ) where si is a self-
refutable lie.

Consider a deviation to the truth for agent i, i.e., consider a message m̃i, which only
replaces si with s∗ in mi. The following table summarizes the payoff change by deviating
from mi to m̃i:

g τ1
i τ2

i τ3
i τ4

i In total

>− 1 ≥0 ≥0 ≥I − 1 ≥0 >0

In words, since si is a self-refutable lie and E∗
i (sj ) = E∗

i (s∗ ) �= E∗
i (si ), agent i gains at

least I−1 from τ3
i (wherein the first equality is from Claim 6); moreover, the agent incurs

a loss of at most 1 from the outcome and no loss or gains from other transfers. Hence,
this is a profitable deviation.
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3.5.5 Implementation To sum up, it follows from Claims 2, 4, and 7 that with probabil-
ity one each agent reports the true state. Hence, to prove implementation, we need only
establish the following claim.

Claim 8. In equilibrium, no transfer is incurred.

Proof. Since all state claims are truthful, it suffices to argue that all agents present the
tightest evidence in equilibrium. Indeed, if any agent is not presenting the tightest ev-
idence, then τ4 is active with positive probability. It then follows from Lemma 1 that
deviating to the tightest evidence is a profitable deviation.

3.6 Discussion

We add a few remarks here. First, notice that from Lemma 1, presenting additional ev-
idence is never harmful, and is beneficial under some cases. Therefore, it is a weakly
dominant strategy to always present all the evidence. It is clear that the above mech-
anism implements under iterated elimination of weakly dominated strategies as well.
This yields us double implementation, in both mixed Nash equilibrium, and iterated
elimination of weakly dominated strategies.10

Second, in considering the above mechanism, it is evident that even though the de-
signer can impose transfers off the equilibrium, it is not sufficient to simply penalize any
profiles the designer finds undesirable. Rather, the main challenge is to allow the agents
a profitable deviation as well. The idea can be seen from how the mechanism eliminates
both nonrefutable and self-refutable lies. For the elimination of nonrefutable lies, it is
critical that when an agent is being penalized for an unsupported nonrefutable lie, the
other agents must be presenting their tightest evidence, so that the truth is actually sup-
ported, enabling the agent to avoid the penalty by deviating to the truth. If this were not
the case, then in deviating to the truth, the agent’s report will still be unsupported. Com-
ing to the elimination of self-refutable lies, it is critical that we extract the article refuting
a self-refutable lie from the agent himself, as otherwise the cross-checks starts from the
wrong profile of evidence, and we would not be able to realign the profile toward the
truth.

This leads to a somewhat counterintuitive design choice, which we make during the
elimination of self-refutable lies. Notice that when an agent presents a self-refutable lie,
and presents his tightest evidence, he actually refutes his own state claim. This does not
in fact lead to a penalty for the agent, although penalizing an agent for being internally
inconsistent could be logical in certain circumstances.11 Our mechanism, however, is
based on a series of cross-checks (in Claims 6 and 7), which only work when we begin

10If all agents present their tightest evidence, presenting an other-refutable lie is dominated by present-
ing the truth owing to τ1. Presenting nonrefutable lies is also dominated by presenting the truth due to
τ2. Any self-refutable lie, which induces a evidence set tighter than that under the truth for other agents, is
dominated by the truth due to τ2, and then self-refutable lies are dominated by the truth due to τ3.

11For instance, in a partial implementation exercise of Ben-Porath, Dekel, and Lipman (2019) (p. 545),
they begin with the understanding that agents must present the maximal/tightest evidence associated with
his state claim at the peril of large punishments.
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from the correct profile of evidence. In particular, the designer can incentivize the pre-
sentation of tightest evidence but is not able to directly incentivize the presentation of
the true state.12 In its simplest form, our mechanism takes the following position: “when
there is something wrong with the message profile, prioritize obtaining the tightest pro-
file of evidence over all else.”This allows the cross-checks, which realign the profile to-
ward the truth.

3.7 The role of normality

We now turn to the role of normality in our setup. When agents cannot submit arbitrary
amounts of evidence, the necessary condition is obtained by Kartik and Tercieux (2012a)
in their Propositions 2 and 3. First, for any state s, define by Tf (s) = {s′ : f (s′ ) �= f (s)} the
set of states in which the desirable outcomes differ from f (s). Recall that we wish to
implement without relying on preference variation. In particular, under constant pref-
erences, Proposition 3 in Kartik and Tercieux (2012a) requires that s and Tf (s) be distin-
guishable, which means that either some agent can refute s at any state in Tf (s) or re-
fute every state in Tf (s) at s using a single article of evidence. In Theorem 7 of Banerjee,
Chen, and Sun (2023), we show that this condition is also sufficient for mixed-strategy
implementation with two or more agents in a finite albeit indirect mechanism, which
requires submission of two articles of evidence.

3.8 Budget balance

We will now establish that the above mechanism can be modified to achieve budget
balance. The major challenge in achieving this goal is the redistribution of penalties
to other agents without affecting the incentives of the recipient agents. In general, this
cannot be achieved with two agents, as we will show in Section 5. In the following dis-
cussion, we consider a setting with at least three agents.

One way to transform a two agent unbalanced mechanism into a three agent bal-
anced mechanism is to choose two agents at random to play the unbalanced mecha-
nism (with the transfers for an agent appropriately scaled up to reflect the probability of
being chosen) and redistribute the transfers to the third agent. While this approach is
quite general, it requires a stochastic mechanism. In what follows, we provide modifica-
tions to the above mechanism, which achieves budget balance without randomization.

First, it is clear that τ1, the transfer for the elimination of other-refutable lies is al-
ready budget balanced. The incentive to present all the evidence stemming from τ4 is
key to the removal of both self-refutable and nonrefutable lies. This incentive can be ar-
bitrarily small, and is only active when some agent’s claim is not supported by the other
agents. Redistributing this small incentive to the agent whose state claim is unsupported
does not affect his incentives since the penalty from his state claim not being supported
is much larger. The second transfer τ2, which penalizes an agent for his state claim be-
ing unsupported, is redistributed among the other agents, with a minor modification—
τ2
i is redistributed evenly to only those other agents j �= i who have supported i’s state

12This differs from the classical implementation problem with preference variation, where dictator lot-
teries ala Abreu and Matsushima (1994) can be used to elicit an agent’s preference.
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claim si, and redistributed evenly to all agents if no other agents have supported si. The
third transfer τ3 is directly redistributed evenly to all agents. The resulting mechanism is
therefore budget balanced. We refer the reader to Appendix A.1 for a discussion of how
implementation is obtained under this modified mechanism.

3.9 Implementation with small transfers

While the transfers involved in the mechanism above have been imposed only off the
equilibrium, the transfers are “large” since they need to dominate the agents’ utility dif-
ferences from outcomes. In reality, agents might not be willing or able to pay these fines.
Here, we present a result for implementation with arbitrarily small off-the-equilibrium
transfers, as long as the designer can randomize and there are at least three agents. To
this end, we construct an indirect mechanism building on similar ideas from Abreu and
Matsushima (1994). We begin by defining the appropriate notion of implementation
prevalent in the literature for this case.

Definition 4. An SCF is Nash implementable with arbitrarily small transfers if for
any ε > 0, there is a mechanism M = (M , g, (τi )i∈I ) such that for any profile of util-
ity functions v = (vi )i∈I , any state s, and any mixed-strategy equilibrium σ of the game
G(M, v, s), we have g(m) = f (s) and τi(m) = 0 for each message profile m ∈ suppσ(s)
and the total (off-the-equilibrium) transfer to any agent can be limited to being no
greater than ε.

We now state the formal result as follows.

Theorem 2. Suppose the evidence structure is given by Ei(·). If there are at least three
agents, then an SCF f is Nash-implementable with arbitrarily small transfers if and only
if it is measurable with respect to Ei(·).

Intuitively, this result is based on the following ideas. A lottery is used to divide the
incentive for manipulating the outcome into K parts (called rounds), where K can be
chosen as large as necessary to meet the transfer bound required. The first round uses
the implementing mechanism with its transfers scaled down, since only a small part of
the outcome is controlled by it. This allows for the true state to be revealed.13 In each
of the following rounds, agents are incentivized to agree with the unanimous first round
report of the truth, failing which the first deviant is penalized an amount that is small
enough that it meets the transfer bound, yet large enough that it dominates the incen-
tive for manipulating the outcome of the round. This penalty only applies to the first
round with disagreement, as repeating it will lead to a large transfer. It is sufficient for
implementation, however, because no agent wants to be the first to deviate in any round.
For further details, we refer the reader to the formal proof of Theorem 2 in Appendix A.2.

13Note that this is not dependent on the mechanism used. Any fully implementing mechanism can be
adapted into this framework, a fact we will leverage later when studying other setups.
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4. Costly evidence

So far, we have studied hard evidence, which corresponds to the notion that evidence,
that is available to the agent is costless to present. In this section, we relax the assump-
tion that presenting evidence is costless. Evidentiary costs are mentioned as an impor-
tant area of further research in both (Bull and Watson (2007, footnote 10) and (Ben-
Porath and Lipman (2012, p. 1714)).

With the above motivation, we derive an extension of our implementation result to
a setting with costly evidence. More formally, the environment is the same as that in
Section 2.1, except for the addition of a cost function ci : Ei × S →R+, which is bounded
by a (possibly) large positive cost C. Here, we note that we allow the evidentiary cost to
depend on the state.

There are two possible stances on the designer’s knowledge of the cost structure.
Either the designer does not know ci(·), and only knows C (so that he is unable to ex-
ploit the variation of costs between states), or he knows ci(·) as well (whereupon he can
exploit the variation of cost among states). We treat these two cases separately in the
following sections.

4.1 Implementation regardless of cost variation

In this section, we assume that ci(·) is common knowledge among the agents but the
designer only knows C. Then the designer cannot exploit cost variation. The definition
of normality remains the same as in Section 2.1. Further, the notion of implementation
remains the same as that in Section 2, so that the designer is indifferent to the cost of
evidence submission. We obtain the following result.

Theorem 3. An SCF f is Nash implementable in a direct revelation mechanism for every
costly evidence structure Ei(·) if and only if it is measurable.

We provide the proof of Theorem 3 along with a detailed sketch in Appendix A.3.
In the proof, we adopt the same direct revelation mechanism constructed in Section 3
but suitably adjust the relative scales of the four transfer rules. The proof requires a
substantially different approach from that of Theorem 1. Due to the evidentiary cost,
even after raising the transfers, lies can be eliminated only with high probability rather
than probability one. This turns out to be sufficient to ensure that the agents present
their tightest evidence to support the truthful state claim, which is presented with high
probability. However, once the tightest evidence is presented, the agents can no longer
lie in their state claims even with small probability, so that implementation is achieved.

4.2 Implementation under cost variation

In this section, we assume that ci(·) is common knowledge among the designer and the
agents. A mechanism therefore can depend on the cost structure to eliminate incorrect
claims of state. This setup corresponds to that in Kartik and Tercieux (2012a). We em-
phasize that in this setup articles of evidence do not necessarily associate with subsets
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of the state space because of the element of cost variation. Following Kartik and Tercieux
(2012a), we define the set of cheapest evidence in any state as E l

i (s) = arg minEi ci(Ei, s).
We also normalize the costs so that the difference in costs between any two articles of
evidence between any two states is less than 1 dollar. That is, c(·) is normalized such that
|ci(Ei, s) − ci(Ei, s′ )| < 1 for any i, Ei, s, and s′. We present the notion of implementation
we work with below.

Definition 5. An SCF f is directly Nash-implementable in pure (resp., mixed) strate-
gies if there is a mechanism M = (S × E , g, (τi )i∈I ) such that for any profile of bounded
utility functions v = (vi )i∈I , any state s, any pure (resp., mixed) strategy Nash equilib-
rium σ of the game G(M, v, s), and any message profile (s, E) in the support of σ(s):

(i) g(m) = f (s) and ∀i, τi(m) = 0;

(ii) E ∈ E l(s)

As in the hard evidence setting, implementation requires that for any profile of
bounded utilities, and in each equilibrium of the implementing mechanism, the out-
come be f -optimal and the transfer to each agent be zero. In addition, it also requires
that only an article from the set of cheapest evidence be submitted in equilibrium. In
this section, we focus on pure strategy equilibria, and discuss a treatment of mixed equi-
libria in Section 4.3.

4.2.1 Evidence monotonicity Kartik and Tercieux (2012a) establish that a condition
called evidence monotonicity is necessary for implementation in the above setup using
a mechanism, which only admits the submission of cheapest evidence in equilibrium.14

Since we wish to implement while maintaining robustness to agents’ utility functions,
constant preferences is a possible scenario under which a mechanism must still imple-
ment. If we allow for transfers, then we obtain the following characterization of evidence
monotonicity under our setting.

Definition 6. An SCF f is evidence-monotonic under constant preferences if there ex-
ists E∗ : S → E such that:

(i) for all s, E∗(s) ∈ E l(s, f (s))

(ii) for all s and s′, if ∀i, t ∈ R, E′
i : [−ci(E∗

i (s), s) ≥ t − ci(E′
i, s) =⇒ −ci(E∗

i (s), s′ ) ≥
t − ci(E′

i, s
′ )], then f (s) = f (s′ ).

Alternatively, if f (s) �= f (s′ ), then ∃i, t, E′
i such that ci(E∗

i (s), s) ≤ ci(E′
i, s) − t but

ci(E∗
i (s), s′ ) > ci(E′

i, s
′ ) − t. This yields ci(E′

i, s
′ ) − ci(E∗

i (s), s′ ) < ci(E′
i, s) − ci(E∗

i (s), s).
The implementing mechanism, which we present later will be direct. In context of a
direct mechanism, we interpret i’s action of submitting (E′

i, s
′ ) instead of (E∗

i (s), s) as a
challenge to the state claim of s at s′, and denote t as the (possibly negative) challenge

14Notice that Theorem 3 does not involve this restriction. We discuss the implications in Section 4.3.
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reward and E′
i as the challenge evidence. In essence, agent i credibly informs the de-

signer that the state is not s by asking for an amount of money t for presenting an article
of evidence E′

i instead of E∗
i (s). This is profitable if the state is s′ and not profitable if the

state is indeed s. This implies that if i is to challenge s at s′, then there is an article E′
i,

which has become cheaper relative to E∗
i (s) in going from s to s′. We define Eγ

i (s, s′ )
as the set of challenge evidence for agent i when challenging s at state s′, and make an
arbitrary selection E

γ
i (s, s′ ) from it, which is used in the implementing mechanism.

4.2.2 A classification of lies We begin with a classification of lies (for some true state s∗)
and then use a direct mechanism to eliminate them in sequence. To do so, we first for-
malize the notion of refutability in this setup.

Definition 7. An agent i can challenge a state claim s when ∃(si, Ei ) such that
ci(Ei, si ) − ci(E∗

i (s), si ) < ci(Ei, s) − ci(E∗
i (s), s).

Note that there is a difference between the interpretation of challenge between the
usual hard evidence setting and this setup. In the hard evidence setting, when an agent
presents an article of evidence E, which does not contain a state s, he definitively refutes
the state s. In this setting, however, articles of evidence cannot be associated with a
subset of the state space in the same way, since the “reversal,” which credibly signals to
the designer that the state is not s requires the commitment of a certain sum of money
in exchange for the challenge evidence. The inequality in the definition above assures
us of the existence of a sum of money that enables this reversal. In essence, whereas
refutability is a property of the setup under hard evidence, a mechanism is required for
the same in this setup.

4.2.3 Implementation We now present our main result for this setting.

Theorem 4. Suppose that Ei(·) is a costly evidence structure. Then an SCF f is directly
Nash-implementable in pure strategies in a direct revelation mechanism if and only if it
is evidence-monotonic under constant preferences.

We draw attention to a few interesting points regarding the above result here. First,
we note that while evidence monotonicity is necessary irrespective of the mechanism
used, the mechanism we present is direct. Second, Chen, Kunimoto, Sun, and Xiong
(2021) contains an example, which establishes that it is not possible to obtain direct im-
plementation of some Maskin-monotonic social choice functions where there are only
two agents.15 The impossibility essentially derives from the difficulty of figuring out
which agent is challenging the other when two agents disagree in their state claims. The
presence of evidence allows us to bypass this difficulty.16 Third, while the result states
that evidence monotonicity under constant preferences is necessary, we allow for varia-
tion of preferences in the proof of Theorem 4. The necessity of this condition arises out
of our desire to achieve implementation regardless of preference variation. If the de-
signer cannot exploit preference variation, implementation must obtain from variations
in the cost of evidence.

15The example discusses rationalizable implementation, but it also applies to Nash implementation.
16See Lemma 2 in Appendix A.4 for more details.
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4.2.4 Implementation in mixed strategies For implementation in mixed-strategy Nash
equilibrium, which accounts for general cost variation (Definition 5), we also present an
alternative treatment in Banerjee, Chen, and Sun (2023). In this treatment, we impose
a stronger condition than evidence monotonicity under constant preferences. Specifi-
cally, we require that for any two states s and s′ with distinct social outcomes that there
be at least one agent for whom an article of evidence that was not cheapest under s

is now cheapest under s′. We term this condition evidence monotonicity* and prove
mixed-strategy implementation (also in a direct mechanism) under evidence mono-
tonicity*; see Theorem 6 of Banerjee, Chen, and Sun (2023).17 The result complements
Theorem 3 in requiring that only one article of cheapest evidence be submitted in equi-
librium, but not normality.18

4.3 Evidence monotonicity versus measurability

Theorems 3 and 4 approach costly evidence in different ways. It is natural to ask how
these results compare. In the costly evidence setting, some articles, which are unavail-
able, are considered to have an infinite cost. In such a setting, measurability equates to
the requirement that the set of evidence with finite cost must change between states
with different social outcomes. This requirement is strictly stronger than evidence
monotonicity. To see this, consider Example 2 of Kartik and Tercieux (2012a) (hence-
forth KT), which derives from agents having a preference for honesty. The example can
be viewed as a case of costly evidence in which all states have the same evidence sets,
but the cheapest evidence is distinct in each state. KT show that this makes any social
choice function evidence monotonic. However, since there is no variation in the set of
evidence with finite cost, only constant social choice functions are measurable.

KT show in their Corollary 4 that evidence monotonicity coincides with measurabil-
ity in a hard evidence structure (where evidence is costless when it is available), which
satisfies normality.19 In contrast, our Theorem 3 allows for hard evidence, which is avail-
able and yet has a positive cost. In this setting, even when the evidence structure satisfies
normality, there can still be social choice functions, which satisfy measurability but not
evidence monotonicity (under constant preferences). See Appendix A.4.3 for a detailed
description. Such SCFs can therefore be implemented according to Theorem 3 but not
Theorem 4.

The discrepancy arises because the implementation notion in Theorem 4 requires
that only one article of cheapest evidence be submitted in equilibrium. Apparently,

17Banerjee, Chen, and Sun (2023) also show that if we require the implementing mechanisms to use only
penalties or arbitrarily small rewards to the agents, then evidence monotonicity* becomes necessary for
implementation; moreover, our implementing mechanism in Theorem 6 of Banerjee, Chen, and Sun (2023)
indeed satisfies the requirement.

18We also conjecture that Theorem 3 can be established without requiring normality, by making use of
an indirect mechanism akin to the implementing mechanism in the proof of Theorem 7 in Banerjee, Chen,
and Sun (2023).

19Note that this only holds among pairs of states, which do not satisfy Maskin monotonicity, for instance
with state independent preferences since otherwise, evidence monotonicity may be satisfied via preference
variation.
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the requirement must be associated with a fixed costly evidence structure and thereby
muted when we demand implementation regardless of evidentiary cost variation, as we
do in Theorem 3. In this regard, Theorem 3 is a step toward answering a question which
KT pose as to which social choice functions could be implemented if the designer al-
lowed for the presentation of costly articles of evidence to elicit information from the
agents.20

5. Incomplete contracts and renegotiation-proofness

In this section, we apply our results under hard evidence to revisit a classical issue in
contract theory—that of bilateral contracting with observable but unverifiable informa-
tion. This problem arises when two parties wish to condition a contract on certain state
variables, which are commonly observable, but not verifiable by a third party, such as
a court. Attempting to directly condition a contract on these variables runs into diffi-
culties, because whoever is responsible for enforcing the contract may not be able to
ascertain which state occurred, and thus may also be unable to resolve any disputes
between the agents.

Implementation theory deals with issues of contract design in such situations by
exploiting the idea that contracts can be made contingent on the messages reported
by the parties to make the observable state verifiable. In particular, by designing suit-
able revelation mechanisms for the contracting parties, it is often possible to achieve
the same outcomes as those arrived at with fully contingent contracts. However, most
papers in this literature use mechanisms of the Moore–Repullo type (see, e.g., Maskin
and Moore (1999), Maskin and Tirole (1999), and Maskin (2002)), which are vulnerable
to renegotiation among the agents, because they involve penalizing both agents in cer-
tain off-equilibrium paths. In general, the possibility of renegotiation significantly limits
the set of implementable outcomes. For instance, Maskin and Moore (1999) (henceforth
MM) considers an example in which a seller (she) owns a product which a buyer (he) is
interested in obtaining. The seller has an option to make an investment in the product
at cost c to raise its value from φ to θ for the buyer. The investment is efficient (i.e.,
c < θ−φ), observable by the two parties, but unverifiable. In this setting, when the cost
of the investment is more than half of the value it adds to the good, MM establish that
the only renegotiation-proof contract is a null contract. This is because the buyer re-
fuses to accept the good and renegotiates the price outside of the contract. That is, it is
not possible to incentivize efficient investment in this scenario.

In the context of the example, it becomes clear why nonverifiability poses an issue.
If the investment were verifiable, a mechanism could fine the buyer for refusing to trade
after the investment had been made, and transfer the fine to the seller, thus preventing
the buyer from lying, and indeed also preventing renegotiation. Even without verifia-
bility, if the seller could prove that she has indeed made the investment or refute the
claim that she has not made the investment, a court could fine the buyer (if he refuses
to trade) and reward the seller based on this proof. This leading example motivates our

20(Kartik and Tercieux (2012a, p. 349)) cite screening as an example for why it might be interesting to
allow for costly evidence provision in equilibrium.
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choice of using the hard evidence results in this context, as it is more natural that evi-
dence in contracting situations will take the form of subsets of the state space, refuting
alternative states. Arguably, it is not possible to prove an investment, which one has not
made, at whatever cost. This immediately leads to the question—what conditions must
the hard evidence structure satisfy so that renegotiation-proof contracts can be made?

To address this question, we begin by formalizing the notion of renegotiation. Fol-
lowing MM, we assume A is a finite set, and define T as the set of transfers with budget
surplus.21 With this, we define the renegotiation process via a renegotiation function
h : A × T × S → A × T , where T defines the space of transfers to the I agents. This
function can be thought of as a transformation on the outcome and profile of trans-
fers of a mechanism M = (M , g, (τi )i∈I ), which occurs before the agents evaluate the
outcome using their utility functions ui. That is, given a mechanism M, agents submit
their messages to the mechanism, which yields an outcome and a set of (budget sur-
plus) transfers; agents then renegotiate this combination of outcomes and transfers to
another combination, and then evaluate their utilities. We think of this in terms of the
game G(M, v, h, s), which differs from the game G(M, v, s) in that instead of the out-
come being defined as g(m) and the transfer profile as τ(m), the outcome is defined as
ha(g(m), τ(m), s) and the transfer profile as ht(g(m), τ(m), s). Now, we define the notion
of efficiency for an allocation.

Definition 8. An allocation (a, (ti )i∈I ) is efficient with respect to a profile of utilities
v = (vi )i∈I at state s if there does not exist (â, t̂ ) ∈ A × T such that for every agent i,
ui(â, s, t̂i ) ≥ ui(a, s, ti ) with strict inequality for some i.

Following MM, we make the following three assumptions about the renegotiation
function h. First, we assume that the renegotiation function h is predictable, which es-
sentially amounts to saying that h is common knowledge among agents and determin-
istic. Second, we assume that h is individually rational, i.e., if at every state, all agents
weakly prefer the renegotiated outcome to the original one. This is a natural restriction
as no agent can be forced into renegotiation. Finally, we assume that renegotiation is
efficient, which means that h(·, ·, s) results in efficient allocations at every s.

In what follows, we will constrain the scope of the discussion to combinations of f , v,
and h such that f (s) is efficient with respect to v, and h satisfies the properties described
above.

Definition 9. A social choice function f is implementable with renegotiation in Nash
equilibrium if there is a mechanism M = (M , g, (τi )i∈I ) such that for any state s, any
profile of utilities v, and any mixed-strategy Nash equilibrium σ = (σi )i∈I of the game
G(M, v, h, s), we have h(g(m), τ(m), s)(â) = f (s) and h(g(m), τ(m), s)( t̂ ) = 0 for every
message profile m on the support of σ .

21That is, T = {t ∈ RI such that
∑

i ti ≤ 0}. Since this is a contract between agents, it is not possible to
find money outside the contract to finance a budget deficit.



806 Banerjee, Chen, and Sun Theoretical Economics 19 (2024)

In the spirit of this paper, we require that implementation obtain regardless of the
utility functions v (subject to the constraints mentioned above). We now turn to char-
acterizing the necessary and sufficient conditions for renegotiation-proof implementa-
tion.

Theorem 5. Assume that I = 2 and E is the evidence structure. An SCF f is imple-
mentable with renegotiation in Nash equilibrium if and only if for any pair of states s

and s′ in S such that f (s) �= f (s′ ), one of the following is true:

(a) There is one agent who can refute s′ at s and s at s′; or

(b) Both agents can refute s′ at s and neither of them can refute s at s′.

For the formal proof, we refer the reader to Appendix A.5.1.
To illustrate the above conditions, we consider an alternate evidence structure in the

example from MM above—what if the buyer is the only agent who can prove that the in-
vestment was made (or not)? In practice, this may often be the case, for instance if the
buyer has some sort of (private) suitability test, which can check if the investment has
been made. Theorem 5 tells us that a renegotiation-proof contract exists in this case.
This is because the burden of proving that the investment was not made also falls to
the buyer, and this is impossible when the investment has been made. This, in turn,
means that any set of prices can be implemented with this evidence structure (note that
any price is Pareto efficient), including, of course, the set of prices, which recoup the
cost of the investment for the seller, thereby incentivizing her to make the efficient in-
vestment. In this context, we refer the reader to Appendix A.5.2 for an example of an
evidence structure, which satisfies measurability but not the conditions of Theorem 5.
While Conditions (a) and (b) are fairly demanding in this example, requiring a fair bit of
provability by the buyer, they are nevertheless necessary, suggesting that renegotiation-
proof implementation is significantly more challenging than the notion in Definition 3.

There are a few points of interest we wish to clarify here. First, we note that the char-
acterization in Theorem 5 is stronger than measurability. Indeed (e1) of Definition 1 and
either one of Conditions (a) or (b) yields that the agent who can refute s at s′ has an arti-
cle of evidence at s, which he does not have at s′. Then f trivially satisfies measurability.
Second, the mechanism proposed in the proof of Theorem 5 needs only a direct reve-
lation mechanism to work, and at least one of the Conditions (a) or (b) are necessary
irrespective of the mechanism used.

We discuss the intuitions behind the conditions presented in Theorem 5 now. We
prove the necessity of the conditions by constructing a pair v, h under which (a) at least
one of the agents has incentive to lie, and (b) the agent in question can lie, regardless of
the implementing mechanism.

In proving sufficiency, we construct a direct revelation mechanism with two trans-
fers: a penalty of 1 dollar for agent i if he is unable to support his state claim and a
penalty of 2 dollars if his state claim is refuted by the evidence which agent j �= i presents.
Each fine is paid to the other agent, so that the mechanism has a balanced budget.22

22Recall that the maximum bound of utility is less than 1 dollar, so that these transfers dominate the
utility from the outcome.
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Assume that the true state is s∗. First, no agent reports other-refutable lies with pos-
itive probability, because the other agent presents the refuting evidence with probabil-
ity 1; this loses the first agent 2 dollars, which is more than the utility difference from
the outcome and the other transfer. Second, if an agent reports a self-refutable (resp.,
nonrefutable) lie s with positive probability, then Condition (a) (resp., Condition (b)) of
Theorem 5 implies that this agent can also refute s∗ at s. Therefore, he cannot support his
state claim and will be fined 1 dollar. Since this is more than the utility difference from
the outcomes, deviating to (s∗, E∗

i (s∗ )) is profitable. Therefore, the only equilibrium is
truth-telling.

To summarize, we have established the necessary and sufficient condition for
renegotiation-proof Nash implementation in settings with hard evidence in the lan-
guage of refutability. This allows us to answer an important question—it is well known
that ex post verifiability is sufficient for a renegotiation-proof contract, but “how much
provability” is really required to ensure that such contracts exist? Theorem 5 offers an
answer.

6. Related literature

This paper contributes to the literature on implementation with evidence. For early
work in this area, we refer the reader to Green and Laffont (1986), Bull and Watson
(2007), and Deneckere and Severinov (2008). See also Deneckere and Severinov (2007)
for a study of partial implementation with costly evidence and Kartik and Tercieux
(2012a) for a survey of other early works on implementation with evidence.

Our implementation exercise is most closely related to Ben-Porath and Lipman
(2012) and Kartik and Tercieux (2012a). Ben-Porath and Lipman (2012) present two
main results. First, they achieve subgame-perfect Nash implementation using a perfect-
information mechanism with large off-the-equilibrium transfers (which achieve budget
balance when there are three or more agents). This result does not require normality
or integer games. Then Ben-Porath and Lipman (2012) achieve Nash implementation
with three or more agents by using small off-the-equilibrium transfers. This latter result
does require normality and integer games. In contrast, our Theorem 1 requires nor-
mality, works with two agents, and employs a direct revelation mechanism to achieve
(mixed-strategy) Nash implementation without integer games but with large off-the-
equilibrium transfers (which also achieve budget balance when there are three or more
agents). Neither Theorems 1 or 2 of Ben-Porath and Lipman (2012) account for eviden-
tiary cost which our Theorem 3 deals with.23

Kartik and Tercieux (2012a) studies the costly evidence setting. They use a canoni-
cal, Maskin-style mechanism which relies on integer games and does not use transfers.
With three or more agents, their achieve pure-strategy Nash implementation for every
evidence-monotonic SCF.24 Their evidence monotonicity notion allows for preference

23In their Theorems 4 and 5, Ben-Porath and Lipman (2012) show that their results are robust to a va-
riety of preference and belief specifications. Our results are consistent with these, in the sense that the
designer does not need to know anything about the preferences of the agents except for the uniform bound
on utilities, although we maintain the complete-information assumption throughout.

24Their Theorem 2 can be modified to account for mixed Nash equilibria as well, using methods from
Kartik and Tercieux (2012b) but this depends on integer games as well.
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variation and reduces to Maskin-monotonicity when all messages are cheap talk. In
contrast, Theorem 4 makes use of a direct revelation mechanism without integer games
to achieve pure-strategy implementation with two or more agents. Further, to focus on
evidentiary cost variation, we adopt the notion of evidence monotonicity under con-
stant preferences under which our implementation result disregards (and therefore is
also robust to) preference variation.

Another related strand of literature is that of implementation with preferences for
honesty, wherein it is assumed that agents prefer to tell the truth if they do not gain from
lying. Preferences for honesty can be viewed as a case of costly evidence in which all
states have the same evidence sets, but the least-cost evidence is distinct in each state.
Kartik, Tercieux, and Holden (2014) establish that with two or more agents, preferences
for honesty and a condition called separable punishments (which generalize off-the-
equilibrium transfers), any SCF can be implemented in a finite but indirect mechanism
without integer or modulo games. Dutta and Sen (2012) also establish that with prefer-
ences for honesty all social choice correspondences, which satisfy no veto power can be
implemented by a mechanism that uses integer games. Our Theorems 3 and 4 apply to
a general costly evidence structure beyond the specific setting of preference for honesty
and both invoke only direct revelation mechanisms.25

Chen, Kunimoto, Sun, and Xiong (2022) also provides an implementation result us-
ing transfers that allows for implementation of Maskin-monotonic social choice func-
tions without using integer games. A main focus of our exercise though is to handle
implementation with state-independent or consistent preferences by making use of ev-
idence. Our emphasis on evidence also allows for the novel classification of lies, which
we propose and in turn allows for the new approach to implementation that we present
here. This is a feature unavailable for implementation exercises, which solely rely on
preference variation. Moreover, our treatment of the two-agent case extends to deal-
ing with renegotiation (wherein we provide a necessary and sufficient condition for
renegotiation-proof implementation), a pertinent issue when two-agent implementa-
tion is used in contracting.

7. Conclusion

In this paper, we present full implementation results in settings with hard and costly
evidence. In the hard evidence setting, using a novel classification of lies according to
their refutability, we construct a direct revelation mechanism, which implements any
measurable SCF with respect to the evidence structure. Our mechanism invokes nei-
ther integer nor modulo games, requires only two agents, accommodates evidentiary
costs, and can also be modified to account for limited solvency of the agents. Based on
our classification of lies, we also derive a necessary and sufficient condition for the exis-
tence of bilateral renegotiation-proof contracts (Maskin and Moore (1999)). In the costly
evidence setting, we provide a mechanism that yields pure strategy implementation in
a two-agent setting without using integer or modulo games. The classification of lies
approach is used here as well.

25As Kartik and Tercieux (2012a) point out, as long as in any state at least one agent has a preference for
honesty, any SCF is evidence monotonic.
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Our exercise leaves a number of open questions for future research. In particular,
Banerjee and Chen (2022) pursue an extension of our exercise to an incomplete infor-
mation setting with a commonly known state and uncertainty among agents along the
evidence dimension. Other directions include direct implementation without transfers
or structural assumptions, which serve the same role.

Appendix A

In this Appendix, we provide the details and proofs, which are omitted from the main
body of the paper.

A.1 Budget balance

Since τ1 is budget balanced at the outset, Claims 1 and 2 are not affected by the modi-
fications. Lemma 1 continues to hold, because the only possible scenario under which
providing additional evidence may cause a loss to an agent i (owing to the redistribution
of transfers) is when providing additional evidence supports an agent j’s state claim sj
and, therefore, causes losses from the redistribution of τ2

j . However, for this to be the
case, agent k must then be supporting sj . In this case, agent i does not actually receive
any part of the redistributed revenues from τ2

j .
Claims 3 and 4 remain unaffected. If an agent i presents a nonrefutable lie, we es-

tablish that all other agents still present the tightest evidence. First, since τ4 is only
redistributed to i, it does not affect other agent’s incentives. Further, an agent is only
unwilling to support another agent (to avoid redistributive losses from τ2) if he was the
only agent who did not support si (so that in supporting i, he would switch off τ2

i ). But,
due to the way that τ2

i is redistributed, and the existence of a third agent, he does not
share in the redistribution of τ2

i in this case. Then agent i still faces a large fine (the
redistributed revenue from τ4 is small) and chooses to deviate to (s∗, E∗

i (s∗ )).
Claims 5 through 7 continue to hold as well. Since agents are limited to presenting

either the truth or self-refutable lies, from the above argument, all evidence must still
be tightest. If an agent i plays a self-refutable lie, which implies a smaller evidence set
for j than the truth, then it is not supported, and agent i prefers to deviate to the truth
as above. Therefore, all claims are consistent with other agents’ tightest evidence. The
third transfer, τ3 is a penalty for an agent i for implying a different evidence set for him-
self than that implied by others for him. His incentive for avoiding this penalty is not
affected by its redistribution to other agents. Therefore, with three or more agents, this
mechanism implements with budget balance.

A.2 Proof of Theorem 2

A.2.1 Message space The message space is augmented with K + 1 additional claims
of state, where we call K the number of rounds and it is chosen according to the upper
bound of allowable transfers. More precisely, the message space is as follows:

mi =
(
s0
i , Ei, s

1
i , s2

i , � � � , sK+1
i

) ∈Mi = S × Ei × S × · · · × S (K + 1 times).
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A.2.2 Outcome The outcome is specified as follows. Define ρk(m) (for k = 2, � � �K+ 1)
as follows:

ρk(m) =
{
f (s) if ∃s such that

∣∣{j : skj = s
}∣∣ ≥ I − 1

b otherwise

where b is an arbitrary lottery over A. Then the outcome of message profile m, denoted
by ḡ(m) is defined as follows:

ḡ(m) = ε× g
(
s0, E

) + (1 − ε) × 1
K

K+1∑
k=2

ρk(m)

where ε > 0 is chosen to be small, and g(·) is the outcome function of the base (unaug-
mented) mechanism.

That is, the outcome is a lottery combining the outcome of the base mechanism
using the zeroth and evidence reports, and an outcome function defined for each round,
which is the outcome corresponding to a state on which at least I−1 agents have agreed
or (if there is no such agreement), some random lottery b.

A.2.3 Transfers The mechanism multiplies all the transfers of the baseline mechanism
by ε and adds the following transfers:

τ5
i (m) =

{
−α if s1

i � s0
i+1;

0 otherwise.

That is, agent i receives a fine of α if their first report is not identical to agent i + 1’s
zeroth report.

τ6
i (m) =

{
−β if ∃s such that s = s1

i ∀i and ski �= s and smn = s ∀m, n < k;

0 otherwise.

That is, agent i receives a fine of β if their kth report is the first deviation from a
unanimous first report.

τ7,k
i (m) =

{
−γ if ∃s such that ski �= s and skj = s ∀j �= i;

0 otherwise.

That is, agent i receives a fine of γ if their kth report is the only deviation in round k

from an otherwise unanimous set of reports. This fine is applied to each round.

A.2.4 Proof of implementation In the following proof, we do not directly prove imple-
mentation for any values of α, β, γ, and K. Rather, we show that there exist values of
these parameters such that the mechanism implements and the overall transfer to any
agent can be bounded below an arbitrarily small number, which is greater than zero.

Claim 9. In any equilibrium, for every agent i, s0
i is the truth.
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Proof. It is clear that any agent’s reports with index 0 and the evidence messages only
affect their payoffs through the outcome. While all transfers in the base mechanism
are scaled by ε, the maximum utility value of manipulating the outcome is also scaled
by ε (owing to the randomization in the final outcome), so that in this mechanism, the
reports with index 0 are indeed the truth.

Claim 10. There exist values of α, β, and γ such that in any equilibrium, for every agent i,
s1
i is the truth.

Proof. Suppose not. That is, ∃i such that s1
i �= s∗. From Claim 9, we know that s0

i = s∗

∀i. Then consider a deviation s1
i ← s∗. Notice that s1

i does not affect the outcome. Then
the agent gains at least α from τ5, and could lose up to β to τ6. There is no effect from τ7.
If α> β, then there is a profitable deviation.

Claim 11. There exists values of α, β, γ, and K such that in any equilibrium, for every
agent i, ski , k= 2, � � �K + 1 is the truth.

Proof. The proof proceeds by induction. First, we prove that s2
i = s∗ ∀i. Suppose not.

Then there is an agent i for whom s2
i �= s∗ and s2

j = s∗ ∀j < i. That is, agent i is the first

deviant from the unanimous report of s∗ in s1. Now, there are two cases.
Case 1: ∃j �= i such that s2

j �= s∗. Then agent i is the first deviant, but there are other

deviants in s2. Consider a deviation to s2
i ← s∗. This deviation could cause him a loss

of up to 1
K from the outcome, but yields a profit of β due to τ6. In case the agents had

unanimously agreed on a state in s2, this could also lead to a loss of at most γ from τ7.
Thus, as long as β> 1

K + γ, this is a profitable deviation.
Case 2: � ∃j �= i such that s2

j �= s∗. That is, agent i is the first and only deviant in s2.

Consider again the deviation s2
i ← s∗. There is no change to the outcome (as agent i was

the only agent who was disagreeing with the otherwise unanimous true report), and
even though agent i could be the first deviant in further rounds, so that this deviation
does not necessarily yield any advantage from τ6, it does yield a profit of γ owing to τ7.
Thus, we need γ > 0 to make this a profitable deviation.

Thus, s2
i = s∗∀i. Clearly, then this argument can be used inductively for the following

rounds to establish that ski = s∗∀i, k.

Claim 12. For any δ̄ > 0, the overall transfer to an agent can be bounded below δ̄.

Proof. Consider any 0 < δ < δ̄. From the previous claims, the inequalities required
to be satisfied are γ > 0, β > 1

K + γ, and α > β, while the largest possible transfer is

α + β + Kγ. Consider the following choices: γ = δ
3K , β = 1

K + δ̄
3K , and α = δ

3 . It is clear
that K can be chosen to satisfy the required inequalities, and α+β+Kγ < δ̄.
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A.3 Proof of Theorem 3

The proof is by construction of an implementing mechanism. Below, we present the
mechanism and a formal proof of implementation. But first, we formally state the fol-
lowing property of the cost function:

max
s∈S

max
i∈I

max
Ei∈Ei

ci(Ei, s) <C

which states that across all states, all agents and all articles of evidence, the cost of evi-
dence is bounded by C, a positive number.

A.3.1 Message space and outcome The message space and outcome function remain
unaltered from the original implementing mechanism.

A.3.2 Transfers Structurally, the transfers are similar (with the addition of a transfer
penalizing disagreement), however, the amounts are not fixed a priori, rather we show
the existence of transfers so that the mechanism implements. We have then the follow-
ing transfers:

τ1
ij(m) =

⎧⎪⎪⎨
⎪⎪⎩

−T1, if si ∈ Ej and sj /∈ Ei;

T1, if si /∈ Ej and sj ∈ Ei;

0, otherwise.

τ2
i (m) =

{
−T2, if ∃j ∈ I such that Ej �E∗

j (si );

0, otherwise.

τ3
ij(m) =

{
−T3, if E∗

i (si ) �= E∗
i (sj );

0, otherwise.

τ4
i (m) =

⎧⎨
⎩−T4

|S| |Ei|, if Ej �E∗
j (sj′ ) for some j, j′ ∈ I;

0, otherwise.

The overall transfer to agent i is given (as before) by

τi =
∑
j �=i

τ1
ij + τ2

i +
∑
j �=i

τ3
ij + τ4

i

A.3.3 Proof of implementation In what follows, we assume that the true state is s∗. We
pick T1, T2, T3, and T4 so that the following inequalities are satisfied:

T1 >
C|S|
ε

(1)

T1 ≥ 1 + T2 + (I − 1)T3 + T4 (2)

T2 ≥ 1 + (I − 1)T3 (3)

T3 ≥ 1 (4)
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T4 >
C|S|
1 − ε

(5)

It is immediate that this system of inequalities has a feasible solution. For instance,
first choose ε ∈ (0, 1), followed by setting T4 = C|S|

1−ε +ε. Clearly, inequality (5) is satisfied.
Second, set T3, T2, and T1 in order so that inequalities (4), (3), and (2) are satisfied. Before
we proceed to present the proof, we first provide a sketch to outline the augments.

First, we can prevent the agents from reporting other-refutable lies with a probabil-
ity ε or more, as the reward for refutation, T1, can be made large enough that doing so
with probability ε (or more) guarantees refutation by other agents. This guaranteed by
inequality (2) and established in Claims 13–14. With this, we are able to establish that all
agents present their tightest evidence (Claim 16). This is achieved by choosing T4 high
enough so that the necessity of supporting the other agent’s state claims overrides the
evidence cost. Notice that owing to Observation 1, every state report except an other-
refutable lie requires the presentation of tightest evidence to support. Second, agents
do not present nonrefutable lies, because of the penalty from τ2, which is easily avoided
by deviating to the truth (since all evidence is the tightest). This is outlined in Claims
17 and 18. Third, we establish that any self-refutable lies, which are presented must be
consistent with the tightest evidence of all other agents (Claim 19) and thereby eliminate
the possibility that any self-refutable lies are presented in equilibrium (Claim 20). From
the preceding logic, it is clear that if agents present their tightest evidence, then no agent
presents other-refutable lies, and thus implementation obtains.

We now present below a formal proof of implementation using the mechanism
stated above. In what follows, we denote the true state by s∗. Fix an arbitrary mixed-
strategy Nash equilibrium σ .

Bounding the probability of other-refutable lies

Claim 13. If agent i reports with probability at least ε
|S| a state claim si such that agent

j �= i has an article of evidence which refutes si, then agent j must refute si with probabil-
ity 1, i.e., Ej refutes si for every mj = (sj , Ej ) on the support of σj .

Proof. Presenting this evidence nets agent j a reward of at least ε
|S|T1, and costs at

most C. Thus, if T1 >
C|S|
ε , then this is a profitable deviation. This is a consequence

of inequality (1).

Claim 14. Each agent reports other-refutable lies with a total probability less than ε.

Proof. Suppose not. Then there is an agent i who reports a message mi with a prob-
ability ε

|S| or more such that agent j �= i has an article of evidence Ej in Ej(s∗ ), which
refutes si. From Claim 13, agent j presents Ej with probability 1. Then the following
table shows agent i’s payoff changes from switching to the truth:

g τ1
i τ2

i τ3
i τ4

i

>− 1 ≥T1 ≥ −T2 ≥ −(I − 1)T3 ≥ −T4
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Since ε < 1, it follows from inequality (2) that T1 ≥ 1 + T2 + (I − 1)T3 + T4. Hence,
this constitutes a profitable deviation.

Claim 15. If all other agents present the tightest evidence with probability one, then no
agent reports an other-refutable lie.

Proof. Suppose not. Then there is an agent i who reports a message mi such that agent
j �= i has an article of evidence Ej in Ej(s∗ ), which refutes si, while agent j presents this
article of evidence with probability one. Then the following table shows agent i’s payoff
changes from switching to the truth:

g τ1
i τ2

i τ3
i τ4

i

>−1 ≥ T1 ≥ −T2 ≥ −(I − 1)T3 ≥ −T4

Inequality (2) implies that this is a profitable deviation.

Bounding the probability of nonrefutable lies

Claim 16. Every agent presents their tightest evidence with probability one.

Proof. Consider an arbitrary agent i. From Claim 14, other agents are presenting state
claims, which agent i cannot refute with a probability 1−ε or more. From Observation 1,
these claims require agent i to present his tightest evidence so that they can be sup-
ported. Therefore, on any message where agent i does not present his tightest evidence,
he expects τ4 to be active with probability 1 − ε or more. Since (1−ε)T4

|S| > C (inequal-
ity (5)), it is a profitable deviation to present the tightest evidence on such messages.

Claim 17. If all agents present their tightest evidence, then no agent reports nonrefutable
lies.

Proof. Suppose not. Then there is an agent i who reports a message mi which contains
a nonrefutable lie while all agents present their tightest evidence. In any message mi =
(si, E∗

i (s∗ )) where si is a nonrefutable lie, consider a deviation to the truth. Then the
following table shows agent i’s payoff changes from switching to the truth:

g τ1
i τ2

i τ3
i τ4

i

>−1 0 T2 ≥ −(I − 1)T3 ≥0

First, the agent loses less than 1 from changing the outcome, incurs no loss from τ1

(as the truth is irrefutable) and at most (I − 1)T3 from τ3. The agent incurs no losses
from τ4 either as si was unsupported but the truth is supported and the size of his ev-
idence set has not changed. Since all the presented evidence is the tightest, it follows
that the agent gains at least T2 from τ2 from the deviation (as the truth is supported by
all agents). It follows from inequality (3) that this is a profitable deviation.



Theoretical Economics 19 (2024) Direct implementation with evidence 815

Claim 18. No agent reports nonrefutable lies.

Proof. This follows immediately from Claims 16 and 17.

Bounding the probability of self-refutable lies

Claim 19. For any agent i, a self-refutable lie si is reported with positive probability only
if E∗

j (si ) = E∗
j (s∗ ) for every agent j �= i.

Proof. Suppose to the contrary that agent i reports si ∈ SRLi such that E∗
j (si ) �= E∗

j (s∗ )
for some j. Then, by Observation 1, E∗

j (si ) ⊂ E∗
j (s∗ ). Consider then an alternative mes-

sage, which replaces si with the truth. The following table shows agent i’s payoff changes:

g τ1
i τ2

i τ3
i τ4

i

> −1 0 ≥ T2 ≥ −(I − 1)T3 ≥0

First, the agent loses less than 1 to the outcome. Second, the truth is not refutable
so that the agent incurs no losses to τ1. Third, we establish that the agent gains T2 on
account of τ2. From Claim 16, all agents present the tightest evidence with probability
one. Then the truth incurs no penalty while si incurs a penalty since E∗

j (si ) ⊂E∗
j (s∗ ) and,

therefore, si was not supported. Fourth, the agent loses at most (I − 1)T3 to τ3, as other
agents may not be reporting state reports consistent with the truth in i’s evidence, i.e., it
is possible that E∗

i (sj ) �= E∗
i (s∗ )). Fifth, since all other agents report the tightest evidence,

the truth is supported, so that there is no loss from τ4. Inequality (3) then implies that
this is a profitable deviation.

Claim 20. Agents do not report self-refutable lies.

Proof. Suppose not. That is, suppose that there is an agent i who reports a self-
refutable lie si. Consider a deviation to the truth for agent i (from Claim 16, evidence
presentation was already the tightest). Then the following table shows agent i’s payoff
changes from this deviation:

g τ1
i τ2

i τ3
i τ4

i

> −1 0 ≥0 ≥(I − 1)T3 ≥0

First, the agent loses less than 1 to the outcome. Second, the truth is not refutable so
that the agent incurs no losses to τ1. Third, the deviation causes no loss from τ2 since
every agent presents their tightest evidence and the truth is supported. Fourth, since
every agent presents their tightest evidence, no other-refutable lies and nonrefutable lies
are presented (Claims 15 and 17). Then a self-refutable lie disagrees with all the reports
(the truth and self-refutable lies) of other agents in agent i’s evidence (Observation 1),
and hence incurs a penalty from τ3. The truth avoids this fine against every message,
and thus yields a profit of (I − 1)T3. Fifth, the truth is supported, so that τ4 cannot lead
to any losses either. Inequality (4) yields that this is a profitable deviation.
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Thus, the only equilibria are such that all agents report the truth with probability
1 − ε or more, where 0 < ε< 1 as chosen earlier. We conclude the proof in the following
claim.

Claim 21. All agents report the true state with probability 1 and there is no transfer on
the equilibrium.

Proof. By Claim 16, all agents present the tightest evidence. Hence, it follows from
Claim 15 that other-refutable lies are not reported, and from Claim 17 that nonrefutable
lies are not presented, and Claim 20 that self-refutable lies are not presented. There-
fore, all agents report the true state with probability 1. Since the tightest evidence also
supports their true state claim, there is no transfer in equilibrium.

A.4 Proof of Theorem 4

A.4.1 Implementing mechanism The message space of the mechanism is given by
M = �iMi, where Mi = S × Ei. That is, this is a direct mechanism. A typical message
for agent i is represented as mi = (si, Ei ).

An agent i challenges a state claim s when he presents a message (si, E
γ
i ) if ∃t such

that ci(E∗
i (s), s) ≤ ci(E

γ
i , s) − t but ci(E∗

i (s), si ) > ci(E
γ
i , si ) − t. When agent i challenges

s at s′ using E
γ
i (s, s′ ), the profit he makes (under constant preferences) is given by t −

ci(E
γ
i (s, s′ ), s′ ) + ci(E∗

i (s), s′ ). We pre-select a value ti(s, s′ ) for any pair of states s and s′
such that agent i can challenge s at s′ so that ci(E∗

i (s), s) ≤ ci(E
γ
i (s, s′ ), s) − ti(s, s′ ) but

ci(E∗
i (s), s′ ) > ci(E

γ
i (s, s′ ), s′ ) − ti(s, s′ ). Observe that ti(s, s′ ) ∈ (−1, 1) since |ci(Ei, s) −

ci(Ei, s′ )| < 1 for any i, Ei, s, and s′. In this case, we write �i(s, si ) = 1 to denote that
agent i has challenged s at the state si.

The outcome is determined as follows:

g(m) = {

⎧⎪⎪⎨
⎪⎪⎩
f (s1 ), if �i(s1, si ) = 1 for i �= 1;

f (s), if ∀i �= 1, si = s, �i(s1, s) = 0, and �1(s, s1 ) = 1;

f (s1 ), otherwise.

The mechanism employs the following transfers. The first transfer penalizes agent 1
an amount of 1 dollar for every agent who makes a valid challenge to s1. That is,

τ1
1,i(m) = −1 if �i(s1, si ) = 1.

The second transfer, which applies only to agent 1, incentivizes him to agree (in the
state dimension) with a report of (s, E∗

i (s))i �=1 if such a report is made unless he issues a
challenge. Formally,

τ2
1(m) =

{
−1, if si = s ∀i �= 1 and m1 �= (

s, E∗
1(s)

)
and �1(s, s1 ) = 0;

0, otherwise.
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The third transfer applies only to agents other than 1. It incentivizes them to either (i)
agree with the agent with the least index challenging agent 1 along the state dimension
or (ii) agree with agent 1 if no agent is challenging agent 1.

τ3
i (m) =

⎧⎪⎪⎨
⎪⎪⎩

−1, if si �= sj where j = min
{
k : �k(s1, sk ) = 1

}
;

−1 if
{
k : �k(s1, sk ) = 1

} = ∅ and mi �=
(
s1, E∗

i (s1 )
)

0, otherwise.

The fourth transfer is related to the challenge payouts. For agent 1, we have

τ4
1(m) =

{
t1(s, s1 ), if ∀i �= 1, si = s, �i(s1, s) = 0, �1(s, s1 ) = 1;

0, otherwise.

For agent i �= 1, we have

τ4
i (m) =

{
ti(s1, si ), if �i(s1, si ) = 1;

0, otherwise.

Intuitively, the mechanism works as follows. First, we prevent agent 1 from present-
ing any lies that other agents can challenge by encouraging others to challenge when
possible (τ4 provides this incentive) and penalizing him for each challenge against his
claim (τ1 yields this penalty). If the other agents are telling the truth, τ2 provides agent 1
the incentive to agree with them. If agent 1 is challenged, τ3 ensures that every challenge
is mounted with the same state claim. Then agent 1 can deviate to match this common
state avoiding all the penalties from τ1. This forms a profitable deviation. This leaves us
with the truth, and lies that only agent 1 can challenge. If agent 1 tells a lie that only he
can challenge, we get the other agents to agree with him using τ3 (this helps the designer
figure out what state is being challenged) and allow agent 1 to challenge this agreement.
Note that other agents are not penalized when agent 1 challenges.

A.4.2 Proof of implementation The following lemma, which is a property of the evi-
dence structure, finds use later.

Lemma 2. If s′ is a lie that only agent i can challenge at s∗, then agent j ( �= i) cannot
challenge s∗ at s′ with evidence E∗

j (s′ ).

Proof. s′ is a lie that only i can challenge at s∗. Then j cannot challenge s′ at s∗. There-
fore, ∀E ∈ Ej , cj(E, s∗ ) − cj(E∗

j (s′ ), s∗ ) ≥ cj(E, s′ ) − cj(E∗
j (s′ ), s′ ). With E = E∗

j (s∗ ), this
yields cj(E∗

j (s∗ ), s∗ ) − cj(E∗
j (s′ ), s∗ ) ≥ cj(E∗

j (s∗ ), s′ ) − cj(E∗
j (s′ ), s′ ). If j can challenge s∗

at s′ with challenge evidence E∗
j (s′ ), then we must have cj(E∗

j (s′ ), s′ ) − cj(E∗
j (s∗ ), s′ ) <

cj(E∗
j (s′ ), s∗ ) − cj(E∗

j (s∗ ), s∗ ), which is a contradiction.

Essentially, Lemma 2 allows the designer to deduce that in a profile of the form
((s1, E1 ), (s, E∗

2(s)), (s, E∗
3(s)), � � � , (s, E∗

I (s))), if agent 1 cannot challenge s at s1, then it
is actually agent 1 challenging s rather than agents i �= 1 challenging s1. In a canoni-
cal mechanism, the need for three agents is often to identify the agent who is deviating
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from the majority. Lemma 2 allows us to dispense with this requirement in the costly
evidence setting (under constant preferences).

Suppose the true state is s∗ and consider any pure strategy equilibrium ((si, Ei ))i∈I .

Claim 22. If there is an agent i �= 1 who can challenge s1, then s1 is challenged.

Proof. Suppose not. Then no agent challenges s1. Consider a deviation for i to (si, E
γ
i ),

which challenges s1. The outcome remains f (s1 ) and agent i does not incur any penal-
ties from τ3 as he is the first agent who challenges s1. He gains a reward from τ4, so that
this is a profitable deviation.

Claim 23. If there is an agent i �= 1 who can challenge s1, then ∃s ∈ S such that si = s,
∀i �= 1.

Proof. If there are only two agents, then this claim is trivially satisfied. So, suppose
there are three or more agents. From Claim 22, s1 is challenged by some agent. Suppose i

is the first agent to challenge s1. For any agent j �= i, j �= 1, if sj �= si, then he gets a
penalty of 1 dollar from τ3. Consider a deviation to match si. The outcome remains
f (s1 ), but the agent avoids the penalty from τ3. Since ti(s, s′ ) ∈ (−1, 1), any possible
reward from challenging using sj (from τ4) is less than 1 dollar. Hence, this is a profitable
deviation.

Claim 24. Agent 1 does not present lies, which others can challenge.

Proof. From Claim 22, if agent 1 presents such a lie, then some other agent challenges
it. Further, from Claim 23, ∃s ∈ S such that si = s, ∀i �= 1. This yields agent 1 a penalty of
at least 1 dollar from τ1, which he can avoid by deviating to present (s, E∗

1(s)). This may
change the outcome, but the utility loss from that is less than 1 dollar, so that this forms
a profitable deviation.

Claim 25. If agent 1 presents a lie that only he can challenge at s∗, then every other agent
agrees with him in the state and evidence dimensions.

Proof. We note that if s1 is a lie that agent i �= 1 cannot challenge at s∗, then it is among
his best responses to submit E∗

i (s1 ) and obtain the outcome f (s1 ). If he does not present
(s1, E∗

i (s1 )), then agent i is either mounting a challenge, which yields him a loss (as oth-
erwise s1 would be a lie agent i could challenge), or disagreeing without challenging and
incurring a loss of 1 dollar. In either case, it is best for agent i to deviate to match agent
1’s claim in both dimensions.

Claim 26. Agent 1 does not present a lie that only he can challenge at s∗.

Proof. Suppose not. From Claim 25, if s1 is a lie that only agent 1 can challenge at s∗,
then every agents i �= 1 presents (s1, E∗

i (s1 )) and the outcome is f (s1 ). Disagreeing with-
out challenging is suboptimal owing to τ2. Therefore, consider a deviation for agent 1
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to (s∗, Eγ
1 (s1, s∗ )). From Lemma 2, when agents i �= 1 present (s1, E∗

i (s1 )), �i(s∗, s1 ) = 0.
However, �1(s1, s∗ ) = 1. This yields him a profit from challenging since the outcome
remains f (s1 ).

Claim 27. The mechanism implements.

Proof. Owing to Claims 24 and 26, agent 1 can only present claims, which no one can
challenge. In such case, it is optimal owing to τ2

1 and τ3 for all agents to also present
the designated cheapest evidence along with such claims. This leads to no transfers,
the correct f -optimal outcome, and the submission of only the cheapest evidence in
equilibrium. This satisfies the definition of implementation.

A.4.3 Measurability does not imply evidence monotonicity Consider the following evi-
dence structure:

State/Agent 1 2

s1
{

{s1, s2, s3, s4}
} {

{s1, s2, s3, s4}
}

s2
{

{s1, s2, s3, s4}, {s2, s4}
} {

{s1, s2, s3, s4}
}

s3
{

{s1, s2, s3, s4}, {s3, s4}
} {

{s1, s2, s3, s4}
}

s4
{

{s1, s2, s3, s4}, {s2, s4}, {s3, s4}, {s4}
} {

{s1, s2, s3, s4}
}

The cost of the article {s4} is positive but finite.
Clearly, any f is measurable with respect to the evidence structure since between

any pair of states, agent 1 has a different endowment. To see that f is not evidence
monotonic, consider the states s1 and s4. Note that of necessity, E∗

1(s1 ) = {s1, s2, s3, s4}.
We now deal with three cases. First, if E∗

1(s4 ) = {s1, s2, s3, s4}, then no agent can challenge
s4 at s1 since relative to E∗

1(s4 ), the cost of all articles of evidence are strictly higher at s1

than at s4 for agent 1, and agent 2 has no cost variation. Recall that for f to be evidence
monotonic under constant preference, it is necessary that the cost of some article of
evidence reduces relative to E∗

1(s4 ) in going from s4 to s1. Instead the articles {s2, s4} and
{s3, s4} rise in cost from being costless to becoming unavailable (costing ∞).

Second, if E∗
1(s4 ) = {s2, s4}, then no agent can challenge s4 at s2 because as in the

above case, the articles {s1, s2, s3, s4} & {s2, s4} continue to be costless, while the article
{s3, s4} has now become unavailable. Third, if E∗

1(s4 ) = {s3, s4}, then no agent can chal-
lenge s4 at s3 since the articles {s1, s2, s3, s4} and {s3, s4} continue to be costless, while
the article {s2, s4} has now become unavailable. Further, E∗

1(s4 ) �= {s4} since {s4} is not
among the least costly evidence. Therefore, f is not evidence monotonic under constant
preference.

A.5 Renegotiation-proof contracting

A.5.1 Proof of Theorem 5 We begin by proving that it is necessary for the existence of
renegotiation-proof contracts that either Conditions (a) or (b) be satisfied. For a contra-
diction, consider a social choice function f and suppose that both Condition (a) and
Condition (b) are violated for f . Then there exist a pair of states s and s′ such that
f (s) �= f (s′ ) and one of the following is true:
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(c) One of the agents can refute s′ at s and the other agent can refute s at s′; or

(d) s′ is nonrefutable at s, but only one agent can refute s at s′.

Further, suppose that there is a mechanism M = (M , g, (τi )i∈I ), which implements
for every pair of v and h in Nash equilibrium with renegotiation. We note that any
such mechanism must be such that

∑
i τi = 0. Indeed, if M results in a budget sur-

plus (
∑

i τi < 0), then such an allocation is not efficient with respect to v and will get
renegotiated under h. Consider any equilibrium σ of this mechanism and further con-
sider any pair of messages (ms

i , ms
j ) on the support of σ at s and another pair of mes-

sages (ms′
i , ms′

j ) on the support of σ at s′. Further, assume vi(f (s′ )) = 1, vi(f (s)) = 0,
vj(f (s′ )) = 0, vj(f (s)) = 1, and for all other members a of the set A, vi(a) + vj(a) = 1,
vi(a) < 1, vj(a) < 1. Here, v is state independent. Further, choose any h such that v and
h satisfy the constraints noted earlier.26 To be concise, we will use ūi(m) to denote the
utility agent i derives from the outcome and transfers chosen by M under the message
profile m.

If Condition (c) is satisfied, then without loss of generality, the only possible evidence
structure is that agent i can refute s′ at s and agent j( �= i) can refute s at s′. Since M has∑

i τi = 0, ūi(ms′
i , ms

j ) + ūi(ms′
i , ms

j ) = 1. We consider the following two cases.

Case 1: If the mechanism M is such that ūi(ms′
i , ms

j ) > ūi(ms
i , ms

j ) = vi(f (s)), then

agent i deviates to ms′
i in state s and this yields an outcome different from f (s), so that it

is not possible that M implements f in Nash equilibrium with renegotiation. Note that
this is feasible for agent i.

Case 2: If M is such that ūi(ms′
i , ms

j ) ≤ vi(f (s)), then ūj(ms′
i , ms

j ) ≥ vj(f (s)) >

vj(f (s′ )) and agent j deviates to ms
j in state s′.

In either case, M cannot implement f in Nash equilibrium with renegotiation.
If Condition (d) is satisfied, suppose that s′ is nonrefutable at s and without loss

of generality, that only agent j can refute s at s′. Since M has
∑

i τi = 0, ūi(ms′
i , ms

j ) +
ūi(ms′

i , ms
j ) = 1. We consider the following two cases.

Case 1: If the mechanism M is such that ūj(ms′
i , ms

j ) > vj(f (s′ )), then agent j deviates
to ms

j in state s′ and this yields an outcome different from f (s′ ).

Case 2: If M is such that ūj(ms′
i , ms

j ) ≤ vj(f (s′ )), then ūi(ms′
i , ms

j ) ≥ vi(f (s′ )) >

vi(f (s)) and agent i deviates to ms′
i in state s.

In either case, M cannot implement f in Nash equilibrium with renegotiation.
To prove that either of Conditions (a) and (b) are sufficient, we present the following

mechanism. The message space is the same as our main mechanism: Mi = S × Ei. The
outcome is given by f (s1 ), where f is the SCF we desire to implement. There are two
transfers: A fine of 1 dollar for agent i if he is unable to support his state claim and a
fine of 2 dollars if si is refuted by Ej . Each fine is paid to the other agent, so that the
mechanism is budget balanced. Also, recall that the maximum bound of utility is less
than 1 dollar, so that these transfers dominate the utility from the outcome.

26Since M must implement for every acceptable combination of v, h, and f , we take the liberty of choos-
ing v. Moreover, our argument works for any h, which satisfies the constraints noted above; e.g., h may be
set as the identity mapping, which corresponds to “no-renegotiation.”.
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Assume that the true state is s∗. We now prove that this mechanism implements f

with renegotiation.
First, no agent presents an other-refutable lie with positive probability; otherwise,

since E is normal, the other agent presents the refuting evidence with probability 1 and
this loses the first agent 2 dollars of money, which is more than the value of influencing
the outcome. Second, if an agent presents a self-refutable lie s with positive probability,
then Condition (a) yields that this agent can also refute s∗ at s. Therefore, the agent can-
not support his state claim, and is fined 1 dollar. As this is more than the value of the out-
come, deviating to (s∗, E∗

i (s∗ )) is profitable. Third, if an agent presents a nonrefutable
lie s, then Condition (b) yields that i can refute s∗ at s. Thus, he cannot support his state
claim, and again, deviating to (s∗, E∗

i (s∗ )) is profitable. Therefore, the only equilibrium
is truth-telling, which results in the outcome f (s) without transfers, which is efficient.

We note here that all the off-equilibrium outcomes above involved f (s1 ) with a bud-
get balanced transfer of value greater than 1 dollar, so that the resulting outcomes are
Pareto efficient. Therefore, the mechanism is invulnerable to renegotiation.

A.5.2 Evidence structure which does not allow for renegotiation proof contracting

Agent/State φ θ

Buyer
{

{θ, φ}
} {

{θ}, {θ, φ}
}

Seller
{

{θ, φ}
} {

{θ, φ}
}

This evidence structure does not allow for renegotiation proof contracting since
at state φ, state θ is a nonrefutable lie, but at state θ, only the buyer can refute the
state φ. In contrast, if in the state with low investment, φ, the buyer could refute θ,
then renegotiation-proof contracting would once again be possible.
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