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Relational enforcement
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A principal incentivizes an agent to maintain compliance and to truthfully an-
nounce any breaches of compliance. Compliance is imperfectly controlled by the
agent’s private effort choices, is partially persistent, and is verifiable by the princi-
pal only through costly inspections. We show that in principal-optimal equilibria,
the principal enforces maximum compliance using deterministic inspections. Pe-
riodic inspection cycles are suspended during periods of self-reported noncom-
pliance, during which the agent is fined. We show how commitment to random
inspections would benefit the principal, and discuss possible ways for the princi-
pal to overcome her commitment problem.

Keywords. Relational contracts, dynamic enforcement, persistence, costly in-
spections.
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1. Introduction

In 2018 and 2019 two plane crashes killed 346 people and led to a worldwide ground-
ing of the Boeing 737 MAX.1 An investigation by the U.S. Congress concluded that the
accidents were to a large extent due to “grossly insufficient oversight by the FAA” (Fed-
eral Aviation Administration).2 Starting from the early 2000s, the FAA had increasingly
trusted manufacturers to certify their own planes to save costs. By 2018, Boeing had
self-certified nearly all of its work (Kitroeff, Gelles, and Nicas (2019)). Boeing rushed the
development of the 737 MAX at the expense of safety. This case illustrates the risk in
relying on self-reported quality assurances without sufficient oversight.
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In this paper, we study enforcement relationships in which the agent privately con-
trols and observes the state of compliance and makes reports to a principal without
commitment power. Compliance is partially persistent over time and can be observed
by the principal only through costly inspections. The principal schedules inspections
and imposes fines to incentivize the agent to exert effort and to self-report instances
of noncompliance. We show that the principal can induce the agent to exert full ef-
fort and report truthfully at all times through relational incentives. The principal carries
out inspections despite knowing the result beforehand. Our analysis highlights the im-
portance of the persistent effect of effort. Further, the principal cannot gain from ran-
domized inspections when she lacks commitment, but random inspections would be
optimal with commitment.

Public-sector applications of our model include banking supervision to ensure that
banks maintain functioning internal risk assessments3 and environmental protection
where the corresponding government agency ensures the enforcement of regulation by
firms.4 Similarly, private-sector organizations must ensure internally that employees
follow regulations.5

We consider principal-optimal equilibria in which the agent truthfully discloses all
instances of noncompliance and exerts maximum effort throughout. The principal-
optimal equilibrium we derive in our main result (Theorem 1) entails two phases: a
monitoring phase and a penalty phase. The agent is in the monitoring phase when he
reports compliance. During the monitoring phase, the agent is not fined, but is subject
to periodic inspections that would result in the maximal possible fine in the off-path
event that the inspection revealed misreporting. The agent is in the penalty phase when
he reports noncompliance. He pays a constant flow fine, but is never inspected. He
also pays a lump sum fine each time the state transitions from compliance to noncom-
pliance. Crucially, this transition fine features penalty reductions for early disclosures
of noncompliance, an aspect that is consistent with voluntary disclosure schemes com-
monly used in practice. The penalty reduction prevents the agent from delaying a report
of an incidence of noncompliance in the hope that he can regain compliance before the
next inspection.6

Notably, inspection times in this equilibrium are entirely predictable for the agent,
which implies that the principal cannot gain from randomized inspections. Intuitively,

3See Section 5 for a brief discussion of banking supervision practices in Germany.
4For the United States, Blundell, Gowrisankaran, and Langer (2020) measure the benefits of dynamic

procedures used by the EPA.
5For instance, the European Commission (2019) supports exporting firms in elaborating internal compli-

ance programs(ICP) to “mitigate risks associated with dual-use trade controls and to ensure compliance”
internally. Dual-use goods have civil and military applications and fall under special regulation to pro-
mote international security, e.g., by “countering risks associated with the proliferation of Weapons of Mass
Destruction” (European Commission (2019, p. 17)).

6Blundell, Gowrisankaran, and Langer (2020) point out that when determining the gravity of fines, the
EPA takes into account whether a violation was self-reported or not. See also Kapon (2022), who studies
optimal design of fine reductions (amnesties) granted for self-reports of illegal activity when detections
arrive at an exogenous rate. Focusing on deterministic fine reduction paths, Kapon (2022) also finds a
cyclical structure of the optimal mechanism.
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the principal”s motive to inspect is derived from her desire to maintain a reputation for
vigilance.7 Predictable inspections provide the strongest incentive for the principal to
inspect. As long as the principal inspects as prescribed by her equilibrium strategy, the
agent continues to expect to be monitored and, thus, has an incentive to exert effort
and report truthfully. However, when the principal delays inspections in a way that is
detectable by the agent, then the agent will infer that the principal has become nonvig-
ilant. This in turn induces the agent to shirk, which ultimately leads to a breakdown of
the relationship that is costly for the principal. If the principal uses a random strategy
and mixtures are unobservable for the agent, deviations by the principal are harder to
detect for the agent. This destroys any potential benefit for the principal in equilibrium.

We exploit the optimality of predictable inspection schedules for the construction
of the principal-optimal equilibrium in Theorem 1: her equilibrium payoffs coincide
with the value of an auxiliary mechanism-design problem in which the principal is re-
stricted to nonrandom inspections. We then transform this optimization into a dynamic
programming problem that uses the agent’s promised utility as a state variable.

Comparative statics reveal the importance of persistence for relational enforcement.
In equilibrium, the persistent effect of effort on compliance allows the principal to deter
the agent from deviating through isolated inspections. As the state’s persistence van-
ishes, the inspection costs necessary to enforce compliance grow arbitrarily large.

We then contrast the relational enforcement equilibrium with stochastic inspection
mechanisms. The ability to commit to random inspections decreases the principal’s
inspection costs relative to the deterministic inspections that are required in the non-
commitment case. Deterministic inspections are more costly because of delay and noise
in the compliance process, and due to the transition penalties that are needed to gen-
erate incentives for voluntary disclosure. Comparative statics highlight the contrast be-
tween relational enforcement and the commitment case with random inspections. As
the persistence of the state of compliance vanishes, the random inspection costs de-
crease monotonically. We also discuss ways to overcome the principal’s commitment
problem, including institutional separation of planning and execution of oversight and
inspection sampling combined with publicly accessible and verifiable records.

The rest of the paper is organized as follows. After discussing related literature, the
model setup is presented in Section 2. Section 3 characterizes the agent’s incentive con-
straints, shows that the principal-optimal equilibrium can be determined by solving
an auxiliary mechanism-design problem, and outlines how to solve the auxiliary prob-
lem. We present the principal-optimal equilibrium in Section 4, followed by compar-
ative statics. Section 5 discusses random inspections. All proofs are contained in the
Appendix.

7Here, “maintaining a reputation” means following equilibrium actions because deviating leads to a less
favorable continuation value (see Chapter 22 in Ljungqvist and Sargent (2018)). This “history-dependence”
notion of reputation is distinct from the “adverse-selection” approach to reputation (Mailath and Samuel-
son (2006, p. 459)), in which incentives stem from the desire to convince the opponent that you are of a
specific type.
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Related literature Our paper is closely related to the literature on costly state verifica-
tion (CSV). Early papers, including Townsend (1979), Gale and Hellwig (1985), Mookher-
jee and Png (1989), and Border and Sobel (1987), focus on one-shot interactions. One of
the main findings in this literature is the optimality of cutoff verification protocols, an
insight that has been influential in explaining the use of debt contracts and the role of
financial intermediaries. A number of papers consider dynamic extensions. In many of
these, the principal’s observation reveals the agent”s current private information with
no intertemporal link to past actions or states.8 By contrast, the state in our model is
partially persistent, so inspections reveal information about past behavior.

Inspections of a persistent state are analyzed in Ravikumar and Zhang (2012) and
Kim (2015). These papers study pure adverse-selection problems with exogenous pri-
vate information when the principal has commitment. In Ravikumar and Zhang (2012),
the contracting friction is driven by risk-sharing concerns. They find that random in-
spections are optimal, and, after each inspection, there is a grace period without in-
spections. In Kim (2015), the contracting friction is driven by the agent’s limited liability.
They find that random inspections are optimal for incentive provision when truthful dis-
closure is attainable, but periodic inspections are optimal to guide environmental pro-
tection activities when the fines are insufficient to attain truth-telling. Our setting fea-
tures an adverse-selection and moral-hazard problem, the principal lacks commitment
power, and the agent is risk-neutral so that the contracting friction stems from limited
liability. We find deterministic inspections are optimal when the principals lacks com-
mitment. Our result for the commitment case is in line with their findings that random
inspections provide incentives more effectively.

Most closely related is the paper by Varas, Marinovic, and Skrzypacz (2020), which
studies a pure moral-hazard model with full commitment and without fines.9 In their
model, the agent is incentivized by the desire to maintain a good reputation and in-
spections make the agent’s type public. Additionally, inspections serve an information-
acquisition purpose for the principal. The authors find random inspections are optimal
for incentive provision, but deterministic inspections are optimal for information acqui-
sition. In contrast, in our model, the agent discloses the state of compliance, so that in-
spections do not reduce the uncertainty about the state. Ball and Knoepfle (2023) study

8For dynamic moral-hazard problems in which monitoring reveals the current action, see Antinolfi and
Carli (2015), Piskorski and Westerfield (2016), Dilmé and Garrett (2019), Chen, Sun, and Xiao (2020), Li and
Yang (2020), Dai, Wang, and Yang (2022), Wong (2022). For dynamic adverse-selection problems in which
verification reveals the agent’s current information that is independent and identically distributed (i.i.d.)
across periods, see Chang (1990), Webb (1992), Monnet and Quintin (2005), Wang (2005), Popov (2016),
Malenko (2019).

9In both papers, state transitions are based on the reputation for quality model (Board and Meyer-ter-
Vehn (2013)). In Board and Meyer-ter-Vehn (2013) quality becomes publicly observable at random times. In
the present paper and in Varas, Marinovic, and Skrzypacz (2020), the principal chooses the times at which
the state becomes publicly observable at a cost. In Halac and Prat (2016) and Dilmé and Garrett (2019), the
principal invests in building her persistent monitoring capabilities, and monitoring reveals information
about current actions of the agents. In contrast to the setup in the present paper, the principal’s actions
are private and she cannot perfectly control the time at which she signals vigilance. In Halac and Prat
(2016) this leads to a breakdown of the relationship with positive probability after the agent’s effort remains
unrecognized for too long.
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optimal inspections with commitment and show that random inspections are optimal
for incentives when the agent must avoid a breakdown and deterministic inspections
are optimal when the agent must achieve a breakthrough. The driver of nonrandom
inspections in our paper is the principal’s lack of commitment.

The persistent effect of effort is important for relational incentives. This is also high-
lighted for a collaboration problem without commitment in Ramos and Sadzik (2023).
Similar to our comparative statics in Section 4.2, the authors show that relational incen-
tives vanish without persistence. Without persistence, commitment is crucial for en-
forcement with costly inspections: when the agent is expected to comply, the principal
has no incentive to pay the inspection cost to reveal information she already knows. In-
deed, Reinganum and Wilde (1985) confirm for a nonrepeated setting that compliance is
not achievable without full commitment. With repeated interactions, continuation play
can provide punishment for insufficient inspection. Ben-Porath and Kahneman (2003)
prove a folk theorem, showing that full compliance can be obtained without commit-
ment in the undiscounted limit. In our game, full compliance is attainable even with
discounting. This difference stems from the persistence of the state and the observabil-
ity of inspections by the agent in our model.

2. Model

Players, actions, and state dynamics There are an agent and a principal. Time t ∈ [0, ∞)
is continuous. The agent, at each instant t, privately chooses effort ηt ∈ [0, 1] to comply
with exogenously given regulation as best he can. The state of compliance at time t

is θt ∈ {0, 1}, where we refer to state 0 as noncompliant and to state 1 as compliant.
Effort affects the transitions of the process {θt }t≥0: there are parameters λ > 0 and α ∈
(0, 1) such that the state changes from 0 to 1 at Poisson rate ηtλα and from 1 to 0 at
rate λ(1 − ηtα). We may interpret λ and α as follows. There is a Poisson process of
shocks arriving at rate λ. Whenever there is a shock at time t, the resulting state is θt = 1
with probability ηtα and it is θt = 0 with probability 1 − ηtα; between shocks the state
remains unchanged. Thus, λ measures the variability of compliance and α measures the
responsiveness to the agent’s effort conditional on a shock; α < 1 implies that the agent
cannot always maintain compliance despite his best efforts. The agent observes θt at all
times and sends report θ̂t ∈ {0, 1} to the principal. The agent can exit the relationship
unilaterally at any time.

The principal chooses inspections and fines to incentivize the agent. We denote
by NI

t the cumulative number of inspections and by Ft the cumulative fines up to and
including time t. That is, dNI

t ≡ Nt − lims↗t N
I
s ∈ {0, 1} is equal to 1 if and only if there is

an inspection at time t and dFt ≥ 0 is the fine paid by the agent at time t.

Information and timing The agent observes the history of all paths

ht = {
ηs , θs , θ̂s, NI

s , Fs
}
s∈[0,t].

The principal never observes the agent’s effort and is able to observe the state θt only
by performing an inspection at time t. To allow for randomized inspections, we equip
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the principal with a private random signal π, defined on a sufficiently rich sample
space �. The principal observes histories of the form hP

t = {π, θ̂s , NI
s , Fs , θs : NI

s =
1}s∈[0,t]. Heuristically, we can describe the timing of events within each instant [t, t + dt )
as follows.10 First, the agent chooses effort ηt . Subsequently, nature determines whether
a shock arrives and, conditional on the arrival of a shock and the effort, draws a new state
θt . The agent then observes the realized θt and sends a report θ̂t ∈ {0, 1} to the principal.
The principal chooses whether to inspect, dNI

t ∈ {0, 1}, and sets a fine dFt incurred im-
mediately by the agent, where the fine can be contingent on the true state θt if and only
if the principal chose to inspect.

Payoffs and equilibrium The principal and the agent are risk-neutral and discount fu-
ture payoffs at a common rate r > 0. The principal is tasked with ensuring that the agent
complies with the regulation. She incurs a lump-sum cost κ > 0 from each inspection.
For a realized history h= {ηt , θt , θ̂t , NI

t , Ft }t∈[0,∞), the discounted net present cost of the
principal at time t is

kt =
∫ ∞

t
e−r(s−t )κdNI

s . (1)

The principal does not benefit directly from compliance or from fining the agent. Fines
are interpreted as remedial actions that negatively impact the agent.11 To ensure that
the principal is willing to bear the inspection costs, assume that when the relationship
breaks down, i.e., the agent exits or ceases to exert effort, the principal suffers cost K̄. We
assume throughout that the bound K̄ is large enough such that it exceeds the expected
inspection costs necessary to incentivize the agent.12

The agent incurs effort cost of cηt dt with c > 0 and disutility dFt from fines. His
discounted net present payoff at time t is given by

ut =
∫ ∞

t
e−r(s−t )(−cηs ds − dFs ). (2)

The agent is protected by limited liability. If he chooses to exit, the relationship ends
permanently, which results in a continuation payoff of −B. This implies a constraint on
the severity of fines the principal can impose. We assume that the exogenously given

10We outline the sequentiality at a given instant to give an intuition about the order of moves. Formally,
the order is captured by continuity properties of the respective action and state paths. It is well known
that in continuous-time games with observable actions, strategies may not produce well defined action
paths. To focus the exposition in the main text on the main economic forces, we defer a more formal treat-
ment to Supplemental Appendix A (available at http://econtheory.org/supp/5183/supplement.pdf), where
we adopt an approach by Kamada and Rao (2023) to impose restrictions on strategies that guarantee well
defined action paths.

11Our results do not rely on this assumption. When the principal benefits from fines, her preferred equi-
librium differs from the one we present only in an initial fine paid by the agent (see Section 6).

12This serves as a concise way to deliver incentives for inspection for the principal when analyzing the
equilibrium problem without commitment. Alternatively, we could explicitly incorporate an (unobserved)
flow reward θtR or ηtR in our model so that, for R > 0 large enough, the principal’s expected payoff from
inducing effort by the agent exceeds the necessary inspection costs. Our results would be unaffected.

http://econtheory.org/supp/5183/supplement.pdf
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bound B is large enough: B > B̄ ≡ c(r + λ)/(λαr ). Otherwise, the maximal punishment
is insufficient to incentivize effort even if θt were public at all times.

Given a strategy profile, the principal and the agent form expectations about history
h based on their past observations. For strategies that induce measurable action pro-
cesses on path, we denote the expected cost of the principal and payoff of the agent at
time t by

Kt = E
P
t−[kt ] and Ut = E

A
t−[ut ].

The expectation is with respect to the process {θs}s∈[0,∞) and the randomization device
π, and it is conditional on the information that is available to the principal and the agent,
respectively.13 In continuous-time games with observable actions and stochastic envi-
ronments, players’ behavior may be nonmeasurable. We do not impose restrictions on
strategies that rule out nonmeasurable behavior. Instead, our equilibrium definition
below requires that strategies lead to measurable actions on path. Histories away from
the equilibrium path may lead to nonmeasurability. Payoffs at such histories can be
assigned freely within the feasible bounds. In our game, the lower bounds on payoffs
can be reached by either player unilaterally through exit or by imposing the maximal
fine. Therefore, potential nonmeasurabilities off path and the assigned payoffs cannot
be used as a threat to enlarge the equilibrium set (see also the discussion of this ap-
proach in Kamada and Rao (2023)).

We define a strategy profile, together with processes {Kt , Ut }t≥0, to be a perfect
Bayesian equilibrium if the following statements hold.

• The strategies of the principal and the agent are sequentially rational.

• Along the equilibrium path, Kt and Ut are equal to the conditional expectations
given above. Away from the equilibrium path, Kt and Ut are equal to the conditional
expectations whenever these are well defined.

• At all histories and all times, Kt ∈ [0, K̄] and Ut ∈ [−B, 0].

We say that the agent’s strategy is truthful if θ̂t = θt at all histories along the equi-
librium path. Further, we call the agent’s strategy maximally compliant if ηt = 1 at all
histories along the equilibrium path. Note that with full effort by the agent, the proba-
bility of compliance at any given time is maximized. We refer to an equilibrium as truth-
ful or maximally compliant if the agent’s strategy in this equilibrium has the respective
property. Henceforth, we restrict attention to such equilibria (see the discussion in Sec-
tion 6).

13For the principal, the expectation is with respect to the natural filtration generated by the process

{NI
s , Fs , θs : dNs = 1}s∈[0,t ) ∪ {θ̂s }s∈[0,t] when taking her inspection decision, and with respect to the natural

filtration generated by {θ̂s , NI
s , Fs−, θs : dNs = 1}s∈[0,t] for the fine. For the agent, the expectation is with re-

spect to the natural filtration generated by the process {ηs , θs , θ̂s , NI
s , Fs }s∈[0,t ) for his effort choice, and with

respect to the natural filtration generated by {θ̂s , NI
s , Fs }s∈[0,t ) ∪ {ηs , θs }s∈[0,t] for his report. As mentioned

above, see Supplemental Appendix A for a formal treatment of permissible strategies.
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We say that inspections are predictable for the agent if he knows for certain whether
or not his current report will lead to an inspection at any history.14 Henceforth, we refer
to inspections as random whenever they are nonpredictable for the agent.

3. Agent’s and principal’s problem

3.1 Agent: Incentive compatibility

Fix an arbitrary principal strategy of fines and inspections, and let Ut be the agent’s asso-
ciated expected discounted continuation payoff at time t under the assumption that he
exerts full effort and reports truthfully. We characterize recursively the conditions under
which truthful reporting and maximal compliance are a best response for the agent in
terms of the evolution of his promised utility at all times. Due to the persistence in the
agent’s private information, the recursive characterization of incentive compatibility re-
quires tracking two state variables:15 the agent’s expected continuation utility given that
θt = 0 and given that θt = 1. Formally, fix a principal strategy and define for any strict
history at time t,

U0
t = E

A
t−[Ut|θt = 0] and U1

t = E
A
t−[Ut|θt = 1]. (3)

These are the agent’s expected continuation utilities when history ht− is followed by the
realization of θt = 0 or θt = 1. Here, EA

t− represents the expectation conditional on all
available information before time t. Following Zhang (2009), we call U1

t the persistent
payoff if θt− = 1 and the transitional payoff in case θt− = 0, and vice versa for U0

t .
Our first result provides a complete characterization of the agent’s incentive-

compatibility constraints in terms of the evolutions of U0
t and U1

t . The construction
is based on the martingale representation for marked point processes (Last and Brandt
(1995)), which is presented in detail in Appendix A. We exploit the fact that the agent’s
time-t expectation of his total discounted lifetime utility is a martingale. For the inspec-
tion counting process NI , the compensator is a predictable process νI = {νIt }t≥0 such
that the compensated process NI

t − νIt is a martingale. The compensator exists under
very general conditions and can be interpreted as the predictable drift of the underly-
ing (nonpredictable) stochastic process. We can think of the compensator as a gener-
alization of the cumulative hazard function, and, consequently, think of dνI/dt as the
hazard rate of inspections (whenever it exists). Furthermore, let the predictable process

I = {
I

t }t≥0 measure the jump in the persistent payoff if an inspection is performed at
time t.16

Lemma 1. A principal’s strategy induces maximal compliance and truthful reporting if
and only if it generates the processes {U1

t , U0
t }t≥0 of promised utilities satisfying for i = θt−

and j = 1 − θt−, and at all t with dNI
t = 0 and θt− = θt ,

14Formally, predictability means that the process NI is measurable with respect to the information avail-
able to the agent (see Davis (1993, p. 67, for a definition in the context of jump processes)).

15This is based on Fernandes and Phelan (2000), who introduce a recursive approach with serially corre-
lated states in discrete time. See Zhang (2009) for a treatment in continuous time.

16That is, given that an inspection occurs at time t (and θt− = 1), then 
I
t =U1

t −U1
t−, supposing that the

inspection confirms that the agent reported truthfully, which is the case along the equilibrium path.
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(Pk) dUi
t = rUi

t dt + λ(i− α)(U1
t −U0

t ) dt + cdt + dFt −
I
t dνIt

(H) dUj
t ≤ rU

j
t dt + λ(j − α)(U1

t −U0
t ) dt + cdt + dFt + (B +U

j
t ) dνIt

(O) U1
t −U0

t ≥ c/λα

(P) U0
t , U1

t ∈ [−B, 0],

We now explain the role of the four constraints: promise keeping (Pk), honesty (H),
obedience (O), and participation (P).

First, the promise-keeping constraint (Pk) ensures that the agent’s expectation of his
discounted lifetime utility is indeed a martingale, so that Uθt−

t represents the continua-
tion utilities consistently. For illustration, suppose θt− = 1 and rearrange (Pk) for i = 1:

rU1
t dt = −cdt − dFt + λ(1 − α)

(
U0
t −U1

t

)
dt + dνIt 


I
t + dU1

t .

This formulation has the familiar asset price interpretation where the return rU1
t is equal

to the current flow payoff (dividends) plus expected capital gains. The agent incurs flow
cost cdt from effort ηt = 1 and suffers the fine dFt . With full effort, there is a transition
from state 1 to 0 with probability λ(1 − α) dt at which the agent’s payoff changes by
(U0

t −U1
t ), an inspection arrives with probability dνIt and changes the agent’s payoff by


I
t , and dU1

t is the change in the current payoff if no transition or inspection arrives.
Second, the honesty constraint (H) makes sure that the agent truthfully reports

any state transitions immediately.17 For a heuristic illustration, suppose again that
i = θt− = 1 and consider the agent’s reporting incentives when a transition to state 0
occurs at time t. For exposition, assume also that the inspection distribution has no
mass point at time t and that the density is ν̃It = limdt→0 dνIt /dt. The agent is willing
to report the decline without delay only if he cannot gain from misreporting θ̂ = 1 for
a small interval [t, t + dt ) and reverting to truth-telling afterward. Using a first-order
Taylor approximation, we must have

U0
t ≥ −cdt − dFt + λαU1

t dt + ν̃It dt(−B) + (
1 − λαdt − ν̃It dt

)
(1 − r dt )U0

t+ dt .

On the left-hand side we have the value from reporting truthfully. On the right-hand
side, the agent incurs cdt and dFt . With probability λαdt, the state changes back from
0 to 1 and the agent gets U1

t . With probability ν̃It dt, the agent is inspected and caught
misreporting; by standard arguments, it is optimal for the principal to enforce the most
severe punishment. This leaves the agent a payoff equal to his outside option −B. With
probability (1 − λαdt − ν̃I t dt ), the state remains 0 and there is no inspection, in which
case the agent gets the discounted payoff (1 − r dt )U0

t+dt from reporting state 0 (truth-
fully) at t + dt. Substituting the approximation dU0

t := U0
t+dt − U0

t and ignoring higher-
order terms, this necessary condition is equivalent to

dU0
t ≤ rU0

t dt − λα
(
U1
t −U0

t

)
dt + cdt + dFt + ν̃It dt

(
B +U0

t

)
.

17This corresponds to the threat-keeping constraint in Fernandes and Phelan (2000).
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This inequality is precisely condition (H) for the case i = 1 and j = 0 when dνIt = ν̃It dt. By

ensuring that the transitional utility U
j
t decreases quickly enough, the agent is deterred

from delaying the report of any transition. While the heuristic derivation above gener-
ates a necessary condition, the general result in Lemma 1 is also sufficient and covers
the possibility of inspections with positive probability mass.

Third, the obedience constraint (O) ensures that ηt = 1 is a best response for the
agent. The marginal cost of effort is c. The marginal benefit is λα(U1

t − U0
t ), where λ is

the arrival rate of a shock, α is the sensitivity of the realization to the agent’s effort, and
U1
t −U0

t is the utility gain from the high state.
Fourth and finally, the participation constraint (P) makes sure that the agent’s payoff

is not below −B so he does not withdraw from the contract. Whereas the agent only
incurs costs from effort and fines, only payoffs below 0 are feasible.

3.2 Principal: Sequential rationality and predictability

A principal-optimal equilibrium can be characterized by solving an auxiliary mecha-
nism-design problem in which the principal minimizes her inspection costs over all
strategies with nonrandom inspections subject to the incentive compatibility (IC) con-
ditions in Lemma 1.

Lemma 2. Let {NI∗
t , F∗

t }t≥0 be a solution to the auxiliary mechanism-design problem

min
{NI

t ,Ft }t≥0

E
P

[∫ ∞

0
e−rtκdNI

t

]
,

subject to the requirements that (i) the corresponding utility paths {U1
t , U0

t }t≥0 satisfy
incentive-compatibility conditions (Pk), (H), (O), and (P) in Lemma 1, and (ii) {NI

t }t is
predictable whenever the agent reports compliance. Then {NI∗

t , F∗
t }t≥0 describes the prin-

cipal’s strategy on the path of a principal-optimal truthful and maximally compliant
equilibrium.

The result requires that inspections are predictable only during compliance, which
is sufficient here as it is never optimal to inspect when the agent admits noncompliance.

Lemma 2 is the result of two essential insights. First, the minimal costs for the prin-
cipal in Lemma 2 cannot exceed the principal’s optimal equilibrium costs. That is, in
equilibrium, she cannot gain from any randomness in the timing of inspections. To
prove this first insight, we exploit the idea that in any equilibrium in which an inspection
arrives at random, the principal must be indifferent between all times in the support of
the inspection-time distribution.18 By replacing a random inspection with a determin-
istic inspection time in the support, any equilibrium strategy can be transformed into a
predictable strategy that generates the same expected costs. We show that this can be
achieved while preserving incentives for the agent.

18Given that the agent always exerts full effort, any inspection that occurs at the later of two times in the
support must be followed by a continuation equilibrium with strictly higher expected costs compared to
the continuation equilibrium after the earlier possible inspection time.
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Second, the the minimal costs for the principal in Lemma 2 do not lie strictly below
the principal’s optimal equilibrium costs. That is, any nonrandom inspection strategy
that solves the problem can be supported in a perfect Bayesian equilibrium. Predictabil-
ity makes it easy to incentivize the principal because the agent immediately detects
when an inspection does not take place as anticipated. In the equilibrium constructed
formally below, the agent immediately stops exerting effort and exits if the principal de-
viates by not inspecting as expected. After detecting such a deviation, the agent infers
that the principal has become nonvigilant. The agent would thus begin to shirk, and the
principal would retaliate by setting large fines, which forces the agent to exit.

Note that the exact continuation play after a deviation by the principal is not es-
sential. What is needed for our construction is that there is a continuation play that is
sufficiently undesirable for the principal that it incentivizes her to inspect. The agent’s
exit thus represents, in reduced form, a possibly richer continuation play, which could
involve periods of shirking by the agent, and intensified inspection regimes by the prin-
cipal in an effort to reestablish a reputation for vigilance.

3.3 Solving the auxiliary problem

We now illustrate the solution of the principal’s problem in Lemma 2. It is intuitive that
inspections are unnecessary when the agent admits that θt = 0. It follows from the obe-
dience constraint (O) that the agent has no incentive to misreport noncompliance. We
therefore focus on histories for which the state is in compliance and turn to noncompli-
ance later.

We begin by characterizing the agent’s promised and transitional utility during com-
pliance in terms of a pair of coupled differential equations. The restriction to nonran-
dom policies implies dνIt = 0 everywhere, except at isolated times at which an inspection
occurs with probability 1. In this case, it is without loss for the principal to set dFt = 0
between inspections. This is because, in the absence of inspections, the fines cannot de-
pend on the true state (conditional on the report). Furthermore, we verify in the proof
that at the optimum, constraint (H) holds with equality between inspections. Thus, if
we start at t = 0 with some initial payoff pair (U0

0 , U1
0 ), the trajectories of the transitional

payoff U0
t and the persistent payoff U1

t up until the next inspection are pinned down by
constraints (Pk) and (H) in Lemma 1 (with dνIt = dFt = 0 and (H) holding with equality).
This pair of coupled first-order differential equations has the closed-form solution

U0
t = ert

(
U0

0 − α
(
eλt − 1

)(
U1

0 −U0
0

)) + c
(
ert − 1

)
/r (4)

U1
t = ert

(
U1

0 + (1 − α)
(
eλt − 1

)(
U1

0 −U0
0

)) + c
(
ert − 1

)
/r. (5)

Combining these equations yields the identity U1
t − U0

t = (U1
0 − U0

0 )e(r+λ)t . When-
ever there is no inspection, the difference U1

t − U0
t must increase to guarantee that the

agent cannot profit from delaying the report of a transition to noncompliance. Thus,
given an initial payoff pair with U1

0 − U0
0 ≥ c/(λα), the paths U0

t and U1
t satisfy con-

straints (Pk), (H), and (O) at all times t ≥ 0. The remaining constraint is (P); specifically,



834 Achim and Knoepfle Theoretical Economics 19 (2024)

U0
t ≥ −B and U1

t ≤ 0.19 To make the promised utilities satisfy (P) at all times, the prin-
cipal performs inspections that allow her to increase the transitional utility U0

t without
violating the honesty constraint so as to push U0

t and U1
t back together.

We solve for the optimal strategy using a recursive approach due to Davis (1993),
using the promised utilities (U0

t , U1
t ) as state variables. This approach involves restrict-

ing the principal to perform a bounded number of inspections and then solving for the
optimal strategy iteratively, letting the maximal number of inspections go to infinity.

Suppose the principal can perform only one inspection and consider the choice of
initial values (U0

0 , U1
0 ) = (u0, u1 ) to ensure that U1

t ≤ 0 and U0
t ≥ −B for as long as possi-

ble. First, what is the optimal u0 for any given value of u1? From (4) and (5) we see that,
for all t, the value U0

t is increasing and U1
t is decreasing in u0. Thus, to satisfy U1

t ≤ 0 and
U0
t ≥ −B, it is optimal to choose u0 as large as (O) permits, i.e., equal to u1 − c/(λα). This

is intuitive: whereas the honesty constraint (H) requires U0
t to fall quickly enough, it is

optimal to start off from the highest possible value. Second, with u0 = u1 − c/(λα), what
is the optimal level of u1? Substituting for u0 in (4) and (5), we see that, for all t, U0

t and
U1
t are increasing in u1. Thus, an increase in u1 makes U0

t hit the lower bound −B later
while it makes U1

t hit the upper bound 0 earlier. Given that the objective is to satisfy both
constraints for as long as possible, the optimal choice of u1 when there is one inspection
makes U0

t and U1
t hit their respective boundary at the same time. Figure 1 illustrates

this. For any other choice of initial value u1, the minimum of both hitting times would
be lower.

Going to multiple inspections, note that hitting U1
t = 0 at any time implies that no

further incentives can be provided and the agent would stop exerting effort.20 The opti-
mal initial utility u1 with multiple inspections is lower so that at the first inspection, i.e.,
when U0

t reaches −B, the value U1
t is below 0 to incentivize the agent in the future and

Figure 1. The evolution of promised utilities over time conditional on continued compliance
with a single inspection. Persistent utility is shown as a solid line; transitional utility is dashed.

19By (O), these are two relevant inequalities implied by (P).
20Clearly, if the agent is expected to exert effort at all times, his expected utility cannot lie above −c/r. In

fact it will lie strictly below this level as breaches of compliance, and thereby fines, cannot be fully ruled out
even with full effort.
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Figure 2. The evolution of promised utilities over time conditional on continued compliance
with repeated inspections. Persistent utility is shown as a solid line; transitional utility is dashed.

allow time until the following inspection. When iterating over the number of inspec-
tions, let u1(n) denote the optimal initial value of the trajectory of U1

t when the maximal
number is n. With each additional inspection, the optimal value u1(n) decreases. This
implies that the time until the first inspection, Tn, decreases as U0

t reaches −B earlier.
As n grows large, u1(n) converges to a unique limit u1∗ and Tn converges to a unique
limit T ∗, the length of the inspection cycle. In the optimal mechanism, the persistent
utility U1

t is u-shaped and it returns to the initial value u1∗ at each inspection (see Fig-
ure 2). The limit values u1∗ and T ∗ are characterized by (4) and (5) with boundaries
(U0

0 , U1
0 ) = (u1∗ − c/(λα), u1∗ ) and (U0

T ∗ , U1
T ∗ ) = (−B, u1∗ ). This yields

T ∗ = sup
{
T > 0 | 0 = (B − c/r )

(
1 − e−rT

)
λα− ceλT

(
erT − α

) + c(1 − α)
}

(6)

u1∗ = −B + e(r+λ)T ∗ c

λα
, and u0∗ = u1∗ − c

λα
. (7)

So far, we abstracted from transitions to state θt = 0. If such a breach of compliance
occurs at time t, the persistent utility becomes U0

t in (4). The agent then pays a lump-
sum fine P(t ) = u0∗ − U0

t to increase the persistent utility to u0∗. Using constant flow
fines (and no inspections), the promised utilities are held constant at U0

t = u0∗ and U1
t =

u1∗ as long as θt = 0.21 This way, upon another transition to compliance, the promised
utilities are already at the optimal initial values.

4. Equilibrium

4.1 The principal-optimal equilibrium

We now characterize a principal-optimal equilibrium. The equilibrium we consider al-
ternates between two phases: First, while the agent reports compliance, he pays no fine
and is subject to periodic inspections with inspection cycle length T ∗. Formally, let the

21Verify with equations (Pk) and (H) for the case i = 0 and j = 1, and dνIt = 0.
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clock

τt ≡ t − sup
{
s ∈ [0, t ) | θ̂s = 0 ∨ dNI

s = 1
}

count the time in compliance since the last transition or inspection. While in compli-
ance (θt = 1), the clock τt increases linearly with slope 1, and it drops to 0 during non-
compliance (θt = 0) or at each inspection (dNI

t = 1). At each time t with τt = T ∗, an
inspection is performed. Second, while the agent reports noncompliance, he pays a
lump-sum fine at the time of the transition and a constant flow fine at all times.

Theorem 1. There is a principal-optimal truthful and maximally compliant equilib-
rium with inspection cycle length T ∗ and initial expected payoff pair (u0∗, u1∗ ) such that
on the equilibrium path, the following statements hold.

• Inspections are performed only during compliance (θt = 1), with a periodic inspec-
tion whenever the clock τt reaches T ∗.

• Fines are levied only during noncompliance (θt = 0), with a constant flow fine f ∗ =
−ru0∗ at all times t with θt = 0, and a lump-sum transition fine P(τt ) = u0∗ −U0

τt
at

all times t with θt− = 1 and θt = 0, where U0
t is given in (4) with initial value u0∗.

Off the equilibrium path, the following statements hold.

• If an inspection reveals noncompliance, i.e., that the agent misreported, then the
agent pays the maximal fine, so that his continuation utility is −B.

• If τt = T ∗ but the principal fails to inspect, then the agent exits.

Figure 3 illustrates the equilibrium for a sample path with initial state θ0 = 1. While
in compliance, the agent pays no fines, and an inspection is performed at time t1, where
τt1 = T ∗. During compliance, the agent’s persistent payoff evolves according to Ut =
U1
τt

, which is equal to u1∗ initially and at the inspection time. At time t2 in Figure 3, a
breach of compliance occurs. In a first step, the agent’s utility drops to the current level
of the transitional utility U0

τt2
, the dashed blue line; at the same time, the agent pays the

transition fine P(τt2 ), so that his continuation utility increases by that amount to u0∗.
While in noncompliance, the agent pays a constant flow fine that keeps the continuation
utility constant at u0∗ until the transition back to compliance at t3. At this transition, the
persistent utility jumps up to u1∗ and the evolution takes the same course as at t = 0 and
at t = t1.

Note that the persistent utility of the agent during compliance is u-shaped. This is
the result of two opposing forces. On one hand, the agent faces a mounting threat from
the increasing transition fine he must pay when becoming noncompliant. The rise in the
transition fee is necessary to maintain truth-telling incentives. On the other hand, the
likelihood of having to pay this fine falls as he approaches the next inspection. Early on
in the inspection cycle, the first force is dominant, resulting in a decrease in persistent
utility, while the latter force is dominant toward the end of the inspection cycle.

A crucial feature of this equilibrium is that inspections are predictable from the per-
spective of the agent. With nonrandom inspections, each inspection is a signal to the
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Figure 3. The evolution of an example path realization starting in the compliant state. Solid
curves depict the agent’s persistent payoff in the current state; dashed curves depict the transi-
tional payoff, to which the agent’s payoff jumps when the state changes.

agent of the principal’s continued oversight. Demonstrated vigilance shapes the agent’s
perception that he will eventually be detected if he were to deviate. While random in-
spections may be supported in a relational contract, such arrangements require strong
deterrents for the principal to ensure her adherence to the equilibrium strategy. This re-
quirement ultimately renders randomization nonbeneficial for the principal (Lemma 2).

The equilibrium in Theorem 1 naturally features penalty reductions for early dis-
closures of noncompliance. This is consistent with voluntary disclosure schemes that
are commonly used in practice. The U.S. environmental protection agency (EPA) em-
ploys a self-reporting program called “Incentives for Self-Policing” that requires firms
voluntarily disclose any violations that are detected internally. Similar to the way the
agent is incentivized in the above equilibrium, firms that disclose violations early are re-
warded by a reduction in penalties and a suspension of inspections until compliance is
restored. Theorem 1 provides insights into how enforcement agencies can benefit from
offering regulated firms incentives for voluntary disclosure. Voluntary disclosure allows
the principal to limit inspection to periods of compliance and, thus, lowers the over-
all inspection costs. The EPA points out that the advantage of these incentives lies in
“making formal EPA investigations and enforcement actions unnecessary.”22 In the the-
oretical literature, the observation that voluntary disclosure reduces monitoring costs
dates back to Kaplow and Shavell (1994), who introduced self-reporting into the enforce-
ment model by Becker (1968). Without the agent’s disclosure, the principal in our model
would not be able to consistently avoid inspections during phases of noncompliance.23

22https://www.epa.gov/compliance/how-we-monitor-compliance.
23See Varas, Marinovic, and Skrzypacz (2020) for a model without reports. Our results confirm the con-

jecture in that paper that voluntary disclosure can avoid unnecessary inspections (see Varas, Marinovic,
and Skrzypacz (2020, p. 2921)).

https://www.epa.gov/compliance/how-we-monitor-compliance
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4.2 Comparative statics

How do variations in the parameters affect the length of inspection cycles and the in-
spection costs? As one would expect, if the penalty bound B increases or the effort cost
c decreases, the agency problem becomes less severe: the inspection cycle T ∗ becomes
larger and the expected costs decrease.24 The effect of a change in the arrival rate of
shocks λ is more intricate. An increase in λ decreases the state’s persistence and has
a non-monotone effect on the length of inspection cycles and the overall costs. The
following result makes these statements precise. To ensure that the equilibrium in The-
orem 1 always exists, we require that λ > λ ≡ cr/(Brα − c) > 0, fixing all other parame-
ters.25

Lemma 3. As the arrival rate of shocks λ increases, the following statements hold.

• The inspection cycle length increases for low λ and decreases for high λ, with
limλ↓λ T ∗(λ) = limλ↑∞ T ∗(λ) = 0.

• The discounted inspection costs decrease for low λ and increase for high λ, with
limλ↓λ K∗

0(λ) = limλ↑∞K∗
0(λ) = ∞.

For the cycle length T ∗, there are two opposing effects if λ increases. First, at any
given instance, the state is more likely to change in response to current effort. The
marginal benefit from effort is higher and it is easier to incentivize the agent, allowing
for an increase in T ∗. Second, the state becomes more fragile: the link between current
effort and future compliance weakens. Delayed inspections have less incentive power,
forcing the principal to shorten inspection cycles. Lemma 3 shows that the first effect
dominates for low λ and the second effect dominates for high λ.

For any fixed T ∗, the total inspection costs decrease in λ as any cycle of fixed length
is more likely to be interrupted by a breach of compliance, so the inspection is less likely
to be carried out. Thus, for low λ, this effect and the increase in T ∗ work in the same
direction. Inspection costs decrease in λ. For high λ, the two effects work in opposite
directions. Lemma 3 shows that the decrease in T ∗ is fast enough to outdo the second
effect; the inspection costs increase in λ. Both inspection intensity and inspection costs
grow arbitrarily large at both extremes.

As λ goes to infinity and state persistence vanishes, inspections must be immediate
to deter deviations. This highlights a key disadvantage of nonrandom inspections and
the absence of commitment. Intuitively, a shirking agent faces an “effective” discount
rate of r + λ when considering the impact of the next inspection. This is because the
state today determines the state at the next inspection only with probability e−λT . To
ensure inspection effectiveness, T ∗(λ) must approach zero fast enough so as to keep
limλ→∞ λe−(r+λ)T ∗(λ) strictly positive. For the principle, in contrast, the effective dis-
count rate is r + λ(1 − α), which is smaller than that for the agent. The limit of the

24A formal proof for the changes in B and c, as well as comparative statics with respect to α, can be found
in a working paper version, which is available upon request.

25Observe that the lower bound on B required for feasibility of effort, B̄ = c(r+λ)
λαr , grows arbitrarily large

as λ goes to 0.
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principal’s cost is proportional to limλ→∞ λe−(r+(1−α)λ)T ∗(λ). It is then easy to see that
this cost must be infinite for α< 1 when limλ→∞ λe−(r+λ)T ∗(λ) > 0.

The high compliance cost for large λ arises from the agent’s opportunity to regain
compliance with high probability unless the next inspection is imminent. Imminent
inspections (T ∗ near 0) inflate costs. Random inspections may be valuable, allowing
the principal to threaten immediate inspections without performing them constantly.
We now confirm that random inspection schedules outperform predictable ones when
feasible. With randomization, the principal strictly prefers higher arrival rates λ.

5. Commitment

Our results show that without commitment, the principal cannot benefit from random-
ization. In this section, we confirm that if the principal could commit to follow through
with random inspection schedules, this would decrease inspection costs.

One way to enhance commitment to a profitable random procedure in arm’s-length
enforcement is to separate planning and execution of inspections, as seen in German
banking supervision. The European Central Bank or the supervisory agency at the Fi-
nance Ministry (BaFin) schedules audits, while the German Bundesbank executes them
(BaFin (2016)). The inspection cost is not incurred by the party making the inspection
decision, eliminating the temptation to delay or skip inspections. This separation differs
significantly from two seemingly similar alternatives: outsourcing all oversight or com-
pensating the principal for inspection costs. Outsourcing only shifts the problem one
layer further; compensation requires precise knowledge of the cost to avoid inefficient
inspections.26

Alternatively, the lack of detectability, which hinders profitable randomization, can
be overcome if the principal is responsible for overseeing a large pool of independent
agents and there are public records. The principal can then regularly inspect a fixed
proportion of agents and make the results publicly available to create a verifiable signal
of continued vigilance. For example, the EPA’s database “Enforcement and Compliance
History Online” collects over 44,000 inspected facilities within the 12 months up to April
2021;27 the Public Company Accounting Oversight Board (PCAOB) publicizes approxi-
mately 100–300 inspection reports per year.28

To confirm the benefit of randomization, consider the following mechanism, which
is optimal in the class of stationary random mechanisms.29

• Inspections are performed only during compliance with constant Poisson arrival
rate

m∗
R = r

B̄

B − B̄
.

26If the compensation falls short of the actual cost and effort required for an inspection, the incentive to
skip it persists. If the compensation exceeds the cost, this creates an incentive to inspect inefficiently often.

27https://echo.epa.gov.
28https://pcaobus.org/oversight/inspections/firm-inspection-reports.
29For a proof of this claim, see Appendix C. Note that we do not claim that the mechanism presented

here is the optimal commitment mechanism.

https://echo.epa.gov
https://pcaobus.org/oversight/inspections/firm-inspection-reports
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• Fines are levied only during noncompliance with a constant flow fine

f ∗
R = rB̄.

• If an inspection reveals noncompliance, then the agent pays the maximal fine.

Similar to the equilibrium with predictable inspections, there are two phases. In-
spections but no fines during compliance, and fines but no inspections during noncom-
pliance. The differences are that inspections arrive at random and there is no lump-sum
fine at transitions to noncompliance.

Inserting into Lemma 1 the values dFt = 0 and dνIt = m∗
R dt in case i = 1, and the

values dFt = f ∗
R dt and dνIt = 0 in case i = 0, it is straightforward to verify that the payoffs

of the agent are constant at

U1
R = − c

rα
, U0

R = − c

rα
− c

λα
. (8)

Here, U1
R is the persistent payoff and U0

R is the transitional payoff when the agent reports
compliance, and vice versa when the agent reports noncompliance. It is straightforward
that all constraints are satisfied at all times, with (H) binding in i = 1 and (O) binding in
both states. The next result shows that the principal’s inspection costs with predictable
inspections are generally higher than with random inspections. In contrast to the pre-
dictable inspection schedule, a high arrival rate λ benefits the principal in this random
mechanism.

Theorem 2. The inspection costs in the stationary random mechanism defined above are
strictly lower than in the principal-optimal equilibrium in Theorem 1. Furthermore, the
costs in this random mechanism are decreasing in λ for all λ, with

lim
λ↓λKR(λ) = ∞ and lim

λ↑∞KR(λ) = cα

Brα− c
κ.

Random inspections dominate predictable inspection procedures for two reasons.
First, by the argument at the end of Section 4.2, noise and delay make periodic inspec-
tions less effective. The threat of an imminent inspection at all times is more effective in
our setting, even when holding the payoff impact of each inspection fixed.30 That is, if
the agent’s initial utility is fixed at some level u, the costs from the random mechanism
implementing this utility level are strictly below the costs in the predictable equilibrium
implementing the same level. Second, in our setting with fines and self-reported com-
pliance, random inspections allow for a greater payoff impact of an inspection on the
deviating agent: with predictable inspections, self-reporting requires a transition fine
whenever a breach of compliance occurs. The risk of the transition fine reduces the
agent’s overall equilibrium payoff. Since the lower bound on payoffs is fixed at B, this re-
duction decreases the maximum loss that the principal can impose when an inspection

30See also Varas, Marinovic, and Skrzypacz (2020), who show that a constant inspection rate provides
incentives most effectively under commitment when the payoff consequence of each inspection is fixed.
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reveals a misreport. Thus, predictable inspections have a smaller payoff impact, making
them overall less powerful.

Our finding that random inspections provide incentives more effectively is consis-
tent with Varas, Marinovic, and Skrzypacz (2020), who study a setting without voluntary
disclosure. They show that (partially) predictable inspections can be optimal when the
principal derives direct value from information, i.e., when her flow payoff is convex in
the posterior belief. In our model, the principal induces honest self-disclosure. Along
the equilibrium path, the principal always knows the true state. Therefore, introducing
convexity in the principal’s value as a function of her belief would not affect our results;
her belief is always 0 or 1. Varas, Marinovic, and Skrzypacz (2020) identify a trade-off
according to which incentive provision recommends randomization while information
acquisition makes predictable inspections more profitable. Our analysis suggests that
self-reporting can resolve this trade-off in favor of randomization when the current state
is known to the agent and monetary incentives are feasible.

6. Conclusion

We study enforcement through inspections and fines. In relational enforcement, maxi-
mum compliance and truthful disclosure are attained through nonrandom inspections.
A fully committed principal would benefit from random inspections.

The persistent effect of the agent’s effort on compliance makes it possible to create
incentives through isolated inspections. An intermediate level of persistence is optimal
in the case of relational enforcement. If the principal can commit to random inspec-
tions, inspection costs are increasing in the level of persistence as compliance becomes
less responsive to effort. This highlights the importance of persistence in relational en-
forcement.

Throughout the analysis, we assume that the principal does not benefit from the
fines imposed on the agent. This assumption is innocuous. Given that the agent exerts
full effort at all times, when his initial promised utility is u, the expected discounted sum
of fines paid by the agent is equal to −u− c/r. If the principal were to benefit from fines
at rate β ∈ (0, 1], her objective would be to maximize −K(u) + β(−u − c/r ) instead of
maximizing −K(u) in the baseline model. Denoting the maximizer of −K(u) by u∗, it
is easy to see that the optimal equilibrium consists of an initial fine B + u∗ paid to the
principal, followed by the equilibrium of Theorem 1.31

A possible variation to our model is to allow the principal to pay subsidies to the
agent when successfully passing inspections. If the principal could reward the agent
for passed inspections, the upper bound on the agent’s continuation utility would in-
crease. The principal could then decrease the inspection frequency as the maximal
punishment increases. With commitment to random inspections, the principal could
essentially avoid all inspection costs if rewards were unbounded. She could offer an
arbitrarily large reward after inspecting with vanishing probability.

31The agent’s initial utility (before paying the fine) is at his outside option −B and then jumps to u∗. The
principal’s payoff −K(u∗ ) +β(B − c/r ) is clearly an upper bound for −K(u) +β(−u− c/r ) among u ≥ −B.
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The assumptions that the principal implements full effort is natural in many situa-
tions, for example, when the principal, tasked with monitoring compliance, is not the
same institution as the one designing the regulation. The assumption is also important
for tractability. To let the principal choose effort, the model would need to account ex-
plicitly for the principal’s benefit from compliance.32 More importantly, the optimiza-
tion problem would become substantially more complex. Maximizing over the effort
level would add a continual control at all times.33

Similarly, we focus on equilibria with truthful self-reports. This focus is natural in
many applications in which it is essential for regulators to accurately identify compli-
ance violations. In the auxiliary mechanism design problem with principal commit-
ment, having only one agent ensures that the revelation principle applies. With com-
mitment, the principal can replicate the outcome of any combination of mechanism
and reporting strategy with the corresponding direct mechanism and a truthful report-
ing strategy. However, in the equilibrium problem without commitment, we do not rule
out potential benefits from nontruthful behavior. Since we find the optimal predictable
equilibrium via the auxiliary mechanism design problem, the only remaining concern
is whether the principal could exploit nontruthful reporting to benefit from random in-
spections in equilibrium. We suspect this is not the case, but verifying the conjecture is
beyond this article’s scope.

Appendix A: Proofs for Section 3

Proof of Lemma 1. The proof of Lemma 1 consists of two intermediate results. Lem-
ma A provides a martingale representation for the agent’s lifetime expected utility, and
Lemma B provides necessary and sufficient conditions for the path of expected payoffs
such that full effort and truthful reporting are a best response for the agent.

Define Wt to be the agent’s lifetime expected utility, with expectations taken with
respect to the information that is available at time t:

Wt =
∫ t

0
e−rs(−dFs − cηs ds) + e−rtUt .

By construction, the process {Wt }t≥0 is a martingale (Davis (1993, p. 20)). There are three
types of events: changes in the state, changes in reports, and inspections. Inspections
are governed by the process NI given by the principal’s strategy. For consistency, we in-

troduce the counting processes Nθ = {Nθ
t }t≥0 and Nθ̂ = {Nθ̂

t }t≥0 that count the number
of changes in the state of compliance and in the reports, respectively. For each process

32In some cases, when the principal’s benefit is large enough, implementing full effort is optimal and the
analysis would be unaffected.

33Indeed, for predictable inspections, we sidestep the problem of continual controls by showing that it
is without loss to levy no fines between inspections. This difficulty is also the reason why we do not claim
that the random mechanism in Section 5 is optimal among all inspection mechanisms. While it is optimal
among any Markovian procedure, confirming that it is optimal generally would require a verification ar-
gument that deals with continual controls that can change both continuously or impulsively. We are not
aware of existing dynamic programming results to verify that the recursive approach we employ remains
valid in this class of optimization problems.
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Na with a ∈ {θ, θ̂, I}, define the compensator to be a predictable process νa = {νat }t≥0

such that the compensated process Na
t − νat is a martingale. The compensator exists

under very general conditions and can be interpreted as the predictable drift of the un-
derlying (nonpredictable) stochastic process. For the hazard rate of transitions in com-
pliance, we shall write qt(ηt ) := dνθt /dt or, more explicitly,

qt(ηt ) = θt−λ(1 − αηt ) + (1 − θt− )λαηt . (9)

The martingale representation theorem for marked point processes (Last and Brandt
(1995)) implies the following result.34

Lemma A. There exist predictable processes 
θ, 
θ̂, and 
I such that the evolution of the
agent’s expected utility is given by

dUt = rUt dt + dFt + cηt dt +
∑

a∈{θ, θ̂,I}


a
t

(
dNa

t − dνat
)
. (10)

The processes 
θ, 
θ̂, and 
I have an intuitive interpretation: They represent the
jump in utility at time t that results from a change in compliance, a change in reported
compliance, or an inspection.

The following lemma will complete the proof of Lemma 1.

Lemma B. A mechanism that induces the payoffs {Ut }t≥0 is incentive compatible with full
effort and truthful reporting if and only if for all t ≥ 0,

(i) (r + qt(1))
θ̂
t − dνIt (
I

t −
θ̂
t ) ≥ d
θ̂

t when θt �= θ̂t

(ii) (1 − 2θt− )λα(
θ
t +
θ̂

t ) ≥ c when θt = θ̂t

(iii) Ut ∈ [−B, 0].

Proof. Define

Wt =
∫ t

0
e−rs(−dFs − cηs ds) + e−rt Ũt

to be the agent’s expected payoff from choosing effort {η̃s } and report {θ̂s} up to time t

with maximum effort and truthful reporting thereafter. Here Ũt is the expected continu-
ation payoff. We may have Ũt �=Ut if the agent has reported nontruthfully, i.e., θ̂t− �= θt−.
Consider first the case in which the agent’s report regarding his type at time t is truthful,
so that Ũt =Ut . Differentiating with respect to t yields

dWt = e−rt(−dFt − cηt dt ) − re−rtUt dt + e−rt dUt .

34A formal proof for our setting, which is a straightforward adaptation of the proof of Theorem 1.13.15 in
Last and Brandt (1995) p. 25, is provided in Supplemental Appendix B.
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Using Lemma A to replace dUt yields

dWt = e−rt

(
(1 −ηt )cdt +

∑
a∈{θ, θ̂}


a
t

(
dNa

t − qt(1) dt
) +
I

t

(
dNI

t − dνIt
))

.

If the agent deviates for an additional instant (but still reports truthfully), then

dNθ
t = dNθ̂

t =
{

1 with probability qt(η̃t ) dt

0 with probability 1 − qt(η̃t ) dt.

Taking expectations therefore yields

E
A
t [dWt ] = e−rt

E
A

[
(1 −ηt )cdt + (


θ
t +
θ̂

t

)(
qt(η̃t ) − qt(1)

)
dt

]
.

It follows from condition (ii) that(

θ
t +
θ̂

t

)
q(η̃t ) − cηt ≤ (


θ
t +
θ̂

t

)
qt(1) − c.

Thus EA
t [dWt ] ≤ 0. We thus obtain the chain of inequalities

E
A
0 [Wt ] = E

A
0

[∫ t

0
dWs +W0

]
=

∫ t

0
E
A
0 [dWs] +E

A
0 [W0]

=
∫ t

0
E
A
0

[
E
A
s [dWs]

] +W0 ≤W0. (11)

Now consider the case in which the agent’s most recent report at time t is false, that is,
θt− �= θ̂t−, and he continues the nontruthful strategy for an additional moment at time t.
If no change in the state occurs at the additional moment, then the agent must correct
his report immediately thereafter. If a change occurs, then the previously false statement
becomes truthful, and thus his report does not change. Therefore, we have

dŨt = Ũt − Ũt−dt

= dNθ
t

(
Ut −Ut−dt −
θ̂

t−dt

) + dNI
t

(
Ut +
I

t −Ut−dt −
θ̂
t−dt

)
+ (

1 − dNθ
t − dNI

t

)(
Ut +
θ̂

t −Ut−dt −
θ̂
t−dt

)
= dNθ

t

(
dUt + d
θ̂

t −
θ̂
t

) + dNI
t

(
dUt + d
θ̂

t −
θ̂
t +
I

t

)
+ (

1 − dNθ
t − dNI

t

)(
dUt + d
θ̂

t

)
= dUt + d
θ̂

t − dNθ
t 


θ̂
t + dNI

t

(

I
t −
θ̂

t

)
.

Again using Lemma A to replace dUt , we obtain

dWt = e−rt(−dFt − cηt dt ) − re−rt
(
Ut +
θ̂

t

)
+ e−rt

(
rUt dt + dFt + cdt +
θ

t

(
dNθ

t − q∗
t

) + d
θ̂
t − dNθ

t 

θ̂
t + dNI

t

(

I
t −
θ̂

t

))
.
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It follows from the honesty constraint (i) that, in expectation, d
θ̂
t ≤ (r + qt(1))
θ̂

t −
dνt(
I

t −
θ̂
t ). Substituting it into dWt and simplifying, again using Ũt =Ut +
θ̂

t , gives

E
A
t [dWt ] = e−rt

(
(1 −ηt )cdt + (


θ
t −
θ̂

t

)
q(η̃t ) − qt(1)

(

θ
t −
θ̂

t

))
.

Now 
θ
t − 
θ̂

t = (
θ
t +Ut ) − (
θ̂

t +Ut ) is the payoff difference from a change in the state
without a change in report and a change in report without a change in the state. Since

θt− �= θ̂t− by hypothesis, this is identical to 
̃θ
t + 
̃θ̂

t after the history in which the true
state was identical to his report. Thus (ii) implies that ηt = 1 maximizes the right-hand
side, so that EA

t [dWt ] ≤ 0. By the same argument as in (11), we have E
A
0 [Wt ] ≤ W0 = U0,

so that the agent cannot profit from deviating. Taking the limit, we find that

lim
t→∞E

A
0 [Wt ] ≤U0,

which implies that the agent cannot gain from deviating from maximum effort and
truthful reporting. Conversely, if the incentive constraint (i) is violated, then the above
inequalities are inverted, so that the agent has a strict incentive to be dishonest. Like-
wise, if (ii) is violated, the agent has a strict incentive to exert no effort, and a violation
of (iii) leads to exit by the agent.

To complete the proof of Lemma 1, we show that condition (Pk) follows from
Lemma A, and (H), (O), and (P) are equivalent to conditions (i), (ii), and (iii) in Lemma B.

Consider a mechanism and a strategy for the agent that jointly generate the payoff
process {Ut }t≥0 for the agent, and denote by {U1

t , U0
t }t≥0 the associated pair of promised

utilities defined in (3).
Step 1. By the definition of U0

t , U1
t , we have


θ
t +
θ̂

t =
{
U1
t −U0

t if θt− = θ̂t− = 0

U0
t −U1

t if θt− = θ̂t− = 1,

qt(1) = qt(1) =
{
λα if θt− = 0

(1 − α)λ if θt− = 1.

(12)

Combining these two expressions, we can write more succinctly

qt(1)
(

θ
t +
θ̂

t

) = λ(θt− − α)
(
U1
t −U0

t

)
.

Lemma A then implies that, conditioning on the event that dNθ
t = dNθ̂

t = dNI
t = 0, we

get exactly condition (Pk) in Lemma 1.
Step 2. Next, suppose that the agent is not truthful after some history at time t. Let

i = θt be the true state and suppose the agent reports j = 1 − θt . Then Ui
t = Ut +
θ̂

t and

dUi
t = (

Ut+dt +
θ̂
t+dt

) − (
Ut +
θ̂

t

) = rUt dt + dFt + cdt − qt(1)
θ
t + d
θ̂

t

≤ rUt dt + dFt + cdt − qt(1)
θ
t + (

r + qt(1)
)

θ̂
t − dνt

(

I
t −
θ̂

t

)
= rUi

t + λ(i− α)
(
U1
t −U0

t

) − dνt
(

I
t −
θ̂

t

) + dFt + cdt. (13)
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The second line follows from Lemma A, and the inequality in the third line follows from
condition (i) in Lemma B, where we take expectations conditional on the event that
dNθ

t = dNθ̂
t = 0. The last equality in (13) holds since

qt(1)
(

θ
t −
θ̂

t

) = qt(1)
(
Ut +
θ

t − (
Ut +
θ̂

t

)) = qt(1)
(
U

j
t −Ui

t

) = λ(i− α)
(
U1
t −U0

t

)
.

Punishment is without cost for the principal and, therefore, it is optimal to impose the
most severe punishment after an inspection reveals a dishonest report. The severity of
punishments is restricted by the limits of enforcement that require the agent’s continu-
ation value not to fall below the lower bound −B < 0. Therefore, we have


I
t −
θ̂

t =Ut +
I
t︸ ︷︷ ︸

=−B

−(
Ut +
θ̂

t︸ ︷︷ ︸
=Ui

t

) = −(
B +Ui

t

)
.

Substituting this last equation into (13) yields

dUi
t = rUi

t + λ(i− α)
(
U1
t −U0

t

)
dt + dνt

(
B +Ui

t

) + dFt + cdt,

which is equal to condition (H) in Lemma 1. Conversely, if (i) does not hold at some t,
then using the same steps as above, the inequality is reversed, so that (H) is violated.

Step 3. Substituting (12) into the obedience constraint (ii), we obtain, for each θt−,

(

θ
t +
θ̂

t

)
(1 − 2θt− )λα= λα

(
U1
t −U0

t

) ≥ c.

The last inequality is identical to (O) in Lemma 1. Conversely, if (ii) is violated at some t,
then the inequality is reversed, so that (O) is violated.

Proof of Lemma 2. The proof of Lemma 2 consists of two results, stated and proven
formally below.

Lemma C. For any truthful and maximally compliant equilibrium, there exists a princi-
pal strategy such that truthful reporting and maximal compliance are a best response for
the agent and

(i) inspections are predictable for the agent whenever he reports compliance

(ii) it generates weakly lower inspection costs for the principal.

Proof. Take any truthful maximally compliant equilibrium. Let U0
t and U1

t be the con-
tinuation payoffs of the agent in this equilibrium. The following steps present a modified
inspection schedule satisfying the properties stated in Lemma C. As the original equi-
librium is truthful and maximally compliant, U0

t and U1
t satisfy the constraints from

Lemma 1. First, we argue that for any inspection following a high report, it is without
loss to assume that truthful reports are never punished more than misreports to the low
state at the time of an inspection. That is, if the persistent payoff U1

t jumps downward on
the path after an inspection, it will do so by less than the distance from the transitional
utility to the lower bound −B. Formally, let Ū1

t be the agent’s persistent payoff right after
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an inspection performed at time t and let U1
t− be the payoff just prior to time t. Recall

that by definition 
I
t = Ū1

t −U1
t−. We show that, without loss, 
I

t > −B −U0
t .

Suppose, to the contrary, that 
I
t ≤ −B − U0

t ≤ 0. Then we can construct another
truthful maximally compliant equilibrium in which the principal’s inspection costs are
weakly lower by removing instant t from the support of the inspection distribution. To
satisfy the agent’s incentives for truth-telling and compliance, we compensate for the
change in utility resulting from eliminating the inspection. To this end, introduce an ad-
ditional fine at t, such that the new fine is dF̂t = dFt − dνIt 


I
t , where dFt denotes the fine

specified in the original equilibrium. Hence, the agent’s expected loss from the inspec-
tion caused by 
I

t < 0 is paid as a fine at time t. This way, the path of persistent payoff
U1
t remains unchanged for all s ≤ t. Similarly, the path of transitional utility, U0

s , remains
unchanged as the continuation equilibria after a transition remain the same. Whereas
both paths U1

s and U0
s are as before, the obedience constraint remains satisfied.

To see that the honesty constraint is not violated by this change, consider the con-
straint (H) in case j = 0:

dU0
t ≤ r

(
U0
t

)
dt − λα

(
U1
t −U0

t

)
dt + dνIt

(
B +U0

t

) + dFt + cdt.

The effect of the proposed change on the right-hand side of this constraint is −dνIt (B +
U0
t )−dνIt 


I
t . Whereas 
I

t ≤ −B−U0
t , this effect is positive and the path of U0

s still satisfies
the honesty constraint. To randomize at time t in the original equilibrium, the principal
must have been indifferent between inspecting and continuing without inspection, so
that removing instant t from the support weakly lowers inspection costs. Now, with 
I

t >

−B − U0
t , we prove Lemma C. Suppose, toward a contradiction, that the statement in

the result is false. Then there must be some time t and history ht with θ̂t = 1 such that
any inspection schedule with the first inspection after t being predictable for the agent
must create higher inspection costs for the principal. We show that this cannot be the
case by replacing the random inspection with a nonrandom inspection at the earliest
realization of the random inspection schedule.

Without loss, take the time t above to be t = 0 and θ̂0 = 1. Let T be the support of the
first inspection time for this history and denote its infimum by t0 = infT . If T = {t0}, the
inspection strategy for this history is already predictable, and we continue with the next
instance, interpreting 0 as the last time of inspection after the high report or the time of
transition to the high report.

When the support is not a singleton, consider first the case in which t0 ∈ T , i.e., the
infimum is contained in the support. In Supplemental Appendix C we extend the ar-
gument to the case t0 /∈ T , i.e., when t0 is an accumulation point. Let t0 ∈ T and con-
sider the inspection schedule with a certain inspection at t0 in case time t0 is reached
without prior transition. If 
I

t0 ≥ 0, introduce an additional fine at t0 so that the new

fine is given by dF̂t0 = dFt0 + (1 − dνI
t0 )
I

t0 , where dFt0 denotes the fine in the original
equilibrium. The payoff paths U0

s and U1
s remain unchanged for s ≤ t0 and, thus, the

obedience constraint is unaffected. The honesty constraint at t0 is relaxed since both
the increase in inspection probability and the additional fine increase the right-hand
side of (H). If 
I

t0 < 0, increasing the inspection probability from dνI
t0 to 1 decreases the
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persistent payoff path U1
s for all s ≤ t0 by |
I

t0 |(1 − dνI
t0 )e−(r+(1−α)λ)(t0−s). This change

in persistent payoff cannot be compensated by an additional fine at the high report as
it would reduce the expected persistent payoffs further. Instead, we ensure obedience
and truth-telling by lowering the transitional payoff by the necessary amount. To this
end, introduce an additional transition fine of |
I

t0 |(1 − dνI
t0 )e−(r+(1−α)λ)(t0−s) to be paid

at time s ≤ t0 if a transition to the bad state occurs. This additional fine ensures that
the difference U1

s − U0
s is as in the original equilibrium, so the obedience and honesty

constraints will still be satisfied. To ensure that this additional transition fine is feasible,
we need to verify for all s ≤ t0, that U0

s − |
I
t0 |(1 − dνI

t0 )e−(r+(1−α)λ)(t0−s) ≥ −B. This term

is decreasing in s, so it is sufficient to verify that U0
t0 + 
I

t0 (1 − dνI
t0 ) ≥ −B. Recall that

we have shown that for any inspection time, 
I
t0 > −B − U0

t0 . Feasibility follows since

dνI
t0 < 1.

This concludes the proof of the result by constructing an inspection schedule in
which the next inspection following a good report is predictable, the agent’s incentive
constraints are satisfied, and the principal’s inspections costs have not increased.

The next result implies that predictability of inspections is the only restriction im-
plied by the principal’s sequential rationality.

Lemma D. Take a strategy profile such that the following statements hold.

(i) The inspection schedule is predictable for the agent.

(ii) The agent’s strategy is truthful, maximally compliant, and a best response to the
principal’s strategy.

(iii) The expected cost to the principal along any history is below K̄.

(iv) Every action path generated by the strategy profile is measurable.

Then there exists a perfect Bayesian equilibrium that generates the same distribution over
action paths.

Proof. We show that any predictable principal strategy that generates costs Kt ≤ K̄ for
the principal for all t can be implemented in equilibrium. First, note that after any his-
tory, we can construct a continuation equilibrium in which the agent chooses to exit the
relationship with probability 1. To support exit by the agent as a best response, the prin-
cipal’s strategy is such that whenever the agent fails to exit although he was supposed
to do so, the principal implements the harshest possible fine, leading to a continuation
payoff of −B for the agent. This bad continuation equilibrium can be leveraged to sup-
port any principal strategy as an equilibrium given that its inspections are predictable
for the agent.

Let {Nt , Ft } be the paths induced by the strategy profile in the result. By hypothesis
(ii), compliance is incentive compatible for the agent. Let (ñ, f̃ ) be an alternative strat-
egy for the principal (with possibly random inspection) and denote by ÑI the resulting
inspection path if the agent follows the compliant strategy. Adapt the agent’s strategy
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such that he exits after any history ht with dNI
t �= dÑI

t , that is, whenever the agent ob-
serves that the principal deviated from the original inspection strategy. Define the set
D = {t|dNI

t �= dÑI
t } containing the dates at which the agent observes that the principal

deviates from her original inspection strategy. Since the cost to the principal from the
original strategy is below K̄ at each t and the payoff from any deviating strategy is equal
for all t < infD, her deviation cannot be profitable as it results in a cost K̄ from infD on-
ward. Finally, adapt the principal’s strategy from the result such that he fines the agent
as harshly as possible whenever the agent was expected to exit but failed to do so. This
way, for the agent the strategy that leads to exit at t = infD is incentive compatible, and
the constructed equilibrium differs from the initial strategy profile in Lemma D at most
off the equilibrium path.

Lemmas C and D in combination imply Lemma 2: to characterize principal-optimal
equilibria, it is sufficient to find a strategy for the principal with nonrandom inspections
that induces truthfulness and maximum effort and minimizes the principal’s monitor-
ing costs.

Appendix B: Proofs for Section 4

Proof of Theorem 1

We first solve the auxiliary problem with additional constraints below and then verify
that the solution indeed constitutes an optimal mechanism.

B.1 Auxiliary control problem

Consider the auxiliary control problem

min
{NI

t ,Ft }t≥0

E
P

[∫ ∞

0
e−rtκdNI

t

]
(14)

subject to the incentive-compatibility conditions (H), (O), and (P), and the following
additional conditions:

(A) When θ̂t− = 1, there are no fines between inspections, that is, dNI
t = 0 implies

dFt = 0 and the honesty constraint (H) binds.

(B) When θ̂t− = 0, the evolution of U1
t is not limited by the honesty constraint (H).

Condition (A) is a restriction on the set of strategies for the principal so that she
levies no fines when the agent reports compliance unless an inspection is performed.
Condition (B) relaxes the incentive-compatibility restrictions, saying that the honesty
constraint is imposed only while the agent reports compliance. It is intuitive that a
principal-optimal relationship satisfies these properties as the agent must be incen-
tivized to exert effort and truthfully report states of compliance. We now solve for the
optimal mechanism. We first derive the optimal Markovian mechanism in the auxiliary



850 Achim and Knoepfle Theoretical Economics 19 (2024)

problem using an iteration argument. We then confirm that (i) fines between inspec-
tions cannot decrease the principal’s costs, (ii) there is no mechanism in non-Markovian
strategies that performs better in the relaxed problem than the optimal Markovian
mechanism, and (iii) that the solution to the relaxed problem is achievable in the origi-
nal problem.

Under condition (A), the honesty constraint (H) holds with equality during com-
pliance, so that when θ̂t = 1, conditions (Pk) and (H) yield a pair of simple first-order
differential equations that can be solved in closed form. The inspection problem thus
becomes a standard deterministic impulse-control problem with state constraints. We
solve this by first deriving the optimal mechanism when the principal can inspect at
most n times and continue iteratively to consider the limit as the total number of avail-
able inspections n goes to infinity. More specifically, for any integer n ≥ 0, consider the
problem of maximizing the objective in (14) subject to limt→∞NI

t ≤ n pathwise, and to
the incentive-compatibility conditions (H), (O), (P), (A), and (B) at all t ≥ 0 at which
NI

t < n. Denote by Kn the solution to the problem with n available inspections. It then
follows from Proposition 54.18 in Davis (1993) that the value function for the auxiliary
problem K is the limit of Kn, i.e., K = limn→∞ Kn.

Evolution of promised utilities during compliance We begin by establishing an upper
bound for the promised utility for the agent.

Claim 1. Along the path of any maximally compliant mechanism, we have U1
t ≤

−c/(rα).

Proof. Let Ū1 be the supremum of U1
t that exists by (P). By obedience (O), we have that

Ū1 −c/(λα) is an upper bound for U0
t . Therefore, in a maximally compliant equilibrium,

we must have

Ū1 ≤
∫ ∞

0
e−(r+λ(1−α))s

[
−c + λ(1 − α)

(
Ū1 − c

λα

)]
ds.

Solving the integral yields

Ū1 ≤ −c + Ū1λα(1 − α)
rα+ λα(1 − α)

⇒ Ū1 ≤ − c

rα
.

Since Ū1 is the supremum for U1
t , we have U1

t ≤ − c
rα as required.

By assumption (A), the promise-keeping and truth-telling constraints in state θ̂t = 1
yield a system of coupled first-order differential equations with the solution given in (4)
and (5). For given initial values U1

0 = u1 and U0
0 = u0, (4) and (5) reveal immediately

that for u1 < − c
rα , U1

t is u-shaped in t and strictly decreasing in u0, whereas U0
t is strictly

decreasing in t and strictly increasing in u0. We will show below that it is optimal to set
u0 = u1 − c

λα and, therefore, it is sufficient to specify the promised utility u = u1. We
define

φ1(t, u) := ert
(
u+

(
1 − α

α

)(
eλt − 1

) c
λ

)
− c

(
1 − ert

)
/r (15)
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φ0(t, u) := ert
(
u−

(
1 − α

α

)
c

λ
− eλt

c

λ

)
− c

(
1 − ert

)
/r. (16)

Define the boundary hitting times

Tθ(u) = min
t≥0

{
t|φθ(t, u) ∈ {0, −B}

}
,

denoting the length of time until Uθ
t hits the boundary, where θ ∈ {0, 1}.

Claim 2. The boundary hitting times T 0 and T 1 are differentiable in u and their mini-
mum is quasi-convex.

Proof. It follows from the implicit function theorem that T 1 and T 0 are differentiable.
Define

T (u) = min
{
T 0(u), T 1(u)

}
.

It is immediate that φ1 and φ0 are increasing in u. Therefore, an increase in u decreases
T 1(u) and increases T 0(u). It follows that, T is quasi-convex, and T assumes its maxi-
mum at the point u∗

1 at which T 0(u) = T 1(u). Hence, T 0′
(u) < 0 and T 1′

(u) > 0 imply
that

T ′(u)

{
> 0 if u < u∗

1

< 0 if u > u∗
1.

(17)

Claim 3. There is a unique value ū < − c
rα such that φ1(T (ū), ū) = ū.

Proof. We show that for u < −c/(rα) there is a unique t solving φ1(t, u) = u and
that the solution is strictly decreasing in u. After a few simple operations, the identity
φ1(t, u) = u becomes

α

1 − α

(
−λ

r
− λu

c

)
︸ ︷︷ ︸

=: LHS

= e(r+λ)t − 1

ert − 1
− 1︸ ︷︷ ︸

=: RHS

. (18)

It is easy to see that RHS is increasing and convex in t, and that limt→0
e(r+λ)t−1
ert−1 − 1 = λ/r.

LHS is clearly strictly decreasing in u, and for u <−c/(rα), we have

α

(1 − α)

(
−λ

r
− λu

c

)
>

α

(1 − α)

(
−λ

r
+ λ

c

c

rα

)
= λ

r
.

Therefore, for any u < −c/(rα), there is a unique time Ts(u) such that φ1(Ts(u), u) = u.
Moreover, inspection of (18) reveals that this time is continuous and strictly decreasing
in u. Note that for u → −c/(rα), we have T0(u) > Ts(u) → 0 and for u → −B+ c/(λα), we
have Ts(u) > T 0(u) → 0. Because T 0(u) is continuous and strictly increasing, and Ts(u)
is continuous and strictly decreasing, there must then exist a unique value ū such that
Ts(ū) = T 0(ū) and φ1(T 0(ū), ū) = ū.
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Claim 4. We have φ1(T (u), u) > u if u > ū and φ1(T (u), u) < u if u < ū.

Proof. Note that Ts is decreasing while T 0 is increasing. Moreover, Ts(ū) = T 0(ū) by
construction. Thus, for u > ū, we have Ts(u) < T 0(u), so that φ1(T 0(u), u) > u. Similarly,
for u < ū, we have Ts(u) > T 0(u), so that φ1(T 0(u), u) < u.

Evolution of promised utilities during noncompliance We show that during reports of
noncompliance, the utility of the agent is held constant Define β1 = λα/(r + λα).

Claim 5. Let (K0
n , K1

n ) be the principal’s cost functions in an optimal mechanism when
there are n ≥ 1 available inspections. Denote the pair of initial promised utilities in this
mechanism by u∗ = (u0∗

, u1∗
). Then

K0
n(Ut ) = β1K

1
n

(
u∗).

Proof. Without loss, assume θ0 = 1. We establish the claim via contradiction. Suppose
to the contrary that K0

n(Ut ) > β1K
1
n(u∗ ), and consider the following alternative mech-

anism. For θt = 1, let the new mechanism be identical to the original one. For θ0
t = 0,

we set dFt = u0∗ − U0
t for U0

t < u0∗
and dFt/dt = ru0∗

for U0
t ≥ u0∗

. In this new mech-
anism, for θt = 1, the paths of promised utilities are identical to those in the original
mechanism by construction, so that all incentive-compatibility constraints hold when
θt = 1. Moreover, since U0

t is strictly decreasing in t when θt = 1, we have U0
t < u0∗

and,
thus, dFt1 > 0. The promised utilities at θt = 0 in the new mechanism are constant and
equal to u∗, so that the obedience constraint is satisfied. Along the equilibrium paths,
the expected cost for the principal at time t in state θt = 0 in the new mechanism is,
therefore,

K̂0
n(Ut ) =

∫ ∞

0
e−(r+λα)sλαK1

n

(
u∗)ds = λα

r + λα
K1

n

(
u∗) = β1K

1
n

(
u∗).

Since the new mechanism is identical to the original mechanism for θt = 1, the expected
costs for the principal in the new mechanism are strictly lower than in the original mech-
anism, contradicting optimality of the original mechanism.

Derivation of the optimal mechanism in the auxiliary problem We now solve for the
principal’s value function iteratively by solving a sequence of impulse-control problems
where the number of available inspections is bounded by a number n. We derive the
optimal initial promised utility u∗

n for each n, and we show that the sequence {u∗
n} con-

verges to ū as n → ∞. For the case in which the agent reports θ̂t = 0, Claim 5 implies that
without loss the expected costs for the principal in state θt = 0 with n available inspec-
tions can be written as K0

n(u0, u1 ) = β1K
1
n(u1 ). We show that for all n ≥ 0, the obedience

constraint (O) binds at the outset.

Claim 6. Suppose the total number of available inspections is n. Then there is an optimal
policy such that at the initial pair of promised utility (u0

n, u1
n ), the obedience constraint (O)

binds.
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Proof. Using Claim 5, there is no loss in generality in assuming that θ̂0 = 1. Consider
the optimal initial utilities (u0, u1 ), where we assume to the contrary that u1 − u0 >

c/(λα). Denote by t∗ the minimizer of U1
t . Let T be the first inspection time condi-

tional on no transition, and let the promised utilities at that time be û1 and û0. Now fix
ε > 0 sufficiently small, and consider an alternative mechanism identical to the original
mechanism, except that the first time of inspection is (T + ε), and with initial utilities
(ũ1, ũ0 ). If T < t∗, then let ũ0 = ũ1 − u1 + u0 and let ũ1 solve

û1 = er(T+ε)(ũ1 + (1 − α)
(
eλ(T+ε) − 1

)(
u1 − u0)) − c

(
1 − er(T+ε))/r.

Thus, by shifting the initial promised utilities up, the first inspection date is postponed,
while maintaining incentive compatibility and keeping the terminal values constant.
Consequently, the initial utilities could not have been optimal. If T ≥ t∗, then let ũ1 = u1

and let ũ0 solve

û1 = er(T+ε)(ũ1 + (1 − α)
(
eλ(T+ε) − 1

)(
ũ1 − ũ0)) − c

(
1 − er(T+ε))/r.

Thus, by shifting u0 up while keeping u1 constant, the first inspection date can be post-
poned while maintaining incentive compatibility and keeping the terminal values con-
stant. In either case, a pair of initial utilities with u1 −u0 > c/(λα) cannot be optimal.

Without loss, we can now restrict attention to initial pairs of utility (u0, u1 ) such that
u1 − u0 = c/(λα). Let u = u1 denote the initial utility for the agent in the high state. The
paths of promised utilities are then described by φ0(t, u) and φ1(t, u). Define

K1
n(u) = min

0≤t≤T (u)
u′≥φ1(t,u)

∫ t

0
e−(r+λ(1−α))s(λ(1 − α)K0

n

)
ds + e−(r+λ(1−α))t(K1

n−1

(
u′) + κ

)
(19)

to be the maximum payoff for the principal at initial utility u for the agent, where the
principal maximizes over stopping times and the post inspection utility u′ resulting from
the terminal promised utility φ1(t, u) and a potential fine at the time of an inspection.
Let u∗

n be a minimizer of K1
n and denote by t∗n the associated first inspection date.

Claim 7. Let u∗
n−1 be a minimizer of K1

n−1(u) and suppose K1
n−1

′
(u) > 0 for all u > u∗

n−1.
Then t∗n = T 0(u∗

n ) and φ1(t∗n , u∗
n ) > u∗

n−1.

Proof. First we show that t∗n = T 0(u∗
n ). Suppose, to the contrary, that t∗n < T (u∗

n ). If
φ1(t∗n , u∗

n ) > u∗
n−1, then because φ1 is strictly increasing in its second argument, we can

find a lower initial utility u < u∗
n such that φ1(t∗n , u) <φ1(t∗n , u∗

n ). Since K1
n−1

′
(ũ) > 0 for

ũ > u∗
n−1, we have K1

n(u) <K1
n(u∗

n ), contradicting optimality of u∗
n. If φ1(t∗n , u∗

n ) ≤ u∗
n−1,

then the optimal initial utility in step n − 1 is u′ = −u∗
n−1. We can thus find t > t∗n such

that φ1(t, u∗
n ) < u∗

n−1. Thus, the first inspection was delayed, while the continuation
utility for the agent remains constant, contradicting optimality of u∗

n. Thus, we have
t∗n = T 0(u∗

n ). Now suppose φ1(T 0(u∗
n ), u∗

n ) < u∗
n−1. Then we can find a new initial utility

u > u∗
n such that φ1(T 0(u), u) = u∗

n−1. Since T 0(·) is increasing we have T 0(u) > T 0(u∗
n ),

contradicting the optimality of u∗
n.
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In light of the result of Claim 7, there will be no loss in limiting our attention to the
case t = T (u) and u′ = φ1(t, u). The principal’s expected costs for given utility u are,
therefore,

K1
n(u) =

∫ T (u)

0
e−(r+λ(1−α))s(λ(1 − α)K0

n

)
ds + e−(r+λ(1−α))T (u)(K1

n−1

(
φ1(t, u)

) + κ
)
.

Define β0 = λα/(r + λα) and β1 = λ(1 − α)/(r + λ(1 − α)). Solving the integrals and re-
arranging, the principal’s payoff can be expressed more succinctly as

K1
n(u) = a(u) + b(u)K1

n−1

(
φ1

(
T (u), u

))
,

where

a(u) = e−(r+λ(1−α))T (u)

1 −β0β1 +β0β1e
−(r+λ(1−α))T (u)

κ

b(u) = e−(r+λ(1−α))T (u)

1 −β0β1 +β0β1e
−(r+λ(1−α))T (u)

.

Simple calculus reveals

a′(u) = −
(
e(r+λ−αλ)T (u)(r + λ− αλ)2(r + αλ)

(
r(r + λ)

))
(
(1 − α)αλe(r+λ−αλ)T (u)r(r + λ)

)2 κT ′(u) and

b′(u) = −e(r+λ−αλ)T (u)r(r + λ)(r + λ− αλ)2(r + αλ)(
(1 − α)αλ2 + e(r+λ−αλ)r(r + λ)

)2 T ′(u),

so that signa′(u) = signb′(u) = signT ′(u). From (17), it follows that

a′(u)

{
< 0 if u < u∗

1

> 0 if u > u∗
1

, b′(u)

{
< 0 if u < u∗

1

> 0 if u > u∗
1.

Step 0 Consider the case n = 0, so the principal cannot perform any inspections. The
principal has no way to incentivize the agent so that her value function is equal to the
lower bound

Kθ
0 = K̄.

Step 1 Suppose the principal can inspect at most once, so that n = 1. Let t be the first
inspection if no transition occurs; let u be the initial utility for the agent. The expected
costs for the principal when inspecting at time t are

K1
1(u) = a(u) + b(u)K̄.

The marginal cost increase in utility u is

K1
1
′
(u) = a′(u) + b′(u)K̄.

We have K1
1
′
(u) < 0 for u < u1

∗ and K1
1
′
(u) > 0 for u > u∗

1, with u∗
1 > ū. Thus u1

∗ mini-
mizes K1

1 .
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Step 2 Suppose there are two inspections left to be performed. The principal’s payoff can
be written as

K1
2(u) = a(u) + b(u)K1

1
(
φ1

(
T (u), u

))
.

When u > u∗
1, then (K1

2 )′(u) > 0 and, therefore, the optimizer does not exceed u∗
1. Be-

cause K1
2(u) is maximal when u lies at the participation boundary and is continuous in

between, there must be a minimizer u∗
2. The marginal cost increase is

K1
2
′
(u) = a′(u) + b′(u)K1

(
φ1

(
T (u), u

)) + b(u)Duφ1
(
T (u), u

)
)K1

1
′(
φ1

(
T (u), u

))
.

Here Duφ1(T (u), u) is the total derivative of φ1(T (u), u) with respect to u, which can be
shown to be

Duφ1
(
T (u), u

) = erT (u)
(

1+T ′(u)

(
c
(
eλT (u) −1

)1 − α

α

r

λ
+ru+c

(
eλT (u) 1 − α

α
+1

)))
> 0.

Thus, for u > u∗
1 (> ū),

K1
2
′
(u) = a′(u) + b′(u)K1

(
φ1

(
T (u), u

)) + b(u)Duφ1
(
T (u), u

)
)K′

1

(
φ1

(
T (u), u

))
> a′(u) + b′(u)K1

(
φ1

(
T (u), u

))
> a′(u) + b′(u)K̄ =K1

1
′
(u).

In particular, this means u∗
2 < u∗

1.

Step n K1
n(u) = a(u) + b(u)K1

n(φ1(T (u), u)) has a minimum at u∗
n. The marginal cost

at u > u∗
n−1 (> ū) is

K1
n
′
(u) = a′(u) + b′(u)Kn−1

(
φ1

(
T (u), u

)) + b(u)Duφ1
(
T (u), u

)
)K′

n−1

(
φ1

(
T (u), u

))
< a′(u) + b′(u)K1

n−1(u) + b(u)Duφ1
(
T (u), u

)
)K′

n−2
(
φ1

(
T (u), u

))
< a′(u) + b′(u)K1

n−2(u) + b(u)Duφ1
(
T (u), u

)
)K′

n−2
(
φ1

(
T (u), u

))
,

where the first line follows from our induction hypothesis. Therefore, u ≥ u∗
n−1 implies

K1
n
′
(u) <K1

n−1
′
(u) < 0.

The induction shows that u∗
n < u∗

n−1 for all n ≥ 0. It follows immediately from the
definition of ū that u∗

n > ū for all n. Hence, {u∗
n} is a decreasing and bounded sequence,

so that by the monotone convergence theorem, the sequence converges to a limit û≥ ū.
Since {u∗

n} is convergent, it is a Cauchy sequence, so that by Claim 3,

lim
n→∞

∣∣u∗
n−u∗

n−1

∣∣ = lim
n→∞

∣∣u∗
k−φ1

(
T

(
u∗
n

)
, u∗

n

)∣∣ = 0 ⇒ û = ū.

This establishes the mechanism characterized in Theorem 1 as the optimum in the
auxiliary problem. We now verify that it is also optimal in the original problem.

B.2 Verification for the proof of Theorem 1

B.2.1 No fines between inspections We now show that the mechanism described in the
previous section remains optimal when we remove assumption (A). To this end, we show
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that when performing the iteration over the number of available inspections n, the prin-
cipal cannot gain from imposing fines between inspections when n inspections are left.
Consider again Step n of the iteration in the previous section. By the same argument as
before, we have u1 − u0 = c/(λα) and the first time of inspection is at the first time t at
which U0

t = −B. The evolution of the paths of promised utilities are given by

dU1
t = rU1

t dt − λ(1 − α)
(
U1
t −U0

t

)
dt + cdt + dFt

dU0
t = rU0

t dt − λα
(
U1
t −U0

t

)
dt + cdt + dFt − dμt ,

where we let dμt ≥ 0 denote the slacking in the honesty constraint. The evolution of the
difference in utilities is

d
(
U1
t −U0

t

) = (r + λ)
(
u1 − u0) + dμt ,

which implies that the utility paths diverge at least exponentially, and are independent
of any fines and increasing in threats. If the first inspection takes place at t, conditional
on no transition before t, this means that U0

t = −B and

U1
t = −B + e(r+λ)t c

λα
+

∫ t

0
e(r+λ)s dμs .

The last term has to be zero because otherwise we could find a pair of initial promised
utilities with û1 < u1 and set dμs = 0 for all s ∈ (0, t ), and a time t ′ > t such that the
promised utilities at time t ′ under the new initial conditions are as with the original pair
at time t, thus increasing the principal’s payoff. Therefore, at the first time of inspection,

U1
t = −B + e(r+λ)t c

λα
.

Given that Ut
1 is independent of any fines in step n, and there no fines in step n − 1

onward, we must have U1
t = φ1(T (u∗

n ), u∗
n ). This means that the policy of the previous

section with initial promised utilities (u∗
n, u∗

n − c/(λα)) remains optimal even when fines
between inspections are available.

B.2.2 General mechanisms in the relaxed problem Parts B.1 and B.2.1 demonstrate
that the mechanism described in the theorem is an optimal Markovian mechanism un-
der the relaxing of assumption (B). It remains to verify that no (non-Markovian) mecha-
nism can do better. Let Kθt (U ) denote the expected costs for the principal in our mech-
anism that delivers the agent with promised payoffs of U = (U0, U1 ). We show that the
expected value in state θt from any incentive-compatible mechanism that delivers the
initial promised payoff U0 = (U0

0 , U1
0 ) to the agent cannot exceed Kθt (U0 ). Since both

the inspection cost and the set of feasible continuation utilities do not depend on their
values prior to inspection, we can apply Proposition 54.18 and Theorem 54.28 in Davis
(1993, pp. 235 & 242) to conclude that Kn, the value function with no more than n in-
spections, converges to value function K of the problem without bound on the number
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of inspections, and that K is the unique bounded and continuous function that solves
the quasi-variational inequality

UKθ(u) − rKθ(u) ≥ 0

WKθ(u) −Kθ(u) ≥ 0(
UKθ(u) − rKθ(u)

)(
WKθ(u) −Kθ(u)

) = 0

on the state space {(θ, u0, u1 )|θ ∈ {0, 1}, (u0, u1 ) ∈ [−B, 0]2, u1 − u0 ≥ c/(λα)}. Here, U
denotes the extended generator of the piecewise deterministic Markov process that is
defined by the relationship35

E
P
0
[
Kθt (Ut )

] =Kθ0 (u) +E
P
0

[∫ t

0
UKθs (us ) ds

]

in case no inspection occurs before t, and W is the expected cost at an inspection time:

WKθ = min
u0,u1

Kθ(u0, u1 ) + κ.

Consider an arbitrary incentive-compatible mechanism with inspection process {dNI
t }t

and define the expected value at time t by

Gt =
∫ t

0
e−rs

(
κdNI

s

) + e−rtKθt (Ut ).

For t = 0, we have G0 = Kθ0 (U0 ). For t > 0, we can represent Gt by the differential for-
mula (see Theorem 31.3 in Davis (1993, p. 83)) as

Es[Gt ] −Gs =
∫ t

s
e−r(z−s)(UKθz (Uz ) − rKθz (Uz )

)
dz

+Es

[∫ t

s
e−r(z−s)(WKθz (Uz ) −Kθz (Uz )

)
dNI

z

]
.

By the variation inequality above, both integrals are positive so that the process (Gt )t ≥
0 is a submartingale bounded by 0. This implies that E0[Gt ] ≥ G0 for any t ≥ 0.
In particular, taking the limit as t approaches infinity, we get E0[

∫ ∞
0 e−rs(κdNI

s )] =
E0[limt→∞Gt ] ≥ G0 = Kθ0 (U0 ). Hence, any incentive-compatible maximal-compliance
mechanism leads to weakly higher inspection costs.

B.2.3 Optimality in the original problem We now consider the original model, in
which we remove assumption (A) so that the honesty constraint must hold in both states.
We show that during noncompliance, the honesty constraint does not bind and, there-
fore, the solution of the relaxed problem is also a solution to our original problem. The
proof is constructive. In the optimal mechanism of the relaxed problem, the pair of
promised utilities at the outset and during noncompliance is (u0, u1 ) := (ū, ū− c/(λα)).

35See Davis (1993, pp. 27–33).
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Since dU0
t ≤ 0, we have U0

t ≤ u0. Set dFt = u0 − U0
t and dμt = u1 − U1

t + u0 − U0
t . Next,

while θ = 0, set dFt = −ru0 + λα(u1 − u0 ) and dμt = c + (r + λ)(u1 − u0 ). Substitut-
ing into the promise-keeping and truth-telling constraints, it follows that dUi

t = 0 for
each i = 0, 1 and dNI

t = 0 while θt = 0, which is identical to the solution in the relaxed
problem.

Proof of Lemma 3

Define

�(T ) ≡ (B − c/r )
(
1 − e−rT

) − c/(λα)eλT
(
erT − α

) + c/(λα)(1 − α). (20)

By Theorem 1, we have T ∗ = inf{T > 0 : �(T ) = 0}. This exists and is unique whenever
B > B̄ (� is increasing from 0 at T = 0 and crosses 0 from above exactly once). The
function � is continuously differentiable in λ and T on a neighborhood of T ∗. By the
implicit function theorem, we have

∂T ∗

∂λ
= −�λ

�T

∣∣∣∣
T=T ∗

,

where �x denotes the partial derivative of � with respect to x. As mentioned above,
�(T ) crosses 0 from above at T = T ∗ so that �T |T=T ∗ < 0. Hence, for all parameters, we
have

sign
(
∂T ∗

∂λ

)
= sign(�λ|T=T ∗ ).

Consider � in (20) as λ ↘ λ= cr/(Brα− c), which is the lower bound on λ such that
the feasibility assumption B > B̄ = c(r+λ)

rλα is fulfilled. Then � is equal to(
B − c

r

)(
1 − e−rT

) −
(
B − c

rα

)(
eλT

(
erT − α

) − (1 − α)
)
.

This can be equal to 0 only if T = 0 because it is concave in T and the T derivative is
0 at T = 0. Hence, limλ↓λ T ∗(λ) = 0 and T ∗ is initially increasing in λ.

Finally, to show that T ∗(λ)
λ→∞−→ 0, consider (20) and observe that �(T ∗ ) = 0 implies

lim
λ→∞

e(r+λ)T ∗(λ)

λ
= 0.

This implies that λT ∗(λ) is either finite or grows at lower than logarithmic rate as λ be-
comes arbitrarily large. In particular, T ∗(λ) must go to 0.

Considering the costs, let Let K0
EQ and K1

EQ denote the expected discounted inspec-
tion cost when starting in state 0 or 1, respectively. For fixed inspection cycle length T ,
they follow the nested equations

K0
EQ =

∫ ∞

0
e−(r+λα)tλαK1

EQ dt = λα

r + λα
K1

EQ
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and

K1
EQ =

∫ T

0
e−(r+λ(1−α))tλ(1 − α)K0

EQ dt + e−(r+λ(1−α))T (
κ+K1

EQ

)
= (

1 − e(r+λ(1−α))T ) λ(1 − α)
r + λ(1 − α)

K0
EQ + e−(r+λ(1−α))T (

κ+K1
EQ

)
.

Inserting K0
EQ and solving for K1

EQ gives

K1
EQ = r + λα

r(r + λ)
· (r + λ(1 − α)

) e−(r+λ(1−α))T

1 − e−(r+λ(1−α))T
· κ.

Note that K1
EQ is decreasing in T and decreasing in λ for fixed T . Thus, given that

T ∗ is increasing in λ for low λ, it follows immediately that the costs decrease for low λ.
Further, K1

EQ approaches ∞ as T goes to zero for any positive and finite λ. Since

lim
λ↘λ

T ∗(λ) = 0,

it follows that

lim
λ↘λ

KEQ(λ) = 0.

For the limit as λ grows arbitrarily large, note that the total cost in the limit is given
by

lim
λ→∞K1

EQ = (1 − α)α
r

lim
λ→∞

λ

e(1−α)λT ∗(λ)
.

Recall from above that λT ∗(λ) grows to ∞ at lower than logarithmic rate so that the term
above must be ∞.

Appendix C: Proofs for Section 5

Proof of Theorem 2. We first argue that as the mechanism described in the main
text is optimal among the class of stationary mechanisms, consider an alternative
stationary stochastic mechanism that delivers some given promised utility u. From
the promise-keeping constraint (Pk) and the honesty constraint (H) for i = 1, it is
straightforward to obtain that the constant rate mR(u) of inspection that keeps the
promised utility in state 1 stationary at the level u ∈ [−B + c/(λα), −c/(rα)] is mR(u) =
r(c − αλu)/(αλ(B + u) − c).

The principal’s expected monitoring costs in the stationary random mechanism that
provides promised utility U1

t = u throughout can be determined recursively. Denoting
by K1

R(u) the expected costs while in compliance, we have

K1
R(u) = r + λα

r

mR(u)
r + λ

= r + λα

r

r(c − αλu)

(r + λ)
(
αλ(B + u) − c

) . (21)



860 Achim and Knoepfle Theoretical Economics 19 (2024)

It is easy to see that KR(u) is decreasing in u. Given that − c
rα is an upper bound on the

promised utility for the agent during compliance (it is the maximum payoff for the agent
subject to satisfying the obedience constraint) and it is the promised utility delivered
by the mechanism characterized above, it follows that this mechanism is indeed the
optimal stationary mechanism.

To show that the costs of the random mechanism are strictly below the equilibrium
costs with predictable inspections, express the latter as

K0
EQ =

∫ ∞

0
e−(r+λ)tλ

(
αK1

EQ + (1 − α)K0
EQ

)
dt

K1
EQ =

∫ ∞

0
e−(r+λ)tλ

(
αK̃1(τt ) + (1 − α)K0

EQ

)
dt +

∞∑
n=1

e−(r+λ)kT ∗
κ,

where K0
EQ denotes the expected costs while in noncompliance and

K̃1(τ) = e−(r+λ(1−α))(T ∗−τ)(κ+K1
EQ

) +
∫ T ∗

τ
e−(r+λ(1−α))(s−τ)λ(1 − α)K0

EQ ds

denotes the expected costs while in compliance and time τ ∈ [0, T ∗] has passed since
the last inspection or transition. Note that K̃1(τ) is increasing in τ with K̃1(0) = K1

EQ

and K̃1(T ∗ ) = κ+K1
EQ. Thus, replacing K̃1(τt ) by K1

EQ in the recursive expression above,

and solving the system gives an upper bound on the equilibrium costs K1
EG:

K1
EQ ≤ K̃ = r + λα

r

e−(r+λ)T ∗

1 − e−(r+λ)T ∗ κ. (22)

To see that K1
R in (21) is lower, use (7) to write T ∗ in (22) as a function of u1∗:

K̃
(
u1∗) = r + λα

r

e−(r+λ)T ∗

1 − e−(r+λ)T ∗ κ= r + λα

r

c

αλ
(
B + u1∗) − c

κ.

Now it is immediate to check that K̃(− c
rα ) = KR(− c

rα ) and K̃′(u) < K′
R(u) for u < − c

rα

and B > B̄. Since −c/(rα) is an upper bound on u, it follows that KR(u1∗ ) < K̃(u1∗ ). It
follows from (22) that K1

EQ >K1
R.

For the comparative statics in λ, consider (21) and observe that K1
R is decreasing in

λ for fixed mR and decreasing in mR(u). The optimal promised utility −c/(rα) does not
change with λ and mR(u) is decreasing in λ for any u.

For the limit, observe that

lim
λ→∞mR

(
− c

rα

)
= cr

Brα− c

and, thus,

lim
λ→∞K∗

R = α

r

cr

Brα− c
κ= cα

Brα− c
κ.
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