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A buyer wishes to purchase a durable good from a seller who in each period
chooses a mechanism under limited commitment. The buyer’s value is binary and
fully persistent. We show that posted prices implement all equilibrium outcomes
of an infinite-horizon, mechanism-selection game. Despite being able to choose
mechanisms, the seller can do no better and no worse than if he chose prices in
each period, so that he is subject to Coase’s conjecture. Our analysis marries in-
sights from information and mechanism design with those from the literature on
durable goods. We do so by relying on the revelation principle in Doval and Skreta
(2022).
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1. Introduction

We characterize the equilibrium outcomes of an infinite-horizon, mechanism-selection
game between a durable-good seller and a privately informed buyer under limited com-
mitment, so that the seller can commit to today’s mechanism, but not to the mecha-
nism he will offer if no sale occurs. Theorem 1 shows that all equilibrium outcomes can
be implemented via posted prices. We construct a perfect Bayesian equilibrium of the
mechanism-selection game, which achieves the seller’s unique equilibrium payoff, and
we show that it implements the essentially unique equilibrium outcome.1 In this equi-
librium, as long as a sale has not occurred, the seller will choose a mechanism that can
be implemented as a posted price. Despite being able to choose from a rich set of mech-
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anisms, the seller can do no better and no worse than if he could only choose prices in
each period.

In our game, an uninformed seller faces a privately informed buyer, whose valua-
tion is binary, fully persistent, and strictly above the seller’s marginal cost. In each pe-
riod, as long as the good has not been sold, the seller offers the buyer a mechanism, the
rules of which determine the allocation for that period. A mechanism consists of (i) a
set of input messages for the buyer, and (ii) for each input message, a distribution over
output messages and allocations. Whereas the seller observes the output message and
the allocation, he does not observe the input message the buyer submits to the mech-
anism. Thus, when designing the mechanism, the seller gets to design how much he
observes about the buyer’s choices, and hence design his beliefs about the buyer’s value.
The combination of mechanism design and information design elements is key to our
characterization.

Our analysis bridges the literatures on mechanism design and on the durable-good
monopolist, especially the work of Gul, Sonnenschein, and Wilson (1986). To see this, it
is useful to review the main steps involved in the proof of Theorem 1. First, we construct
an assessment that is identical along the path to that in Hart and Tirole (1988), which we
dub the posted-prices assessment. In this assessment, along the path of play, the seller
sells the good using a decreasing sequence of prices, which reflect that conditional on
the good not being sold the seller assigns less probability to the buyer’s value being high.

Second, we argue that the seller’s payoff under the posted-prices assessment is an
upper bound on the seller’s equilibrium payoff in the mechanism-selection game. To do
so, we rely on an auxiliary program, that only involves the seller (see (OPT) in Section 4).
In this program, the seller maximizes the dynamic analogue of the virtual surplus, by
choosing a Bayes’ plausible distribution over posteriors and for each posterior (i) a prob-
ability of trade and (ii) a vector of equilibrium continuation payoffs. We arrive at the
program defined in (OPT) by relying on the tools in our previous work, Doval and Skreta
(2022). The main theorem in Doval and Skreta (2022) allows us to simplify the class of
mechanisms the seller offers in any equilibrium of the game and the buyer’s equilibrium
behavior. This step reduces the search for the optimal sequence of mechanisms to those
that satisfy, loosely speaking, a sequence of participation and truth-telling constraints,
allowing us for the most part to ignore the buyer as a player. Like in standard mechanism
design, the low-valuation buyer’s utility and the high-valuation buyer’s truth-telling con-
straint determine an upper bound on the revenue the seller can extract within a period
(Lemma 2). Replacing this upper bound in the seller’s payoff provides us with a dynamic
analogue of the virtual surplus (Equation (4)), where the seller’s payoff is written as a
function of the allocation, but also the continuation payoffs.

We show that the value of (OPT) coincides with the seller’s payoff in the posted-
prices assessment, and hence that the seller cannot do better than in the posted-prices
equilibrium. Because the auxiliary program (OPT) ignores the truth-telling constraint
of the low-valuation buyer (i.e., it corresponds to the relaxed program in mechanism
design), our result implies that the solution to (OPT) satisfies the remaining constraints
and can thus be implemented as an equilibrium outcome. As we discuss in the con-
clusions, we expect that in settings with transferable utility, the study of the analogous
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problem to (OPT) provides a natural benchmark to understand the properties of the
principal’s optimal mechanism, even if in some settings the solution to the analogue of
(OPT) may not deliver an implementable outcome.

Finally, following the logic in Gul, Sonnenschein, and Wilson (1986), we show that
the seller’s payoff in the posted-prices assessment is a lower bound on the seller’s equi-
librium payoff. Underlying the argument in Gul, Sonnenschein, and Wilson (1986) that
a unique equilibrium payoff exists in the gap case is the property that the minimum
price the seller chooses in equilibrium imposes an upper bound on the maximum pay-
off the buyer can obtain. Relying once again on (OPT), we establish that guarantees on
the seller’s equilibrium payoff translate into upper bounds on the high-valuation buyer’s
payoff. Armed with this result, we show that the seller can always undercut the price in
the posted-prices assessment and earn close to his payoff in that assessment.

The significance of our results is two-fold. First, to the best of our knowledge, this is
the first paper to characterize optimal mechanisms under limited commitment and per-
sistent private information in an infinite-horizon setting. Because the set of tools avail-
able to tackle the difficulties with the revelation principle under limited commitment
do not readily apply to infinite-horizon settings (see, e.g., the seminal work of Bester
and Strausz (2001, 2007), and the discussion in the related literature), such characteriza-
tion has proved elusive. In Doval and Skreta (2022), we provide a revelation principle for
mechanism-selection games under limited commitment that applies to a broad class of
games, including infinite-horizon ones. It is the application of this tool that allows us
to argue that the mechanism we characterize is the optimal one among all mechanisms
the seller could have offered the buyer under limited commitment.

Second, the optimality of posted prices should not be taken for granted, even if it is
evocative of Skreta (2006). First, our model is not an infinite-horizon version of that in
Skreta (2006), since we consider a larger class of mechanisms than Skreta (2006). Indeed,
the mechanisms in Skreta (2006) presume that the seller must observe the buyer’s input
message (cf. Laffont and Tirole (1988), Bester and Strausz (2001)), whereas we consider
mechanisms in which the seller gets to design how much he observes about the buyer’s
input message. In Doval and Skreta (2022), we study a two-period version of the model
in Skreta (2006), but we allow the seller to offer mechanisms like those in this paper. We
show that when the seller is sufficiently patient it is not an equilibrium for the seller to
post a price in each period (Remark 3 explains why posted prices may fail to be optimal
in Doval and Skreta (2022)). It follows that we cannot take limits using the equilibrium
outcome in Skreta (2006) to analyze the equilibrium outcomes of the game we study,
even after showing that the game ends in finite time. Second, Breig (2022) shows in
a binary-value model with a perishable good that posted prices may not be optimal:
Indeed, the seller may benefit from using random delivery contracts.

Related literature: The paper contributes mainly to three strands of literature. The first
strand, similar to this paper, derives optimal mechanisms when the designer has limited
commitment. Most papers in that literature examine either finite-horizon settings (see
Laffont and Tirole (1988), Skreta (2006, 2015), Deb and Said (2015), Fiocco and Strausz
(2015), Beccuti and Möller (2018)), or infinite-horizon settings, imposing restrictions on
the class of contracts that can be offered (e.g., Gerardi and Maestri (2020)), or on the
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solution concept (e.g., Acharya and Ortner (2017)).2 Underlying these restrictions are
that the results in both Bester and Strausz (2001) and Skreta (2006) do not readily extend
to infinite-horizon settings. For instance, the result in Bester and Strausz (2001) applies
only if the principal is earning his highest payoff consistent with the agent’s payoff (see
Lemma 1 in Bester and Strausz (2001)). Thus, implicit in their multistage extension is a
restriction to equilibria of the mechanism-selection game that possess a Markov struc-
ture, which as shown by Ausubel and Deneckere (1989), may not be enough to charac-
terize the principal’s best equilibrium payoff. The approach in Skreta (2006) has the ad-
vantage that the set of incentive feasible outcomes has a well-understood structure. It is
not clear, however, how to incorporate the principal’s sequential rationality constraints
in infinite-horizon settings in a tractable way.

The second strand is the literature that follows the observation in Coase (1972) that
the durable-good monopolist faces a time-inconsistency problem, which in turn lim-
its his monopoly power. The papers in the durable-good monopolist literature (Stokey
(1981), Bulow (1982), Gul, Sonnenschein, and Wilson (1986), Sobel (1991), Ortner (2017))
study price dynamics and establish (under some conditions) Coase’s conjecture.3 Re-
lated to this literature is the problem of dynamic bargaining with one-sided incomplete
information4 (e.g., Sobel and Takahashi (1983), Fudenberg, Levine, and Tirole (1985),
Ausubel and Deneckere (1989)). In all these papers, the uninformed party’s inability to
commit limits his bargaining power.

Finally, as will become clear from the analysis, the paper contributes to the litera-
ture on information design (Aumann, Maschler, and Stearns (1995) and Kamenica and
Gentzkow (2011)), highlighting its potential to provide tractable characterizations of
equilibrium outcomes in games. Contrary to most of these papers, however, the seller
aims to persuade his future self, as opposed to another player, highlighting the role of in-
formation as a commitment device (see, e.g., Carrillo and Mariotti (2000), and recently,
Habibi (2020)).

Organization The rest of the paper is organized as follows. Section 2 describes the
model; Section 2.1 summarizes the results in Doval and Skreta (2022) used to simplify
the analysis that follows. Section 3 presents the main result of the paper, Theorem 1.
Section 4 introduces the auxiliary program (OPT) and studies its properties. Section 5
reviews the main steps of the proof of Theorem 1. Section 6 concludes. All proofs not in
the main text are in the Appendix.

2. Model

Primitives: Two players, a seller and a buyer, interact over infinitely many periods. The
seller owns one unit of a durable good to which he attaches value 0. The buyer has

2Beccuti and Möller (2018) lies somewhat in between these two strands because they take limits of their
finite-horizon results to draw conclusions about the infinite-horizon game. They do not show that this limit
corresponds to the seller’s revenue-maximizing equilibrium in the infinite-horizon game.

3Other papers, like Wolinsky (1991), McAfee and Wiseman (2008), and Board and Pycia (2014), study
variations on Coase’s original problem and their implications for Coase’s conjecture. Relatedly, Brzustowski,
Georgiadis-Harris, and Szentes (2023) show that smart contracts help the seller avoid the Coase conjecture.

4Recently, Peski (2022) studies alternating bargaining games where players can offer menus.
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private information: before her interaction with the seller starts, she observes her value
v ∈ {vL, vH } ≡ V , with 0 < vL < vH . Let �v ≡ vH − vL denote the difference in values. Let
μ0 denote the probability that the buyer’s value is vH at the beginning of the game. In
what follows, we denote by �(V ) the set of distributions on V .

An allocation in period t is a pair (q, x) ∈ {0, 1} × R, where q indicates whether the
good is traded (q = 1) or not (q = 0), and x is a payment from the buyer to the seller. Let
A denote the set of allocations.5 The game ends the first time the good is sold.

Payoffs are as follows. If in period t, the allocation is (q, x), the flow payoffs are
uB(q, x, v) = vq − x and uS(q, x) = x for the buyer and the seller, respectively. The seller
and the buyer maximize the expected discounted sum of flow payoffs. They share a
common discount factor δ ∈ (0, 1).

Mechanisms: To introduce the timing of the game, we first define the seller’s action
space. In each period, the seller offers the buyer a mechanism. Following Doval and
Skreta (2022), we define a mechanism as follows. A mechanism, M = (MM, SM, ϕM ),
consists of a set of input messages MM, a set of output messages SM, and a transition
probability ϕM from MM to SM ×A.6 For instance, MM can be the set of buyer values, V ,
and SM be the set of seller beliefs about the buyer’s value, �(V ). In this case, the mech-
anism associates to each report a distribution over beliefs and allocations. We endow
the seller with a collection (Mi, Si )i∈I of input and output messages in which each Mi

contains at least two elements, and each Si contains �(V ).7 Denote by MI the set of all
mechanisms with message sets (Mi, Si )i∈I .8

Mechanism-selection game: The seller’s prior μ0 and the collection (Mi, Si )i∈I de-
fine a mechanism-selection game, denoted GI (μ0 ), as follows. In each period t, as long
as the good has not been sold, the game proceeds as follows. First, the seller and the
buyer observe the realization of a public randomization device, ω∼ U[0, 1]. Second, the
seller offers the buyer a mechanism, M. Observing the mechanism, the buyer decides
whether to participate or not. If she does not participate in the mechanism, the good is
not sold and no payments are made. If she instead chooses to participate, she sends a
message m ∈ MM, which is unobserved by the seller. An output message and an alloca-
tion, (s, q, x), are drawn from ϕM(·|m) and are observed by both the seller and the buyer.
If the good is not sold, the game proceeds to period t + 1.

Histories: The game GI (μ0 ) has two types of histories: public and private. Public
histories capture what the seller knows through period t: the past realizations of the

5Even if the set of allocations is {0, 1} × R, we allow the seller to offer randomizations on A, and hence
induce fractional assignments of the good.

6Throughout, we assume that MM and SM are Polish spaces, that is, they are separable, completely
metrizable topological spaces. Note that the set of allocations A is also a Polish space and, therefore, SM ×A

is a Polish space. For a Polish space X , let �(X ) denote the set of Borel measures on X . We endow �(X )
with the weak∗ topology. Thus, �(X ) is also a Polish space (Aliprantis and Border (2013)). For any two
measurable spaces X and Y , a mapping ζ : X �→ �(Y ) is a transition probability from X to Y if for any
measurable C ⊆Y , ζ(C|x) is a measurable real valued function of x ∈ X .

7Because V is finite, taking MM to be finite is without loss of generality (Doval and Skreta, 2022).
8We restrict the seller to choose mechanisms with input and output messages in (Mi, Si )i∈I to have a

well-defined action space for the seller. This allows us to have a well-defined set of deviations, avoiding
set-theoretic issues related to self-referential sets. The analysis in Doval and Skreta (2022) shows that the
choice of the collection plays no further role in the analysis.
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public randomization device, his past choices of mechanisms, the buyer’s participation
decisions, and the realized output messages and allocations. We let ht denote a public
history through period t and let Ht denote the set of all such histories. Instead, private
histories capture what the buyer knows through period t. First, the buyer knows the
public history of the game and her input messages into the mechanism (henceforth, a
buyer history). Second, the buyer also knows her private information. We let ht

B denote a
buyer history through period t and let Ht

B(ht ) denote the set of buyer histories consistent
with public history ht . Thus, V × Ht

B(ht ) denotes the set of private histories consistent
with public history ht .

Strategies and beliefs: A behavioral strategy for the seller is a collection of measur-
able mappings �≡ (�t )∞t=0, where for each period t and each public history ht , �t(ht ) de-
scribes the seller’s (possibly random) choice of mechanism at ht .9 Similarly, a behavioral
strategy for the buyer is a collection of measurable mappings (πt(v, ·), rt(v, ·))∞t=0, where
for each period t, each private history (v, ht

B ), and each mechanism, Mt , πt(v, ht
B, Mt )

describes the buyer’s participation decision, whereas rt(v, ht
B, Mt ) describes the buyer’s

choice of input messages in the mechanism, conditional on participation. We denote
the tuple (πt(v, ·), rt(v, ·)) by (πtv, rtv ), and the collection (πtv, rtv )∞t=0 by (πv, rv ).

A belief for the seller at the beginning of time t, history ht , is a distribution μt(ht ) ∈
�(V ×Ht

B(ht )). The belief system, (μt )∞t=0, is denoted by μ.
Solution concept: We are interested in studying the perfect Bayesian equilibrium

(henceforth, PBE) payoffs of this game, where PBE is defined informally as follows. An
assessment, 〈�, (πv, rv )v∈V , μ〉, is a PBE if the following hold:

1. 〈�, (πv, rv )v∈V , μ〉 satisfies sequential rationality, and

2. μ satisfies Bayes’ rule where possible.

Appendix E contains the formal statement. For now, we note that if the seller’s strategy
space was finite and the mechanisms used by the seller had finite support, then this
coincides with the definition in Fudenberg and Tirole (1991b).10

The prior μ0 together with the strategy profile (�, (πv, rv )v∈V ) induce a distribution
over the terminal nodes V ×H∞

B . We are interested instead on the distribution it induces
over the payoff-relevant outcomes, V ×A∞. We say that a distribution η ∈ �(V ×A∞ ) is
a PBE outcome if a PBE assessment 〈�, (πv, rv )v∈V , μ〉 exists that induces η. We denote
by O∗

I (μ0 ) the set of PBE outcomes and by E∗
I (μ0 ) ⊆R

3 the set of PBE payoffs of GI (μ0 ).
We denote a generic element of E∗

I (μ0 ) by u ≡ (uL, uH , uS ), where uS is the seller’s payoff
and uL, uH denote the buyer’s payoff when her value is vL, vH , respectively.

Theorem 1 characterizes O∗
I (μ0 ) and E∗

I (μ0 ). In particular, we show that the essen-
tially unique equilibrium outcome can be achieved via a sequence of posted prices so
that the seller of a durable good can do no better and no worse than by using posted
prices.

9As we explain in Appendix E, MI is a Polish space—which we endow with its Borel σ-algebra—and we
can follow Aumann (1964) when defining the seller’s strategy.

10The only difference between Bayes’ rule where possible and consistency in sequential equilibrium is
the following. Under PBE, the seller can assign zero probability to one of the buyer’s values and then, after
the buyer deviates, can assign positive probability to that same value.
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2.1 Revelation principle

The game GI (μ0 ) is not simple to analyze for at least two reasons. First, the seller’s ac-
tion space is large, and a priori, it is not clear which mechanisms could be ruled out from
consideration. Second, fixing a seller’s strategy, and hence a sequence of mechanisms
faced by the buyer, we still need to understand the buyer’s best response in the game
induced by the sequence of mechanisms.

Let G(μ0 ) denote the same game in the previous section, except that in each period
the seller’s action space is the set of canonical mechanisms, denoted by MC , and defined
as follows. MC is the set of all mechanisms where the set of input and output messages
are the set of buyer’s values and of seller’s beliefs about the buyer’s value, respectively.
That is, (M , S) = (V , �(V )).

Let O∗(μ0 ) denote the set of PBE outcomes and E∗(μ0 ) denote the set of PBE pay-
offs of G(μ0 ). In what follows, a subset of the set of canonical mechanisms has special
significance: the set of direct Blackwell mechanisms. A direct Blackwell mechanism is a
canonical mechanism ϕ : V �→ �(�(V ) × A) that can be decomposed into a Blackwell
experiment, β : V �→ �(�(V )), and an allocation rule, α : �(V ) �→ �(A).11

Lemma 1 summarizes the key implications of Doval and Skreta (2022) for our analy-
sis, which we explain below.

Lemma 1 (Doval and Skreta (2022)). For any PBE outcome of any mechanism-selection
game GI (μ0 ), an outcome-equivalent PBE of game G(μ0 ) exists. That is,

⋃
I O∗

I (μ0 ) =
O∗(μ0 ).

Moreover, let η ∈ O∗(μ0 ). Then a PBE assessment 〈�, (πv, rv )v∈V , μ〉 of G(μ0 ) exists
that induces η and satisfies the following properties:

(a) For all histories ht , the buyer participates in the mechanism offered by the seller at
that history and truthfully reports her type, with probability 1;

(b) For all histories ht , if the mechanism offered by the seller at ht outputs posterior μ′,
the seller’s updated equilibrium beliefs about the buyer’s value coincide with μ′;

(c) For all histories ht , the mechanism offered by the seller at ht is a direct Blackwell
mechanism;

(d) The buyer’s strategy depends only on her private value and the public history.

Lemma 1 has several implications. Part (a) of Lemma 1 implies the mechanisms cho-
sen by the seller in equilibrium must satisfy a participation constraint and an incentive
compatibility constraint for each buyer value and each public history. As in the case of
commitment to long-term mechanisms, part (a) simplifies the analysis of the buyer’s

11That is, for all measurable subsets U ′ ⊂ �(V ) and A′ ⊂ A, we have that for all v ∈ V ,

ϕ
(
U ′ ×A′|v

) =
∫
U ′

α
(
A′|μ

)
β(dμ|v).
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behavior, by reducing it to a series of constraints the seller’s equilibrium offer of a mech-
anism must satisfy (see Equations (PCht ,v) and (ICht ,v,v′ ) in Section 4.1).

Part (b) implies that the mechanism’s output message encodes all of the information
that the seller has in equilibrium about the buyer’s value. In particular, conditional on
observing the output message, the allocation carries no more information about the
buyer’s value. As a consequence, conditional on the output message, the allocation can
be drawn independently of the buyer’s report. This, in turn, delivers the decomposition
of ϕMt as a direct Blackwell mechanism described in part (c).

Part (c) implies that the choice of mechanism at history ht can be equivalently
thought of as the choice of a Blackwell experiment, βMt , and an allocation rule, αMt .
Direct Blackwell mechanisms allow us to separately optimize on the allocation given a
particular experiment, and then optimize on the experiment. As in the literature on in-
formation design, it is convenient to work with the distribution over posteriors induced
by the experiment βMt , which we denote by τMt and is defined as follows. For all Borel
subsets U ′ ⊆ �(V ), ∫

U ′
τMt (dμt+1 ) =

∑
v∈V

μt
(
ht

)
(v)βMt

(
U ′|v

)
, (BCμt (ht ))

where μt(ht ) ∈ �(V ) is the seller’s belief about the buyer’s value at ht . Furthermore, as
in the literature on mechanism design with quasilinear utilities, we can write αMt (·|μ) as
an expected payment, xMt (μ), and a probability of trade, qMt (μ).

Part (d) implies the set of PBE payoffs of G(μ0 ) coincides with the set of Public PBE
payoffs of G(μ0 ) (Athey and Bagwell (2008)). Relying on Abreu, Pearce, and Stacchetti
(1990), Athey and Bagwell (2008) show that Public PBE have a recursive structure and
we use this property to argue the assessment we define in Section 3 is indeed a PBE
assessment.

The rest of the paper studies the equilibrium outcomes and payoffs of G(μ0 ) and
when we refer to a PBE assessment, we mean one that satisfies the conditions of
Lemma 1.

Remark 1. Below, we abuse notation in the following two ways. First, because values are
binary, we can think of an element in �(V ) (a distribution over vL and vH ) as an element
of the interval [0, 1] (the probability assigned to vH ). We use the latter formulation in
what follows. That is, whereas the mechanism outputs a distribution over vL and vH , we
index this distribution by the probability of vH . Second, even though β(·|v) is a measure
over �(V ) (in this case a c.d.f.), we sometimes write β(μ|v) when β has an atom at μ.

3. Main result

Section 3 contains the main result of the paper: Theorem 1 characterizes the equilib-
rium outcomes and payoffs of G(μ0 ). To state Theorem 1, we proceed as follows. First,
we informally describe the posted-prices assessment, 〈�∗, (π∗

v , r∗v )v∈V , μ∗〉, which is sin-
gled out by the proof of Theorem 1. Second, we explain why the outcome induced by
〈�∗, (π∗

v , r∗v )v∈V , μ∗〉 can be implemented via a sequence of posted prices. Finally, we
state Theorem 1.
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An assessment in posted prices: The posted-prices assessment 〈�∗, (π∗
v , r∗v )v∈V , μ∗〉 is

essentially the same along the path of play to those constructed by Fudenberg, Levine,
and Tirole (1985) and Hart and Tirole (1988). The assessment is defined by an increasing
sequence of threshold beliefs μ0 = 0 < μ1 < · · · < μn < · · · such that if the seller’s belief
is in [μn, μn+1 ), then it takes n periods for the good to be sold to vL, at which point the
game ends. The number of periods before vL buys the good and determines both the
rents for vH and the seller’s revenue.

To understand how the sequence of thresholds is determined, consider first when
selling the good at a price of vL is optimal for the seller. If a seller with belief μ0 sells the
good at a price of vL, his revenue can be written as follows:

vL = μ0(vH −�v) + (1 −μ0 )vL

= μ0vH + (1 −μ0 )

(
vL − μ0

1 −μ0
�v

)
≡ μ0vH + (1 −μ0 )v̂L(μ0 ). (1)

The first equality represents revenue as the surplus extracted from each type. The sec-
ond equality represents revenue as the virtual surplus, where the value of allocating the
good to vL is adjusted to capture that when vL is served, so is vH , which leaves rents
to vH . The sign of the virtual value v̂L(μ0 ) determines whether the optimal price is vL
(v̂L(μ0 ) > 0) or vH (v̂L(μ0 ) < 0) in the commitment solution. Because v̂L is decreasing
in μ0, a threshold belief exists such that v̂L(μ0 ) = 0:

v̂L(μ0 ) = 0 ⇔ μ0 = vL
vH

≡ μ1. (2)

At that belief, the seller is indifferent between both prices in the commitment solution.
As we argue next, μ1 also plays an important role in the posted-prices assessment.

The preceding discussion implies vL is the maximum revenue for a seller with belief
μ0 < μ1 in the mechanism-selection game. Instead, a seller with belief μ0 > μ1 prefers
waiting one period to trade with vL to trading immediately with vL. To see this, note
that if the good is sold with probability 1 in the next period, the price at that point is
vL. Thus, the maximum price that the seller can sell the good for in the first period
is vH − δ(vH − vL ) = vL + (1 − δ)�v. It is easy to check that when μ0 > μ1, the seller
prefers to wait at least one period to sell the good to vL. When the seller’s prior belief is
μ1, the seller is indifferent between selling the good to vL in one period and selling the
good to vL immediately. Indeed, the subscript 1 in μ1 reflects that the seller takes one
period to trade with vL in the posted-prices assessment. Recursively, one can define
μn as the belief at which the seller is indifferent between trading with vL in n or n − 1
periods.

In the posted-prices assessment, play proceeds as follows. If the seller’s prior is such
that μ0 ∈ [μn, μn+1 ) and n≥ 1, then the seller chooses a mechanism that induces two be-
liefs, 1 and μn−1. At belief 1, the good is sold and the transfer is vL + (1 −δn )�v, whereas
at belief μn−1, the good is not sold and the transfer is 0 (see Figure 1(a)). Subsequently,
a seller with belief μm for m ≤ n − 1, chooses a mechanism that induces two beliefs, 1
(with allocation (1, vL + (1 − δm )�v)) and μm−1 (with allocation (0,0)) (see Figure 1(b)).
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Figure 1. Mechanism and belief dynamics under 〈�∗, (π∗
v , r∗v )v∈V , μ∗〉 as a function of μ0.

Thus, starting from μ0, the game ends in n periods. Figure 1(c) illustrates how beliefs fall

conditional on no trade.

More precisely, the assessment 〈�∗, (π∗
v , r∗v )v∈V , μ∗〉 is as follows (the formal state-

ment is in Appendix D.2):

1. Along the equilibrium path:

(a) If at history ht , the seller’s beliefs, μ∗
t (ht ), are in [μ0, μ1 ), he chooses a mecha-

nism such that (qM∗
t (μ∗

t (ht )), xM∗
t (μ∗

t (ht ))) = (1, vL ), and the Blackwell experi-

ment satisfies that βM∗
t (μ∗

t (ht )|v) = 1 for v ∈ {vL, vH }.

(b) If at history ht , the seller’s beliefs, μ∗
t (ht ), are in [μn, μn+1 ) for n ≥ 1, the seller’s

mechanism satisfies the following. First, it induces two posteriors, μn−1 and 1.

Second, the allocation rule satisfies that (qM∗
t (1), xM∗

t (1)) = (1, vL+ (1−δn )�v),

whereas (qM∗
t (μn−1 ), xM∗

t (μn−1 )) = (0, 0). Finally, the Blackwell experiment

βM∗
t maps vL toμn−1, whereas it maps vH to bothμn−1 and 1 with positive prob-

ability. The probabilities βM∗
t (μn−1|vH ), βM∗

t (1|vH ) are chosen so that when the

seller observes μn−1, his updated belief coincides with μn−1, that is,

μn−1 = μ∗
t

(
ht

)
βM∗

t (μn−1|vH )

μ∗
t

(
ht

)
βM∗

t (μn−1|vH ) + (
1 −μ∗

t

(
ht

)) .



Theoretical Economics 19 (2024) Optimal mechanism for the sale of a durable good 875

2. Off the equilibrium path, the seller’s strategy coincides with the above, except that
when μ∗

t (ht ) = μn for some n ≥ 1, the seller may randomize between the mecha-
nism he offers on the path of play when his belief is μn, and the one he offers on
the path of play when his belief is μn−1.12

3. At each history ht , the buyer’s best response to the seller’s equilibrium offer at ht is
to participate in the mechanism and truthfully report her value.

An implementation in posted prices: We now argue that the equilibrium outcome in-
duced by 〈�∗, (π∗

v , r∗v )v∈V , μ∗〉 can be implemented in posted prices. Clearly, when the
seller’s beliefs are below μ1, the seller’s mechanism corresponds to selling the good
at a price of vL. Consider then the case in which the seller’s beliefs are in [μ1, μ2 ).
Note that when the realized allocation is trade, then the high-valuation buyer’s payoff is
vH − vL − (1 − δ)�v = δ�v. Instead, when the realized allocation is no trade, the seller’s
beliefs next period are μ0 = 0, so that the high-valuation buyer’s continuation payoff is
δ�v. That is, the high-valuation buyer is indifferent between obtaining the good at price
vL + (1 − δ)�v, and not obtaining the good and paying a price of vL in the next period.
Since the high-valuation buyer is indifferent between these two options, she is willing to
mix between buying at price vL + (1 − δ)�v and not obtaining the good. She does so in
a way that the seller’s belief is μ0 when the allocation is (0, 0). Because μ0 = 0, it follows
that when the seller’s belief is in [μ1, μ2 ), the high-valuation buyer buys with probability
1 at a price of vL + (1 − δ)�v. Working recursively through the equations, one can show
that when the seller’s prior is in [μn, μn+1 ), the mechanism is equivalent to posting a
price of vL + (1 − δn )�v. In this case, the low-valuation buyer chooses the (0, 0) alloca-
tion, whereas the high-valuation buyer mixes so that the seller’s belief is μn−1 when the
allocation is (0, 0).

Remark 2 (Direct vs. indirect implementation). It is interesting to contrast the im-
plementation under the posted-prices assessment 〈�∗, (π∗

v , r∗v )v∈V , μ∗〉 described above
with the implementation via posted prices. In the former, the buyer is truthful and the
seller rations the high-valuation buyer, which slows down the rate at which the seller’s
beliefs fall conditional on the good not being sold. Instead, in the implementation via
posted prices, the high-valuation buyer rejects the initial prices with positive probabil-
ity, which like rationing, prevents the seller from becoming pessimistic too quickly about
the buyer’s value. Since both implementations are payoff equivalent, the seller cannot
do better with rationing than with posted prices.

Remark 3 (Rationing). The mechanism used by the seller in 〈�∗, (π∗
v , r∗v )v∈V , μ∗〉 is what

Denicolo and Garella (1999) dub rationing. In a two-period model with a continuum of
buyer values, Denicolo and Garella (1999) show that if the seller observes only whether

12The need for mixing arises for technical reasons: it ensures that the high-valuation buyer’s continua-
tion payoffs are upper semicontinuous, and thus guarantees that a best response exists after any deviation
by the seller (see Appendix D.1). Indeed, we appeal to the results in Simon and Zame (1990) to simultane-
ously determine the buyer’s best response and the seller’s mixing.
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trade happens, the seller may prefer to ration higher valuation buyers instead of posting
a price in the first period, to induce a strong demand in the second period.

Whereas rationing does not dominate posted prices when values are binary, we show
in Doval and Skreta (2022) that both posted prices and rationing as in Denicolo and
Garella (1999) may be dominated in a two-period model with a continuum of buyer
values by the period-1 seller offering what we dub an obfuscated nonuniform pricing
mechanism. This mechanism sells the good to higher valuation buyers with probability
1, excludes lower valuation buyers with probability 1, and sells the good with probabil-
ity less than 1 to middle valuation buyers. Importantly, the period-2 seller only observes
whether the good is sold and middle valuation buyers report their values before know-
ing whether they will be rationed. That this mechanism dominates posting a price in
period 1 crucially depends on the finite-horizon assumption in Doval and Skreta (2022):
Because the period-2 seller can commit to exclude low-valuation buyers, the period-1
seller is willing to sacrifice trade with middle valuation buyers to induce higher period-2
prices than those that would be feasible if he instead posted a price in period 1.

Theorem 1 states that the seller’s payoff in the mechanism-selection game is unique
and coincides with that in the posted-prices assessment. Furthermore, the low-
valuation buyer’s payoff is also unique and equal to 0. Finally, except at the thresh-
old beliefs {μn}n≥1, the high-valuation buyer’s payoff is also unique. The multiplicity of
the high-valuation buyer’s payoff arises because when the seller’s prior belief is μn for
n ≥ 1, the seller is indifferent between trading with vL in n periods and in n− 1 periods,
whereas vH ’s rents are higher when vL receives the good in n−1 periods. All equilibrium
payoff vectors for vH can be obtained by randomizing between trading with vL in n and
n− 1 periods.13

To state Theorem 1, let u∗
H(μ0 ) and u∗

S(μ0 ) denote the high-valuation buyer’s and
seller’s payoff under the assessment 〈�∗, (π∗

v , r∗v )v∈V , μ∗〉 when the seller’s prior belief is
μ0.

Theorem 1. 〈�∗, (π∗
v , r∗v )v∈V , μ∗〉 is a PBE assessment. Furthermore, for n ≥ 0 and μ0 ∈

[μn, μn+1 ), the set of equilibrium payoffs of G(μ0 ) is the following:

E∗(μ0 ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{(
0, u∗

H(μ0 ), u∗
S(μ0 )

)}
,

n = 0, or n ≥ 1 and μ0 ∈ (μn, μn+1 ),{(
0, uH , u∗

S(μ0 )
)

: uH ∈ [
u∗
H(μ0 ), u∗

H(μ0 )/δ
]}

,

n ≥ 1, μ0 = μn.

(3)

13When the seller’s prior belief coincides with μn for n ≥ 1, an alternative PBE assessment exists, which
is payoff equivalent to 〈�∗, (π∗

v , r∗v )v∈V , μ∗〉 for the seller, but delivers a higher payoff to the high-valuation
buyer. For n ≥ 2, this PBE assessment is identical to 〈�∗, (π∗

v , r∗v )v∈V , μ∗〉 except that in the first period the
seller offers a mechanism that induces two posteriors, μn−2 and 1. When the posterior is 1, the allocation is
(1, vL + (1 − δn−1 )�v), whereas when the posterior is μn−2, the allocation is (0, 0). Instead, when n = 1, the
seller sells the good with probability 1 at a price of vL. Verifying that this is also a PBE assessment follows
immediately from the arguments in Appendix D.
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Theorem 1 together with the above discussion implies the following.

Corollary 1. All equilibrium outcomes of G(μ0 ) can be implemented via a sequence of
posted prices.14

Section 5 reviews the main steps of the proof of Theorem 1. Section 5.1 argues
that u∗

S(μ0) is a lower bound and an upper bound on the seller’s equilibrium pay-
off. Section 5.2 describes the arguments to show that 〈�∗, (π∗

v , r∗v )v∈V , μ∗〉 is a PBE
assessment. To show that u∗

S(μ0) is the seller’s unique equilibrium payoff and that
〈�∗, (π∗

v , r∗v )v∈V , μ∗〉 is a PBE assessment, we rely on an auxiliary program, which we de-
note by (OPT), and define in Section 4, to which we turn next.

4. Auxiliary program: Maximization of the virtual surplus

We now introduce a program, denoted by (OPT), that is our main tool of analysis. We
use (OPT) to show both that the seller’s unique equilibrium payoff corresponds to that
in the posted-prices assessment and that 〈�∗, (π∗

v , r∗v )v∈V , μ∗〉 is a PBE assessment. In
(OPT), the seller maximizes the dynamic analogue of the virtual surplus, which we de-
note by V S(·). Recall that in standard mechanism design the virtual surplus of a mech-
anism is an upper bound on the revenue from the mechanism that only depends on
the probability of trade, since the transfers are determined by the buyer’s participation
and truth-telling constraints (Section 4.1 provides the details of this derivation in our
setting). As we explain below, V S(·) also depends on the posterior distribution induced
by the mechanism’s Blackwell experiment (recall Equation (BCμt (ht )) on p. 872). More-
over, because of the dynamic nature of our problem, it also depends on the continuation
payoffs.

Formally,

max
(τ0,q0 ),u

V S
(
(τ0, q0 ), u, μ0

)
, (OPT)

such that

⎧⎪⎪⎨
⎪⎪⎩
τ0 ∈ �

(
�(V )

)
is Bayes’ plausible for μ0,

q0 : �(V ) �→ [0, 1],(∀μ1 ∈ �(V )
)
u(μ1 ) ∈ E∗(μ1 ),

where

V S
(
(τ0, q0 ), u, μ0

)

≡
∫
�(V )

⎡
⎢⎢⎢⎢⎣

q0(μ1 )
(
μ1vH + (1 −μ1 )v̂L(μ0 )

)
+(

1 − q0(μ1 )
)
δ

(
uS(μ1 ) +μ1uH(μ1 ) + (1 −μ1 )

×
(
uL(μ1 ) − μ0

1 −μ0

(
uH(μ1 ) − uL(μ1 )

)))
⎤
⎥⎥⎥⎥⎦τ0(dμ1 ), (4)

14In the no gap case, the seller’s best equilibrium outcome can also be sustained using posted prices.
Indeed, the seller can obtain the monopoly profit μ0vH by setting a price of vH in period 1 and, thereafter,
not selling the good.
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defines the virtual surplus. Note that the virtual surplus only depends on a mechanism’s
probability of trade, q0, and distribution over posteriors, τ0. In what follows, we identify
a mechanism M with its induced (τM, qM ) and also refer to the latter as the mechanism.

In (OPT), we not only allow the seller with prior μ0 to choose his most preferred
mechanism (τ0, q0 ) (accruing its virtual surplus), but also his preferred continuation
payoffs, subject to the constraint that these continuation payoffs are actually equilib-
rium payoffs. That is, u(μ1 ) ∈ E∗(μ1 ).

The objective in (OPT), which is the virtual surplus, consists of two terms. The first
term

q0(μ1 )
(
μ1vH + (1 −μ1 )v̂L(μ0 )

)
, (5)

represents how much surplus the seller can extract subject to the rents he must leave to
the high-valuation buyer (recall Equation (1)). Indeed, whenever μ1 �= 1 and q0(μ1 ) > 0,
the seller sells the good with positive probability to the low-valuation buyer. In that
case, vH gets rents equal to q0(μ1 )�v, which the seller pays with probability μ0. This, in
turn, explains why the virtual value of vL, v̂L(·) is evaluated at the seller’s prior belief, μ0,
instead of the posterior belief, μ1. The second term

(
1 − q0(μ1 )

)
δ

(
uS(μ1 ) +μ1uH(μ1 )

+ (1 −μ1 )

(
uL(μ1 ) − μ0

1 −μ0

(
uH(μ1 ) − uL(μ1 )

)))
, (6)

accounts for the rents, uH(μ1 ) − uL(μ1 ), the high-valuation buyer receives in terms of
continuation payoffs, which limit how much surplus the seller can extract in period 0
whenever he induces no trade with positive probability. That rents are accounted for
using the seller’s prior, μ0, rather than his posterior belief, μ1, reflects that conditional
on no trade, the seller’s beliefs about the buyer’s value may change so that the optimal
mechanism from period 1 onward may not coincide with what is optimal from period 0
onward. The wedge between the likelihood ratio of μ1 and μ0 reflects this disagreement
and it is the source of the time inconsistency of the commitment solution.

Whereas the construction of the upper bound on the seller’s payoff is reminiscent
of standard observations in mechanism design, it is important to note one challenge
relative to this literature, which explains why we allow the seller to select continuation
payoffs in (OPT). The standard argument for why a revenue-maximizing seller can se-
cure the virtual surplus of a mechanism is that if he were not, then there would be a
way to increase transfers so that the buyer’s participation and truth-telling constraints
would still be satisfied, whereas the seller’s revenue would increase. This argument does
not translate immediately to our game. Because continuation play may depend on the
mechanism M chosen by the seller, it may not be possible for him to secure the mech-
anism’s virtual surplus. To do so, the seller would need to offer a mechanism M′ that
coincides with M, except that transfers are higher. However, even if M′ induces the same
distribution over allocations and seller’s beliefs as M, this could trigger lower contin-
uation payoffs for the seller, preventing him from obtaining the virtual surplus of M.
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Program (OPT) allows us to circumvent this difficulty: Because in (OPT) the seller can
choose both the mechanism and the continuation payoffs, the seller does not need to
consider how his choice of mechanism may adversely affect his continuation payoffs.

Section 4.1 contains the details of the construction of the virtual surplus defined in
Equation (4) and verifies that it is an upper bound on the seller’s equilibrium payoff
(Lemma 2). The reader interested in the properties of the solution to (OPT) and how it is
used in the proof of Theorem 1 can proceed to Section 4.2 with little loss of continuity.

4.1 Derivation of the virtual surplus

We now derive the virtual surplus defined in Equation (4) by relying on Lemma 1 and
show that it is an upper bound on the seller’s equilibrium payoff. To do so, consider a
PBE assessment, 〈�, (πv, rv )v∈V , μ〉. Fix a history ht and let Mt denote the mechanism
offered by the seller at ht under the assessment. Let (τMt , qMt ) denote the distribution
over posteriors and the probability of trade associated with Mt . Furthermore, the PBE
assessment specifies continuation payoffs uMt when the seller offers mechanism Mt at
history ht . In what follows, we show the following.

Lemma 2. The virtual surplus of mechanism Mt is an upper bound on the sum of the
seller and the low-valuation buyer’s payoffs. That is,

US

(
ht

) +UL

(
ht

) ≤ V S
((
τMt , qMt

)
, uMt , μt

(
ht

))
.

Lemma 2 is the analogue of the result in mechanism design that the mechanism’s
allocation together with the lowest type’s utility in the mechanism pin down the seller’s
maximum revenue. Because the low-valuation buyer’s payoff is nonnegative, Lemma 2
also implies that the virtual surplus of Mt is an upper bound on the seller’s payoff. The
inequality in Lemma 2 shows that the mechanism’s virtual surplus is the maximum pay-
off the seller and the low-valuation buyer can share. As we explain in Section 5, once
we show the seller captures the entirety of the virtual surplus, the inequality in Lemma 2
implies low-valuation buyer’s payoff is 0 in any equilibrium.

To see why Lemma 2 holds, note that Lemma 1 implies that the seller’s equilibrium
payoff at ht , US(ht ), can be written as

US

(
ht

) =
∫
�(V )

(
xMt (μt+1 ) + (

1 − qMt (μt+1 )
)
δuMt

S (μt+1 )
)
τMt (dμt+1 ), (7)

where uMt
S (μt+1 ) is shorthand notation for the seller’s continuation payoff when at his-

tory ht , he offers Mt and the output message is μt+1.15 Equation (7) uses Lemma 1 as
follows. First, the seller’s payoff from offering Mt is written under the assumption that
the buyer participates in the mechanism and truthfully reports her value. Second, it
uses Lemma 1 to write the mechanism in terms of the distribution over posteriors τMt

and the allocation (qMt , xMt ).

15This continuation payoff can also depend on ht , but we omit this dependence to simplify notation.



880 Doval and Skreta Theoretical Economics 19 (2024)

In particular, the mechanism Mt together with the continuation payoffs (uMt
L , uMt

H )
satisfy the following constraints. First, the buyer prefers to participate in the mechanism
for both her values, that is, for v ∈ {vL, vH } the following holds:∫

�(V )

(
vqMt (μt+1 ) − xMt (μt+1 ) + (

1 − qMt (μt+1 )
)
δuMt

v (μt+1 )
)
βMt (dμt+1|v)

≥ uMt
v (∅), (PCht ,v)

where the left-hand side of Equation (PCht ,v) is the buyer’s payoff at ht , Uv(ht ), and
uMt
v (∅) is shorthand notation for the buyer’s continuation payoff when at history ht , the

seller offers Mt and the buyer rejects. Also, the buyer prefers to truthfully report her
value to the mechanism, that is, for v ∈ {vL, vH } and v′ �= v, the following holds:∫

�(V )

(
vqMt (μt+1 ) − xMt (μt+1 )

+ (
1 − qMt (μt+1 )

)
δuMt

v (μt+1 )
)(
βMt (dμt+1|v) −βMt

(
dμt+1|v′))

≥ 0. (ICht ,v,v′)

The above expressions implicitly use Lemma 1 in one more way. By Lemma 1, the
assessment 〈�, (πv, rv )v∈V , μ〉 is a public PBE, so that the continuation payoff vec-
tor uMt (μt+1 ) ≡ (uMt

L (μt+1 ), uMt
H (μt+1 ), uMt

S (μt+1 )) is an equilibrium payoff vector of
G(μt+1 ). Formally, uMt (μt+1 ) ∈ E∗(μt+1 ).

Equations (PCht ,v) and (ICht ,v,v′ ) are analogous to the participation and incentive
compatibility constraints one would obtain in mechanism design except for the follow-
ing: The participation constraint is potentially type-dependent (the right-hand side is
uMt
v (∅)). To sidestep this challenge, we ignore the right-hand side of the low-valuation

buyer’s participation constraint. Instead, we use the following identity to solve for the
transfers given the low-valuation buyer’s utility in the mechanism, UL(ht ):∫

�(V )

(
vLq

Mt (μt+1 ) − xMt (μt+1 )

+ (
1 − qMt (μt+1 )

)
δuMt

L (μt+1 )
)
βMt (dμt+1|vL ) = UL

(
ht

)
. (8)

Equation (8) can be used to rewrite Equation (ICht ,v,v′ ) for v = vH as follows:∫
�(V )

(
vHqMt (μt+1 ) − xMt (μt+1 ) + (

1 − qMt (μt+1 )
)
δuMt

H (μt+1 )
)

)βMt (dμt+1|vH )

≥
∫
�(V )

[
�vqMt (μt+1 ) + (

1 − qMt (μt+1 )
)
δ
(
uMt
H (μt+1 ) − uMt

L (μt+1 )
)]
βMt (dμt+1|vL )

+UL

(
ht

)
. (9)

Equations (8) and (9) already impose constraints on the maximum revenue the seller
can make in period t when the low-valuation buyer’s payoff is UL(ht ). Indeed, like in
standard mechanism design, the utility of vL and the truth-telling constraint for vH de-
termine the maximum expected transfer the seller can extract from the buyer in period
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t. Replacing the upper bound on the expected transfers obtained from these equations
in the seller’s payoff (Equation (7)), we obtain an upper bound on the seller’s revenue
at ht when he offers mechanism Mt . It is immediate to check that this upper bound
corresponds to V S((τMt , qMt ), uMt , μt(ht )) −UL(ht ). Lemma 2 then follows.

Having established that (OPT) is an upper bound on the seller’s equilibrium pay-
off, Section 4.2 studies properties of its solution, which are important for the proof of
Theorem 1.

4.2 Properties of the solution to (OPT)

The main result in this section, Proposition 1, shows two properties of the solution to
(OPT) that are important to prove that the seller’s unique equilibrium payoff is u∗

S(μ0).
As we explain next, a key difficulty that (OPT) allows us to circumvent is the analysis of
the belief dynamics in the game.

An important result in the bargaining literature is the skimming lemma, which
states that incentive compatibility of the buyer’s behavior implies that the expected dis-
counted probability of trade of vH is higher than that of vL (see, e.g., Fudenberg, Levine,
and Tirole (1985)). This property immediately implies that along the path of play the
seller’s beliefs fall conditional on no trade. As a consequence, prices must fall along the
path of play.

Contrast this to the game we analyze in which the seller offers mechanisms that en-
able him to design how much he observes about the buyer’s choices. In particular, the
seller can choose how fast he learns about the buyer’s value conditional on no trade; he
could even choose to become more optimistic about the buyer’s value conditional on
no trade.16 On the one hand, this would allow the seller to avoid the belief dynamics
associated with posted prices, and hence avoid the temptation to trade more often with
vL in future rounds. On the other hand, this comes at a cost. Lemma 1 implies that the
mechanism’s allocation is measurable with respect to the information generated by the
mechanism and this information is, in turn, subject to the Bayes’ plausibility constraint.
This implies that for the seller’s beliefs conditional on no trade to fall slowly (or not fall
at all), it must be that the seller is selling the good to vH with small probability.

It turns out that (OPT) is useful to discipline belief dynamics. Whereas it may not be
obvious how to rule out that an equilibrium in which the seller’s beliefs may sometimes
go up conditional on no trade exists, it turns out that this is never the case in a solution
to (OPT). Indeed, as we establish in Proposition 1 below, it is never optimal to not sell the
good and induce a belief above the prior. Furthermore, whenever μ0 > μ1, conditional
on selling the good with positive probability, the seller sells the good only to the high-
valuation buyer.

16Whereas the truth-telling equations (ICht ,v,v′ ) can be used to derive a “monotonicity” condition anal-
ogous to that in the skimming lemma, this condition only implies that on average the expected probability
of trade of vH must be higher than that of vL:∫

�(V )

[
�vqMt (μt+1 ) + (

1 − qMt (μt+1 )
)
δ
(
uMt
H (μt+1 ) − uMt

L (μt+1 )
)](

βMt (dμt+1|vH ) −βMt (dμt+1|vL )
) ≥ 0.
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Proposition 1. Suppose that μ0 ≥ μ1 and let (τ0, q0 ), u denote a solution to (OPT).
Then the following hold:

(a) It is never optimal to induce a belief μ1 ≥ μ0 and not sell the good. That is,∫
[μ0,1]

(
1 − q0(μ1 )

)
τ0(dμ1 ) = 0.

(b) Furthermore, if μ0 > μ1 and the seller induces μ1 and sells the good (i.e., q0(μ1 ) >
0), then μ1 = 1.

The proof is in Appendix B. In what follows, we provide intuition for Proposition 1,
starting from part (a). To see why not selling the good and at the same time induce a
belief μ1 ≥ μ0 is not optimal, note the following. First, associated to any continuation
payoff, u(μ1 ), there is a mechanism chosen by the seller when his belief is μ1, and con-
tinuation payoffs for the seller and the buyer in the event that the good is not sold. This
implies that, conditional on inducing a belief μ1, the seller with belief μ0 could always
choose today the mechanism and the continuation payoffs associated with u(μ1 ) in a
solution to (OPT). Second, the seller with belief μ0 below μ1 pays rents to vH with lower
probability than the seller with belief μ1 (after grouping terms, the term pre-multiplying
uH(μ1 ) − uL(μ1 ) in Equation (6) is positive). It follows that the seller with belief μ0

prefers to accrue today the payoff from the mechanism (and continuation payoffs) that
induce u(μ1 ), contradicting that it is optimal to induce μ1 and not sell the good.

Part (b) follows from the observation that a seller with prior above μ1 prefers to trade
with vL in at least two periods (recall that v̂L(μ0 ) < 0 when μ0 > μ1). Thus, it is never
optimal to sell the good to vL with positive probability today. It follows that if q0(μ1 ) > 0,
then the seller must assign the good to vH , and hence μ1 = 1.

Proposition 1 implies that a solution to (OPT) never induces posteriors in [μ0, 1).
This, in turn, delivers the following expression for the value of (OPT), which in a slight
abuse of notation, we denote by V S(μ0 ):

V S(μ0 ) ≡ max
τ0,u

τ0
(
{1}

)
vH +

∫
[0,μ0 )

δ

[
uS(μ1 ) + uL(μ1 )

+
(
μ1 −μ0

1 −μ0

)(
uH(μ1 ) − uL(μ1 )

)]
τ0(dμ1 ). (10)

Equation (10) simply states that the solution to (OPT) can be described by the probabil-
ity of selling to vH today (the probability of inducing a belief μ1 = 1) and the probability
with which the good is not sold and a belief below the prior is induced. One distribution
over posteriors is of particular interest in what follows: the one that splits μ0 between
1 (with q0(1) = 1) and μ1 < μ0 (with q0(μ1 ) = 0). Bayes’ plausibility implies that the
weights on 1 and μ1 are

μ0 −μ1

1 −μ1
and

1 −μ0

1 −μ1
,
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respectively. Note that this is precisely the kind of mechanism that the seller uses in the
posted-prices assessment. Corollary 2 shows that these are essentially the distributions
over posteriors that solve the problem in Equation (10).

Corollary 2. The value of (OPT), V S(μ0 ), equals the value of

max
G∈�([0,μ0 ))

max
u

∫
[0,μ0 )

[
μ0 −μ1

1 −μ1
vH + 1 −μ0

1 −μ1
δ

(
uS(μ1 ) + uL(μ1 )

+
(
μ1 −μ0

1 −μ0

)(
uH(μ1 ) − uL(μ1 )

))]
G(dμ1 ). (11)

The proof is in Appendix B and is a consequence of the constraint that τ0 is Bayes’
plausible for μ0. Given the preceding discussion, the term in the square brackets in-
side the integral in Equation (11) is the payoff from splitting μ0 between 1 and μ1 < μ0.
Corollary 2 implies that, for a fixed choice of continuation payoffs, the solution to the
problem in Equation (10) is as if the seller were randomizing over posterior distribu-
tions that split the prior between 1 (and selling the good) and μ1 < μ0 (and not selling
the good). In other words, if posteriors μ1 and μ′

1 are on the support of τ0, then the seller
is indifferent between splitting μ0 between μ1 and 1 and splitting μ0 between μ′

1 and 1.
As a consequence, to determine the optimal τ0 it is enough to compare the payoffs of
the splittings of μ0 between μ1 and 1 for different μ1.

Because conditional on not selling the good the seller induces beliefs below the prior,
Equation (11) shows that for a fixed distribution G, the seller trades off the sum uS + uL
against the high-valuation buyer’s rents, uH − uL, when choosing continuation payoffs.
Indeed, if continuation payoffs u, u′ ∈ E∗(μ1 ) exist such that (uH −uL, uS +uL ) � (u′

H −
u′
L, u′

S + u′
L ), the solution to the program in Equation (11) would choose u over u′ if the

value of the integrand is higher for u. That is, the seller may forgo maximizing uS +uL—
and hence, by Lemma 2 potentially forgo the maximum continuation virtual surplus—
if this could lead to lower rents for the high-valuation buyer. As we explain in Section 5
below, we circumvent this trade-off in the proof of Theorem 1 by showing that for each
μ1 < μ0 the sum uS + uL is unique, which in turn relies on excluding the existence of
payoffs like u and u′.

5. Proof of Theorem 1: Key steps

Section 5 overviews the main steps of the proof of Theorem 1. Taking as given that
〈�∗, (π∗

v , r∗v )v∈V , μ∗〉 is a PBE assessment, Section 5.1 reviews the main steps to show that
it achieves the unique equilibrium payoff for the seller and the low-valuation buyer, and
that except for the threshold beliefs, {μn}n≥1, a unique equilibrium outcome exists, and
hence a unique equilibrium payoff for the high-valuation buyer as well. Section 5.2 re-
views the main steps to show that 〈�∗, (π∗

v , r∗v )v∈V , μ∗〉 is a PBE assessment.

5.1 Characterization of the equilibrium payoffs of G(μ0 )

We show u∗
S(μ0) is both a lower bound and an upper bound on the seller’s equilibrium

payoff. That is, we show the seller can never do better nor worse than if he were limited
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to choose prices in each period so that having access to a richer action space does not in-
crease nor decrease the seller’s payoff. Program (OPT) is key to show u∗

S(μ0) is the seller’s
unique equilibrium payoff. The proof that u∗

S(μ0) is an upper bound on the seller’s equi-
librium payoff follows from showing that u∗

S(μ0) is the value of (OPT). Instead, the proof
that u∗

S(μ0) is a lower bound on the seller’s payoff uses a constrained version of (OPT)
to then apply the logic in Gul, Sonnenschein, and Wilson (1986): If an equilibrium in
which the seller earns less than u∗

S(μ0) exists, the seller can always undercut the price in
the posted-prices assessment and earn close to u∗

S(μ0).
Using the property in the posted-prices assessment that along the path of play be-

liefs fall, the proof of Theorem 1 proceeds by induction on the interval the seller’s prior
belongs to. For each n ≥ 0, we establish two results. First, for all μ0 ∈ [μn, μn+1 ), the set
of equilibrium payoffs corresponds to that in Theorem 1 (cf. Equation (3)). Second, for
all μ0 ≥ μn, the seller can guarantee a certain payoff, denoted u∗

S(μ0, n), which coincides
with u∗

S(μ0) for μ0 ∈ [μn, μn+1 ). This payoff is obtained by the seller emulating the strat-
egy that sells the good to vL in n periods in the posted-prices assessment (Figure 1(a)):
The seller uses a mechanism that splits his beliefs between 1 and μn−1; when the be-
lief is 1, the good is sold at a price of vL + (1 − δn )�v, and when the belief is μn−1, the
good is not sold and play proceeds according to the posted-prices assessment. As we
explain below, this second result is key to establish in the (n + 1)th step of the induc-
tion that the seller can guarantee the payoff from the posted-prices assessment when
μ0 ∈ [μn+1, μn+2 ).

To illustrate the main steps of the proof that u∗
S(μ0) is the seller’s unique equilibrium

payoff, fix n ≥ 1.17 Suppose that for all m< n we have already shown that (i) Theorem 1
holds for all μ0 ∈ [μm, μm+1 ) and (ii) the seller can guarantee u∗

S(μ0, m) for all μ0 ≥ μm.
In what follows, we argue that (i) Theorem 1 holds for μ0 ∈ [μn, μn+1 ) and (ii) the seller’s
payoff is at least u∗

S(μ0, n) for μ0 ≥ μn.

Posted prices maximize the virtual surplus: To show that the value of (OPT) corre-
sponds to the seller’s payoff in the posted-prices assessment, we argue that splitting the
prior between 1 and μn−1 dominates all other splittings. Corollary 2 implies that this is
enough to show that u∗

S(μ0 ) = V S(μ0 ). In what follows, we first argue that, conditional
on inducing a belief μ1 <μn, the seller places weight on at most μn−1 (and on μn−2 only
if μ0 = μn). We then argue it is never optimal to induce a belief μ1 ∈ [μn, μ0 ).

The inductive hypothesis—which identifies the continuation payoffs below μn—and
the properties of the posted-prices assessment imply that conditional on inducing a be-
lief in [0, μn ), the solution to the problem in Equation (11) places weight on at most
{μn−2, μn−1}. First, except at the threshold beliefs {μm}m≤n−1, the inductive hypothe-
sis pins down the value of the integrand in Equation (11) for μ1 < μn. Second, because
at the threshold beliefs the seller’s and the low-valuation buyer’s payoff are unique, the
seller then chooses the continuation payoff that minimizes the high-valuation buyer’s
rents, u∗

H(·), as is the case in the posted-prices assessment. Third, relying on the proper-
ties of the posted-prices assessment, Lemma C.2 shows that inducing beliefs in [0, μn )
other than {μn−2, μn−1} is not optimal. Furthermore, μn−2 can be in the support of τ0

17The proof also verifies that Theorem 1 holds for μ0 ∈ [0, μ1 ) (see Appendix C.2.1).
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only if μ0 = μn. This is intuitive. On the one hand, it can only be optimal to induce
the threshold beliefs {μm}m≤n−1: For m≤ n− 1, both μ1 ∈ (μm, μm+1 ) and μm imply that
trade happens with vL in m periods; however, inducing μm allows the seller to trade with
vH with a higher probability. On the other hand, the indifference condition that defines
the threshold beliefs implies that because μ0 ≥ μn, inducing beliefs below μn−2 cannot
be optimal (see Lemma C.1).

To conclude the proof that u∗
S(μ0 ) is an upper bound on V S(μ0), we show in

Lemma C.3 that inducing posteriors in [μn, μ0 ) is not optimal. Whereas Proposition 1
implies that at the solution to (OPT) the seller’s beliefs go down conditional on no trade,
it does not say how fast they go down. Indeed, it could be optimal to induce beliefs in
[μn, μ0 ) if at the induced beliefs continuation equilibria exist where the seller somehow
manages to slowly trade with vH so as to maximally delay trade with vL. As we show in
Appendix C.2, this cannot be optimal for μ0 close to μn: The closer to μn, the smaller
the probability that the seller with belief μ0 can trade with vH if conditional on no trade,
his beliefs must remain above μn. It follows that μ∗

0 small enough exists such that if the
seller’s prior μ0 is in [μn, μ∗

0], it is better to trade with vL in n periods in exchange of
increasing the probability of trading with vH today.

More formally, note that Lemma C.2 implies that for μ0 ∈ [μn, μn+1 ), the value of
(OPT), V S(μ0), is bounded above by

V S(μ0 ) ≤ max
{
u∗
S(μ0 ),

μ0 −μn

1 −μn

vH + 1 −μ0

1 −μn

δV S[μn,μ0 )

}
, (12)

where V S[μn,μ0 ) is the supremum of the value function V S(μ) on [μn, μ0]. To see why
Equation (12) holds, note the following. First, if the solution to (OPT) places positive
mass below μn, Lemma C.2 implies that V S(μ0 ) = u∗

S(μ0 ), since the seller places weight
on μn−1 (or μn−2 if μ0 = μn). The equality follows from Corollary 2 and that u∗

S(μ0) cor-
responds to splitting μ0 between 1 and μn−1. Second, if the solution to (OPT) places
weight on [μn, μ0 ), the second term on the right-hand side of Equation (12) is an upper
bound to V S(μ0). After all, (i) (μ0 − μn )/(1 − μn ) is the largest weight that can be as-
signed to vH while still remaining on [μn, μ0 ) and (ii) the remaining weight corresponds
to some μ1 ∈ [μn, μ0 ) with payoff(

uS(μ1 ) + uL(μ1 ) + (1 −μ1 )

(
μ1

1 −μ1
− μ0

1 −μ0

)(
uH(μ1 ) − uL(μ1 )

))
≤ uS(μ1 ) + uL(μ1 ) ≤ V S[μn,μ0 ),

where the first inequality follows from μ1 < μ0 and the second from Lemma 2 and the
definition of V S[μn,μ0 ) together with μ1 ∈ [μn, μ0 ).

For μ∗
0 close to μn, the probability of trading with vH today and at the same time

remaining above μn is small and u∗
S(μ0 ) attains the maximum on the right-hand side

of Equation (12) for μ0 ∈ [μn, μ∗
0] (see Lemma C.3 for details). In other words, μ∗

0 small
enough exists such that for all μ0 ∈ [μn, μ∗

0], the value of (OPT), V S(μ0 ), coincides with
the seller’s payoff in the posted-prices assessment, u∗

S(μ0 ). Replacing μn with μ∗
0 in

Equation (12), one can argue that for beliefs μ0 close enough to μ∗
0, u∗

S(μ0 ) is also an
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upper bound on the seller’s payoff. Proceeding this way, one establishes that u∗
S(μ0 ) is

an upper bound on the value of (OPT) for all beliefs μ0 ∈ [μn, μn+1 ).

Seller can guarantee the payoff from selling to vL in n periods: We show in Proposi-
tion C.2 that the seller can guarantee the payoff u∗

S(μ0, n) for μ0 ≥ μn, and hence the
payoff of the posted-prices assessment for μ0 ∈ [μn, μn+1 ). The logic is similar to that in
Gul, Sonnenschein, and Wilson (1986): We show that the seller can always undercut the
price in the posted-prices assessment—say, by offering a mechanism that sells the good
for vL + (1 − δn )�v − δF for some small F > 0—and earn close to u∗

S(μ0, n).
Provided the high-valuation buyer participates in the mechanism with positive

probability (note that the low-valuation buyer always rejects), we show that F small
enough can be chosen so that the seller’s beliefs conditional on rejection are μn−1. That
beliefs conditional on rejection are μn−1, in turn, implies the seller earns a payoff close
to u∗

S(μ0, n): First, it implies that the high-valuation buyer’s acceptance probability coin-
cides with the probability of selling the good in the posted-prices assessment. Second,
because μn−1 < μn, the inductive hypothesis implies the seller’s continuation payoffs
coincide with those in the posted-prices assessment. Thus, it suffices to show that the
seller can guarantee that the high-valuation buyer participates in the mechanism.

Proposition 2 is key to showing that the high-valuation buyer does not reject the
mechanism with probability 1.

Proposition 2 (Buyer’s maximal rents for μ0 ≥ μn). For all μ0 ≥ μn, uH ≤ δn−1�v.

The proof is in Appendix C.3. Proposition 2 implies the high-valuation buyer cannot
reject the price of vL+(1−δn�v)−δF with probability 1, as doing so can yield a payoff of
at most δδn−1�v. Together with the argument in the preceding paragraph, we conclude
that as F becomes small the seller can secure u∗

S(μ0, n) for μ0 ≥ μn.
To prove Proposition 2, we show that if the high-valuation buyer makes at least

δn−1�v, the seller makes at most u∗
S(μ0, n − 1) (Lemma C.5). Because by the inductive

hypothesis, the seller can guarantee u∗
S(μ0, n − 1), and we conclude the high-valuation

buyer can make at most δn−1�v. To show Lemma C.5, we first argue that whenever the
high-valuation buyer makes at least δn−1�v, the seller’s payoff is bounded above by the
value of a constrained version of (OPT) stated in Lemma C.4. In this program, the seller
maximizes the virtual surplus subject to the constraint that the high-valuation buyer ob-
tains at least δn−1�v. Relying on Proposition 1 and that the value of (OPT) at μn is the
seller’s payoff in the posted-prices assessment, Lemma C.5 shows that the value of this
constrained program is exactly u∗

S(μ0, n− 1).
The upper and lower bound results for μ0 ∈ [μn, μn+1 ) imply that u∗

S(μ0) is the seller’s
unique equilibrium payoff. This is key to show that the buyer’s payoff is as in Theorem 1.

Buyer’s payoff for μ0 ∈ [μn, μn+1 ): We first argue that the low-valuation buyer’s payoff
is 0 in any equilibrium.

Proposition 3 (uL = 0 for μ0 ∈ [μn, μn+1 )). Let μ0 ∈ [μn, μn+1 ) and suppose the follow-
ing hold. First, uS ≥ u∗

S(μ0 ) for all u ∈ E∗(μ0 ). Second, u∗
S(μ0 ) = V S(μ0 ). Then, for all

u ∈ E∗(μ0 ), uL = 0.
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In other words, when, as we have argued above, the seller can capture the entirety of
the maximum virtual surplus, there is nothing left for the low-valuation buyer.

Proof. We have that for all u ∈ E∗(μ0 ), the following holds:

u∗
S(μ0 ) + uL ≤ uS + uL ≤ u∗

S(μ0 ),

where the first inequality follows from uS ≥ u∗
S(μ0 ), and the second inequality follows

from Lemma 2 and that u∗
S(μ0 ) is the value of (OPT). It follows that uL = 0 for all u ∈

E∗(μ0 ).

As we show in Appendix C.2, that the seller can capture the maximum virtual surplus
also implies the uniqueness of the high-valuation buyer’s payoff except at μn, as the
solution to (OPT) is unique except at μn.

5.2 〈�∗, (π∗
v , r∗v )v∈V , μ∗〉 is an equilibrium assessment

The analysis so far has relied on the observation that (0, u∗
H(μ0 ), u∗

S(μ0 )) is an equilib-
rium payoff. The rest of the proof of Theorem 1 shows that 〈�∗, (π∗

v , r∗v )v∈V , μ∗〉 is an
equilibrium assessment (see Appendix D). To do this, we first complete the equilibrium
assessment by specifying the seller’s and the buyer’s strategy after every history (see Ap-
pendices D.1–D.2). We then show that given beliefs and continuation payoffs, neither
the buyer nor the seller have a one shot deviation (Appendix D.3). The results in Athey
and Bagwell (2008) imply that this is enough to conclude that 〈�∗, (π∗

v , r∗v )v∈V , μ∗〉 is an
equilibrium assessment.

Seller’s strategy: Except for the cutoff beliefs {μn}n≥1, we specify that the seller plays
the mechanism described in the posted-prices assessment on and off the path of play.
Instead, the seller’s strategy off the path of play when his beliefs are in {μn}n≥1 needs to
be determined jointly with the buyer’s strategy, to which we turn next.

Buyer’s strategy (Appendix D.1) To complete the buyer’s strategy, we first classify mech-
anisms according to whether they satisfy the participation and truth-telling constraints
for the buyer given the continuation payoffs under 〈�∗, (π∗

v , r∗v )v∈V , μ∗〉. For mecha-
nisms that satisfy these constraints, we specify that the buyer indeed participates and
truthfully reports her value to the mechanism.

To specify the buyer’s strategy for mechanisms that fail to satisfy either constraint,
one needs to determine simultaneously the buyer’s best response and the seller’s beliefs
conditional on observing either the buyer reject the mechanism, or the buyer accept the
mechanism and the output message that results from the buyer’s report. On the one
hand, the buyer’s continuation payoff depend on the seller’s beliefs, which are deter-
mined by the buyer’s strategy. On the other hand, whether the buyer’s strategy is a best
response depends on her continuation payoff. We use the results in Simon and Zame
(1990) to solve for this fixed point. It is at this point where the possibility that the seller
randomizes when indifferent between trading with vL in n or n − 1 periods arises to
ensure that the buyer’s best response is well-defined.
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By specifying the buyer’s strategy in the way described above, we ensure that the
buyer is best responding to the seller’s strategy given her continuation payoff. It remains
to show that the seller has no one-shot deviations.

The seller has no one-shot deviations (Appendix D.3): To show that the seller does not
have one-shot deviations, we rely once again on (OPT). For concreteness, suppose we
are at a history ht and let μt denote the seller’s belief at ht .

We show in Appendix D.3 that the payoff from any deviation at history ht is bounded
above by the value of (OPT) evaluated at μ0 = μt subject to the constraint that for pos-
terior beliefs μt+1 below μt , the continuation payoffs for the buyer and the seller are
given by (0, u∗

H(μt+1 ), u∗
S(μt+1 )). The results in Section 5.1 imply that the value of this

program coincides with u∗
S(μt ). Since this is the seller’s payoff under the equilibrium

strategy at ht , it follows that the seller has no one-shot deviations at ht .
Two observations are key to show that this upper bound holds. The first is one we

have already used in the solution to (OPT): For threshold beliefs μn below μt , the seller
with prior belief μt prefers the continuation payoff vector in which the high-valuation
buyer receives her lowest equilibrium payoff, u∗

H (μn). Thus, by selecting continuation
payoffs in this way, we exaggerate the payoff that the seller can guarantee from a devia-
tion. The second is that any mechanism Mt together with the buyer’s best response to
Mt define a new mechanism, M′

t , that satisfies the buyer’s participation and truth-telling
constraint given the continuation payoffs associated to Mt . Thus, we can use mecha-
nism M′

t together with the continuation payoffs specified by the assessment when Mt is
offered to bound the revenue from Mt by its virtual surplus. This completes the descrip-
tion of the main steps in the proof of Theorem 1.

6. Conclusions

This is the first paper to characterize all equilibrium outcomes in an infinite-horizon,
mechanism-selection game between an uninformed designer and a privately informed
agent with persistent private information under limited commitment. We do so by mar-
rying insights from the literatures on bargaining and mechanism design. Following the
results in our previous work, Doval and Skreta (2022), we endow the seller with a class
of mechanisms that enables the seller to design his posterior beliefs about the buyer’s
value. The combination of mechanism design and information design elements was key
in obtaining a tractable characterization. The revelation principle in Doval and Skreta
(2022) also allows us to simplify the buyer’s equilibrium behavior, so that for the most
part we were able to focus on the strategic considerations that pertain to the seller.

Properties of the solution to (OPT) can provide a useful benchmark for the analysis
of the designer’s best equilibrium payoff in other settings with quasilinear utility. In such
settings, the virtual surplus is an upper bound on the designer’s equilibrium payoff. Fur-
thermore, when there is a continuum of types, the application of the envelope theorem
implies that the designer’s payoff can be represented as the virtual surplus. Program
(OPT) is exactly like the relaxed program in standard mechanism design: If a solution
to (OPT) satisfies the ignored constraints, then a PBE of the mechanism-selection game
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exists that implements the solution to (OPT). However, as the analysis of Laffont and
Tirole (1993) underscores, it is not immediate that the solution to the relaxed problem
satisfies all constraints, and hence can be implemented as an equilibrium outcome.18

Nevertheless, like the solution to the relaxed problem in standard mechanism design,
the solution to (OPT) provides a natural benchmark to study the properties of the de-
signer’s optimal mechanism. As the analysis in this paper shows, the properties of the
solution to (OPT) can be derived with little knowledge of how continuation equilibria
look like, which reinforces its applicability (recall the results in Proposition 1).

It is an open question whether posted prices are optimal outside of the binary-values
case. In particular, we expect that belief dynamics will be more difficult to analyze. To
see this, note that incentive compatibility implies that the probability of trade is increas-
ing in the buyer’s value only on average (cf. foonote 16). Thus, in contrast to the analysis
of the posted-prices game, we lose the result that conditional on no trade the seller’s
beliefs are a truncation of the prior. With binary types, we circumvented this issue with
Proposition 1, (a), which shows that the solution to (OPT) never induces beliefs above
the prior. We expect that arguments similar to those in the proof of Proposition 1 can
be used to rule out beliefs that dominate the prior in the hazard rate order. However,
outside the binary-types case, this is not enough to restrict continuation beliefs to be
truncations of the prior.

Whereas some of these difficulties could be circumvented by taking advantage that
(OPT) is in essence an information design problem, this would require establishing fur-
ther results. For instance, with finitely many types, information design results bound
the number of beliefs induced at a solution of (OPT) by the number of types (Rockafel-
lar, 1970). However, the optimality of posted prices implicitly requires that the seller uses
at most two beliefs. Furthermore, with a continuum of types, the solution to (OPT) in-
volves solving an information design problem with a continuum of states for which the
existing tools do not readily apply. Indeed, the tools in Gentzkow and Kamenica (2016),
Kolotilin (2018), and Dworczak and Martini (2019) apply to settings where the objective
function depends only on the posterior mean. Instead, the virtual surplus may depend
on the entire shape of the distribution, and not just the posterior mean.

Appendix A: Auxiliary results

Appendix A collects a series of lemmas that we use in the proofs, starting from the fol-
lowing inequality, which we state as a lemma for easy reference.

Lemma A.1 (Maximum surplus). For any μ0 and any payoff u ∈ E∗(μ0 ), the following
holds:

uS +μ0uH + (1 −μ0 )uL ≤ μ0vH + (1 −μ0 )vL. (A.1)

Lemma A.2 (Equilibrium payoffs for μ ∈ {0, 1}). The following hold:

18In their binary-type regulation model, Laffont and Tirole (1993) show that the solution to the relaxed
program violates the analogue to the low-valuation buyer’s truth-telling constraint.
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(a) For μ0 = 0, E∗(μ0 ) = {(0, �v, vL )}.

(b) For μ0 = 1, E∗(μ0 ) = {(0, 0, vH )}.

Proof of Lemma A.2. We first prove part (a). Let uL(0) denote the low-valuation
buyer’s highest equilibrium payoff at μ0 = 0. We claim that uL(0) = 0. Toward a con-
tradiction, assume not and consider a PBE assessment in which uL ≥ uL(0) − ε > 0 for
some ε > 0. Lemma A.1 implies uS + uL ≤ vL, so that uS ≤ vL − (uL(0) − ε). Consider
the following deviation for the seller: the seller offers the buyer a mechanism that sells
the good with probability 1 at vL − δuL(0) − η for some small η > 0. The low-valuation
buyer must accept the mechanism: Indeed, if the low-valuation buyer rejects the mech-
anism with positive probability, the seller’s beliefs upon rejection are 0, in which case
the low-valuation buyer obtains at most δuL(0), a contradiction. It follows that the
seller has a deviation: The seller’s payoff under the new mechanism is vL − δuL(0) − η,
which for η < (1 − δ)uL(0) + ε is larger than vL − (uL(0) − ε). This contradicts that
an assessment exists in which uL > 0, and hence uL(0) = 0. Note that the same proof
shows that the seller obtains at least vL in any PBE assessment. Finally, uS ≥ vL and
Lemma A.1 imply that vL ≤ uS + uL ≤ vL. Thus, the seller’s unique equilibrium payoff
is vL.19 That uH = �v follows from noting that the seller trades with vL immediately
with probability 1 and incentive compatibility. Indeed, given the seller’s belief μ0 and
an equilibrium payoff, u, let QL(μ0, u), QH(μ0, u) denote the total discounted proba-
bility of trade with vL and vH , respectively. Then the equilibrium payoffs satisfy that
uL + �vQL(μ0, u) ≤ uH ≤ uL + �vQH(μ0, u). That uH = �v follows from noting that
QL(μ0, u) = 1 implies QH(μ0, u) = 1, and uL = 0.

We now prove part (b). Similar steps as those used to establish that uL(0) = 0 imply
that uH(1)—the high-valuation buyer’s maximum equilibrium payoff at μ0 = 1—is 0 and
that the seller’s equilibrium payoff is at least vH . Furthermore, because uS + uH ≤ vH
(cf. Lemma A.1) and uH = 0, the seller’s unique equilibrium payoff is vH . Finally, it is
immediate that uH = 0 implies that uL = 0.

Lemma A.3 (Buyer’s rents vs. seller’s payoff). Let μ0 ∈ �(V ) and u ∈ E∗(μ0 ) be such that
uL ≥ F and uH > F +�v. Then uS < vL − F .

Proof of Lemma A.3. Lemma A.1 and the conditions on u ∈ E∗(μ0 ) imply uS ≤ μ0vH +
(1 −μ0 )vL −μ0uH − (1 −μ0 )uL < vL − F .

Lemma A.4 (Beliefs fall after price rejection). Let μ0 ∈ �(V ) and consider the mecha-
nism that sells the good with probability 1 at a price of p. That is, β(·|vL ) = β(·|vH ) and
(q(·), x(·)) = (1, p). Then, if this mechanism is rejected with positive probability in a PBE
assessment, then the seller’s beliefs conditional on rejection, μR, satisfy that μR ≤ μ0.

Proof of Lemma A.4. Toward a contradiction, suppose that μR ∈ (μ0, 1]. Note it can-
not be that μR = 1 as this would imply that vL − p ≥ 0 ≥ vH − p (cf. Lemma A.2, (b)),

19That a PBE assessment exists that delivers the equilibrium payoff (0, �v, vL ) follows from the construc-
tion in Appendix D.



Theoretical Economics 19 (2024) Optimal mechanism for the sale of a durable good 891

a contradiction. Then μR ∈ (μ0, 1) so that the low-valuation buyer rejects with positive
probability. Then the following must hold:

vH −p ≤ δuH(μR ), vL −p = δuL(μR ).

Because the low-valuation buyer can always imitate the high-valuation buyer’s strategy,
the continuation payoffs satisfy δuH(μR ) ≤ δuL(μR ) + δ�v. This is a contradiction as
�v > 0 implies that we cannot have

vH −p ≤ δuH(μR ) ≤ vL −p+ δ�v.

It then follows that μR ∈ [0, μ0].

Appendix B: Omitted proofs from Section 4.2

Proof of Proposition 1. To see that part (a) holds, let A = [μ0, 1]. Toward a contra-
diction, suppose that ∫

A

(
1 − q0(μ1 )

)
τ0(dμ1 ) > 0.

Associated to any u(μ1 ) ∈ E∗(μ1 ) chosen by the policy that solves (OPT) there is a mech-
anism M(μ1 ) and continuation payoffs, (uL(μ2 ), uH(μ2 ), uS(μ2 )) ∈ E∗(μ2 ) for the buyer
and the seller that are feasible in equilibrium.20 Define uH|L(μ1 ) as

uH|L(μ1 ) =
∫
�(V )

[
�vqM(μ1 )(μ2 )

+ (
1 − qM(μ1 )(μ2 )

)
δ
(
uH(μ2 ) − uL(μ2 )

)]1 −μ2

1 −μ1
τM(μ1 )(dμ2 ),

and note that

V S
((
τM(μ1 ), qM(μ1 )), uM(μ1 ), μ1

)
= uS(μ1 ) + uL(μ1 ) +μ1

(
uH(μ1 ) − uH|L(μ1 ) − uL(μ1 )

)
.

It can be verified that implementing M(μ1 ) in t = 0 and choosing its associated contin-
uation payoffs for t = 1 yields a payoff equal to

V S
((
τM(μ1 ), qM(μ1 )), uM(μ1 ), μ1

)
+ (1 −μ1 )

(
μ1

1 −μ1
− μ0

1 −μ0

)(
uH|L(μ1 ) + uL(μ1 ) − uL(μ1 )

)
= uS(μ1 ) + uL(μ1 ) +μ1

(
uH(μ1 ) − uH|L(μ1 ) − uL(μ1 )

)
+ (1 −μ1 )

(
μ1

1 −μ1
− μ0

1 −μ0

)(
uH|L(μ1 ) + uL(μ1 ) − uL(μ1 )

)
20Lemma D.1 in Doval and Skreta (2022) shows that restricting attention to PBE assessments in which

the seller plays a pure strategy is without loss of generality.
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= uS(μ1 ) + uL(μ1 ) + (1 −μ1 )

(
μ1

1 −μ1
− μ0

1 −μ0

)(
uH(μ1 ) − uL(μ1 )

)
+ (1 −μ1 )

μ0

1 −μ0

(
uH(μ1 ) − (

uH|L(μ1 ) + uL(μ1 )
))

≥ uS(μ1 ) + uL(μ1 ) + (1 −μ1 )

(
μ1

1 −μ1
− μ0

1 −μ0

)(
uH(μ1 ) − uL(μ1 )

)
, (B.1)

with the inequality being strict whenever uH(μ1 ) > uL(μ1 ) + uH|L(μ1 ).21

Consider the mechanism (τ′
0, q′

0 ), which coincides with (τ0, q0 ) except that when-
ever μ1 ∈ A is induced, we implement M(μ1 ) in period 0 and the continuation payoffs
associated with M(μ1 ) in period 1. Since (τ′

0, q′
0 ) is feasible, it must be that it is less pre-

ferred to (τ0, q0 ). Using Equation (B.1), the payoff difference between the two policies
is

V S
((
τ′

0, q′
0
)
, u′, μ0

)− V S
(
(τ0, q0 ), u, μ0

)
= (1 − δ)

∫
A

(
uS(μ1 ) + uL(μ1 )

+ (1 −μ1 )

(
μ1

1 −μ1
− μ0

1 −μ0

)(
uH(μ1 ) − uL(μ1 )

))
τ0(dμ1 )

+
∫
A

(1 −μ1 )
μ0

1 −μ0

(
uH(μ1 ) − uH|L(μ1 ) − uL(μ1 )

)
τ0(dμ1 ) > 0,

contradicting the optimality of the original policy.
To see that part (b) in Proposition 1 holds, assume toward a contradiction that μ1 < 1

exists such that q0(μ1 ) > 0. If μ1 > 0, consider an alternative policy which splits the
weight on μ1 conditional on q0(μ1 ) > 0 between 0 and 1, and sets q0(0) = 0 and q0(1) =
1. Instead, if μ1 = 0, set q0(0) = 0. This leads to a change in payoffs of∫

[0,1)
q0(μ1 )

[(
μ1vH + (1 −μ1 )δv̂L(μ0 )

) − (
μ1vH + (1 −μ1 )v̂L(μ0 )

)]
τ0(dμ1 ) > 0.

since δ < 1 and v̂L(μ0 ) < 0, where we implicitly use Lemma A.2, (a). This is a contradic-
tion as long as

∫
[0,1) q0(μ1 )τ0(dμ1 ) > 0.

Proposition 1 implies that if ((τ0, q0 ),u) is a maximizer of V S(·, μ0 ), then

V S
(
(τ0, q0 ), u, μ0

)
= τ0

(
{1}

)
vH +

∫
[0,μ0 )

δ

(
uS(μ1 ) + uL(μ1 )

21One interpretation of Equation (B.1) is the following. In the equilibrium of G(μ1 ) with payoff vector
(uL(μ1 ), uH (μ1 ), uS(μ1 )), the incentive compatibility constraint for the high-valuation buyer may not have
been binding. When the new policy implements the virtual surplus of the mechanism associated with μ1,
two things happen. First, we increase the seller’s payoff by the same amount that we decrease the high-
valuation buyer’s payoff. Second, from today’s perspective there is an additional gain: by decreasing vH ’s
continuation payoffs, we decrease the rents today, and hence increase the virtual surplus.
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+ (1 −μ1 )

(
μ1

1 −μ1
− μ0

1 −μ0

)(
uH(μ1 ) − uL(μ1 )

))
τ0(dμ1 )

=
∫

[0,μ0 )

[
μ0 −μ1

1 −μ1
vH + 1 −μ0

1 −μ1
δ

(
uS(μ1 ) + uL(μ1 )

+ (1 −μ1 )

(
μ1

1 −μ1
− μ0

1 −μ0

)(
uH(μ1 ) − uL(μ1 )

))]
1 −μ1

1 −μ0
τ0(dμ1 ),

where the second equality follows from the constraint that τ0 is Bayes’ plausible for μ0.
We now prove Corollary 2.

Proof of Corollary 2. Any distribution over posteriors τ ∈ �(�(V )) with support on
[0, μ0 ) ∪ {1} induces G ∈ �([0, μ0 )) via

G
(
U ′) =

∫
U ′

1 −μ1

1 −μ0
τ(dμ1 ).

Furthermore, any distribution G ∈ �([0, μ0 )) induces a Bayes’ plausible distribution
over posteriors τ0 with support on [0, μ0 ) ∪ {1}, where

τ0
(
{1}

) =
∫ μ0

0

μ0 −μ1

1 −μ1
G(dμ1 ) and τ0

(
U ′) =

∫
U ′

1 −μ0

1 −μ1
G(dμ1 ), U ′ ⊂ [0, μ0 ).

The result follows.

Appendix C: Omitted proofs from Section 5.1

Appendix C is organized as follows. Appendix C.1 recursively constructs the buyer’s and
seller’s payoffs under 〈�∗, (π∗

v , r∗v )v∈V , μ∗〉. In particular, we verify that the sequence
{μn}n≥0 is well-defined. Second, taking as given that 〈�∗, (π∗

v , r∗v )v∈V , μ∗〉 is a PBE assess-
ment and, therefore, that the buyer’s and the seller’s payoffs under 〈�∗, (π∗

v , r∗v )v∈V , μ∗〉
are equilibrium payoffs (i.e., (0, u∗

H(μ0 ), u∗
S(μ0 )) ∈ E∗(μ0 )), Appendix C.2 provides the

proof that the set of equilibrium payoffs is as in the statement of Theorem 1.

C.1 Payoffs under 〈�∗, (π∗
v , r∗v )v∈V , μ∗〉

Notation: In what follows, we denote by (β∗
μ, q∗

μ, x∗
μ ) the mechanism used by the seller

with belief μ in the assessment 〈�∗, (π∗
v , r∗v )v∈V , μ∗〉.

Buyer’s payoff: Whereas in the posted-prices assessment the low-valuation buyer’s
payoff is 0, the high-valuation buyer’s payoff depends on the seller’s prior and we denote
it by u∗

H(μ0 ). Inductively, we show that for n ≥ 0 and μ0 ∈ [μn, μn+1 ),

u∗
H(μ0 ) = δn�v. (C.1)

First, fix μ0 ∈ [0, μ1 ). Then the seller sells the good at a price of vL, so that u∗
H(μ0 ) = �v.

Second, fix n ≥ 1 and let μ0 ∈ [μn, μn+1 ). Suppose we have already shown that u∗
H(μm ) =
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δm�v for m≤ n− 1. Then the high-valuation buyer’s payoff under the equilibrium strat-
egy satisfies

β∗
μ0

(1|vH )
(
vH − (

vH − δn�v
))+ (

1 −β∗
μ0

(1|vH )
)
δu∗

H(μn−1 ) = δu∗
H(μn−1 ) = δn�v.

Note that the high-valuation buyer is indifferent between reporting vL and reporting
vH along the path of play. This is immediate for μ0 ∈ [0, μ1 ). When μ0 ∈ [μn, μn+1 ),
the buyer’s payoff from reporting vL at the beginning of the game and then following
her equilibrium strategy is δu∗

H(μn−1 ) ≡ δn�v. Thus, along the path of play, the low-
valuation buyer is indifferent between participating in the mechanism and not, whereas
the high-valuation buyer is indifferent between reporting the truth and not.

Seller’s payoff: Consider a seller with belief μ0 ∈ [μn, μn+1 ). The mechanism used
by the seller determines (τ∗

μ0
, q∗

μ0
) defined as follows. First, if μ0 ∈ [0, μ1 ), we have that

(τ∗
μ0

(μ0 ), q∗
μ0

(μ0 )) = (1, 1). Second, for n ≥ 1 and μ0 ∈ [μn, μn+1 ),

τ∗
μ0

(1) = μ0 −μn−1

1 −μn−1
= 1 − τ∗

μ0
(μn−1 ), q∗

μ0
(1) = 1 = 1 − q∗

μ0
(μn−1 ).

To define the seller’s payoff, we first define the threshold beliefs {μn}n≥0 and the seller’s
payoff in the equilibrium when his belief is μn. Letting μ0 = 0, define u∗

S(0) = vL. Define
μ1 as the belief μ ∈ [0, 1] such that

μvH + (1 −μ)δ
[
u∗
S(0) + (1 − 0)

(
0

1 − 0
− μ

1 −μ

)
u∗
H(0)

]
= μvH + (1 −μ)v̂L(μ), (C.2)

where the RHS of Equation (C.2) uses Equation (1) to express the revenue from sell-
ing at vL in terms of the virtual surplus. Simple algebra shows that μ1 = vL/vH (cf.
Equation (2)). Let u∗

S(μ1 ) denote the value of the expression in Equation (C.2) evalu-
ated at μ = μ1. Suppose we have defined u∗

S(μm ) for 1 ≤ m ≤ n − 1. Define μn to be the
belief μ ∈ [0, 1] such that

μ−μn−1

1 −μn−1
vH + 1 −μ

1 −μn−1
δ

[
u∗
S(μn−1 ) + (1 −μn−1 )

(
μn−1

1 −μn−1
− μ

1 −μ

)
u∗
H(μn−1 )

]

= μ−μn−2

1 −μn−2
vH + 1 −μ

1 −μn−2
δ

[
u∗
S(μn−2 )

+ (1 −μn−2 )

(
μn−2

1 −μn−2
− μ

1 −μ

)
u∗
H(μn−2 )

]
, (C.3)

and define u∗
S(μn ) to be the value of the expression in Equation (C.3) evaluated at μ = μn.

Lemma C.1 shows the threshold beliefs determined by Equation (C.3) are well-
defined and satisfy μ0 = 0 <μ1 < · · · <μn < μn+1 < · · ·

Lemma C.1. The sequence of thresholds defined by Equation (C.3) is increasing.
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Proof of Lemma C.1. Recall that μ0 = 0 and as argued below Equation (C.2), μ1 =
vL/vH . Suppose we have shown that μn−1 >μn−2. We show that μn > μn−1.

To do so, fix μ≥ μn−1. We claim that the difference

�n(μ; μn−1, μn−2 )

= μ−μn−1

1 −μn−1
vH

+ 1 −μ

1 −μn−1
δ

[
u∗
S(μn−1 ) + (1 −μn−1 )

(
μn−1

1 −μn−1
− μ

1 −μ

)
u∗
H(μn−1 )

]

−
{
μ−μn−2

1 −μn−2
vH + 1 −μ

1 −μn−2
δ

[
u∗
S(μn−2 )

+ (1 −μn−2 )

(
μn−2

1 −μn−2
− μ

1 −μ

)
u∗
H(μn−2 )

]}
, (C.4)

is increasing in μ. Note that �n is differentiable in μ, and

∂

∂μ
�n(μ; μn−1, μn−2 ) = vH(μn−1 −μn−2 )

(1 −μn−1 )(1 −μn−2 )

− δvH
μn−1 −μn−2

(1 −μn−1 )(1 −μn−2 )
+ δ

(
δn−2 − δn−1)vH > 0.

The cutoff μn is defined by �n(μn; μn−1, μn−2 ) = 0. Note that μn �= μn−1 if n ≥ 1. If μn =
μn−1, then

0 = �n(μn; μn−1, μn−2 ) = δu∗
S(μn−1 ) − u∗

S(μn−1 ) < 0,

since δ < 1. Because �n(·; μn−1, μn−2 ) is increasing, we conclude that μn > μn−1.

Having established this, we can now define the seller’s payoff at any history ht under
〈�∗, (π∗

v , r∗v )v∈V , μ∗〉. If μ∗
t (ht ) ∈ [μn, μn+1 ), then

U∗
S

(
ht

)
= μ∗

t

(
ht

)−μn−1

1 −μn−1
vH + 1 −μ∗

t

(
ht

)
1 −μn−1

δ

[
u∗
S(μn−1 )

+ (1 −μn−1 )

(
μn−1

1 −μn−1
− μ∗

t

(
ht

)
1 −μ∗

t

(
ht

))u∗
H(μn−1 )

]

≡ u∗
S

(
μ∗
t

(
ht

))
. (C.5)

In what follows, we simplify notation by denoting for any μ0, μ1 ∈ �(V ):

R(τ∗,q∗ )(μ1, μ0 ) = u∗
S(μ1 ) + (1 −μ1 )

(
μ1

1 −μ1
− μ0

1 −μ0

)
u∗
H(μ1 ),

and note that R(τ∗,q∗ )(μ0, μ0 ) = u∗
S(μ0 ).
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Equation (C.3) implies that under the specification of equilibrium play, when the
seller’s belief is μn, he is indifferent between a posted price of vL + (1 − δn )�v and a
price of vL + (1 − δn−1 )�v. This, in turn, implies that the high-valuation buyer may
obtain any payoff in [δn�v, δn−1�v], if the seller were to randomize between these two
posted prices. This randomization is important for the specification of the buyer’s and
the seller’s strategies off the path of play. For future reference, let U∗

H denote the follow-
ing correspondence:

U∗
H(μ0 ) =

{{
u∗
H(μ0 )

}
if μ0 �= μn, n≥ 1,[

δn�v, δn−1�v
]

if μ0 = μn for some n ≥ 1.

Note U∗
H is upper hemicontinuous, convex-valued, and compact-valued.

C.2 Omitted proofs from Section 5.1

Appendix C.2 completes the steps to show that the set of equilibrium payoffs of G(μ0 )
is as described in Equation (3). In what follows, we first state the inductive hypothe-
sis. We then prove the base case, which establishes Equation (3) for μ0 ∈ [0, μ1 ) (Ap-
pendix C.2.1). We then prove the inductive step in Appendix C.2.2. Along the way, we
provide the omitted proofs of the statements in Section 5.1 regarding the properties of
the solution to (OPT) (Lemmas C.2 and C.3). In what follows, uS(μ0 ), uS(μ0 ) denote the
seller’s maximum and minimum equilibrium payoffs when his belief is μ0. Moreover,
for n ≥ 0 and μ0 ≥ μn, we let u∗

S(μ0, n) denote the seller’s payoff from “emulating” the
strategy in the posted-prices assessment that sells the good to the low-valuation buyer
in n periods from now. Formally,

u∗
S(μ0, n) = μ0 −μn−1

1 −μn−1
vH + 1 −μ0

1 −μn−1
δR(τ∗,q∗ )(μn−1, μ0 ). (C.6)

Inductive hypothesis: Fix n ∈N0. The inductive hypothesis P(n) is given by

P(n). The following hold:

(n.1) For all μ0 ≥ μn, uS(μ0 ) ≥ u∗
S(μ0, n).

(n.2) For all μ0 ∈ [μn, μn+1 ), Equation (3) in Theorem 1 holds.

C.2.1 Base case We first show that P(0) = 1.

Proposition C.1 (Seller payoff guarantee for μ0 ≥ μ0). For all μ0 ≥ μ0, uS(μ0 ) ≥
u∗
S(μ0, 0).

Proof of Proposition C.1. Define MS = {μ0 ∈ �(V ) : uS(μ0 ) < vL}. Toward a contra-
diction, suppose that MS is nonempty and let μ

S
= infMS . We consider two cases.

Case 1: μ
S

∈ MS . Let uL(μ
S

) = sup{uL : u ∈ E∗(μ
S

)}. Suppose the seller with prior
μ
S

offers mechanism MF that sells the good at price vL − δF for F > 0. We argue that
if MF is rejected with positive probability in a PBE assessment, then the seller’s beliefs
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conditional on rejection, μR, coincide with μ
S

. Suppose that MF is rejected with pos-
itive probability. Then Lemma A.4 implies that μR ≤ μ

S
. Furthermore, it cannot be

that μR = 0 (Lemma A.2, (a) implies that μ
S
> 0) because δuL(μR ) = 0 < δF . Thus, the

high-valuation buyer must reject the mechanism with positive probability. We finally
rule out that μR ∈ (0, μ

S
). In that case, we would need that δF + �v ≤ δuH(μR ) and

δF ≤ δuL(μR ), contradicting that uS(μR ) ≥ vL for μR < μ
S

(Lemma A.3).
Thus, μR = μ

S
, so that for F = uL(μ

S
) + ε/δ, the low-valuation buyer accepts MF

with probability 1 and so does the high-valuation buyer (cf. Lemma A.2, (b)). Then

uS(μ
S

) ≥ vL − δuL(μ
S

). (C.7)

If uL(μ
S

) = 0, we arrive at a contradiction. Suppose then that uL(μ
S

) > 0. We now argue
that if the seller with prior μ

S
offers MF for F = δuL(μ

S
) + ε/δ, then the buyer accepts

this mechanism with probability 1. By the same logic as above, if MF is rejected with
positive probability, then μR = μ

S
and

δF +�v ≤ δuH(μR ), δF ≤ δuL(μR ). (C.8)

Lemma A.3 implies that uS(μ
S

) < vL − δuL(μ
S

), a contradiction to Equation (C.7). Pro-
ceeding iteratively, we conclude that for all n, uS(μ

S
) ≥ vL − δnuL(μ

S
), so that as n → ∞

we have that uS(μ
S

) ≥ vL, contradicting the definition of μ
S

.
Case 2: μ

S
/∈MS . Fix η> 0 and let uL(η) = sup{uL : u ∈ E∗(μ0 ), μ0 ∈ (μ

S
, μ

S
+η)}. Fix

μ0 ∈ (μ
S

, μ
S

+η). Suppose the seller with prior μ0 offers MF that sells the good at price
vL − δF , F > 0. Similar logic to Case 1 implies that if MF is rejected with positive proba-
bility in a PBE assessment, then μR ∈ (μ

S
, μ0]. In particular, Lemma A.2, (a) implies that

[0, μ
S

] is nonempty, and hence we can rule out that only the low-valuation buyer rejects
MF .

We conclude that if F = uL(η) + ε/δ, the low-valuation buyer accepts with probabil-
ity 1 and so does the high-valuation buyer. We conclude that for all μ0 ∈ (μ

S
, μ

S
+η),

uS(μ0 ) ≥ vL − δuL(η). (C.9)

If uL(η) = 0, we arrive at a contradiction since Equation (C.9) holds for all μ0 ∈ (μ
S

, μ
S
+

η) contradicting the definition of μ
S

.
Suppose then that uL(η) > 0. We now argue that for μ0 ∈ (μ

S
, μ

S
+ η) the mecha-

nism MF must be accepted with probability 1 for F = δuL(η) + ε/δ. To see this, note
that if MF is rejected with positive probability, by the same logic as above μR ∈ (μ

S
, μ0],

so that Equation (C.8) holds. Lemma A.3 implies that μR ∈ (μ
S

, μ0] exists such that
uS < vL −δuL(η), a contradiction to Equation (C.9). Proceeding iteratively, we conclude
that for all n and all μ0 ∈ (μ

S
, μ

S
+η),

uS(μ0 ) ≥ vL − δnuL(η), (C.10)

so that as n → ∞ we have that uS(μ0 ) ≥ vL for all μ0 ∈ (μ
S

, μ
S

+ η), contradicting the
definition of μ

S
. It follows that for all μ0 ∈ �(V ), uS(μ0 ) ≥ vL = u∗

S(μ0, 0).
We conclude that part (n.1) holds.
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We now show that part (n.2) holds for μ0 ∈ [μ0, μ1 ), starting from the seller’s payoff:
uS ≤ u∗

S(μ0 ) for μ0 ∈ [μ0, μ1 ): Note that uS(μ0 ) ≤ vL as vL is the seller’s payoff in the
commitment solution for μ0 ∈ [0, μ1 ). Since vL is the seller’s payoff in the posted-prices
assessment, then uS(μ0 ) = u∗

S(μ0 ) = vL. Together with Proposition C.1, this implies that
the seller’s equilibrium payoff is unique and coincides with vL.

uL = 0 in [μ0, μ1 ): Proposition C.1 and the above argument imply that the assump-
tions in Proposition 3 hold for μ0 ∈ [μ0, μ1 ). Hence, uL = 0 for all u ∈ E∗(μ0 )

uH = �v in [μ0, μ1 ): It remains to show that the high-valuation buyer’s payoff is
unique in [μ0, μ1 ). That the seller’s payoff is at least vL for μ0 ∈ [μ0, μ1 ) and Lemma A.3
imply that uH ≤ �v. Moreover, that the seller’s payoff is at most vL implies that uH = �v.

C.2.2 Inductive step Fix n ≥ 1 and suppose that P(k) = 1 for all k ∈ {0, � � � , n− 1}.

Part (n.1): We now show that P(n) = 1, starting from the lower bound on the seller’s
payoff.

Proposition C.2 (Seller payoff guarantee for μ0 ≥ μn). For all μ0 ≥ μn, uS(μ0 ) ≥
u∗
S(μ0, n).

The proof of Proposition C.2 relies on Proposition 2, the proof of which is in Ap-
pendix C.3.

Proof of Proposition C.2. Fix μ0 ≥ μn and assume u ∈ E∗(μ0 ) exists such that uS <

u∗
S(μ0, n). Let 〈�, (πv, rv )v∈V , μ〉 denote a PBE assessment with payoff u and consider

the following deviation for the seller. The seller offers a mechanism that sells the good at
price vL + (1 −δn )�v−δF , that is, for v ∈ {vL, vH }, β(μ0|v) = 1, (q(μ0 ), x(μ0 )) = (1, vL +
(1 − δn )�v − δF ), where F > 0 satisfies that for n ≥ 2, δn−1�v < δn−1�v+ F < δn−2�v.

Because −�v(1 − δn ) + δF < −�v(1 − δn−1 ) < 0, the low-valuation buyer rejects the
mechanism with probability 1, so that the seller’s beliefs upon rejection μR are deter-
mined by Bayes’ rule and satisfy that μR ∈ [0, μ0].

For n = 1, the high-valuation buyer must accept the mechanism with probability
1: Proposition 2 implies δ�v is the largest payoff from rejection and the high-valuation
buyer gets strictly more by accepting the mechanism. The seller’s payoff is then μ0(vH −
δ�v−δF )+ (1−μ0 )δvL = u∗

S(μ0, 1)−δF , where we use Lemma A.2, (a) to determine the
seller’s payoff conditional on rejection. Letting F → 0, proves Proposition C.2 for n= 1.

For n ≥ 2, we argue the high-valuation buyer must randomize between accepting
and rejecting the mechanism. It cannot be the case that the high-valuation buyer rejects
the mechanism with probability 1: Proposition 2 implies that δuH(μR ) ≤ δδn−1�v <

δ(δn−1�v + F ), where μR = μ0. Similarly, it cannot be the case that the high-valuation
buyer accepts the mechanism with probability 1: In that case, rejection reveals the low-
valuation buyer (i.e., μR = 0) and the high-valuation buyer’s continuation payoff is δ�v,
which is strictly larger than δn�v+ δF (cf. Lemma A.2, (a)).

It follows that the high-valuation buyer must be indifferent between accepting and
rejecting so that the continuation payoffs after rejection satisfy that δn−1�v + F =
uH(μR ), which can only be the case if μR = μn−1. Indeed, μR ∈ (μn−1, μ0 ) would yield
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a payoff of at most δn−1�v (cf. Proposition 2) and μR < μn−1 would yield a payoff of at
least δn−2�v. This pins down the high-valuation buyer’s acceptance probability to be
(μn−1/μ0 )(μ0 − μn−1/(1 − μn−1 )). Simple algebra shows that the seller’s payoff from
offering the above mechanism is

μ0 −μn−1

1 −μn−1
vH + δ

1 −μ0

1 −μn−1

(
u∗
S(μn−1 ) +

(
μn−1 −μ0

1 −μ0

)(
u∗
H(μn−1 ) + F

))

= u∗
S(μ0, n) − δ

μ0 −μn−1

1 −μn−1
F .

Letting F → 0 completes the proof of Proposition C.2 for n ≥ 2.

Part (n.2): We now prove that part (n.2) holds for μ0 ∈ [μn, μn+1 ). Because we have
already established that the seller can guarantee the payoff from the posted-prices as-
sessment for μ0 ∈ [μn, μn+1 ), it remains to show that u∗

S(μ0 ) is an upper bound on the
seller’s payoff.

Define Mn = {μ0 ∈ [μn, μn+1 ) : Equation (3) does not hold}. Toward a contradiction,
suppose Mn �= ∅ and let μ� = infMn. Then, for all ε > 0, με

0 ∈ [μ�, μ� + ε) exists such that
either uS(με

0 ) > u∗
S(με

0 ) or the buyer’s payoff is not as in Equation (3).
Lemmas C.2 and C.3 below deliver that the seller’s payoff in the posted-prices as-

sessment is the seller’s maximal equilibrium payoff in [μn, μn+1 ). Fix μ0 ∈ [μ�, μn+1 ). By
definition, for μ1 ∈ [0, μ� ), the seller’s and the low-valuation buyer’s payoffs are given
by u∗

S(μ1 ) and 0, respectively. Furthermore, since μ0 ≥ μn, the seller prefers to minimize
the high-valuation buyer’s continuation payoff at {μm}m≤n−1. Hence, for μ0 ∈ [μ�, μn+1 ),
the objective function in Equation (11) equals∫

[0,μ� )

(
μ0 −μ1

1 −μ1
vH

+ 1 −μ0

1 −μ1
δ

(
u∗
S(μ1 ) + (1 −μ1 )

(
μ1

1 −μ1
− μ0

1 −μ0

)
u∗
H(μ1 )

)
︸ ︷︷ ︸

R(τ∗ ,q∗ )(μ1,μ0 )

)
G(dμ1 )

+
∫

[μ�,μ0 )

(
μ0 −μ1

1 −μ1
vH + 1 −μ0

1 −μ1
δ

(
uS(μ1 ) + uL(μ1 )

+ (1 −μ1 )

(
μ1

1 −μ1
− μ0

1 −μ0

)(
uH(μ1 ) − uL(μ1 )

)))
G(dμ1 ). (C.11)

Lemma C.2. Fix μ0 ∈ [μ�, μn+1 ) and suppose G maximizes the expression in Equation
(C.11) and is such that G([0, μ� )) > 0. Then G places positive probability on at most
{μn−2, μn−1}.

Proof. It is immediate to see that no μ1 ∈ ⋃n−1
m=0(μm, μm+1 ) can be on the support of

G: if μ1 ∈ (μm, μm+1 ) for m≤ n− 1, this is dominated by choosing μm:

μ0 −μm

1 −μm

vH + 1 −μ0

1 −μm

δR(τ∗,q∗ )(μm, μ0 ) −
(
μ0 −μ1

1 −μ1
vH + 1 −μ0

1 −μ1
δR(τ∗,q∗ )(μ1, μ0 )

)
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= vH

[
μ0 −μm

1 −μm

+ δ
1 −μ0

1 −μm

μm −μm−1

1 −μm−1
− μ0 −μ1

1 −μ1
− δ

1 −μ0

1 −μ1

μ1 −μm−1

1 −μm−1

]
> 0.

A similar argument implies μ1 ∈ [μn, μ� ) is dominated by choosing μn−1. Thus, if it is
optimal to set G([0, μ� )) > 0, we can reduce the problem of finding the optimal such G

to

max
G∈�({μ0, ���,μn−1})

n−1∑
m=0

[
μ0 −μm

1 −μm

vH + 1 −μ0

1 −μm

δR(τ∗,q∗ )(μm, μ0 )

]
G
(
{μm}

)
. (C.12)

However, for m≤ n− 2, Lemma C.1 implies that

�m+1(μ0; μm, μm−1 )

=
[
μ0 −μm

1 −μm

vH + 1 −μ0

1 −μm

δR(τ∗,q∗ )(μm, μ0 )

]

−
[
μm−1 −μ0

1 −μm−1
vH + 1 −μ0

1 −μm−1
δR(τ∗,q∗ )(μm−1, μ0 )

]
> 0,

since μ0 > μn−1. Thus, any solution to the problem in Equation (C.12) satisfies that α ∈
[0, 1] exists such that the value of this problem is given by

α

[
μ0 −μn−1

1 −μn−1
vH + 1 −μ0

1 −μn−1
δR(τ∗,q∗ )(μn−1, μ0 )

]

+ (1 − α)

[
μ0 −μn−2

1 −μn−2
vH + 1 −μ0

1 −μn−2
δR(τ∗,q∗ )(μn−2, μ0 )

]

= α�n(μ0; μn−1, μn−2 ) +
[
μ0 −μn−2

1 −μn−2
vH + 1 −μ0

1 −μn−2
δR(τ∗,q∗ )(μn−2, μ0 )

]
,

so that unless μ0 = μn it is not optimal to set α < 1. Instead, for μ0 = μn any α ∈ [0, 1] is
a maximizer.

Lemma C.3. A real number ε > 0 exists such that for all μ0 ∈ [μ�, μ� + ε), V S(μ0 ) =
u∗
S(μ0 ).

Proof. For ε ∈ (0, μn+1 −μ� ), let V Sε denote the supremum of V S(·) over [μ�, μ� + ε).
The same arguments as the ones after Equation (12) imply that for all μ0 ∈ [μ�, μ� + ε),
the following holds:

V S(μ0 ) ≤ max
{
u∗
S(μ0 ),

μ0 −μ�

1 −μ�
vH + 1 −μ0

1 −μ�
δV Sε

}
. (C.13)

Taking the supremum over μ0 ∈ [μ�, μ� + ε) on both sides of Equation (C.13), we obtain

V Sε ≤ max
{
uSε,

ε

1 −μ�
(vH − δV Sε ) + δV Sε

}
, (C.14)
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where uSε is the supremum of u∗
S(μ0) over μ0 ∈ [μ�, μ� + ε), and the expression in the

second term follows from noting that μ0 −μ� < ε and vH > δV Sε.
We claim ε > 0 exists such that for all ε ∈ (0, ε), the right-hand side of Equation (C.14)

equals uSε. Toward a contradiction, suppose not. Then, for all ε ∈ (0, μn+1 −μ� ), f (ε) ∈
(0, ε) exists such that

uSf (ε) <
f (ε)

1 −μ�
(vH − δV Sf (ε) ) + δV Sf (ε). (C.15)

Since f (ε) < ε, then f (ε) → 0 as ε → 0. Equation (C.14) together with Equation (C.15)
imply

V Sf (ε) ≤ f (ε)
1 −μ�

(vH − δV Sf (ε) ) + δV Sf (ε) ⇒ lim
ε→0

V Sf (ε) ≤ δ lim
ε→0

V Sf (ε),

a contradiction, since for all ε, V Sε ≥ vL > 0.22 It follows that ε > 0 exists such that
∀ε ∈ (0, ε), V Sε = uSε.

We now claim that V S(μ0 ) = u∗
S(μ0 ) for all μ0 ∈ [μ�, μ� + ε). Toward a contradic-

tion, suppose μ0 ∈ [μ�, μ� + ε) exists such that V S(μ0 ) > u∗
S(μ0 ). By continuity of u∗

S on
[μn, μn+1 ) (see Equation (C.5)), η> 0 exists such that letting ε= μ0 +η−μ�, we have

u∗
S(μ0 +η) = uSε < V S(μ0 ) ≤ V Sε,

where the first equality follows from u∗
S being increasing on [μn, μn+1 ) (cf. Equation

(C.5)). This is a contradiction. Thus, for all μ0 ∈ [μ�, μ� + ε) we have that u∗
S(μ0) is an

upper bound on the seller’s payoff.23

Lemmas C.2 and C.3 imply that uS(μ0 ) = u∗
S(μ0 ) for all μ0 ∈ [μ�, μ�+ε). By definition

of μ�, μ0 ∈ [μ�, μ� + ε) exists such that E∗(μ0 ) fails to satisfy Equation (3) because of the
buyer’s payoff. In what follows, we rule this out by showing that for all μ0 ∈ [μ�, μ� + ε),
the buyer’s payoff is as in Theorem 1 for μ0 ∈ [μ�, μ� + ε).

Low-valuation buyer’s payoff is 0 in [μ�, μ� + ε): Proposition C.2 and V S(μ0 ) =
u∗
S(μ0 ) for μ0 ∈ [μ�, μ� + ε) imply that the assumptions in Proposition 3 hold for μ0 ∈

[μ�, μ� + ε). Hence, uL = 0 for all u ∈ E∗(μ0 ) and all μ0 ∈ [μ�, μ� + ε).
High-valuation buyer’s payoff in [μ�, μ� + ε): For any such μ0, suppose u′ ∈ E∗(μ0 )

exists such that u′
S = u∗

S(μ0 ), but u′
H �= u∗

H(μ0 ). This equilibrium payoff, u′, is associated
to a mechanism in period 0, (τ′

0, q′
0 ), and continuation payoffs, u′. We argue that

u∗
S(μ0 ) = V S

((
τ′

0, q′
0
)
, u′, μ0

)
. (C.16)

To see this, note that we must have V S((τ′
0, q′

0 ), u′, μ0 ) ≥ u∗
S(μ0 ); otherwise u′

S ≤
V S((τ′

0, q′
0 ), u′, μ0 ) < u∗

S(μ0 ), where the first inequality follows from Lemma 2 and the

22Note that the limit limε→0 V Sf (ε) exists up to a convergent subnet because V Sf (ε) is bounded.
23The argument above is reminiscent to that in Fudenberg and Tirole (1991a)’s treatment of the equilib-

rium in the posted-prices game with binary values.
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second inequality is by assumption. Since u′
S = u∗

S(μ0 ), we have a contradiction. Fur-
thermore, it cannot be the case that V S((τ′

0, q′
0 ), u′, μ0 ) > u∗

S(μ0 ), because (τ′
0, q′

0 ) to-
gether with the continuation payoffs u′ are feasible choices in (OPT). Equation (C.16)
then follows. Thus, ((τ′

0, q′
0 ), u′ ) is also a solution to (OPT).

However, the proof that u∗
S(μ0) is the value of (OPT) implies that the solution to

(OPT) is unique, unless μ0 = μn. It then follows that μ0 = μn, so that there is a con-
tinuum of solutions to (OPT), with vH ’s payoff ranging from u∗

H (μ0) to u∗
H(μ0 )/δ. This

completes the proof that uH is as in Equation (3) for all μ0 ∈ [μ�, μ� + ε).
We conclude that Equation (3) holds for all μ0 ∈ [μ�, μ� + ε), contradicting the defi-

nition of μ�. It follows that Mn is empty, and hence part (n.2) of the inductive statement
holds.

C.3 Proof of Proposition 2

We now prove Proposition 2, which provides the bound on the high-valuation buyer’s
payoff. For n = 1, the result follows from Proposition C.1 and Lemma A.3, as uS(μ0 ) ≥ vL
implies that uH ≤ �v. It remains to establish Proposition 2 for n ≥ 2. Thus, fix n ≥ 2 and
assume that for k ≤ n−1, P(k) = 1. The proof of Proposition 2 relies on Lemmas C.4 and
C.5:

Lemma C.4 (Maximal seller’s payoff given high-valuation buyer’s rents). Fix n ≥ 2 and
μ0 ≥ μn. Let ε > 0 be such that an equilibrium payoff u ∈ E∗(μ0 ) exists such that uH ≥
δn−1�v+ δε. Then the seller’s payoff is bounded above by V S(μ0, n− 1, ε), where

V S(μ0, n− 1, ε) ≡ max
(q,τ,u)

V S
(
(τ, q), u, μ0

)
(OPT(μ0, n− 1, ε))

such that ∫
�(V )

[
�vq(μ) + (

1 − q(μ)
)
δ
(
uH(μ) − uL(μ)

)]
β(dμ|vL )

≥ δn−1�v+ δε, (R(n− 1))

Eτ[μ] = μ0, (BP)(∀μ ∈ �(V )
)
u(μ) ∈ E∗(μ0 ). (Eqbm)

Note that (OPT(μ0, n − 1, ε)) does not reduce to (OPT) when ε = 0 and μ0 ∈
(μn, μn+1 ). Indeed, for μ0 ∈ (μn, μn+1 ), the solution to (OPT) delivers rents δn�v to
the high-valuation buyer, which violates (R(n− 1)). Instead, when μ0 = μn, a solution to
(OPT) exists that delivers rents δn−1�v to the high-valuation buyer.

Proof of Lemma C.4. Let μ0 ≥ μn. Let u ∈ E∗(μ0 ) be such that uH ≥ δn−1�v + δε. Let-
ting M denote the mechanism offered by the seller in the first period, we have that M
satisfies at least the following constraints:∫

�(V )

[
vHqM(μ) + (

1 − qM(μ)
)
δuM

H(μ)
]
βM(dμ|vH ) − xH
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≥ δn−1�v+ δε, (PCH)∫
�(V )

[
vHqM(μ) + (

1 − qM(μ)
)
δuM

H(μ)
](
βM(dμ|vH ) −βM(dμ|vL )

)
≥ xH − xL, (ICH)∫

�(V )

[
vLq

M(μ) + (
1 − qM(μ)

)
δuM

L (μ)
]
βM(dμ|vL )

≥ xL, (PCL)

where xv = ∫
�(V ) x

M(μ)βM(dμ|v). Equations (PCH), (ICH), and (PCL) are only a sub-
set of the constraints the mechanism M must satisfy. Indeed, we are ignoring the low-
valuation buyer’s truth-telling constraint and (PCL) is only a necessary condition for the
low-valuation buyer to participate in the mechanism.

Program (�).
The seller’s payoff, uS , is bounded above by the solution to the following program:

Maximize the seller’s payoff by choosing (i) transfers xH , xL, (ii) trade probabilities
q : �(V ) �→ [0, 1], (iii) a Bayes’ plausible posterior distribution τ, and (iv) continuation
payoffs u(·) ∈ E∗(·), subject to the constraints (PCH), (ICH), and (PCL). Because we
allow the seller to choose xL and xH instead of x(μ), we give the seller more degrees
of freedom than in the game. In what follows, we argue that the value of (�) equals
V S(μ0, n− 1, ε).

It is immediate to see that xL is chosen so that (PCL) binds. We can then write (ICH)
as follows: ∫

�(V )

[
vHq(μ)

(
1 − q(μ)

)
δuH(μ)

]
β(dμ|vH ) − xH

≥
∫
�(V )

[
�vq(μ) + (

1 − q(μ)
)
δ
(
uH(μ) − uL(μ)

)]
β(dμ|vL ). (ICH′)

We now show that (ICH′) must bind at the solution to (�), which in turn implies that
(R(n − 1)) holds. Toward a contradiction, suppose that (ICH′) does not bind. Then xH
must be chosen so that (PCH) binds. The binding constraints (PCH) and (PCL) imply
that the value of (�) obtains from maximizing

∫
�(V )

⎡
⎢⎢⎢⎢⎢⎢⎣
q(μ)

(
μvH + (1 −μ)

(
vL − μ0

1 −μ0

(
δn−1�v+ δε

)))
+(

1 − q(μ)
)
δ

(
uS(μ) +μuH(μ)

+(1 −μ)

(
uL(μ) − μ0

1 −μ0

(
δn−2�v+ ε

)))

⎤
⎥⎥⎥⎥⎥⎥⎦τ(dμ), (C.17)

subject to (BP) and (Eqbm).
We argue that the solution to the above problem is not feasible for (�). Indeed, the

optimal value of the objective in Equation (C.17) is

μ0vH + (1 −μ0 )

(
vL − μ0

1 −μ0

(
�vδn−1 + εδ

))
.
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To see this, note that Lemma A.1 and δ < 1 imply that, for all μ, the following holds:

δ

(
uS(μ) +μuH(μ) + (1 −μ)

(
uL(μ) − μ0

1 −μ0

(
�vδn−2 + ε

)))

≤ δ

(
μvH + (1 −μ)

(
vL − μ0

1 −μ0

(
�vδn−2 + ε

)))

<μvH + (1 −μ)

(
vL − μ0

1 −μ0

(
δn−1�v+ δε

))
.

Thus, for all μ, setting q(μ) = 1 is preferred to setting q(μ) = 0. The linearity in μ of the
term associated to q implies the result. However, this is not feasible since q(μ) = 1 for all
μ and the binding (PCH) violates (ICH′). It follows that (ICH′) must hold with equality
at a solution to (�).

Replacing the binding (PCL) and (ICH′) in the seller’s payoff yields that the objec-
tive in (�) is V S((τ, q), u, μ0 ). Moreover, replacing the binding (ICH′) in (PCH) yields
Equation (R(n− 1)). We conclude that (�) coincides with (OPT(μ0, n− 1, ε)).

Lemma C.5 (Value of (OPT(μ0, n − 1, ε)) at ε = 0). Fix n ≥ 2 and μ0 ≥ μn. Then
V S(μ0, n− 1, 0) = u∗

S(μ0, n− 1).

Proof of Lemma C.5. Let λ denote the Lagrange multiplier on the constraint (R(n−1))
in the program (OPT(μ0, n− 1, ε)) for ε= 0. In a slight abuse of notation, define μ0(λ) =
μ0−λ
1−λ . The Lagrangian is given by

L
(
(τ, q), u; λ

) = V S
(
(τ, q), u, μ0(λ)

) − λδn−1�v. (L)

That is, up to a constant, the Lagrangian corresponds to the virtual surplus of a seller
with belief μ0(λ). Let λ∗ be such that μ0(λ∗ ) = μn. By the upper bound proof, we know
that one of the solutions to maximizing the virtual surplus for a seller with belief μn de-
livers rents δn−1�v. However, this solution satisfies the Bayes’ plausibility constraint of a
seller with belief μn, whereas (OPT(μ0, n− 1, ε)) requires that the distribution over pos-
teriors averages to μ0. Note that the policy that delivers a payoff of u∗

S(μ0, n − 1) to the
seller gives rents δn−1�v to the high-valuation buyer and satisfies the Bayes’ plausibility
constraint at μ0. In what follows, we describe the policy and argue that it is a solution to
(OPT(μ0, n − 1, ε)). Important for this argument is that the seller with belief μn finds it
optimal to give the high-valuation buyer rents equal to δn−1�v.

Let (τ̂, q̂) denote the following mechanism:

τ̂(1) = μ0 −μn−2

1 −μn−2
= 1 − τ̂(μn−2 ), q̂(1) = 1 = 1 − q̂(μn−2 ),

and continuation payoffs û(μn−2 ) = (0, δn−2�v, u∗
S(μn−2 )). The mechanism (τ̂, q̂) to-

gether with the equilibrium continuation payoffs û(μn−2 ) satisfies the constraints.
Furthermore, we now argue that that for all ((τ, q), u) that satisfy the constraints in
(OPT(μ0, n− 1, ε)),

L
(
(τ, q), u; λ∗) ≤L

(
(τ̂, q̂), û; λ∗). (C.18)
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To show that Equation (C.18) holds note that Proposition 1 implies that any maximizer
of the LHS of Equation (C.18) satisfies the following. First, q(μ) = 1 only if μ = 1 and the
support of τ is included in [0, μ(λ∗ )) ∪ {1}. Second, steps similar to those in the proof of
Corollary 2 imply that maximizing L(·; λ∗ ) subject to the remaining constraints (namely,
(BP) and (Eqbm)) is equivalent to choosing G ∈ �([0, μn )) to maximize

μ0 −μn

1 −μn

vH + 1 −μ0

1 −μn

∫
[0,μn )

[
μn −μ1

1 −μ1
vH

+ 1 −μn

1 −μ1
δ

(
u∗
S(μ1 ) +

(
μ1 −μn

1 −μn

)
u∗
H(μ1 )

)]
G(dμ1 ),

where by the inductive hypothesis, continuation payoffs for μ1 < μn are those in the
posted-prices assessment. Replacing μ� for μn in the proof of Lemma C.2 implies that G
placing an atom at μn−2 is a solution to the above expression, completing the proof.

Proof of Proposition 2. Lemma C.4 implies that uS ≤ V S(μ0, n − 1, ε) ≤ V S(μ0, n −
1, 0) = u∗

S(μ0, n − 1), where the second inequality follows from noting that V S(μ0, n −
1, ε) is decreasing in ε. Furthermore, because the solution at ε= 0 is unique and the con-
straint binds, it must be that the second inequality is strict.24 The inductive hypothesis
at stage n−1 implies that uS(μ0 ) ≥ u∗

S(μ0, n−1) for μ0 ≥ μn, and hence uH ≤ δn−1�v.

Appendix D: 〈�∗, (π∗
v , r∗v )v∈V , μ∗〉 is an equilibrium assessment

To complete the proof of Theorem 1, it remains to show that 〈�∗, (π∗
v , r∗v )v∈V , μ∗〉 is an

equilibrium assessment. First, we finalize the construction of the posted-prices assess-
ment, by constructing the buyer’s (Appendix D.1) and seller’s strategy profile and system
of beliefs (Appendix D.2) after every history. Appendix D.3 shows that neither the seller
nor the buyer have one-shot deviations from the equilibrium strategy, given the contin-
uation values implied by 〈�∗, (π∗

v , r∗v )v∈V , μ∗〉. The results in Athey and Bagwell (2008)
imply that this is enough to conclude we have indeed constructed a PBE of G(μ0 ).

To simplify notation, we denote by γ∗(μ) the mechanism (β∗
μ, q∗

μ, x∗
μ ) that the seller

uses in the posted-prices assessment.

D.1 Completing the buyer’s strategy

To complete the buyer’s strategy, for a mechanism M let

U1v(M) = max
ρ∈�(V )

∑
v′∈V

ρ
(
v′)∫

�(V )×A
(vq− x)ϕM(

d(μ, q, x)|v′), (D.1)

denote the buyer’s maximum payoff when her value is v from participating in mecha-
nism M, without taking into account her continuation payoffs.

24Whereas multiple policies exist that maximize the virtual surplus of the seller with prior belief μn, only
one of these policies satisfies the constraint on the high-valuation buyer’s rents.
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Fix a public history ht and let μt denote the seller’s beliefs at that public history.25 To
complete the buyer’s strategy, we classify mechanisms, M, in four categories:26

0. Mechanisms that given the continuation values, (0, u∗
H(·)), satisfy participation

and truth-telling. Denote the set of these mechanisms M0
C .

1. Mechanisms M not in M0
C such that U1,vH (M) < 0. Let M1

C denote the set of these
mechanisms.

2. Mechanisms M not in M0
C such that U1vH (M) ≥ 0 >U1vL(M). Let M2

C denote the
set of these mechanisms.

3. Mechanisms M not in M0
C such that U1v(M) ≥ 0 for v ∈ {vL, vH }. Let M3

C denote
the set of these mechanisms.

If M ∈ M1
C , specify that the buyer rejects the mechanism for both of her values. Hence,

under this strategy, the seller does not update his beliefs after observing a rejection. If,
however, the buyer accepts, the seller believes v = vH . Note that, in this case, continua-
tion payoffs for the buyer are 0 from then on, regardless of her value. For each type v, let
r∗v (M) denote a maximizer of Equation (D.1).27

If M ∈ M2
C , specify that the low-valuation buyer rejects M. Hence, without loss of

generality, we can specify that if the seller observes that the buyer accepts the mecha-
nism, the buyer’s value is vH . For vH , let r∗vH (M) denote a maximizer of Equation (D.1)
for v = vH . Because the high-valuation buyer’s payoff is 0 conditional on her accept-
ing the mechanism (Lemma A.2, (b)), U1vH (M) is indeed the utility of the high-valuation
buyer when the seller offers mechanism M in the game. Then vH ’s payoff from partic-
ipating in the mechanism M is given by U1vH (M), whereas the payoff from rejecting is
U0,vH (πvH , f ) = δf (ν2(μt , πvH )), where

ν2(μt , πvH ) = μt(1 −πvH )
μt(1 −πvH ) + 1 −μt

,

is the seller’s belief that the buyer’s value is vH when observing a rejection, according
to Bayes’ rule, and f (ν2(μt , πvH )) is a measurable selection from U∗

H(ν2(μt , πvH )). Note
the payoff from rejecting is specified under the assumption that in the continuation, the
equilibrium path coincides with that of the posted prices equilibrium when beliefs are
ν2(μt , πvH ). We use, however, a selection from U∗

H to ensure that if needed, the seller
randomizes between the posted prices when indifferent to help make the buyer’s con-
tinuation problem well behaved.

Now, (π∗
vH (M), f ∗

2 (M)) are chosen so that

π∗
vH

∈ arg max
p∈[0,1]

(1 −p)U0,vH

(
π∗
vH

, f ∗
2 (M)

) +pU1,vH (M).

25The belief, μt , is an equilibrium object, but we suppress this from the notation to keep things simple.
26Gerardi and Maestri (2020) use a similar trick to complete the worker’s strategy in their paper.
27Even if the buyer does not participate on the equilibrium path, we still need to guarantee the reporting

strategy is sequentially rational.
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The main result in Simon and Zame (1990) implies a solution to the above problem ex-
ists, given the properties of U∗

H and the linearity in p of the objective. Let π∗
vH (M) denote

this fixed point. Now, if π∗
vH (M) < 1 and ν2(μt , π∗

vH (M)) = μn for some n ≥ 1, then a
weight φ2(μn, M) ∈ [0, 1] exists that solves the following:

f ∗
2 (M, μn ) = (1 −φ)δn−1�v+φδn�v. (D.2)

This weight captures the probability with which the seller, when his belief is μn, mixes
between γ∗(μn ) and a mechanism that splits the prior μn between 1 and μn−2, which
we denote by γ∗∗(μn ).28 For a mechanism in M2

C , let r∗vL(M) denote a solution to
Equation (D.1) for v = vL.

Finally, if M ∈ M3
C , specify that the buyer participates for both her values. If the

seller observes that the buyer rejects the mechanism, he assigns probability 1 to the
buyer’s value being vH . Thus, upon rejection, the buyer’s continuation payoff is 0 for
both her values. Note that mechanisms in M3

C satisfy the participation constraint given
the continuation values of the posted-prices assessment. Now, let m∗

L satisfy29

∫
�(V )×A

(vLq− x)ϕM(
d(μt+1, q, x)|m∗

L

) ≥
∫
�(V )×A

(vLq− x)ϕM(
d(μt+1, q, x)|v

)
,

for all v ∈ V . Set r∗vL(M)(m∗
L ) = 1. Let {m∗

H } = V \ {m∗
L} and define �(V )H ≡ supp ϕM(· ×

A|m∗
H ), �(V )L ≡ supp ϕM(· ×A|m∗

L ). Let r ∈ [0, 1] denote the weight the high-valuation
buyer assigns to m∗

L. Given this notation, let ν3(μt , μt+1, r ) denote the seller’s belief that
the buyer’s value is vH when he observes output message μt+1. We assume that if μt+1 is
not consistent with m∗

L, that is, μt+1 ∈ �(V )H \�(V )L, then ν3(μt , μt+1, r ) = 1. This spec-
ification of beliefs does not conflict with Bayes’ rule where possible: either m∗

H has pos-
itive probability in the optimal reporting strategy of the high-valuation buyer, in which
case, ν3 would be consistent with Bayes’ rule, or it does not, in which case, Bayes’ rule
where possible places no restrictions on ν3(μt , μt+1, ·) for μt+1 ∈ �(V )H \�(V )L.

Given ν3, the high-valuation buyer obtains a payoff of

Û1,vH (r, m, f ) =
∫
�(V )×A

(
vHq− x+ δ(1 − q)f

(
ν3(μt , μt+1, r )

))
ϕM(

d(μt+1, q, x)|m
)
,

when she reports m ∈ V , where f is a selection from U∗
H . We want to find (r∗vH , f ∗

3 (M)) so
that

r∗vH ∈ arg max
r∈[0,1]

rÛ1,vH

(
r∗vH , m∗

L, f ∗
3 (M)

) + (1 − r )Û1,vH

(
r∗vH , m∗

H , f ∗
3 (M)

)
. (D.3)

The main theorem in Simon and Zame (1990) implies the existence of such an (r∗vH ,
f ∗

3 (M)). Set r∗vH (M)(m∗
L ) = r∗vH .

28Formally, if n= 1, γ∗∗(μn ) is the mechanism that sells the good with probability 1 at a price of vL, that is,
βM(μn|vL ) = βM(μn|vH ) = 1 and (qM(μn ), xM(μn )) = (1, vL ). For n≥ 2, γ∗∗(μn ) is the mechanism such that
βM(μn−2|vL ) = 1, βM(μn−2|vH ) = (μn−2/μn )(1−μn/1−μn−2 ) = 1 − βM(1|vH ) and sets (qM(μn−2 ), xM(μn−2 )) =
(0, 0) and (qM(1), xM(1)) = (1, vL + (1 − δn−1 )�v).

29We cannot ensure that truth-telling holds for mechanisms in M3
C , which is why we need the extra piece

of notation.
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As we did before, whenever ν3(μt , μt+1, r∗vH ) = μn for n ≥ 1, we can define φ3(M, μn )
as the weight on γ∗(μn ) implied by f ∗

3 (M, μn ).
Summing up, the buyer’s strategy at any history ht

B is given by

π∗
tv

(
ht
B, M

) =

⎧⎪⎪⎨
⎪⎪⎩

1 if M ∈ M0
C ∪M3

C ,

π∗
vH (M) if M ∈ M2

C and v = vH ,

0 otherwise,

(D.4)

and conditional on participation,

r∗tv
(
ht
B, M

) =
{
δv if M ∈ M0

C ,

r∗v (M) otherwise
. (D.5)

D.2 Full specification of the PBE assessment

To complete the PBE assessment for G(μ0 ), we now specify the seller’s strategy and the
belief system. We introduce two pieces of notation: the first one allows us to keep track
of the last payoff-relevant event; the second one allows us to keep track of how the seller’s
beliefs evolve given the buyer’s strategy (Equation (D.6)).

To simplify notation, we do not explicitly include the buyer’s participation decision.
Instead, we follow the convention that if the buyer rejects, then μt+1 = ∅ and (qt , xt ) =
(0, 0). Given a mechanism Mt , let z(μt+1,(qt ,xt ))(Mt ) denote the tuple (Mt , μt+1, qt , xt ),
which summarizes the period-t outcomes from offering Mt . In particular, we let z∅(M) ≡
z(∅,(0,0))(M). With this notation, any public history at the beginning of period t can be
written as (ht−1, z(μt ,qt−1,xt−1 )(Mt ), ωt ), with the convention that when t = 0, h0 = {ω0}
for some ω0 ∈ [0, 1]. Given ht , let z(ht ) denote the corresponding outcome z. Given any
prior μ0, let T (μ0, z) denote the map that associates to each prior belief μ0 and each
outcome z, a seller’s belief that the buyer’s value is vH . Formally,

T (μ0, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ′ if z = z(μ′, ·)(M) and M ∈ M0
C ,

1

if z = z∅(M) and M ∈ M0
C ∪M3

C

or

z = z(μ′, ·)(M) and M ∈ M1
C ∪M2

C

μ0 if z = z∅(M) and M ∈ M1
C ,

ν2
(
μ0, π∗

vH (M)
)

if z = z∅(M) and M ∈ M2
C ,

ν3
(
μ0, μ′, r∗vH (M), r∗vL(M)

)
if z = z(μ′, ·)(M) and M ∈ M3

C

. (D.6)

Let μ0 denote the seller’s prior in G(μ0 ). Define μ∗(h0 ) = μ0 and �∗(h0 ) = γ∗(μ0 ), where
γ∗ is the strategy in the posted-prices assessment 〈�∗, (π∗

v , r∗v )v∈V , μ∗〉. For any public
history ht , define

μ∗
t

(
ht

) = T
(
μ∗
t

(
ht−1), z

(
ht

))
. (D.7)
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If either (i) z = z(μ′,(0, ·))(M) and M ∈ M0
C ∪ M1

C ∪ M2
C , (ii) z = z∅(M), μ∗(ht ) /∈ {μn}n≥1

and M ∈ M2
C , (iii) z = z(μ′,(0, ·))(M), μ∗(ht ) /∈ {μn}n≥1, and M ∈ M3

C , or (iv) z = z∅(M) and
M ∈ M0

C ∪M1
C ∪M3

C , define

�∗
t

(
ht

)
(M) = 1

[
M = γ∗(T (

μ∗
t

(
ht−1), z

(
ht

)))]
. (D.8)

If z(ht ) = z∅(M) for M ∈ M2
C and μ∗

t (ht ) = μn, n ≥ 1, define

�∗
t

(
ht

)
(M) =

⎧⎪⎨
⎪⎩
φ2(M, μn ) if M = γ∗(μn ),
1 −φ2(M, μn ) if M = γ∗∗(μn ),
0 otherwise

. (D.9)

Finally, if z(ht ) = z(μ′,(0, ·))(M) for M ∈ M3
C and μ∗

t (ht ) = μn, n ≥ 1, define

�∗
t

(
ht

)
(M) =

⎧⎪⎨
⎪⎩
φ3(M, μn ) if M = γ∗(μn ),
1 −φ3(M, μn ) if M = γ∗∗(μn ),
0 otherwise

. (D.10)

Equations (D.4)–(D.5), together with Equations (D.7)–(D.10), define a PBE assessment
where the system of beliefs is derived from the strategy profile where possible.

D.3 Seller’s and buyer’s sequential rationality

We now check that at all histories, neither the seller nor the buyer have a one-shot devi-
ation from the prescribed strategy profile, given the continuation values constructed in
Appendix C.1 and Appendix D.1. That this is true for the buyer given the seller’s strategy
follows from the construction in Appendix D.1.

To verify that sequential rationality holds for the seller, we proceed in two steps.
First, we show that for every Mt not in M0

C , M′
t ∈ M0

C exists such that the revenue of
offering Mt (under the buyer’s strategy) coincides with the revenue from offering M′

t .
Second, we use this property to relate the seller’s payoff from offering Mt to the virtual
surplus of M′

t to show that the revenue from Mt is bounded above by u∗
S(μ∗

t (ht )).

Step 1: We now show how to obtain M′
t from Mt for the case in which Mt is in M2

C . The
construction for Mt ∈ M1

C ∪M3
C follows similar steps. Suppose that the seller with belief

μ∗
t (ht ) offers a mechanism Mt in M2

C . Let π∗
vH (ht

B, Mt ), r∗vH (ht
B, Mt ) denote the buyer’s

best response as constructed in Appendix D.1. Denote by ν2 ≡ ν2(μt(ht ), π∗
vH (ht

B, M))
the seller’s belief that the buyer’s value is vH when he observes nonparticipation. The
seller’s payoff is then

μ∗
t

(
ht

)
π∗
tvH

(
ht
B, Mt

) ∫
�(V )×A

[
x+ δ(1 − q)vH

](∑
v∈V

ϕMt
(
d(μ, q, x)|v

)
r∗tvH

(
ht
B, Mt

)
(v)

)

+ (
1 −μ∗

t

(
ht

)
π∗
tvH

(
ht
B, Mt

))
δu∗

S(ν2 ), (D.11)
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where the continuation values after rejection are constructed using the equilibrium
strategy when the seller has posterior ν2.30 Consider an alternative mechanism, M′

t :

βM′
t (1|vH ) = π∗

tvH

(
ht
B, Mt

)
, βM′

t (ν2|vH ) = (
1 −π∗

tvH

(
ht
B, Mt

))
, βM′

t (ν2|vL ) = 1,

qM′
t (ν2 ) = xM′

t (ν2 ) = 0,

xM′
t (1) =

∫
�(V )×A

x

(∑
v∈V

ϕMt
(
d(μ, q, x)|v

)
r∗tvH

(
ht
B, Mt

)
(v)

)
,

qM′
t (1) =

∫
�(V )×A

q

(∑
v∈V

ϕMt
(
d(μ, q, x)|v

)
r∗tvH

(
ht
B, Mt

)
(v)

)
.

If the buyer participates and truthfully reports her type, M′
t gives the seller a payoff equal

to the expression in Equation (D.11). Then we can write the payoff to mechanism, Mt ,
as

US

(
ht , Mt

) ≡
∑

μt+1∈{ν2,1}

τM′
t (μt+1 )

[
xM′

t (μt+1 ) + δ
(
1 − qM′

t (μt+1 )
)
u∗
S(μt+1 )

]
.

Step 2: We now show that US(ht , Mt ) is bounded above by u∗
S(μ∗

t (ht )). Indeed, we have

US

(
ht , Mt

)
=

∫
�(V )

[
xM′

t (μt+1 ) + (
1 − qM′

t (μt+1 )
)
δu∗

S(μt+1 )
]
τM′

t (dμt+1 )

≤ V S
((
τM′

t , qM′
t
)
,
(
0, uM

H , u∗
S

)
, μ∗

t

(
ht

))
≤ V S

((
τM′

t , qM′
t
)
,
(
0, u∗

H , u∗
S

)
μt+1<μ∗

t (ht ),
(
0, uM

H , u∗
S

)
μt+1≥μ∗

t (ht )

)
, μ∗

t

(
ht

)
)

≤ max
(τ,q),uμt+1>μ∗

t (ht )

V S
((
τM′

t , qM′
t
)
,
(
0, u∗

H , u∗
S

)
μt+1<μ∗

t (ht ), (uL, uH , uS )μt+1≥μ∗
t (ht )

)
, μ∗

t

(
ht

)
)

= u∗
S

(
μ∗
t

(
ht

))
.

The first equality represents the payoff from offering Mt as the payoff from offer-
ing the mechanism M′

t that satisfies the incentive compatibility and participation
constraints (note that the seller’s continuation payoffs are those of the assessment
〈�∗, (π∗

v , r∗v )v∈V , μ∗〉 even after a deviation). The first inequality follows from Lemma 2.
Now, whereas the seller’s continuation payoffs are given by u∗

S , the buyer’s continuation
payoffs need not be exactly those of 〈�∗, (π∗

v , r∗v )v∈V , μ∗〉 when the seller’s posterior be-
lief is one of the threshold beliefs. The second inequality follows from noting that when
μt+1 < μ∗

t (ht ), the term multiplying uH in the virtual surplus is negative. Thus, the
seller with belief μ∗

t (ht ) prefers that whenever his posterior belief μt+1 is below μ∗
t (ht ),

the high-valuation buyer’s continuation payoff is that which minimizes her rents, that

30Recall that the seller’s continuation payoff only depends on his belief that the buyer’s value is vH ; it is
only the high-valuation buyer’s payoff, which may be different from u∗

H off the path of play.
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is, u∗
H(μt+1 ). The last inequality follows by definition. Proposition 1 and the results

in Appendix C.2 imply the last equality. We conclude that the seller has no one-shot
deviations.

Appendix E: Perfect Bayesian equilibrium: Formal statement

We introduce in this section the necessary formalisms to define PBE. To simplify nota-
tion, we assume in what follows that MI is such that Mi is finite for all i ∈ I . This is
without loss of generality when V is finite (cf. Doval and Skreta (2022)). It affords two
important simplifications. First, MI is itself a Polish space, which means that we can
condition the buyer’s strategy directly on the mechanism, M, chosen by the seller (cf.
Aumann (1964)). Second, given a public history ht , the set of buyer histories consis-
tent with ht , Ht

B(ht ), is finite and, therefore, the support of μt(ht ) ∈ �(V × Ht
B(ht )) is

finite.
Given the buyer’s participation and reporting strategy and a mechanism Mt define

a distribution over �(SMt × {0, 1} × R) such that, for all measurable subsets S′ × A′ ⊆
SMt × {0, 1} ×R,

ρ(π,r )(S′ ×A′|v, ht
B, Mt

) = πtv
(
ht
B, Mt

) ∑
m∈MMt

ϕMt
(
S′ ×A′|m

)
rtv

(
ht
B, Mt

)
(m).

Fix an assessment 〈�, (πv, rv )v∈V , μ〉, a public history ht , and a mechanism, Mt . The
seller’s payoff is given by

US

(
�, (πv, rv )v∈V , μ|ht , Mt

)
=

∑
(v,htB )

μt
(
ht

)(
v, ht

B

)(
1 −πtv

(
ht
B, Mt

))
δE�

[
US

(
�, (πv, rv )v∈V , μ|ht , z∅(Mt ), ·)]

+
∑

(v,htB )

μt
(
ht

)(
v, ht

B

) ∫
SMt×{0,1}×R

(
x+ (1 − q)δE�

[
US

(
�, (πv, rv )v∈V , μ|ht ,

z(st ,(0,x))(Mt ), ·)])ρ(π,r )(d(st , q, x)|v, ht
B, Mt

)
.

Similarly, the buyer’s payoff when her value is v, the history is ht
B, and the seller offers

mechanism Mt is given by

Uv
(
�, (πv, rv ), μ|ht

B, Mt
)

= (
1 −πtv

(
ht
B, Mt

))
δE�

[
Uv

(
�, (πv, rv ), μ|ht

B, z∅(Mt ), ·)]+πtv
(
ht
B, Mt

)
×

∑
m∈MMt

rtv
(
ht
B, Mt

)
(m)

∫
SMt×A

(
vq− x+ (1 − q)δE�

[
Uv

(
�, (πv, rv )v∈V , μ|ht

B, m,

z(st ,(q,x))(Mt ), ·)])ϕMt
(
d(st , q, x)|m

)
.

Definition 1. The assessment 〈�, (πv, rv )v∈V , μ〉 satisfies sequential rationality if for all
periods t, and all public histories ht , we have:
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1. For all mechanisms Mt in the support of �t(ht ), US(�, (πv, rv )v∈V , μ|ht , Mt ) ≥
US(�, (πv, rv )v∈V , μ|ht , M′

t ) for all M′
t �= Mt ,

2. For all v ∈ V , all buyer histories ht
B ∈Ht

B(ht ), and all mechanisms Mt , Uv(�, (πv, rv ),
μ|ht

B, Mt ) ≥Uv(�, (π ′
v, r′v ), μ|ht

B, Mt ) for all alternative strategies (π ′
v, r′v ).

Definition 2. The belief system μ satisfies Bayes’ rule where possible if for all public
histories ht , and mechanisms Mt , the following hold:

μt+1
(
ht , z∅(Mt )

)(
vH , ht

B, z∅(Mt )
)[ ∑

v∈V ,htB∈Ht
B(ht )

μt
(
ht

)(
v, ht

B

)(
1 −πtv

(
ht
B, Mt

))]

= μt
(
ht

)(
vH , ht

B

)(
1 −πtvH

(
ht
B, Mt

))
,

and, for all measurable subsets S′ ×A′ of SMt ×A,

∑
(v,htB )

μt
(
ht

)(
v, ht

B

) ∫
S′×A′

μt+1
(
ht , ·)(v, h

t
B, z(st ,(qt ,xt ))(Mt ), m

)
ρ(π,r )(d(st , q, x)|v, ht

B

)

= μt
(
ht

)(
v, h

t
B

)
πtv

(
h
t
B, Mt

)
rtv

(
h
t
B, Mt

)
(m)ϕMt

(
S′ ×A′|m

)
.

Definition 3. An assessment 〈�, (πv, rv )v∈V , μ〉 is a perfect Bayesian equilibrium if it is
sequentially rational and satisfies Bayes’ rule where possible.
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