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We consider a dynamic principal-agent problem, where the sole instrument the
principal has to incentivize the agent is the disclosure of information. The princi-
pal aims at maximizing the (discounted) number of times the agent chooses the
principal’s preferred action. We show that there exists an optimal policy, where
the principal recommends its most preferred action and discloses information as
a reward in the next period, until either this action becomes statically optimal for
the agent or the agent perfectly learns the state.
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1. Introduction

We consider a dynamic “principal-agent” model, where the sole instrument the prin-
cipal has is information.1 Principal and agent are engaged in a long-term relationship.
The principal aims at inducing the agent to choose an action—the principal’s most pre-
ferred action—as often as possible, and can only do so by disclosing information about
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an unknown state. To give examples, the principal is: (i) an external consultant with a

clear agenda about what a company (the agent) should do, (ii) a department in a corpo-

ration aiming to maintain a central role while advising the CEO, (iii) a technology lead-

ing, multinational firm in a joint venture with a local firm in a less developed country;

(iv) a lobbyist attempting to influence a politician.

We assume that the principal commits to a disclosure policy, which we refer to as the

offer of a “contract.” The dynamic contracting problem we study is, therefore, a dynamic

persuasion problem.

The standard approach in the study of dynamic contracting models (e.g., Spear and

Srivastava (1987)) is to use the agent’s continuation value, or promised utility, as a state

variable. The principal’s Bellman equation is then the fixed point of an operator, which

satisfies a promise-keeping constraint in addition to incentive constraints. However, in

dynamic persuasion models, there are additional complications.

First, since the belief of the agent changes over time due to information disclosure,

we must treat it as an additional state variable. This increases the dimensionality of the

principal’s problem. Second, any information disclosure policy, to which the principal

commits, generates a martingale of beliefs. We must therefore impose the constraint

that the belief process is a martingale. To the best of our knowledge, we are the first to

be able to provide a complete characterization of an optimal contract by solving for the

fixed point of a Bellman equation with two state variables tracking the evolution of the

agent’s beliefs and of his promised utility.

We now illustrate the general properties of our optimal policy. First, the principal

uses information disclosure as a “carrot” to motivate the agent to take the principal’s

most preferred action until either the agent perfectly learns the state, or choosing the

principal’s most preferred action becomes statically optimal. Moreover, if the agent

learns the state, he learns it in finite time. After the agent has learned the state, he will

take his optimal action in that state. Alternatively, as long as the agent keeps getting

pieces of information from the principal (and thus, has not learned the state yet), he will

take the principal’s preferred action. By trickling down bits of information, the princi-

pal is able to induce the agent to delay moving away from his favorite course of action.

In some instances, the principal will promise eventual full disclosure of the state with

probability one. In other instances, the principal will be able to stir the agent’s beliefs so

that, with positive probability, the agent will take the principal’s favorite action forever.

We provide a characterization of when this occurs.

Define the agent’s opportunity cost at a state as the difference between the agent’s

stage payoff at his optimal action and the stage payoff when taking the principal’s pre-

ferred action. Generically, the agent’s opportunity cost, relative to the principal’s benefit

from his preferred action, is different in different states, and our optimal policy exploits

these differences. The second property of our optimal policy is that, along the paths at

which the agent plays the principal’s most preferred action, his belief about the likeli-

hood of the “high opportunity cost” state is decreasing. Intuitively, the optimal contract
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Figure 1. Evolution of actions and beliefs over time.

exploits the asymmetry in opportunity costs and lowers the agent’s expected opportu-
nity cost—hence making it easier to incentivize the agent—by biasing information dis-
closure in the direction of informing him when the opportunity cost is high.2

Figure 1 plots four representative evolutions of the agent’s belief about the high op-
portunity cost state. In each panel, the grey region “OPT” indicates the region at which
choosing the principal’s most preferred action is optimal for the agent. An arrow point-
ing from one belief to another indicates how the agent revises his belief within the pe-
riod following a signal’s realization. Multiple arrows originating from the same point
thus represent the information disclosed by the policy. Within a period, the agent takes
a decision after having revised his beliefs. Arrows have different colors/patterns. At all
beliefs at the end of continuous black arrows, the agent chooses the principal’s most
preferred action. At all beliefs at the end of dotted magenta arrows, he chooses what is
best given his current belief.

Third, in panels (a), (b), and (c), the policy does not disclose information to the agent
at the first period. Starting from the second period, the policy discloses just enough in-
formation to compensate the agent for the opportunity cost of choosing the principal’s
preferred action; no rent is left to the agent. However, as panel (d) illustrates, in some
cases the policy discloses information in the first period, which may leave a strictly posi-
tive rent to the agent. For instance, it does so if the promise of full information disclosure
at the next period would not incentivize the agent to choose the principal’s preferred

2To be precise, under our policy, upon receiving the signal “the opportunity cost is high,” the agent learns
that this is indeed true. However, the signal is not sent with probability one. This corresponds to the (ma-
genta/dotted) arrows pointing at 1 in Figure 1.
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action. Disclosing information at the first period may also be necessary to reduce the
agent’s expected opportunity cost of following the principal’s recommendation.

Finally, with the exception of panel (b), the policy does not induce the agent to be-
lieve that playing the principal’s most preferred action is optimal. This is markedly dif-
ferent from what we would expect from the static analysis of Kamenica and Gentzkow
(2011). Intuitively, the “static” persuasion policy is suboptimal because it does not ex-
tract all the information surplus it creates. Even in panel (b), the beliefs do not jump
immediately to the “OPT” region. In fact, the belief process may approach the “OPT”
region only asymptotically.

These properties highlight that in our dynamic environment, information is used as
a compensation tool for creating intertemporal incentives, more than as a persuasion
tool to affect the agent’s myopic incentives.

Related literature The paper is part of the literature on Bayesian persuasion, pioneered
by Kamenica and Gentzkow (2011), and recently surveyed by Kamenica (2019). The
three most closely related papers are Ball (2023), Ely and Szydlowski (2020), and Orlov,
Skrzypacz, and Zryumov (2020). In common with our paper, these papers study the
optimal disclosure of information in dynamic games and show how the disclosure of
information can be used as an incentive tool. The observation that information can be
used to incentivize agents is not new and dates back to the literature on repeated games
with incomplete information, for example, Aumann, Maschler, and Stearns (1995). See
Garicano and Rayo (2017) and Fudenberg and Rayo (2019) for some more recent papers
exploring the role of information provision as an incentive tool.

The classes of dynamic games studied differ considerably from one paper to an-
other, and this makes comparisons difficult. In Ely and Szydlowski (2020), the agent
has to repeatedly decide whether to continue working on a project or to quit (i.e., unlike
our paper, there are only two actions); quitting ends the game. The principal aims at
maximizing the number of periods the agent works on the project and can only do so
by disclosing information about its complexity, modeled as the number of periods re-
quired to complete the project. Thus, their dynamic game is a quitting game, while ours
is a repeated game. When the project is either easy or difficult (i.e., when there are two
states), the optimal disclosure policy initially persuades the agent that the task is easy, so
that he starts working. (Naturally, if the agent is sufficiently convinced that the project
is easy, there is no need to persuade him initially.) If the project is in fact difficult, the
policy then discloses it at a later date, when completing the project is now within reach.
A main difference with our optimal disclosure policy is that information comes in lumps
in Ely and Szydlowski (2020), that is, information is disclosed only at the initial period
and at a later period, while information is repeatedly disclosed in our model.3 Another
main difference is as follows. In Ely and Szydlowski, only when the promise of full infor-
mation disclosure at a later date is not enough to incentivize the agent to start working

3When there are more than two states, the optimal policy discloses information more frequently in Ely
and Szydlowski (2020). The frequency of disclosure is thus a consequence of the dimensionality of the state
space in their model, while it is not so in our model.
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does the principal persuade the agent initially. This is not so with our policy: the princi-
pal persuades the agent in a larger set of circumstances. This initial persuasion reduces
the cost of incentivizing the agent in future periods.

Orlov, Skrzypacz, and Zryumov (2020) also consider a quitting game, where the prin-
cipal aims at delaying the quitting time as far as possible.4 The quitting time is when
the agent decides to exercise an option, which has different values to the principal and
the agent. The principal chooses a disclosure policy informing the agent about the op-
tion’s value. When the principal is able to commit to a long-run policy, it is optimal to
fully reveal the state with some delay. This policy is not optimal in Ely and Szydlowski
(2020), or in our paper. See Au (2015), Bizzotto, Rüdiger, and Vigier (2021), Che, Kim,
and Mierendorff (2023), Henry and Ottaviani (2019), and Smolin (2021) for other papers
on information disclosure in quitting games, where the agent either waits and obtains
additional information, or takes an irreversible action and stops the game.

Ball (2023) studies a continuous time model of information provision, where the
state changes over time and payoffs are the ones of the quadratic example of Crawford
and Sobel (1982). Ball shows that the optimal disclosure policy requires the sender to
disclose the current state at a later date, with the delay shrinking over time. The main
difference between his work and ours is the persistence of the state (also, we consider
two different classes of games). When the state is fully persistent, as in Ely and Szyd-
lowski (2020) and our model, full information disclosure with delay is not optimal in
general. (See the discussion of Example 1 in Section 3.)

Finally, there are a few papers on dynamic persuasion, where the agent takes an ac-
tion repeatedly. However, either the agent is myopic, for example, Ely (2017) and Re-
nault, Solan, and Vieille (2017), or the principal cannot commit, for example, Escude
and Sinander (2023).

2. The problem

2.1 The model

A principal and an agent interact over an infinite number of periods, indexed by t ∈
{1, 2, � � � }. At the first period, the principal learns a payoff-relevant state ω ∈ � =
{ω0, ω1}, while the agent remains uninformed. The prior probability of ω is p0(ω) > 0.
At each period t, the principal sends a signal s ∈ S and, upon observing s, the agent takes
decision a ∈ A. The sets A and S are finite. The cardinality of S is as large as necessary
for the principal to be unconstrained in his information disclosure policy.5 Throughout,
we interchangeably use the words “period” and “stage.”

We assume that there exists a∗ ∈ A such that the principal’s stage payoff is strictly
positive whenever a∗ is chosen, and zero otherwise. The principal’s stage payoff function
is thus v : A×� → R, with v(a∗, ω0 ) > 0, v(a∗, ω1 ) > 0, and v(a, ω0 ) = v(a, ω1 ) = 0 for all
a ∈A \ {a∗}. The agent’s stage payoff function is u : A×� →R. The (common) discount
factor is δ ∈ (0, 1).

4We refer to what Orlov, Skrzypacz, and Zryumov (2020) call the agent as the principal, and vice versa.
5From Makris and Renou (2023), it is enough to have the cardinality of S as large as the cardinality of A.
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We write At−1 for A× · · · ×A︸ ︷︷ ︸
t−1 times

and St−1 for S × · · · × S︸ ︷︷ ︸
t−1 times

, with generic elements at and

st , respectively. A behavioral strategy for the agent is a collection of maps σ = (σt )∞t=1
with σt : At−1 × St → �(A).

Before learning the state, the principal commits to a strategy, or contract, specifying,
as a function of the state, the information to be disclosed (i.e., the statistical experiment
to be conducted) at each history of realized signals and actions. Formally, the principal
commits to a collection of maps (a contract) τ = (τt )∞t=1, with τt : At−1 ×St−1 ×� → �(S).
The contract enables the principal to use information disclosures to reward or punish
the agent for choosing the “right” or the “wrong” action.

We denote by V(τ, σ ) and U(τ, σ ) the principal’s and the agent’s overall expected
payoff under the profile (τ, σ ). Let Pτ,σ (·|ω) be the distribution over sequences of sig-
nals and actions induced by (τ, σ ) conditional on ω. The principal’s expected payoff
V(τ, σ ) is∑

ω

p0(ω)

(∑
t

∑
st ,at−1

(1 − δ)δt−1
Pσ ,τ

(
st−1, at−1|ω

)
τt
(
st|st−1, at−1, ω

)
σt
(
a∗|st , at−1))

× v
(
a∗, ω

)
. (1)

The agent’s expected payoff is defined similarly. The objective is to characterize the max-
imal expected payoff V max the principal can achieve by committing to a contract τ before
learning the state, that is,

V max =
⎧⎨⎩ sup

(τ,σ )
V(τ, σ )

subject to U(τ, σ ) ≥ U
(
τ, σ ′) for all σ ′.

Several comments are worth making. First, an alternative interpretation of our
model is that neither the principal nor the agent know the state, but the principal has
the ability to conduct statistical experiments contingent on the state and past signals
and actions. Second, the only additional information the agent obtains each period is
the outcome of the statistical experiment. Third, the state is fully persistent and the prin-
cipal perfectly monitors the action of the agent. Finally, the only instrument available to
the principal is information. The principal can neither remunerate the agent nor termi-
nate the relationship nor allocate different tasks to the agent. We purposefully make all
these assumptions to address our main question of interest: What is the optimal way to
incentivize the agent with information only?

2.2 An example

Throughout the paper, we illustrate our results with the help of the following example.

Example 1. The agent has three possible actions a0, a,1 and a∗, with a0 (resp., a1) the
agent’s optimal action when the state is ω0 (resp., ω1). The prior probability of ω1 is
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Table 1. Payoff table.

a0 a1 a∗

ω0 0, 1 0, 0 1, 1/2
ω1 0, 0 0, 2 1, 1/2

1/3 and the discount factor is 1/2. The payoffs are in Table 1, with the first coordinate
corresponding to the principal payoff.

We start with few preliminary observations. First, regardless of the agent’s belief,
action a∗ is never optimal. Second, the opportunity cost of playing a∗ is higher when the
state is ω1 than ω0, that is, u(a1, ω1 ) − u(a∗, ω1 ) > u(a0, ω0 ) − u(a∗, ω0 ). It is, therefore,
harder to incentivize the agent to play a∗ when he is more confident that the state is ω1.
As we shall see, the optimal policy exploits this asymmetry.

We now consider some simple strategies the principal may commit to. To start with,
assume that the principal commits to disclose information at the initial stage only. We
call it the KG policy, in reference to Kamenica and Gentzkow (2011). Clearly, since a∗ is
never optimal, the principal’s payoff is 0. To obtain a positive payoff, the principal must
condition his information disclosure on the agent’s actions.

The simplest such policy is to “reward” the agent with full disclosure of the state for
playing a∗ at the beginning of the relationship, say up to period T ∗. If the agent deviates,
the harshest punishment the principal can impose is to reveal no information in sub-
sequent periods, inducing a normalized expected payoff of 2/3. We are thus looking for
the largest T ∗ such that

(1 − δ)

(
1
2

(
δ0 + δ1 + · · · + δT

∗−1)+(1
3

· 2 + 2
3

· 1
)(

δT
∗ + · · · ))≥ 2

3
,

which is T ∗ = �ln(5)/ ln(2)	 = 2, yielding the principal a payoff of (1 − 1
2 ) · (1 + 1

2 ) = 3
4 .

Another simple strategy the principal can commit to is a “random full-disclosure
policy,” where he fully discloses the state with probability α at period t (and withholds
all information with the complementary probability) if the agent plays a∗ at period t−1.6

(Again if the agent deviates, the harshest punishment is to withhold all information in all
subsequent periods.) Thus, if we write V (resp., U) for the principal (resp., agent) payoff,
the best recursive policy is to choose α so as to maximize

V = 1
2

1 + 1
2

(1 − α)V , subject to:

U = 1
2

(
1
2

)
+ 1

2

[
(1 − α)U + α

4
3

]
≥ 2

3
.

The principal’s best payoff is V = 4/5 with α = 1/4. The random full-disclosure pol-
icy does better than the policy of fully disclosing the state with delay since it circumvents

6Full information with delay plays an important role in the work of Ball (2023) and Orlov, Skrzypacz, and
Zryumov (2020).
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the integer constraint on T . Intuitively, it makes it possible to incentivize the agent to
play a∗ a discounted number of periods slightly larger than 2, namely ln(5)/ ln(2).

As we will see in Section 3.5, the random full-disclosure policy is still suboptimal
since it does not exploit the asymmetry in the agent’s opportunity cost of choosing a∗ in
the two states. The optimal policy exploits such asymmetry by disclosing no informa-
tion in the first period and then either revealing that the state is ω1, the high opportu-
nity cost state, or lowering the agent’s belief that the state is ω1. By doing so, the policy
incentivizes the agent to take action a∗ for a longer expected time. ♦

3. Optimal contracts

This section characterizes optimal contracts and discusses their most salient properties.

3.1 A recursive formulation

The first step toward characterizing optimal contracts is to reformulate the principal’s
problem as a recursive problem. To do so, we introduce two state variables. The first
state variable is promised payoff. It is well known that classical dynamic contracting
problems admit recursive formulations if we introduce promised payoff as a state vari-
able and impose promise-keeping constraints, for example, Spear and Srivastava (1987).
The second state variable we introduce is beliefs. We now turn to the formal reformula-
tion of the problem.

We first need some additional notation. We denote by p ∈ [0, 1] a generic belief,
with p the probability of ω1. We let u(a, p) := p[u(a, ω1 ) − u(a, ω0 )] + u(a, ω0 ) be the
agent’s expected stage payoff of choosing a when his belief is p. We define m(p) :=
maxa∈A u(a, p) as the agent’s optimal stage payoff when his belief is p, and M(p) :=
p[m(1) −m(0)] +m(0) as the agent’s expected stage payoff if he learns the state prior to
choosing an action. Note that m is a piecewise linear convex function that M is linear
and that m(p) ≤M(p) for all p. Similarly, we let v(a, p) be the principal’s expected stage
payoff when the agent chooses a and the principal’s belief is p. Finally, let P := {p ∈
[0, 1] : m(p) = u(a∗, p)} be the set of beliefs at which a∗ is optimal. If nonempty, the set
P is the closed interval [p, p̄].

Let W ⊆ [0, 1] ×R be such that (p, w) ∈ W if and only if w ∈ [m(p), M(p)]. Through-
out, we consider the complete metric space of bounded, continuous functions V : W →
R, with the interpretation that V (p, w) is the principal’s payoff if he promises a payoff of
w to the agent when the agent’s current belief is p. Consider the following maximization
program:

T (V )(p, w) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
((λs ,(ps ,ws ),as )∈[0,1]×W×A)s∈S

∑
s∈S

λs
[
(1 − δ)v(as , ps ) + δV (ps , ws )

]
,

subject to:

(1 − δ)u(as , ps ) + δws ≥m(ps ) for all s such that λs > 0,∑
s∈S

λs
[
(1 − δ)u(as , ps ) + δws

]≥w,∑
s∈S

λsps = p,
∑
s∈S

λs = 1.
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The program maximizes the principal’s expected payoff over policies, that is, maps
from W to ([0, 1] × W × A)|S| . At each (p, w), a policy prescribes the probability λs
that the realized signal is s and conditional on s, the belief ps, the promised continu-
ation utility ws , and the recommended action as. The first constraint is the incentive-
compatibility condition that the agent prefers to obey the recommendation as , when ws

is the promised continuation payoff and ps is the agent’s belief. To understand the right-
hand side, observe that the agent can always play a static best-reply to any belief, so that
his expected payoff must be at least m(ps ) when his current belief is ps.7 Conversely, if
the contract recommends action as and the agent does not obey, the contract can spec-
ify no further information revelation, in which case the agent’s payoff is at most m(ps ).
Therefore, m(ps ) is the agent’s min-max payoff. The second constraint is the promise-
keeping constraint: if the principal promises the payoff w at a period, the contract must
honor that promise in subsequent periods. The third constraint states that the policy
selects a splitting of p, that is, a distribution over posteriors with expectation p.

In most dynamic contracting papers, the promise-keeping constraint holds as an
equality everywhere in the state space. Here, on the contrary, we will show that under
the contract solving the recursive problem, there are two regions: A region where the
promise-keeping constraint holds as an equality, and a region where it holds as a strict
inequality. Importantly, we will also show (see Corollary 4) that under this contract the
second region can be visited only in the very first period, and hence the contract is fea-
sible.

Throughout, we slightly abuse notation and write τ for a policy (i.e., a map from W
to ([0, 1]×W×A)|S|). A policy is feasible if it specifies a feasible tuple (λs , (ps , ws ), as )s∈S
for each (p, w), that is, a tuple satisfying the constraints of the maximization problem
T (V )(p, w).

Three important observations, implying Proposition 1, are worth making. First, for
any function V , it is easy to show that T (V ) is a concave function of the pair (p, w).
This is because, if τ is feasible at state variables (p, w) and τ′ is feasible at state variables
(p′, w′ ), then a policy which follows τ with probability α and follows τ′ with probability
1 − α is feasible at state variables (αp + (1 − α)p′, αw + (1 − α)w′ ).8 Second, for any
function V , the mapping T (V ) is weakly decreasing in w, since a policy that is feasible at
state variables (p, w) is also feasible at state variables (p, w′ ) for any w′ ≤ w. The more
the principal promises to the agent, the harder it is to incentivize the agent to play a∗.
Third, the operator T is a contraction. Indeed, T is monotone, that is, T (V ) ≥ T (V ′ ) for
all V ≥ V ′, and satisfies T (V + c) ≤ T (V ) + δc for all positive constant c ≥ 0, for all V .
Hence, T is a contraction by Blackwell’s theorem. Let V ∗ be its unique fixed point.

Proposition 1. The value function V ∗ is concave in both arguments and weakly de-
creasing in w.

7More precisely, if the agent’s belief at period t is pt , he obtains the payoff m(pt ) by playing a static best-
reply. Since the function m is convex and beliefs follow a martingale, his expected payoff is therefore at least
(1 − δ)

∑
t′≥t δ

t′−t
E[m(pt′ )|Ft ] ≥m(pt ), where Ft is the agent’s filtration at period t.

8Note that (αp+ (1 − α)p′, αw+ (1 − α)w′ ) ∈ W since αw+ (1 − α)w′ ≥ αm(p) + (1 − α)m(p′ ) ≥m(αp+
(1 − α)p′ ), by the convexity of m.
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With this recursive formulation, the principal’s maximal payoff V max is V ∗(p0,
m(p0 )), and the solutions to the optimization problem T (V ∗ )(p0, m(p0 )) define the op-
timal contracts. Characterizing the optimal solutions is the objective of the rest of the
paper.

In a working paper, Ely (2015) discusses the extension of his model in Ely (2017)
to the interaction between a long-run principal and a long-run agent and derives a re-
cursive reformulation.9 The main difference with our formulation is that the promise-
keeping constraint is an equality in Ely (2015). In Appendix C.1, we prove that V max =
maxw∈[m(p0 ),M(p0 )] V̂

∗(p0, w), where V̂ ∗ is the fixed point of the “Ely’s operator.”
Proposition 1, together with the recursive formulation, has a number of implica-

tions, which are summarized in Proposition 2. First, if the principal induces the poste-
rior ps while recommending the action as and promising the continuation payoff ws , he
should not have an incentive to disclose more information in that period, that is, we can-
not have V ∗(ps , (1 − δ)u(as , ps ) + δws ) > (1 − δ)v(as , ps ) + δV ∗(ps , ωs ). In other words,
the tuple (1, ps , ws , as ) must be optimal at state variables (ps , (1 − δ)u(as , ps ) + δws ).
To see this, observe that V ∗(ps , (1 − δ)u(as , ps ) + δws ) ≥ (1 − δ)v(as , ps ) + δV ∗(ps , ws )
for all (ps , ws , as ). Indeed, the tuple (1, ps , ws , as ) is feasible at state variables (ps , (1 −
δ)u(as , ps ) + δws ) and gives a payoff of (1 − δ)v(as , ps ) + δV ∗(ps , ws ) to the principal.
Therefore, if the inequality were strict at some s, the principal would strictly benefit from
releasing further information at ps so as to get V ∗(ps , (1 −δ)u(as , ps ) +δws )—he would
do so by following the optimal policy at (ps , (1 − δ)u(as , ps ) + δws ).

Second, if the principal does not recommend a∗ at a period, then he never recom-
mends a∗ at any subsequent periods, that is, the principal’s continuation value is zero.
In other words, as soon as an action other than a∗ is played, the principal stops incen-
tivizing the agent to play a∗. The intuition is simple. Suppose to the contrary that the
principal were to recommend as �= a∗ after the signal s at period t and a∗ at the next
period. Consider the policy change where the principal anticipates the disclosure of in-
formation: what incentivizes the agent to play a∗ at period t + 1 is disclosed at period t.
This policy change is feasible and increases the principal’s payoff, a contradiction. This
property justifies thinking of the principal’s preferred action a∗ as a status quo, which
the principal tries to induce the agent to maintain as long as possible. Note that, unlike
quitting games, the irreversibility is endogenous here—this explains why our solution
differs from the ones found in previous works.

Third, under any optimal policy, if a∗ is recommended at signal s, that is, as = a∗,
then V ∗(ps , ws ) > V ∗(ps , w′

s ) for all w′
s > ws . This implies that the agent’s expected con-

tinuation payoff is the promised continuation utility ws , that is, the promise-keeping
constraint binds at state variables (ps , ws ). (If the constraint were not binding, there
would exist some w′

s > ws such that V ∗(ps , w′
s ) = V ∗(ps , ws )), a contradiction.)

Proposition 2. For all (p, w) and all solutions (λs , ps, ws , as )s∈S to T (V ∗ )(p, w), we
have:

9Ely (2017) analyzes the interaction between a long-run principal and a sequence of short-run agents
(see also Renault, Solan, and Vieille (2017)).
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(i) For all s ∈ S such that λs > 0,

(1 − δ)v(as , ps ) + δV ∗(ps , ws ) = V ∗(ps, (1 − δ)u(as , ps ) + δws
)
.

(ii) For all s ∈ S such that λs > 0 and as �= a∗, V ∗(ps , ws ) = 0.

(iii) If as = a∗, then V ∗(ps , ws ) > V ∗(ps , w′
s ) for all w′

s ∈ (ws , M(ps )].

While the principal’s value function is unique, there might be several, payoff-
equivalent, optimal policies. One such optimal policy—the one we focus on—has the
following two additional properties, summarized in Proposition 3. First, there is at most
one signal s∗ at which the principal recommends the agent to play a∗. Intuitively, if two
signals recommended a∗, the principal would not lose from merging them into one. In
addition, upon receiving s∗, the agent is made indifferent between obeying the recom-
mendation and deviating to his outside option. Second, when the principal does not
recommend a∗, the principal perfectly informs the agent of the payoff-relevant state.
This follows from the principal’s indifference over actions a �= a∗. Since the principal’s
continuation value is zero when a∗ is not recommended (Proposition 2(ii)), full infor-
mation revelation does not hurt the principal while increasing the agent’s payoff, which
relaxes the promise-keeping constraint.

Proposition 3. For all (p, w), there exists a solution (λs , ps, ws , as )s∈S to T (V ∗ )(p, w)
such that

(i) There exists at most one signal s∗ ∈ S such that λs∗ > 0 and as∗ = a∗. Moreover,
(1 − δ)u(as∗ , ps∗ ) + δws∗ =m(ps∗ ).

(ii) If as �= a∗, then ps = 1 or ps = 0.

The main implication of Proposition 3 is that we can restrict our attention to policies
with at most three messages s∗, s0, and s1 in its support. At s∗, the policy recommends
a∗ and the agent is made indifferent between obeying and disobeying (if λs∗ > 0). At s0

(resp., s1), the agent knows that the state is ω0 (resp., ω1) and his payoff is m(0) (resp.,
m(1)). It is also worth noting that, in Example 1, the policy of fully disclosing the state
with delay satisfies neither property (iii) of Proposition 2 nor property (i) of Proposition
3. The “random full-disclosure” policy satisfies these properties, but its induced value
function is not concave.10

Several important questions remain. What are the beliefs at which the agent plays
a∗? How does the principal compensate the agent for playing a∗? Does the principal
need to reveal information at the prior belief? Does the agent learn the state? If so, does
he learn it in finite time? Before formally answering these questions, we build some
further intuition on the optimal policies.

10We remark that Propositions 2 and 3 remain true with more than two states.
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Figure 2. The set Q1.

3.2 Optimal policy: Building intuition

Let Q1 be the set of beliefs at which the agent has an incentive to play a∗ when promised
full information disclosure at the next period. That is,

Q1 := {p ∈ [0, 1] : (1 − δ)u
(
a∗, p

)+ δM(p) ≥m(p)
}

.

If Q1 is empty, then all policies are optimal, as the principal can never incentivize the
agent to play a∗. If Q1 is nonempty, then it is a closed interval [q1, q1]. Note that q1 = 0
if, and only if, a∗ is optimal at p = 0. See Figure 2 for an illustration.

For all p ∈ Q1, we write w(p) ∈ [m(p), M(p)] for the continuation payoff that makes
the agent indifferent between playing action a∗ and receiving the continuation payoff
w(p) in the future, and playing a best-reply to the belief p forever. That is, w(p) solves

(1 − δ)u
(
a∗, p

)+ δw(p) = m(p).

An important feature of our model is that the agent’s opportunity cost of choos-
ing a∗ rather than his best action, relative to the principal’s benefit, differs accross
states. When the state is ω0 (resp., ω1) the opportunity cost relative to the benefit is
[m(0) − u(a∗, 0)]/v(a∗, 0) (resp., [m(1) − u(a∗, 1)]/v(a∗, 1)). Without loss of generality,
we assume the following.

Assumption 1.

m(1) − u
(
a∗, 1

)
v
(
a∗, 1

) ≥ m(0) − u
(
a∗, 0

)
v
(
a∗, 0

) .

As we shall see, our optimal policy heavily exploits this asymmetry. It also follows
from Assumption 1 that if a∗ is optimal for the agent at p = 1, that is, m(1) = u(a∗, 1),
then a∗ is also optimal at p = 0. Consequently, a∗ is optimal at all beliefs, that is, P =
[0, 1]. (Recall that P is the set of beliefs at which a∗ is optimal.) In what follows, we
exclude this trivial case and assume that 1 /∈ P .

To strengthen our intuition, we briefly return to the original (nonrecursive) descrip-
tion of the problem. Let (τ, σ ) be a profile of strategies. We can rewrite the principal’s
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expected payoff V(τ, σ ) in equation (1) as V(τ, σ ) = λ∗v∗(a∗, p∗ ), with

λ∗ := (1 − δ)
∑
ω

p0(ω)

(∑
t

∑
st ,at−1

δt−1
Pσ ,τ

(
st , at−1|ω

)
σt
(
a∗|st , at−1))

the discounted probability of recommending action a∗, and

p∗ :=
(1 − δ)p0(ω1 )

(∑
t

∑
st ,at−1

δt−1
Pσ ,τ

(
st , at−1|ω1

)
σt
(
a∗|st , at−1))

λ∗ ,

the average discounted probability of ω1 when a∗ is played.11 As expected, the princi-
pal’s payoff only depends on how often a∗ is played, and the average belief at which it is
played.

We now make two observations, which will enable us to rewrite the principal’s ex-
pected payoff and get important insights on optimal policies. First, if we let p† be
the average discounted probability of ω1 when a∗ is not recommended, we have that
λ∗p∗ + (1 − λ∗ )p† = p0 since the belief process is a martingale. Second, recall from
Proposition 3(ii) that the agent’s belief is either 0 or 1, when he does not play a∗. There-
fore, conditional on not playing a∗, his expected payoff is M(p† ), and his overall ex-
pected payoff is

λ∗u
(
a∗, p∗)+ (1 − λ∗)M(p†)= λ∗[u(a∗, p∗)−M

(
p∗)]+M(p0 ). (2)

Since the agent’s ex ante payoff must be at least m(p0 ), the agent’s ex ante rent is

c := λ∗[u(a∗, p∗)−M
(
p∗)]+M(p0 ) −m(p0 ) ≥ 0. (3)

With the help of these two observations, we can rewrite the principal’s expected pay-
off as

v
(
a∗, p∗)

M
(
p∗)− u

(
a∗, p∗) × (M(p0 ) −m(p0 ) − c

)
. (4)

The first term captures the benefit of incentivizing the agent to play a∗ relative to the
cost. Since v(a∗,0)

v(a∗,1) ≥ m(0)−u(a∗,0)
m(1)−u(a∗,1) , it is decreasing in p∗.12 Ceteris paribus, the lower the

average belief at which the agent plays a∗, the higher the principal’s expected payoff.
The second term captures how the principal rewards the agent for playing a∗ with

his only instrument: information. The term M(p0 ) − m(p0 ) is the maximal value of
information the principal can create. Ceteris paribus, the principal’s payoff is decreasing
in c, that is, the best is to leave no rents to the agent and to create as much information
as necessary to repay the agent.

The above discussion, along with our previous results, thus suggests some guiding
principles in constructing an optimal policy. First, the policy must recommend a∗ at the

11Note that p∗ cannot be lower than q1 since the agent would never play a∗ at beliefs lower than q1.
12 This follows from the observation that M(p∗ ) −u(a∗, p∗ ) = p∗[(m(1) −m(0)) − (u(a∗, 1) −u(a∗, 0))]+

m(0) − u(a∗, 0), v(a∗, p∗ ) = p∗(v(a∗, 1) − v(a∗, 0)) + v(a∗, 0), and simple algebra.
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lowest possible beliefs p∗
s . Second, the policy should leave as little rent as possible to the

agent. Naturally, it is not always possible to leave no rents. For example, when the prior
belief p0 /∈ Q1, the agent must be given some strictly positive rent if he is to ever play a∗.
In the next subsection, we will construct an optimal policy with all these features.

3.3 Benchmark scenarios

Before defining our optimal policy, we discuss two benchmark scenarios. In the first
benchmark, the agent only has two actions, A= {a∗, a†}. The constraint that the agent’s
ex ante expected payoff must be at least as high as his outside option is

λ∗u
(
a∗, p∗)+ (1 − λ∗)u(a†, p†)≥m(p0 ).

Observe that if either λ∗(u(a∗, p∗ ) −u(a†, p∗ )) < 0 or (1 −λ∗ )(u(a†, p† ) −u(a∗, p† )) < 0,
then the constraint cannot be satisfied.13 In words, if an action is recommended with
strictly positive probability, the agent must find that action optimal at the corresponding
belief; the same is true in the static problem. Therefore, the KG policy is an optimal
policy, when the agents has only two actions.

In the second benchmark, the agent’s opportunity cost relative to the principal’s
benefit of inducing a∗ is the same across states, that is, m(1)−u(a∗,1)

v(a∗,1) = m(0)−u(a∗,0)
v(a∗,0) . Con-

sider the best random full-disclosure policy. It requires that the state be fully revealed
with probability α at each period, where α is such that the agent’s payoff equals his out-
side option payoff, that is,

(1 − δ)u
(
a∗, p0

)+ δ
[
αM(p0 ) + (1 − α)m(p0 )

]= m(p0 ).

It follows that

α = 1 − δ

δ

m(p0 ) − u
(
a∗, p0

)
M(p0 ) −m(p0 )

.

Since the principal’s payoff satisfies V = (1 − δ)v(a∗, p0 ) + δ(1 − α)V , it follows that

V = M(p0 ) −m(p0 )

M(p0 ) − u
(
a∗, p0

)v(a∗, p0
)
.

Now, from the above relaxed version of the principal’s maximization problem, where
only the (ex ante) participation constraint needs to be satisfied, an upper bound on the
principal’s payoff is given by equation (4). Since v(a∗,0)

v(a∗,1) = m(0)−u(a∗,0)
m(1)−u(a∗,1) , the first term is

constant in p∗ (see footnote 12), and thus, equals to v(a∗,p0 )
M(p0 )−u(a∗,p0 ) . Since c ≥ 0, the

second term is at most M(p0 ) − m(p0 ). Therefore, M(p0 )−m(p0 )
M(p0 )−u(a∗,p0 )v(a∗, p0 ) is an upper

bound of the relaxed problem. Since the random full-disclosure policy achieves this
upper bound, it is an optimal policy.

Corollary 1. (i) When |A| = 2, the KG policy is optimal.

13In the former case, the left-hand side would be strictly less than u(a†, p0 ) ≤ m(p0 ), while it would be
strictly less than u(a∗, p0 ) ≤m(p0 ) in the latter case, a contradiction in both cases.
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(ii) When v(a∗,0)
v(a∗,1) = m(0)−u(a∗,0)

m(1)−u(a∗,1) , the random full-disclosure policy is optimal.

We hasten to stress that both the KG and random full-disclosure policies are not op-
timal in general, as Example 1 demonstrates. See Section 3.5.

3.4 Optimal policy: A formal description

We define a family of policies (τq )q∈[q1,q1] indexed by a belief q, and prove later the ex-

istence of q∗ ∈ [q1, q1] such that the policy τq∗ is optimal. At each (p, w) ∈ W , a policy
prescribes a feasible tuple (λs , (ps , ws ), as )s∈S , that is, a splitting (λs , ps )s∈S , a profile of
recommendations (as )s∈S and a profile of continuation payoffs (ws )s∈S . There are four
different types of prescription, depending on which of four regions the state variables
(p, w) belong to; the belief q parameterizes these regions. The four regions are

W1
q :=

{
(p, w) : p ∈

[
0, q1 ), w ≤ q1 −p

q1 m(0) + p

q1 m
(
q1)},

W2
q :=

{
(p, w) : p ∈ (q, 1

]
,

1 −p

1 − q
m(q) + p− q

1 − q
m(1) <w ≤ 1 −p

1 − q1 m
(
q1)+ p− q1

1 − q1 m(1)

}

∪
{

(p, w) : p ∈ [q1, q
]
, w ≤ 1 −p

1 − q1m
(
q1)+ p− q1

1 − q1 m(1)

}
,

W3
q :=

{
(p, w) : p ∈ (q, 1], w ≤ 1 −p

1 − q
m(q) + p− q

1 − q
m(1)

}
,

W4
q := W \ (W1

q ∪W2
q ∪W3

q

)
.

Figure 3 illustrates the four regions, with W1
q the black region, W2

q the region with vertical
lines, W3

q the gray region, and W4
q the region with slanted lines. Observe that regions W1

q

and W4
q do not depend on the parameter q, while the other two do.

We begin with an informal overview of our optimal policy. In region W2
q , the princi-

pal recommends a∗ and discloses information in the next period as a reward. The belief
p decreases over time, until either it reaches a point at which the agent will choose a∗
forever, or it enters region W4

q .

Figure 3. Regions W1
q (black), W2

q (vertical lines), W3
q (gray), and W4

q (slanted lines).
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In region W4
q , the principal discloses the state with sufficiently high probability so

that, when disclosure does not occur, the agent’s belief is q1. At the belief q1, the agent
plays a∗ one final time. (Recall that at q1, the agent plays a∗ if rewarded with full infor-
mation disclosure at the next period.)

In region W1
q , the belief p is so low that even the promise of full information disclo-

sure at the next period does not incentivize the agent to play a∗, not even once. In this
region, the principal sends either the signal s∗ or the signal s0. The signal s0 perfectly
informs the agent that the state is ω0, while the signal s∗ induces the belief q1, at which
the agent plays a∗ one final time.

In region W3
q , the belief p is higher than q and, even possibly, higher than q1. In this

region, the principal sends either the signal s∗ or the signal s1. The signal s1 perfectly
informs the agent that the state is ω1, while the signal s∗ induces the belief q ≤ q1, at
which the agent plays a∗. It is almost the mirror image of what the policy does in region
of W1

q ; the only conceptual difference is that the policy induces the belief q rather than

q1, the natural counterpart of q1. This asymmetry is a consequence of trying to induce
a∗ at the lowest possible average belief.

We now formally define the policy τq, starting with region W2
q . Define the functions

λ : W → [0, 1] and ϕ : W → [0, 1] so that (λ(p, w), ϕ(p, w)) is the unique solution of(
p

w

)
= λ(p, w)

(
ϕ(p, w)

m
(
ϕ(p, w)

))+ (1 − λ(p, w)
)( 1

m(1)

)
(5)

for all w > m(p) and (λ(p, m(p)), ϕ(p, m(p))) = (1, p). When (p, w) is in region
W2

q , the policy splits p into two beliefs ϕ(p, w) and 1, with probability λ(p, w) and
1 − λ(p, w), respectively. When the posterior belief is ϕ(p, w), the policy recommends
a∗ and promises the continuation payoff w(ϕ(p, w)) if the recommendation is followed.
Therefore, if the agent follows the recommendation, his discounted expected payoff is
m(ϕ(p, w)) = (1 − δ)u(a∗, ϕ(p, w)) + δw(ϕ(p, w)). When the posterior belief is 1, the
policy recommends a1 and promises the continuation payoff m(1), with a1 an opti-
mal action at state ω1. Therefore, if the agent follows the recommendation, he achieves
the discounted expected payoff m(1). Note that when w = m(p), the principal recom-
mends a∗ with probability one, and promises the continuation payoff w(p) in the fu-
ture. Upon following the recommendation, the agent achieves the discounted expected
payoff m(p).

The key feature of the policy in region W2
q is to disclose, with some probability, that

the state is ω1. As we already suggested, the rationale for disclosing when the state is
ω1 is two-fold. First, the lower the agent’s belief, the lower the cost of incentivizing the
agent to play a∗ relative to the principal’s benefit. Second, to satisfy the promise-keeping
constraint, the policy needs to compensate the agent for playing a∗. Since the principal’s
payoff is zero when the agent takes any action different from a∗, the best is to choose a
compensation, which guarantees the highest probability of playing a∗. Putting these
two observations together, at (p, w), policy τq(p, w) finds two beliefs (p′, p′′ ) such that
(i) the agent is asked to play a∗ at p′, (ii) p′ < p since the agent should play a∗ at the
lowest belief, and (iii) the probability of p′ is as high as possible. The best splitting is to
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Figure 4. Construction of λ and ϕ: p = λϕ+ (1 − λ)1; w = λm(ϕ) + (1 − λ)m(1).

have p′ as close as possible to p and p′′ as far as possible, that is, equal to 1. Observe
that since (1 − λ(p, w))m(1) + λ(p, w)m(ϕ(p, w)) = w, the promise-keeping constraint
binds in region W2

q . See Figure 4 for an illustration.
Note that starting with (p, w) ∈ W2

q , the decreasing sequence of beliefs (ϕ(p, w),
ϕ2(p, w), � � � ) (and corresponding payoffs) reaches either region W4

q—as in panels (A)
and (C) of Figure 1—or a belief in P at which it is statically optimal for the agent to play
a∗—as in panel (B) of Figure 1.14 In the latter case, the policy recommends a∗ and stops
disclosing information (i.e., the belief stays constant).

When (p, w) is in region W4
q , the agent cannot be incentivized to play a∗ at (p, w).15

In that case, the policy splits p into posteriors 0, q1, and 1 with respective probabilities
λ0, λq1 , and λ1. Conditional on 0 (resp., 1), the policy recommends an action optimal

at 0, (resp., an action optimal at 1), and promises a continuation payoff of m(0) (resp.,
m(1)). Conditional on q1, the policy recommends action a∗ and promises a continuation
payoff of w(q1 ). Doing so, the principal ensures that the agent plays a∗ one more time.
The probabilities (λ0, λq1 , λ1 ) ∈R+ ×R+ ×R+ are the unique solution to

λ0

⎛⎜⎝ 0
m(0)

1

⎞⎟⎠+ λq
1

⎛⎜⎝ q1

m
(
q1)
1

⎞⎟⎠+ λ1

⎛⎜⎝ 1
m(1)

1

⎞⎟⎠=
⎛⎜⎝p

w

1

⎞⎟⎠ .

A solution exists since W4
q is the convex hull of (0, m(0)), (q1, m(q1 )), and (1, m(1)). In

this region, the promise-keeping constraint is also binding.
When (p, w) is in region W1

q , the policy splits p into 0 (i.e., discloses that the state is

ω0) and q1 with respective probabilities
q1−p

q1 and p
q1 . If the realized belief is 0, the pol-

icy recommends an action optimal at 0 and promises a continuation payoff of m(0). If
the realized belief is q1, the policy recommends a∗ and promises a continuation payoff
of w(q1 ). The agent is thus made indifferent between playing a∗ and receiving w(q1 ) in
the future, and playing a best reply to the belief q1 forever. Intuitively, in region W1

q , the
principal cannot incentivize the agent to take action a∗ by promising future information

14We write ϕ2(p, w) for ϕ(ϕ(p, w), m(ϕ(p, w))).
15Recall that q1 is the lowest belief at which the agent can be incentivized to play a∗.
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disclosure (since p< q1). Hence, the principal must first persuade the agent by disclos-
ing some information. Note that the promise-keeping constraint is slack in this region

whenever (p, w) satisfies
q1−p

q1 m(0) + p
q1 m(q1 ) >w.

When (p, w) is in region W3
q , the policy splits p into q and 1 with respective proba-

bilities 1−p
1−q and p−q

1−q . Conditional on 1, the policy recommends an action optimal at 1
and promises a continuation payoff of m(1). Conditional on q, the policy recommends
a∗ and promises a continuation payoff of w(q). The agent is thus made indifferent be-
tween playing a∗ and receiving w(q) in the future, and playing a best-reply to the belief q
forever. The policy in this region is analogous to the one in region W1

q—the policy starts

by disclosing some information. When q = q1, the reason for the analogy is immediate,
as q1 is the highest belief at which the agent is willing to take action a∗ at the current
period in exchange for full information at the next period. As we shall see later, the
optimal policy τq∗ may require q∗ < q1, in order to guarantee that the principal’s value
function is concave, a necessary requirement to minimize the cost of incentivizing the
agent relative to the benefit to the principal. As in region W1

q , the promise-keeping con-

straint is also slack in this region whenever (p, w) satisfies w< 1−p
1−qm(q)+ p−q

1−qm(1). This
completes the description of the policy τq.

Before moving on, we first verify that our policy τq∗ is optimal under the two bench-
mark scenarios discussed in Section 3.3. Given the value function, we just need to check
whether τq∗ solves the Bellman equation.

Corollary 2. The policy τq∗ is optimal both when |A| = 2 and when v(a∗,0)
v(a∗,1) =

m(0)−u(a∗,0)
m(1)−u(a∗,1) .

We now illustrate our construction by revisiting Example 1.

3.5 Example 1 revisited

We have that M(p) = 1 +p, m(p) = max(1 −p, 2p) and w(p) = 2 max(2p, 1 −p) − (1/2).
Therefore, Q1 = [1/6, 1/2]. Assume that q = 1/3 (we will show that this choice is the
optimal’s one). Remember that the prior probability of ω1 is 1/3 and the discount factor
is 1/2. Let us start with the pair (p, m(p)) = (1/3, 2/3), which is in region W2

1/3. The
policy recommends a∗ to the agent and promises a continuation payoff of w(1/3) = 5/6.
The next value of the state variables is therefore (1/3, 5/6), which is again in W2

1/3. If the
agent had been obedient, the policy then splits the prior probability 1/3 into 3/11 and 1
with probability 22/24 and 2/24, respectively. Indeed, we have⎛⎜⎝1

3
5
6

⎞⎟⎠= 22
24

⎛⎜⎝
3

11

m

(
3

11

)
⎞⎟⎠+ 2

24

(
1

m(1)

)
.

Conditional on the posterior 3/11, the policy recommends a∗ to the agent and
promises a continuation payoff of w(3/11) = 21/22. Conditional on the posterior 1, the
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Figure 5. Evolution of the beliefs.

policy recommends a1 and promises a continuation payoff of m(1) = 2. Therefore, the
next value of the state variables is either (3/11, 21/22) or (1, 2), with the former again in
W2

1/3.
If the value of the state variables is (1, 2), the policy yet again recommends a1 and

a continuation payoff of 2. If the value of the state variables is (3/11, 21/22), the policy
splits 3/11 into 7/39 and 1, with probability 39/44 and 5/44, respectively. Conditional on
the posterior 7/39, the policy recommends a∗ to the agent and promises a continuation
payoff of w(7/39) = 89/78. Conditional on the posterior 1, the policy recommends a1

and promises a continuation payoff of m(1) = 2.
Finally, at the state variables value of (7/39, 89/78), which is in region W4

1/3, the pol-
icy does a penultimate split of 7/39 into 0, 1/6 and 1 with probability 113/156, 18/156
and 25/156, respectively. Conditional on the posterior 1/6, the policy recommends a∗
and promises a continuation payoff of 7/6, that is, full information disclosure at the next
period. The policy fully discloses the state in finite time to the agent. See Figure 5 for the
evolution of the beliefs at the beginning of each period. At all beliefs other than 0 and 1,
the agent is recommended to play a∗. The principal’s expected payoff is 1285/1536, that
is, about 0.83.

Our optimal policy performs strictly better than the random full-disclosure policy
because it exploits the asymmetry in the agent’s opportunity cost of choosing a∗ in the
two states. At each period in which information is disclosed and a∗ is played, our policy
decreases the belief at which a∗ is played; the average discounted beliefs is p∗ ≈ 0.197 <

1/3.
On the contrary, the random full-disclosure policy does not alter the belief that the

state is ω1 when a∗ is played; the belief stays fixed at the prior p0 = 1/3.
It remains to explain how to choose the parameter q∗ to guarantee the optimality of

τq∗ .

3.6 Construction of q∗ and optimality

For all q ∈ [q1, q1], let Vq : W → R be the value function induced by the policy τq. For
all q, note that Vq(1, m(1)) = 0 since a∗ is not optimal at p = 1, and Vq(0, m(0)) = 0 if
a∗ is not optimal at p = 0 (resp., Vq(0, m(0)) = v(a∗, 0) if a∗ is optimal at p = 0). Also,
Vq(q1, m(q1 )) = (1 − δ)v(a∗, q1 ) if q1 > 0 (resp., Vq(0, m(0)) = v(a∗, 0) if q1 = 0, since a∗
is then optimal at p = 0). Therefore, any two policies τq and τq′ induce the same values
at all (p, w) ∈ W1

q ∪W4
q = W1

q′ ∪W4
q′ . (Remember that the regions W1

q and W4
q do not vary

with q; see Figure 3.)
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Similarly, any two policies τq and τq′ induce the same values at all (p, w) ∈ W2
min(q,q′ ).

Thus, in particular, τq and τq1 induce the same values at all (p, w) ∈ W \W3
q . Finally, at all

(p, w) ∈ W3
q , Vq(p, w) = 1−p

1−q Vq(q, m(q)) = 1−p
1−q Vq1 (q, m(q)). Hence, characterizing Vq1 is

enough to characterize Vq. (See Appendix B for more details.)
Recall that V ∗ is the unique solution to the fixed-point problem—to be optimal, a

policy must therefore induce the value function V ∗. Let

q∗ = sup
{
p ∈ [q1, q1] : Vq1

(
p, m(p)

)≥ Vq1 (p, w) for all w
}

.

We are now ready to state our main result.

Theorem 1. The policy τq∗ is optimal: Vq∗ = V ∗.

To understand the role of q∗, recall that for all p ∈ [q∗, 1], the policy leaves rents to the
agent.16 To minimize these rents, the principal therefore would like to have q∗ as high
as possible, that is, equal to q1, the highest belief at which the agent is willing to play
a∗ in exchange for full information disclosure at the next period. However, Vq1 (·, m(·))
is not guaranteed to be concave in p, a necessary condition for optimality. To see that
V ∗(·, m(·)) must be concave in p, consider any pair (p, p′ ) ∈ [0, 1] × [0, 1] and α ∈ [0, 1].
We have

αV ∗(p, m(p)
)+ (1 − α)V ∗(p′, m

(
p′)) ≤ V ∗(αp+ (1 − α)p′, αm(p) + (1 − α)m

(
p′))

≤ V ∗(αp+ (1 − α)p′, m
(
αp+ (1 − α)p′)),

where the first inequality follows from the concavity of V ∗ in both arguments and the
second from V ∗ decreasing in w and the convexity of m. The optimal choice of q∗ is thus
the largest q, which guarantees Vq(·, m(·)) to be concave.

More precisely, as we show in Appendix A.5, the definition of q∗ guarantees that Vq∗

is concave in both arguments and decreasing in w, so that Vq∗(·, m(·)) is a concave func-
tion of p. We also prove that Vq∗(p, m(p)) ≥ Vq1 (p, m(p)) for all p. Since it is clearly

the smallest such function, Vq∗ is the concavification of Vq1 . In particular, q∗ = q1 if
Vq1 (·, m(·)) is already concave. Figure 6 illustrates the concavification for Example 1. In
dashed red is the value function of policy τq1 ; in solid blue its concavification—the value

function of policy τq∗ , with q∗ = 1
3 .

The policy τq∗ leaves rents to the agent, that is, the (ex ante) participation constraint
does not bind, for all priors in [0, q1 ) ∪ (q∗, 1]. This is quite natural for all priors in
[0, 1] \ Q1 since the agent cannot be incentivized to play a∗ even once. In the language
of Ely and Szydlowski (2020), “the goalposts need to move,” that is, one needs to dis-
close information at the ex ante stage to persuade the agent to play a∗. However, our
policy also leaves rents for all priors in (q∗, q1]. The intuitive reason is that the initial in-
formation disclosure reduces the cost of incentivizing the agent in subsequent periods
sufficiently enough to compensate for the initial loss. (When the realized posterior is 1,
the agent never plays a∗, thus creating the loss.)

16That is, the agent is promised a payoff of 1−p
1−q∗ m(q∗ ) + p−q∗

1−q∗ m(1) >m(p).
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Figure 6. The concavification of Vq1 (·, m(·)) in Example 1.

4. Evolution of beliefs in the optimal policy

The optimal policy discloses information gradually over time, with beliefs evolving until
either the agent learns the state or believes that a∗ is statically optimal. We can be more
specific. First, we consider the instances when the policy converges with positive proba-
bility to a belief p ∈ P = [p, p], the set of beliefs at which a∗ is optimal. Let Q∞ = [p, q∞],
with q∞ the solution to

m
(
q∞)= (1 − δ)u

(
a∗, q∞)+ δ

(
1 − q∞

1 −p
m(p) + q∞ −p

1 −p
m(1)

)
,

if P is nonempty, and Q∞ = ∅, otherwise. Note that P ⊆ Q∞. See Figure 7 for a graphical
illustration.

Intuitively, the set Q∞ has the “fixed-point property,” that is, if one starts with a be-
lief p ∈Q∞ and promised utility w(p), then the belief ϕ(p, w(p)) ∈Q∞. To see this, note
that the pair (p, w(p)) is in region W2

q . Since ϕ(p, w(p)) ≤ p (with a strict inequality
if p /∈ P), we then have a decreasing sequence of beliefs converging to an element in
P . This is because, at all beliefs p ∈ Q∞, the policy splits p into p′ = ϕ(p, w(p)) and 1,

Figure 7. Construction of q∞.
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then splits p′ into p′′ = ϕ(p′, w(p′ )) and 1, etc. The decreasing sequence (p, p′, p′′, � � � )
converges, either in finite time or asymptotically, to a belief in P , at which no further
splitting occurs and the agent plays a∗ forever. See panel (b) of Figure 1 for an an illus-
tration.

Recall that if the prior p0 is larger than q∗, the policy first splits p0 into q∗ and 1.
Hence, if q∗ ≤ q∞, the agent’s belief enters the set Q∞ with strictly positive probabil-
ity.17 Therefore, if the agent’s prior belief is in the set Q∞

q∗ , then there is a strictly positive
probability that the agent chooses action a∗ forever, where

Q∞
q∗ :=

{
Q∞ if q∗ > q∞,

[p, 1) otherwise.

Second, at all priors in [0, 1] \ Q∞
q∗ , there exists Tδ < ∞ such that the belief process

is absorbed in the degenerate beliefs 0 or 1 after at most Tδ periods. In other words, the
agent learns the state for sure in finite time. The number of periods Tδ corresponds to
the maximal number of periods the agent can be incentivized to play a∗. We provide an
explicit computation in Appendix B. In Example 1, Tδ = 3. Moreover, the number Tδ is
increasing in δ and converges to +∞ as δ converges to 1. (Note that the convergence
is uniform in that it does not depend on p0 ∈ [0, 1] \ Q∞

q∗ .) Thus, we have the following
corollary.

Corollary 3. Under the optimal disclosure policy τq∗ , there is a strictly positive prob-
ability that the agent chooses action a∗ forever if, and only if, p0 ∈ Q∞

q∗ . Alternatively, if
p0 /∈ Q∞

q∗ , then there exists Tδ such that the agent perfectly learns the state (i.e., p reaches
either 0 or 1) with probability 1 after at most Tδ periods.

The interval Q∞
q∗ includes the subinterval [p, p̄], where the agent takes action a∗ with

probability one. In the complementary set Q∞
q∗ \ [p, p̄], the probability that the agent

takes action a∗ forever is strictly less than 1. That is, the principal discloses the state
with positive probability, and with the complementary probability he lowers the agent’s
belief so that it converges to the region where taking action a∗ is statically optimal. Con-
vergence may be asymptotic or may happen in finite time.

As already mentioned, the promise-keeping constraint binds in regions W2
q∗ and

W4
q∗ , but may not bind in the other two regions. We now argue that under our policy

τq∗ , the promise-keeping constraint can only be slack in the first period. In other words,
the promised-keeping constraint binds from period two onwards. To see this, suppose
that (p0, m(p0 )) is in region W3

q∗ , hence the prior belief p0 ∈ (q∗, 1). What the policy τq∗

does is to split p0 into q∗ and 1, so that the state variable transit to either (q∗, m(q∗ )) or
(1, m(1)). In the latter case, the promise-keeping constraint clearly binds and will con-
tinue to bind in all subsequent periods, since the agent has learned that the state is ω1.
In the former case, since (q∗, m(q∗ )) ∈ W2

q∗ , the promise-keeping constraint binds and
will continue to bind in all subsequent periods since the subsequent state variables will

17From the definition of q∗, we have that q∗ ≥ p since Vq1 (p, m(p)) = u(a∗, p) for all p ∈ P .
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either be in regions W2
q∗ or W4

q∗ or equal to (1, m(1)). A symmetric argument holds when

(p0, m(p0 )) is in region W1
q∗ .

Corollary 4. Under the optimal policy τ∗
q, the promise-keeping constraint can only be

slack in the first period.

All in all, information disclosure plays two roles in our optimal policy. First, the
promise of future information disclosure motivates the agent to take action a∗ in early
periods. The intertemporal incentives make it possible to motivate to play a∗ at beliefs
outside P . Second, information disclosure decreases the discounted average belief that
the state is the high opportunity cost state ω1 and, therefore, makes it easier to incen-
tivize the agent to take action a∗ for a longer expected time.

Appendix A: Proofs

A.1 Mathematical preliminaries

We collect without proofs some useful results about concave functions. Let f : [a, b] →R

be a concave function and a ≤ x < y < z ≤ b. The following properties hold:

(a) f (y )−f (x)
y−x ≥ f (z)−f (y )

z−y .

(b) f (y )−f (a)
y−a ≥ f (z)−f (a)

z−a .

(c) f (b)−f (x)
b−x ≥ f (b)−f (y )

b−y .

(d) f (y )−f (x)
y−x ≥ f (y+�)−f (x+�)

y−x for all � ≥ 0 such that y +�≤ b.

Note that property (a) implies (d) and is true irrespective of whether x + �� y. We will
repeatedly use these properties in most of the following proofs.

To prove Lemma 3, we will use the following property: if f : [a, b] → R satisfies
f (x)−f (a)

x−a ≥ f (y )−f (a)
y−a for all a < x ≤ y ≤ b, then f is concave.

A.2 Proposition 2

Proof of Proposition 2(i). By contradiction, assume that there exists s′ ∈ S such that
λs′ > 0 and

(1 − δ)v(as′ , ps′ ) + δV ∗(ps′ , ws′ ) < V ∗(ps′ , (1 − δ)u(as′ , ps′ ) + δws′
)
.

Let (λ∗
s , p∗

s , w∗
s , a∗

s )s∈S be the policy, which achieves V ∗(ps′ , (1 −δ)u(as′ , ps′ ) +δws′ ), and
consider the new policy(

(λs , ps , ws , as )s∈S\{s′},
(
λs′λ

∗
s , p∗

s , w∗
s , a∗

s

)
s∈S
)
.
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By construction, the new policy is feasible. Moreover, we have that∑
s∈S\{s′}

λs
[
(1 − δ)v(as , ps ) + δV ∗(ps , ws )

]+ λs′
∑
s∈S

λ∗
s

[
(1 − δ)v

(
a∗
s , p∗

s

)+ δV ∗(p∗
s , w∗

s

)]
=

∑
s∈S\{s′}

λs
[
(1 − δ)v(as , ps ) + δV ∗(ps , ws )

]+ λs′V
∗(ps′ , (1 − δ)u(as′ , ps′ ) + δws′

)
>
∑
s∈S

λs
[
(1 − δ)v(as , ps ) + δV ∗(ps , ws )

]
,

a contradiction with the optimality of (λs , ps , ws , as )s∈S . Thus, we must have (1 − δ)v(as ,
ps ) + δV ∗(ps , ws ) ≥ V ∗(ps , (1 − δ)u(as , ps ) + δws ) for all s such that λs > 0.

Since the fixed point satisfies V ∗(ps , (1 − δ)u(as , ps ) + δws ) ≥ (1 − δ)v(as , ps ) +
δV ∗(ps , ws ), we have the desired result.

Proof of Proposition 2(ii). Let s ∈ S such that λs > 0 and as �= a∗. We have

(1 − δ)v(as , ps ) + δV ∗(ps , ws ) = δV ∗(ps , ws ) ≥ V ∗(ps, (1 − δ)u(as , ps ) + δws
)

≥ V ∗(ps , ws ),

where the first inequality follows from Proposition 2(i) and the second follows from V ∗
decreasing in w and ws ≥ u(as , ps ) for

(1 − δ)u(as , ps ) + δws ≥m(ps ),

to hold. It follows that V ∗(ps , ws ) = 0.

Proof of Proposition 2(iii). The proof is by contradiction. Suppose to the contrary
that V ∗(ps , ws ) = V ∗(ps , w′

s ) for some w′
s ∈ (ws , M(ps )] and as = a∗. By Proposition 2(i),

we have

V ∗(ps, (1 − δ)u
(
a∗, ps

)+ δws
)= (1 − δ)v

(
a∗, ps

)+ δV ∗(ps , ws )

= (1 − δ)v
(
a∗, ps

)+ δV ∗(ps , w′
s

)
≤ V ∗(ps, (1 − δ)u

(
a∗, ps

)+ δw′
s

)
.

Since V ∗ is decreasing in w, the inequality cannot be strict, hence

V ∗(ps , (1 − δ)u
(
a∗, ps

)+ δws
)= V ∗(ps , (1 − δ)u

(
a∗, ps

)+ δw′
s

)
. (6)

We now show that

V ∗(ps, (1 − δ)u
(
a∗, ps

)+ δws
)= V ∗(ps , ws ), (7)

hence

V ∗(ps, (1 − δ)u
(
a∗, ps

)+ δw′
s

)= V ∗(ps , w′
s

)= v
(
a∗, ps

)
,
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where the last equality follows from as = a∗ and Proposition 2(i). This means that af-
ter signal s, action a∗ is taken with probability one in all periods. This is the required
contradiction, since u(a∗, ps ) ≤ (1 − δ)u(a∗, ps ) + δws < (1 − δ)u(a∗, ps ) + δw′

s : No fea-
sible policy promising utility w′

s guarantees that a∗ is chosen with probability one in all
periods.

It remains to prove that equation (7) is true. Recall that (1 −δ)u(a∗, ps ) +δws ≤ws <

w′
s . We consider two cases. First, assume that (1 − δ)u(a∗, ps ) + δw′

s < ws . Equation (7)
then follows from

V ∗(ps , (1 − δ)u
(
a∗, ps

)+ δws
) ≥ V ∗(ps , ws )

≥ αV ∗(ps , (1 − δ)u
(
a∗, ps

)+ δw′
s

)+ (1 − α)V ∗(ps , w′
s

)
= αV ∗(ps , (1 − δ)u

(
a∗, ps

)+ δws
)+ (1 − α)V ∗(ps , ws ),

where α is the weight on (1 − δ)u(a∗, ps ) + δw′
s such that the convex combination of

(1 − δ)u(a∗, ps ) + δw′
s and w′

s is equal to ws .
Second, if (1 − δ)u(a∗, ps ) + δw′

s ≥ ws , then equation (7) follows from a similar ar-
gument using a convex combination of (1 − δ)u(a∗, ps ) + δws and (1 − δ)u(a∗, ps ) +
δw′

s .

A.3 Proposition 3

Proof of Proposition 3(i), part A. We show that we can restrict attention to con-
tracts where as = a∗ for at most one signal s such that λs > 0. Let (λ′

s , p′
s , w′

s , a′
s )s∈S′ be a

solution to the maximization program T (V ∗ )(p, w). Let S∗ ⊆ S′ be the set of signals such
that as = a∗ and λs > 0. If S∗ is empty, there is nothing to prove. If S∗ is nonempty, define
p∗ as ∑

s∈S∗

(
λ′
s∑

s∈S∗
λ′
s

)
ps = p∗,

and
∑

s∈S∗ λ′
s = λ∗. From the concavity of V ∗, we have that∑

s∈S∗
λ′
s

(
v
(
a∗, p′

s

)
(1 − δ) + δV ∗(p′

s , w′
s

)) = λ∗
(
v
(
a∗, p∗)(1 − δ) + δ

∑
s∈S∗

(
λ′
s

λ∗
)
V ∗(p′

s, w
′
s

))
≤ λ∗(v(a∗, p∗)(1 − δ) + δV ∗(p∗, w∗)),

where

w∗ =
∑
s∈S∗

(
λ′
s∑

s∈S∗
λ′
s

)
w′
s .

Notice that w∗ ∈ [m(p∗ ), M(p∗ )] since the convexity of m implies

M
(
p∗)= ∑

s∈S∗

(
λ′
s∑

s∈S∗
λ′
s

)
M
(
p′
s

)≥ ∑
s∈S∗

(
λ′
s∑

s∈S∗
λ′
s

)
ws ≥

∑
s∈S∗

(
λ′
s∑

s∈S∗
λ′
s

)
m
(
p′
s

)≥m
(
p∗).
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It is routine to verify that the new contract((
λ′
s , p′

s, w
′
s , a′

s

)
s∈S′\S∗ ,

(
λ∗, p∗, a∗, w∗))

is feasible and, therefore, also optimal.

Proof of Proposition 3(ii). Let (λ′
s , p′

s , w′
s , a′

s )s∈S be a solution to the maximization
program T (V ∗ )(p, w). From Proposition 3(i), part A, we can assume that there exists
a unique signal s∗ such that a′

s∗ = a∗. We construct a new contract with three mes-
sages, s∗, s0, and s1, as follows. First, (λs∗ , ps∗ , ws∗ , as∗ ) = (λ′

s∗ , p′
s∗ , w′

s∗ , a′
s∗ ). Second,

λs0 =∑s∈S\{s∗} λ
′
s(1 − p′

s ), ps0 = 0, ws0 = m(0), and as0 ∈ arg maxa∈A u(a, 0). Third, λs1 =∑
s∈S\{s∗} λ

′
sp

′
s, ps1 = 1, ws1 =m(1), and as1 ∈ arg maxa∈A u(a, 1). It is routine to verify that

this new contract is feasible. (To check that the promise-keeping constraint is satisfied,
we simply need to observe that (1−δ)u(a′

s , p′
s )+δw′

s ≤M(p′
s ) = (1−p′

s )m(0)+p′
sm(1).)

Since the new contract gives the same payoff to the principal, it is optimal.

Proof of Proposition 3(i), part B. From part A and (ii), we can restrict attention to
contracts with three messages s∗, s0, and s1, such that ps0 = 0, ps1 = 1, and a∗ is recom-
mended at s∗. To ease notation, we denote such a contract by (λ′

s∗ , p′
s∗ , w′

s∗ , λ′
s0

, λ′
s1

). In
words, the contract induces the beliefs p′

s∗ , 0, and 1, with probability λ′
s∗ , λ′

s0
, and λ′

s1
,

respectively. At s∗, the contract recommends a∗ and promises a continuation payoff of
w′
s∗ . Throughout the proof, we refer to such a contract as a simple contract.

Among all optimal simple contracts at (p, w), fix one that minimizes the probability
of recommending a∗. Denote it (λs∗ , ps∗ , ws∗ , λs0 , λs1 ). The existence of such a contract
follows from standard arguments. (See Appendix C.2 for details.) We want to show that
(1 − δ)u(a∗, ps∗ ) + δws∗ =m(ps∗ ) if λs∗ > 0.

Under this contract, the principal’s payoff is

V ∗(p, w) = λs∗
[
(1 − δ)v

(
a∗, ps∗

)+ δV ∗(ps∗ , ws∗ )
]= λs∗V

∗(ps∗ , (1 − δ)u
(
a∗, ps∗

)+ δws∗
)
,

where the second equality follows from Proposition 2(i).

We complete the proof by contradiction. Suppose that λs∗ > 0, but (1−δ)u(a∗, ps∗ )+
δws∗ > m(ps∗ ). We will construct another simple contract, which is also optimal and
has a strictly lower probability of recommending a∗, thus contradicting the hypothesis
that (λs∗ , ps∗ , ws∗ , λs0 , λs1 ) minimizes the probability of recommending a∗. We need the
following lemma.

Lemma 1. For any (p, w) ∈ W , such that w>m(p) and

V ∗(p, w) = (1 − δ)v
(
a∗, p

)+ δV ∗
(
p,

w− (1 − δ)u
(
a∗, p

)
δ

)
,

there exist (p̂s∗ , ŵs∗ ) ∈ W and (λ̂s∗ , λ̂s0 , λ̂s1 ) ∈ [0, 1]3 such that λ̂s∗ + λ̂s0 + λ̂s1 = 1,

λ̂s∗

(
p̂s∗

ŵs∗

)
+ λ̂s0

(
0

m(0)

)
+ λ̂s1

(
1

m(1)

)
=
(
p

w

)
,

V ∗(p, w) ≤ λ̂s∗V ∗(p̂s∗ , ŵs∗ ), and λ̂s∗ < 1.
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Since

V ∗(ps∗ , (1 − δ)u
(
a∗, ps∗

)+ δws∗
)= (1 − δ)v

(
a∗, ps∗

)+ δV ∗(ps∗ , ws∗ ),

an application of Lemma 1 at (ps∗ , (1 − δ)u(a∗, ps∗ ) + δws∗ ) guarantees the existence of
(p̂s∗ , ŵs∗ ) ∈ W and (λ̂s∗ λ̂s0 , λ̂s1 ) ∈ [0, 1]3 such that λ̂s∗ + λ̂s0 + λ̂s1 = 1, λ̂s∗ < 1,

λ̂s∗p̂s∗ + λ̂s0 0 + λ̂s1 1 = ps∗ ,

λ̂s∗ŵs∗ + λ̂s0m(0) + λ̂s1m(1) = (1 − δ)u
(
a∗, ps∗

)+ δws∗ ,

V ∗(ps∗ , (1 − δ)u
(
a∗, ps∗

)+ δws∗
)≤ λ̂s∗V

∗(p̂s∗ , ŵs∗ ).

Consider the following simple contract:(
λs∗ λ̂s∗ , p̂s∗ ,

ŵs∗ − (1 − δ)u
(
a∗, p̂s∗

)
δ

, λs∗ λ̂s0 + λs0 , λs∗ λ̂s1 + λs1

)
.

We first argue that the contract is feasible at (p, w). Since ŵs∗ ≥ m(p̂s∗ ), the contract
satisfies

(1 − δ)u
(
a∗, p̂s∗

)+ δ
ŵs∗ − (1 − δ)u

(
a∗, p̂s∗

)
δ

= ŵs∗ ≥m(p̂s∗ ),

that is, obedience is guaranteed at s∗. We also have that

λs∗ λ̂s∗
[

(1 − δ)u
(
a∗, p̂s∗

)+ δ
ŵs∗ − (1 − δ)u

(
a∗, p̂s∗

)
δ

]
+ (λs∗ λ̂s0 + λs0 )m(0) + (λs∗ λ̂s1 + λs1 )m(1)

= λs∗
[̂
λs∗ŵs∗ + λ̂s0m(0) + λ̂s1m(1)

]+ λs0m(0) + λs1m(1)

= λs∗
[
(1 − δ)u

(
a∗, ps∗

)+ δws∗
]+ λs0m(0) + λs1m(1) ≥w,

that is, the contract satisfies the promise-keeping constraint. Finally, the splitting is fea-
sible since

λs∗ λ̂s∗ × p̂s∗ + (λs∗ λ̂s0 + λs0 ) × 0 + (λs∗ λ̂s1 + λs1 ) × 1 = p.

The contract is therefore feasible.
We next argue that the new contract is optimal, since under it the principal’s payoff

is

λs∗ λ̂s∗V
∗(p̂s∗ , ŵs∗ ) ≥ λs∗V

∗(ps∗ , (1 − δ)u
(
a∗, ps∗

)+ δws∗
)
.

Finally, since λ̂s∗ < 1, the new contract recommends a∗ with probability λs∗ λ̂s∗ < λs∗ ,
the required contradiction. It remains to prove Lemma 1.

Proof of Lemma 1. We organize the proof around two claims.
Claim 1. For any w′ ∈ [m(p), w], we have that

V ∗(p, w′)= (1 − δ)v
(
a∗, p

)+ δV ∗
(
p,

w′ − (1 − δ)u
(
a∗, p

)
δ

)
.
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Proof of Claim 1. Fix any w′ ∈ [m(p), w). Since u(a∗, p) ≤m(p), we have

w′ < min
{
w,

w′ − (1 − δ)u
(
a∗, p

)
δ

}
≤ max

{
w,

w′ − (1 − δ)u
(
a∗, p

)
δ

}

<
w − (1 − δ)u

(
a∗, p

)
δ

,

and

1
1 + δ

w′ + δ

1 + δ

w − (1 − δ)u
(
a∗, p

)
δ

= 1
1 + δ

w + δ

1 + δ

w′ − (1 − δ)u
(
a∗, p

)
δ

.

The concavity of V ∗ implies that

1
1 + δ

V ∗(p, w′)+ δ

1 + δ
V ∗
(
p,

w − (1 − δ)u
(
a∗, p

)
δ

)

≤ 1
1 + δ

V ∗(p, w) + δ

1 + δ
V ∗
(
p,

w′ − (1 − δ)u
(
a∗, p

)
δ

)
.

Rearranging, we obtain

V ∗(p, w′)− δV ∗
(
p,

w′ − (1 − δ)u
(
a∗, p

)
δ

)
≤ V ∗(p, w) − δV ∗

(
p,

w − (1 − δ)u
(
a∗, p

)
δ

)
= (1 − δ)v

(
a∗, p

)
.

Since, by definition,

V ∗(p, w′)≥ (1 − δ)v
(
a∗, p

)+ δV ∗
(
p,

w′ − (1 − δ)u
(
a∗, p

)
δ

)
,

it follows that

V ∗(p, w′)= (1 − δ)v
(
a∗, p

)+ δV ∗
(
p,

w′ − (1 − δ)u
(
a∗, p

)
δ

)
.

Claim 2. On the domain [m(p), w−(1−δ)u(a∗,p)
δ ], the map w′ �→ V (p, w′ ) is linear.

Proof of Claim 2. By contradiction, suppose that w′ �→ V (p, w′ ) is not linear, that
is, suppose that there exists w′′ ∈ [m(p), w−(1−δ)u(a∗,p)

δ ] such that ∀α ∈ (0, 1):

V ∗(p, αm(p) + (1 − α)w′′)>αV ∗(p, m(p)
)+ (1 − α)V ∗(p, w′′). (8)

Without loss of generality, we can assume that w′′ ∈ ( m(p)−(1−δ)u(a∗,p)
δ , w−(1−δ)u(a∗,p)

δ ]. (If

w′′ ≤ m(p)−(1−δ)u(a∗,p)
δ , then the concavity of V ∗ implies that (8) is also satisfied for any

larger w′′′.)
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Note that

m(p) < min
{

(1 − δ)u
(
a∗, p

)+ δw′′,
m(p) − (1 − δ)u

(
a∗, p

)
δ

}

≤ max
{

(1 − δ)u
(
a∗, p

)+ δw′′,
m(p) − (1 − δ)u

(
a∗, p

)
δ

}
≤ w′′,

and, therefore, there exist a unique β ∈ (0, 1) and γ ∈ (0, 1] such that⎧⎨⎩(1 − δ)u
(
a∗, p

)+ δw′′ = βm(p) + (1 −β)w′′
m(p) − (1 − δ)u

(
a∗, p

)
δ

= γm(p) + (1 − γ)w′′,

which implies that β+ δγ = 1. In addition, observe that

1
1 + δ

m(p) + δ

1 + δ
w′′ = 1

1 + δ

[
(1 − δ)u

(
a∗, p

)+ δw′′]+ δ

1 + δ

m(p) − (1 − δ)u
(
a∗, p

)
δ

.

From Claim 1, we have that

V ∗(p, m(p)
)= (1 − δ)v

(
a∗, p

)+ δV ∗
(
p,

m(p) − (1 − δ)u
(
a∗, p

)
δ

)
δV ∗(p, w′′)= −(1 − δ)v

(
a∗, p

)+ V ∗(p, (1 − δ)u
(
a∗, p

)+ δw′′)
Together with the concavity of V ∗, we therefore have

1
1 + δ

V ∗(p, m(p)
)+ δ

1 + δ
V ∗(p, w′′)

= 1
1 + δ

V ∗(p, (1 − δ)u
(
a∗, p

)+ δw′′)+ δ

1 + δ
V ∗
(
p,

m(p) − (1 − δ)u
(
a∗, p

)
δ

)
≥ 1

1 + δ

[
βV ∗(p, m(p)

)+ (1 −β)V ∗(p, w′′)]
+ δ

1 + δ

[
γV ∗(p, m(p)

)+ (1 − γ)V ∗(p, w′′)]
= 1

1 + δ
V ∗(p, m(p)

)+ δ

1 + δ
V ∗(p, w′′),

which contradicts (8), by setting α = 1
1+δ .

We now complete the proof of Lemma 1. Define the set

W :=
{
w′ ∈ (m(p), M(p)] : V ∗(p, w′)= (1 −δ)v

(
a∗, p

)+δV ∗
(
p,

w′ − (1 − δ)u
(
a∗, p

)
δ

)}
.

The set W is nonempty since w ∈ W . Let w := supW . From Claims 1 and 2, we have
that [m(p), w) ⊆ W and w′ �→ V ∗(p, w′ ) is linear on the domain [m(p), w−(1−δ)u(a∗,p)

δ ).
(Claims 1 and 2 are valid for any w′ ∈W .)
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Fix w̃ ∈ (w, w−(1−δ)u(a∗,p)
δ ). From the linearity of w′ �→ V ∗(p, w′ ), there exists ζ ∈

(0, 1) such that ζm(p) + (1 − ζ )w̃ = w, and

ζV ∗(p, m(p)
)+ (1 − ζ )V ∗(p, w̃) = V ∗(p, w).

Moreover, since w̃ > w, by the definition of w, we have that

V ∗(p, w̃) > (1 − δ)v
(
a∗, p

)+ δV ∗
(
p,

w̃ − (1 − δ)u
(
a∗, p

)
δ

)
.

From part A and (ii), there exists a simple contract (λ̃s∗ , p̃s∗ , w̃s∗−(1−δ)u(a∗,p)
δ , λ̃s0 , λ̃s1 )

at (p, w̃) such that V ∗(p, w̃) = λ̃s∗V ∗(p̃s∗ , w̃s∗ ). It follows that

V ∗(p, w) = ζV ∗(p, m(p)
)+ (1 − ζ )V ∗(p, w̃)

= ζV ∗(p, m(p)
)+ (1 − ζ )̃λs∗V ∗(p̃s∗ , w̃s∗ )

≤ [ζ + (1 − ζ )̃λs∗
]
V ∗
(
ζp+ (1 − ζ )̃λs∗p̃s∗

ζ + (1 − ζ )̃λs∗
,
ζm(p) + (1 − ζ )̃λs∗w̃s∗

ζ + (1 − ζ )̃λs∗

)
,

where the last inequality follows from the concavity of V ∗. To conclude the proof, let

(p̂s∗ , ŵs∗ ) =
(
ζp+ (1 − ζ )̃λs∗p̃s∗

ζ + (1 − ζ )̃λs∗
,
ζm(p) + (1 − ζ )̃λs∗w̃s∗

ζ + (1 − ζ )̃λs∗

)
,

(λ̂s∗ , λ̂s0 , λ̂s1 ) = (ζ + (1 − ζ )̃λs∗ , (1 − ζ )̃λs0 , λ̃s1

)
.

To verify that (p̂s∗ , ŵs∗ ) ∈ W , note that the convexity of m implies that

m(p̂s∗ ) ≤ ζ

ζ + (1 − ζ )̃λs∗
m(p) + (1 − ζ )̃λs∗

ζ + (1 − ζ )̃λs∗
m(p̃s∗ )

≤ ζ

ζ + (1 − ζ )̃λs∗
m(p) + (1 − ζ )̃λs∗

ζ + (1 − ζ )̃λs∗
w̃s∗ .

Similarly,

ζ

ζ + (1 − ζ )̃λs∗
m(p) + (1 − ζ )̃λs∗

ζ + (1 − ζ )̃λs∗
w̃s∗

≤ ζ

ζ + (1 − ζ )̃λs∗
M(p) + (1 − ζ )̃λs∗

ζ + (1 − ζ )̃λs∗
M(p̃s∗ ) =M(p̂s∗ )

as required. It is routine to verify the other constraints. This completes the proof of
Lemma 1.

A.4 Corollary 2

Proof. Let A = {a∗, a†}, and w.l.o.g. assume that the optimal action for the principal,
a∗, is optimal for the agent in state ω0, and hence also in the interval p ∈ [0, p̄], where

p̄u
(
a∗, 1

)+ (1 − p̄)u
(
a∗, 0

)= u
(
a∗, p̄

)= u
(
a†, p̄

)= p̄u
(
a†, 1

)+ (1 − p̄)u
(
a†, 0

)
.
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This implies that

p̄

1 − p̄
= u

(
a∗, 0

)− u
(
a†, 0

)
u
(
a∗, 1

)− u
(
a†, 1

) .

Assuming p0 > p̄, under our policy, the principal recommends the agent to take a∗ in the
first period and promises to split p0 between 1 and p̃ with probability λ in the second
period, where (λ, p̃) solves⎧⎪⎨⎪⎩

λp̃+ (1 − λ)1 = p0

λu
(
a∗, p̃

)+ (1 − λ)u
(
a†, 1

)= w(p0 ) = u
(
a†, p0

)− (1 − δ)u
(
a∗, p0

)
δ

.

Replacing λp̃= λ− (1 −p0 ) and λ(1 − p̃) = (1 −p0 ) into the second equation yields

λu
(
a∗, p̃

)+ (1 − λ)u
(
a†, 1

)
= λu

(
a∗, 1

)− (1 −p0 )u
(
a∗, 1

)+ (1 −p0 )u
(
a∗, 0

)+ (1 − λ)u
(
a†, 1

)
= u
(
a∗, p0

)+ (1 − λ)
[
u
(
a†, 1

)− u
(
a∗, 1

)]
= u

(
a†, p0

)− (1 − δ)u
(
a∗, p0

)
δ

=⇒ λ= 1 − u
(
a†, p0

)− u
(
a∗, p0

)
δ
[
u
(
a†, 1

)− u
(
a∗, 1

)] = 1 − p0

δ
− 1 −p0

δ

p̄

1 − p̄
.

Then it follows that the principal’s payoff is

V = (1 − δ)v
(
a∗, p0

)+ δλv
(
a∗, p̃

)
= [(1 − δ)p0 + δλp̃

]
v
(
a∗, 1

)+ [(1 − δ)(1 −p0 ) + δλ(1 − p̃)
]
v
(
a∗, 0

)
= [p0 − δ(1 − λ)

]
v
(
a∗, 1

)+ (1 −p0 )v
(
a∗, 0

)
= v
(
a∗, p0

)− δ(1 − λ)v
(
a∗, 1

)
= v
(
a∗, p0

)− [p0 + (1 −p0 )
p̄

1 − p̄

]
v
(
a∗, 1

)
= 1 −p0

1 − p̄
v
(
a∗, p̄

)
,

which is exactly the payoff under the KG policy, which splits the initial belief p0 into p̄

with probability 1−p0
1−p̄ and 1 with the complementary probability.

Let V R be the value function under the random full-disclosure policy. To show that
our policy τ is also optimal when v(a∗,0)

m(0)−u(a∗,0) = v(a∗,1)
m(1)−u(a∗,1) , we need to verify that

V R(p, w) =
∑

ps∈supp(τ)

τ(ps )
[
(1 − δ)v(as , ps ) + δV R(ps , ws )

]
, ∀(p, w) ∈ W .
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Note that V R(p, w) = M(p)−w
M(p)−u(a∗,p)v(a∗, p), since the probability of full disclosure α sat-

isfies αM(p) + (1 − α)u(a∗, p) =w. Hence,∑
ps∈supp(τ)

τ(ps )
[
(1 − δ)v(as , ps ) + δV R(ps , ws )

]
= λ ·

[
(1 − δ)v

(
a∗, p̂

)+ δ
M(p̂) −w(p̂)

M(p̂) − u
(
a∗, p̂

)v(a∗, p̂
)]

= λ
M(p̂) −m(p̂)

M(p̂) − u
(
a∗, p̂

)v(a∗, p̂
)
,

where (λ, p̂) solves {
λp̂+ (1 − λ)1 = p

λm(p̂) + (1 − λ)m(1) =w.

Since v(a∗,0)
m(0)−u(a∗,0) = v(a∗,1)

m(1)−u(a∗,1) , we have v(a∗,p̂)
M(p̂)−u(a∗,p̂) = v(a∗,p)

M(p)−u(a∗,p) = v(a∗,1)
M(1)−u(a∗,1) .

Therefore, recalling that v(a∗, 1) = 0, we have

λ
M(p̂) −m(p̂)

M(p̂) − u
(
a∗, p̂

)v(a∗, p̂
)

= λ
M(p̂) −m(p̂)

M(p̂) − u
(
a∗, p̂

)v(a∗, p̂
)+ (1 − λ)

M(1) −m(1)

M(1) − u
(
a∗, 1

)v(a∗, 1
)

= v
(
a∗, p

)
M(p) − u

(
a∗, p

)(λ[M(p̂) −m(p̂)
]+ (1 − λ)

[
M(1) −m(1)

])
= v

(
a∗, p

)
M(p) − u

(
a∗, p

)(M(p) −w
)= V R(p, w).

A.5 Theorem 1

To prove Theorem 1, we first introduce the following lemma.

Lemma 2. Consider any feasible policy inducing the value function Ṽ . If Ṽ is concave in
both arguments, decreasing in w and satisfies

Ṽ
(
p, m(p)

)≥ (1 − δ)v
(
a∗, p

)+ δṼ
(
p, w(p)

)
,

for all p ∈Q1, then the policy is optimal.

Proof. We argue that Ṽ is the fixed point of the operator T , hence Ṽ = V ∗. Let
(λs , ps , ws , as )s∈S be a solution to the maximization problem T (Ṽ )(p, w). We start by
the following observation. Consider any s such that as �= a∗. We have

(1 − δ)v(as , ps ) + δṼ (ps , ws ) = δṼ (ps , ws ) ≤ Ṽ (ps , ws ) ≤ Ṽ
(
ps, (1 − δ)u(as , ps ) + δws

)
,
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where the last inequality follows from the fact that Ṽ is decreasing in w and m(ps ) ≤
(1 − δ)u(as , ps ) + δws ≤ (1 − δ)m(ps ) + δws ≤ws .

Consider now any s such that as = a∗. Since (λs , ps , ws , as )s∈S is feasible, we have

(1 − δ)u
(
a∗, ps

)+ δws ≥m(ps ),

hence ps ∈Q1 and, therefore,

Ṽ
(
ps, m(ps )

)≥ (1 − δ)v
(
a∗, ps

)+ δṼ

(
ps ,

−(1 − δ)u
(
a∗, ps

)+m(ps )

δ︸ ︷︷ ︸
w(ps )

)
.

The concavity of Ṽ implies that

Ṽ
(
ps , (1 − δ)u

(
a∗, ps

)+ δws
)− Ṽ

(
ps, m(ps )

)≥ δ
[
Ṽ (ps , ws ) − Ṽ

(
ps, w(ps )

)]
,

where we use the identity (1 − δ)u(a∗, ps ) + δws −m(ps ) = δ(ws − w(ps )) and observa-
tion (a) about concave functions in Section A.1.

Combining the above two inequalities implies

Ṽ
(
ps , (1 − δ)u

(
a∗, ps

)+ δws
)≥ (1 − δ)v

(
a∗, ps

)+ δṼ (ps , ws ).

It follows that

T (Ṽ )(p, w) =
∑
s∈S

λs
[
(1 − δ)v(as , ps ) + δṼ (ps , ws )

]
≤
∑
s∈S

λs
[
Ṽ
(
ps, (1 − δ)u(as , ps ) + δws

)]
≤ Ṽ

(∑
s∈S

λsps,
∑
s∈S

λs
(
(1 − δ)u(as , ps ) + δws

))
)

≤ Ṽ (p, w),

where the second inequality follows from the concavity of Ṽ and the third inequality
from Ṽ being decreasing in w.

Conversely, since the policy inducing Ṽ is feasible, we must have that T (Ṽ )(p, w) ≥
Ṽ (p, w) for all (p, w). This completes the proof.

Invoking Lemma 2, we only need to prove the following proposition to prove Theo-
rem 1.

Proposition 4. Let Vq∗ be the value function induced by the policy τ∗, with

q∗ = sup
{
p ∈Q1 : Vq1

(
p, m(p)

)≥ Vq1 (p, w) for all w
}

.

Then Vq∗ is concave in (p, w), decreasing in w, and satisfies

Vq∗
(
p, m(p)

)≥ (1 − δ)v
(
a∗, p

)+ δVq∗
(
p∗, w(p)

)
,

for all p ∈ Q1.
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Figure 8. The function mq.

Proving Proposition 4 requires to construct the value function Vq induced by the pol-
icy τq. The construction is tedious, and we postpone it to Appendix B. In the rest of this
section, we only report the properties we need to prove Proposition 4.

We start with an important identity, which we will use throughout. For any q ∈
[q1, q1], define the function mq : [0, 1] → R as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1 − p

q1

)
m(0) + p

q1 m
(
q1) if p ∈ [0, q1],

m(p) if p ∈ (q1, q],
1 −p

1 − q
m(q) + p− q

1 − q
m(1) if p ∈ (q, 1].

Note that mq is convex, mq(p) ≥ m(p) for all p ∈ [0, 1], mq(0) = m(0), and mq(1) =
m(1). For a graphical illustration, see Figure 8.

It is straightforward to check that we have the following identity:

Vq(p, w) = λ(p, w)Vq(ϕ(p, w), mq
(
ϕ(p, w)

)
, (9)

where the functions λ and ϕ are defined as in the main text, but with mq instead of m;
see equation (5). This identity states that knowing Vq on the set {(p, w) ∈ W : (p, w) =
(p, mq(p))} suffices to reconstruct Vq at all points on its domain. We now make two
additional observations.

Observation A. For all q ∈ [q1, q1], we have the following identity:

Vq(p, w) = 1 −p

1 −p′Vq
(
p′, 1 −p′

1 −p
w + p′ −p

1 −p
mq(1)

)
.

Proof of Observation A. Let w′ = 1−p′
1−p w+ p′−p

1−p mq(1).
Assume that w′ >mq(p′ ). Since

λ
(
p′, w′)( ϕ

(
p′, w′)

mq
(
ϕ
(
p′, w′))

)
+ (1 − λ

(
p′, w′))( 1

mq(1)

)
=
(
p′
w′

)
,

we have

1 −p

1 −p′λ
(
p′, w′)( ϕ

(
p′, w′)

mq
(
ϕ
(
p′, w′))

)
+
(

1 − 1 −p

1 −p′λ
(
p′, w′))( 1

mq(1)

)
=
(
p

w

)
.
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Therefore, λ(p, w) = 1−p
1−p′λ(p′, w′ ) and ϕ(p′, w′ ) = ϕ(p, w) since the solution (λ(p′, w′ ),

ϕ(p′, w′ )) is unique when w′ >mq(p′ ). The statement then follows from equation (9).
Assume that w′ =mq(p′ ). From the convexity of mq, this requires that w = mq(p), so

that mq(p′ ) = 1−p′
1−p mq(p) + p′−p

1−p mq(1). The result follows from continuity as

Vq
(
p, mq(p)

) = lim
w→mq(p)

Vq(p, w),

= lim
w→mq(p)

1 −p

1 −p′Vq
(
p′, 1 −p′

1 −p
w + p′ −p

1 −p
mq(1)

)
,

= 1 −p

1 −p′ Vq
(
p′, 1 −p′

1 −p
mq(p) + p′ −p

1 −p
mq(1)

)
,

= 1 −p

1 −p′ Vq
(
p′, mq

(
p′)).

Note that this implies that

Vq
(
p, w(p) + c

)= λ
(
p, w(p)

)
Vq

(
ϕ
(
p, w(p)

)
, mq

(
ϕ
(
p, w(p)

))+ c

λ
(
p, w(p)

)),

where c is a positive constant.

Observation B. The value function Vq1 (p, ·) : [mq1 (p), M(p)] → R is concave in w,
for each p. See Lemma 3 in Section B.2.

A.5.1 Proposition 4(a) We prove that Vq∗ is decreasing in w. To start with, fix p ∈ [0, 1]
and (w, w′ ) ∈ [mq∗(p), M(p)] × [mq∗(p), M(p)], with w′ >w.

First, assume that p≤ q∗. If w = mq∗(p), then Vq∗(p, w′ ) ≤ Vq∗(p, w) by construction
of q∗. If w>mq∗(p), we have that

Vq∗
(
p, w′)− Vq∗(p, w)

w′ −w
= Vq1

(
p, w′)− Vq1 (p, w)

w′ −w

≤ Vq1 (p, w) − Vq1
(
p, mq∗(p)

)
w −mq∗(p)

= Vq∗(p, w) − Vq∗
(
p, mq∗(p)

)
w −mq∗(p)

≤ 0,

where the inequality follows from the concavity of Vq1 with respect to w, for all w ≥
mq1 (p). (Recall that mq∗(p) =mq1 (p) for all p ≤ q∗.)

Second, assume that p> q∗. We show in detail how to make use of Observation A to
deduce the result. We repeatedly use similar computations later on. We have

Vq∗
(
p, w′) = λ

(
p, w′)Vq∗

(
ϕ
(
p, w′), mq∗

(
ϕ
(
p, w′)))

= λ
(
p, w′)1 −ϕ

(
p, w′)

1 −ϕ(p, w)
Vq∗
(
ϕ(p, w),

1 −ϕ(p, w)

1 −ϕ
(
p, w′)mq∗

(
ϕ
(
p, w′))
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+
(

1 − 1 −ϕ(p, w)

1 −ϕ
(
p, w′))mq∗(1)

)

= λ(p, w)Vq∗
(
ϕ(p, w),

λ
(
p, w′)

λ(p, w)
mq∗

(
ϕ
(
p, w′))+(1 − λ

(
p, w′)

λ(p, w)

)
mq∗(1)

)

= λ(p, w)Vq∗
(
ϕ(p, w), mq∗

(
ϕ(p, w)

)+ w′ −w

λ(p, w)

)
,

where the first line follows from the construction of Vq∗ , the second line from Observa-
tion A, the third line from the definition of the functions λ and ϕ, and the last line from
the following computations:

λ
(
p, w′)

λ(p, w)
mq∗

(
ϕ
(
p, w′))+(1 − λ

(
p, w′)

λ(p, w)

)
mq∗(1)

= 1

λ(p, w)
w′ +

(
1 − 1

λ(p, w)

)
mq∗(1)

= 1

λ(p, w)
w′ +

(
1 − 1

λ(p, w)

)[
w − λ(p, w)mq∗

(
ϕ(p, w)

)
1 − λ(p, w)

]

= mq∗
(
ϕ(p, w)

)+ w′ −w

λ(p, w)
.

Thus, we are able to express Vq∗(p, w′ ) as λ(p, w)Vq∗(ϕ(p, w), w̃), with w̃ the above ex-
pression. Moreover, ϕ(p, w) ≤ q∗ as w ≥ mq∗(p). We can use the (already established)
concavity of Vq∗ in w for each p ≤ q∗ to deduce the desired result. More precisely, we
have that

Vq∗
(
p, w′)− Vq∗(p, w)

w′ −w

=
λ(p, w)

(
Vq∗
(
ϕ(p, w), mq∗

(
ϕ(p, w)

)+ w′ −w

λ(p, w)

)
− Vq∗

(
ϕ(p, w), mq∗

(
ϕ(p, w)

)))
w′ −w

≤ 0,

where the inequality follows from the concavity of Vq∗ in w at all p ≤ q∗.
Lastly, since Vq∗(p, w) = Vq∗(p, mq∗(p)) for all w ∈ [m(p), mq∗(p)], the result imme-

diately follows for all (w, w′ ), with w ∈ [m(p), mq∗(p)].

A.5.2 Proposition 4(b) We prove the concavity of Vq∗ with respect to both arguments
(p, w).

Let W = {(p, w) : w ≥ mq∗(p)}. Let (p, w) ∈ W , (p′, w′ ) ∈ W and α ∈ [0, 1]. Write
(pα, wα ) for

α

(
p

w

)
+ (1 − α)

(
p′
w′

)
.
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Without loss of generality, assume that p ≤ p′. We have that

αVq∗(p, w) + (1 − α)Vq∗
(
p′, w′)

= α
1 −p

1 −p′Vq∗
(
p′, 1 −p′

1 −p
w+ p′ −p

1 −p
mq∗(1)︸ ︷︷ ︸

≥mq∗ (p′ )

)
+ (1 − α)Vq∗

(
p′, w′)

≤
(
α

1 −p

1 −p′ + (1 − α)

)
Vq∗

⎛⎜⎜⎝p′,
α

1 −p

1 −p′
(

1 −p′

1 −p
w + p′ −p

1 −p
mq∗(1)

)
+ (1 − α)w′

α
1 −p

1 −p′ + (1 − α)

⎞⎟⎟⎠
= 1 −pα

1 −p′ Vq∗
(
p′, 1 −p′

1 −pα
wα + p′ −pα

1 −pα
mq∗(1)

)
= Vq∗(pα, wα ),

where the inequality follows from the concavity of Vq1 with respect to w for each p and
the property that Vq∗(p, w) = Vq1 (p, w) for all (p, w) such that w ≥ mq∗(p). Notice that
we use twice Observation A.

Finally, for all (p, w) ∈ W , for all (p′, w′ ) ∈ W and for all α, we have that

αVq∗(p, w) + (1 − α)Vq∗
(
p′, w′)

= αVq∗
(
p, max

(
w, mq∗(p)

))+ (1 − α)Vq∗
(
p′, max

(
w′, mq∗

(
p′)))

≤ Vq∗
(
pα, αmax

(
w, mq∗(p)

)+ (1 − α) max
(
w, mq∗

(
p′)))

≤ Vq∗(pα, wα ),

since αmax(w, mq∗(p))+ (1−α) max(w, mq∗(p′ )) ≥wα and the fact that Vq∗ is decreasing
in w for all p. This completes the proof of concavity.

A.5.3 Proposition 4(c) We prove that Vq∗(p, m(p)) ≥ (1 − δ)v(a∗, p) + δVq∗(p, w(p))
for all p ∈ Q1.

The statement is true for all p ≤ q∗ by definition since Vq∗(p, w) = Vq1 (p, w) for all w.
Assume that p > q∗. From Lemma 4, there exists q such that ϕ(p, w(p)) ≥

ϕ(p′, w(p′ )) for all p′ ≥ p ≥ q. Moreover, it follows from A.6.3 and A.6.4 that V (p,
m(p)) ≥ V (p, w) for all w, for all p ≤ q. Therefore, we must have that q∗ ≥ q. It fol-
lows that ϕ(p, w(p)) <ϕ(q∗, w(q∗ )) ≤ q∗, hence w(p) ≥ mq∗(p). We therefore have that
Vq∗(p, w(p)) = Vq1 (p, w(p)).

Since Vq1 (p, m(p)) = (1 − δ)v(a∗, p) + δVq1 (p, w(p)) for all p ∈ Q1 and Vq∗(p,
m(p)) = Vq∗(p, mq∗(p)) = Vq1 (p, mq∗(p)), it is enough to prove that Vq1 (p, mq∗(p)) ≥
Vq1 (p, m(p)).

Clearly, there is nothing prove if mq∗(p) = m(p) for all p ∈ Q1, that is, if q∗ = q1 (re-
member that mq1 (p) = m(p) for all p ∈Q1).
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So, assume that mq∗(p) > m(p) for some p ∈ (q∗, q1 ), hence mq∗(p) > m(p) for all
p ∈ (q∗, q1 ). We now argue that if Vq1 (p, w) > Vq1 (p, m(p)) for some w ≥ mq∗(p), then

Vq1
(
p′, m

(
p′))< 1 −p′

1 −p
Vq1 (p, w),

for all p′ >p. To see this, observe that w>m(p) and, accordingly,

1 −p′

1 −p
w+ p′ −p

1 −p
m(1) −m

(
p′)> 0,

since m is convex. Hence,

0 <
Vq1 (p, w) − Vq1

(
p, m(p)

)
w −m(p)

=
1 −p

1 −p′
[
Vq1

(
p′, 1 −p′

1 −p
w+ p′ −p

1 −p
m(1)

)
− Vq1

(
p′, 1 −p′

1 −p
m(p) + p′ −p

1 −p
m(1)

)]
w −m(p)

≤
Vq1

(
p′, 1 −p′

1 −p
w + p′ −p

1 −p
m(1)

)
− Vq1

(
p′, m

(
p′))

1 −p′

1 −p
w + p′ −p

1 −p
m(1) −m

(
p′) ,

where the equality follows Observation A and the inequality from the concavity of Vq1 in
w for each p. Since

Vq1 (p, w) = 1 −p

1 −p′Vq1

(
p′, 1 −p′

1 −p
w+ p′ −p

1 −p
m(1)

)
,

we have the desired result.
Finally, from the definition of q∗, for all n > 0, there exist pn ∈ (q∗, min(q∗ + 1

n , q1 )]
and wn ≥ m(pn ) such that Vq1 (pn, m(pn )) < Vq1 (pn, wn ). From the concavity of Vq1 in w

for all p, Vq1 (pn, m(pn )) < Vq1 (pn, mq∗(pn )) for all n.
From the above argument, for all p, for all n sufficiently large, that is, such that pn <

p, we have that

Vq1
(
p, m(p)

)
<

1 −p

1 −pn
Vq1
(
pn, mq∗(pn )

)
.

Taking the limit as n → ∞, we obtain that

Vq1
(
p, m(p)

)
<

1 −p

1 − q∗ Vq1
(
q∗, mq∗

(
q∗))= Vq1

(
p, mq∗(p)

)
,

which completes the proof.

Appendix B: Constructing the value function

This section characterizes the value function Vq induced by the policy τq. As explained in
the text, it suffices to characterize Vq1 since Vq(p, w) = Vq1 (p, w) for all (p, w) ∈ W \W3

q



Theoretical Economics 19 (2024) Contracting over persistent information 955

Figure 9. Construction of the thresholds.

and Vq(p, w) = 1−p
1−q Vq1 (q, m(q)) for all (p, w) ∈ W3

q . We first start with the definition of
important subsets of [0, 1].

B.1 Construction of the sets Qk

Let Q0 := [0, 1]. We define inductively the set Qk ⊆ [0, 1], k ≥ 0. We write qk (resp., qk)

for infQk (resp., supQk). For any k≥ 0, define the function Uk : [qk, 1] →R:

Uk(q) := 1 − q

1 − qk
m
(
qk
)+ q− qk

1 − qk
m(1),

with the convention that Uk ≡m(1) if qk = 1. Note that U0(q) =M(q) and Uk(q) ≥m(q)

for all k. We define Qk+1 as follows:

Qk+1 = {q ∈Qk : (1 − δ)u
(
a∗, q

)+ δUk(q) ≥m(q)
}

.

For a graphical illustration, see Figure 9.
Few observations are worth making. First, we have that P ⊆ Qk for all k. Second,

we have a decreasing sequence, that is, Qk+1 ⊆ Qk for all k. Third, if Qk and P are
nonempty, then they are closed intervals. Fourth, the limit Q∞ = limk→∞ Qk =⋂kQ

k

exists and includes P . Moreover, if P �= ∅, then q∞ = p, where p := infP . If P = ∅, then

Q∞ = ∅. Consequently, there exists k∗ <∞ such that ∅ =Qk∗+1 ⊂Qk∗ �= ∅.
The first to the third observations are readily proved, so we concentrate on the proof

of the fourth observation. The limit exists as we have a decreasing sequence of sets.
We prove that if P = ∅, then Q∞ = ∅. So, assume that P = ∅. We first argue that it

cannot be that Qk = Qk−1 �= ∅ for some k≥ 0. To the contrary, assume that Qk =Qk−1 �=
∅ for some k ≥ 0, hence Qk′ = Qk−1 for all k′ ≥ k. From the convexity and continuity of
m and the linearity of u, Qk−1 is the closed interval [qk−1, qk−1], with the two boundary
points solution to

(1 − δ)u
(
a∗, q

)+ δUk−2(q) =m(q).

Therefore, if (qk, qk ) = (qk−1, qk−1 ), we have that

m
(
qk−1) = (1 − δ)u

(
a∗, qk−1)+ δm

(
qk−1),
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m
(
qk−1) = (1 − δ)u

(
a∗, qk−1)+ δ

[
1 − qk−1

1 − qk−1
m
(
qk−1)+ qk−1 − qk−1

1 − qk−1
m(1)

]
,

≤ (1 − δ)u
(
a∗, qk−1)+ δm

(
qk−1).

This implies that u(a∗, qk−1 ) = m(qk−1 ) and u(a∗, qk−1 ) = m(qk−1 ) and, therefore, ∅ �=
Qk−1 ⊆ P , a contradiction.

We thus have an infinite sequence of strictly decreasing nonempty closed intervals.
Let ε := minp∈[0,1] m(p) − u(a∗, p). Since P = ∅, we have that ε > 0. For all p ∈ Q∞, for
all k,

m(p) ≤ (1 − δ)u
(
a∗, p

)+ δUk(p)

≤ (1 − δ)
(
m(p) − ε

)+ δUk(p).

Assume that Q∞ is nonempty and let q∞ its greatest lower bound. Since q∞ ∈ Qk for all

k, we have that Uk(q∞ ) ≥ m(q∞ ) + ε(1 − δ)/δ for all k. Since limk→∞ Uk(q∞ ) = m(q∞ ),
we have that m(q∞ ) ≥ m(q∞ ) + ε(1 − δ)/δ, a contradiction.

We now prove that if P �= ∅, then q∞ = p. From above, we have that if Qk = Qk−1 �= ∅
for some k ≥ 0, hence Qk′ = Qk−1 for all k′ ≥ k, then P = Qk since P ⊆Qk. If we have an
infinite sequence of strictly decreasing sets, for all q ∈Q∞,

(1 − δ)u
(
a∗, q

)+ δ

[
1 − q

1 − q∞m
(
q∞)+ q− q∞

1 − q∞m(1)

]
≥ m(q).

Taking the limit q ↓ q∞, we obtain that u(a∗, q∞ ) =m(q∞ ), that is, q∞ ∈ P . Hence, q∞ =
p.

B.1.1 Derivation of Vq1 We first derive Vq1 for all (p, w) ∈ W \W2
q1 .

To start with, Vq1 (1, m(1)) = 0 since a∗ is not optimal at p = 1. Similarly, Vq1 (0,
m(0)) = 0 if a∗ is not optimal at p = 0, while Vq1 (0, m(0) = v(a∗, 0) if a∗ is optimal at

p = 0. Also, Vq1 (q1, m(q1 )) = (1 − δ)v(a∗, q1 ) if q1 > 0; while Vq1 (0, m(0)) = v(a∗, 0) if

q1 = 0, since a∗ is then optimal at p = 0.
With the function Vq1 defined at these three points, it is then defined at all points

(p, w) in W1
q1 ∪W4

q1 . In particular, it is easy to show that

Vq1
(
q1, w

)= M
(
q1)−w

M
(
q1)−m

(
q1) (1 − δ)v

(
a∗, q1)= M

(
q1)−w

M
(
q1)− u

(
a∗, q1)v(a∗, q1),

for all w ∈ [m(q1 ), M(q1 )].
At all points (p, w) ∈ W3

q1 ,

Vq1 (p, w) = 1 −p

1 − q1 Vq1
(
q1, m

(
q1)).

Therefore, Vq1 is well-defined at all (p, w) ∈ W \W2
q1 .
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At all points (p, w) ∈ W2
q1 , Vq1 (p, w) is defined via the recursive equation:

Vq1 (p, w) = λ(p, w)
[
(1 − δ)v

(
a∗, ϕ(p, w)

)+ δVq1 (ϕ(p, w), w
(
ϕ(p, w)

)]
= λ(p, w)Vq1

(
ϕ(p, w), m

(
ϕ(p, w)

))
.

Since Vq1 (p, w) = λ(p, w)Vq1 (ϕ(p, w), m(ϕ(p, w)), the value function is well-defined at
all (p, w) if it is well-defined at all (p, m(p)), which we now prove.

By construction of the sets Qk, observe that if p ∈ Qk \ Qk+1, then w(p) ∈ (Uk(p),
Uk+1(p)] and, therefore, ϕ(p, w(p)) ∈ [qk−1, qk ) ⊂ Qk−1 \Qk. Moreover, ϕ(qk, w(qk )) =
qk. We now use these observations to complete the derivation of Vq1 .

For all p ∈Q1 \Q2, we have that w(p) ∈ Q0 \Q1, so that (p, w(p)) ∈ W4
q1 . Since

Vq1
(
p, m(p)

)= (1 − δ)v
(
a∗, p

)+ δVq1
(
p, w(p)

)
,

Vq1 (p, m(p)) is well-defined for all p ∈ Q1 \ Q2. By induction, assume that it is well-

defined for all p ∈⋃�<kQ
� \Q�+1. We argue that it is well-defined for all p ∈ Qk \Qk+1.

Fix any p ∈ Qk \Qk+1. From our initial observation, ϕ(p, w(p)) ∈ [qk−1, qk ) and, there-
fore, Vq1 (p, m(p)) is well-defined since

Vq1
(
p, m(p)

) = (1 − δ)v
(
a∗, p

)+ δVq1
(
p, w(p)

)
= (1 − δ)v

(
a∗, p

)+ λ
(
p, w(p)

)
Vq1
(
ϕ
(
p, w(p)

)
, m
(
ϕ
(
p, w(p)

)))︸ ︷︷ ︸
defined by the induction step

.

Therefore, Vq1 (p, m(p)) is well-defined for all p ∈⋃� Q
� \Q�+1 = Q1 \Q∞. It remains

to argue that it is well-defined for all p ∈Q∞.

From the definition of Q∞, we have that w(p) ≤ 1−p
1−q∞m(q∞ )+ p−q∞

1−q∞ m(1) and, there-

fore, ϕ(p, w(p)) ∈ Q∞. In other words, if p ∈ Q∞, then ϕ(p, w(p)) ∈ Q∞, so that the re-
striction of Vq1 (·, m(·)) to Q∞ is entirely defined by its value on Q∞ via the contraction:

Vq1
(
p, m(p)

)= (1 − δ)v
(
a∗, p

)+ δλ
(
p, w(p)

)
Vq1 (ϕ

(
p, w(p)

)
, m
(
ϕ
(
p, w(p)

))
.

The unique solution to this fixed point problem is given by

Vq1
(
p, m(p)

)= v
(
a∗, p

)− m(p) − u
(
a∗, p

)
m(1) − u

(
a∗, 1

) v(a∗, 1
)
,

for all p ∈Q∞. To see this, with a slight abuse of notation, write (λ, ϕ) for (λ(p, w), ϕ(p,
w(p))), and note that

(1 − δ)v
(
a∗, p

)+ δλ

[
v
(
a∗, ϕ

)− m(ϕ) − u
(
a∗, ϕ

)
m(1) − u

(
a∗, 1

) v(a∗, 1
)]

= (1 − δ)v
(
a∗, p

)+ δ
[
v
(
a∗, p

)− (1 − λ)v
(
a∗, 1

)]
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− m(p) − (1 − λ)m(1) − u
(
a∗, p

)
(1 − δ)

m(1) − u
(
a∗, 1

) v
(
a∗, 1

)
+ δ

u
(
a∗, p

)− (1 − λ)u
(
a∗, 1

)
m(1) − u

(
a∗, 1

) v
(
a∗, 1

)
= v
(
a∗, p

)− m(p) − u
(
a∗, p

)
m(1) − u

(
a∗, 1

) v(a∗, 1
)
,

where we use the identities λϕ+ (1−λ)1 = p, λm(ϕ)+ (1−λ)m(1) = w(p), and δw(p) =
m(p) − (1 − δ)u(a∗, p).

This completes the characterization of Vq1 . Note that Vq1 and, therefore, all value

functions Vq, are continuous functions.

B.2 Concavity of Vq1 with respect to w for each p

Lemma 3. For all p, the function Vq1 (p, ·) : [mq1 (p), M(p)] → R is concave in w.

We must prove that

Vq1
(
p, mq1 (p) +η

(
mq1 (1) − u

(
a∗, 1

)))− Vq1
(
p, mq1 (p)

)
η

≥ Vq1
(
p, mq1 (p) +η′(mq1 (1) − u

(
a∗, 1

)))− Vq1
(
p, mq1 (p)

)
η′ ,

for all (η, η′ ) such that η′ ≥ η. (See the observations on concave functions.) We start

with some preliminary results.

B.2.1 Two preliminary results

Lemma 4. There exists a nonempty interval [q, q] such that

(1) For any p′ <p ≤ q or p′ >p ≥ q̄, ϕ(p, w(p)) ≥ ϕ(p′, w(p′ )).

(2) The ratio m(1)−m(ϕ(p,w(p))
1−ϕ(p,w(p)) is constant for all p ∈ [q, q].

Proof. Observe that

m(1) − w(p)
1 −p

= m(1) −m(ϕ
(
p, w(p)

)
1 −ϕ

(
p, w(p)

) .

Therefore, the convexity of m implies that if m(1)−w(p)
1−p < m(1)−w(p′ )

1−p′ , then ϕ(p, w(p)) <

ϕ(p′, w(p′ )).
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Consider the function h : [0, 1] → R, defined by h(p) = m(1)−w(p)
1−p . We argue that h is

quasi-concave. For all (p, p′ ) and α ∈ [0, 1], we have that

m(1) − w
(
αp+ (1 − α)p′)

α(1 −p) + (1 − α)
(
1 −p′) ≥ α

(
m(1) − w(p)

)+ (1 − α)
(
m(1) − w

(
p′))

α(1 −p) + (1 − α)
(
1 −p′)

= α(1 −p)

α(1 −p) + (1 − α)
(
1 −p′)m(1) − w(p)

1 −p

+ (1 − α)
(
1 −p′)

α(1 −p) + (1 − α)
(
1 −p′)m(1) − w

(
p′)

1 −p′

≥ min
(
m(1) − w(p)

1 −p
,
m(1) − w

(
p′)

1 −p′
)

,

where the first inequality follows form the convexity of w. (Note that the inequality is
strict if w(αp+ (1 − α)p′ ) <αw(p) + (1 − α)w(p′ ).)

It follows that if h(p′ ) ≥ h(p), then it is also true for all p′′ ∈ (p, p′ ). Since h is quasi-
concave and continuous, the set of maxima is a nonempty convex set [q, q], and the
function is increasing for all p< q and decreasing for all p> q. (Note that m(1) − w(1) =
(1−δ)(u(a∗,1)−m(1))

δ < 0, hence the function is equal to −∞ at p = 1.)

We can make few additional observations about the interval [q, q]. Let k∗ := sup{k :

Qk �= ∅}. Since ϕ(qk, w(qk )) = qk, the function h is decreasing for all p ≥ qk
∗
. Similarly,

since ϕ(qk, w(qk )) = qk−1, the function h is increasing for all p ≤ qk
∗
. Therefore, [q, q] ⊂

Qk∗
.
If P �= ∅, so that k∗ = ∞, then for all p ∈ P , the function h is increasing by convex-

ity of m since w(p) = m(p). (This is clearly true since ϕ(p, m(p)) = p in that region.)
Therefore, p ≤ q if P �= ∅.

Finally, let p̃ := inf{p : m(p) = u(a1, p)}. By construction, m is linear from p̃ to 1, that
is, [p̃, 1] is the utmost right linear piece of m. We have that q < p̃. To see this, observe
that for all p ≥ p̃,

m(1) − w(p)
1 −p

= (1 − δ)
( <0︷ ︸︸ ︷
u
(
a∗, 1

)− u
(
a1, 1

))
1 −p

+
(
u
(
a1, 0

)− u
(
a1, 1

))− (1 − δ)
(
u
(
a∗, 0

)− u
(
a∗, 1

))
δ

,

hence it is decreasing in p. (If there are multiple optimal actions at p = 1, the argument
applies to all of them and, therefore, to the one that induces the smallest p̃.)

The second preliminary result is technical. For any p ∈ (0, 1) and any η ∈ [0,
M(p)−m

q1 (p)

m
q1 (1)−u(a∗,1) ], define w(p; η) as

mq1 (p) +η
[
mq1 (1) − u

(
a∗, 1

)]
,
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and write (λη, ϕη ) for (λ(p, w(p; η)), ϕ(p, w(p; η))). To ease notation, we do not ex-
plicitly write the dependence of (λη, ϕη ) on p. We have the following.

Lemma 5. ϕη, λη, and 1−λη
η are all decreasing in η.

The proof follows directly from the definition of (λη, ϕη ) and is omitted.
Finally, we conclude with the following implication of Observation A, which we will

use throughout. For all (p, w, w′ ) with w ≤w′, we have that

Vq1 (p, w) − Vq1
(
p, w′)

= λ(p, w)

[
Vq1
(
ϕ(p, w), mq1 (p, w)

)− Vq1

(
ϕ(p, w), mq1 (p, w) + w′ −w

λ(p, w)

)]
.

We now turn to the proof of Lemma 3.

B.2.2 Proof of Lemma 3 We now prove that the gradient

G(p; η) := Vq1
(
p, mq1 (p)

)− Vq1
(
p, w(p; η)

)
η

is increasing in η ∈ [0,
M(p)−m

q1 (p)

m
q1 (1)−u(a∗,1) ], for all p. We prove it on three separate intervals I1,

I2, and I3. If P = ∅, the three intervals are [0, q], (q, q] and (q, 1], respectively. If P �= ∅,
the three intervals are [0, p], (p, q∞] and (q∞, 1], respectively.

Fact 1: For all p ∈ I1, G(p; η) is increasing in η. We limit attention to the case P �= ∅.
(The case P = ∅ is identical.) The proof is by induction. First, consider the interval
[0, q1]. Remember that at q1, we have a closed-form solution for Vq1 (q1, w) for all w
given by

Vq1
(
q1, w

)= M
(
q1)−w

M
(
q1)− u

(
a∗, q1)v(a∗, q1).

Therefore,

Vq1
(
q1, mq1

(
q1))− Vq1

(
q1, w

(
q1; η

))
η

= 1
η

[ M
(
q1)−mq1

(
q1)

M
(
q1)− u

(
a∗, q1)v(a∗, q1)− M

(
q1)−w

(
q1; η

)
M
(
q1)− u

(
a∗, q1)v(a∗, q1)]

= v
(
a∗, q1)

M
(
q1)− u

(
a∗, q1)

[
mq1

(
q1)+η

(
mq1 (1) − u

(
a∗, 1

))]−mq1
(
q1)

η

= q1v
(
a∗, 1

)+ (1 − q1)v(a∗, 0
)

q1[mq1 (1) − u
(
a∗, 1

)]+ (1 − q1)[mq1 (0) − u
(
a∗, 0

)] w(q1; η
)−mq1

(
q1)

η
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= v
(
a∗, 1

) q1 + (1 − q1)v(a∗, 0
)

v
(
a∗, 1

)
q1 + (1 − q1)mq1 (0) − u

(
a∗, 0

)
mq1 (1) − u

(
a∗, 1

)︸ ︷︷ ︸
≥1 since v(a∗ ,0)

v(a∗ ,1) ≥
m
q1 (0)−u(a∗ ,0)

m
q1 (1)−u(a∗ ,1)

≥ v
(
a∗, 1

)
.

We now consider any p ∈ [0, q1 ). From Observation A, we have that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vq1
(
p, mq1 (p)

)= 1 −p

1 − q1 Vq1

(
q1,

1 − q1

1 −p
mq1 (p) +

(
1 − 1 − q1

1 −p

)
mq1 (1)

)
Vq1
(
p, w(p; η)

)= 1 −p

1 − q1 Vq1

(
q1,

1 − q1

1 −p
mq1 (p) +

(
1 − 1 − q1

1 −p

)
mq1 (1)

+ 1 − q1

1 −p
η
[
mq1 (1) − u

(
a∗, 1

)])
It follows that

Vq1
(
p, mq1 (p)

)− Vq1
(
p, w(p; η)

)
η

= 1 −p

1 − q1

(
Vq1

(
q1,

1 − q1

1 −p
mq1 (p) +

(
1 − 1 − q1

1 −p

)
mq1 (1)

)

− Vq1

(
q1,

1 − q1

1 −p
mq1 (p) +

(
1 − 1 − q1

1 −p

)
mq1 (1)

+ 1 − q1

1 −p
η
[
mq1 (1) − u

(
a∗, 1

)]))
η−1

= 1 −p

1 − q1

1 − q1

1 −p

mq1 (1) − u
(
a∗, 1

)
M
(
q1)− u(a∗, q1 v

(
a∗, q1)

= 1 −p

1 − q1

1 − q1

1 −p
v
(
a∗, 1

) q1 + (1 − q1)v(a∗, 0
)

v
(
a∗, 1

)
q1 + (1 − q1)mq1 (0) − u

(
a∗, 0

)
mq1 (1) − u

(
a∗, 1

)
≥ 1 −p

1 − q1

1 − q1

1 −p
v
(
a∗, 1

)= v
(
a∗, 1

)
.

Therefore, G(p; η) ≥ v(a∗, 1) for all η, for all p ∈ [0, q1]. Moreover, the gradient G(p; η)
is independent of η for all p ∈ [0, q1], hence is (weakly) increasing.

By induction, assume that G(p; η) ≥ v(a∗, 1) for all p ∈ [0, qk] and is increasing in η,

and we want to prove that both properties also hold for all p ∈ (qk, qk+1].
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We rewrite Vq1 (p, w(p; η)) as follows:

Vq1
(
p, w(p; η)

)
= ληVq1

(
ϕη, mq1 (ϕη )

)= λη
[
(1 − δ)v

(
a∗, ϕη

)+ δVq1
(
ϕη, w(ϕη )

)]
= (1 − δ)ληv

(
a∗, ϕη

)+ δληVq1
(
ϕη, w(ϕη )

)
= (1 − δ)ληv

(
a∗, ϕη

)+ δVq1
(
p, ληw(ϕη ) + [1 − λη]mq1 (1)

)
= (1 − δ)ληv

(
a∗, ϕη

)+ δVq1

(
p, w(p) + η− (1 − δ)(1 − λη )

δ

[
mq1 (1) − u

(
a∗, 1

)])
.

The second to last equality follows from Observation A, while the last equality follows
from

ληw(ϕη ) + [1 − λη]mq1 (1)

= λη
−(1 − δ)u

(
a∗, ϕη

)+mq1 (ϕη )

δ
+ [1 − λη]mq1 (1)

= −(1 − δ)
δ

ληu
(
a∗, ϕη

)+ 1
δ
ληmq1 (ϕη ) + [1 − λη]mq1 (1)

= −(1 − δ)
δ

[
u
(
a∗, p

)− (1 − λη )u
(
a∗, 1

)]
+ 1

δ

[
w(p; η) − (1 − λη )mq1 (1)

]+ [1 − λη]mq1 (1)

= −(1 − δ)
δ

[
u
(
a∗, p

)− (1 − λη )u
(
a∗, 1

)]
+ 1

δ

[
mq1 (p) +η

(
mq1 (1) − u

(
a∗, 1

))− (1 − λη )mq1 (1)
]+ [1 − λη]mq1 (1)

=
[−(1 − δ)

δ
u
(
a∗, p

)+ 1
δ
mq1 (p)

]
+ η− (1 − δ)(1 − λη )

δ

[
mq1 (1) − u

(
a∗, 1

)]
.

For future reference, recall that

ληw(ϕη ) + (1 − λη )mq1 (1)

= λη
[
λ
(
ϕη, w(ϕη )

)
mq1

(
ϕ
(
ϕη, w(ϕη )

))+ (1 − λ
(
ϕη, w(ϕη )

)
mq1 (1)

]
+ (1 − λη )mq1 (1),

so that

ϕ

(
p, w(p) + η− (1 − δ)(1 − λη )

δ

[
mq1 (1) − u

(
a∗, 1

)]) = ϕ
(
ϕη, w(ϕη )

)
, and

λ

(
p, w(p) + η− (1 − δ)(1 − λη )

δ

[
mq1 (1) − u

(
a∗, 1

)]) = ληλ
(
ϕη, w(ϕη )

)
.
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Since ϕη is decreasing in η, we have ϕη′ ≤ ϕη when η′ > η, and hence ϕ(ϕη, w(ϕη )) ≤
ϕ(ϕη′ , w(ϕη′ )), as ϕη′ ≤ ϕη ≤ p ≤ q. Similarly, since ϕη < p ≤ q, we have that

ϕ(ϕη, w(ϕη )) ≤ ϕ(p, w(p)) and, therefore, η−(1−δ)(1−λη )
δ > 0.

We now return to the computation of the gradient. We have

=
([

(1 − δ)v
(
a∗, p

)+ δVq1
(
p, w(p)

)]
−
[

(1 − δ)ληv
(
a∗, ϕη

)+ δVq1

(
p, w(p) + η− (1 − δ)(1 − λη )

δ

[
m(1) − u

(
a∗, 1

)])])
×η−1

= (1 − δ)
η

[
v
(
a∗, p

)− ληv
(
a∗, ϕη

)]
+ δ

η

[
Vq1
(
p, w(p)

)− Vq1

(
p, w(p) + η− (1 − δ)(1 − λη )

δ

[
m(1) − u

(
a∗, 1

)])]
= (1 − δ)

η
(1 − λη )v

(
a∗, 1

)
+ δ

η

[
Vq1
(
p, w(p)

)− Vq1

(
p, w(p) + η− (1 − δ)(1 − λη )

δ

[
m(1) − u

(
a∗, 1

)])]
. (10)

We further develop the above expression. To ease notation, we write (ϕ(p), λ(p))
for (ϕ(p, w(p)), λ(p, w(p))). Note that ϕ(p) ∈ (qk−1, qk], since p ∈ (qk, qk+1]. As
η−(1−δ)(1−λη )

δ > 0, we have that

= (1 − δ)
η

(1 − λη )v
(
a∗, 1

)
+ δ

η

[
Vq1
(
p, w(p)

)− Vq1

(
p, w(p) + η− (1 − δ)(1 − λη )

δ

[
m(1) − u

(
a∗, 1

)])]
= (1 − δ)

η
(1 − λη )v

(
a∗, 1

)+ δ

η

η− (1 − δ)(1 − λη )
δ

×
Vq1
(
p, w(p)

)− Vq1

(
p, w(p) + η− (1 − δ)(1 − λη )

δ

[
m(1) − u

(
a∗, 1

)])
η− (1 − δ)(1 − λη )

δ

= (1 − δ)
η

(1 − λη )v
(
a∗, 1

)+ [1 − (1 − δ)(1 − λη )
η

]
×
(
λ(p)

[
Vq1
(
ϕ(p), mq1

(
ϕ(p)

))
− Vq1

(
ϕ(p), mq1

(
ϕ(p)

)+ η− (1 − δ)(1 − λη )
δλ(p)

[
m(1) − u

(
a∗, 1

)])])

×
(
η− (1 − δ)(1 − λη )

δ

)−1
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= (1 − δ)
η

(1 − λη )v
(
a∗, 1

)+ [1 − (1 − δ)(1 − λη )
η

]
×
(
Vq1
(
ϕ(p), mq1

(
ϕ(p)

))
− Vq1

(
ϕ(p), mq1

(
ϕ(p)

)+ η− (1 − δ)(1 − λη )
δλ(p)

[
m(1) − u

(
a∗, 1

)]))

×
(
η− (1 − δ)(1 − λη )

δλ(p)

)−1

≥ (1 − δ)
η

(1 − λη )v
(
a∗, 1

)+ [1 − (1 − δ)(1 − λη )
η

]
v
(
a∗, 1

)= v
(
a∗, 1

)
,

where we use Observation A and the induction step.

We now show that the gradient is increasing in η. To start with, note that η−(1−δ)(1−λη )
δ

is increasing in η since 1−λη
η is decreasing in η (see Lemma 5). For any η > η′, we have

the following:

Vq1
(
p, w(p)

)− Vq1

(
p, w(p) + η− (1 − δ)(1 − λη )

δ

[
mq1 (1) − u

(
a∗, 1

)])
η− (1 − δ)(1 − λη )

δ

=
(
λ(p)Vq1

(
ϕ(p), mq1

(
ϕ(p)

))
− λ(p)Vq1

(
ϕ(p), mq1

(
ϕ(p)

)+ η− (1 − δ)(1 − λη )
δλ(p)

[
mq1 (1) − u

(
a∗, 1

)]))

×
(
η− (1 − δ)(1 − λ)

δ

)−1

=
(
Vq1
(
ϕ(p), mq1

(
ϕ(p)

))
− Vq1

(
ϕ(p), mq1

(
ϕ(p)

)+ η− (1 − δ)(1 − λη )
δλ(p)

[
mq1 (1) − u

(
a∗, 1

)]))

×
(
η− (1 − δ)(1 − λ)

δλ(p)

)−1

≥
(
Vq1
(
ϕ(p), mq1

(
ϕ(p)

))
− Vq1

(
ϕ(p), mq1

(
ϕ(p)

)+ η′ − (1 − δ)(1 − λη′ )
δλ(p)

[
mq1 (1) − u

(
a∗, 1

)]))

×
(
η′ − (1 − δ)(1 − λη′ )

δλ(p)

)−1
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=
Vq1
(
p, w(p)

)− Vq1

(
p, w(p) + η′ − (1 − δ)(1 − λη′ )

δ

[
mq1 (1) − u

(
a∗, 1

)])
η′ − (1 − δ)(1 − λη′ )

δ

,

where the inequality follows from the fact that ϕ(p) ∈ (qk−1, qk] and, therefore, the gra-

dient G(ϕ(p); η) being increasing in η by the induction hypothesis.

Finally, we have that

1
η

[
Vq1
(
p, mq1 (p)

)− Vq1
(
p, w(p; η)

)]
= (1 − δ)(1 − λη )

η
v
(
a∗, 1

)+ [1 − (1 − δ)(1 − λη )
η

]

×
Vq1
(
p, w(p)

)− Vq1

(
p, w(p) + η− (1 − δ)(1 − λη )

δ

[
m(1) − u

(
a∗, 1

)])
η− (1 − δ)(1 − λη )

δ

≥ (1 − δ)(1 − λη )
η

v
(
a∗, 1

)+ [1 − (1 − δ)(1 − λη )
η

]

×
Vq1
(
p, w(p)

)− Vq1

(
p, w(p) + η′ − (1 − δ)(1 − λη′ )

δ

[
mq1 (1) − u

(
a∗, 1

)])
η′ − (1 − δ)(1 − λη′ )

δ

= (1 − δ)(1 − λη′ )

η′ v
(
a∗, 1

)+ [1 − (1 − δ)(1 − λη′ )

η′
]

×
Vq1
(
p, w(p)

)− Vq1

(
p, w(p) + η′ − (1 − δ)(1 − λη′ )

δ

[
mq1 (1) − u

(
a∗, 1

)])
η′ − (1 − δ)(1 − λη′ )

δ

+
[

(1 − δ)(1 − λη′ )

η′ − (1 − δ)(1 − λη )
η

]

×
[Vq1

(
p, w(p)

)− Vq1

(
p, w(p) + η′ − (1 − δ)(1 − λη′ )

δ

[
mq1 (1) − u

(
a∗, 1

)])
η′ − (1 − δ)(1 − λη′ )

δ

− v
(
a∗, 1

)]
≥ 1

η′
[
Vq1
(
p, mq1 (p)

)− Vq1
(
p, w

(
p; η′))]

+
[

(1 − δ)(1 − λη′ )

η′ − (1 − δ)(1 − λη )
η

]
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×
[(

Vq1
(
ϕ(p), mq1

(
ϕ(p)

))
− Vq1

(
ϕ(p), mq1

(
ϕ(p)

)+ η′ − (1 − δ)(1 − λη′ )
δλ(p)

[
mq1 (1) − u

(
a∗, 1

)]))

×
(
η′ − (1 − δ)(1 − λη′ )

δλ(p)

)−1

− v
(
a∗, 1

)]
≥ 1

η′
[
Vq1
(
p, mq1 (p)

)− Vq1
(
p, w

(
p; η′))].

The last inequality follows from the fact that the gradient in the second bracket is

weakly larger than v(a∗, 1) by the induction hypothesis and the fact that 1−λη
η <

1−λη′
η′

(Lemma 5).
Since limk→∞ qk = p when P �= ∅, this completes the proof that the gradient is

greater than v(a∗, 1) for all p ∈ [0, p].

Fact 2: For all p ∈ I2, G(p; η) is increasing in η. We first treat the case P �= ∅. Recall that
for all p ∈ (p, q∞], we have an explicit definition of the value function Vq1 (p, mq1 (p)) as

v
(
a∗, p

)− mq1 (p) − u
(
a∗, p

)
mq1 (1) − u

(
a∗, 1

) v(a∗, 1
)
.

Define η̄(p) as the solution to ϕη̄(p) = ϕ(p, w(p; η̄(p))) = p. Note that for any p ∈
(p, q∞], for any η≤ η̄, ϕη ∈ [p, q∞]. Therefore,

Vq1
(
p, w(p; η)

) = ληVq1
(
ϕη, mq1 (ϕη )

)= λη

[
v
(
a∗, ϕη

)− mq1 (ϕη ) − u
(
a∗, ϕη

)
mq1 (1) − u

(
a∗, 1

) v
(
a∗, 1

)]

= v
(
a∗, p

)− w(p; η) − u
(
a∗, p

)
mq1 (1) − u

(
a∗, 1

) v(a∗, 1
)
.

It follows that the gradient is equal to v(a∗, 1) for all p ∈ (p, p∗], for all η≤ η̄.
Consider now η> η̄. We rewrite the gradient G(p; η) as follows:

Vq1
(
p, mq1 (p)

)− Vq1
(
p, w(p; η)

)
η

= Vq1
(
p, mq1 (p)

)− Vq1
(
p, w

(
p; η1(p)

))
η

+ Vq1
(
p, w

(
p; η1(p)

))− Vq1
(
p, w(p; η)

)
η

= η1(p)
η

Vq1
(
p, mq1 (p)

)− Vq1
(
p, w

(
p, η1(p)

))
η1(p)

+ η−η1(p)
η

Vq1
(
p, w

(
p; η1(p)

))− Vq1
(
p, w(p; η)

)
η−η1(p)
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= η1(p)
η

v
(
a∗, 1

)+ η−η1(p)
η

1 −p

1 −p

[
Vq1
(
p, mq1 (p)

)− Vq1

(
p, w

(
p;

η−η1(p)
1 −p

1 −p

))]

η−η1(p)

= η1(p)
η

v
(
a∗, 1

)+ η−η1(p)
η

G
(
p;

η−η1(p)
1 −p

1 −p

)
.

Since we have already shown that G(p; η) is increasing in η and weakly larger than
v(a∗, 1), we have that the gradient G(p; η) is also weakly increasing in η (and greater
than v(a∗, 1)).

We now treat the case P = ∅. Define η̄(p) as the solution to ϕη̄(p) = ϕ(p, w(p;
η̄(p))) = q. Note that for any p ∈ [q, q], for any η≤ η̄, ϕη ∈ [q, q]. Therefore, for all η≤ η̄,

η = (1 − δ)(1 − λη ) since the ratio
m

q1 (1)−w(ϕη )

1−ϕη
is constant in η and so is ϕ(ϕη, w(ϕη )).

(Recall that we vary η at a fixed p.) It follows then from equation (10) that

G(p; η) = (1 − δ)
η

(1 − λη )v
(
a∗, 1

)
+ δ

η

[
Vq1
(
p, w(p)

)− Vq1

(
p, w(p) + η− (1 − δ)(1 − λη )

δ

[
m(1) − u

(
a∗, 1

)])]
= (1 − δ)

η
(1 − λη )v

(
a∗, 1

)= v
(
a∗, 1

)
.

We have that the gradient G(p; η) is equal to v(a∗, 1) for all p ∈ (q, q], for all η ≤ η̄. Fi-
nally, when η> η̄, the same decomposition as in the case P �= ∅ completes the proof.

Fact 3: For all p ∈ I3, the gradient G(p; η) is increasing in η. We only treat the case
P �= ∅. (The case P = ∅ is treated analogously.) Define η̄(p) as the solution to ϕη̄(p) =
ϕ(p, w(p; η̄(p))) = q∞. By construction, for all p ∈ (q∞, 1], for all η≤ η̄(p), we have that
ϕη ∈ (q∞, 1]. Therefore, ϕη > q.

Choose η̄(p) ≤ η′ ≤ η. We have that ϕη′ ≥ ϕη ≥ q since q∞ ≥ q and, therefore,

ϕ

(
p, w(p) + η− (1 − δ)(1 − λη )

δ

[
mq1 (1) − u

(
a∗, 1

)])
= ϕ

(
ϕη, w(ϕη )

)
≥ ϕ(ϕη′ , w(ϕη′ ) = ϕ

(
p, w(p) + η′ − (1 − δ)(1 − λη′ )

δ

[
mq1 (1) − u

(
a∗, 1

)])
.

Also, since q ≤ ϕη ≤ p, we have that ϕ(ϕη, w(ϕη )) ≥ ϕ(p, w(p)) and, therefore,
η−(1−δ)(1−λη )

δ ≤ 0. The same applies to η′. Finally, as already shown,

η− (1 − δ)(1 − λη )
δ

<
η′ − (1 − δ)(1 − λη′ )

δ
.
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To ease notation, define (λ̃η, ϕ̃η ) as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ̃η = λ

(
p, w(p) − (1 − δ)(1 − λη ) −η

δ

[
m(1) − u

(
a∗, 1

)])
ϕ̃η = ϕ

(
p, w(p) − (1 − δ)(1 − λη ) −η

δ

[
m(1) − u

(
a∗, 1

)]) (11)

Notice that ϕ̃η = ϕ(ϕη, w(ϕη )) ∈ I1 since ϕη > q∞.

The rest of the proof is purely algebraic and mirrors the case p ∈ I1. First, we have

the following:

Vq1
(
p, w(p)

)− Vq1

(
p, w(p) − (1 − δ)(1 − λη ) −η

δ

[
mq1 (1) − u

(
a∗, 1

)])
(1 − δ)(1 − λη ) −η

δ

=
(
λ̃ηVq1

(
ϕ̃η, mq1 (ϕ̃η ) + (1 − δ)(1 − λη ) −η

δλ̃η

[
mq1 (1) − u

(
a∗, 1

)])

− λ̃ηVq1
(
ϕ̃η, mq1 (ϕ̃η )

))( (1 − δ)(1 − λη ) −η

δ

)−1

=
Vq1

(
ϕ̃η, w

(
ϕ̃η;

(1 − δ)(1 − λη ) −η

δλ̃η

))
− Vq1

(
ϕ̃η, mq1 (ϕ̃η )

)
(1 − δ)(1 − λη ) −η

δλ̃η

,

where we again use Observation A. Similarly, we have

Vq1
(
p, w(p)

)− Vq1

(
p, w(p) − (1 − δ)(1 − λη′ ) −η′

δ

[
mq1 (1) − u

(
a∗, 1

)])
(1 − δ)(1 − λη′ ) −η′

δ

=
(
λ̃ηVq1

(
ϕ̃η, w

(
ϕ̃η;

(1 − δ)(1 − λη ) −η

δλ̃η

))

− λ̃ηVq1

(
ϕ̃η, w

(
ϕ̃η;

(1 − δ)(1 − λη ) −η

δλ̃η
− (1 − δ)(1 − λη′ ) −η′

δλ̃η

)))

×
(

(1 − δ)(1 − λη′ ) −η′

δ

)−1

=
(
Vq1

(
ϕ̃η, w

(
ϕ̃η;

(1 − δ)(1 − λη ) −η

δλ̃η

))

− Vq1

(
ϕ̃η, w

(
ϕ̃η;

(1 − δ)(1 − λη ) −η

δλ̃η
− (1 − δ)(1 − λη′ ) −η′

δλ̃η

)))
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×
(

(1 − δ)(1 − λη′ ) −η′

δλ̃η

)−1

,

where again we use Observation A and the fact

(1 − δ)(1 − λη ) −η

δλ̃η
>

(1 − δ)(1 − λη′ ) −η′

δλ̃η
.

Since ϕ̃η ∈ I1, we have that(
Vq1

(
ϕ̃η, w

(
ϕ̃η;

(1 − δ)(1 − λη ) −η

δλ̃η

))

− Vq1

(
ϕ̃η, w

(
ϕ̃η;

(1 − δ)(1 − λη ) −η

δλ̃η
− (1 − δ)(1 − λη′ ) −η′

δλ̃η

)))

×
(

(1 − δ)(1 − λη′ ) −η′

δλ̃η

)−1

≤
Vq1

(
ϕ̃η, w

(
ϕ̃η;

(1 − δ)(1 − λη ) −η

δλ̃η

))
− Vq1

(
ϕ̃η, mq1 (ϕ̃η )

)
(1 − δ)(1 − λη ) −η

δλ̃η

,

where the inequality follows from our previous argument on the interval I1.
It follows that

Vq1
(
p, w(p)

)− Vq1

(
p, w(p) − (1 − δ)(1 − λη′ ) −η′

δ

[
mq1 (1) − u

(
a∗, 1

)])
(1 − δ)(1 − λη′ ) −η′

δ

≤
Vq1
(
p, w(p)

)− Vq1

(
p, w(p) − (1 − δ)(1 − λη ) −η

δ

[
mq1 (1) − u

(
a∗, 1

)])
(1 − δ)(1 − λη ) −η

δ

.

From equation (10), we then have that

1
η

[
Vq1
(
p, mq1 (p)

)− Vq1
(
p, w(p; η)

)]
= (1 − δ)(1 − λη )

η
v
(
a∗, 1

)+ [ (1 − δ)(1 − λη )
η

− 1
]

×
Vq1
(
p, w(p)

)− Vq1

(
p, w(p) − (1 − δ)(1 − λη ) −η

δ

[
m(1) − u

(
a∗, 1

)])
(1 − δ)(1 − λη ) −η

δ
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≥ (1 − δ)(1 − λη )
η

v
(
a∗, 1

)+ [ (1 − δ)(1 − λη )
η

− 1
]

×
Vq1
(
p, w(p)

)− Vq1

(
p, w(p) − (1 − δ)(1 − λη′ ) −η′

δ

[
mq1 (1) − u

(
a∗, 1

)])
(1 − δ)(1 − λη′ ) −η′

δ

= (1 − δ)(1 − λη )
η

v
(
a∗, 1

)+ [1 − (1 − δ)(1 − λη )
η

]

×
Vq1

(
p, w(p) − (1 − δ)(1 − λη′ ) −η′

δ

[
mq1 (1) − u

(
a∗, 1

)])− Vq1
(
p, w(p)

)
(1 − δ)(1 − λη′ ) −η′

δ

= (1 − δ)(1 − λη′ )

η′ v
(
a∗, 1

)+ [1 − (1 − δ)(1 − λη′ )

η′
]

×
Vq1

(
p, w(p) − (1 − δ)(1 − λη′ ) −η′

δ

[
mq1 (1) − u

(
a∗, 1

)])− Vq1
(
p, w(p)

)
(1 − δ)(1 − λη′ ) −η′

δ

+
[

(1 − δ)(1 − λη′ )

η′ − (1 − δ)(1 − λη )
η

]

×
[Vq1

(
p, w(p) − (1 − δ)(1 − λη′ ) −η′

δ

[
mq1 (1) − u

(
a∗, 1

)])− Vq1
(
p, w(p)

)
(1 − δ)(1 − λη′ ) −η′

δ

− v
(
a∗, 1

)]
≥ 1

η′
[
Vq1
(
p, mq1 (p)

)− Vq1
(
p, w

(
p; η′))],

where the last inequality follows from

Vq1

(
p, w(p) − (1 − δ)(1 − λη′ ) −η′

δ

[
mq1 (1) − u

(
a∗, 1

)])− Vq1
(
p, w(p)

)
(1 − δ)(1 − λη′ ) −η′

δ

=
λ̃η′Vq1

(
ϕ̃η′ , mq1 (ϕ̃η′ )

)− λ̃η′Vq1

(
ϕ̃η′ , w

(
ϕ̃η′ ;

(1 − δ)(1 − λη′ ) −η′

δλ̃η′

))
(1 − δ)(1 − λη′ ) −η′

δ

≥ v
(
a∗, 1

)
.
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We now show that the the gradient G(p; η) is smaller than v(a∗, 1) for any η ≤ η̄(p).

From equation (10), we have that

1
η

[
Vq1
(
p, mq1 (p)

)− Vq1
(
p, w(p; η)

)]
= (1 − δ)(1 − λη )

η
v
(
a∗, 1

)− [ (1 − δ)(1 − λη )
η

− 1
]

×
Vq1

(
p, w(p) − (1 − δ)(1 − λη ) −η

δ

[
m(1) − u

(
a∗, 1

)])− Vq1
(
p, w(p)

)
(1 − δ)(1 − λη ) −η

δ

= v
(
a∗, 1

)− [ (1 − δ)(1 − λη )
η

− 1
]

×
[Vq1

(
p, w(p) − (1 − δ)(1 − λη ) −η

δ

[
m(1) − u

(
a∗, 1

)])− Vq1
(
p, w(p)

)
(1 − δ)(1 − λη ) −η

δ

− v
(
a∗, 1

)]
= v
(
a∗, 1

)− [ (1 − δ)(1 − λη )
η

− 1
]

×
[ λ̃ηVq1

(
ϕ̃η, mq1 (ϕ̃η )

)− λ̃ηVq1

(
ϕ̃η, w

(
ϕ̃η;

(1 − δ)(1 − λη ) −η

δλ̃η

))
(1 − δ)(1 − λη ) −η

δ

− v
(
a∗, 1

)]

= v
(
a∗, 1

)− [ (1 − δ)(1 − λη )
η

− 1
]

︸ ︷︷ ︸
≥0

×
[Vq1

(
ϕ̃η, mq1 (ϕ̃η )

)− Vq1

(
ϕ̃η, w

(
ϕ̃η;

(1 − δ)(1 − λη ) −η

δλ̃η

))
(1 − δ)(1 − λη ) −η

δλ̃η

− v
(
a∗, 1

)]
︸ ︷︷ ︸

≥0

≤ v
(
a∗, 1

)
,

where the inequality follows from the fact that ϕ̃η ≤ p (therefore, from our arguments

on the interval I1, where we show that the gradient is larger than v(a∗, 1)).

Finally, we can use a similar decomposition as in the case p ∈ I2 to prove that the

gradient is increasing for all η.
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Appendix C

C.1 Recursive formulation: A proof

Ely (2015) proves that the principal’s maximal payoff is maxw∈[m(p0 ),M(p0 )] V̂
∗(p0, w),

with V̂ ∗ the unique fixed point of the contraction T̂ , with the operator T̂ differing from
the operator T in that the promise-keeping constraint is written as an equality in all
maximization problems T̂ (V )(p, w); all other constraints are the same. Note that, like
T , the operator T̂ is monotone.

For any (p, w) ∈ W , let Ṽ ∗(p, w) := maxŵ∈[w,M(p)] V̂
∗(p, ŵ) and w̃∗(p, w) a maxi-

mizer. (If there are multiple maximizers, choose an arbitrary one.)
We prove that V ∗ = Ṽ ∗. To do so, we prove that T (Ṽ ∗ ) = Ṽ ∗. Since T is a contraction,

hence has a unique fixed point, it follows that V ∗ = Ṽ ∗. (Note that we are not arguing
that T = T̂ .)

We start with two simple observations: (i) T (V )(p, w) ≥ T̂ (V )(p, w) for all (p, w) ∈
W , for all V , and (ii) Ṽ ∗(p, w) ≥ V̂ ∗(p, w) for all (p, w) ∈ W . The first observation fol-
lows from the fact the promised-keeping constraint is an equality in T̂ (V )(p, w), while
it is an inequality in T (V )(p, w). The second observation follows immediately from the
definition of Ṽ ∗.

We now prove that T (Ṽ ∗ ) ≥ Ṽ ∗. For all (p, w) ∈ W , we have

Ṽ ∗(p, w) = V̂ ∗(p, w̃∗(p, w)
)= T̂

(
V̂ ∗)(p, w̃∗(p, w)

)
,

≤ T
(
V̂ ∗)(p, w̃∗(p, w)

)
,

≤ T
(
V̂ ∗)(p, w),

≤ T
(
Ṽ ∗)(p, w),

where the first line follows from the definitions of Ṽ ∗, V̂ ∗, and T̂ , and the fact that V̂ ∗ =
T̂ (V̂ ∗ ); the second line from observation (i); the third line from the fact that w̃∗(p, w) ≥
w, so that all feasible solutions to T (V̂ ∗ )(p, w̃∗(p, w)) are also feasible for T (V̂ ∗ )(p, w);
and the fourth line from observation (ii) and the definition of T (V )(p, w), V = V̂ ∗, Ṽ ∗.

We next prove that T (Ṽ ∗ ) ≤ Ṽ ∗. By contradiction, suppose that there exists (p, w) ∈
W and a feasible policy (λs , ps , as , ws )s∈S such that

Ṽ ∗(p, w) <
∑
s∈S

λs
[
(1 − δ)v(as , ps ) + δṼ ∗(ps , ws )

]
.

Moreover, we have that∑
s∈S

λs
[
(1 − δ)v(as , ps ) + δṼ ∗(ps , ws )

]=∑
s∈S

λs
[
(1 − δ)v(as , ps ) + δV̂ ∗(ps , w̃∗(ps , ws )

)]
≤ V̂ ∗

(
p,
∑
s∈S

[
(1 − δ)u(as , ps ) + δw̃∗(ps , ws )

])
≤ Ṽ ∗(p, w),
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where the first line follows from the definition of Ṽ ; the second line from the observa-
tion that (λs , ps, as , w̃∗(ps , ws ))s∈S is feasible for the maximization problem T̂ (V̂ ∗ )(p,∑

s∈S[(1 − δ)u(as , ps ) + δw̃∗(ps , ws )) and the fact that T̂ (V̂ ∗ ) = V̂ ∗; and the third line
from the fact that

M(p) ≥
∑
s∈S

[
(1 − δ)u(as , ps ) + δw̃∗(ps , ws )

]≥∑
s∈S

[
(1 − δ)u(as , ps ) + δws

]≥w,

since w̃∗(ps , ws ) ∈ [ws , M(ps )], for all s ∈ S, and the definition of Ṽ ∗. We have the re-
quired contradiction, which completes the proof.

C.2 Proof of Proposition 3, part B

The existence of an optimal contract, which is simple and minimizes the probability
of recommending a∗, follows from the compactness of the set of optimal contracts,
and Proposition 3(i). To prove compactness, recall that T (V ∗ )(p, w) is a constrained
maximization problem, parameterized by (p, w). Moreover, if V ∗ is continuous, so is
T (V ∗ )(p, w). The Berge maximum theorem implies the compactness of the set of op-
timal solutions of T (V ∗ )(p, w) at all (p, w) and the continuity of T (V ∗ ). Thus, T is
mapping continuous, concave and bounded functions into continuous, bounded, and
bounded functions. Since the space of continuous, concave, and bounded functions is
complete with respect to the sup-norm, the fixed point V ∗ is continuous, concave, and
bounded (and its existence follows by Banach fixed-point theorem).

Next, since the set of optimal contracts is compact, there exists an optimal contract,
which minimizes the probability of recommending a∗. Finally, the proof of Proposi-
tion 3(i) shows that there exists another optimal contract, which is simple and recom-
mends a∗ with the same probability.
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