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Stable matching in large markets with occupational choice
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School of Economics, University of Surrey
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We introduce a model of large many-to-one matching markets with occupational
choice where each individual can choose which side of the market to belong to.
We show that stable matchings exist under mild assumptions; in particular, both
complementarities and externalities can be accommodated. Our model general-
izes Greinecker and Kah (2021), which focuses on one-to-one matching and did
not allow for occupational choice. Applications include the roommate problem
with nonatomic participants, explaining the size and distribution of firms and
wage inequality.
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1. Introduction

This paper establishes the existence of many-to-one stable matchings in large markets
with complementarities, externalities, and occupational choice. Stability in the pres-
ence of occupational choice differs from the standard stability notion for two-sided,
many-to-one matching markets. As individuals no longer have a fixed occupation, sta-
bility requires someone being unable to find a better match even if this involves a change
of occupation. Having all these features present simultaneously in the same model is
important for at least the following reasons.

Labor markets match a large numbers of workers to managers in a many-to-one way.
Unlike standard matching markets membership in one side or the other of the market is
endogenous.

Complementarities and externalities are also an essential feature of labor markets.
For example, firms typically want to hire workers with complementary skills and recent
graduates may prefer to enter the same industry as their peers. In addition, knowledge
spillovers may imply that the productivity of a manager depends on the aggregate qual-
ity of those who take managerial roles according to the matching.
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Prior work, summarized in Section 2, has established the existence of stable match-
ings in models that contain a strict subset of these elements.

Our framework for large many-to-one matching markets with occupational choice
subsumes several important special cases. It generalizes the two-sided, one-to-one
matching setting in distributional form of Greinecker and Kah (2021) by adding many-
to-one matching and occupational choice; in particular, our existence result implies ex-
istence in Greinecker and Kah’s (2021) one-to-one matching market.1

In addition, we show how several classical models that feature occupational choice,
many-to-one matching and a large number of participants, such as Lucas (1978), Rosen
(1982), Garicano and Rossi-Hansberg (2004), and Garicano and Rossi-Hansberg (2006),
can be seen as particular cases of our framework. These models also feature a contin-
uum of types, which can be accommodated in our framework. To illustrate the flexibil-
ity of our setting and its technical advantages, we provide a detailed analysis of Rosen’s
(1982) model. We show that stable matchings exist and fully characterize them even
though some of the assumptions of our general existence result do not hold.

Our model is not restricted to labor markets. We illustrate this by formalizing a
nonatomic version of Gale and Shapley’s (1962) roommate problem as a special case
of our model—one in which individuals are indifferent between the two occupations.
We show that our existence results imply the existence of stable matchings for the
nonatomic roommate problem.

We present our model and stability notion in Section 4 after a brief literature review
in Section 2 and a motivating example in Section 3.

Our existence results are in Section 5. In particular, we show that stable matchings
exist in markets with occupational choice whenever preferences are rational and con-
tinuous and the set of feasible measures that managers can match with is bounded
and rich.2 Thus, we can accommodate externalities as long as preferences depend
on the matching in a continuous way without any substitutability requirement—
complementarities cause no problem for existence in our model. In addition, as is stan-
dard in models with a continuum of agents, preferences are not required to be convex.

Section 6 contains applications of our framework to the roommate problem (Sec-
tion 6.1) and Rosen’s (1982) model (Section 6.2), and a brief discussion of the settings of
Lucas (1978), Garicano and Rossi-Hansberg (2004), and Garicano and Rossi-Hansberg
(2006). Section 7 contains some concluding remarks. The proofs of our results are in the
Appendix. Some omitted details are in the working paper version.3

1In the working paper version, we establish formally that Greinecker and Kah’s (2021) setting can be rep-
resented as a special case of our general framework and that, specialized to this setting, our stability notion
coincides with theirs. We also introduce a new two-sided, many-to-one matching model that generalizes
Greinecker and Kah (2021) to allow for many-to-one matching (but not occupational choice). We show that
this model is also a particular case of our framework and, specialized to this setting, our stability notion
coincides with other stability concepts for two-sided markets where both sides are large, such as Azevedo
and Hatfield’s (2018).

2Richness is a weak technical condition that implies that small perturbations of feasible measures are
feasible.

3The working paper version is available at https://klaohakunakorn.com/ocwp.pdf.

https://klaohakunakorn.com/ocwp.pdf
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2. Literature review

The study of large matching markets has commanded a great deal of recent attention;
see, e.g., Azevedo and Leshno (2016), Fisher and Hafalir (2016), Ashlagi, Kanoria, and
Leshno (2017), Eeckhout and Kircher (2018), Fuentes and Tohmé (2018), Nöldeke and
Samuelson (2018), and Che and Tercieux (2019).4 However, none of these papers allow
for occupational choice.

Chiappori, Galichon, and Salanié (2014), Pęski (2017), Azevedo and Hatfield (2018)
study large matching models with a restricted form of occupational choice and a large
number of participants. See Section 6.1 for a more detailed discussion of these papers.
Compared to these papers, we accommodate many-to-one matching and more general
forms of occupational choice.

Closest to this paper is Jagadeesan and Vocke (2024), which considers a many-to-
many matching model where a continuum of agents of finitely many types can sign mul-
tiple contracts with each other. They do not require that the market be two-sided, and
hence their existence result holds in the presence of occupational choice. However, their
assumption that the set of contracts available to each agent is finite makes it less conve-
nient to capture settings such as Rosen (1982), which was part of our motivation. While
our model cannot accommodate many-to-many matching, we allow for more general
type and contract spaces and we allow preferences to depend on the matching. Wu
(2021) also provides a general existence result for a broad class of finite-type many-to-
many matching models under a convexity condition. However, Wu’s (2021) result does
not apply to our setting because we allow preferences to depend on the entire matching.

Externalities and complementarities cause problems for the existence of stable
matchings in finite markets. Making the workers negligible allowed Che, Kim, and
Kojima (2019) to obtain the existence of stable matchings in two-sided, many-to-one
matching markets where managers’ preferences exhibit complementarities. This result
solved a longstanding problem in matching theory since, with finitely many workers
and managers, Kelso and Crawford (1982), Hatfield and Milgrom (2005), and Hatfield
and Kojima (2008) have shown that managers need to have substitutable preferences to
guarantee the existence of stable matchings. In contrast to Che, Kim, and Kojima (2019),
we also allow for occupational choice and externalities. By assuming that all agents are
negligible, we are able to show that a stable matching exists in the presence of comple-
mentarities, occupational choice, and externalities.

Externalities raise some conceptual issues in finite markets. Indeed, when prefer-
ences depend on the matching, whether or not an individual gains by being part of
a potential blocking coalition depends on the matching that results from such block-
ing. Thus, the definition of stability has to specify the (set of possible) matchings that
result from each blocking coalition, and many such definitions have been proposed.5

When there are finitely many managers but a continuum of workers and only workers’
preferences depend on the matching, Cox, Fonseca, and Pakzad-Hurson (2022), Leshno

4See Greinecker and Kah (2021) for a survey.
5See, e.g., Sasaki and Toda (1996), Dutta and Massó (1997), Echenique and Yenmez (2007), Hafalir (2008),

Mumcu and Saglam (2010), Bando (2012), and Fisher and Hafalir (2016).
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(2022), and Carmona and Laohakunakorn (2023) define stability and establish existence
by specifying that each worker in a blocking coalition expects the matching to remain
unchanged. In contrast to these papers, we consider the case where all agents are neg-
ligible, and thus, a blocking coalition of one (prospective) manager and a measure of
(prospective) workers is negligible and, indeed, has no impact on the matching. Hence,
externalities cause no conceptual issue in our framework and we can accommodate
them on both sides of the market.

3. Motivating example

This example is a particular case of the model in Rosen (1982). There are two types of
individuals, 1 and 2. Individuals have preferences that are fully described by their types
and their population is described by a measure ν over the type space Z = {1, 2}. Let
ν(1) = ν(2) = 1/2.

Each individual can be a manager, a worker, or self-employed (i.e., remain un-
matched). For each type z ∈ {1, 2}, some individuals of type z can be managers and some
others can be workers; furthermore, those who are managers (if any) can be matched
with workers of type z or of type z′ �= z. Those who are managers can hire a workforce,
which we represent as a measure over worker types and contracts, from the set X , where
each δ ∈X is a measure over Z×C with C being the set of contracts. For this example, let
C = R+ and X = {n1(z,c) : z ∈ Z, n, c ∈ R+}.6 Specifically, each manager can be matched
with a measure n1(z,c), where z ∈ Z denotes the type of workers he employs, n ∈ R+
denotes their number and c ∈R+ denotes the wage paid to them.

The preferences of each individual depend on her type, her occupation, and on her
match. In this example, we specify that if someone of type z ∈ {1, 2} chooses to be a
manager and is matched with n1(z′,c), then her payoff is Uz(m, n1(z′,c) ) = z1+αn1−α − cn,
where α ∈ (0, 1). If she chooses to be a worker and is matched with manager z′ at wage
c, then her payoff is the wage: Uz(w, 1(z′,c) ) = c. An individual can also choose to be
unmatched, in which case she receives a payoff of zero.

The managers’ rents are obtained via a production function of the form g(z)zαn1−α,
with g(z) = z, which has labor and managers’ type as inputs, the latter being interpreted
as the managers’ quality.

In the context of this example, a matching is a measure μ over Z × X with
μ(z, n1(z′,c) ) describing the measure of type z who are managers and hire n workers
of type z′ at wage c.

Consider first the case where each individual’s occupation is fixed, with type 1 indi-
viduals being managers and type 2 individuals being workers. There is a unique stable
matching in this example without occupational choice: μ(1, 1(2,1−α) ) = 1/2. In such
matching, all workers (i.e., type 2 individuals) are matched with a manager (i.e., a type
1 individual), each manager hires a workforce consisting of a measure n = 1 of workers
at wage c = 1 − α. Since both managers and workers obtain a strictly positive utility in
this matching and zero if they were unmatched, such matching is individually rational.

6If Y is a metric space and y ∈ Y , 1y denotes the probability measure degenerate on y .
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Furthermore, no manager and group of workers can block this matching since hiring
a measure one of workers is optimal given the wage; hence, the manager cannot gain
by changing his workforce since at least the newly hired workers would require a wage
higher than 1 − α.

In the example without occupational choice, type 1 individuals can only be man-
agers and type 2 individuals can only be workers; these restrictions are now removed by
the introduction of occupational choice. The specification of our example implies that
individuals of type 2 are better managers than those of type 1 since they have higher
quality. This then means that the stable matching μ for the setting without occupa-
tional choice is intuitively not stable when occupational choice is allowed. For instance,
any type 2 individual could choose to be a manager and attract, e.g., a measure one of
workers of type 2 by paying them 1 − α + ε to obtain a rent of 21+α − (1 − α) − ε; for
sufficiently small ε > 0, such workers are willing to work for her and her payoff is higher
than 1 − α, which is her payoff in the matching μ.

Thus, stability in the presence of occupational choice is more demanding than the
stability notion for two-sided many-to-one matching markets. The latter roughly re-
quires that no manager can improve his well being by changing the number of workers
who work for him or by employing (an optimal number of) workers that he can target,
which are those who would prefer to work for him at the proposed wage rather than for
the manager with whom they are currently matched.7 With occupational choice, since
anyone can choose to be a manager, this condition must hold not just for those who
are managers in the current match but also for those who are workers and unmatched.
Similarly, since anyone can be a worker, the targets of a prospective manager are no
longer restricted to be the current workers but rather can include current managers and
unmatched individuals.

When α = 1/2, the unique stable matching in the above example is for all type 2
individuals to be managers, each of them being matched with a measure one of type 1
individuals at wage w � 1.41.8 At this wage, the firm size is optimal for type 2 managers.
Their rent is equal to w, so that type 2 individuals are actually indifferent between being
a manager or a worker. Type 1 individuals would get a rent approximately equal to 0.18 if
they were to hire an optimal number of workers at wage w, and thus, they strictly prefer
to be workers rather than managers. It follows from these properties that this matching
is indeed stable.9

4. Matching with occupational choice

The setting we introduce in this paper is that of a matching market featuring occupa-
tional choice, many-to-one matching, and a large number of participants. We frame

7Stability also requires individual rationality for the workers.
8In the working paper version, we fully characterize the stable matchings in this example for each α ∈

(0, 1); in fact, there is a unique stable matching for each α.
9Our general framework allows for externalities and their presence is often natural. In the context

of the above example, it might be that the production function depends on the aggregate manage-
rial quality in an analogous way to Romer (1986), so that the rent of a manager with quality z is, e.g.,
(
∫
Z×X ẑdμ(ẑ, δ))z1+αn1−α − cn when the matching is μ.
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this problem in the context of a labor market for simplicity, so that individuals have a
choice of being a manager, a worker, or self-employed.

4.1 Environment and matching

Individuals are (potentially) heterogenous in, e.g., their talent or knowledge. This is cap-
tured by a (nonempty, Polish) set Z of types. The population of individuals is described
by a nonzero, finite, Borel measure ν on Z; ν is the type distribution. A dummy type ∅ /∈Z

is used to represent unmatched, i.e., self-employed individuals, and we let Z∅ =Z ∪ {∅},
with the assumption that ∅ is an isolated point in Z∅.

A manager of type z may be matched with a worker of type z′ under some contract
c. In particular, there is a (nonempty, Polish) set C of contracts and a contract corre-
spondence C : Z × Z∅ ⇒ C describing the set C(z, z′ ) of contracts that are feasible for
a manager of type z and a worker of type z′ (when z′ = ∅ the manager is, in fact, self-
employed and C(z, ∅) describes the feasible contracts for a self-employed individual of
type z).

A manager is allowed to hire as many workers as he likes; to capture the many-to-one
aspect of matching, a manager is matched with a measure of workers and contracts δ ∈
M(Z ×C ).10 The definition of a matching below will impose feasibility constraints on δ

via the contract correspondence C, and thus, constrain the contracts that the manager
can offer to each of his employees. These constraints are of the form c ∈C(z, z′ ) and are
therefore independent across workers. To capture interdependent and other feasibility
constraints, we let X be a subset of M(Z × C ) and require that managers be matched
with δ ∈X .

Self-employed (or unmatched) managers are those matched with the dummy type
∅. To specify his contract (e.g., the number of hours worked as self-employed), we use
matches of the form (z, 1(∅,c) ) to describe a self-employed individual of type z with con-
tract c. To unify the two cases, we letX∅ = X∪{1(∅,c) : c ∈ C} be the set of possible matches
of managers and self-employed individuals.

The set of occupations is A = {w, s, m}, where w stands for worker, s for self-
employed, and m for manager. The choice set of each individual depends on his
occupation; namely, a worker chooses among managers’ types and contracts, a self-
employed individual among contracts, and a manager among measures δ ∈ X describ-
ing whom to hire and the contracts offered. To capture these differences, let Xm = X ,
Xs = {1(∅,c) : c ∈ C}, Xw = {1(z,c) : (z, c) ∈ Z ×C}, and � = {(a, δ) : δ ∈ Xa}.11 The set � is
the choice set of each individual as she can choose her occupation and a match feasible
for the chosen occupation.

We allow for externalities, and thus, preferences are allowed to depend on the match-
ing. Matchings with occupational choice are elements of M(Z × X∅ ) satisfying certain

10Whenever Y is a metric space, M(Y ) denotes the set of finite, Borel measures on Y endowed with
the weak (narrow) topology (see Varadarajan (1958) for details). We often focus on MR(Y ) where, for each
R> 0, MR(Y ) = {δ ∈ M(Y ) : δ(Y ) ≤R}.

11We do not distinguish between (z, c) and 1(z,c) for each (z, c) ∈ Z∅ × C; hence, it would be simpler to
replace the latter with the former in the definition of Xs and Xw . The formalization we use above provides
an unified notation which simplifies the exposition elsewhere.
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properties described below. The preferences of an individual of type z are then described
by a relation 	z defined on �×M(Z ×X∅ ) for each z ∈Z.

In summary, a matching market with occupational choice (a market, henceforth) is
E = (Z, ν, C, C, X , (	z )z∈Z ).

A matching with occupational choice (a matching, henceforth) is a Borel measure
μ ∈ M(Z ×X∅ ) such that:

(i) {z} × supp(δ) ⊆ graph(C) for each (z, δ) ∈ supp(μ), and

(ii) νM + νS + νW = ν

where, for each Borel subset B of Z, νM (B) = μ(B × X ), νS(B) = μ(B × (X∅ \ X )), and
νW (B) = ∫

Z×X δ(B ×C ) dμ(z, δ).
The interpretation of μ is as follows. First, μ describes the occupational choices by

the place in the match (z, δ); namely, the first coordinate refers to managers and the sec-
ond to workers (as part of a firm) when δ ∈ X , and when δ ∈ X∅ \X , the first coordinate
refers to a self-employed individual and the second, which is equal to 1(∅,c) for some
c ∈ C, describes the individual’s contract. Condition (i) requires that the contract is fea-
sible according to the contract correspondence. Condition (ii) requires that everyone in
the market is accounted for as follows: For each Borel subset B of Z, μ(B×X ) is the mea-
sure of managers whose type belongs to B and we call it νM (B). Similarly, μ(B×(X∅ \X ))
is the measure of self-employed individuals whose type belongs to B and we call it νS(B).
Finally,

∫
Z×X δ(B × C ) dμ(z, δ) is the measure of workers whose type belongs to B, and

thus, we call it νW (B).12 Since an individual must be either a manager, or a worker, or
self-employed, condition (ii) must hold if everyone in the market is accounted for.

4.2 Stability

Heading toward the definition of stable matchings, we start by defining the targets of
individuals at a given matching and then define the stability set of a matching.

Targets at a given matching μ depend on the type z and on the occupational choice
a, and are denoted by Ta

z (μ). Because one’s occupation is a choice and not a fixed char-
acteristic, these targets are for someone planning to choose occupation a, i.e., if some-
one chooses occupation a, then his targets are Ta

z (μ). The targets for the prospective
self-employed are simply the contracts that are feasible when someone is unmatched:
For each z ∈Z, let T s

z (μ) = {∅} ×C(z, ∅).
The targets of prospective managers and workers are more complicated as they con-

sist of contracts and types of people on the other side of the market that managers or
workers can attract. But with occupational choice, there is not a fixed “other side of the
market” since anyone can change his occupation. In more detail, even if all individuals
of type z∗ are managers in the matching μ, any type z∗ person can choose to became a
worker. In particular, if such z∗ person gains by becoming a worker and by working for a

12For each Borel subset E of a metric space Y , the function δ �→ δ(E) : M(Y ) → R is Borel measur-
able. This follows by the argument in Aliprantis and Border (2006, Theorem 15.13, p. 514) together with
Varadarajan (1958, Theorem 3.1).
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manager of type z at some contract c, then (z∗, c) is a target for those of type z planning
to be a manager, i.e., it belongs to Tm

z (μ). We then let, for each z ∈ Z, Tm
z (μ) be the set

of (z∗, c) ∈Z ×C such that c ∈C(z, z∗ ) and there exists

(a) (z′, c′, δ′ ) ∈ Z × C × X such that (z′, δ′ ) ∈ supp(μ), (z∗, c′ ) ∈ supp(δ′ ) and (w,
1(z,c), μ) 	z∗ (w, 1(z′,c′ ), μ), or

(b) δ′ ∈X∅ \X such that (z∗, δ′ ) ∈ supp(μ) and (w, 1(z,c), μ) 	z∗ (s, δ′, μ), or

(c) δ′ ∈X such that (z∗, δ′ ) ∈ supp(μ) and (w, 1(z,c), μ) 	z∗ (m, δ′, μ).

Anyone of type z can be a manager if he finds workers, here of type z∗, who prefer to
work for him than to be in their current occupation. Each of these workers can be some-
one who was already a worker in μ as described in condition (a), or self-employed as
described by condition (b), or even a manager as described by condition (c).

The targets of prospective workers are defined analogously. Thus, for each z ∈ Z, let
Tw
z (μ) be the set of (z∗, c) ∈ Z × C such that c ∈ C(z∗, z) and there is δ ∈ X such that

(z, c) ∈ supp(δ) and

(a) supp(δ) \ {(z, c)} ⊆ Tm
z∗ (μ) and there is (z′, c′, δ′ ) ∈ Z × C × X such that (z′, δ′ ) ∈

supp(μ), (z∗, c′ ) ∈ supp(δ′ ) and (m, δ, μ) 	z∗ (w, 1(z′,c′ ), μ), or

(b) supp(δ) \ {(z, c)} ⊆ Tm
z∗ (μ) and there is δ′ ∈X∅ \X such that (z∗, δ′ ) ∈ supp(μ) and

(m, δ, μ) 	z∗ (s, δ′, μ), or

(c) there is δ′ ∈ X such that supp(δ) \ {(z, c)} ⊆ Tm
z∗ (μ) ∪ supp(δ′ ), (z∗, δ′ ) ∈ supp(μ)

and (m, δ, μ) 	z∗ (m, δ′, μ).

As above, anyone of type z can be a worker if she finds a manager, here of type z∗, that
hires her, possibly alongside other workers as described by δ ∈ X , and both agree on a
feasible contract c ∈C(z∗, z). This manager can be someone who was already a manager
in μ as described in condition (c), or self-employed as described by condition (b), or
even a worker as described by condition (a).

The stability set S(μ) of matching μ is the set of (z, δ) ∈ Z × X∅ such that, if δ ∈ X ,
then:

(i) there does not exist (a, δ′ ) ∈ � such that supp(δ′ ) ⊆ Ta
z (μ) ∪ supp(δ) if a = m,

supp(δ′ ) ⊆ Ta
z (μ) if a �=m, and (a, δ′, μ) 	z (m, δ, μ),

(ii) for each (z′, c) ∈ supp(δ), there does not exist (a, δ′ ) ∈ � such that supp(δ′ ) ⊆
Ta
z′(μ) and (a, δ′, μ) 	z′ (w, 1(z,c), μ),

and, if δ ∈X∅ \X , then

(iii) there does not exist (a, δ′ ) ∈ � such that supp(δ′ ) ⊆ Ta
z (μ) and (a, δ′, μ) 	z

(s, δ, μ).

The set S(μ) describes matches (z, δ) that do not suffer from instability. Instability could
come from those who are managers in μ if a manager of type z can find a match δ′ that
is better than his current one δ by employing workers of the types currently employed
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or those of his targets. In addition, he could instead be better off by changing his oc-
cupation and matching with some of his targets for the alternative occupation. Con-
dition (i) rules out instability arising from the current managers, whereas condition (ii)
does the same for current workers and (iii) for self-employed. A matching μ is stable if
supp(μ) ⊆ S(μ).

Theorem 1 provides a characterization of stable matchings that is simpler to use. Let
SM (μ) be defined as S(μ) but with “(a, δ′ ) ∈ �” being replaced with “(a, δ′ ) ∈ � such that
a = m” and, analogously, IR(μ) be defined as S(μ) but with “(a, δ′ ) ∈ �” being replaced
with “(a, δ′ ) ∈ � such that a = s.”

Theorem 1. A matching μ is stable if and only if supp(μ) ⊆ SM (μ) ∩ IR(μ).

4.3 Discussion

We conclude this section with some comments on our definition of stability. First, note
that it focuses on the support of the matching. In some cases, however, not all elements
of supp(δ) in a match (z, δ) are pairs of worker types and contracts that are matched
with a manager of type z. This may happen, e.g., if δ= ∑∞

k=1 2−k1(zk,ck ) for some count-
able subset D = {(zk, ck )}∞k=1 of Z × C. In this case, it would seem more appropriate to
require only that {z} × D ⊆ graph(C) instead of {z} × supp(δ) ⊆ graph(C) in the defini-
tion of a matching. When the correspondence C is continuous, this issue does not arise
since then the two requirements are equivalent. Similar considerations apply to the def-
inition of stability when preferences are also continuous. For instance, when a market E
also satisfies a richness condition, we have that a matching μ is stable if and only if S(μ)
has full μ-measure.13

A more important issue concerns what we require for a manager of type z, currently
matched with δ, and a potential workforce δ′ to qualify as a blocking coalition.14 In
the simpler case where preferences do not depend on the matching, we require that
(m, δ′ ) 	z (m, δ) and supp(δ′ ) ⊆ Tm

z (μ) ∪ supp(δ). This requirement is unusual in that
it is between weak and strong domination—but as we now argue, it is the weakest re-
quirement for blocking (and hence associated with the strongest stability notion) such
that stable matchings exist under general conditions.

We illustrate the above with the following example, where for simplicity contracts
are omitted in addition to preferences not depending on the matching. Let Z = {1, 2},
ν(1) = ν(2) = 1/2 and X = {n1z : n ≤ 1, z ∈ Z}. Let preferences be represented by
uz(m, n1z′ ) = 2nz′, uz(w, 1z′ ) = z′, and uz(s, 1∅ ) = 0. It is easy to see that μ such that
μ(2, 11 ) = 1/2 is a stable matching. Here, every individual gets payoff 2 (thus the match-
ing is individually rational and supp(μ) ⊆ IR(μ)), and since being a worker yields payoff
at most 2, Tm

1 (μ) = Tm
2 (μ) = ∅. Since supp(μ) = {(2, 11 )}, (w, 12 ) �1 (m, δ) for all δ ∈ X

such that supp(δ) ⊆ ∅ and (m, 11 ) �2 (m, δ) for all δ ∈ X such that supp(δ) ⊆ {1}, it fol-
lows that supp(μ) ⊆ SM (μ).

13See Section 5 for the notion of continuity and richness we use and the working paper version for a
proof of this claim.

14That is, what condition (i) of the definition of S(μ) for a= m rules out.
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The strongest notion of stability is the one that defines a blocking coalition via weak
domination, i.e., to require that every individual in the coalition is weakly better off with
at least one individual being strictly better off. Let ν�z

W (μ) be the measure of types who
would weakly prefer to work for type z than remain in their current match, given μ.
Under weak domination, our requirement that supp(δ′ ) ⊆ Tm

z (μ) ∪ supp(δ) would be
replaced with supp(δ′ ) ⊆ supp(ν�z

W (μ)).15 Note that Tm
z (μ) ∪ supp(δ) ⊆ supp(ν�z

W (μ))
since Tm

z (μ) is the set of types16 that would strictly prefer to work for type z given match-
ing μ and those in supp(δ) are currently working for type z, and hence indifferent; thus,
the resulting notion of stability is stronger.

However, this yields a notion of stability for which there are no stable matchings
in the current example. In the matching of the previous paragraph, we now have
supp(ν�2

W (μ)) = {1, 2}, supp(12 ) ⊆ supp(ν�2
W (μ)) and (m, 12 ) 	2 (m, 11 ). It is easy to see

that there are no other stable matchings; in any stable matching all type 2 individuals
must be managers and employ type 2 individuals but this is impossible.

We could alternatively use strong domination to define a blocking coalition, i.e.,
to require that every individual in the coalition is strictly better off. Then for type z,
currently a manager and matched with δ, to form a blocking coalition with poten-
tial workforce δ′, we would need (m, δ′ ) 	z (m, δ) and supp(δ′ ) ⊆ Tm

z (μ). Note that
Tm
z (μ) ⊆ Tm

z (μ) ∪ supp(δ) ⊆ supp(ν�z
W (μ)); hence, stability defined via weak domina-

tion is the strongest notion, followed by ours, followed by the one defined via strong
domination.

Our existence result, Theorem 2, shows generally that, when managers can only hire
a bounded number of workers as in the above example, a stable matching exists when
blocking coalitions are defined using our requirement supp(δ′ ) ⊆ Tm

z (μ) ∪ supp(δ) (and
hence when they are defined via strong domination). Our reason for adopting our stabil-
ity notion is that it is a refinement of the stability notion defined via strong domination
but its existence is nevertheless guaranteed under general conditions. We prefer our
notion to the one defined via strong domination because our notion implies existing
stability notions in special cases (see Section 6).

5. Existence of stable matchings

In this section, we establish the existence of stable matchings and discuss the conditions
needed to prove this result.

15To see this in the context of the current example, suppose that (z, δ) ∈ supp(μ) and there exists δ′
such that (m, δ′ ) 	z (m, δ) and supp(δ′ ) ⊆ supp(ν�z

W (μ)). Then there is a nonnull coalition S of individu-
als, described by a measure νS = νSM + νSW , and a matching μS for the coalition such that supp(νSM ) = {z},
μS(z, δ′ ) = νSM (z), μS(z, δ′ )δ′(z′ ) = νSW (z′ ) for each z′ ∈ Z, each manager in νSM is strictly better off and
each worker in νSW is weakly better off. Indeed, let νSM = ε1z and νSW (z′ ) = εδ′(z′ ) for each z′ ∈ Z. For each
z′ ∈ supp(νSW ) = supp(δ′ ), we have that z′ ∈ supp(ν�z

W (μ)); thus, for ε sufficiently small, νSW (z′ ) = εδ′(z′ ) ≤
ν�z
W (μ)(z′ ) for each z′ ∈ supp(νSW ) and so the coalition can be chosen such that each worker is weakly better

off. In addition, for ε sufficiently small, νSM (z) = ε ≤ μ(z, δ) and so the coalition can be chosen such that
each manager is strictly better off.

16Recall that we are omitting contracts for simplicity.
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One requirement in our existence result is that preferences are rational. We say that
a market is rational if 	z is asymmetric and negative transitive for each z ∈ Z.17 Note
that 	z is asymmetric and negative transitive if and only if �z is complete and transitive
(i.e., rational).18 Rational preferences can be represented by an utility function and this
plays an important role in our proof.

Another basic requirement in our existence results is some form of continuity. We
say that a market E is continuous if {(a, δ, μ, a′, δ′, μ′, z) ∈ (� × M(Z × X∅ ))2 × Z :
(a, δ, μ) 	z (a′, δ′, μ′ )} is open,19 C is continuous with nonempty and compact values,
and X is closed.

Stable matchings may fail to exist in the absence of a bound on the measure of work-
ers a manager can hire. This existence problem arises because each manager is negligi-
ble and, therefore, is effectively unconstrained by the size of the market. In Section A.6,
we provide an example showing that, without any boundedness assumptions on X , a
stable matching fails to exist.20 Thus, we focus on bounded markets, defined as follows:
We say that a market E is bounded if there exists R> 0 such that δ(Z ×C ) ≤ R for each
δ ∈X . More succinctly, E is bounded if X ⊆MR(Z ×C ) for some R> 0.

Note that boundedness is essentially a uniform satiation condition. Indeed, suppose
that there exists R > 0 such that, for each z ∈ Z and μ ∈ M(Z × X∅ ), there exists δ ∈ X

such that δ(Z ×C ) ≤ R and (m, δ, μ) �z (m, δ′, μ) for each δ′ ∈ X . In this case, as far as
existence of stable matchings is concerned, we may focus on δ ∈ MR(Z ×C ), and thus,
assume that the market is bounded.

We will also focus on rich markets. The reason is that our approach to the ex-
istence problem consists in first addressing discrete markets where Z, C, and X are
finite. In such markets, managers are matched with measures of workers that are
finitely supported and richness will then allow us to extend our existence results from
discrete to general markets. We say that a market E is rich if the correspondences
� : Z ×X ×M(Z ×X∅ ) ⇒X and �0 : Z ×M(Z ×X∅ ) ⇒X defined by setting, for each
(z, δ, μ) ∈ Z ×X ×M(Z ×X∅ ), �(z, δ, μ) = {δ′ ∈ X : supp(δ′ ) ⊆ supp(δ) ∪ Tm

z (μ)}, and
�0(z, μ) = {δ′ ∈X : supp(δ′ ) ⊆ Tm

z (μ)} are lower hemicontinuous.
The richness assumption is a mild requirement, which is satisfied in several special

cases, including those of Che, Kim, and Kojima (2019), and Greinecker and Kah (2021)
where, respectively, X = M1(Z × C ) and X = {1(z,c) : (z, c) ∈ Z × C} (the boundedness
assumption is clearly also satisfied in these two cases). This can be seen by noting that,
for a market to be rich, it is sufficient that the set of finitely supported measures on Z×C

is dense in X (this is (β) below) and that measures δ obtained via a small perturbation
to the support of a finitely supported measure in X remain in X (this is (α) below). More
formally, the following conditions are sufficient for richness:21

17A relation 	 on a set Y is asymmetric if, for each x, y ∈ Y , if x	 y then ¬(y 	 x). It is negative transitive
if, for each x, y, z ∈ Y , if ¬(x 	 y ) and ¬(y 	 z), then ¬(x 	 z).

18The relation �z is defined as usual by setting, for each (a, δ, μ), (a′, δ′, μ′ ) ∈ �×M(Z×X∅ ), (a, δ, μ) �z

(a′, δ′, μ′ ) if and only if (a, δ, μ) 	z (a′, δ′, μ′ ) or ¬((a′, δ′, μ′ ) 	z (a, δ, μ)).
19The set A of occupations is endowed with the discrete topology.
20A stable matching would fail to exist even under the weakest form of stability we discuss in Section 4,

which is defined via strong domination.
21See the working paper version for a proof of this claim.
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(α) For each δ ∈X such that δ = ∑J
j=1 aj1(zj ,cj ) for some J ∈N, aj ∈R++ and (zj , cj ) ∈

Z × C for each j = 1, 	 	 	 , J and each open neighborhood Vδ of δ in X , there exist
open neighborhoods V(zj ,cj ) of (zj , cj ) for each j = 1, 	 	 	 , J such that, whenever

(ẑj , ĉj ) ∈ V(zj ,cj ) for each j = 1, 	 	 	 , J, there exists â = (â1, 	 	 	 , âJ ) ∈ RJ+ such that∑J
j=1 âj1(ẑj , ĉj ) ∈ Vδ.

(β) For each δ ∈ X and open neighborhood Vδ of δ in X , there exists δ̂ ∈ Vδ such that
supp(δ̂) is a finite subset of supp(δ).

The following is our main existence result. As Greinecker and Kah’s (2021) frame-
work is a special case of ours, it has Greinecker and Kah’s (2021) Theorem 5 as a special
case.

Theorem 2. Every rational, continuous, bounded, and rich market has a stable match-
ing.

When there are no externalities, the rationality of E can be replaced with the re-
quirement that preferences are acyclic. This is because when Z, C, and X are finite,
acyclic preferences defined on � (as opposed to � × M(Z × X∅ )) can be extended to
linear orders, which are rational. We say that E is a market without externalities if, for
each z ∈ Z and (a, δ), (a′, δ′ ) ∈ �, if (a, δ, μ̂) 	z (a′, δ′, μ̂) for some μ̂ ∈ M(Z ×X∅ ), then
(a, δ, μ) 	z (a′, δ′, μ) for all μ ∈ M(Z × X∅ ). Moreover, we say that E is acyclic if 	z is
acyclic for each z ∈ Z.22 We then obtain the following corollary, which has Greinecker
and Kah’s (2021) Theorem 1 as a special case.

Corollary 1. Every acyclic, continuous, bounded, and rich market without externalities
has a stable matching.

6. Applications

6.1 Roommate market

Gale and Shapley (1962) considered a roommate problem in which an “even number
of boys wish to divide up into pairs of roommates.” This is an example of matching
with occupational choice since there are not two exogenously given sets of individuals
to match; it has also the particular feature that individuals are indifferent between the
different occupations.

In this section, we formulate a general version of the roommate problem with a con-
tinuum of individuals in distributional form, a roommate market, as a special case of
our framework. We show that, in contrast to the case of finitely many individuals of Gale
and Shapley (1962), a stable matching exists in roommate markets that are acyclic and
continuous when there are no externalities in preferences; when there are externalities,

22A relation 	 on a set Y is acyclic if there is no finite sequence y1, y2, 	 	 	 , yn in Y such that y1 	 y2 	 · · · 	
yn 	 y1.
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our existence result requires preferences to be rational and continuous. In particular,
roommate markets are always bounded and rich.

The importance of large markets for the existence of stable matchings in the room-
mate problem has been established by Chiappori, Galichon, and Salanié (2014), Pęski
(2017), Azevedo and Hatfield (2018), Wu (2021), and Jagadeesan and Vocke (2024). Both
Chiappori, Galichon, and Salanié (2014) and Pęski (2017) show the existence of approx-
imately stable matchings in roommate problems with a large finite number of individu-
als, respectively, with and without transferable utility, and Azevedo and Hatfield (2018)
establish the existence of (exact) stable matchings with a continuum of individuals and
with transferable utility. Our existence result for the roommate problem, like Wu’s (2021)
and Jagadeesan and Vocke’s (2024), dispenses with the requirement of transferable util-
ity and allows us to cover the continuum version of Gale and Shapley (1962); in contrast
to Jagadeesan and Vocke (2024) and Wu (2021), we allow preferences to depend on the
entire matching.

A roommate market can be defined as a market where matching is restricted to
be one-to-one and preferences and the contract correspondence satisfy certain re-
strictions that reflect the fact that the roles of worker and manager have no mean-
ing in the roommate setup. In particular, we define a roommate market as a market
E = (Z, ν, C, C, X , (	z )z∈Z ) satisfying the following restrictions:

(R1) X = {1(z,c) : (z, c) ∈Z ×C},

(R2) (m, 1(z′,c), μ) ∼z (w, 1(z′,c), μ) for each z, z′ ∈Z, c ∈ C and μ ∈ M(Z ×X∅ ),

(R3) C(z, z′ ) = C(z′, z) for each z, z′ ∈ Z, and

(R4) (m, 1(z′,c), μ) ∼z (m, 1(z′,c), μ ◦ f−1 ) for each z, z′ ∈ Z, c ∈ C and measurable f ∈
F ,

where F = {f : f (z, z′ ) = (z, z′ ) or f (z, z′ ) = (z′, z) for each z, z′ ∈ Z, and f (z, ∅) = (z, ∅)
for each z ∈ Z}. (R1) requires that matching in a roommate market is one-to-one. (R2)
requires that each type cares only about who he is matched with (and not the role he
occupies in the match). (R3) requires that switching the roles of two types in a match
does not affect the set of feasible contracts, and (R4) requires that matchings that differ
only according to who occupies which role in a match are treated the same way.

The particular setting of a roommate market allows for some simplification in its
description. In fact, we can identify 1(z,c) with (z, c) for each (z, c) ∈ Z∅ × C, and thus,
we can write (R1) as requiring X = Z ×C and X∅ = Z∅ ×C. In particular, a matching is
μ ∈ M(Z ×Z∅ ×C ).

(R2) implies that individual preferences can be defined on Z∅×C×M(Z×Z∅×C ).23

In light of this comment and the one in the previous paragraph, we can equivalently

23Indeed, given 	̂z defined on � × M(Z × Z∅ × C ), define 	z on Z∅ × C × M(Z × Z∅ × C ) by set-
ting, for each z′, z′′ ∈ Z, c′, c′′ ∈ C, and μ′, μ′′ ∈ M(Z × Z∅ × C ), (i) (z′, c′, μ′ ) 	z (z′′, c′′, μ′′ ) if and only
if (m, z′, c′, μ′ )	̂z(m, z′′, c′′, μ′′ ), (ii) (z′, c′, μ′ ) 	z (∅, c′′, μ′′ ) if and only if (m, z′, c′, μ′ )	̂z(s, ∅, c′′, μ′′ ), (iii)
(∅, c′, μ′ ) 	z (z′′, c′′, μ′′ ) if and only if (s, ∅, c′, μ′ )	̂z(m, z′′, c′′, μ′′ ), and (iv) (∅, c′, μ′ ) 	z (∅, c′′, μ′′ ) if and
only if (s, ∅, c′, μ′ )	̂z(s, ∅, c′′, μ′′ ). These four conditions, together with (R2), also define 	̂z on �× M(Z ×
Z∅ ×C ) from 	z on Z∅ ×C ×M(Z ×Z∅ ×C ).
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define a roommate market as E = (Z, ν, C, C, (	z )z∈Z ) such that (Z, ν, C, C) are as in
the general framework of Section 4, C satisfies C(z, z′ ) = C(z′, z) for each z, z′ ∈ Z, and
	z is defined on Z∅ × C × M(Z × Z∅ × C ) and satisfies (z′, c, μ) ∼z (z′, c, μ ◦ f−1 ) for
each z ∈Z, (z′, c) ∈Z∅ ×C, and measurable f ∈ F .

A matching, which we refer to as a roommate matching, is then a Borel measure μ ∈
M(Z×Z∅×C ) such that supp(μ) ⊆ graph(C) and νW +νS+νM = ν, where for each Borel
subset B of Z, νM (B) = μ(B×Z×C ), νW (B) = μ(Z×B×C ), and νS(B) = μ(B× {∅}×C ).

The targets become

Tm
z (μ) = Tw

z (μ) = {(
z∗, c

) ∈Z ×C : c ∈C
(
z, z∗) and ∃(

z′, c′) ∈Z ×C such that

supp(μ) ∩ {(
z∗, z′, c′),

(
z′, z∗, c′)} �= ∅ and (z, c, μ) 	z∗

(
z′, c′, μ

)}
and T s

z (μ) = {∅} × C(z, ∅). Let Tz(μ) = Tm
z (μ) ∪ T s

z (μ). Then S(μ) becomes the set of
(z, z′, c) ∈Z ×Z∅ ×C such that:

(i) there does not exist (ẑ, ĉ) ∈ Tz(μ) such that (ẑ, ĉ, μ) 	z (z′, c, μ), and

(ii) if z′ �= ∅, there does not exist (ẑ, ĉ) ∈ Tz′(μ) such that (ẑ, ĉ, μ) 	z′ (z, c, μ).

Since a roommate market is a particular case of the setting of Section 4, the existence
of a stable matching for each roommate market follows from Theorem 2.

Corollary 2. If E is a rational and continuous roommate market or an acyclic and con-
tinuous roommate market without externalities, then E has a stable roommate matching.

To illustrate our stability condition for the roommate market, first consider the ex-
ample from Gale and Shapley (1962) with four individuals α, β, γ, and δ. Preferences are
given by β 	α γ 	α δ 	α ∅, γ 	β α 	β δ 	β ∅, and α 	γ β 	γ δ 	γ ∅. As Gale and Shapley
(1962) argue, a stable matching does not exist regardless of δ’s preferences. In a finite
market, someone must be matched with δ or unmatched. But whoever is matched with
δ or unmatched would prefer to be matched with either of the other two individuals,
one of whom must also prefer to be matched with him.

Suppose instead that there is a continuum of individuals with four types of agents α,
β, γ, and δ, where each type of agent has the same preference as the single individual of
that type given above,24 and let the measure of each type of agent be ν(z) = 1 for z ∈ Z =
{α, β, γ, δ}. We will now argue that μ(α, β) = μ(β, γ) = μ(γ, α) = 1/2 and μ(δ, ∅) = 1 is
a stable matching in our model.25

First, note that μ({z} × Z ) + μ(Z × {z}) + μ({z} × {∅}) = 1 for each z ∈ Z, so μ is a
roommate matching. The targets are Tα(μ) = {γ, ∅}, Tβ(μ) = {α, ∅}, Tγ(μ) = {β, ∅}, and
Tδ(μ) = {∅}. Note that supp(μ) = {(α, β), (β, γ), (γ, α), (δ, ∅)}. To see that (α, β) ∈ S(μ),
note that type α likes β the most so there is no ẑ such that ẑ 	α β; thus condition (i) is

24With a continuum of individuals, it is possible for a given type to match with itself. To ensure that this
does not happen in a stable matching, we specify for this example that z′ 	z z for each (z, z′ ) ∈ Z ×Z∅ with
z′ �= z.

25Formally, a model without contracts can be modeled in our framework by letting C be singleton and
C(z, z′ ) = C for each z, z′ ∈ Z, but here we omit contracts altogether for simplicity.
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satisfied. Type β prefers γ to α but γ /∈ Tβ(μ); thus, condition (ii) is satisfied. Analogous
arguments establish that supp(μ) ⊆ S(μ), and hence μ is stable.

A stable matching exists in this example with a continuum of individuals because it
is possible for individuals of type α, β, and γ all to be matched with each other, leaving
individuals of type δ unmatched. More generally, our results imply that the large market
version of the roommate problem admits a stable solution with or without transfers and
even in the presence of externalities as long as the market is rational and continuous.

6.2 Rosen (1982)

In this section, we consider the setting in Rosen (1982, Section 3).
Individuals are characterized by their general ability, with Z ⊆ R denoting the set

of possible abilities and ν denoting its (nonzero, finite) distribution. Individuals can be
workers, managers, or self-employed (here more correctly interpreted as unemployed as
it will be clear from the individuals’ payoffs) and their productivity is determined both
by this choice and their ability, with q = q(z) denoting the productivity of someone of
ability z who chooses to be a worker and r = r(z) his productivity if he chooses to be a
manager; both r and q are nondecreasing functions of the ability z.

A firm consists of one manager and several workers of the same type, i.e., there is
many-to-one matching. Managers have one unit of time and need to supervise work-
ers: The output produced by a worker with productivity q in a firm with a manager with
productivity r is g(r )f (tr , q), where t is the time spent by the manager supervising the
worker, g(r ) represents the quality of management decisions of a manager of produc-
tivity r, g : R+ → R+ is increasing, and f : R2+ → R+ is continuously differentiable, ho-
mogeneous of degree 1, strictly increasing and strictly concave in each coordinate in the
interior of its domain26 and satisfies f (0, y ) = f (x, 0) = 0 for each x, y ∈ R+. For conve-
nience, we define θ : R+ → R+ as θ(x) = f (x, 1) for each x ∈ R+; note that θ is strictly
increasing and strictly concave. The output of a firm with a manager of ability r and a
measure n of workers with productivity q is

ng(r )f
(
r

n
, q

)
= g(r )f (r, nq) = g(r )nqθ

(
r

nq

)

since the time spent in each worker is t = 1/n.27 The manager’s rent is

g(r )f (r, nq) − cn= g(r )nqθ
(

r

nq

)
− cn,

where c is the wage paid by the manager to the workers.

26Meaning that for (x, y ) ∈ R2++, ∂f (x, y )/∂x > 0, ∂f (x, y )/∂y > 0, and x �→ ∂f (x, y )/∂x and y �→ ∂f (x, y )/∂y
are strictly decreasing over R++.

27This claim follows from the Jensen’s integral inequality as follows. Let μ ∈ M([0, 1]) be a probabil-
ity distribution of time spent on workers so that μ(B) is the fraction of workers who get supervision time
in B, for each Borel subset B of [0, 1], and 11/n ∈ M([0, 1]) be the probability distribution degenerate
on 1/n. Then n

∫
t dμ(t ) = 1 and

∫
g(r )nqθ(rt/q) dμ(t ) = nqg(r )

∫
θ(rt/q) dμ(t ) ≤ nqg(r )θ(r

∫
t dμ(t )/q) =

nqg(r )qθ(r/nq) = ∫
g(r )nqθ(rt/q) d11/n(t ).
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To represent the above setting in the general framework of Section 4, let in addi-
tion to Z and ν as above, the set of contracts be C = R+, interpreted as the set of pos-
sible wages, and the contract correspondence be C ≡ C. The set of feasible matches
for managers is X = {n1(z,c) : (z, c) ∈ Z ×C and n ∈ R+} since managers can hire several
workers all of the same type. Occupations are the same as in the general framework:
A= {w, s, m}. Finally, preferences are defined by specifying payoff functions as follows:

Uz(w, 1(z′,c) ) = c for each 1(z′,c) ∈ Xw,

Uz(s, 1(∅,c) ) = 0 for each 1(∅,c) ∈Xs , and

Uz(m, n1(z′,c) ) = g
(
r(z)

)
f
(
r(z), nq

(
z′)) − cn for each n1(z′,c) ∈Xm.

We will establish existence and obtain a characterization of stable matchings for the
setting of this section under the following simplifying assumptions. We let Z = [z, z̄]
with 0 ≤ z < z̄ < ∞ and assume that q(z) > 0, r(z) > 0 and g(r ) > 0 for each r > 0; thus,
g(r(z)) > 0. A market satisfying these assumptions as well as the additional specifica-
tions described above is a Rosen market and denoted by Erosen.

Concerning the existence of stable matchings, note that a Rosen market fails to sat-
isfy two assumptions of our existence result; namely, the contract correspondence fails
to be compact-valued and the market fails to be bounded. Nevertheless, by consider-
ing a sequence of truncated Rosen markets that satisfy our assumptions, we show that
stable matchings exist.

Corollary 3. Every Rosen market has a stable matching.

We next provide a characterization of stable matchings in Rosen markets that is
analogous to the formulation in Rosen (1982). The following concepts are needed. Let
r ∈ r(Z ), q ∈ q(Z ) and w> 0. If n solves maxn′∈R+[g(r )f (r, n′q) −wn′q], then

w = g(r )
∂f (r, nq)

∂y
= g(r )

∂f

(
r

nq
, 1

)
∂y

since ∂f/∂y is homogeneous of degree zero. Thus, there is a continuous function φ :
r(Z ) ×R++ → R++ such that nq =φ(r, w). The manager’s rent is then

g(r )
∂f

(
r

nq
, 1

)
∂x

r = g(r )
∂f

(
r

φ(r, w)
, 1

)
∂x

r.

The above functions and formulas are used to define, for each manager of type z,
the optimal number of workers of type z′ he wants to hire at wage wq(z′ ) and the corre-
sponding rent. Define n : Z2 ×R++ → R++ by setting, for each (z, z′, w) ∈Z2 ×R++,

n
(
z, z′, w

) = φ
(
r(z), w

)
q
(
z′) .
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Moreover, define R : Z ×R++ → R+ by setting, for each (z, w) ∈Z ×R++,

R(z, w) = g
(
r(z)

)∂f
(

r(z)

φ
(
r(z), w

) , 1
)

∂x
r(z).

Theorem 3. A matching μ of a Rosen market is stable if and only if there exists λ ∈
M(Z2 ) and w> 0 such that

λ(B ×Z ) +
∫
Z×B

n
(
z, z′, w

)
dλ

(
z, z′) = ν(B) for each measurable B ⊆Z, (1)

supp(λ) ⊆ {
z ∈Z : R(z, w) ≥wq(z)

} × {
z ∈ Z : wq(z) ≥R(z, w)

}
, and (2)

μ = λ ◦ h−1, (3)

where h : Z2 →Z ×X is defined by setting, for each (z, z′ ) ∈Z2,

h
(
z, z′) = (

z, n
(
z, z′, w

)
1(z′,wq(z′ ))

)
.

As Theorem 3 illustrates, our framework is tractable and our stability notion admits
a simple characterization in applied settings; they can therefore be used to clarify im-
portant economic questions and highlight what forces might explain them. We give one
such example when q(z) = r(z) = z and the technology takes the form g(z)zα(nz′ )1−α

with α = 1/2. If g ≡ 1, then each individual is indifferent between being a manager or
a worker and each individual of type z has an income (wage or rent) equal to z/2.28 In
contrast, if g(z) = z, then individual income is no longer necessarily linear in the type.
For example, when Z = {z1, 	 	 	 , z4}, it is possible to construct a stable matching where
individuals of type z1 and z2 are workers, individuals of type z3 and z4 are managers,
each person strictly prefers his occupation to the alternative one, and for some w > 0,
workers’ income is wz while managers’ income is z3/4w.29 In this latter example, any
change that leads to a decrease in w causes an increase in the income of those in the top
and a decrease in the income of those in the bottom of the income distribution.30 In ad-
dition, as a result of decrease in w, there is less inequality at the bottom (since the func-
tion z �→ wz describing the income of those in the bottom of the distribution becomes
flatter) and more at the top of the income distribution (since the function z �→ z3/4w
describing the income of those in the top of the distribution becomes steeper).

28Indeed, if α = 1/2 and g ≡ 1, then R(z, w) ≥wq(z) if and only if 1/2 ≥w. It then must be that w = 1/2 in
any stable matching since otherwise there would be no worker or no managers; thus, R(z, w) = wq(z) = z/2
for each z ∈ Z.

29If α = 1/2, Z = {z1, 	 	 	 , z4} and g is the identity, then pick w ∈ (2z2, 2z3 ), which implies that R(z, w) >
wq(z) for each z ∈ {z3, z4} and R(z, w) < wq(z) for each z ∈ {z1, z2}. Let ν be such that ν(z3 ) = ν(z4 ) =
1, ν(z2 ) = n(z4, z2, w), and ν(z3 ) = n(z3, z1, w). Then λ such that λ(z3, z1 ) = λ(z4, z2 ) = 1 yields a stable
matching. Payoffs are wz for each z ∈ {z1, z2} and R(z, w) = z3/4w for each z ∈ {z3, z4}.

30Such a decrease in w would occur, e.g., if ν(z1 ) and ν(z2 ) increase by a small amount.
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6.3 Further applications

In the working paper version, we consider additional applications of our framework,
which we summarize here, to illustrate its flexibility.

Specifically, we show how our framework can capture the settings of Garicano and
Rossi-Hansberg (2004) and Garicano and Rossi-Hansberg (2006), and how it can be
extended to accommodate Lucas’s (1978) model. Both Garicano and Rossi-Hansberg
(2004) and Garicano and Rossi-Hansberg (2006) require feasible matches for managers
that depend on the types of the workers hired. This dependence arises because the mea-
sure of workers that a manager can hire is determined by the time constraint of the man-
ager and is increasing in the quality of the workers. In Garicano and Rossi-Hansberg
(2004), all workers have the same quality but in Garicano and Rossi-Hansberg (2006) a
manager can hire workers of finitely many different qualities.

In Lucas (1978), there is a capital market in addition to a labor market with occu-
pational choice. The easiest approach to represent this setting is to consider, for each
rental price of capital, the resulting market with occupational choice with the amount of
capital hired by a firm being included in the contract between the manager and workers.
An equilibrium is then a rental price of capital and a matching such that the matching is
stable given the rental price and the capital market clears.

7. Concluding remarks

In this paper, we provided a formalization of large many-to-one matching markets with
occupational choice and a notion of a stable matching for them. This was done with
the goal of being able to include the settings of Lucas (1978), Rosen (1982), Garicano
and Rossi-Hansberg (2004), and Garicano and Rossi-Hansberg (2006) in our framework,
while at the same time extending the two-sided, one-to-one matching setting of Grei-
necker and Kah (2021).

The large matching markets we consider are, as in Greinecker and Kah (2021), for-
malized using a distributional approach. Thus, the set of individuals is not explicitly
included, rather only the distribution of individuals’ types is present in the description
of the market. This approach is tractable and this has been illustrated in Section 6.2 in
the context of Rosen’s (1982) setting where stable matchings are fully characterized.

The above tractability makes our setting potentially useful to address the implica-
tions of stability in large labor markets, in particular, for income inequality. We aim to
do so in future work.

The representation of Lucas’s (1978) setting in our framework required the introduc-
tion of capital, which proved to be a relatively easy extension. This suggests that other
important elements can be added to our framework.

Appendix

A.1 Preliminary lemmas

This section presents some lemmas on the support of a measure and on the existence of
convergent subsequences for which we could not find a reference. Lemma 1 shows that
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the support of the image μ◦h−1 of a measure μ under a homeomorphism h is the image
of the support of μ.

Lemma 1. Let Y and Y ′ be separable metric spaces, μ ∈ M(Y ), h : Y → Y ′ be a homeo-
morphism and ν = μ ◦ h−1. Then supp(ν) = h(supp(μ)) and supp(μ) = h−1(supp(ν)).

Proof. Note first that ν(supp(ν)) = ν(Y ′ ) = μ(h−1(Y ′ )) = μ(Y ) = μ(supp(μ)) and,
since supp(μ) = h−1(h(supp(μ))),

ν
(
supp(ν)

) ≥ ν
(
h
(
supp(μ)

)) = μ
(
h−1(h(

supp(μ)
)))

= μ
(
supp(μ)

) ≥ μ
(
h−1(supp(ν)

)) = ν
(
supp(ν)

)
.

Thus,

μ
(
supp(μ)

) = μ
(
h−1(supp(ν)

)) = ν
(
h
(
supp(μ)

)) = ν
(
supp(ν)

)
.

Since h−1(supp(ν)) is closed, supp(μ) ⊆ h−1(supp(ν)), and hence

h(supp(μ)) ⊆ h(h−1(supp(ν))) = supp(ν).

Letting f denote the inverse of h, we have that h(F ) = f−1(F ) is closed for each closed
subset F of Y . Thus, it follows that supp(ν) ⊆ h(supp(μ)).

It follows from supp(ν) = h(supp(μ)) that h−1(supp(ν)) = h−1(h(supp(μ))) =
supp(μ).

Lemma 2 shows that the support correspondence is lower hemicontinuous.

Lemma 2. If Y is a separable metric space, then the correspondence μ �→ supp(μ), from
M(Y ) to Y , is lower hemicontinuous.

Proof. We have that M(Y ) is a separable metrizable space by Varadarajan (1958, The-
orem 3.1). The conclusion then follows from (the proof of) Aliprantis and Border (2006,
Theorem 17.14, p. 563).

Lemma 3 provides conditions for the existence of a convergent subsequence.

Lemma 3. If Y is a separable metrizable space and {μk}∞k=1 is a tight sequence in M(Y )
such that, for some R> 0, μk(Y ) ≤ R for all k ∈ N, then {μk}∞k=1 has a convergent subse-
quence.

Proof. The proof reduces to the case of probability measures as follows: Suppose first
that there is a subsequence {μkj }∞j=1 such that μkj (Y ) → 0. Then this subsequence con-
verges to the zero measure. Thus, we may assume that there is ε > 0 such that μk(Y ) ≥ ε

for all but finitely many k. The sequence {μk(Y )}k is bounded, thus we may assume
that it converges; let θ = limk μk(Y ). Consider {νk}∞k=1 with νk(B) = μk(B)/μk(Y ) for
each Borel B. This is a tight family of probability measures, so it has a convergent sub-
sequence {νkj }∞j=1; let ν = limj νkj , μ = θν, and B has μ-null boundary, which happens if
and only if it has ν-null boundary since θ ≥ ε. Then μkj (B) = μkj (Y )μkj (B)/μkj (Y ) →
θν(B), and hence μkj → μ.
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A.2 Proof of Theorem 1

In a stable matching of Gale and Shapley’s (1962) marriage market, (i) each woman can-
not find a man (including the empty man) that she prefers to her husband and who
would prefer her to his wife, i.e., each woman cannot find a man in her targets that she
prefers to her husband, and (ii) each man cannot find a woman in his targets that he
prefers to his wife. It turns out that (ii) implies (i) and Theorem 1 is the analog of this in
our setting.

We now turn to the proof of Theorem 1. Note first that supp(μ) ⊆ S(μ) implies that
supp(μ) ⊆ SM (μ) ∩ IR(μ) since S(μ) ⊆ SM (μ) ∩ IR(μ).

Conversely, suppose that supp(μ) ⊆ SM (μ) ∩ IR(μ). Let (z, δ) ∈ supp(μ) and as-
sume, to reach a contradiction, that (z, δ) /∈ S(μ). Since (z, δ) ∈ supp(μ) ⊆ SM (μ) ∩
IR(μ), it follows that there is (z∗, c) ∈ Z × C and z̄ ∈ Z such that (z∗, c) ∈ Tw

z̄ (μ), z̄ = z

or (z̄, c̄) ∈ supp(δ) for some c̄ ∈ C, (1) (w, 1(z∗,c), μ) 	z̄ (m, δ, μ) if z̄ = z and δ ∈ X , (2)
(w, 1(z∗,c), μ) 	z̄ (w, 1(z, c̄), μ) if (z̄, c̄) ∈ supp(δ), and (3) (w, 1(z∗,c), μ) 	z̄ (s, δ, μ) if z̄ = z

and δ ∈X∅ \X . Since (z∗, c) ∈ Tw
z̄ (μ), it follows that c ∈C(z∗, z̄).

We now show that (z̄, c) ∈ Tm
z∗ (μ). Indeed, we have that c ∈ C(z∗, z̄) and (z, δ) ∈

supp(μ). Thus, in case (1), the conclusion follows by condition (c) in the definition
of Tm

z∗ (μ) since z̄ = z and (w, 1(z∗,c), μ) 	z (m, δ, μ); in case (2), the conclusion follows
by condition (a) in the definition of Tm

z∗ (μ) since (z̄, c̄) ∈ supp(δ) and (w, 1(z∗,c), μ) 	z̄

(w, 1(z, c̄), μ); and, in case (3), the conclusion follows by condition (b) in the definition of
Tm
z∗ (μ) since z̄ = z and (w, 1(z∗,c), μ) 	z (s, δ, μ).

Since (z∗, c) ∈ Tw
z̄ (μ), there is δ̃ ∈ X such that (z̄, c) ∈ supp(δ̃) and (a) or (b) or (c) in

the definition of Tw
z̄ (μ) holds. In either case, we will show that supp(μ) ⊆ SM (μ) fails,

which is a contradiction to supp(μ) ⊆ SM (μ) ∩ IR(μ).
Suppose that condition (a) in the definition of Tw

z̄ (μ) holds. Then, in addition,
supp(δ̃) \ {(z̄, c)} ⊆ Tm

z∗ (μ), and there is (z′, c′, δ′ ) ∈ Z × C × X such that (z′, δ′ ) ∈
supp(μ), (z∗, c′ ) ∈ supp(δ′ ), and (m, δ̃, μ) 	z∗ (w, 1(z′,c′ ), μ). Since (z̄, c) ∈ Tm

z∗ (μ), it fol-
lows that (z′, δ′ ) ∈ supp(μ) \ SM (μ) since (ii) of the definition of SM (μ) fails. Indeed,
(z′, δ′ ) ∈ supp(μ), (z∗, c′ ) ∈ supp(δ′ ), supp(δ̃) ⊆ Tm

z∗ (μ), and (m, δ̃, μ) 	z∗ (w, 1(z′,c′ ), μ).
Suppose next that condition (b) in the definition of Tw

z̄ (μ) holds. Then, in addi-
tion, supp(δ̃) \ {(z̄, c)} ⊆ Tm

z∗ (μ), and there is δ′ ∈X∅ \X such that (z∗, δ′ ) ∈ supp(μ) and
(m, δ̃, μ) 	z∗ (s, δ′, μ). Since (z̄, c) ∈ Tm

z∗ (μ), it follows that (z∗, δ′ ) ∈ supp(μ) \ SM (μ)
since (iii) of the definition of SM (μ) fails. Indeed, (z∗, δ′ ) ∈ supp(μ), supp(δ̃) ⊆ Tm

z∗ (μ)
and (m, δ̃, μ) 	z∗ (s, δ′, μ).

Finally, suppose that condition (c) in the definition of Tw
z̄ (μ) holds. Then, in ad-

dition, there is δ′ ∈ X∅ \ X such that (z∗, δ′ ) ∈ supp(μ), supp(δ̃) \ {(z̄, c)} ⊆ Tm
z∗ (μ) ∪

supp(δ′ ), and (m, δ̃, μ) 	z∗ (m, δ′, μ). Since (z̄, c) ∈ Tm
z∗ (μ), it follows that (z∗, δ′ ) ∈

supp(μ) \ SM (μ) since (i) of the definition of SM (μ) fails. Indeed, (z∗, δ′ ) ∈ supp(μ),
supp(δ̃) ⊆ Tm

z∗ (μ) ∪ supp(δ′ ), and (m, δ̃, μ) 	z∗ (m, δ′, μ).

A.3 Proof of Theorem 2

The first step in the proof of our existence result consists in the following lemma, which
considers the special case where Z, X , and C are finite. Our approach in this special
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case builds on ideas from Section S.10 in Che, Kim, and Kojima (2019) but requires many
changes since there are externalities in preferences, workers’ preferences are not strict,
and there is occupational choice. There are three main changes, which we now briefly
describe.31

Our approach in the special case where Z, X , and C are finite is similar to the one in
Che, Kim, and Kojima (2019) to the extent that we use a fixed-point argument. In their
paper, stable matchings are fixed points of a correspondence whose domain consists
of pairs of matchings and measures of available workers. In our case, (i) we consider a
sequence of correspondences, each of which has a fixed point, but only limit points of
the sequence of fixed points will yield a stable matching, (ii) the domain of each cor-
respondence consists of pairs of allocations of types to occupations and matches and
measures of available workers and contracts, and (iii) the measure of available work-
ers and contracts depends on the allocations of types to occupations and matches in a
discontinuous way, and thus, needs to be suitably approximated.

Lemma 4. If E is a rational and continuous market such that Z, X , and C are finite, then
E has a stable matching.

Proof. Note first that Z∅, X∅, and � are also finite. Define τ̄ ∈ RZ×� by setting, for
each (z, a, δ) ∈Z ×�,

τ̄(z, a, δ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if {z} × supp(δ) � graph(C) and a �= w,

0 if supp(δZ ) × {z} × supp(δC ) � graph(C) and a= w,

ν(z) otherwise.

Let κ̄ ∈RZ×Z×C be such that κ̄(z, z′, c) = ν(z′ ) if (z, z′, c) ∈ graph(C), and κ̄(z, z′, c) =
0 otherwise.

Define

T =
{
τ ∈RZ×�+ : τ(z, a, δ) ≤ τ̄(z, a, δ) and

∑
(a,δ)∈�

τ(z, a, δ) ≤ ν(z)

for each (z, a, δ) ∈Z ×�

}
and

K = {
κ ∈RZ×Z×C+ : κ

(
z, z′, c

) ≤ κ̄
(
z, z′, c

)
for each

(
z, z′, c

) ∈ Z ×Z ×C
}

.

Note that T and K are nonempty, convex, and compact subsets of Euclidean spaces.
Each τ ∈ T is an allocation of types to occupations and matches and, for each κ ∈ K, we
interpret κ(z, z′, c) as the measure of workers of type z′ and contract c that are available
to z. Below, we will consider allocations τ that maximize preferences subject to the con-
straints that each manager type does not hire more workers than available to him (given
by κ) and that the measure of each worker type allocated to a manager does not exceed
the manager’s demand (given by some reference μ).

31See the working paper version for a more detailed outline of the proof of Theorem 2.
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Let u : Z ×�×M(Z ×X∅ ) →R be a continuous utility function that represent pref-
erences. We normalize so that u ≥ 1. For each n ∈ N, let un = un. Since x �→ xn is strictly
increasing on [1, ∞), un and u represent the same preferences.

Define d : T → RZ×X∅+ by setting, for each τ ∈ T and (z, δ) ∈Z ×X∅,

d(τ)(z, δ) =
{
τ(z, m, δ) if δ ∈X ,

τ(z, s, δ) if δ ∈X∅ \X .

The function d is continuous. We abuse notation and, for each (z, a, δ, τ) ∈ Z × � × T ,
write u(z, a, δ, τ) for u(z, a, δ, d(τ)) and analogously for un. We also write (a, δ, τ) 	z

(a′, δ′, τ) for (a, δ, d(τ)) 	z (a′, δ′, d(τ)), where (a′, δ′ ) ∈ �.
For each n ∈N, let Dn : T ×K⇒ T be defined by setting, for each (μ, κ) ∈ T ×K,

Dn(μ, κ) =
{
τ ∈ T : τ ∈ arg max

τ′∈T
∑

z∈Z,(a,δ)∈�
un(z, a, δ, μ)τ′(z, a, δ)

subject to
∑

(a,δ)∈�
τ′(z, a, δ) = ν(z) for all z ∈Z,

∑
δ∈X

τ′(z, m, δ)δ
(
z′, c

) ≤ κ
(
z, z′, c

)
for all

(
z, z′, c

) ∈Z ×Z ×C, and

τ′(z, w, 1(z′,c) ) ≤
∑
δ∈X

μ
(
z′, m, δ

)
δ(z, c) for all

(
z, z′, c

) ∈ Z ×Z ×C

}
.

Claim 1. Dn is upper hemicontinuous with nonempty, compact, and convex values.

Proof. It follows by the linearity of the objective function together with the convexity
of the constraint set that Dn has convex values. It follows from Berge’s maximum theo-
rem that Dn is upper hemicontinuous with nonempty and compact values. To see this,
first note that the objective function is continuous and that the constraint set, denoted
by �(μ, κ), is contained in the compact set T . It is clear that � is upper hemicontinu-
ous with compact values. To see that � has nonempty values, define τ̃ ∈ T as follows.
For each z ∈ Z, let cz ∈ C(z, ∅), τ̃(z, s, 1(∅,cz ) ) = ν(z) and τ̃(z, a, δ) = 0 for each (a, δ) ∈
� \ {(s, 1(∅,cz ) )}. We then have that τ̃ ∈�(μ, κ) for each (μ, κ) ∈ T ×K. Finally, to see that
� is lower hemicontinuous, let (μ, κ) ∈ T ×K, O ⊆ T be an open set such that �(μ, κ) ∩
O �= ∅, and τ ∈ �(μ, κ) ∩ O. Let τ̂ = λτ + (1 − λ)τ̃ ∈ O for some λ ∈ (0, 1). Note that
for each z ∈ Z,

∑
(a,δ)∈� τ̂(z, a, δ) = ν(z),

∑
δ∈X τ̂(z, m, δ)δ(z′, c) < κ(z, z′, c) for each

(z, z′, c) ∈Z×Z×C such that κ(z, z′, c) > 0 and τ̂(z, w, 1(z′,c) ) <
∑

δ∈X μ(z′, m, δ)δ(z, c)
for each (z, z′, c) ∈ Z × Z × C such that

∑
δ∈X μ(z′, m, δ)δ(z, c) > 0. Thus, there is an

open neighborhood V of (μ, κ) such that τ̂ ∈�(μ′, κ′ ) ∩O for each (μ′, κ′ ) ∈ V .

Claim 2. If (μ, κ) ∈ T ×K, τ ∈ Dn(μ, κ), and (z, a, δ′ ) ∈Z ×� is such that τ(z, a, δ′ ) > 0,
then τ(z, w, 1(ẑ, ĉ) ) = ∑

δ∈X μ(ẑ, m, δ)δ(z, ĉ) for each (ẑ, ĉ) ∈ Z × C such that (w, 1(ẑ, ĉ),
μ) 	z (a, δ′, μ).
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Proof. If not, then τ(z, w, 1(ẑ, ĉ) ) <
∑

δ∈X μ(ẑ, m, δ)δ(z, ĉ) for some (ẑ, ĉ) ∈ Z × C

such that (w, 1(ẑ, ĉ), μ) 	z (w, 1(z′,c′ ), μ). Then
∑

δ∈X μ(ẑ, m, δ)δ(z, ĉ) > 0, and hence,
(ẑ, z, ĉ) ∈ graph(C). Thus, increase τ(z, w, 1(ẑ, ĉ) ) and decrease τ(z, a, δ′ ) by the same
amount ε ∈ (0, τ(z, a, δ′ )) such that τ(z, w, 1(ẑ, ĉ) ) + ε <

∑
δ∈X μ(ẑ, m, δ)δ(z, ĉ). This in-

creases the objective function in Dn(μ, κ) while satisfying the constraints, thus contra-
dicting τ ∈Dn(μ, κ).

For each μ ∈ T and (z, z′, c) ∈Z ×Z ×C, let

W
(
z, z′, c, μ

) = {
(a, δ) ∈ � : u

(
z′, w, 1(z,c), μ

)
> u

(
z′, a, δ, μ

)}
.

Let g : T → K be defined by setting, for each μ ∈ T and (z, z′, c) ∈Z ×Z ×C,

g(μ)
(
z, z′, c

) =

⎧⎪⎨
⎪⎩

∑
(a,δ)∈W (z,z′,c,μ)

μ
(
z′, a, δ

)
if

(
z, z′, c

) ∈ graph(C),

0 otherwise.

To see that g(μ) ∈ K, first note that if (z, z′, c) /∈ graph(C), g(μ)(z, z′, c) = 0. If (z, z′, c) ∈
graph(C), then since μ ∈ T , 0 ≤ g(μ)(z, z′, c) ≤ ν(z′ ) = κ̄(z, z′, c).

The function g may fail to be continuous, and thus, we will consider a continuous
approximation to it. For each n ∈N and (z, z′, c) ∈ Z×Z×C, let αn,(z,z′,c) : �×T → [0, 1]
be defined by setting, for each (a, δ, μ) ∈ �× T ,

αn,(z,z′,c)(a, δ, μ) = nmax
{

0, min
{
u
(
z′, w, 1(z,c), μ

) − u
(
z′, a, δ, μ

)
,

1
n

}}
.

Let gn : T → K be defined by setting, for each μ ∈ T and (z, z′, c) ∈Z ×Z ×C,

gn(μ)
(
z, z′, c

) =

⎧⎪⎨
⎪⎩

∑
(a,δ)∈�

αn,(z,z′,c)(a, δ, μ)μ
(
z′, a, δ

)
if

(
z, z′, c

) ∈ graph(C),

0 otherwise.

We have that gn is continuous since αn,(z,z′,c) is continuous for each (z, z′, c) ∈Z×Z×C.
Note that

αn,(z,z′,c)(a, δ, μ) ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{0} if u
(
z′, a, δ, μ

) ≥ u
(
z′, w, 1(z,c), μ

)
,

(0, 1) if u
(
z′, w, 1(z,c), μ

) − 1
n
< u

(
z′, a, δ, μ

)
< u

(
z′, w, 1(z,c), μ

)
,

{1} if u
(
z′, a, δ, μ

) ≤ u
(
z′, w, 1(z,c), μ

) − 1
n

.

Hence, it follows that

gn(μ)
(
z, z′, c

) ≤ g(μ)
(
z, z′, c

)
(4)

for each μ ∈ T and (z, z′, c) ∈Z ×Z ×C since

g(μ)
(
z, z′, c

) =

⎧⎪⎨
⎪⎩

∑
(a,δ)∈�

α(z,z′,c)(a, δ, μ)μ
(
z′, a, δ

)
if (m, w, c) ∈ graph(C),

0 otherwise
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with

α(z,z′,c)(a, δ, μ) =
{

1 if u
(
z′, a, δ, μ

)
< u

(
z′, w, 1(z,c), μ

)
,

0 otherwise.

To see that gn(μ) ∈ K, note that 0 ≤ gn(μ) ≤ g(μ) ≤ κ̄.
Let fn : T → K be defined by setting, for each μ ∈ T and (z, z′, c) ∈Z ×Z ×C,

fn(μ)
(
z, z′, c

) = μ
(
z′, w, 1(z,c)

) + 1
n
gn(μ)

(
z, z′, c

)
.

To see that fn(μ) ∈ K, note that if (z, z′, c) /∈ graph(C),

μ
(
z′, w, 1(z,c)

) = gn(μ)
(
z, z′, c

) = 0,

and hence fn(μ)(z, z′, c) = 0. If (z, z′, c) ∈ graph(C), then

0 ≤ μ
(
z′, w, 1(z,c)

) + 1
n
gn(μ)

(
z, z′, c

)
≤ μ

(
z′, w, 1(z,c)

) + g(μ)
(
z, z′, c

) ≤ ν
(
z′) = κ̄

(
z, z′, c

)
.

We have that fn is continuous since so is gn.
Let �n : T ×K⇒ T ×K be defined by setting, for each (μ, κ) ∈ T ×K,

�n(μ, κ) =Dn(μ, κ) × {
fn(μ)

}
.

It follows from the continuity of fn and from Claim 1 that �n is upper hemicontinuous
with nonempty, compact, and convex values. Hence, by Kakutani fixed-point theorem,
let (μn, κn ) be a fixed point of �n. Thus, μn ∈Dn(μn, κn ) and κn = fn(μn ).

Since T × K is compact, taking a subsequence if necessary, we may assume that
{(μn, κn )}∞n=1 converges; let (μ, κ) = limn→∞(μn, κn ). For each n, we have κn = fn(μn ),
and so

κ
(
z, z′, c

) = lim
n→∞ fn(μn )

(
z, z′, c

) = μ
(
z′, w, 1(z,c)

)
(5)

for each (z, z′, c) ∈ Z ×Z ×C. Let

μ∗ = d(μ)

and μ∗
n = d(μn ) for each n ∈N.

For each z ∈Z and n ∈N, it follows from μn ∈Dn(μn, κn ) that

∑
(z′,c)∈Z×C

μn(z, w, 1(z′,c) ) ≤
∑

(z′,c)∈Z×C

∑
δ∈X

μn
(
z′, m, δ

)
δ(z, c) ≤

∑
(z′,c)∈Z×C

κn
(
z′, z, c

)
.

By (5), limn
∑

(z′,c)∈Z×C κn(z′, z, c) = ∑
(z′,c)∈Z×C μ(z, w, 1(z′,c) ), and hence,

∑
(z′,c)∈Z×C

μ(z, w, 1(z′,c) ) =
∑

(z′,c)∈Z×C

∑
δ∈X

μ
(
z′, m, δ

)
δ(z, c) for each z ∈Z.
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Thus, for each z ∈Z,∑
(z′,δ)∈Z×X

μ∗(z′, δ
)
δZ(z) =

∑
(z′,c)∈Z×C

∑
δ∈X

μ
(
z′, m, δ

)
δ(z, c)

=
∑

(z′,c)∈Z×C

μ(z, w, 1(z′,c) ). (6)

Claim 3. μ∗ is a matching.

Proof. Condition (i) follows because if (z, δ) ∈ Z × X∅ is such that μ∗(z, δ) > 0, then
μ(z, a, δ) > 0 for some a �=w and {z} × supp(δ) ⊆ graph(C) since μ ∈ T .

Condition (ii) holds since, for each z ∈ Z, μ = limn μn, and μn ∈ Dn(μn, κn ) for each
n ∈N imply that

ν(z) =
∑
δ∈X

μ(z, m, δ) +
∑

δ∈X∅\X
μ(z, s, δ) +

∑
(z′,c)∈Z×C

μ(z, w, 1(z′,c) )

=
∑
δ∈X

μ∗(z, δ) +
∑

δ∈X∅\X
μ∗(z, δ) +

∑
(z′,δ)∈Z×X

μ∗(z′, δ
)
δZ(z),

the last equality following by (6).

Claim 4. If (z, z′, c, δ) ∈ Z × Z × C × X is such that (z, δ) ∈ supp(μ∗ ) and (z′, c) ∈
supp(δ), then μ(z′, w, 1(z,c) ) > 0.

Proof. We have that
∑

δ′∈X μ(z, m, δ′ )δ′(z′, c) ≥ μ(z, m, δ)δ(z′, c) > 0, and thus, κ(z, z′,
c) > 0 since μn ∈ Dn(μn, κn ) for each n ∈ N. Hence, (5) implies that μ(z′, w, 1(z,c) ) >
0.

Claim 5. supp(μ∗ ) ⊆ IR(μ∗ ).

Proof. Suppose not, then there exists (z∗, δ∗ ) ∈ supp(μ∗ ) \ IR(μ∗ ). We claim that there
exists z ∈Z, (a, δ) ∈ � and c′ ∈ C(z, ∅) such that:

(a) μ(z, a, δ) > 0 and

(b) (s, 1(∅,c′ ), μ∗ ) 	z (a, δ, μ∗ ).

Indeed, in cases (i) and (iii) of the definition of IR(μ∗ ), let (z, δ) = (z∗, δ∗ ) in both cases
and a =m in case (i) and a= s in case (iii). In case (ii) of the definition of IR(μ∗ ), we have
that δ∗ ∈ X and there exist (z′, c) ∈ supp(δ∗ ) and c′ ∈ C(z′, ∅) such that (s, 1(∅,c′ ), μ∗ ) 	z′

(w, 1(z∗,c), μ∗ ). Claim 4 implies that μ(z′, w, 1(z∗,c) ) > 0; hence, let z = z′, a = w, and
δ= 1(z∗,c).

We then have that μn(z, a, δ) > 0 and (s, 1(∅,c′ ), μ∗
n ) 	z (a, δ, μ∗

n ) for n sufficiently
large. Then decrease μn(z, a, δ) and increase μn(z, s, 1(∅,c′ ) ) by the same amount ε ∈
(0, μn(z, a, δ)) to increase the objective function in Dn(μn, κn ) while satisfying the con-
straints. But this is a contradiction to μn ∈Dn(μn, κn ).
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Claim 6. If (z, z′, c) ∈ Z × Z × C is such that (z′, c) ∈ Tm
z (μ∗ ), then there is Nz,z′,c ∈ N

such that
∑

δ∈X μn(z, m, δ)δ(z′, c) < κn(z, z′, c) for each n ≥Nz,z′,c .

Proof. Let (z′, c) ∈ Tm
z (μ∗ ). Then c ∈ C(z, z′ ). In case (a) of the definition of Tm

z (μ∗ ),
there exists (z̃, c̃, δ̃) ∈ Z × C × X such that (z̃, δ̃) ∈ supp(μ∗ ), (z′, c̃) ∈ supp(δ̃), and
(w, 1(z,c), μ∗ ) 	z′ (w, 1(z̃, c̃), μ∗ ). Hence, μ(z′, w, 1(z̃, c̃) ) > 0 by Claim 4.

In cases (b) and (c) of the definition of Tm
z (μ∗ ), there exists (a, δ′ ) ∈ � such that a �=w,

(z′, δ′ ) ∈ supp(μ∗ ), and (w, 1(z,c), μ∗ ) 	z′ (a, δ′, μ∗ ). Thus, letting a= w and δ′ = 1(z̃, c̃) in
case (a), it follows that, in all cases, there exists (a, δ′ ) ∈ � such that (z′, a, δ′ ) ∈ supp(μ)
and (w, 1(z,c), μ∗ ) 	z′ (a, δ′, μ∗ ).

Let Nz,z′,c ∈ N be such that μn(z′, a, δ′ ) > 0 and (w, 1(z,c), μ∗
n ) 	z′ (a, δ′, μ∗

n ) for each
n ≥Nz,z′,c . Thus, for each n ≥Nz,z′,c ,

μn
(
z′, w, 1(z,c)

) =
∑
δ∈X

μn(z, m, δ)δ
(
z′, c

)

by Claim 2, and since αn,(z,z′,c)(a, δ′, μn ) > 0,

κn
(
z, z′, c

) = μn
(
z′, w, 1(z,c)

) + 1
n
gn(μn )

(
z, z′, c

)
≥ μn

(
z′, w, 1(z,c)

) + 1
n
αn,(z,z′,c)

(
a, δ′, μn

)
μn

(
z′, a, δ′)

>μn
(
z′, w, 1(z,c)

) =
∑
δ∈X

μn(z, m, δ)δ
(
z′, c

)
.

Claim 7. supp(μ∗ ) ⊆ SM (μ∗ ).

Proof. Suppose not, then there exists (z∗, δ∗ ) ∈ supp(μ∗ )\SM (μ∗ ). We claim that there
exists z ∈Z, (a, δ) ∈ � and δ′ ∈X such that:

(a) μ(z, a, δ) > 0,

(b) supp(δ′ ) ⊆ Tm
z (μ∗ ) ∪ supp(δ) if a =m and supp(δ′ ) ⊆ Tm

z (μ∗ ) if a �= m, and

(c) (m, δ′, μ∗ ) 	z (a, δ, μ∗ ).

Indeed, in cases (i) and (iii) of the definition of SM (μ∗ ), let (z, δ) = (z∗, δ∗ ) in both cases
and a =m in case (i) and a = s in case (iii). In case (ii) of the definition of SM (μ∗ ), we have
that δ∗ ∈X and there exist (z′, c) ∈ supp(δ∗ ) and δ′ ∈X such that supp(δ′ ) ⊆ Tm

z′ (μ∗ ) and
(m, δ′, μ∗ ) 	z′ (w, 1(z∗,c), μ∗ ). Claim 4 implies that μ(z′, w, 1(z∗,c) ) > 0; hence, let z = z′,
a =w and δ = 1(z∗,c).

Note that {z}×supp(δ′ ) ⊆ graph(C) since {z}×Tm
z (μ∗ ) ⊆ graph(C), and when a= m,

(z, δ) ∈ supp(μ∗ ), and thus, {z} × supp(δ) ⊆ graph(C).
Let θ = 1 if supp(δ) ∩ supp(δ′ ) = ∅; otherwise, let (z̄, c̄) ∈ supp(δ) ∩ supp(δ′ ) be such

that δ(z̄, c̄)/δ′(z̄, c̄) ≤ δ(z, c)/δ′(z, c) for each (z, c) ∈ supp(δ) ∩ supp(δ′ ) and define

θ = min
{

1,
δ(z̄, c̄)
δ′(z̄, c̄)

}
.

Let k ∈N be such that kθ > 1.
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There is N ∈N such that, for each n ≥N :

(i) supp(μ) ⊆ supp(μn ),

(ii)
∑

δ̂∈X μn(z, m, δ̂)δ̂(z′, c) < κn(z, z′, c) for each (z′, c) ∈ Tm
z (μ∗ ), and

(iii) un(z, m, δ′, μn ) ≥ kun(z, a, δ, μn ).

Indeed, (i) is clear since Z and � are finite. As for (ii), take N ≥ max(z′,c)∈Z×C Nz,z′,c
where, for each (z′, c) ∈ Z × C, Nz,z′,c is given by Claim 6. Finally, for (iii), we have that
u(z, m, δ′, μ)/u(z, a, δ, μ) > 1 and u(z, m, δ′, μn )/u(z, a, δ, μn ) ≥ β for some β> 1 for all
n sufficiently large. Hence,

un
(
z, m, δ′, μn

)
un(z, a, δ, μn )

=
(
u
(
z, m, δ′, μn

)
u(z, a, δ, μn )

)n

≥ βn > k

for all n sufficiently large.
Fix n ≥N and let c∗ ∈C(z, ∅). For each ε > 0, define πε by setting, for each (ẑ, â, δ̂) ∈

Z ×�,

πε(ẑ, â, δ̂) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μn(z, a, δ) − ε if ẑ = z, â = a and δ̂ = δ,

μn
(
z, m, δ′) + θε if ẑ = z, â =m and δ̂= δ′,

μn(z, s, 1(∅,c∗ ) ) + (1 − θ)ε if ẑ = z, â = s and δ̂= 1(∅,c∗ ),

μn(ẑ, â, δ̂) otherwise.

By (i), μn(z, a, δ) > 0. We have that, for each ε ∈ (0, μn(z, a, δ)), πε(ẑ, â, δ̂) ≥ 0 for each
(ẑ, â, δ̂) ∈ Z × �, πε(ẑ, w, 1(z′,c) ) ≤ μn(ẑ, w, 1(z′,c) ) ≤ ∑

δ̂∈X μn(z′, m, δ̂)δ̂(ẑ, c) for each
(ẑ, z′, c) ∈Z ×Z ×C, and∑

(â, δ̂)∈�
πε(ẑ, â, δ̂) =

∑
(â, δ̂)∈�

μn(ẑ, â, δ̂) = ν(ẑ)

for each ẑ ∈ Z. In particular, πε ∈ T .
We also have that, for some ε ∈ (0, μn(z, a, δ)),∑

δ̂∈X
πε(ẑ, m, δ̂)δ̂

(
z′, c

) ≤ κn
(
ẑ, z′, c

)
for all

(
ẑ, z′, c

) ∈Z ×Z ×C. (7)

First, note that it is enough to consider ẑ = z and that, for each (z′, c) ∈ Z ×C,∑
δ̂∈X

πε(z, m, δ̂)δ̂
(
z′, c

) =
∑
δ̂∈X

μn(z, m, δ̂)δ̂
(
z′, c

) + ε
(−δ

(
z′, c

)
1m(a) + θδ′(z′, c

))
.

Thus, (7) holds if (z′, c) /∈ supp(δ′ ).
If a =m and (z′, c) ∈ supp(δ′ ) ∩ supp(δ), the definition of (z̄, c̄) implies that∑

δ̂∈X
πε(z, m, δ̂)δ̂

(
z′, c

) ≤
∑
δ̂∈X

μn(z, m, δ̂)δ̂
(
z′, c

) ≤ κn
(
z, z′, c

)
.
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If a �= m and (z′, c) ∈ supp(δ′ ) or if a = m and (z′, c) ∈ supp(δ′ ) \ supp(δ), then
(z′, c) ∈ Tm

z (μ∗ ), and thus,
∑

δ̂∈X μn(z, m, δ̂)δ̂(z′, c) < κn(z, z′, c) by (ii). Hence, there
is ε(z′, c) > 0 such that∑

δ̂∈X
πε(z, m, δ̂)δ̂

(
z′, c

) =
∑
δ̂∈X

μn(z, m, δ̂)δ̂
(
z′, c

) + εθδ′(z′, c
)
< κn

(
z, z′, c

)

for each 0 < ε < ε(z′, c). Thus, letting B = supp(δ′ ) if a �= m, B = supp(δ′ ) \ supp(δ) if
a = m and 0 < ε< min(z′,c)∈B ε(z′, c), we have that

∑
δ̂∈X πε(ẑ, m, δ̂)δ̂(z′, c) ≤ κn(ẑ, z′, c)

for each (ẑ, z′, c) ∈ Z ×Z ×C.
Finally, note that∑

ẑ∈Z,(â, δ̂)∈�
un(ẑ, â, δ̂, μn )πε(ẑ, â, δ̂) >

∑
ẑ∈Z,(â, δ̂)∈�

un(ẑ, â, δ̂, μn )μn(ẑ, â, δ̂)

since un(z, m, δ′, μn ) ≥ kun(z, a, δ, μn ) by (iii) since n ≥ N , un(z, s, 1(∅,c∗ ), μn ) ≥ 1, and
hence ∑

ẑ∈Z,(δ̂, â)∈�
un(ẑ, â, δ̂, μn )

(
πε(ẑ, â, δ̂) −μn(ẑ, â, δ̂)

) ≥ un(z, a, δ, μn )ε(−1 + kθ) > 0.

In conclusion, μn /∈ Dn(μn, κn ), a contradiction.

It follows from Claims 3, 5, and 7 that μ∗ is a stable matching.
In the remainder of the proof, we extend Lemma 4 using three limit arguments. The

first one considers the case where X is MR(Z ×C ) for some R> 0 to dispense with the
finiteness of C. The second one replaces X = MR(Z × C ) with a general X satisfying
our assumptions in the case where Z is finite.

The finiteness of Z is important in the second limit result to represent each prefer-
ence relation 	z with a continuous and bounded (e.g., by 1 below and 2 above) utility
function u : Z×�×M(Z×X∅ ) → [1, 2]. Such function can then be extended by replac-
ing X with MR(Z × C ) in the definition of its domain and is then modified by adding
a utility penalty for managers who choose a workforce δ at a distance greater than 1/k
from X . This then defines a market to which the conclusion of the previous limit argu-
ment applies.

The final limit argument then dispenses with the finiteness of Z. Our first and third
limit results have analogs in Greinecker and Kah (2021) but are more involved due to the
presence of many-to-one matching and occupational choice. There is no analog to our
second limit result in their work.

The following lemma unifies the common elements of the above three limit results.

Lemma 5. Let {(Ek, μk )}∞k=1 be such that Ek = (Zk, νk, Ck, Ck, Xk, (	z,k )z∈Zk ) is a mar-
ket and μk is a stable matching for Ek for each k ∈ N. Let E = (Z, ν, C, C, X , (	z )z∈Z ) be
a rational, continuous, bounded, and rich market such that νk → ν, and for each k ∈ N,
Zk ⊆ Z, supp(νk ) ⊆ supp(ν), Ck ⊆ C, Ck(z, z′ ) ⊆ C(z, z′ ) for each (z, z′ ) ∈ Zk ×Z∅,k and
Xk ⊆ X . Then:

(i) {μk}∞k=1 has a convergent subsequence in M(Z ×X∅ ).
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Suppose further that {μk}∞k=1 converges and let μ= limk μk. Then:

(ii) μ is a matching for E.

Suppose further that 	z,k is the restriction of 	z to �k × M(Zk × X∅,k ) for each z ∈ Zk.
Then:

(iii) supp(μ) ⊆ IR(μ).

(iv) supp(μ) ⊆ SM (μ) if

(a) for each (z, δ, μ) ∈Z×X×M(Z×X∅ ), δ′ ∈�(z, δ, μ), open neighborhood Vδ′
of δ′, subsequence {μkj }∞j=1 of {μk}∞k=1 and sequence {(zkj , δkj )}∞j=1 such that
(zkj , δkj ) → (z, δ) and (zkj , δkj ) ∈ Zkj × Xkj for each j ∈ N, there exists J ∈ N
such that {γ ∈ Xkj : {zkj } × supp(γ) ⊆ graph(Ckj )} ∩ �(zkj , δkj , μkj ) ∩ Vδ′ �= ∅
for each j ≥ J, and

(b) for each (z, μ) ∈ Z × M(Z × X∅ ), δ′ ∈ �0(z, μ), open neighborhood Vδ′ of δ′,
subsequence {μkj }∞j=1 of {μk}∞k=1 and sequence {zkj }∞j=1 such that zkj → z and
zkj ∈Zkj for each j ∈N, there exists J ∈N such that {γ ∈ Xkj : {zkj }×supp(γ) ⊆
graph(Ckj )} ∩�0(zkj , μkj ) ∩ Vδ′ �= ∅ for each j ≥ J.

Proof. We divide the proof into several parts corresponding to the ones in the state-
ment of the lemma.

Part 1: Since M(Z × X∅ ) is a separable metrizable space, it suffices to show that
{μk}∞k=1 is tight; this follows by Lemma 3 together with μk(Z × X∅ ) ≤ νk(Z ) for each
k ∈N and the fact that {νk(Z )}∞k=1 converges (to ν(Z )), and hence is bounded.

Let ε > 0. Since {νk}∞k=1 is tight, there exists a compact subset KZ of Z such that
νk(Z \KZ ) ≤ ε for all k.

For each n ∈ N, let Kn be a compact subset of Z such that ν̂(Z \ Kn ) < ε/(n2n ) for
each ν̂ ∈ {νk}∞k=1. Let K∅

n = Kn ∪ {∅} and let Dn = ⋃
(z,z′ )∈KZ×K∅

n
C(z, z′ ). Note that Dn is

compact since C is continuous and compact-valued, and KZ and K∅
n are compact.

Define

KX =
{
δ ∈X : δ(Z ×C \Kn ×Dn ) ≤ 1

n
for each n ∈ N

}
.

Then KX is closed since if δj → δ and δj ∈ KX for each j ∈ N, then δ ∈ X since X is
closed and, for each n ∈N, δ(Z ×C \Kn ×Dn ) ≤ lim infj δj(Z ×C \Kn ×Dn ) ≤ 1/n since
Z × C \ Kn × Dn is open. Hence, δ ∈ KX . In addition, KX is tight since, for each η > 0,
there is n ∈ N such that 1/n < η, and thus, δ(Z × C \ Kn × Dn ) ≤ 1/n < η for each δ ∈
KX . Let R > 0 be such that X ⊆ MR(Z × C ). Since KX is a closed and tight subset of
MR(Z ×C ), it follows that KX is compact.

For each n ∈N, let

KX ,n =
{
δ ∈X : δ(Z ×C \Kn ×Dn ) >

1
n

and δ(Z ×C \Kj ×Dj ) ≤ 1
j

for each j = 1, 	 	 	 , n− 1
}

.
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Then X \ KX = ⋃∞
n=1 KX ,n and the family {KX ,n}∞n=1 is pairwise disjoint. Fix k ∈ N. For

each n ∈N, we have that

ε

n2n
> νk(Z \Kn ) ≥

∫
Z×X

δ
(
(Z \Kn ) ×C

)
dμk(z, δ)

≥
∫
KZ×KX,n

δ
(
(Z \Kn ) ×C

)
dμk(z, δ)

=
∫
KZ×KX,n

δ(Z ×C \Kn ×Dn ) dμk(z, δ) >
1
n
μk(KZ ×KX ,n ),

where the equality follows because δ(Z ×C \Kn ×Dn ) = δ((Z \Kn ) ×C ) + δ(Kn × (C \
Dn )) and condition (i) of a matching implies that, for each (z, δ) ∈ supp(μk ) ∩ (KZ ×X ),
supp(δ) ∩ (Kn ×C ) ⊆Dn, and thus, δ(Kn × (C \Dn )) = 0. Hence,

ε =
∞∑
n=1

ε

2n
>

∞∑
n=1

μk(KZ ×KX ,n ) = μk

(
KZ × (X \KX )

)
.

Note that
⋃

z∈KZ
C(z, ∅) ⊆ D1 and let K∅

X = KX ∪ {1(∅,c) : c ∈ D1}. Then K∅
X is com-

pact since both KX and D1 are compact. Moreover, μk(KZ × (X∅ \ (K∅
X ∪ X ))) =

μk(KZ × {1(∅,c) : c /∈D1}) = 0 where the first equality follows since (X∅ \K∅
X )∩ (X∅ \X ) =

(X∅ \K∅
X )∩ {1(∅,c) : c ∈ C} = {1(∅,c) : c /∈D1} and the second by condition (i) of a matching

since
⋃

z∈KZ
C(z, ∅) ⊆ D1. Then, for each k ∈N,

μk

(
Z ×X∅ \KZ ×K∅

X

) = μk

(
(Z \KZ ) ×X∅

) +μk

(
KZ × (

X∅ \ (
K∅

X ∪X
)))

+μk

(
KZ × ((

X∅ \K∅
X

) ∩X
))

≤ νk(Z \KZ ) + 0 +μk

(
KZ × (X \KX )

)
< 2ε,

where μk((Z \KZ ) ×X∅ ) ≤ νk(Z \KZ ) because of condition (ii) of a matching.
Part 2: We first consider condition (ii) of the definition of a matching. Let π :

Z × X∅ → Z be the projection of Z × X∅ onto Z and note that, for each Borel subset
B of Z, νM (B) + νS(B) = μ(B ×X∅ ) = μ ◦π−1(B) and νM ,k(B) + νS,k(B) = μk(B ×X∅ ) =
μk ◦ π−1(B) for each k ∈ N. Since π is continuous, μk ◦ π−1 → μ ◦ π−1. Indeed, for
each bounded and continuous f : Z → R,

∫
Z f dμk ◦π−1 = ∫

Z×X∅ f ◦π dμk → ∫
Z×X∅ f ◦

π dμ= ∫
Z f dμk ◦π−1 since f ◦π : Z×X∅ → R is bounded and continuous. Hence, since

M(Z ×X∅ ) is metrizable, νM + νS = μ ◦π−1 = limk μk ◦π−1 = limk(νM ,k + νS,k ).
Also, for each Borel subset B of Z, νW (B) = ∫

Z×X δ(B × C ) dμ(z, δ) and νW ,k(B) =∫
Z×X δ(B × C ) dμk(z, δ) for each k ∈ N. We show that νW ,k → νW . Let B ⊆ Z be closed

and f : X → R be defined by setting, for each δ ∈X , f (δ) = δ(B×C ). Then f is bounded
and upper semicontinuous. Hence, by (a suitable adaptation of) Aliprantis and Border
(2006, Theorem 15.5), lim supk νW ,k(B) = lim supk

∫
Z×X f dμk ≤ ∫

Z×X f dμ = νW (B) and
it follows that νW = limk νW ,k as claimed. Thus,

νM + νS + νW = lim
k

(νM ,k + νS,k ) + lim
k

νW ,k = lim
k

(νM ,k + νS,k + νW ,k ) = ν.



Theoretical Economics 19 (2024) Stable matching in large markets 1291

Condition (i) holds because, by Carmona and Podczeck (2009, Lemma 12), for each
(z, δ) ∈ supp(μ) and (z′, c) ∈ supp(δ), there exists a subsequence {μkj }∞j=1 of {μk}∞k=1 and
corresponding {(zkj , δkj , z′

kj
, ckj )}∞j=1 such that (zkj , δkj , z

′
kj

, ckj ) → (z, δ, z′, c), and for

each j ∈ N, (zkj , δkj ) ∈ supp(μkj ) and (z′
kj

, ckj ) ∈ supp(δkj ). Hence, ckj ∈ Ckj (zkj , z′
kj

) ⊆
C(zkj , z′

kj
), and since C is continuous, c ∈C(z, z′ ).

Part 3: Let (z, δ) ∈ supp(μ) and suppose that (z, δ) /∈ IR(μ). Then either (i) there
exists c ∈ C(z, ∅) such that (s, 1(∅,c), μ) 	z (a(δ), δ, μ) where a(δ) = m if δ ∈ X and
a(δ) = s if δ ∈ X∅ \ X , or (ii) there exists (z′, c) ∈ supp(δ) and c′ ∈ C(z′, ∅) such that
(s, 1(∅,c′ ), μ) 	z′ (w, 1(z,c), μ).

Consider case (i) first. The continuity of (	z )z∈Z and C implies that there are open
neighborhoods Vc , Vz , Vδ, and Vμ of c, z, δ, and μ, respectively, such that (s, 1(∅, ĉ), μ̂) 	ẑ

(a(δ), δ̂, μ̂) and C(ẑ, ∅) ∩ Vc �= ∅ for each ĉ ∈ Vc , ẑ ∈ Vz , δ̂ ∈ Vδ, and μ̂ ∈ Vμ. Since (z, δ) ∈
supp(μ), it follows that 0 < μ(Vz × Vδ ) ≤ lim infk μk(Vz × Vδ ); hence, for each k suffi-
ciently large, μk(Vz × Vδ ) > 0 and μk ∈ Vμ. This means that, for any such k, there exist
(ẑ, δ̂) ∈ supp(μk ) ∩ (Vz ×Vδ ) and ĉ ∈C(ẑ, ∅) ∩ Vc . But then (s, 1(∅, ĉ), μk ) 	ẑ (a(δ), δ̂, μk ),
and hence (s, 1(∅, ĉ), μk ) 	ẑ,k (a(δ), δ̂, μk ), contradicting the individual rationality of μk.

Consider next case (ii). The continuity of (	z )z∈Z and C implies that there are
open neighborhoods Vc′ , Vc , Vz , Vz′ , and Vμ of c′, c, z, z′, and μ, respectively, such
that (s, 1(∅, c̃), μ̂) 	z̃ (w, 1(ẑ, ĉ), μ̂) and C(∅, z̃) ∩ Vc′ �= ∅ for each c̃ ∈ Vc′ , ĉ ∈ Vc , ẑ ∈ Vz ,
z̃ ∈ Vz′ , and μ̂ ∈ Vμ. Since (z′, c) ∈ supp(δ), there is an open neighborhood Vδ of δ

such that supp(δ̂) ∩ (Vz′ × Vc ) �= ∅ for each δ̂ ∈ Vδ by Lemma 2. Since μk → μ and
(z, δ) ∈ supp(μ), it follows that 0 < μ(Vz × Vδ ) ≤ lim infk μk(Vz × Vδ ); hence, for all k
sufficiently large, μk(Vz × Vδ ) > 0 and μk ∈ Vμ. This means that, for any such k, there
exists (ẑ, δ̂) ∈ supp(μk ) ∩ (Vz × Vδ ), (z̃, ĉ) ∈ supp(δ̂) ∩ (Vz′ × Vc ) and c̃ ∈C(∅, z̃) ∩ Vc′ . But
then (s, 1(∅, c̃), μk ) 	z̃ (w, 1(ẑ, ĉ), μk ), and hence (s, 1(∅, c̃), μk ) 	z̃,k (w, 1(ẑ, ĉ), μk ), contra-
dicting the individual rationality of μk.

Part 4: In this proof, to avoid confusion, we write Tm
z (μ; E′ ) for Tm

z (μ) in a market
E′.

Let (z, δ) ∈ supp(μ) and suppose that (z, δ) /∈ SM (μ). Then there exists δ′ ∈ X such
that either (i) supp(δ′ ) ⊆ Tm

z (μ) ∪ supp(δ) and (m, δ′, μ) 	z (a(δ), δ, μ), where a(δ) =
m if δ ∈ X and a(δ) = s if δ ∈ X∅ \ X ,32 or (ii) there exists (z′, c) ∈ supp(δ) such that
supp(δ′ ) ⊆ Tm

z′ (μ) and (m, δ′, μ) 	z′ (w, 1(z,c), μ).
Consider case (i) first. Let Vz , Vδ′ , Vδ, and Vμ be open neighborhoods of z, δ′, δ, and

μ, respectively, such that (m, γ′, μ̄) 	z̄ (a(δ), γ, μ̄) for each z̄ ∈ Vz , γ′ ∈ Vδ′ , γ ∈ Vδ, and
μ̄ ∈ Vμ. Let, by the richness of E, Ṽz , Ṽδ, and Ṽμ be open neighborhoods of z, δ, and μ,
respectively, such that �(z̄, γ, μ̄) ∩ Vδ′ �= ∅ for each (z̄, γ, μ̄) ∈ Ṽz × Ṽδ × Ṽμ.

By Carmona and Podczeck (2009, Lemma 12), there is a subsequence {μkj }∞j=1 of
{μk}∞k=1 and corresponding sequence {(zkj , δkj )}∞j=1 such that (zkj , δkj ) → (z, δ) and
(zkj , δkj ) ∈ supp(μkj ) for each j ∈N.

Let J ∈ N be such that μkj ∈ Vμ ∩ Ṽμ, zkj ∈ Vz ∩ Ṽz , δkj ∈ Vδ ∩ Ṽδ, and {γ ∈ Xkj :
{zkj } × supp(γ) ⊆ graph(Ckj )} ∩ �(zkj , δkj , μkj ) ∩ Vδ′ �= ∅ for all j ≥ J. Let j ≥ J and let
δ′
kj

∈ {γ ∈ Xkj : {zkj } × supp(γ) ⊆ graph(Ckj )} ∩ �(zkj , δkj , μkj ) ∩ Vδ′ . Then supp(δ′
kj

) ⊆
32Note that when δ ∈ X∅ \X and δ′ ∈ X , supp(δ′ ) ⊆ Tm

z (μ) ∪ supp(δ) if and only if supp(δ′ ) ⊆ Tm
z (μ).
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Tm
zkj

(μkj ; E) ∪ supp(δkj ) and (m, δ′
kj

, μkj ) 	zkj
(a(δ), δkj , μkj ). It then follows that

supp(δ′
kj

) ⊆ Tm
zkj

(μkj ; Ekj ) ∪ supp(δkj ) and (m, δ′
kj

, μkj ) 	zkj ,kj (a(δ), δkj , μkj ). But this

contradicts the stability of μkj .
Consider next case (ii). Let Vz , Vz′ , Vδ′ , Vc , and Vμ be open neighborhoods of z, z′,

δ′, c, and μ, respectively, such that (m, δ̂′, μ̂) 	ẑ′ (w, 1(ẑ, ĉ), μ̂) for each ẑ ∈ Vz , ẑ′ ∈ Vz′ ,
δ̂′ ∈ Vδ′ , ĉ ∈ Vc , and μ̂ ∈ Vμ. Let, by the richness of E, Ṽz′ , and Ṽμ be open neighborhoods
of z′ and μ, respectively, such that �0(ẑ′, μ̂) ∩ Vδ′ �= ∅ for each (ẑ′, μ̂) ∈ Ṽz′ × Ṽμ.

By Carmona and Podczeck (2009, Lemma 12), there is a subsequence {μkj }∞j=1
of {μk}∞k=1 and corresponding sequence {(zkj , δkj , z

′
kj

, ckj )}∞j=1 such that (zkj , δkj ) ∈
supp(μkj ) and (z′

kj
, ckj ) ∈ supp(δkj ) for each j ∈ N and (zkj , δkj , z′

kj
, ckj ) → (z, δ, z′, c).

Let J ∈ N be such that δkj ∈ Vδ, zkj ∈ Vz , z′
kj

∈ Vz′ ∩ Ṽz′ , ckj ∈ Vc , μkj ∈ Vμ ∩ Ṽμ,

and {γ ∈ Xkj : {z′
kj

} × supp(γ) ⊆ graph(Ckj )} ∩ �0(z′
kj

, μkj ) ∩ Vδ′ �= ∅ for all j ≥ J. Let

j ≥ J and let δ′
kj

∈ {γ ∈ Xkj : {z′
kj

} × supp(γ) ⊆ graph(Ckj )} ∩ �0(z′
kj

, μkj ) ∩ Vδ′ . Then

supp(δ′
kj

) ⊆ Tm
z′
kj

(μkj ; E) and (m, δ′
kj

, μkj ) 	z′
kj

(w, 1(zkj ,ckj ), μkj ). It then follows that

supp(δ′
kj

) ⊆ Tm
z′
kj

(μkj ; Ekj ) and (m, δ′
kj

, μkj ) 	z′
kj

,kj (w, 1(zkj ,ckj ), μkj ). But this contra-

dicts the stability of μkj .

The second step in the proof of our existence result consists in the following lemma,
which considers the special case where Z is finite and X = MR(Z ×C ) for some R> 0.

Lemma 6. If E is a rational and continuous market such that Z is finite and X =MR(Z×
C ) for some R> 0, then E has a stable matching.

Proof. For each (z, z′ ) ∈ Z × Z∅, let {cnz,z′ }∞n=1 be a dense subset of C(z, z′ ). For each
k ∈ N, define Ck(z, z′ ) = {cnz,z′ : n ≤ k} and Ck = ⋃

(z,z′ )∈Z×Z∅ Ck(z, z′ ).
In addition, enumerate Q = {q1, q2, 	 	 	} and, for each k ∈ N, let Xk be the set of δ ∈

MR(Z×C ) such that supp(δ) is a subset of Z×Ck and, for each (z, c) ∈Z×Ck, δ(z, c) ∈
{qn : n ≤ k}. Let X∅,k = Xk ∪ {1(∅,c) : c ∈ Ck}, Xm,k = Xk, Xs,k = {1(∅,c) : c ∈ Ck}, Xw,k =
{1(z,c) : (z, c) ∈Z ×Ck}, and �k = {(a, δ) : δ ∈Xa,k}.

For each k ∈N, letEk = (Z, ν, Ck, Ck, Xk, (	z )z∈Z ) be a market where 	z is restricted
to �k ×M(Z ×X∅,k ) for each z ∈ Z. Let μk ∈ M(Z ×X∅,k ) be a stable matching in Ek,
which exists by Lemma 4 since Z, Ck, and Xk are finite.

It follows by part 1 of Lemma 5 that we may assume that {μk}∞k=1 converges; let
μ = limk μk. It then follows by parts 2 and 3 of Lemma 5 that μ is a matching and that
supp(μ) ⊆ IR(μ).

The following claim will be used to show that condition (a) of part 4 of Lemma 5
holds.

Claim 8. Let (z̃, c̃) ∈ Tm
z (μ) and Vc̃ be an open neighborhood of c̃. Then, for all k suffi-

ciently large, there exists ck ∈Ck(z, z̃) such that (z̃, ck ) ∈ Tm
z (μk ) ∩ ({z̃} × Vc̃ ).

Proof. Let (z̃, c̃) ∈ Tm
z (μ) and Vc̃ be an open neighborhood of c̃. Then c̃ ∈ C(z, z̃)

and either (i) there exists (ẑ, δ̂, ĉ) such that (ẑ, δ̂) ∈ supp(μ), (z̃, ĉ) ∈ supp(δ̂), and
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(w, 1(z, c̃), μ) 	z̃ (w, 1(ẑ, ĉ), μ), or (ii) there exists δ̃ ∈ X∅ such that (z̃, δ̃) ∈ supp(μ) and
(w, 1(z, c̃), μ) 	z̃ (a(δ̃), δ̃, μ), where a(δ̃) = s if δ̃ ∈X∅ \X and a(δ̃) =m if δ̃ ∈X .

Consider case (i) first. Let Oc̃ , Oĉ , Oδ̂, and Oμ be open neighborhoods of c̃, ĉ, δ̂, and

μ, respectively, such that (w, 1(z, c̃′ ), μ′ ) 	z̃ (w, 1(ẑ, ĉ′ ), μ′ ) and supp(δ̂′ )∩ ({z̃}×Oĉ ) �= ∅ for
each c̃′ ∈ Oc̃ , ĉ′ ∈ Oĉ , δ̂′ ∈ Oδ̂, and μ′ ∈ Oμ. Since 0 <μ({ẑ} ×Oδ̂ ) ≤ lim infk μ({ẑ} ×Oδ̂ ), it

follows that, for each k sufficiently large, there is δ̂k ∈ Oδ̂ such that (ẑ, δ̂k ) ∈ supp(μk ),

and for some ĉk ∈ Oĉ , (z̃, ĉk ) ∈ supp(δ̂k ). In addition, μk ∈ Oμ and there exists ck ∈
Ck(z, z̃) ∩Oc̃ ∩ Vc̃ since, respectively, μk → μ and Ck(z, z̃) increases to a dense subset of
C(z, z̃). Then (w, 1(z,ck ), μk ) 	z̃ (w, 1(ẑ, ĉk ), μk ), and hence (z̃, ck ) ∈ Tm

z (μk ) ∩ ({z̃} × Vc̃ )
for all k sufficiently large.

Consider next case (ii). Let Oc̃ , Oδ̃, and Oμ be open neighborhoods of c̃, δ̃, and
μ, respectively, such that (w, 1(z, c̃′ ), μ′ ) 	z̃ (a(δ̃), δ̃′, μ′ ) for each c̃′ ∈ Oc̃ , δ̃′ ∈ Oδ̃, and
μ′ ∈ Oμ. Since 0 < μ({z̃} × Oδ̃ ) ≤ lim infk μk({z̃} × Oδ̃ ), it follows that, for each k suf-
ficiently large, there is δ̃k ∈ Oδ̃ such that (z̃, δ̃k ) ∈ supp(μk ). In addition, μk ∈ Oμ

and there exists ck ∈ Ck(z, z̃) ∩ Oc̃ ∩ Vc̃ since, respectively, μk → μ and Ck(z, z̃) in-
creases to a dense subset of C(z, z̃). Then (w, 1(z,ck ), μk ) 	z̃ (a(δ̃), δ̃k, μk ), and hence
(z̃, ck ) ∈ Tm

z (μk ) ∩ ({z̃} × Vc̃ ) for all k sufficiently large.

We now show that condition (a) of part 4 of Lemma 5 holds. Let (z, δ, μ) ∈ Z × X ×
M(Z ×X∅ ), δ′ ∈�(z, δ, μ), Vδ′ be an open neighborhood of δ′ and {(zkj , δkj , μkj )}∞j=1 be
a sequence such that (zkj , δkj , μkj ) → (z, δ, μ) and (zkj , δkj , μkj ) ∈Zkj ×Xkj ×M(Zkj ×
X∅,kj ) for each j ∈N.

In particular, supp(δ′ ) ⊆ Tm
z (μ)∪supp(δ) and we may assume that supp(δ′ ) is finite,

i.e., δ′ = ∑
(z̃, c̃)∈supp(δ′ ) a(z̃, c̃)1(z̃, c̃) for some a = (a(z̃, c̃))(z̃, c̃)∈supp(δ′ ). Let Va be an open

neighborhood of a, and for each (z̃, c̃) ∈ supp(δ′ ), V(z̃, c̃) be an open neighborhood of
(z̃, c̃) be such that ∑

(z̃, c̃)∈supp(δ′ )
â(z̃, c̃)1(z(z̃, c̃),c(z̃, c̃)) ∈ Vδ′

whenever (z(z̃, c̃), c(z̃, c̃)) ∈ V(z̃, c̃) for each (z̃, c̃) ∈ supp(δ′ ) and â ∈ Va. Let â =
(â(z̃, c̃))(z̃, c̃)∈supp(δ′ ) ∈ Q

|supp(δ′ )|
+ ∩ Va and Vc̃ be an open neighborhood of c̃ such that

{z̃} × Vc̃ ⊆ V(z̃, c̃).
For each (z̃, c̃) ∈ supp(δ′ ) ∩ Tm

z (μ), and for each k sufficiently large, let ck(z̃, c̃) ∈
Ck(z, z̃) be such that (z̃, ck(z̃, c̃)) ∈ Tm

z (μk ) ∩ ({z̃} × Vc̃ ), which exists by Claim 8.
If (z̃, c̃) ∈ supp(δ′ ) \ Tm

z (μ), then δ ∈ X , (z̃, c̃) ∈ supp(δ), and 0 < δ({z̃} × Vc̃ ) ≤
lim infj δkj ({z̃} × Vc̃ ). Hence, for each j sufficiently large, let ckj (z̃, c̃) ∈ Vc̃ be such that
(z̃, ckj (z̃, c̃)) ∈ supp(δkj ).

Let J′ ∈ N be such that, for each j ≥ J′, (z̃, ckj (z̃, c̃)) ∈ Tm
z (μkj ) ∩ ({z̃} × Vc̃ ) if (z̃, c̃) ∈

supp(δ′ ) ∩ Tm
z (μ) and (z̃, ckj (z̃, c̃)) ∈ supp(δkj ) ∩ ({z̃} × Vc̃ ) if (z̃, c̃) ∈ supp(δ′ ) \ Tm

z (μ).
Thus, letting δ′

kj
= ∑

(z̃, c̃)∈supp(δ′ ) â(z̃, c̃)1(z̃,ckj (z̃, c̃)) for each j ≥ J′, we have that δ′
kj

∈ Vδ′

and supp(δ′
kj

) ⊆ Tm
z (μkj )∪supp(δkj ). Since {â(z̃, c̃) : (z̃, c̃) ∈ supp(δ′ )} is finite, it follows

that there is J > J′ such that δ′
kj

∈Xkj for each j ≥ J.
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An analogous argument shows that condition (b) of part 4 of Lemma 5 also holds.
Hence, it follows that supp(μ) ⊆ SM (μ). This together with the fact that μ is a matching
and supp(μ) ⊆ IR(μ) shows that μ is stable.

The next step of the proof of Theorem 2 extends Lemma 6 by requiring only that E
be rich.

Lemma 7. If E is a rational, continuous, bounded, and rich market such that Z is finite,
then E has a stable matching.

Proof. It follows by Debreu (1964, Proposition 3) and by the finiteness of Z that there
exists a continuous function u : Z × � × M(Z × X∅ ) → [1, 2] such that (a, δ, μ) �→
u(z, a, δ, μ) represents �z for each z ∈Z, using the fact that [1, 2] and the extended reals
are homeomorphic.

Let R > 0 be such that X ⊆ MR(Z × C ), �∗ = ({m} × MR(Z × C )) ∪ ({w} × Xw ) ∪
({s} × Xs ), and X∗ = MR(Z × C ) ∪ {1(∅,c) : c ∈ C}. By the Tietze extension theorem, let
U : Z ×�∗ ×M(Z ×X∗ ) → [1, 2] be a continuous extension of u.

Let ρ be a metric on MR(Z ×C ). For each k ∈N, let

�k = {m} × {
δ ∈MR(Z ×C ) : ρ(δ, X ) ≥ k−1}.

Let, by Urysohn’s lemma, gk : �∗ → [0, 1] be a continuous function such that g−1
k (1) =

� and g−1
k (0) = �k. Then define Uk : Z × �∗ × M(Z × X∗ ) → R by setting, for each

(z, a, δ, μ) ∈Z ×�∗ ×M(Z ×X∗ ), Uk(z, a, δ, μ) = gk(a, δ)U(z, a, δ, μ).
Consider the market Ek = (Z, ν, C, C, MR(Z × C ), Uk ), i.e., Ek is equal to E ex-

cept that X is replaced with MR(Z × C ) and u with Uk. Since Ek is rational and
continuous with Z finite and X = MR(Z × C ), then Ek has a stable matching μk by
Lemma 6.

Let E∗ = (Z, ν, C, C, MR(Z × C ), U ). To avoid confusion, we write IR(μ; E′ ) for
IR(μ) and SM (μ; E′ ) for SM (μ) whenever μ is a matching of a market E′. It follows by
part 1 of Lemma 5 that we may assume that {μk}∞k=1 converges; let μ = limk μk. It then
follows by part 2 of Lemma 5 that μ is a matching of E∗.

The proof of part 3 of Lemma 5 implies that supp(μ) ⊆ IR(μ; E∗ ) since the require-
ment that 	z,k is the restriction of 	z to �k × M(Zk × X∅,k ) for each z ∈ Zk can be
replaced with the following condition: (s, δ, μ̂) 	z,k (a, δ′, μ̂) for each k ∈ N, z ∈ Zk, δ ∈
Xs,k, (a, δ′ ) ∈ �k, and μ̂ ∈ M(Zk × X∅,k ) such that (s, δ, μ̂) 	z (a, δ′, μ̂). This condition
holds because Uk(z, a, δ′, μ̂) ≤ U(z, a, δ′, μ̂) and Uk(z, s, 1(∅, ĉ), μ̂) = U(z, s, 1(∅, ĉ), μ̂) for
each k ∈ N, z ∈ Z, (a, δ′ ) ∈ �∗, ĉ ∈ C, and μ̂ ∈ M(Z ×X∗ ) since (s, 1(∅, ĉ) ) ∈ �, and hence
gk(s, 1(∅, ĉ) ) = 1.

We have that μ belongs to M(Z × X∅ ). Indeed, let k ∈ N and (z, δ) ∈ supp(μk ) ∩
M(Z × C ). If δ ∈ X and ρ(δ, X ) ≥ k−1, then let c ∈ C(z, ∅) and δ′ = 1(∅,c) to obtain
that supp(δ′ ) ⊆ T s

z (μk ) and Uk(z, s, δ′, μ) = U(z, s, δ′, μ) > 0 = Uk(z, m, δ, μ), the latter
since (s, δ′ ) ∈ �, and thus, gk(s, δ′ ) = 1, U(z, s, δ′, μ) ∈ [1, 2], and gk(m, δ) = 0. But this
contradicts the stability of μk. Hence, it follows that ρ(δ, X ) <k−1.
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Thus, for each k ∈N,

supp(μk ) ⊆ (
Z × {

δ ∈MR(Z ×C ) : ρ(δ, X ) ≤ k−1}) ∪ (
Z × {1(∅,c) : c ∈ C}

)
.

Hence, supp(μ) ⊆Z ×X∅ as claimed.
It then follows that μ is a matching of E and that supp(μ) ⊆ IR(μ; E) since

IR(μ; E∗ ) ∩ (Z × X∅ ) ⊆ IR(μ; E). Claim 9, which is analogous to part 4 of Lemma 5,
shows that supp(μ) ⊆ SM (μ; E).

Claim 9. supp(μ) ⊆ SM (μ; E).

Proof. Let (z, δ) ∈ supp(μ) and suppose that (z, δ) /∈ SM (μ; E). Then there exists δ′ ∈
X such that either (i) supp(δ′ ) ⊆ Tm

z (μ) ∪ supp(δ) and U(z, m, δ′, μ) >U(z, a(δ), δ, μ),
where a(δ) = m if δ ∈ X and a(δ) = s if δ ∈ X∅ \ X (see footnote 32), or (ii) there exists
(z′, c) ∈ supp(δ) such that supp(δ′ ) ⊆ Tm

z′ (μ) and U(z′, m, δ′, μ) >U(z′, w, 1(z,c), μ).
Consider case (i) first. Let Vδ′ , Vδ, and Vμ be open neighborhoods of δ′, δ, and μ,

respectively, such that U(z, m, γ′, μ̄) >U(z, a(δ), γ, μ̄) for each γ′ ∈ Vδ′ , γ ∈ Vδ, and μ̄ ∈
Vμ. Let, by the richness of E, Ṽδ, and Ṽμ be open neighborhoods of δ and μ, respectively,
such that �(z, γ, μ̄) ∩ Vδ′ �= ∅ for each (γ, μ̄) ∈ Ṽδ × Ṽμ.

By Carmona and Podczeck (2009, Lemma 12), there is a subsequence {μkj }∞j=1 of
{μk}∞k=1 and corresponding sequence {δkj }∞j=1 such that δkj → δ and (z, δkj ) ∈ supp(μkj )
for each j ∈N.

Let J ∈ N be such that μkj ∈ Vμ ∩ Ṽμ and δkj ∈ Vδ ∩ Ṽδ for all j ≥ J, and for each j ≥ J,
let δ′

kj
∈�(z, δkj , μkj ) ∩ Vδ′ . Then, for each j ≥ J,

Ukj

(
z, m, δ′

kj
, μkj

) =U
(
z, m, δ′

kj
, μkj

)
>U

(
z, a(δ), δkj , μkj

) ≥Ukj

(
z, a(δ), δkj , μkj

)
since δ′

kj
∈X by the definition of �, and supp(δ′

kj
) ⊆ Tm

z (μkj ) ∪ supp(δkj ). But this con-

tradicts the stability of μkj .
Now assume there exists (z′, c) ∈ supp(δ) and δ′ ∈ X such that supp(δ′ ) ⊆ Tm

z′ (μ)
and U(z′, m, δ′, μ) > U(z′, w, 1(z,c), μ). Let Vδ′ , Vc , and Vμ be open neighborhoods of
δ′, c, and μ, respectively, such that U(z′, m, δ̂′, μ̂) > U(z′, w, 1(z, ĉ), μ̂) for each δ̂′ ∈ Vδ′ ,
ĉ ∈ Vc , and μ̂ ∈ Vμ. Let, by the richness of E, Ṽμ be an open neighborhood of μ such that
�0(z′, μ̂) ∩ Vδ′ �= ∅ for each μ̂ ∈ Ṽμ.

By Carmona and Podczeck (2009, Lemma 12), there is a subsequence {μkj }∞j=1
of {μk}∞k=1 and corresponding sequence {(δkj , ckj )}∞j=1 such that (δkj , ckj ) → (δ, c),
(z, δkj ) ∈ supp(μkj ), and (z′, ckj ) ∈ supp(δkj ) for each j ∈N.

Let J ∈ N be such that δkj ∈ Vδ, ckj ∈ Vc , and μkj ∈ Vμ ∩ Ṽμ for all j ≥ J, and
for each j ≥ J, let δ′

kj
∈ �0(z′, μkj ) ∩ Vδ′ . Then, for each j ≥ J, Ukj (z

′, m, δ′
kj

, μkj ) =
U(z′, m, δ′

kj
, μkj ) > U(z′, w, 1(z,ckj ), μkj ) ≥ Ukj (z

′, w, 1(z,ckj ), μkj ) since δ′
kj

∈ X by the

definition of �0, and supp(δ′
kj

) ⊆ Tm
z′ (μkj ). But this contradicts the stability of μkj .

It follows by supp(μ) ⊆ IR(μ; E) and by Claim 9 that supp(μ) ⊆ SM (μ; E) ∩ IR(μ; E).
Thus, μ is stable.

We now complete the proof of our existence result.
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Proof of Theorem 2. Let {νk}∞k=1 be such that νk → ν and supp(νk ) is a finite subset
of Z for each k ∈N. Define Zk = supp(νk ), Z∅,k =Zk ∪ {∅}, Xk =X ∩M(Zk ×C ), X∅,k =
Xk∪ {1(∅,c) : c ∈ C}, Xm,k =Xk, Xs,k = {1(∅,c) : c ∈ C}, Xw,k = {1(z,c) : (z, c) ∈Zk×C}, and
�k = {(a, δ) : δ ∈ Xa,k} for each k ∈N. Note that Xk is closed for each k ∈N.

For each k ∈ N, let Ẽk = (Zk, νk, C, C, Xk, (	z )z∈Zk ) be a market where 	z is re-
stricted to �k × M(Zk × X∅,k ) for each z ∈ Z. Furthermore, let Ek be exactly as Ẽk, ex-
cept with X in place of Xk and Z in place of Zk; more precisely, Ek = (Z, νk, C, C, X , (	z

)z∈Z ).

Claim 10. For each k ∈ N, if μ is a stable matching of Ẽk, then μ is a stable matching of
Ek.

Proof. In this proof, to avoid confusion, we write IR(μ; E) for IR(μ) and SM (μ; E) for
SM (μ) whenever μ is a matching of a market E.

Let k ∈ N and μ be a stable matching of Ẽk. Clearly, μ is a matching of Ek and
supp(μ) ⊆ IR(μ; Ek ). We show that supp(μ) ⊆ SM (μ; Ek ). Suppose not, then let (z, δ) ∈
supp(μ) \ SM (μ; Ek ).

First, suppose that there exists δ′ ∈ X such that supp(δ′ ) ⊆ Tm
z (μ) ∪ supp(δ) and

(m, δ′, μ) 	z (a(δ), δ, μ), where a(δ) = m if δ ∈ X and a(δ) = s if δ ∈ X∅ \ X . We claim
that δ′ ∈ Xk, i.e., that supp(δ′ ) ⊆ Zk × C, from which we obtain a contradiction to the
stability of μ in Ẽk.

Note that supp(δ̄) ⊆ Zk × C whenever δ̄ ∈ X and (z̄, δ̄) ∈ supp(μ) for some z̄ ∈ Zk

since μ is stable in Ẽk. Thus, it follows that supp(δ′ ) ∩ supp(δ) ⊆ Zk × C since if
supp(δ′ ) ∩ supp(δ) �= ∅, then δ ∈ X . We also have that supp(δ′ ) ∩ Tm

z (μ) ⊆ Zk × C.
Indeed, if (z′, c) ∈ Tm

z (μ), then (z′, c̄) ∈ supp(δ̄) and (z̄, δ̄) ∈ supp(μ) for some c̄ ∈ C,
z̄ ∈ Zk, and δ̄ ∈ X whenever supp(δ′ ) ∩ Tm

z (μ) �= ∅; hence, z′ ∈ Zk. Thus, supp(δ′ ) =
(supp(δ′ ) ∩ supp(δ)) ∪ (supp(δ′ ) ∩ Tm

z (μ)) ⊆Zk ×C as desired.
Now suppose that there exists δ′ ∈ X and (z′, c) ∈ supp(δ) such that supp(δ′ ) ⊆

Tm
z′ (μ) and (m, δ′, μ) 	z′ (w, 1(z,c), μ). As above, we obtain a contradiction to the sta-

bility of μ in Ẽk by showing that δ′ ∈ Xk. To establish this claim, it suffices to show that
Tm
z′ (μ) ⊆ Zk × C. If (z̃, c̃) ∈ Tm

z′ (μ), then (z̃, c̄) ∈ supp(δ̄) and (z̄, δ̄) ∈ supp(μ) for some
c̄ ∈ C, z̄ ∈Zk, and δ̄ ∈X ; hence, (z̃, c̃) ∈ Zk ×C as required.

For each k ∈ N, let μk ∈ M(Z × X∅,k ) be a stable matching in Ek, which exists by
Lemma 7 (since Zk is finite and Ẽk satisfies its assumptions) and Claim 10.

It follows by part 1 of Lemma 5 that we may assume that {μk}∞k=1 converges; let μ =
limk μk. It then follows by parts 2–4 of Lemma 5 that μ is a matching and that supp(μ) ⊆
SM (μ) ∩ IR(μ). Hence, μ is stable.

A.4 Proof of Corollary 3

Let E be a Rosen market. For each k ∈ N, let Ck ≡ [0, k], Xk = {n1(z,c) : (z, c) ∈ Z ×
C and n ∈ [0, k]} and Ek be equal to E except for these changes to Ck and Xk. It follows
by Theorem 2 that there exists a stable matching μk of Ek.



Theoretical Economics 19 (2024) Stable matching in large markets 1297

Claim 11. supp(μk ) ⊆Z ×X for each k ∈N.

Proof. Suppose not, then let (z, δ) ∈ supp(μk ) ∩ (Z × (X∅ \ X )). Let ε > 0 be such
that g(r(z))q(z)θ(r(z)/q(z)) − ε > 0. Then (z, ε) ∈ Tm

z (μk ) since (z, δ) ∈ supp(μ) and
Uz(w, 1(z,ε) ) = ε > 0 = Uz(s, δ). Thus, letting δ′ = 1(z,ε), it follows that supp(δ′ ) ⊆
Tm
z (μk ) and Uz(m, δ′ ) = g(r(z))q(z)θ(r(z)/q(z)) − ε > 0 = Uz(s, δ). Hence, (z, δ) /∈

S(μk ), a contradiction to the stability of μk.

Claim 12. There exist K, M ∈ N such that, for each k ≥ K and (z, δ) ∈ supp(μk ), δ(Z ×
C ) ≤ M and δ(Z × ([0, 1/M ) ∪ (M , ∞))) = 0.

Proof. Suppose not, then for each j ∈ N, there exists kj ≥ j and (zkj , δkj ) ∈ supp(μkj ) ⊆
Z ×X such that δkj (Z ×C ) > j or δkj (Z × ([0, 1/j) ∪ (j, ∞))) > 0.

Suppose first that δkj (Z × C ) > j holds for infinitely many js. Taking a subse-
quence if needed, we may assume that δkj (Z × C ) > j holds for each j. Thus, for some
(z′

kj
, ckj , nkj ) ∈ Z ×C × [0, kj ], δkj = nkj1(z′

kj
,ckj ) with nkj > j. We have that

Uzkj
(m, nkj1(z′

kj
,ckj ) ) ≤ g

(
r(z̄)

)
f
(
r(z̄), nkjq(z̄)

) − ckjnkj

=
[
g
(
r(z̄)

)
q(z̄)θ

(
r(z̄)

nkjq(z̄)

)
− ckj

]
nkj .

Since μkj is stable, it follows that Uzkj
(m, nkj1(z′

kj
,ckj ) ) ≥ 0 for each j; hence,

0 ≤ ckj ≤ g
(
r(z̄)

)
q(z̄)θ

(
r(z̄)

nkjq(z̄)

)
.

Since nkj → ∞, it follows that g(r(z̄))q(z̄)θ(r(z̄)/nkjq(z̄)) → 0, and hence ckj → 0. Since
g(r(z))q(z)θ(r(z)/q(z)) > 0, let ε > 0 be such that

g
(
r(z)

)
q(z)θ

(
r(z)
q(z)

)
− ε > 0.

We have that (z′
kj

, ckj + ε) ∈ Tm
z′
kj

(μkj ) for each j and that

Uz′
kj

(m, 1(z′
kj

,ckj+ε) ) ≥ g
(
r(z)

)
q(z)θ

(
r(z)
q(z)

)
− ckj − ε > ckj

for all j sufficiently large. But this contradicts the stability of μkj .
It follows from what has been shown above that δkj (Z × ([0, 1/j) ∪ (j, ∞))) > 0

holds for each j sufficiently large. Thus, for some (z′
kj

, ckj , nkj ) ∈ Z × C × [0, kj ], δkj =
nkj1(z′

kj
,ckj ) with ckj > j or ckj < 1/j. First, suppose that ckj < 1/j holds for infinitely many

js. Note that (z′
kj

, 1/j) ∈ Tm
z′
kj

(μkj ) and

Uz′
kj

(m, 1(z′
kj

, 1
j ) ) ≥ g

(
r(z)

)
q(z)θ

(
r(z)
q(z)

)
− 1

j
>

1
j
> ckj

for j sufficiently large, contradicting the stability of μkj .
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Now suppose that ckj > j for all j sufficiently large. Since μkj is stable, we then have
that

0 ≤Uzkj
(m, nkj1(z′

kj
,ckj ) ) ≤

[
g
(
r(z̄)

)
q(z̄)θ

(
r(z̄)

nkjq(z̄)

)
− ckj

]
nkj .

Thus, nkj → 0 as ckj → ∞, and hence

Uzkj
(m, nkj1(z′

kj
,ckj ) ) ≤ g

(
r(zkj )

)
f
(
r(zkj ), nkjq(zkj )

) → 0.

Let ε > 0 be such that

g
(
r(z)

)
q(z)θ

(
r(z)
q(z)

)
− ε > 0.

We have that (zkj , ε) ∈ Tm
zkj

(μkj ) and that

Uzkj
(m, 1(zkj ,ε) ) ≥ g

(
r(z)

)
q(z)θ

(
r(z)
q(z)

)
− ε > 0

for all j sufficiently large. But this contradicts the stability of μkj .

Claim 12 implies that, for each k ≥ K, the payoff of a manager in μk is bounded
above by maxn∈[0,M] g(r(z̄))f (r(z̄), nq(z̄)) = maxn∈[0,M] g(r(z̄))nq(z̄)θ(r(z̄)/nq(z̄)). In ad-
dition, the payoff of a manager is bounded below by (1/2)g(r(z))q(z)θ(r(z)/q(z)), since
if (z, δ) ∈ supp(μk ) and Uz(m, δ) < (1/2)g(r(z))q(z)θ(r(z)/q(z)), then letting ε > 0 be
such that g(r(z))q(z)θ(r(z)/q(z)) − ε > 2Uz(m, δ), it follows that (z, Uz(m, δ) + ε) ∈
Tm
z (μk ) and

Uz(m, 1(z,Uz(m,δ)+ε) ) = g
(
r(z)

)
f
(
r(z), q(z)

) −Uz(m, δ) − ε

≥ g
(
r(z)

)
q(z)θ

(
r(z)
q(z)

)
−Uz(m, δ) − ε >Uz(m, δ),

which contradicts the stability of μk.
The payoff of a worker in μk is bounded below by 1/M ; since by Claim 11 there is no

unemployment, it follows that

min
{
Uz(m, n1(z′,c) ), Uz′(w, 1(z,c) )

} ≥ min
{

1
M

,
1
2
g
(
r(z)

)
q(z)θ

(
r(z)
q(z)

)}
(8)

for each (z, n1(z′,c) ) ∈ supp(μk ) and k≥K.
Let

M̄ = max
{
M , max

n∈[0,M]
g
(
r(z̄)

)
nq(z̄)θ

(
r(z̄)
nq(z̄)

)
,

2

g
(
r(z)

)
q(z)θ

(
r(z)
q(z)

)}
,

n(z, z′, c) be the solution of maxn∈R+[g(r(z))nq(z′ )θ(r(z)/nq(z′ )) − cn] for each z, z′ ∈ Z

and c ∈ [1/M̄ , M̄+1] and n̄ = max(z,z′,c)∈Z2×[1/M̄ ,M̄+1] n(z, z′, c); the existence of n̄ follows

by the compactness of Z2 × [1/M̄ , M̄ + 1] and the continuity of (z, z′, c) �→ n(z, z′, c).
Let k> max{K, M̄ + 1, n̄} and μ= μk.
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Claim 13. μ is a stable matching of E.

Proof. We will explicitly indicate the market we are considering in the stability set of

μ, and thus write SM (μ; E) and SM (μ; Ek ). We use analogous notation for IR(μ) and

Tm
z (μ) for each z ∈Z.

We first claim that, for each (z, z′, c) ∈Z2 ×C, if (z′, c) ∈ Tm
z (μ; E), then (z′, M̄ + 1) ∈

Tm
z (μ; Ek ). Indeed, (z′, c) ∈ Tm

z (μ; E) implies that c = Uz′(w, 1(z,c) ) >Uz′(a, δ) for some

(a, δ) ∈ � such that

(a) If a = w, then δ = 1(ẑ, ĉ) with (ẑ, n̂1(z′, ĉ) ) ∈ supp(μ), and thus, Uz′(w, δ) = ĉ ≤ M by

Claim 12.

(b) If a = s, then Uz′(s, δ) = 0.

(c) If a =m, then (z′, δ) ∈ supp(μ), and thus, Uz′(m, δ) ≤ M̄ by Claim 12.

Hence, Uz′(a, δ) ≤ M̄ and it follows that (z′, M̄ + 1) ∈ Tm
z (μ; Ek ) since k > M̄ + 1.

We now establish that μ is a stable matching of E. Let (z, δ) ∈ supp(μ). Since μ

is a stable matching of Ek, (z, δ) ∈ SM (μ; Ek ) ∩ IR(μ; Ek ) and δ ∈ X by Claim 11. We

have that Uz′(s, δ′ ) = 0 for each (z′, δ′ ) ∈ Z ×Xs , and thus, IR(μ; Ek ) ⊆ IR(μ; E). Hence,

(z, δ) ∈ IR(μ; E).

It thus remains to show that (z, δ) ∈ SM (μ; E). Let δ= n1(z̃,c) and let (i) (ẑ, δ̂) = (z, δ)
and a = m or (ii) (ẑ, δ̂) = (z̃, 1(z,c) ) and a = w. Let δ′ ∈ X be such that supp(δ′ ) ⊆
Tm
ẑ (μ; E) and let δ′ = n∗1(z∗,c∗ ). Note that (z∗, c∗ ) ∈ Tm

ẑ (μ; E) implies that c∗ ≥ 1/M̄ by

(8). If c∗ ≤ M̄ + 1, then (z∗, c∗ ) ∈ Tm
ẑ (μ; Ek ) and

Uẑ

(
m, δ′) = Uẑ

(
m, n∗1(z∗,c∗ )

) ≤Uẑ

(
m, n

(
ẑ, z∗, c∗)1(z∗,c∗ )

) ≤Uẑ(a, δ̂),

where the last inequality follows from (z, δ) ∈ SM (μ; Ek ) and k > n̄. If c∗ > M̄ + 1, then

(z∗, M̄ + 1) ∈ Tm
ẑ (μ; Ek ) and

Uẑ

(
m, δ′) =Uẑ

(
m, n∗1(z∗,c∗ )

) ≤Uẑ

(
m, n∗1(z∗,M̄+1)

)
≤Uẑ

(
m, n

(
ẑ, z∗, M̄ + 1

)
1(z∗,M̄+1)

) ≤Uẑ(a, δ̂),

where the last inequality follows from (z, δ) ∈ SM (μ; Ek ) and k> n̄.

Finally, let δ′ ∈ X be such that supp(δ′ ) ⊆ supp(δ) in case (i). Then δ′ = n′1(z̃,c) for

some n′ ∈R+. Since 1/M ≤ c ≤M by Claim 12, it follows that

Uz
(
m, δ′) = Uz

(
m, n′1(z̃,c)

) ≤Uz
(
m, n(z, z̃, c)1(z̃,c)

) ≤Uz(m, δ),

where the last inequality follows from (z, δ) ∈ SM (μ; Ek ) and k > n̄. This concludes the

proof that (z, δ) ∈ SM (μ; E) and establishes the claim.



1300 Carmona and Laohakunakorn Theoretical Economics 19 (2024)

A.5 Proof of Theorem 3

In this section, we show that the conditions in the statement of Theorem 3 are necessary
and sufficient for μ to be a stable matching of the Rosen market.33 Note that the function
h is an homeomorphism between Z2 and h(Z2 ).

Sufficiency. Let μ= λ ◦ h−1 for some w and λ as in the statement of the theorem. To
see that μ is a matching, note that for each measurable B,

μ(B ×X ) +
∫
Z×X

δ(B ×C ) dμ(z, δ)

= λ ◦ h−1(B ×X ) +
∫
Z×X

δ(B ×C ) dλ ◦ h−1(z, δ)

= λ(B ×Z ) +
∫
Z×B

n
(
z, z′, w

)
dλ

(
z, z′) = ν(B).

We now show that μ is stable by establishing that supp(μ) ⊆ SM (μ) ∩ IR(μ). Let
(z, δ) ∈ supp(μ); then δ = n(z, z′, w)1(z′,wq(z′ )) for some z′ ∈ Z and (z, z′ ) ∈ supp(λ) by
Lemma 1. To see that (z, δ) ∈ IR(μ), note that Uz(m, n(z, z′, w)1(z′,wq(z′ )) ) = R(z, w) > 0
and Uz′(w, 1(z,wq(z′ )) ) = wq(z′ ) > 0.

Suppose that (z, n(z, z′, w)1(z′,wq(z′ )) ) /∈ SM (μ). Then either there exists (z∗, c∗ ) ∈
Tm
z (μ) ∪ {(z′, wq(z′ ))} such that Uz(m, n(z, z∗, c∗/q(z∗ ))1(z∗,c∗ ) ) > R(z, w) or there ex-

ists (z∗, c∗ ) ∈ Tm
z′ (μ) such that Uz′(m, n(z′, z∗, c∗/q(z∗ ))1(z∗,c∗ ) ) > wq(z′ ). If (z∗, c∗ ) =

(z′, wq(z′ )), then Uz(m, n(z, z∗, c∗/q(z∗ ))1(z∗,c∗ ) ) = R(z, w). Thus, (z∗, c∗ ) ∈ Tm
z (μ) ∪

Tm
z′ (μ), and hence c∗ > wq(z∗ ); indeed, condition (b) of Tm

z (μ) ∪ Tm
z′ (μ) cannot hap-

pen since supp(μ) ⊆ Z × X , condition (a) implies c∗ > wq(z∗ ) and condition (c) im-
plies that z∗ ∈ proj1(supp(λ)) and c∗ > R(z∗, w), and thus, that c∗ > wq(z∗ ) since then
R(z∗, w) ≥ wq(z∗ ). If (z∗, c∗ ) ∈ Tm

z (μ), then Uz(m, n(z, z∗, c∗/q(z∗ ))1(z∗,c∗ ) ) <R(z, w) =
Uz(m, n(z, z′, w)1(z′,wq(z′ )) ). If (z∗, c∗ ) ∈ Tm

z′ (μ), then

Uz′
(
m, n

(
z′, z∗,

c∗

q
(
z∗)

)
1(z∗,c∗ )

)
<R

(
z′, w

) ≤wq
(
z′),

the last inequality holding since z′ ∈ proj2(supp(λ)). Thus, (z, n(z, z′, w)1(z′,wq(z′ )) ) ∈
SM (μ), and hence μ is stable.

Necessity. Let μ be a stable matching of a Rosen market. We first show that
supp(μ) ⊆ h(Z2 ). Let z, z′, ẑ, z̃ ∈ Z, and n̂, ñ, c(z), c(z′ ) ∈ R+ be such that (ẑ, n̂1(z,c(z)) )
and (z̃, ñ1(z′,c(z′ )) ) belong to supp(μ). Suppose for a contradiction that c(z)/c(z′ ) �=
q(z)/q(z′ ). For concreteness, assume c(z) > (c(z′ )/q(z′ ))q(z) and let w = c(z′ )/q(z′ ).
It follows that

Uẑ(m, n̂1(z,c(z)) ) < max
n

Uẑ(m, n1(z,wq(z)) ) = R(ẑ, w) = max
n

Uẑ(m, n1(z′,wq(z′ )) ).

Thus, there is ε > 0 such that Uẑ(m, n̂1(z,c(z)) ) < R(ẑ, w + ε). Since (w + ε)q(z′ ) =
c(z′ ) + εq(z′ ) > c(z′ ), it follows that (z′, (w + ε)q(z′ )) ∈ Tm

ẑ (μ). Thus, δ′ = n(ẑ, z′, w +
33See the working paper version for an illustration of Theorem 3 and its proof in the Cobb–Douglas case.
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ε)1(z′,(w+ε)q(z′ )) is such that supp(δ′ ) ⊆ Tm
ẑ (μ) and

Uẑ

(
m, δ′) = R(ẑ, w + ε) >Uẑ(m, n̂1(z,c(z)) ).

But this contradicts the stability of μ. It then follows that c(z)/c(z′ ) = q(z)/q(z′ ) and,
again letting w = c(z′ )/q(z′ ), that c(z) =wq(z).

It also follows that n̂ = n(ẑ, z, w) since otherwise δ′ = n(ẑ, z, w)1(z,wq(z)) is such that
supp(δ′ ) ⊆ supp(n̂1(z,wq(z)) ) and Uẑ(m, δ′ ) > Uẑ(m, n̂1(z,wq(z)) ), and thus, contradicts
the stability of μ.

Let h−1 : h(Z2 ) →Z2 be the inverse of h and define λ = μ ◦ (h−1 )−1. Then (1) and (3)
follow.

To see (2), let (z, z′ ) ∈ supp(λ), which implies that (z, n(z, z′, w)1(z′,wq(z′ )) ) ∈ supp(μ)
by Lemma 1. If R(z, w) < wq(z), then let ε > 0 be such that wq(z) − ε > R(z, w)
and note that (z, wq(z) − ε) ∈ Tm

z (μ) since (z, n(z, z′, w)1(z′,wq(z′ )) ) ∈ supp(μ) and
Uz(w, 1(z,wq(z)−ε) ) >Uz(m, n(z, z′, w)1(z′,wq(z′ )) ). Thus,

Uz
(
m, n(z, z, w)1(z,wq(z)−ε)

)
>Uz

(
m, n(z, z, w)1(z,wq(z))

)
=R(z, w) = Uz

(
m, n

(
z, z′, w

)
1(z′,wq(z′ ))

)
,

contradicting the stability of μ. Hence, R(z, w) ≥wq(z).
Similarly, if wq(z′ ) <R(z′, w), then let ε > 0 be such that

Uz′
(
m, n

(
z′, z′, w

)
1(z′,wq(z′ )+ε)

)
>wq

(
z′).

Note that (z′, wq(z′ ) + ε) ∈ Tm
z′ (μ) since (z, n(z, z′, w)1(z′,wq(z′ )) ) ∈ supp(μ) and Uz′(w,

1(z′,wq(z′ )+ε) ) >Uz′(w, 1(z,wq(z′ )) ). Thus,

Uz′
(
m, n

(
z′, z′, w

)
1(z′,wq(z′ )+ε)

)
>wq

(
z′) =Uz′(w, 1(z,wq(z′ )) ),

contradicting the stability of μ. Hence, wq(z′ ) ≥R(z′, w).

A.6 Nonexistence example

We show that without the boundedness assumptions on X , a stable matching need not
exist, even when stability is defined via strong domination.

Consider the following market E, where for simplicity we omit contracts and pref-
erences do not depend on the matching. Let Z = [0, 1], let ν be the uniform distribu-
tion, and let X = M(Z ). Preferences are given by uz(m, δ) = δ(Z ), uz(w, 1z′ ) = z′, and
uz(s, 1∅ ) = 0 for each z, z′ ∈ Z, and δ ∈ X . Then E is rational, continuous, and rich but
not bounded and it has no stable matching as we next show.

Suppose that E has a stable matching μ. First, note that μ(Z × (X∅ \X )) = 0. If not,
then let Ẑ = {z ∈ Z : (z, 1∅ ) ∈ supp(μ)} and z ∈ Ẑ be such that z > 0. Then Ẑ ⊆ Tm

z (μ)
and Ẑ is closed. Thus, letting ν|Ẑ be the restriction of ν to Ẑ (i.e., ν|Ẑ(B) = ν(B ∩ Ẑ )
for each Borel subset B of Z), it follows that supp(ν|Ẑ ) ⊆ Tm

z (μ) which, together with
(m, ν|

Ẑ ) 	z (s, 1∅ ), contradicts the stability of μ.
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Next, note that if (z, δ) ∈ supp(μ) ∩ ((Z \ {1}) × X ), then δ(Z ) = 0. To see this, sup-
pose that (z, δ) ∈ supp(μ) with z < 1, δ ∈X , and δ(Z ) > 0. Note that for all z′ ∈ supp(δ),
z′ ∈ Tm

z∗ (μ) for each z∗ > z since (w, z∗ ) 	z′ (w, z); thus, supp(δ) ⊆ Tz∗(μ). Since
μ((z, 1] × X∅ ) + ∫

Z×X δ((z, 1]) dμ(z, δ) = ν((z, 1]) > 0, it follows that either supp(μ) ∩
((z, 1] × X∅ ) �= ∅ or supp(δ̂) ∩ ((z, 1]) �= ∅ for some (ẑ, δ̂) ∈ supp(μ). Let z∗ > z be such
that either (z∗, δ∗ ) ∈ supp(μ) for some δ∗ ∈ X∅ or z∗ ∈ supp(δ̂) for some (ẑ, δ̂) ∈ supp(μ).
Then consider δ′ = nδ where n is such that δ′(Z ) = nδ(Z ) > max{δ∗(Z ), 1}. We have that
supp(δ′ ) = supp(δ) ⊆ Tz∗(μ) and (m, δ′ ) 	z∗ (m, δ∗ ) if (z∗, δ∗ ) ∈ supp(μ) and δ∗ ∈ X ,
(m, δ′ ) 	z∗ (s, δ∗ ) if (z∗, δ∗ ) ∈ supp(μ) and δ∗ ∈ X∅ \ X , and (m, δ′ ) 	z∗ (w, 1ẑ ) if z∗ ∈
supp(δ̂) and (ẑ, δ̂) ∈ supp(μ). This contradicts the stability of μ.

It follows by the above claims that μ(Z × (X∅ \X )) = 0 and that∫
Z×X

δ(Z ) dμ(z, δ) =
∫

supp(μ)∩((Z\{1})×X )
δ(Z ) dμ(z, δ) = 0.

Thus, μ(Z × X ) = ν(Z ) = 1, and since δ = 0 for each (z, δ) ∈ supp(μ) ∩ ((Z \ {1}) × X ),
it follows that supp(μ) = Z × {0}, where 0 ∈ M(Z ) denotes the zero measure on Z. But
then Z ⊆ Tm

1 (μ) and (m, ν) 	1 (m, 0), contradicting the stability of μ.
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